From c632c1009c9e095135220c809d7c799841f160b3 Mon Sep 17 00:00:00 2001 From: Fahim Date: Tue, 9 Sep 2014 16:11:17 +0530 Subject: Subject: Changing all content and name of directory and file to FreeEDA Description: The content of file,name of directory and file has been changed in the below format. 1. Oscad to FreeEDA 2. OSCAD to FreeEDA 3. oscad to freeeda --- OSCAD/LPCSim/report/presentation/SMCSim.tex | 732 ---------------------------- 1 file changed, 732 deletions(-) delete mode 100644 OSCAD/LPCSim/report/presentation/SMCSim.tex (limited to 'OSCAD/LPCSim/report/presentation/SMCSim.tex') diff --git a/OSCAD/LPCSim/report/presentation/SMCSim.tex b/OSCAD/LPCSim/report/presentation/SMCSim.tex deleted file mode 100644 index 03c1dc1..0000000 --- a/OSCAD/LPCSim/report/presentation/SMCSim.tex +++ /dev/null @@ -1,732 +0,0 @@ -%$Header: /cvsroot/latex-beamer/latex-beamer/solutions/generic-talks/generic-ornate-15min-45min.en.tex,v 1.4 2004/10/07 20:53:08 tantau Exp $ -\documentclass{beamer} -\mode -{ - \usecolortheme{seahorse} - \usefonttheme{professionalfonts} - \useinnertheme{rounded} - \useoutertheme{shadow} -% \useoutertheme{smoothbars} -} -%\setbeamertemplate{background canvas}[vertical shading][bottom=white!10,top=blue!5] -\usepackage{verbatim} -\usepackage[english]{babel} -\usepackage[latin1]{inputenc} -\usepackage{pgf,pgfarrows,pgfnodes,pgfautomata,pgfheaps,pgfshade} -\usepackage{amsmath,amsfonts,amsthm,amssymb} -\usepackage{times} -\usepackage[T1]{fontenc} -\usepackage{graphics} -\usepackage{graphicx} -%\usepackage{psfig} -\usepackage{algorithmic} - -\title -{Scilab based Mini Circuit Simulator for Academic Purpose} - -\author[] -{Yogesh Dilip Save} -\institute -{ - Indian Institute of Technology, Bombay -} -%\pgfdeclareimage[height=0.7cm]{university-logo}{iitblogo.eps} -%\logo{\pgfuseimage{university-logo}} - - -\date[seminar] % (optional) -{\today} - - -\begin{document} -%*************************************************************************************** -\begin{frame} - \titlepage -\end{frame} -%*************************************************************************************** -\begin{frame} - \frametitle{Presentation Outline} - \tableofcontents -\end{frame} -%*************************************************************************************** - -\section{Introduction} -\begin{frame} - \frametitle{Motivation} -\begin{block}{Objective} -To assist students in improving their knowledge in field of circuit simulation. -\end{block} -\begin{block}{Problem with commercial simulators} -\begin{itemize} -\item Generally software codes are not available. -\item Software codes are written in higher level language (C Programming and Fortran....). -\item Complex due to implementation of many features and complex modeling. -\end{itemize} -\end{block} -\end{frame} - -\begin{frame} - \frametitle{Motivation} -\begin{block}{Objective} -To assist students in improving their knowledge in field of circuit simulation. -\end{block} -\begin{block}{Mini simulator} -\begin{itemize} -\item used Scilab for coding. -\item integrated least number of component. -\item different versions for add-on features. -\end{itemize} -\end{block} -\end{frame} - -\begin{frame} - \frametitle{Plan} -\begin{block}{Display Symbolic Equations} -\end{block} -\begin{block}{Display Numerical Values} -\end{block} -\begin{block}{Complete Report Generation} -\end{block} -\begin{block}{GUI for circuit drawing} -\end{block} -\begin{block}{GUI for simulator option} -\end{block} -\begin{block}{Spoken Tutorial} -\end{block} -%\begin{block} -%\begin{itemize} -%\item Display Numerical Values -%\item Complete Report Generation -%\item Graphical User Interface -%\item Spoken Tutorial -%\end{itemize} -%\end{block} -\end{frame} - -\begin{frame} - \frametitle{Core of circuit simulator} -\begin{itemize} -\item Operating Point Analysis plays an important role in a circuit simulation. -\item DC Analysis is equivalent to performing OP Analysis at each voltages/currents. -\item Transient Analysis is equivalent to performing OP Analysis at each time step. -\item AC Analysis computes the small-signal behavior of a circuit about an operating point -\item Thus implementation of Operating Point Analysis affects overall performance of the circuit simulator. -\end{itemize} -\end{frame} - -\section{Operating Point Analysis} -\begin{frame} -\begin{block}{Operating Point (OP) Analysis} -\begin{itemize} -\item OP Analysis is the central part of a circuit simulator. -\item The equations that describe the electrical system are nonlinear and algebraic and their solution gives operating point. -\item Systems of nonlinear equations are solved by iteratively formulating and solving systems of linear algebraic equations. -\item The overall efficiency of a circuit simulator is dependent upon the performance of the linear DC analyzer. -%\item Thus, our work is towards improving the performance of linear DC Analyzers and handling convergence issues related to large size nonlinear circuits. -\end{itemize} -\end{block} -\end{frame} - -\begin{frame} -\begin{block}{Circuit with linear elements} -\end{block} -\end{frame} - -\begin{frame} -\begin{block}{\small Nodal Analysis} -\begin{itemize} -\begin{small} -\item Applicable when the network has only current sources and conductances type devices i.e., $i=g(v)$. -\item Let, $\mathbf{A}_r$ be the reduced incidence matrix of $\cal{G}$ which is a representative matrix of $V_v(\cal{G})$. \\ -\end{small} -\begin{tiny} -The KCL constraints are -$$\mathbf{A_ri}=\mathbf{0}$$ -$$\left[\begin{array}{cc} - \mathbf{A}_{rG} & \mathbf{A}_{rJ} -\end{array}\right] -\left[\begin{array}{c} - \mathbf{i}_{G} \\ - \mathbf{i}_{J} -\end{array}\right] -=\mathbf{0}$$ -$$\mathbf{A}_{rG}\mathbf{i}_{G}=-\mathbf{A}_{rJ}\mathbf{i}_{J}$$ - -$$\mathbf{A}_{rG}\mathbf{G}\mathbf{v}_{G}=-\mathbf{A}_{rJ}\mathbf{i}_{J}\ \ \ \ \ \ \ \ (As, \mathbf{i}_{G}=\mathbf{G}\mathbf{v}_{G})$$ - -The KVE constraints are -$$\left[\begin{array}{c} - \mathbf{v}_{G} \\ - \mathbf{v}_{J} -\end{array}\right] -= -\left[\begin{array}{c} - \mathbf{A}_{rG}^T \\ - \mathbf{A}_{rJ}^T -\end{array}\right] -\mathbf{v}_n$$ - -\begin{equation} -\mathbf{A}_{rG}\mathbf{G}\mathbf{A}_{rG}^{T}\mathbf{v}_{n}=-\mathbf{A}_{rJ}\mathbf{i}_{J} -\label{nodal_equation} -\end{equation} -\end{tiny} -\end{itemize} -\end{block} -\end{frame} - -\begin{frame}[fragile] -\begin{block}{Matrix Formulation} -\begin{itemize} -\item The diagonal entries of the matrix are the sum of conductances incident on the corresponding nodes. -\item The off diagonal entries $(i,j)^{th}$ of the matrix is the negative of conductances between node $i$ and $j$. -\item The $\mathbf{A}_{rJ}\mathbf{i}_{J}$ is the sum of current sources leaving the nodes. -\end{itemize} -\end{block} -\begin{block}{Example} -\end{block} -\begin{minipage}[!b]{0.4\linewidth} % A minipage that covers half the page -\begin{figure}[h] -\centering -\includegraphics[scale=0.35]{../figures/nodal_figure.eps} -\end{figure} -\end{minipage} -\begin{minipage}[!b]{0.55\linewidth} % A minipage that covers half the page -\begin{tiny} -$$\left[ -\begin{array}{ccc} -\widehat{R}_{1}+\widehat{R}_{2} & -\widehat{R}_{2} & 0\\ --\widehat{R}_{2} & \widehat{R}_{2}+\widehat{R}_{3}+\widehat{R}_{4} & -\widehat{R}_{4}\\ -0 & -\widehat{R}_{4} & \widehat{R}_{4}+\widehat{R}_{5} -\end{array} -\right] \left[ -\begin{array}{c} -v_{1}\\ -v_{2}\\ -v_{3} -\end{array} -\right]= \left[ -\begin{array}{c} -I_{1}\\ -0\\ -I_{2} -\end{array} -\right]$$ -\end{tiny} -\end{minipage} -\tiny $$\mbox{Note that } \widehat{R}=1/R$$ -\tiny \href{run:../../LPCSim_1.0/ckt/nodalExample.ckt}{\color{red} Click here to see the example} -\end{frame} - - -\begin{frame} -\begin{block}{Modified Nodal Analysis} -\begin{small} -\begin{itemize} -\item applicable to all kinds of networks. -\item Let $\mathbf{A}_{r}$ be the reduced incidence matrix of ${\cal{G}}$ -By Tellegan's theorem, -\begin{tiny} -$$\mathbf{A_ri}=\mathbf{0}$$ -$$\left[\begin{array}{ccc} - \mathbf{A}_{rG} & \mathbf{A}_{rT} & \mathbf{A}_{rJ} -\end{array}\right] -\left[\begin{array}{c} - \mathbf{i}_{G} \\ - \mathbf{i}_{T} \\ - \mathbf{i}_{J} -\end{array}\right] -=\mathbf{0}$$ - -$$\left[\begin{array}{cc} - \mathbf{A}_{rG}\mathbf{G} & \mathbf{A}_{rT} -\end{array}\right] -\left[\begin{array}{c} - \mathbf{v}_{G} \\ - \mathbf{i}_{T} -\end{array}\right] -=-\mathbf{A}_{rJ}\mathbf{i}_{J}$$ - -\begin{equation} -\label{mna_eq1} -\left[\begin{array}{cc} - \mathbf{A}_{rG}\mathbf{G}\mathbf{A}_{rG}^{T} & \mathbf{A}_{rT} -\end{array}\right] -\left[\begin{array}{c} - \mathbf{v}_{n} \\ - \mathbf{i}_{T} -\end{array}\right] -=-\mathbf{A}_{rJ}\mathbf{i}_{J} -\end{equation} - -Device characteristics of the branches in $T$ be -$$\left[\begin{array}{cc} - \mathbf{M} & \mathbf{N} -\end{array}\right] -\left[\begin{array}{c} - \mathbf{i}_{T} \\ - \mathbf{v}_{T} -\end{array}\right] -=\mathbf{S}_{T}$$ - -\begin{equation} -\label{mna_eq2} -\left[\begin{array}{cc} - \mathbf{NA}_{rT}^{T} & \mathbf{M} -\end{array}\right] -\left[\begin{array}{c} - \mathbf{v}_{n} \\ - \mathbf{i}_{T} -\end{array}\right] -=\mathbf{S}_{T} -\end{equation} -\end{tiny} -\end{itemize} -\end{small} -\end{block} -\end{frame} - -\begin{frame} -\begin{block}{Example} -\begin{figure}[!ht] -\begin{center} -\includegraphics[scale=0.35]{../figures/modified_figure.eps} -\caption{ Example for MNA } \label{modifiedfig} -\end{center} -\end{figure} -\begin{tiny} -$$\left[ -\begin{array}{cccccc} -\widehat{R}_{1}+\widehat{R}_{4} & -\widehat{R}_{1} & -\widehat{R}_{4} & 1 & 0 \\ --\widehat{R}_{1} & \widehat{R}_{1}+\widehat{R}_{2}+\widehat{R}_{3} & -\widehat{R}_{3} & 0 & 0 \\ --\widehat{R}_{4} & -\widehat{R}_{3} & \widehat{R}_{3}+\widehat{R}_{4} & 0 & 1 \\ -1 & 0 & 0 & 0 & 0 \\ -0 & 0 & 1 & 0 & 0 -\end{array} -\right] \left[ -\begin{array}{c} -v_{1}\\ -v_{2}\\ -v_{3}\\ -i_{V_1}\\ -i_{V_2}\\ -\end{array} -\right]= \left[ -\begin{array}{c} -0\\ -0\\ -0\\ -V_{1}\\ -V_{2} -\end{array} -\right]$$ -\end{tiny} -\tiny $$\mbox{Note that } \widehat{R}=1/R$$ -\tiny \href{run:../../LPCSim_1.0/ckt/modifiedNodalExample.ckt}{\color{red} Click here to see the example} -\end{block} -\end{frame} - -\begin{frame} -\frametitle{Controlled Sources} -\begin{minipage}[!b]{0.47\linewidth} % A minipage that covers half the page - \begin{figure}[!ht] - \centering - \includegraphics[scale=0.6]{../figures/VCCS.eps} - \caption{\scriptsize Voltage Controlled Current Source (VCCS)} - \label{vccs} - \end{figure} -\end{minipage} -%\hspace{0.5cm} % To get a little bit of space between the figures -\begin{minipage}[!b]{0.47\linewidth} - \begin{figure}[!ht] - \centering - \includegraphics[scale=0.6]{../figures/VCVS.eps} - \caption{\scriptsize Voltage Controlled Voltage Source (VCVS) } - \label{vcvs} - \end{figure} - \end{minipage} -\begin{minipage}[!b]{0.47\linewidth} % A minipage that covers half the page - \begin{figure}[!ht] - \centering - \includegraphics[scale=0.6]{../figures/CCCS.eps} - \caption{\scriptsize Current Controlled Current Source (CCCS)} - \label{cccs} - \end{figure} -\end{minipage} -%\hspace{0.5cm} % To get a little bit of space between the figures -\begin{minipage}[!b]{0.47\linewidth} - \begin{figure}[!ht] - \centering - \includegraphics[scale=0.6]{../figures/CCVS.eps} - \caption{\scriptsize Current Controlled Voltage Source (CCVS) } - \label{ccvs} - \end{figure} - \end{minipage} -\begin{scriptsize} -\begin{itemize} -\item In voltage controlled devices, we have added a $0A$ current source as controlling branch -%without disturbing the incidence relationship of existing edges (i.e., the addition is 'soldering type') and its voltage is used for calculating the value of the devices. -\item In current controlled devices, we have added a $0V$ voltage source as controlling branch -%by splitting a node (i.e., plier type entry) and the current through it is used for calculating the value of the devices. -\end{itemize} -\end{scriptsize} -\end{frame} - -\begin{frame} -\begin{block}{Example with controlled sources} -\begin{figure}[!ht] -\begin{center} -\includegraphics[scale=0.6]{../figures/linearckt.eps} -\caption{ \scriptsize Example with controlled source (MNA)} \label{modifiedfig} -\end{center} -\end{figure} -\begin{tiny} -$$\left[ -\begin{array}{ccccccc} -\widehat{R}_{1} & -\widehat{R}_{1} & 0 & 0 & 0 & 1 & 0 \\ --\widehat{R}_{1} & \widehat{R}_{1}+\widehat{R}_{2} & 0 & 0 & 0 & 0 &1\\ -0 & 0& \widehat{R}_{4} & -\widehat{R}_{4}-g_1 & 0 & 0 & -1 \\ -0 & 0& -\widehat{R}_{4} & \widehat{R}_{3}+ \widehat{R}_{4}+\widehat{R}_{5} &-\widehat{R}_{5} & 0 & 0 \\ -0 & 0& 0 &g_1-\widehat{R}_{5} & \widehat{R}_{5}+\widehat{R}_{6} & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 &0 &0\\ -0 & 1 & -1 &-e1 &e1 &0 & 0 -\end{array} -\right] \left[ -\begin{array}{c} -v_{1}\\ -v_{2}\\ -v_{3}\\ -v_{4}\\ -v_{5}\\ -i_{V_1}\\ -i_{E_1}\\ -\end{array} -\right]= \left[ -\begin{array}{c} -0\\ -0\\ -I_1\\ -0\\ -0\\ -V_{1}\\ -0 -\end{array} -\right]$$ -\end{tiny} -\tiny $$\mbox{Note that } \widehat{R}=1/R$$ -\tiny \href{run:../../LPCSim_1.0/ckt/linear1.ckt}{\color{red} Click here to see the example} -\end{block} -\end{frame} - -\begin{frame} -\begin{block}{Example with controlled sources-2} -\begin{figure}[!ht] -\begin{center} -\includegraphics[scale=0.6]{../figures/linearckt2.eps} -\caption{ \scriptsize Example2 with controlled source (MNA)} \label{modifiedfig} -\end{center} -\end{figure} -\begin{tiny} -$$\left[ -\begin{array}{cccccc} -\widehat{R}_{1}+\widehat{R}_{2} & -\widehat{R}_{2} & 0 & 0 & 0 &0\\ --\widehat{R}_{2} &\widehat{R}_{2}+\widehat{R}_{4} &0& -\widehat{R}_{4} & 1 & 0 \\ -0 & -\widehat{R}_{4} & 0 & \widehat{R}_{4} & 0 & 1 \\ -0 & 1& -1 &0 & 0 & 0 \\ -0 & 0 & 0 & 1 & -h_1 &0 -\end{array} -\right] \left[ -\begin{array}{c} -v_{1}\\ -v_{2}\\ -v_{3}\\ -v_{4}\\ -i_{V_1}\\ -i_{H_1}\\ -\end{array} -\right]= \left[ -\begin{array}{c} -I_1\\ -0\\ -0\\ -0\\ -V_{1}\\ -0 -\end{array} -\right]$$ -\end{tiny} -\tiny $$\mbox{Note that } \widehat{R}=1/R$$ -\tiny \href{run:../../LPCSim_1.0/ckt/linear2.ckt}{\color{red} Click here to see the example} -\end{block} -\end{frame} - -\begin{frame} -\frametitle{Circuit with nonlinear elements} -Simulation of circuit with nonlinear element is done in two steps: -\begin{itemize} -\item Formulating the nonlinear equilibrium equations using topological constraints (i.e., KCE, KVE). -\item Solving these equations using appropriate numerical technique. -\end{itemize} -Newton-Raphson method -- Numerical technique to solve nonlinear equations -\begin{itemize} -\item fast convergence rate -\item needs good initial guess -\item does not guaranteed to converge -\item slower when multiple solution -\end{itemize} -\end{frame} - -\begin{frame} -\frametitle{Linearization of Nonlinear Elements} -\begin{minipage}[!b]{0.5\linewidth} -Diode characteristics, -$$I_D=I_S(e^{qV/kT}-1)$$ -$$I_D=I_D|_{V=V_0} + (V-V_0)\frac{I_D}{V}|_{V=V_0}$$ -$$I_D=I_{D0}+(V-V_0)G_{D0}$$ -\begin{figure}[h] -\begin{center} -\includegraphics[scale=0.4]{../figures/diodeI.eps} -\begin{small}Modeling of Diode\end{small} -\label{diodeI} -\end{center} -\end{figure} -\end{minipage} -\begin{minipage}[!b]{0.4\linewidth} -\begin{figure}[h] -\begin{center} -\includegraphics[scale=0.3]{../figures/diodechar1.eps} -\begin{small}Linearized approximation of diode model\end{small} -\begin{tiny}$$I_{DN0}=I_{D0}-V_0G_{D0}$$\end{tiny} -\end{center} -\end{figure} -\end{minipage} -\end{frame} - - -\begin{frame} -{\bf Procedure:}{Operating Point Analysis} -\small -\begin{algorithmic}[1] -\STATE Find Node Potential and Current through devices whose device characteristic can not be expressed in terms of voltage. -\STATE Find branch voltage and node potential. -\STATE Find branch current from branch voltage using device characteristics. -\IF{Non-linear component} -\STATE {\bf NR:} Check device characteristics of non-linear devices. -\IF {Device characteristics is not satisfied} -\STATE Call Newton Raphson procedure -\STATE Find Node Potential and Current through devices whose device characteristic can not be expressed in terms of voltage. -\STATE Find branch current from branch voltage using device characteristics. -\STATE Go to {\bf NR} -\ENDIF -\STATE Check for KCL -\ENDIF -\end{algorithmic} -\normalsize -\end{frame} - -\begin{frame} -\frametitle{Full Wave Bridge Rectifier} -\begin{minipage}[!b]{0.4\linewidth} % A minipage that covers half the page -\begin{figure}[h] -\centering -\includegraphics[scale=0.5]{../figures/bridge.eps} -\end{figure} -\end{minipage} -\hspace{0.5cm} % To get a little bit of space between the figures -\begin{minipage}[!b]{0.5\linewidth} % A minipage that covers half the page -\begin{figure}[h] -\centering -\includegraphics[scale=0.3]{../figures/bridgeOutput.eps} -\end{figure} -\end{minipage} -\end{frame} - -\section{DC Analysis} -\begin{frame} -\frametitle{DC Analysis} -{\bf Procedure:}{DC Analysis} -\small -\begin{algorithmic}[1] -\STATE Modify the value of the sweep source and update Modified Nodal matrix. -\STATE Do Operating Point Analysis. -\end{algorithmic} -\normalsize -\end{frame} - -\begin{frame} -\frametitle{Voltage Sweep} -\begin{minipage}[!b]{0.4\linewidth} % A minipage that covers half the page -\begin{figure}[h] -\centering -\includegraphics[scale=0.8]{../figures/V_Sweep.eps} -\caption{Example of DC Analysis (Vsweep.ckt)} -\end{figure} -\end{minipage} -\hspace{0.5cm} % To get a little bit of space between the figures -\begin{minipage}[!b]{0.5\linewidth} % A minipage that covers half the page -\begin{figure}[h] -\centering -\includegraphics[scale=0.3]{../figures/V_SweepOutput.eps} -\end{figure} -\end{minipage} -\end{frame} - -\begin{frame} -\frametitle{User defined Components} -Consider, a non-linear resistance, -$$I=\frac{1}{R}V^3$$ - -\begin{itemize} -\item Create a file \$CompName.sci -\item Define -\begin{itemize} -\item Function in the $i=g(v)$ form -\item Jacobian of the function -\end{itemize} -\end{itemize} - -%{\bf Syntax:-} -%\newline -%function I=\$CompName\_func(voltage,parameter) -%\$par\_2=parameter(2) -%\$par\_3=parameter(3) -\end{frame} - -\begin{frame} -\frametitle{Non-linear Resistance} -\begin{minipage}[!b]{0.43\linewidth} % A minipage that covers half the page -\begin{figure}[h] -\centering -\includegraphics[scale=0.7]{../figures/myR.eps} -\end{figure} -\begin{tiny} -function I=myR\_func(voltage,parameter) -\begin{center} - R=parameter(2); \newline - I=1/R*(voltage\^3); -\end{center} -endfunction \newline - - -function Gj=myR\_Jacobian(voltage,parameter) -\begin{center} - R=parameter(2); \newline - Gj=3/R*(voltage\^2); -\end{center} -endfunction -\end{tiny} -\end{minipage} -\hspace{0.5cm} % To get a little bit of space between the figures -\begin{minipage}[!b]{0.5\linewidth} % A minipage that covers half the page -\begin{figure}[h] -\centering -\includegraphics[scale=0.3]{../figures/myROutput.eps} -\end{figure} -\end{minipage} -\end{frame} - -\section{Transient Analysis} -\begin{frame} - \begin{block}{What is Transient Analysis?} - \begin{itemize} - \item Computes the response of a circuit as function of time. - \item Time is discretized and the solution is computed piecewise. - \end{itemize} - \end{block} - \begin{block}{Important factors} - \begin{itemize} - \item Proper time Stepping. - \item Integration methods. - \end{itemize} - \end{block} -\end{frame} - -\begin{frame} -\frametitle{Discreatization} -Consider, a capacitor -\begin{tiny} -$$I_C(t_n)=C\frac{\partial{V}_C(t_n)}{\partial{t}}$$ -Using Backward Euler's method, -$$I_C(t_n)=C\frac{V(t_n)-V(t_{n-1})}{t_n-t_{n-1}}$$ -$$I_C(t_n)=\frac{C}{h}V(t_n)-\frac{C}{h}V(t_{n-1})$$ -$$I_C(t_n)=G_C^{(k)}V(t_n)-I_C^{(k)}$$ -\end{tiny} -\begin{figure}[h] -\centering -\includegraphics[scale=0.8]{../figures/Ceq.eps} -\end{figure} -\end{frame} - -\begin{frame} -\frametitle{RC Circuit} -\begin{minipage}[!b]{0.4\linewidth} % A minipage that covers half the page -\begin{figure}[h] -\centering -\includegraphics[scale=0.8]{../figures/RC.eps} -\end{figure} -\end{minipage} -\hspace{0.5cm} % To get a little bit of space between the figures -\begin{minipage}[!b]{0.5\linewidth} % A minipage that covers half the page -\begin{figure}[h] -\centering -\includegraphics[scale=0.3]{../figures/RCOutput.eps} -\end{figure} -\end{minipage} -\end{frame} - -\begin{frame} -\frametitle{Full Wave Bridge Rectifier with Filter} -\begin{minipage}[!b]{0.4\linewidth} % A minipage that covers half the page -\begin{figure}[h] -\centering -\includegraphics[scale=0.4]{../figures/bridgeFilter.eps} -\end{figure} -\end{minipage} -\hspace{0.5cm} % To get a little bit of space between the figures -\begin{minipage}[!b]{0.5\linewidth} % A minipage that covers half the page -\begin{figure}[h] -\centering -\includegraphics[scale=0.3]{../figures/bridgeFilterOutput.eps} -\end{figure} -\end{minipage} -\end{frame} - -\begin{frame} -\frametitle{PseudoCode} -{\bf Procedure:}{Transient Analysis} -\small -\begin{algorithmic}[1] -\STATE Discretize time dependent Component and Update Modified Nodal matrix. -\STATE Do Operating Point Analysis. -\end{algorithmic} -\normalsize - -{\bf Procedure:}{Discretization} -\small -\begin{algorithmic}[1] -\STATE Compute time dependent source value at time t. -\STATE Compute the values of static model of dynamic component at time t. -\STATE Update Modified Nodal matrix. -\end{algorithmic} -\normalsize -\end{frame} - -%\begin{frame} -%\frametitle{CMOS Inverter} -%\begin{minipage}[!b]{0.4\linewidth} % A minipage that covers half the page -%\begin{figure}[h] -%\centering -%\includegraphics[scale=0.4]{../figures/inverter.eps} -%\end{figure} -%\end{minipage} -%\hspace{0.5cm} % To get a little bit of space between the figures -%\begin{minipage}[!b]{0.5\linewidth} % A minipage that covers half the page -%\begin{figure}[h] -%\centering -%\includegraphics[scale=0.3]{../figures/inverterOutput.eps} -%\end{figure} -%\end{minipage} -%\end{frame} - -\end{document} - -- cgit