from manimlib.imports import * class MaximaMinima(ThreeDScene): def construct(self): axes = ThreeDAxes() paraboloid = ParametricSurface( lambda u, v: np.array([ 3.5*np.sin(u)*np.cos(v), 3.5*np.sin(u)*np.sin(v), 3.5*3.5*np.sin(u)*np.sin(u)*(1+2*np.sin(v)*np.sin(v))*np.exp(1 - 3.5*3.5*np.sin(u)*np.sin(u) ) ]),u_min=0,u_max=PI,v_min=0,v_max=2*PI, color = BLUE_C, fill_color = BLUE_C, fill_opacity = 0.1, resolution=(15, 32)).scale(1) paraboloid_copy1 = paraboloid.copy() paraboloid_copy2 = paraboloid.copy() paraboloid_x = ParametricSurface( lambda u, v: np.array([ 3.5*np.sin(u)*np.cos(v), 3.5*np.sin(u)*np.sin(v), 3.5*3.5*np.sin(u)*np.sin(u)*(1+2*np.sin(v)*np.sin(v))*np.exp(1 - 3.5*3.5*np.sin(u)*np.sin(u) ) ]),u_min=0,u_max=PI,v_min=PI,v_max=2*PI, color = BLUE_C, fill_color = BLUE_C, fill_opacity = 0.1, resolution=(15, 32)).scale(1) paraboloid_y = ParametricSurface( lambda u, v: np.array([ 3.5*np.sin(u)*np.cos(v), 3.5*np.sin(u)*np.sin(v), 3.5*3.5*np.sin(u)*np.sin(u)*(1+2*np.sin(v)*np.sin(v))*np.exp(1 - 3.5*3.5*np.sin(u)*np.sin(u) ) ]),u_min=0,u_max=PI,v_min=PI/2,v_max=3*PI/2, color = BLUE_C, fill_color = BLUE_C, fill_opacity = 0.1, resolution=(15, 32)).scale(1) parabola_x_out =ParametricFunction( lambda u : np.array([ u, 0, (u*u )*np.exp(1-u*u) ]),color=RED_E,t_min=-3.5,t_max=3.5, ) parabola_y_out =ParametricFunction( lambda u : np.array([ 0, u, (3*u*u)*np.exp(1-u*u) ]),color=PINK,t_min=-3.5,t_max=3.5, ) plane1 = Polygon(np.array([-3.5,0,-3]),np.array([3.5,0,-3]),np.array([3.5,0,3]),np.array([-3.5,0,3]),np.array([-3.5,0,-3]), color = RED_C, fill_color = RED_C, fill_opacity = 0.2) plane_text_x = TextMobject(r"$y = 0$", color = RED_C).move_to(2*UP + 4.5*RIGHT) plane2 = Polygon(np.array([0,-3.5,-3]),np.array([0,3.5,-3]),np.array([0,3.5,3]),np.array([0,-3.5,3]),np.array([0,-3.5,-3]), color = PINK, fill_color = PINK, fill_opacity = 0.2) plane_text_y = TextMobject(r"$x = 0$", color = PINK).move_to(2*UP + 4.5*RIGHT) surface_eqn = TextMobject("Surface", r"$z = (x^2 + 3y^2)e^{(1 - x^2 - y^2)}$", color = YELLOW_C).scale(0.6).move_to(np.array([3.5*LEFT +3.5*UP])) surface_eqn[0].set_color(BLUE_C) self.set_camera_orientation(phi=60 * DEGREES, theta = 45*DEGREES) self.add(axes) axis = TextMobject(r"X",r"Y",r"Z") axis[0].move_to(6*RIGHT) axis[1].move_to(6*UP) axis[2].move_to(np.array([0,0,3.7])) self.add_fixed_orientation_mobjects(axis[2]) self.add_fixed_orientation_mobjects(axis[0]) self.add_fixed_orientation_mobjects(axis[1]) self.play(ShowCreation(paraboloid)) #self.move_camera(phi=60 * DEGREES, theta = 45*DEGREES,run_time=3) plane_x = Polygon(np.array([-3.5,2,-3]),np.array([3.5,2,-3]),np.array([3.5,2,3]),np.array([-3.5,2,3]),np.array([-3.5,2,-3]), color = YELLOW_C, fill_color = YELLOW_A, fill_opacity = 0.2) plane_y = Polygon(np.array([2,-3.5,-3]),np.array([2,3.5,-3]),np.array([2,3.5,3]),np.array([2,-3.5,3]),np.array([2,-3.5,-3]), color = GREEN_C, fill_color = GREEN_A, fill_opacity = 0.2) text_x = TextMobject(r"$x$", "is fixed on this" ,"plane").scale(0.7).to_corner(UL) text_y = TextMobject(r"$y$", "is fixed on this" ,"plane").scale(0.7).to_corner(UR) text_x[0].set_color(RED_C) text_y[0].set_color(PINK) text_x[1].set_color(BLUE_C) text_y[1].set_color(BLUE_C) text_x[2].set_color(GREEN_C) text_y[2].set_color(YELLOW_C) self.add_fixed_in_frame_mobjects(text_x, text_y) for i in range(2,-4,-1): parabola_x =ParametricFunction(lambda u : np.array([u,i,(u*u + 3*i*i)*np.exp(1- u*u - i*i)]),color=RED_C,t_min=-3.5,t_max=3.5,) parabola_y =ParametricFunction(lambda u : np.array([i,u,(i*i + 3*u*u)*np.exp(1- u*u - i*i)]),color=PINK,t_min=-3.5,t_max=3.5,) if(i==2): self.play(ShowCreation(plane_x), ShowCreation(plane_y)) parabola_copy_x = parabola_x.copy() parabola_copy_y = parabola_y.copy() self.play(ShowCreation(parabola_copy_x), ShowCreation(parabola_copy_y)) self.wait() self.play(FadeOut(parabola_copy_x), FadeOut(parabola_copy_y)) else: self.play(ApplyMethod(plane_x.move_to, np.array([0,i,0])),ReplacementTransform(parabola_copy_x, parabola_x),ApplyMethod(plane_y.move_to, np.array([i,0,0])),ReplacementTransform(parabola_copy_y, parabola_y)) self.play(FadeOut(parabola_x), FadeOut(parabola_y)) self.wait() parabola_copy_x = parabola_x.copy() parabola_copy_y = parabola_y.copy() self.play(FadeOut(plane_x), FadeOut(plane_y), FadeOut(text_x), FadeOut(text_y)) self.add_fixed_in_frame_mobjects(surface_eqn) self.move_camera(phi=80 * DEGREES, theta = 95*DEGREES) self.play(ShowCreation(plane1)) self.add_fixed_in_frame_mobjects(plane_text_x) self.wait() self.play(ReplacementTransform(paraboloid, paraboloid_x)) self.play(FadeOut(plane1), FadeOut(plane_text_x)) line_x = Line(np.array([-3.5,0,0]), np.array([3.5,0,0]), color = YELLOW_E) self.play(ShowCreation(parabola_x_out), ShowCreation(line_x)) slope_text_x = TexMobject("Slope =", "{\\partial", "f", "\\over", "\\partial", "x}").scale(0.6).move_to(2*UP + 3.5*RIGHT) slope_text_x[0].set_color(ORANGE) slope_text_x.set_color_by_tex("\\partial",GREEN_E) slope_text_x.set_color_by_tex("f",RED_E) slope_text_x[5].set_color(YELLOW_E) self.add_fixed_in_frame_mobjects(slope_text_x) dot_x = Dot().rotate(PI/2).set_color(YELLOW_E) alpha_x = ValueTracker(0) vector_x = self.get_tangent_vector(alpha_x.get_value(),parabola_x_out,scale=1.5) dot_x.add_updater(lambda m: m.move_to(vector_x.get_center())) self.play( ShowCreation(parabola_x_out), GrowFromCenter(dot_x), GrowArrow(vector_x) ) vector_x.add_updater( lambda m: m.become( self.get_tangent_vector(alpha_x.get_value()%1,parabola_x_out,scale=1.5) ) ) self.add(vector_x,dot_x) self.play(alpha_x.increment_value, 1, run_time=10, rate_func=linear) self.wait(2) self.play(FadeOut(parabola_x_out), FadeOut(line_x), FadeOut(vector_x), FadeOut(dot_x), FadeOut(slope_text_x)) self.move_camera(phi=80* DEGREES,theta= 5*DEGREES) self.play(ReplacementTransform(paraboloid_x, paraboloid_copy1)) self.wait() self.play(ShowCreation(plane2)) self.add_fixed_in_frame_mobjects(plane_text_y) self.wait() self.play(ReplacementTransform(paraboloid_copy1, paraboloid_y)) self.play(FadeOut(plane2), FadeOut(plane_text_y)) line_y = Line(np.array([0,-3.5,0]), np.array([0,3.5,0]), color = GREEN_E) self.play(ShowCreation(parabola_y_out), ShowCreation(line_y)) slope_text_y = TexMobject("Slope =", "{\\partial", "f", "\\over", "\\partial", "y}").scale(0.6).move_to(2*UP + 3.5*RIGHT) slope_text_y[0].set_color(ORANGE) slope_text_y.set_color_by_tex("\\partial",YELLOW_E) slope_text_y.set_color_by_tex("f",PINK) slope_text_y[5].set_color(GREEN_E) self.add_fixed_in_frame_mobjects(slope_text_y) dot_y = Dot().rotate(PI/2).set_color(GREEN_E) alpha_y = ValueTracker(0) vector_y = self.get_tangent_vector(alpha_y.get_value(),parabola_y_out,scale=1.5) dot_y.add_updater(lambda m: m.move_to(vector_y.get_center())) self.play( ShowCreation(parabola_y_out), GrowFromCenter(dot_y), GrowArrow(vector_y) ) vector_y.add_updater( lambda m: m.become( self.get_tangent_vector(alpha_y.get_value()%1,parabola_y_out,scale=1.5) ) ) self.add(vector_y,dot_y) self.play(alpha_y.increment_value, 1, run_time=10, rate_func=linear) self.wait(2) self.play(FadeOut(parabola_y_out), FadeOut(line_y), FadeOut(vector_y), FadeOut(dot_y), FadeOut(slope_text_y)) self.move_camera(phi=60* DEGREES,theta= 45*DEGREES) self.play(ReplacementTransform(paraboloid_y, paraboloid_copy2)) self.wait() def get_tangent_vector(self, proportion, curve, dx=0.001, scale=1): coord_i = curve.point_from_proportion(proportion) coord_f = curve.point_from_proportion(proportion + dx) reference_line = Line(coord_i,coord_f) unit_vector = reference_line.get_unit_vector() * scale vector = Line(coord_i - unit_vector , coord_i + unit_vector, color = ORANGE, buff=0) return vector