diff options
author | rahulp13 | 2020-03-17 14:55:41 +0530 |
---|---|---|
committer | rahulp13 | 2020-03-17 14:55:41 +0530 |
commit | 296443137f4288cb030e92859ccfbe3204bc1088 (patch) | |
tree | ca4798c2da1e7244edc3bc108d81b462b537aea2 /lib/python2.7/csv.py | |
parent | 0db48f6533517ecebfd9f0693f89deca28408b76 (diff) | |
download | KiCad-eSim-296443137f4288cb030e92859ccfbe3204bc1088.tar.gz KiCad-eSim-296443137f4288cb030e92859ccfbe3204bc1088.tar.bz2 KiCad-eSim-296443137f4288cb030e92859ccfbe3204bc1088.zip |
initial commit
Diffstat (limited to 'lib/python2.7/csv.py')
-rw-r--r-- | lib/python2.7/csv.py | 456 |
1 files changed, 456 insertions, 0 deletions
diff --git a/lib/python2.7/csv.py b/lib/python2.7/csv.py new file mode 100644 index 0000000..c155ada --- /dev/null +++ b/lib/python2.7/csv.py @@ -0,0 +1,456 @@ + +""" +csv.py - read/write/investigate CSV files +""" + +import re +from functools import reduce +from _csv import Error, __version__, writer, reader, register_dialect, \ + unregister_dialect, get_dialect, list_dialects, \ + field_size_limit, \ + QUOTE_MINIMAL, QUOTE_ALL, QUOTE_NONNUMERIC, QUOTE_NONE, \ + __doc__ +from _csv import Dialect as _Dialect + +try: + from cStringIO import StringIO +except ImportError: + from StringIO import StringIO + +__all__ = [ "QUOTE_MINIMAL", "QUOTE_ALL", "QUOTE_NONNUMERIC", "QUOTE_NONE", + "Error", "Dialect", "__doc__", "excel", "excel_tab", + "field_size_limit", "reader", "writer", + "register_dialect", "get_dialect", "list_dialects", "Sniffer", + "unregister_dialect", "__version__", "DictReader", "DictWriter" ] + +class Dialect: + """Describe an Excel dialect. + + This must be subclassed (see csv.excel). Valid attributes are: + delimiter, quotechar, escapechar, doublequote, skipinitialspace, + lineterminator, quoting. + + """ + _name = "" + _valid = False + # placeholders + delimiter = None + quotechar = None + escapechar = None + doublequote = None + skipinitialspace = None + lineterminator = None + quoting = None + + def __init__(self): + if self.__class__ != Dialect: + self._valid = True + self._validate() + + def _validate(self): + try: + _Dialect(self) + except TypeError, e: + # We do this for compatibility with py2.3 + raise Error(str(e)) + +class excel(Dialect): + """Describe the usual properties of Excel-generated CSV files.""" + delimiter = ',' + quotechar = '"' + doublequote = True + skipinitialspace = False + lineterminator = '\r\n' + quoting = QUOTE_MINIMAL +register_dialect("excel", excel) + +class excel_tab(excel): + """Describe the usual properties of Excel-generated TAB-delimited files.""" + delimiter = '\t' +register_dialect("excel-tab", excel_tab) + + +class DictReader: + def __init__(self, f, fieldnames=None, restkey=None, restval=None, + dialect="excel", *args, **kwds): + self._fieldnames = fieldnames # list of keys for the dict + self.restkey = restkey # key to catch long rows + self.restval = restval # default value for short rows + self.reader = reader(f, dialect, *args, **kwds) + self.dialect = dialect + self.line_num = 0 + + def __iter__(self): + return self + + @property + def fieldnames(self): + if self._fieldnames is None: + try: + self._fieldnames = self.reader.next() + except StopIteration: + pass + self.line_num = self.reader.line_num + return self._fieldnames + + # Issue 20004: Because DictReader is a classic class, this setter is + # ignored. At this point in 2.7's lifecycle, it is too late to change the + # base class for fear of breaking working code. If you want to change + # fieldnames without overwriting the getter, set _fieldnames directly. + @fieldnames.setter + def fieldnames(self, value): + self._fieldnames = value + + def next(self): + if self.line_num == 0: + # Used only for its side effect. + self.fieldnames + row = self.reader.next() + self.line_num = self.reader.line_num + + # unlike the basic reader, we prefer not to return blanks, + # because we will typically wind up with a dict full of None + # values + while row == []: + row = self.reader.next() + d = dict(zip(self.fieldnames, row)) + lf = len(self.fieldnames) + lr = len(row) + if lf < lr: + d[self.restkey] = row[lf:] + elif lf > lr: + for key in self.fieldnames[lr:]: + d[key] = self.restval + return d + + +class DictWriter: + def __init__(self, f, fieldnames, restval="", extrasaction="raise", + dialect="excel", *args, **kwds): + self.fieldnames = fieldnames # list of keys for the dict + self.restval = restval # for writing short dicts + if extrasaction.lower() not in ("raise", "ignore"): + raise ValueError, \ + ("extrasaction (%s) must be 'raise' or 'ignore'" % + extrasaction) + self.extrasaction = extrasaction + self.writer = writer(f, dialect, *args, **kwds) + + def writeheader(self): + header = dict(zip(self.fieldnames, self.fieldnames)) + self.writerow(header) + + def _dict_to_list(self, rowdict): + if self.extrasaction == "raise": + wrong_fields = [k for k in rowdict if k not in self.fieldnames] + if wrong_fields: + raise ValueError("dict contains fields not in fieldnames: " + + ", ".join([repr(x) for x in wrong_fields])) + return [rowdict.get(key, self.restval) for key in self.fieldnames] + + def writerow(self, rowdict): + return self.writer.writerow(self._dict_to_list(rowdict)) + + def writerows(self, rowdicts): + rows = [] + for rowdict in rowdicts: + rows.append(self._dict_to_list(rowdict)) + return self.writer.writerows(rows) + +# Guard Sniffer's type checking against builds that exclude complex() +try: + complex +except NameError: + complex = float + +class Sniffer: + ''' + "Sniffs" the format of a CSV file (i.e. delimiter, quotechar) + Returns a Dialect object. + ''' + def __init__(self): + # in case there is more than one possible delimiter + self.preferred = [',', '\t', ';', ' ', ':'] + + + def sniff(self, sample, delimiters=None): + """ + Returns a dialect (or None) corresponding to the sample + """ + + quotechar, doublequote, delimiter, skipinitialspace = \ + self._guess_quote_and_delimiter(sample, delimiters) + if not delimiter: + delimiter, skipinitialspace = self._guess_delimiter(sample, + delimiters) + + if not delimiter: + raise Error, "Could not determine delimiter" + + class dialect(Dialect): + _name = "sniffed" + lineterminator = '\r\n' + quoting = QUOTE_MINIMAL + # escapechar = '' + + dialect.doublequote = doublequote + dialect.delimiter = delimiter + # _csv.reader won't accept a quotechar of '' + dialect.quotechar = quotechar or '"' + dialect.skipinitialspace = skipinitialspace + + return dialect + + + def _guess_quote_and_delimiter(self, data, delimiters): + """ + Looks for text enclosed between two identical quotes + (the probable quotechar) which are preceded and followed + by the same character (the probable delimiter). + For example: + ,'some text', + The quote with the most wins, same with the delimiter. + If there is no quotechar the delimiter can't be determined + this way. + """ + + matches = [] + for restr in ('(?P<delim>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?P=delim)', # ,".*?", + '(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?P<delim>[^\w\n"\'])(?P<space> ?)', # ".*?", + '(?P<delim>>[^\w\n"\'])(?P<space> ?)(?P<quote>["\']).*?(?P=quote)(?:$|\n)', # ,".*?" + '(?:^|\n)(?P<quote>["\']).*?(?P=quote)(?:$|\n)'): # ".*?" (no delim, no space) + regexp = re.compile(restr, re.DOTALL | re.MULTILINE) + matches = regexp.findall(data) + if matches: + break + + if not matches: + # (quotechar, doublequote, delimiter, skipinitialspace) + return ('', False, None, 0) + quotes = {} + delims = {} + spaces = 0 + for m in matches: + n = regexp.groupindex['quote'] - 1 + key = m[n] + if key: + quotes[key] = quotes.get(key, 0) + 1 + try: + n = regexp.groupindex['delim'] - 1 + key = m[n] + except KeyError: + continue + if key and (delimiters is None or key in delimiters): + delims[key] = delims.get(key, 0) + 1 + try: + n = regexp.groupindex['space'] - 1 + except KeyError: + continue + if m[n]: + spaces += 1 + + quotechar = reduce(lambda a, b, quotes = quotes: + (quotes[a] > quotes[b]) and a or b, quotes.keys()) + + if delims: + delim = reduce(lambda a, b, delims = delims: + (delims[a] > delims[b]) and a or b, delims.keys()) + skipinitialspace = delims[delim] == spaces + if delim == '\n': # most likely a file with a single column + delim = '' + else: + # there is *no* delimiter, it's a single column of quoted data + delim = '' + skipinitialspace = 0 + + # if we see an extra quote between delimiters, we've got a + # double quoted format + dq_regexp = re.compile( + r"((%(delim)s)|^)\W*%(quote)s[^%(delim)s\n]*%(quote)s[^%(delim)s\n]*%(quote)s\W*((%(delim)s)|$)" % \ + {'delim':re.escape(delim), 'quote':quotechar}, re.MULTILINE) + + + + if dq_regexp.search(data): + doublequote = True + else: + doublequote = False + + return (quotechar, doublequote, delim, skipinitialspace) + + + def _guess_delimiter(self, data, delimiters): + """ + The delimiter /should/ occur the same number of times on + each row. However, due to malformed data, it may not. We don't want + an all or nothing approach, so we allow for small variations in this + number. + 1) build a table of the frequency of each character on every line. + 2) build a table of frequencies of this frequency (meta-frequency?), + e.g. 'x occurred 5 times in 10 rows, 6 times in 1000 rows, + 7 times in 2 rows' + 3) use the mode of the meta-frequency to determine the /expected/ + frequency for that character + 4) find out how often the character actually meets that goal + 5) the character that best meets its goal is the delimiter + For performance reasons, the data is evaluated in chunks, so it can + try and evaluate the smallest portion of the data possible, evaluating + additional chunks as necessary. + """ + + data = filter(None, data.split('\n')) + + ascii = [chr(c) for c in range(127)] # 7-bit ASCII + + # build frequency tables + chunkLength = min(10, len(data)) + iteration = 0 + charFrequency = {} + modes = {} + delims = {} + start, end = 0, min(chunkLength, len(data)) + while start < len(data): + iteration += 1 + for line in data[start:end]: + for char in ascii: + metaFrequency = charFrequency.get(char, {}) + # must count even if frequency is 0 + freq = line.count(char) + # value is the mode + metaFrequency[freq] = metaFrequency.get(freq, 0) + 1 + charFrequency[char] = metaFrequency + + for char in charFrequency.keys(): + items = charFrequency[char].items() + if len(items) == 1 and items[0][0] == 0: + continue + # get the mode of the frequencies + if len(items) > 1: + modes[char] = reduce(lambda a, b: a[1] > b[1] and a or b, + items) + # adjust the mode - subtract the sum of all + # other frequencies + items.remove(modes[char]) + modes[char] = (modes[char][0], modes[char][1] + - reduce(lambda a, b: (0, a[1] + b[1]), + items)[1]) + else: + modes[char] = items[0] + + # build a list of possible delimiters + modeList = modes.items() + total = float(chunkLength * iteration) + # (rows of consistent data) / (number of rows) = 100% + consistency = 1.0 + # minimum consistency threshold + threshold = 0.9 + while len(delims) == 0 and consistency >= threshold: + for k, v in modeList: + if v[0] > 0 and v[1] > 0: + if ((v[1]/total) >= consistency and + (delimiters is None or k in delimiters)): + delims[k] = v + consistency -= 0.01 + + if len(delims) == 1: + delim = delims.keys()[0] + skipinitialspace = (data[0].count(delim) == + data[0].count("%c " % delim)) + return (delim, skipinitialspace) + + # analyze another chunkLength lines + start = end + end += chunkLength + + if not delims: + return ('', 0) + + # if there's more than one, fall back to a 'preferred' list + if len(delims) > 1: + for d in self.preferred: + if d in delims.keys(): + skipinitialspace = (data[0].count(d) == + data[0].count("%c " % d)) + return (d, skipinitialspace) + + # nothing else indicates a preference, pick the character that + # dominates(?) + items = [(v,k) for (k,v) in delims.items()] + items.sort() + delim = items[-1][1] + + skipinitialspace = (data[0].count(delim) == + data[0].count("%c " % delim)) + return (delim, skipinitialspace) + + + def has_header(self, sample): + # Creates a dictionary of types of data in each column. If any + # column is of a single type (say, integers), *except* for the first + # row, then the first row is presumed to be labels. If the type + # can't be determined, it is assumed to be a string in which case + # the length of the string is the determining factor: if all of the + # rows except for the first are the same length, it's a header. + # Finally, a 'vote' is taken at the end for each column, adding or + # subtracting from the likelihood of the first row being a header. + + rdr = reader(StringIO(sample), self.sniff(sample)) + + header = rdr.next() # assume first row is header + + columns = len(header) + columnTypes = {} + for i in range(columns): columnTypes[i] = None + + checked = 0 + for row in rdr: + # arbitrary number of rows to check, to keep it sane + if checked > 20: + break + checked += 1 + + if len(row) != columns: + continue # skip rows that have irregular number of columns + + for col in columnTypes.keys(): + + for thisType in [int, long, float, complex]: + try: + thisType(row[col]) + break + except (ValueError, OverflowError): + pass + else: + # fallback to length of string + thisType = len(row[col]) + + # treat longs as ints + if thisType == long: + thisType = int + + if thisType != columnTypes[col]: + if columnTypes[col] is None: # add new column type + columnTypes[col] = thisType + else: + # type is inconsistent, remove column from + # consideration + del columnTypes[col] + + # finally, compare results against first row and "vote" + # on whether it's a header + hasHeader = 0 + for col, colType in columnTypes.items(): + if type(colType) == type(0): # it's a length + if len(header[col]) != colType: + hasHeader += 1 + else: + hasHeader -= 1 + else: # attempt typecast + try: + colType(header[col]) + except (ValueError, TypeError): + hasHeader += 1 + else: + hasHeader -= 1 + + return hasHeader > 0 |