from manimlib.imports import * import math class uniformlyConvergent(Scene): def construct(self): introText2=TextMobject("Let","$g(x)=\\frac { 1 }{ 1+{ x }^{ 2 } }$","and","x=0.5 $\in$(-1,1)") introText3=TextMobject("Lets analyse..","!") introText2.scale(0.7) introText3.scale(0.9) introText3.shift(DOWN) introText2.set_color_by_tex_to_color_map({"$g(x)=\\frac { 1 }{ 1+{ x }^{ 2 } }$":BLUE,"x=0.5 $\in$(-1,1)":YELLOW}) introText3.set_color_by_tex_to_color_map({"!":GREEN}) self.play(Write(introText2)) self.play(FadeIn(introText3)) self.wait(2) def gety(x,n): ans=0 for i in range(0,n+1): if(i%2==0): ans+=(math.pow(x,2*i)) else: ans-=(math.pow(x,2*i)) return ans def makeSeries(x,points,x_each_unit,y_each_unit): p=0 for point in points: y=gety(x,p) point.shift(ORIGIN+RIGHT*x_each_unit*p+UP*y_each_unit*y) p+=1 def makeLines(x,numPoints,x_each_unit,y_each_unit): lines=[0]*numPoints for i in range(0,numPoints-1): y=gety(x,i) y_next=gety(x,i+1) lines[i]=Line(start=ORIGIN+RIGHT*x_each_unit*i+UP*y_each_unit*y,end=ORIGIN+RIGHT*x_each_unit*(i+1)+UP*y_each_unit*y_next,color=RED) return lines class graphScene(GraphScene,ZoomedScene): CONFIG = { "x_min": -6, "x_max": 6, "y_min": -5, "y_max": 5, "graph_origin": ORIGIN, "function_color": RED, "axes_color": GREEN, "x_axis_label": "$k$", "y_axis_label": "$f(\\frac{1}{2})_k$", "exclude_zero_label": True, "x_axis_width":7, "y_axis_height":7, "zoomed_camera_frame_starting_position": 0.5*UP+0.5*RIGHT, "zoom_factor": 0.4, } def setup(self): GraphScene.setup(self) ZoomedScene.setup(self) def construct(self): x_each_unit = self.x_axis_width / (self.x_max - self.x_min) y_each_unit = self.y_axis_height / (self.y_max - self.y_min) sequence=TextMobject("$1$ , $1-(0.5)^2$ , $1-(0.5)^2+(0.5)^4..$") sequence.set_color(RED) sequence.scale(0.35) sequence.to_edge(UP+RIGHT) formula=TextMobject("$f(x)_{ k }=\sum _{ i=0 }^{ k }{ (-1)^{ i }(x)^{ 2i } } $") formula.set_color(PURPLE_C) formula.scale(0.4) formula.shift(5.3*RIGHT+3*UP) fLine=Line(start=ORIGIN+x_each_unit*6*LEFT,end=ORIGIN+x_each_unit*6*RIGHT) fLine.shift(ORIGIN+(4/5)*y_each_unit*UP) fLineText=TextMobject("$g(0.5)=\\frac { 4 }{ 5 } $") fLineText.set_color(RED) fLineText.scale(0.3) fLineText.shift(UP*1.2*y_each_unit+RIGHT*x_each_unit+4*LEFT) points=[Dot(radius=0.03,color=BLUE) for i in range(0,6)] makeSeries(0.5,points,x_each_unit,y_each_unit) lines=makeLines(0.5,6,x_each_unit,y_each_unit) func1=TextMobject("$g(x)=\\frac { 1 }{ 1+{ x }^{ 2 } }$") func2=TextMobject("x=0.5 $\in$(-1,1)") func1.scale(0.4) func2.scale(0.4) func1.shift(5.3*LEFT+3.3*UP) func2.shift(5.3*LEFT+2.9*UP) self.add(func1) self.add(func2) self.add(sequence) self.add(formula) self.setup_axes(animate=True) self.play(Write(fLine)) self.add(fLineText) for p in points: self.add(p) self.setup() self.activate_zooming(animate=True) for p in range(0,5): self.play(Write(lines[p])) self.wait(1) self.get_zoomed_display_pop_out_animation() explanation1=TextMobject("Since the series","converges","to") explanation1.set_color_by_tex_to_color_map({"converges":YELLOW}) explanation2=TextMobject("$\\frac {4}{5}$") explanation2.set_color(BLUE) explanation3=TextMobject("Hence","$\\forall \epsilon>0$,","$\exists k$","such that,") explanation3.set_color_by_tex_to_color_map({"$\\forall \epsilon>0$":BLUE,"$\exists k$":YELLOW}) explanation4=TextMobject("$\left| { f\left( \\frac { 1 }{ 2 } \\right) }_{ k }-\\frac { 4 }{ 5 } \\right| <$","$\epsilon$") explanation4.set_color_by_tex_to_color_map({"$\epsilon$":RED}) explanation1.scale(0.5) explanation3.scale(0.5) explanation1.shift(1.8*DOWN+3.5*RIGHT) explanation2.shift(2.4*DOWN+3.5*RIGHT) explanation3.shift(1.8*DOWN+3.5*RIGHT) explanation4.shift(2.4*DOWN+3.5*RIGHT) self.play(Write(explanation1)) self.play(FadeIn(explanation2)) self.wait(1) self.play(FadeOut(explanation1),FadeOut(explanation2)) self.play(Write(explanation3)) self.play(Write(explanation4)) self.wait(2)