summaryrefslogtreecommitdiff
path: root/OSCAD/LPCSim/report/presentation/SMCSim.tex
diff options
context:
space:
mode:
Diffstat (limited to 'OSCAD/LPCSim/report/presentation/SMCSim.tex')
-rw-r--r--OSCAD/LPCSim/report/presentation/SMCSim.tex732
1 files changed, 732 insertions, 0 deletions
diff --git a/OSCAD/LPCSim/report/presentation/SMCSim.tex b/OSCAD/LPCSim/report/presentation/SMCSim.tex
new file mode 100644
index 0000000..03c1dc1
--- /dev/null
+++ b/OSCAD/LPCSim/report/presentation/SMCSim.tex
@@ -0,0 +1,732 @@
+%$Header: /cvsroot/latex-beamer/latex-beamer/solutions/generic-talks/generic-ornate-15min-45min.en.tex,v 1.4 2004/10/07 20:53:08 tantau Exp $
+\documentclass{beamer}
+\mode<presentation>
+{
+ \usecolortheme{seahorse}
+ \usefonttheme{professionalfonts}
+ \useinnertheme{rounded}
+ \useoutertheme{shadow}
+% \useoutertheme{smoothbars}
+}
+%\setbeamertemplate{background canvas}[vertical shading][bottom=white!10,top=blue!5]
+\usepackage{verbatim}
+\usepackage[english]{babel}
+\usepackage[latin1]{inputenc}
+\usepackage{pgf,pgfarrows,pgfnodes,pgfautomata,pgfheaps,pgfshade}
+\usepackage{amsmath,amsfonts,amsthm,amssymb}
+\usepackage{times}
+\usepackage[T1]{fontenc}
+\usepackage{graphics}
+\usepackage{graphicx}
+%\usepackage{psfig}
+\usepackage{algorithmic}
+
+\title
+{Scilab based Mini Circuit Simulator for Academic Purpose}
+
+\author[]
+{Yogesh Dilip Save}
+\institute
+{
+ Indian Institute of Technology, Bombay
+}
+%\pgfdeclareimage[height=0.7cm]{university-logo}{iitblogo.eps}
+%\logo{\pgfuseimage{university-logo}}
+
+
+\date[seminar] % (optional)
+{\today}
+
+
+\begin{document}
+%***************************************************************************************
+\begin{frame}
+ \titlepage
+\end{frame}
+%***************************************************************************************
+\begin{frame}
+ \frametitle{Presentation Outline}
+ \tableofcontents
+\end{frame}
+%***************************************************************************************
+
+\section{Introduction}
+\begin{frame}
+ \frametitle{Motivation}
+\begin{block}{Objective}
+To assist students in improving their knowledge in field of circuit simulation.
+\end{block}
+\begin{block}{Problem with commercial simulators}
+\begin{itemize}
+\item Generally software codes are not available.
+\item Software codes are written in higher level language (C Programming and Fortran....).
+\item Complex due to implementation of many features and complex modeling.
+\end{itemize}
+\end{block}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Motivation}
+\begin{block}{Objective}
+To assist students in improving their knowledge in field of circuit simulation.
+\end{block}
+\begin{block}{Mini simulator}
+\begin{itemize}
+\item used Scilab for coding.
+\item integrated least number of component.
+\item different versions for add-on features.
+\end{itemize}
+\end{block}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Plan}
+\begin{block}{Display Symbolic Equations}
+\end{block}
+\begin{block}{Display Numerical Values}
+\end{block}
+\begin{block}{Complete Report Generation}
+\end{block}
+\begin{block}{GUI for circuit drawing}
+\end{block}
+\begin{block}{GUI for simulator option}
+\end{block}
+\begin{block}{Spoken Tutorial}
+\end{block}
+%\begin{block}
+%\begin{itemize}
+%\item Display Numerical Values
+%\item Complete Report Generation
+%\item Graphical User Interface
+%\item Spoken Tutorial
+%\end{itemize}
+%\end{block}
+\end{frame}
+
+\begin{frame}
+ \frametitle{Core of circuit simulator}
+\begin{itemize}
+\item Operating Point Analysis plays an important role in a circuit simulation.
+\item DC Analysis is equivalent to performing OP Analysis at each voltages/currents.
+\item Transient Analysis is equivalent to performing OP Analysis at each time step.
+\item AC Analysis computes the small-signal behavior of a circuit about an operating point
+\item Thus implementation of Operating Point Analysis affects overall performance of the circuit simulator.
+\end{itemize}
+\end{frame}
+
+\section{Operating Point Analysis}
+\begin{frame}
+\begin{block}{Operating Point (OP) Analysis}
+\begin{itemize}
+\item OP Analysis is the central part of a circuit simulator.
+\item The equations that describe the electrical system are nonlinear and algebraic and their solution gives operating point.
+\item Systems of nonlinear equations are solved by iteratively formulating and solving systems of linear algebraic equations.
+\item The overall efficiency of a circuit simulator is dependent upon the performance of the linear DC analyzer.
+%\item Thus, our work is towards improving the performance of linear DC Analyzers and handling convergence issues related to large size nonlinear circuits.
+\end{itemize}
+\end{block}
+\end{frame}
+
+\begin{frame}
+\begin{block}{Circuit with linear elements}
+\end{block}
+\end{frame}
+
+\begin{frame}
+\begin{block}{\small Nodal Analysis}
+\begin{itemize}
+\begin{small}
+\item Applicable when the network has only current sources and conductances type devices i.e., $i=g(v)$.
+\item Let, $\mathbf{A}_r$ be the reduced incidence matrix of $\cal{G}$ which is a representative matrix of $V_v(\cal{G})$. \\
+\end{small}
+\begin{tiny}
+The KCL constraints are
+$$\mathbf{A_ri}=\mathbf{0}$$
+$$\left[\begin{array}{cc}
+ \mathbf{A}_{rG} & \mathbf{A}_{rJ}
+\end{array}\right]
+\left[\begin{array}{c}
+ \mathbf{i}_{G} \\
+ \mathbf{i}_{J}
+\end{array}\right]
+=\mathbf{0}$$
+$$\mathbf{A}_{rG}\mathbf{i}_{G}=-\mathbf{A}_{rJ}\mathbf{i}_{J}$$
+
+$$\mathbf{A}_{rG}\mathbf{G}\mathbf{v}_{G}=-\mathbf{A}_{rJ}\mathbf{i}_{J}\ \ \ \ \ \ \ \ (As, \mathbf{i}_{G}=\mathbf{G}\mathbf{v}_{G})$$
+
+The KVE constraints are
+$$\left[\begin{array}{c}
+ \mathbf{v}_{G} \\
+ \mathbf{v}_{J}
+\end{array}\right]
+=
+\left[\begin{array}{c}
+ \mathbf{A}_{rG}^T \\
+ \mathbf{A}_{rJ}^T
+\end{array}\right]
+\mathbf{v}_n$$
+
+\begin{equation}
+\mathbf{A}_{rG}\mathbf{G}\mathbf{A}_{rG}^{T}\mathbf{v}_{n}=-\mathbf{A}_{rJ}\mathbf{i}_{J}
+\label{nodal_equation}
+\end{equation}
+\end{tiny}
+\end{itemize}
+\end{block}
+\end{frame}
+
+\begin{frame}[fragile]
+\begin{block}{Matrix Formulation}
+\begin{itemize}
+\item The diagonal entries of the matrix are the sum of conductances incident on the corresponding nodes.
+\item The off diagonal entries $(i,j)^{th}$ of the matrix is the negative of conductances between node $i$ and $j$.
+\item The $\mathbf{A}_{rJ}\mathbf{i}_{J}$ is the sum of current sources leaving the nodes.
+\end{itemize}
+\end{block}
+\begin{block}{Example}
+\end{block}
+\begin{minipage}[!b]{0.4\linewidth} % A minipage that covers half the page
+\begin{figure}[h]
+\centering
+\includegraphics[scale=0.35]{../figures/nodal_figure.eps}
+\end{figure}
+\end{minipage}
+\begin{minipage}[!b]{0.55\linewidth} % A minipage that covers half the page
+\begin{tiny}
+$$\left[
+\begin{array}{ccc}
+\widehat{R}_{1}+\widehat{R}_{2} & -\widehat{R}_{2} & 0\\
+-\widehat{R}_{2} & \widehat{R}_{2}+\widehat{R}_{3}+\widehat{R}_{4} & -\widehat{R}_{4}\\
+0 & -\widehat{R}_{4} & \widehat{R}_{4}+\widehat{R}_{5}
+\end{array}
+\right] \left[
+\begin{array}{c}
+v_{1}\\
+v_{2}\\
+v_{3}
+\end{array}
+\right]= \left[
+\begin{array}{c}
+I_{1}\\
+0\\
+I_{2}
+\end{array}
+\right]$$
+\end{tiny}
+\end{minipage}
+\tiny $$\mbox{Note that } \widehat{R}=1/R$$
+\tiny \href{run:../../LPCSim_1.0/ckt/nodalExample.ckt}{\color{red} Click here to see the example}
+\end{frame}
+
+
+\begin{frame}
+\begin{block}{Modified Nodal Analysis}
+\begin{small}
+\begin{itemize}
+\item applicable to all kinds of networks.
+\item Let $\mathbf{A}_{r}$ be the reduced incidence matrix of ${\cal{G}}$
+By Tellegan's theorem,
+\begin{tiny}
+$$\mathbf{A_ri}=\mathbf{0}$$
+$$\left[\begin{array}{ccc}
+ \mathbf{A}_{rG} & \mathbf{A}_{rT} & \mathbf{A}_{rJ}
+\end{array}\right]
+\left[\begin{array}{c}
+ \mathbf{i}_{G} \\
+ \mathbf{i}_{T} \\
+ \mathbf{i}_{J}
+\end{array}\right]
+=\mathbf{0}$$
+
+$$\left[\begin{array}{cc}
+ \mathbf{A}_{rG}\mathbf{G} & \mathbf{A}_{rT}
+\end{array}\right]
+\left[\begin{array}{c}
+ \mathbf{v}_{G} \\
+ \mathbf{i}_{T}
+\end{array}\right]
+=-\mathbf{A}_{rJ}\mathbf{i}_{J}$$
+
+\begin{equation}
+\label{mna_eq1}
+\left[\begin{array}{cc}
+ \mathbf{A}_{rG}\mathbf{G}\mathbf{A}_{rG}^{T} & \mathbf{A}_{rT}
+\end{array}\right]
+\left[\begin{array}{c}
+ \mathbf{v}_{n} \\
+ \mathbf{i}_{T}
+\end{array}\right]
+=-\mathbf{A}_{rJ}\mathbf{i}_{J}
+\end{equation}
+
+Device characteristics of the branches in $T$ be
+$$\left[\begin{array}{cc}
+ \mathbf{M} & \mathbf{N}
+\end{array}\right]
+\left[\begin{array}{c}
+ \mathbf{i}_{T} \\
+ \mathbf{v}_{T}
+\end{array}\right]
+=\mathbf{S}_{T}$$
+
+\begin{equation}
+\label{mna_eq2}
+\left[\begin{array}{cc}
+ \mathbf{NA}_{rT}^{T} & \mathbf{M}
+\end{array}\right]
+\left[\begin{array}{c}
+ \mathbf{v}_{n} \\
+ \mathbf{i}_{T}
+\end{array}\right]
+=\mathbf{S}_{T}
+\end{equation}
+\end{tiny}
+\end{itemize}
+\end{small}
+\end{block}
+\end{frame}
+
+\begin{frame}
+\begin{block}{Example}
+\begin{figure}[!ht]
+\begin{center}
+\includegraphics[scale=0.35]{../figures/modified_figure.eps}
+\caption{ Example for MNA } \label{modifiedfig}
+\end{center}
+\end{figure}
+\begin{tiny}
+$$\left[
+\begin{array}{cccccc}
+\widehat{R}_{1}+\widehat{R}_{4} & -\widehat{R}_{1} & -\widehat{R}_{4} & 1 & 0 \\
+-\widehat{R}_{1} & \widehat{R}_{1}+\widehat{R}_{2}+\widehat{R}_{3} & -\widehat{R}_{3} & 0 & 0 \\
+-\widehat{R}_{4} & -\widehat{R}_{3} & \widehat{R}_{3}+\widehat{R}_{4} & 0 & 1 \\
+1 & 0 & 0 & 0 & 0 \\
+0 & 0 & 1 & 0 & 0
+\end{array}
+\right] \left[
+\begin{array}{c}
+v_{1}\\
+v_{2}\\
+v_{3}\\
+i_{V_1}\\
+i_{V_2}\\
+\end{array}
+\right]= \left[
+\begin{array}{c}
+0\\
+0\\
+0\\
+V_{1}\\
+V_{2}
+\end{array}
+\right]$$
+\end{tiny}
+\tiny $$\mbox{Note that } \widehat{R}=1/R$$
+\tiny \href{run:../../LPCSim_1.0/ckt/modifiedNodalExample.ckt}{\color{red} Click here to see the example}
+\end{block}
+\end{frame}
+
+\begin{frame}
+\frametitle{Controlled Sources}
+\begin{minipage}[!b]{0.47\linewidth} % A minipage that covers half the page
+ \begin{figure}[!ht]
+ \centering
+ \includegraphics[scale=0.6]{../figures/VCCS.eps}
+ \caption{\scriptsize Voltage Controlled Current Source (VCCS)}
+ \label{vccs}
+ \end{figure}
+\end{minipage}
+%\hspace{0.5cm} % To get a little bit of space between the figures
+\begin{minipage}[!b]{0.47\linewidth}
+ \begin{figure}[!ht]
+ \centering
+ \includegraphics[scale=0.6]{../figures/VCVS.eps}
+ \caption{\scriptsize Voltage Controlled Voltage Source (VCVS) }
+ \label{vcvs}
+ \end{figure}
+ \end{minipage}
+\begin{minipage}[!b]{0.47\linewidth} % A minipage that covers half the page
+ \begin{figure}[!ht]
+ \centering
+ \includegraphics[scale=0.6]{../figures/CCCS.eps}
+ \caption{\scriptsize Current Controlled Current Source (CCCS)}
+ \label{cccs}
+ \end{figure}
+\end{minipage}
+%\hspace{0.5cm} % To get a little bit of space between the figures
+\begin{minipage}[!b]{0.47\linewidth}
+ \begin{figure}[!ht]
+ \centering
+ \includegraphics[scale=0.6]{../figures/CCVS.eps}
+ \caption{\scriptsize Current Controlled Voltage Source (CCVS) }
+ \label{ccvs}
+ \end{figure}
+ \end{minipage}
+\begin{scriptsize}
+\begin{itemize}
+\item In voltage controlled devices, we have added a $0A$ current source as controlling branch
+%without disturbing the incidence relationship of existing edges (i.e., the addition is 'soldering type') and its voltage is used for calculating the value of the devices.
+\item In current controlled devices, we have added a $0V$ voltage source as controlling branch
+%by splitting a node (i.e., plier type entry) and the current through it is used for calculating the value of the devices.
+\end{itemize}
+\end{scriptsize}
+\end{frame}
+
+\begin{frame}
+\begin{block}{Example with controlled sources}
+\begin{figure}[!ht]
+\begin{center}
+\includegraphics[scale=0.6]{../figures/linearckt.eps}
+\caption{ \scriptsize Example with controlled source (MNA)} \label{modifiedfig}
+\end{center}
+\end{figure}
+\begin{tiny}
+$$\left[
+\begin{array}{ccccccc}
+\widehat{R}_{1} & -\widehat{R}_{1} & 0 & 0 & 0 & 1 & 0 \\
+-\widehat{R}_{1} & \widehat{R}_{1}+\widehat{R}_{2} & 0 & 0 & 0 & 0 &1\\
+0 & 0& \widehat{R}_{4} & -\widehat{R}_{4}-g_1 & 0 & 0 & -1 \\
+0 & 0& -\widehat{R}_{4} & \widehat{R}_{3}+ \widehat{R}_{4}+\widehat{R}_{5} &-\widehat{R}_{5} & 0 & 0 \\
+0 & 0& 0 &g_1-\widehat{R}_{5} & \widehat{R}_{5}+\widehat{R}_{6} & 0 & 0 \\
+1 & 0 & 0 & 0 & 0 &0 &0\\
+0 & 1 & -1 &-e1 &e1 &0 & 0
+\end{array}
+\right] \left[
+\begin{array}{c}
+v_{1}\\
+v_{2}\\
+v_{3}\\
+v_{4}\\
+v_{5}\\
+i_{V_1}\\
+i_{E_1}\\
+\end{array}
+\right]= \left[
+\begin{array}{c}
+0\\
+0\\
+I_1\\
+0\\
+0\\
+V_{1}\\
+0
+\end{array}
+\right]$$
+\end{tiny}
+\tiny $$\mbox{Note that } \widehat{R}=1/R$$
+\tiny \href{run:../../LPCSim_1.0/ckt/linear1.ckt}{\color{red} Click here to see the example}
+\end{block}
+\end{frame}
+
+\begin{frame}
+\begin{block}{Example with controlled sources-2}
+\begin{figure}[!ht]
+\begin{center}
+\includegraphics[scale=0.6]{../figures/linearckt2.eps}
+\caption{ \scriptsize Example2 with controlled source (MNA)} \label{modifiedfig}
+\end{center}
+\end{figure}
+\begin{tiny}
+$$\left[
+\begin{array}{cccccc}
+\widehat{R}_{1}+\widehat{R}_{2} & -\widehat{R}_{2} & 0 & 0 & 0 &0\\
+-\widehat{R}_{2} &\widehat{R}_{2}+\widehat{R}_{4} &0& -\widehat{R}_{4} & 1 & 0 \\
+0 & -\widehat{R}_{4} & 0 & \widehat{R}_{4} & 0 & 1 \\
+0 & 1& -1 &0 & 0 & 0 \\
+0 & 0 & 0 & 1 & -h_1 &0
+\end{array}
+\right] \left[
+\begin{array}{c}
+v_{1}\\
+v_{2}\\
+v_{3}\\
+v_{4}\\
+i_{V_1}\\
+i_{H_1}\\
+\end{array}
+\right]= \left[
+\begin{array}{c}
+I_1\\
+0\\
+0\\
+0\\
+V_{1}\\
+0
+\end{array}
+\right]$$
+\end{tiny}
+\tiny $$\mbox{Note that } \widehat{R}=1/R$$
+\tiny \href{run:../../LPCSim_1.0/ckt/linear2.ckt}{\color{red} Click here to see the example}
+\end{block}
+\end{frame}
+
+\begin{frame}
+\frametitle{Circuit with nonlinear elements}
+Simulation of circuit with nonlinear element is done in two steps:
+\begin{itemize}
+\item Formulating the nonlinear equilibrium equations using topological constraints (i.e., KCE, KVE).
+\item Solving these equations using appropriate numerical technique.
+\end{itemize}
+Newton-Raphson method -- Numerical technique to solve nonlinear equations
+\begin{itemize}
+\item fast convergence rate
+\item needs good initial guess
+\item does not guaranteed to converge
+\item slower when multiple solution
+\end{itemize}
+\end{frame}
+
+\begin{frame}
+\frametitle{Linearization of Nonlinear Elements}
+\begin{minipage}[!b]{0.5\linewidth}
+Diode characteristics,
+$$I_D=I_S(e^{qV/kT}-1)$$
+$$I_D=I_D|_{V=V_0} + (V-V_0)\frac{I_D}{V}|_{V=V_0}$$
+$$I_D=I_{D0}+(V-V_0)G_{D0}$$
+\begin{figure}[h]
+\begin{center}
+\includegraphics[scale=0.4]{../figures/diodeI.eps}
+\begin{small}Modeling of Diode\end{small}
+\label{diodeI}
+\end{center}
+\end{figure}
+\end{minipage}
+\begin{minipage}[!b]{0.4\linewidth}
+\begin{figure}[h]
+\begin{center}
+\includegraphics[scale=0.3]{../figures/diodechar1.eps}
+\begin{small}Linearized approximation of diode model\end{small}
+\begin{tiny}$$I_{DN0}=I_{D0}-V_0G_{D0}$$\end{tiny}
+\end{center}
+\end{figure}
+\end{minipage}
+\end{frame}
+
+
+\begin{frame}
+{\bf Procedure:}{Operating Point Analysis}
+\small
+\begin{algorithmic}[1]
+\STATE Find Node Potential and Current through devices whose device characteristic can not be expressed in terms of voltage.
+\STATE Find branch voltage and node potential.
+\STATE Find branch current from branch voltage using device characteristics.
+\IF{Non-linear component}
+\STATE {\bf NR:} Check device characteristics of non-linear devices.
+\IF {Device characteristics is not satisfied}
+\STATE Call Newton Raphson procedure
+\STATE Find Node Potential and Current through devices whose device characteristic can not be expressed in terms of voltage.
+\STATE Find branch current from branch voltage using device characteristics.
+\STATE Go to {\bf NR}
+\ENDIF
+\STATE Check for KCL
+\ENDIF
+\end{algorithmic}
+\normalsize
+\end{frame}
+
+\begin{frame}
+\frametitle{Full Wave Bridge Rectifier}
+\begin{minipage}[!b]{0.4\linewidth} % A minipage that covers half the page
+\begin{figure}[h]
+\centering
+\includegraphics[scale=0.5]{../figures/bridge.eps}
+\end{figure}
+\end{minipage}
+\hspace{0.5cm} % To get a little bit of space between the figures
+\begin{minipage}[!b]{0.5\linewidth} % A minipage that covers half the page
+\begin{figure}[h]
+\centering
+\includegraphics[scale=0.3]{../figures/bridgeOutput.eps}
+\end{figure}
+\end{minipage}
+\end{frame}
+
+\section{DC Analysis}
+\begin{frame}
+\frametitle{DC Analysis}
+{\bf Procedure:}{DC Analysis}
+\small
+\begin{algorithmic}[1]
+\STATE Modify the value of the sweep source and update Modified Nodal matrix.
+\STATE Do Operating Point Analysis.
+\end{algorithmic}
+\normalsize
+\end{frame}
+
+\begin{frame}
+\frametitle{Voltage Sweep}
+\begin{minipage}[!b]{0.4\linewidth} % A minipage that covers half the page
+\begin{figure}[h]
+\centering
+\includegraphics[scale=0.8]{../figures/V_Sweep.eps}
+\caption{Example of DC Analysis (Vsweep.ckt)}
+\end{figure}
+\end{minipage}
+\hspace{0.5cm} % To get a little bit of space between the figures
+\begin{minipage}[!b]{0.5\linewidth} % A minipage that covers half the page
+\begin{figure}[h]
+\centering
+\includegraphics[scale=0.3]{../figures/V_SweepOutput.eps}
+\end{figure}
+\end{minipage}
+\end{frame}
+
+\begin{frame}
+\frametitle{User defined Components}
+Consider, a non-linear resistance,
+$$I=\frac{1}{R}V^3$$
+
+\begin{itemize}
+\item Create a file \$CompName.sci
+\item Define
+\begin{itemize}
+\item Function in the $i=g(v)$ form
+\item Jacobian of the function
+\end{itemize}
+\end{itemize}
+
+%{\bf Syntax:-}
+%\newline
+%function I=\$CompName\_func(voltage,parameter)
+%\$par\_2=parameter(2)
+%\$par\_3=parameter(3)
+\end{frame}
+
+\begin{frame}
+\frametitle{Non-linear Resistance}
+\begin{minipage}[!b]{0.43\linewidth} % A minipage that covers half the page
+\begin{figure}[h]
+\centering
+\includegraphics[scale=0.7]{../figures/myR.eps}
+\end{figure}
+\begin{tiny}
+function I=myR\_func(voltage,parameter)
+\begin{center}
+ R=parameter(2); \newline
+ I=1/R*(voltage\^3);
+\end{center}
+endfunction \newline
+
+
+function Gj=myR\_Jacobian(voltage,parameter)
+\begin{center}
+ R=parameter(2); \newline
+ Gj=3/R*(voltage\^2);
+\end{center}
+endfunction
+\end{tiny}
+\end{minipage}
+\hspace{0.5cm} % To get a little bit of space between the figures
+\begin{minipage}[!b]{0.5\linewidth} % A minipage that covers half the page
+\begin{figure}[h]
+\centering
+\includegraphics[scale=0.3]{../figures/myROutput.eps}
+\end{figure}
+\end{minipage}
+\end{frame}
+
+\section{Transient Analysis}
+\begin{frame}
+ \begin{block}{What is Transient Analysis?}
+ \begin{itemize}
+ \item Computes the response of a circuit as function of time.
+ \item Time is discretized and the solution is computed piecewise.
+ \end{itemize}
+ \end{block}
+ \begin{block}{Important factors}
+ \begin{itemize}
+ \item Proper time Stepping.
+ \item Integration methods.
+ \end{itemize}
+ \end{block}
+\end{frame}
+
+\begin{frame}
+\frametitle{Discreatization}
+Consider, a capacitor
+\begin{tiny}
+$$I_C(t_n)=C\frac{\partial{V}_C(t_n)}{\partial{t}}$$
+Using Backward Euler's method,
+$$I_C(t_n)=C\frac{V(t_n)-V(t_{n-1})}{t_n-t_{n-1}}$$
+$$I_C(t_n)=\frac{C}{h}V(t_n)-\frac{C}{h}V(t_{n-1})$$
+$$I_C(t_n)=G_C^{(k)}V(t_n)-I_C^{(k)}$$
+\end{tiny}
+\begin{figure}[h]
+\centering
+\includegraphics[scale=0.8]{../figures/Ceq.eps}
+\end{figure}
+\end{frame}
+
+\begin{frame}
+\frametitle{RC Circuit}
+\begin{minipage}[!b]{0.4\linewidth} % A minipage that covers half the page
+\begin{figure}[h]
+\centering
+\includegraphics[scale=0.8]{../figures/RC.eps}
+\end{figure}
+\end{minipage}
+\hspace{0.5cm} % To get a little bit of space between the figures
+\begin{minipage}[!b]{0.5\linewidth} % A minipage that covers half the page
+\begin{figure}[h]
+\centering
+\includegraphics[scale=0.3]{../figures/RCOutput.eps}
+\end{figure}
+\end{minipage}
+\end{frame}
+
+\begin{frame}
+\frametitle{Full Wave Bridge Rectifier with Filter}
+\begin{minipage}[!b]{0.4\linewidth} % A minipage that covers half the page
+\begin{figure}[h]
+\centering
+\includegraphics[scale=0.4]{../figures/bridgeFilter.eps}
+\end{figure}
+\end{minipage}
+\hspace{0.5cm} % To get a little bit of space between the figures
+\begin{minipage}[!b]{0.5\linewidth} % A minipage that covers half the page
+\begin{figure}[h]
+\centering
+\includegraphics[scale=0.3]{../figures/bridgeFilterOutput.eps}
+\end{figure}
+\end{minipage}
+\end{frame}
+
+\begin{frame}
+\frametitle{PseudoCode}
+{\bf Procedure:}{Transient Analysis}
+\small
+\begin{algorithmic}[1]
+\STATE Discretize time dependent Component and Update Modified Nodal matrix.
+\STATE Do Operating Point Analysis.
+\end{algorithmic}
+\normalsize
+
+{\bf Procedure:}{Discretization}
+\small
+\begin{algorithmic}[1]
+\STATE Compute time dependent source value at time t.
+\STATE Compute the values of static model of dynamic component at time t.
+\STATE Update Modified Nodal matrix.
+\end{algorithmic}
+\normalsize
+\end{frame}
+
+%\begin{frame}
+%\frametitle{CMOS Inverter}
+%\begin{minipage}[!b]{0.4\linewidth} % A minipage that covers half the page
+%\begin{figure}[h]
+%\centering
+%\includegraphics[scale=0.4]{../figures/inverter.eps}
+%\end{figure}
+%\end{minipage}
+%\hspace{0.5cm} % To get a little bit of space between the figures
+%\begin{minipage}[!b]{0.5\linewidth} % A minipage that covers half the page
+%\begin{figure}[h]
+%\centering
+%\includegraphics[scale=0.3]{../figures/inverterOutput.eps}
+%\end{figure}
+%\end{minipage}
+%\end{frame}
+
+\end{document}
+