from manimlib.imports import * class Column_Space(Scene): def construct(self): A = TextMobject(r"$A = $",r"$\left( \begin{array}{c c} 1 & 2 \\ 3 & 4 \end{array} \right)$") A.move_to(2*UP) A[1].set_color(color = DARK_BLUE) A.scale(0.75) self.play(Write(A),run_time = 1) CS_A = TextMobject(r"Column Space of $A = x_{1}$",r"$\left( \begin{array}{c} 1 \\ 3 \end{array} \right)$",r"$+x_{2}$",r"$ \left( \begin{array}{c} 2 \\ 4\end{array} \right)$") CS_A.move_to(1.5*LEFT+1*DOWN) CS_A[1].set_color(color = DARK_BLUE) CS_A[3].set_color(color = DARK_BLUE) CS_A.scale(0.75) self.play(Write(CS_A),run_time = 2) arrow1 = Arrow(start = 1.25*UP,end = (0.25*DOWN+1.75*LEFT+0.25*DOWN+1.2*RIGHT)/2) arrow3 = Arrow(start = 1.25*UP+0.75*RIGHT,end = (0.25*DOWN+2.9*RIGHT+0.25*DOWN)/2) arrow1.scale(1.5) arrow3.scale(1.5) Defn = TextMobject("Linear Combination of Columns of Matrix") Defn.move_to(3*DOWN) self.play(Write(Defn), ShowCreation(arrow1), ShowCreation(arrow3),run_time = 1) self.wait(1) class solution(LinearTransformationScene): def construct(self): self.setup() self.wait() o = TextMobject(r"Consider the vector space $R^2$") o.move_to(2*DOWN) o.scale(0.75) o.add_background_rectangle() self.play(Write(o)) self.wait() self.play(FadeOut(o)) A = TextMobject(r"Let $A$ be ",r"$\left[\begin{array}{c c} 1 & -1 \\ 1 & -1 \end{array}\right]$",r". $A$ denotes the matrix the of this linear transformation.") A.move_to(2*DOWN) A.scale(0.75) A.add_background_rectangle() self.play(Write(A)) matrix = [[1,-1],[1,-1]] self.apply_matrix(matrix) self.wait() self.play(FadeOut(A)) o = TextMobject(r"This is the transformed vector space") o.move_to(2*DOWN) o.scale(0.75) o.add_background_rectangle() self.play(Write(o)) self.wait() self.play(FadeOut(o)) texti = TextMobject(r"$\left[\begin{array}{c}1\\1\end{array}\right]$") textj = TextMobject(r"$\left[\begin{array}{c}-1\\-1\end{array}\right]$") texti.set_color(GREEN) textj.set_color(RED) texti.scale(0.7) textj.scale(0.7) texti.move_to(1.35*RIGHT+0.5*UP) textj.move_to(-(1.5*RIGHT+0.5*UP)) text1 = TextMobject("[") text2 = TextMobject(r"$\begin{array}{c} 1 \\ 1 \end{array}$") text3 = TextMobject(r"$\begin{array}{c} -1 \\ -1 \end{array}$") text4 = TextMobject("]") text2.set_color(GREEN) text3.set_color(RED) text1.scale(2) text4.scale(2) text2.scale(0.7) text3.scale(0.7) text1.move_to(2.5*UP+6*LEFT) text2.move_to(2.5*UP+5.75*LEFT) text3.move_to(2.5*UP+5.25*LEFT) text4.move_to(2.5*UP+5*LEFT) self.play(Write(texti), Write(textj)) self.wait() self.play(FadeIn(text1), Transform(texti,text2), Transform(textj,text3), FadeIn(text4)) self.wait() o = TextMobject(r"Now, you can observe the Image of Linear Transformation") o1 = TextMobject(r"and Column Space(i.e. span of columns of matrix $A$) are same") o.move_to(2.5*DOWN) o1.move_to(3*DOWN) o.scale(0.75) o1.scale(0.75) o.add_background_rectangle() o1.add_background_rectangle() self.play(Write(o)) self.play(Write(o1)) self.wait() self.play(FadeOut(o),FadeOut(o1)) class solution2nd(LinearTransformationScene): def construct(self): self.setup() self.wait() arrow1 = Arrow(start = ORIGIN,end = 2*DOWN+RIGHT) arrow2 = Arrow(start = ORIGIN,end = UP+LEFT) arrow3 = Arrow(start = ORIGIN,end = 3*UP+4*RIGHT) arrow1.set_color(YELLOW) arrow2.set_color(ORANGE) arrow3.set_color(PURPLE) arrow1.scale(1.3) arrow2.scale(1.5) arrow3.scale(1.1) self.play(ShowCreation(arrow1), ShowCreation(arrow2), ShowCreation(arrow3)) self.add_transformable_mobject(arrow1) self.add_transformable_mobject(arrow2) self.add_transformable_mobject(arrow3) o = TextMobject(r"Consider any vector in the original vector space $R^2$") o.move_to(2.5*DOWN) o.scale(0.75) o.add_background_rectangle() self.play(Write(o)) self.wait() self.play(FadeOut(o)) A = TextMobject(r"Let the matrix the of this linear transformation be $A$ =",r"$\left[\begin{array}{c c} 1 & -1 \\ 1 & -1 \end{array}\right]$",r" again.") A.move_to(2*DOWN) A.scale(0.75) A.add_background_rectangle() self.play(Write(A)) matrix = [[1,-1],[1,-1]] self.apply_matrix(matrix) self.wait() self.play(FadeOut(A)) o = TextMobject(r"This is the transformed vector space") o.move_to(2*DOWN) o.scale(0.75) o.add_background_rectangle() self.play(Write(o)) self.wait() self.play(FadeOut(o)) o = TextMobject(r"Each and every vector of original vector space $R^2$ will transform") o1 = TextMobject(r"to this new vector space which is spanned by $\mathbf{CS}(A)$") o.move_to(2.5*DOWN) o1.move_to(3*DOWN) o.scale(0.75) o1.scale(0.75) o.add_background_rectangle() o1.add_background_rectangle() self.play(Write(o)) self.play(Write(o1)) self.wait() self.play(FadeOut(o)) self.play(FadeOut(o1))