diff options
Diffstat (limited to 'OSCAD/LPCSim/report/presentation/SMCSim.tex')
-rw-r--r-- | OSCAD/LPCSim/report/presentation/SMCSim.tex | 732 |
1 files changed, 732 insertions, 0 deletions
diff --git a/OSCAD/LPCSim/report/presentation/SMCSim.tex b/OSCAD/LPCSim/report/presentation/SMCSim.tex new file mode 100644 index 0000000..03c1dc1 --- /dev/null +++ b/OSCAD/LPCSim/report/presentation/SMCSim.tex @@ -0,0 +1,732 @@ +%$Header: /cvsroot/latex-beamer/latex-beamer/solutions/generic-talks/generic-ornate-15min-45min.en.tex,v 1.4 2004/10/07 20:53:08 tantau Exp $ +\documentclass{beamer} +\mode<presentation> +{ + \usecolortheme{seahorse} + \usefonttheme{professionalfonts} + \useinnertheme{rounded} + \useoutertheme{shadow} +% \useoutertheme{smoothbars} +} +%\setbeamertemplate{background canvas}[vertical shading][bottom=white!10,top=blue!5] +\usepackage{verbatim} +\usepackage[english]{babel} +\usepackage[latin1]{inputenc} +\usepackage{pgf,pgfarrows,pgfnodes,pgfautomata,pgfheaps,pgfshade} +\usepackage{amsmath,amsfonts,amsthm,amssymb} +\usepackage{times} +\usepackage[T1]{fontenc} +\usepackage{graphics} +\usepackage{graphicx} +%\usepackage{psfig} +\usepackage{algorithmic} + +\title +{Scilab based Mini Circuit Simulator for Academic Purpose} + +\author[] +{Yogesh Dilip Save} +\institute +{ + Indian Institute of Technology, Bombay +} +%\pgfdeclareimage[height=0.7cm]{university-logo}{iitblogo.eps} +%\logo{\pgfuseimage{university-logo}} + + +\date[seminar] % (optional) +{\today} + + +\begin{document} +%*************************************************************************************** +\begin{frame} + \titlepage +\end{frame} +%*************************************************************************************** +\begin{frame} + \frametitle{Presentation Outline} + \tableofcontents +\end{frame} +%*************************************************************************************** + +\section{Introduction} +\begin{frame} + \frametitle{Motivation} +\begin{block}{Objective} +To assist students in improving their knowledge in field of circuit simulation. +\end{block} +\begin{block}{Problem with commercial simulators} +\begin{itemize} +\item Generally software codes are not available. +\item Software codes are written in higher level language (C Programming and Fortran....). +\item Complex due to implementation of many features and complex modeling. +\end{itemize} +\end{block} +\end{frame} + +\begin{frame} + \frametitle{Motivation} +\begin{block}{Objective} +To assist students in improving their knowledge in field of circuit simulation. +\end{block} +\begin{block}{Mini simulator} +\begin{itemize} +\item used Scilab for coding. +\item integrated least number of component. +\item different versions for add-on features. +\end{itemize} +\end{block} +\end{frame} + +\begin{frame} + \frametitle{Plan} +\begin{block}{Display Symbolic Equations} +\end{block} +\begin{block}{Display Numerical Values} +\end{block} +\begin{block}{Complete Report Generation} +\end{block} +\begin{block}{GUI for circuit drawing} +\end{block} +\begin{block}{GUI for simulator option} +\end{block} +\begin{block}{Spoken Tutorial} +\end{block} +%\begin{block} +%\begin{itemize} +%\item Display Numerical Values +%\item Complete Report Generation +%\item Graphical User Interface +%\item Spoken Tutorial +%\end{itemize} +%\end{block} +\end{frame} + +\begin{frame} + \frametitle{Core of circuit simulator} +\begin{itemize} +\item Operating Point Analysis plays an important role in a circuit simulation. +\item DC Analysis is equivalent to performing OP Analysis at each voltages/currents. +\item Transient Analysis is equivalent to performing OP Analysis at each time step. +\item AC Analysis computes the small-signal behavior of a circuit about an operating point +\item Thus implementation of Operating Point Analysis affects overall performance of the circuit simulator. +\end{itemize} +\end{frame} + +\section{Operating Point Analysis} +\begin{frame} +\begin{block}{Operating Point (OP) Analysis} +\begin{itemize} +\item OP Analysis is the central part of a circuit simulator. +\item The equations that describe the electrical system are nonlinear and algebraic and their solution gives operating point. +\item Systems of nonlinear equations are solved by iteratively formulating and solving systems of linear algebraic equations. +\item The overall efficiency of a circuit simulator is dependent upon the performance of the linear DC analyzer. +%\item Thus, our work is towards improving the performance of linear DC Analyzers and handling convergence issues related to large size nonlinear circuits. +\end{itemize} +\end{block} +\end{frame} + +\begin{frame} +\begin{block}{Circuit with linear elements} +\end{block} +\end{frame} + +\begin{frame} +\begin{block}{\small Nodal Analysis} +\begin{itemize} +\begin{small} +\item Applicable when the network has only current sources and conductances type devices i.e., $i=g(v)$. +\item Let, $\mathbf{A}_r$ be the reduced incidence matrix of $\cal{G}$ which is a representative matrix of $V_v(\cal{G})$. \\ +\end{small} +\begin{tiny} +The KCL constraints are +$$\mathbf{A_ri}=\mathbf{0}$$ +$$\left[\begin{array}{cc} + \mathbf{A}_{rG} & \mathbf{A}_{rJ} +\end{array}\right] +\left[\begin{array}{c} + \mathbf{i}_{G} \\ + \mathbf{i}_{J} +\end{array}\right] +=\mathbf{0}$$ +$$\mathbf{A}_{rG}\mathbf{i}_{G}=-\mathbf{A}_{rJ}\mathbf{i}_{J}$$ + +$$\mathbf{A}_{rG}\mathbf{G}\mathbf{v}_{G}=-\mathbf{A}_{rJ}\mathbf{i}_{J}\ \ \ \ \ \ \ \ (As, \mathbf{i}_{G}=\mathbf{G}\mathbf{v}_{G})$$ + +The KVE constraints are +$$\left[\begin{array}{c} + \mathbf{v}_{G} \\ + \mathbf{v}_{J} +\end{array}\right] += +\left[\begin{array}{c} + \mathbf{A}_{rG}^T \\ + \mathbf{A}_{rJ}^T +\end{array}\right] +\mathbf{v}_n$$ + +\begin{equation} +\mathbf{A}_{rG}\mathbf{G}\mathbf{A}_{rG}^{T}\mathbf{v}_{n}=-\mathbf{A}_{rJ}\mathbf{i}_{J} +\label{nodal_equation} +\end{equation} +\end{tiny} +\end{itemize} +\end{block} +\end{frame} + +\begin{frame}[fragile] +\begin{block}{Matrix Formulation} +\begin{itemize} +\item The diagonal entries of the matrix are the sum of conductances incident on the corresponding nodes. +\item The off diagonal entries $(i,j)^{th}$ of the matrix is the negative of conductances between node $i$ and $j$. +\item The $\mathbf{A}_{rJ}\mathbf{i}_{J}$ is the sum of current sources leaving the nodes. +\end{itemize} +\end{block} +\begin{block}{Example} +\end{block} +\begin{minipage}[!b]{0.4\linewidth} % A minipage that covers half the page +\begin{figure}[h] +\centering +\includegraphics[scale=0.35]{../figures/nodal_figure.eps} +\end{figure} +\end{minipage} +\begin{minipage}[!b]{0.55\linewidth} % A minipage that covers half the page +\begin{tiny} +$$\left[ +\begin{array}{ccc} +\widehat{R}_{1}+\widehat{R}_{2} & -\widehat{R}_{2} & 0\\ +-\widehat{R}_{2} & \widehat{R}_{2}+\widehat{R}_{3}+\widehat{R}_{4} & -\widehat{R}_{4}\\ +0 & -\widehat{R}_{4} & \widehat{R}_{4}+\widehat{R}_{5} +\end{array} +\right] \left[ +\begin{array}{c} +v_{1}\\ +v_{2}\\ +v_{3} +\end{array} +\right]= \left[ +\begin{array}{c} +I_{1}\\ +0\\ +I_{2} +\end{array} +\right]$$ +\end{tiny} +\end{minipage} +\tiny $$\mbox{Note that } \widehat{R}=1/R$$ +\tiny \href{run:../../LPCSim_1.0/ckt/nodalExample.ckt}{\color{red} Click here to see the example} +\end{frame} + + +\begin{frame} +\begin{block}{Modified Nodal Analysis} +\begin{small} +\begin{itemize} +\item applicable to all kinds of networks. +\item Let $\mathbf{A}_{r}$ be the reduced incidence matrix of ${\cal{G}}$ +By Tellegan's theorem, +\begin{tiny} +$$\mathbf{A_ri}=\mathbf{0}$$ +$$\left[\begin{array}{ccc} + \mathbf{A}_{rG} & \mathbf{A}_{rT} & \mathbf{A}_{rJ} +\end{array}\right] +\left[\begin{array}{c} + \mathbf{i}_{G} \\ + \mathbf{i}_{T} \\ + \mathbf{i}_{J} +\end{array}\right] +=\mathbf{0}$$ + +$$\left[\begin{array}{cc} + \mathbf{A}_{rG}\mathbf{G} & \mathbf{A}_{rT} +\end{array}\right] +\left[\begin{array}{c} + \mathbf{v}_{G} \\ + \mathbf{i}_{T} +\end{array}\right] +=-\mathbf{A}_{rJ}\mathbf{i}_{J}$$ + +\begin{equation} +\label{mna_eq1} +\left[\begin{array}{cc} + \mathbf{A}_{rG}\mathbf{G}\mathbf{A}_{rG}^{T} & \mathbf{A}_{rT} +\end{array}\right] +\left[\begin{array}{c} + \mathbf{v}_{n} \\ + \mathbf{i}_{T} +\end{array}\right] +=-\mathbf{A}_{rJ}\mathbf{i}_{J} +\end{equation} + +Device characteristics of the branches in $T$ be +$$\left[\begin{array}{cc} + \mathbf{M} & \mathbf{N} +\end{array}\right] +\left[\begin{array}{c} + \mathbf{i}_{T} \\ + \mathbf{v}_{T} +\end{array}\right] +=\mathbf{S}_{T}$$ + +\begin{equation} +\label{mna_eq2} +\left[\begin{array}{cc} + \mathbf{NA}_{rT}^{T} & \mathbf{M} +\end{array}\right] +\left[\begin{array}{c} + \mathbf{v}_{n} \\ + \mathbf{i}_{T} +\end{array}\right] +=\mathbf{S}_{T} +\end{equation} +\end{tiny} +\end{itemize} +\end{small} +\end{block} +\end{frame} + +\begin{frame} +\begin{block}{Example} +\begin{figure}[!ht] +\begin{center} +\includegraphics[scale=0.35]{../figures/modified_figure.eps} +\caption{ Example for MNA } \label{modifiedfig} +\end{center} +\end{figure} +\begin{tiny} +$$\left[ +\begin{array}{cccccc} +\widehat{R}_{1}+\widehat{R}_{4} & -\widehat{R}_{1} & -\widehat{R}_{4} & 1 & 0 \\ +-\widehat{R}_{1} & \widehat{R}_{1}+\widehat{R}_{2}+\widehat{R}_{3} & -\widehat{R}_{3} & 0 & 0 \\ +-\widehat{R}_{4} & -\widehat{R}_{3} & \widehat{R}_{3}+\widehat{R}_{4} & 0 & 1 \\ +1 & 0 & 0 & 0 & 0 \\ +0 & 0 & 1 & 0 & 0 +\end{array} +\right] \left[ +\begin{array}{c} +v_{1}\\ +v_{2}\\ +v_{3}\\ +i_{V_1}\\ +i_{V_2}\\ +\end{array} +\right]= \left[ +\begin{array}{c} +0\\ +0\\ +0\\ +V_{1}\\ +V_{2} +\end{array} +\right]$$ +\end{tiny} +\tiny $$\mbox{Note that } \widehat{R}=1/R$$ +\tiny \href{run:../../LPCSim_1.0/ckt/modifiedNodalExample.ckt}{\color{red} Click here to see the example} +\end{block} +\end{frame} + +\begin{frame} +\frametitle{Controlled Sources} +\begin{minipage}[!b]{0.47\linewidth} % A minipage that covers half the page + \begin{figure}[!ht] + \centering + \includegraphics[scale=0.6]{../figures/VCCS.eps} + \caption{\scriptsize Voltage Controlled Current Source (VCCS)} + \label{vccs} + \end{figure} +\end{minipage} +%\hspace{0.5cm} % To get a little bit of space between the figures +\begin{minipage}[!b]{0.47\linewidth} + \begin{figure}[!ht] + \centering + \includegraphics[scale=0.6]{../figures/VCVS.eps} + \caption{\scriptsize Voltage Controlled Voltage Source (VCVS) } + \label{vcvs} + \end{figure} + \end{minipage} +\begin{minipage}[!b]{0.47\linewidth} % A minipage that covers half the page + \begin{figure}[!ht] + \centering + \includegraphics[scale=0.6]{../figures/CCCS.eps} + \caption{\scriptsize Current Controlled Current Source (CCCS)} + \label{cccs} + \end{figure} +\end{minipage} +%\hspace{0.5cm} % To get a little bit of space between the figures +\begin{minipage}[!b]{0.47\linewidth} + \begin{figure}[!ht] + \centering + \includegraphics[scale=0.6]{../figures/CCVS.eps} + \caption{\scriptsize Current Controlled Voltage Source (CCVS) } + \label{ccvs} + \end{figure} + \end{minipage} +\begin{scriptsize} +\begin{itemize} +\item In voltage controlled devices, we have added a $0A$ current source as controlling branch +%without disturbing the incidence relationship of existing edges (i.e., the addition is 'soldering type') and its voltage is used for calculating the value of the devices. +\item In current controlled devices, we have added a $0V$ voltage source as controlling branch +%by splitting a node (i.e., plier type entry) and the current through it is used for calculating the value of the devices. +\end{itemize} +\end{scriptsize} +\end{frame} + +\begin{frame} +\begin{block}{Example with controlled sources} +\begin{figure}[!ht] +\begin{center} +\includegraphics[scale=0.6]{../figures/linearckt.eps} +\caption{ \scriptsize Example with controlled source (MNA)} \label{modifiedfig} +\end{center} +\end{figure} +\begin{tiny} +$$\left[ +\begin{array}{ccccccc} +\widehat{R}_{1} & -\widehat{R}_{1} & 0 & 0 & 0 & 1 & 0 \\ +-\widehat{R}_{1} & \widehat{R}_{1}+\widehat{R}_{2} & 0 & 0 & 0 & 0 &1\\ +0 & 0& \widehat{R}_{4} & -\widehat{R}_{4}-g_1 & 0 & 0 & -1 \\ +0 & 0& -\widehat{R}_{4} & \widehat{R}_{3}+ \widehat{R}_{4}+\widehat{R}_{5} &-\widehat{R}_{5} & 0 & 0 \\ +0 & 0& 0 &g_1-\widehat{R}_{5} & \widehat{R}_{5}+\widehat{R}_{6} & 0 & 0 \\ +1 & 0 & 0 & 0 & 0 &0 &0\\ +0 & 1 & -1 &-e1 &e1 &0 & 0 +\end{array} +\right] \left[ +\begin{array}{c} +v_{1}\\ +v_{2}\\ +v_{3}\\ +v_{4}\\ +v_{5}\\ +i_{V_1}\\ +i_{E_1}\\ +\end{array} +\right]= \left[ +\begin{array}{c} +0\\ +0\\ +I_1\\ +0\\ +0\\ +V_{1}\\ +0 +\end{array} +\right]$$ +\end{tiny} +\tiny $$\mbox{Note that } \widehat{R}=1/R$$ +\tiny \href{run:../../LPCSim_1.0/ckt/linear1.ckt}{\color{red} Click here to see the example} +\end{block} +\end{frame} + +\begin{frame} +\begin{block}{Example with controlled sources-2} +\begin{figure}[!ht] +\begin{center} +\includegraphics[scale=0.6]{../figures/linearckt2.eps} +\caption{ \scriptsize Example2 with controlled source (MNA)} \label{modifiedfig} +\end{center} +\end{figure} +\begin{tiny} +$$\left[ +\begin{array}{cccccc} +\widehat{R}_{1}+\widehat{R}_{2} & -\widehat{R}_{2} & 0 & 0 & 0 &0\\ +-\widehat{R}_{2} &\widehat{R}_{2}+\widehat{R}_{4} &0& -\widehat{R}_{4} & 1 & 0 \\ +0 & -\widehat{R}_{4} & 0 & \widehat{R}_{4} & 0 & 1 \\ +0 & 1& -1 &0 & 0 & 0 \\ +0 & 0 & 0 & 1 & -h_1 &0 +\end{array} +\right] \left[ +\begin{array}{c} +v_{1}\\ +v_{2}\\ +v_{3}\\ +v_{4}\\ +i_{V_1}\\ +i_{H_1}\\ +\end{array} +\right]= \left[ +\begin{array}{c} +I_1\\ +0\\ +0\\ +0\\ +V_{1}\\ +0 +\end{array} +\right]$$ +\end{tiny} +\tiny $$\mbox{Note that } \widehat{R}=1/R$$ +\tiny \href{run:../../LPCSim_1.0/ckt/linear2.ckt}{\color{red} Click here to see the example} +\end{block} +\end{frame} + +\begin{frame} +\frametitle{Circuit with nonlinear elements} +Simulation of circuit with nonlinear element is done in two steps: +\begin{itemize} +\item Formulating the nonlinear equilibrium equations using topological constraints (i.e., KCE, KVE). +\item Solving these equations using appropriate numerical technique. +\end{itemize} +Newton-Raphson method -- Numerical technique to solve nonlinear equations +\begin{itemize} +\item fast convergence rate +\item needs good initial guess +\item does not guaranteed to converge +\item slower when multiple solution +\end{itemize} +\end{frame} + +\begin{frame} +\frametitle{Linearization of Nonlinear Elements} +\begin{minipage}[!b]{0.5\linewidth} +Diode characteristics, +$$I_D=I_S(e^{qV/kT}-1)$$ +$$I_D=I_D|_{V=V_0} + (V-V_0)\frac{I_D}{V}|_{V=V_0}$$ +$$I_D=I_{D0}+(V-V_0)G_{D0}$$ +\begin{figure}[h] +\begin{center} +\includegraphics[scale=0.4]{../figures/diodeI.eps} +\begin{small}Modeling of Diode\end{small} +\label{diodeI} +\end{center} +\end{figure} +\end{minipage} +\begin{minipage}[!b]{0.4\linewidth} +\begin{figure}[h] +\begin{center} +\includegraphics[scale=0.3]{../figures/diodechar1.eps} +\begin{small}Linearized approximation of diode model\end{small} +\begin{tiny}$$I_{DN0}=I_{D0}-V_0G_{D0}$$\end{tiny} +\end{center} +\end{figure} +\end{minipage} +\end{frame} + + +\begin{frame} +{\bf Procedure:}{Operating Point Analysis} +\small +\begin{algorithmic}[1] +\STATE Find Node Potential and Current through devices whose device characteristic can not be expressed in terms of voltage. +\STATE Find branch voltage and node potential. +\STATE Find branch current from branch voltage using device characteristics. +\IF{Non-linear component} +\STATE {\bf NR:} Check device characteristics of non-linear devices. +\IF {Device characteristics is not satisfied} +\STATE Call Newton Raphson procedure +\STATE Find Node Potential and Current through devices whose device characteristic can not be expressed in terms of voltage. +\STATE Find branch current from branch voltage using device characteristics. +\STATE Go to {\bf NR} +\ENDIF +\STATE Check for KCL +\ENDIF +\end{algorithmic} +\normalsize +\end{frame} + +\begin{frame} +\frametitle{Full Wave Bridge Rectifier} +\begin{minipage}[!b]{0.4\linewidth} % A minipage that covers half the page +\begin{figure}[h] +\centering +\includegraphics[scale=0.5]{../figures/bridge.eps} +\end{figure} +\end{minipage} +\hspace{0.5cm} % To get a little bit of space between the figures +\begin{minipage}[!b]{0.5\linewidth} % A minipage that covers half the page +\begin{figure}[h] +\centering +\includegraphics[scale=0.3]{../figures/bridgeOutput.eps} +\end{figure} +\end{minipage} +\end{frame} + +\section{DC Analysis} +\begin{frame} +\frametitle{DC Analysis} +{\bf Procedure:}{DC Analysis} +\small +\begin{algorithmic}[1] +\STATE Modify the value of the sweep source and update Modified Nodal matrix. +\STATE Do Operating Point Analysis. +\end{algorithmic} +\normalsize +\end{frame} + +\begin{frame} +\frametitle{Voltage Sweep} +\begin{minipage}[!b]{0.4\linewidth} % A minipage that covers half the page +\begin{figure}[h] +\centering +\includegraphics[scale=0.8]{../figures/V_Sweep.eps} +\caption{Example of DC Analysis (Vsweep.ckt)} +\end{figure} +\end{minipage} +\hspace{0.5cm} % To get a little bit of space between the figures +\begin{minipage}[!b]{0.5\linewidth} % A minipage that covers half the page +\begin{figure}[h] +\centering +\includegraphics[scale=0.3]{../figures/V_SweepOutput.eps} +\end{figure} +\end{minipage} +\end{frame} + +\begin{frame} +\frametitle{User defined Components} +Consider, a non-linear resistance, +$$I=\frac{1}{R}V^3$$ + +\begin{itemize} +\item Create a file \$CompName.sci +\item Define +\begin{itemize} +\item Function in the $i=g(v)$ form +\item Jacobian of the function +\end{itemize} +\end{itemize} + +%{\bf Syntax:-} +%\newline +%function I=\$CompName\_func(voltage,parameter) +%\$par\_2=parameter(2) +%\$par\_3=parameter(3) +\end{frame} + +\begin{frame} +\frametitle{Non-linear Resistance} +\begin{minipage}[!b]{0.43\linewidth} % A minipage that covers half the page +\begin{figure}[h] +\centering +\includegraphics[scale=0.7]{../figures/myR.eps} +\end{figure} +\begin{tiny} +function I=myR\_func(voltage,parameter) +\begin{center} + R=parameter(2); \newline + I=1/R*(voltage\^3); +\end{center} +endfunction \newline + + +function Gj=myR\_Jacobian(voltage,parameter) +\begin{center} + R=parameter(2); \newline + Gj=3/R*(voltage\^2); +\end{center} +endfunction +\end{tiny} +\end{minipage} +\hspace{0.5cm} % To get a little bit of space between the figures +\begin{minipage}[!b]{0.5\linewidth} % A minipage that covers half the page +\begin{figure}[h] +\centering +\includegraphics[scale=0.3]{../figures/myROutput.eps} +\end{figure} +\end{minipage} +\end{frame} + +\section{Transient Analysis} +\begin{frame} + \begin{block}{What is Transient Analysis?} + \begin{itemize} + \item Computes the response of a circuit as function of time. + \item Time is discretized and the solution is computed piecewise. + \end{itemize} + \end{block} + \begin{block}{Important factors} + \begin{itemize} + \item Proper time Stepping. + \item Integration methods. + \end{itemize} + \end{block} +\end{frame} + +\begin{frame} +\frametitle{Discreatization} +Consider, a capacitor +\begin{tiny} +$$I_C(t_n)=C\frac{\partial{V}_C(t_n)}{\partial{t}}$$ +Using Backward Euler's method, +$$I_C(t_n)=C\frac{V(t_n)-V(t_{n-1})}{t_n-t_{n-1}}$$ +$$I_C(t_n)=\frac{C}{h}V(t_n)-\frac{C}{h}V(t_{n-1})$$ +$$I_C(t_n)=G_C^{(k)}V(t_n)-I_C^{(k)}$$ +\end{tiny} +\begin{figure}[h] +\centering +\includegraphics[scale=0.8]{../figures/Ceq.eps} +\end{figure} +\end{frame} + +\begin{frame} +\frametitle{RC Circuit} +\begin{minipage}[!b]{0.4\linewidth} % A minipage that covers half the page +\begin{figure}[h] +\centering +\includegraphics[scale=0.8]{../figures/RC.eps} +\end{figure} +\end{minipage} +\hspace{0.5cm} % To get a little bit of space between the figures +\begin{minipage}[!b]{0.5\linewidth} % A minipage that covers half the page +\begin{figure}[h] +\centering +\includegraphics[scale=0.3]{../figures/RCOutput.eps} +\end{figure} +\end{minipage} +\end{frame} + +\begin{frame} +\frametitle{Full Wave Bridge Rectifier with Filter} +\begin{minipage}[!b]{0.4\linewidth} % A minipage that covers half the page +\begin{figure}[h] +\centering +\includegraphics[scale=0.4]{../figures/bridgeFilter.eps} +\end{figure} +\end{minipage} +\hspace{0.5cm} % To get a little bit of space between the figures +\begin{minipage}[!b]{0.5\linewidth} % A minipage that covers half the page +\begin{figure}[h] +\centering +\includegraphics[scale=0.3]{../figures/bridgeFilterOutput.eps} +\end{figure} +\end{minipage} +\end{frame} + +\begin{frame} +\frametitle{PseudoCode} +{\bf Procedure:}{Transient Analysis} +\small +\begin{algorithmic}[1] +\STATE Discretize time dependent Component and Update Modified Nodal matrix. +\STATE Do Operating Point Analysis. +\end{algorithmic} +\normalsize + +{\bf Procedure:}{Discretization} +\small +\begin{algorithmic}[1] +\STATE Compute time dependent source value at time t. +\STATE Compute the values of static model of dynamic component at time t. +\STATE Update Modified Nodal matrix. +\end{algorithmic} +\normalsize +\end{frame} + +%\begin{frame} +%\frametitle{CMOS Inverter} +%\begin{minipage}[!b]{0.4\linewidth} % A minipage that covers half the page +%\begin{figure}[h] +%\centering +%\includegraphics[scale=0.4]{../figures/inverter.eps} +%\end{figure} +%\end{minipage} +%\hspace{0.5cm} % To get a little bit of space between the figures +%\begin{minipage}[!b]{0.5\linewidth} % A minipage that covers half the page +%\begin{figure}[h] +%\centering +%\includegraphics[scale=0.3]{../figures/inverterOutput.eps} +%\end{figure} +%\end{minipage} +%\end{frame} + +\end{document} + |