from manimlib.imports import * class PartialDerivX(ThreeDScene): def construct(self): axes = ThreeDAxes() paraboloid = ParametricSurface( lambda u, v: np.array([ 2*np.sin(u)*np.cos(v), 2*np.sin(u)*np.sin(v), -2*2*np.sin(u)*np.sin(u)+2 ]),u_min=0,u_max=PI/2,v_min=0,v_max=2*PI,checkerboard_colors=[PINK, PURPLE], resolution=(15, 32)).scale(1) paraboloid_copy = paraboloid.copy() paraboloid_x = ParametricSurface( lambda u, v: np.array([ 2*np.sin(u)*np.cos(v), 2*np.sin(u)*np.sin(v), -2*2*np.sin(u)*np.sin(u)+2 ]),u_min=0,u_max=PI/2,v_min=PI,v_max=2*PI,checkerboard_colors=[PINK, PURPLE], resolution=(15, 32)).scale(1) parabola =ParametricFunction( lambda u : np.array([ u, 0, -(u*u) + 2 ]),color="#006400",t_min=-2,t_max=2, ) plane = Polygon(np.array([-2.2,0,-2.5]),np.array([2.2,0,-2.5]),np.array([2.2,0,2.5]),np.array([-2.2,0,2.5]),np.array([-2.2,0,-2.5]), color = GREEN, fill_color = GREEN, fill_opacity = 0.2) plane_text = TextMobject(r"$y = 0$", color = GREEN_C).move_to(2*UP + 3*RIGHT) surface_eqn = TextMobject("Surface", r"$z = 2- x^2 -y^2$", color = PINK).scale(0.6).move_to(np.array([3*LEFT +3*UP])) surface_eqn[0].set_color(BLUE_C) line = Line(np.array([-2,0,0]), np.array([2,0,0]), color = RED_C) self.add(axes) axis = TextMobject(r"X",r"Y",r"Z") axis[0].move_to(6*RIGHT) axis[1].move_to(6*UP) axis[2].move_to(3.7*UP) self.add_fixed_in_frame_mobjects(axis[2]) self.add_fixed_orientation_mobjects(axis[0]) self.add_fixed_orientation_mobjects(axis[1]) self.set_camera_orientation(phi=80 * DEGREES, theta = 0*DEGREES) self.play(Write(paraboloid)) self.add_fixed_in_frame_mobjects(surface_eqn) #self.move_camera(phi=80* DEGREES,theta=95*DEGREES) self.move_camera(phi=80* DEGREES,theta=45*DEGREES) self.play(ShowCreation(plane)) self.add_fixed_in_frame_mobjects(plane_text) self.wait() self.play(ReplacementTransform(paraboloid, paraboloid_x)) self.play(FadeOut(plane), FadeOut(plane_text)) self.play(ShowCreation(parabola), ShowCreation(line)) text1 = TextMobject("Moving small", r"$dx$", r"steps").scale(0.6).move_to(3*UP + 3.5*RIGHT).set_color_by_gradient(RED, ORANGE, YELLOW, BLUE, PURPLE) text2 = TextMobject("Observing change in function, keeping", r"$y$", r"constant").scale(0.6).move_to(2.6*UP + 3.5*RIGHT).set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE) slope_text = TexMobject("Slope =", "{\\partial", "f", "\\over", "\\partial", "x}").scale(0.6).move_to(2*UP + 3.5*RIGHT) slope_text[0].set_color(BLUE_E) slope_text.set_color_by_tex("\\partial",PINK) slope_text.set_color_by_tex("f","#006400") slope_text[5].set_color(RED_C) self.add_fixed_in_frame_mobjects(text1, text2) self.wait() self.add_fixed_in_frame_mobjects(slope_text) #add_fixed_orientation_mobjects dot = Dot().rotate(PI/2).set_color(RED_C) alpha = ValueTracker(0) vector = self.get_tangent_vector(alpha.get_value(),parabola,scale=1.5) dot.add_updater(lambda m: m.move_to(vector.get_center())) self.play( ShowCreation(parabola), GrowFromCenter(dot), GrowArrow(vector) ) vector.add_updater( lambda m: m.become( self.get_tangent_vector(alpha.get_value()%1,parabola,scale=1.5) ) ) self.add(vector,dot) self.play(alpha.increment_value, 1, run_time=10, rate_func=linear) self.wait() ''' for i in np.arange(-2,2,0.2): self.play(ReplacementTransform(Line(np.array([i,0,0]), np.array([i,0,-i*i + 2]), color = GREEN_C), Line(np.array([i+0.2,0,0]), np.array([i+0.2,0,-(i+0.2)**2 + 2]), color = GREEN_C))) #self.wait() ''' self.wait() self.play(FadeOut(parabola), FadeOut(line), FadeOut(vector), FadeOut(dot), FadeOut(text1), FadeOut(text2), FadeOut(slope_text),FadeOut(surface_eqn)) #self.move_camera(phi=80* DEGREES,theta= 0*DEGREES) self.play(ReplacementTransform(paraboloid_x, paraboloid_copy)) self.wait() def get_tangent_vector(self, proportion, curve, dx=0.001, scale=1): coord_i = curve.point_from_proportion(proportion) coord_f = curve.point_from_proportion(proportion + dx) reference_line = Line(coord_i,coord_f) unit_vector = reference_line.get_unit_vector() * scale vector = Line(coord_i - unit_vector, coord_i + unit_vector, color = BLUE_E, buff=0) return vector class PartialDerivY(ThreeDScene): def construct(self): axes = ThreeDAxes() paraboloid = ParametricSurface( lambda u, v: np.array([ 2*np.sin(u)*np.cos(v), 2*np.sin(u)*np.sin(v), -2*2*np.sin(u)*np.sin(u)+2 ]),u_min=0,u_max=PI/2,v_min=0,v_max=2*PI,checkerboard_colors=[PINK, PURPLE], resolution=(15, 32)).scale(1) paraboloid_copy = paraboloid.copy() paraboloid_y = ParametricSurface( lambda u, v: np.array([ 2*np.sin(u)*np.cos(v), 2*np.sin(u)*np.sin(v), -2*2*np.sin(u)*np.sin(u)+2 ]),u_min=0,u_max=PI/2,v_min=PI/2,v_max=3*PI/2,checkerboard_colors=[PINK, PURPLE], resolution=(15, 32)).scale(1) parabola =ParametricFunction( lambda u : np.array([ 0, u, -(u*u) + 2 ]),color=YELLOW_C,t_min=-2,t_max=2, ) plane = Polygon(np.array([0,-2.2,-2.5]),np.array([0,2.2,-2.5]),np.array([0,2.2,2.5]),np.array([0,-2.2,2.5]),np.array([0,-2.2,-2.5]), color = BLUE, fill_color = BLUE, fill_opacity = 0.2) plane_text = TextMobject(r"$x = 0$", color = BLUE_C).move_to(2*UP + 3*RIGHT) surface_eqn = TextMobject("Surface", r"$z = 2- x^2 -y^2$", color = PINK).scale(0.6).move_to(np.array([3*LEFT +3*UP])) surface_eqn[0].set_color(BLUE_C) line = Line(np.array([0,-2,0]), np.array([0,2,0]), color = RED_C) self.add(axes) axis = TextMobject(r"X",r"Y",r"Z") axis[0].move_to(6*RIGHT) axis[1].move_to(6*UP) axis[2].move_to(3.7*UP) self.add_fixed_in_frame_mobjects(axis[2]) self.add_fixed_orientation_mobjects(axis[0]) self.add_fixed_orientation_mobjects(axis[1]) self.set_camera_orientation(phi=80 * DEGREES, theta = 45*DEGREES) self.play(Write(paraboloid)) self.add_fixed_in_frame_mobjects(surface_eqn) #self.move_camera(phi=80* DEGREES,theta=5*DEGREES) self.play(ShowCreation(plane)) self.add_fixed_in_frame_mobjects(plane_text) self.wait() self.play(ReplacementTransform(paraboloid, paraboloid_y)) self.play(FadeOut(plane), FadeOut(plane_text)) self.play(ShowCreation(parabola), ShowCreation(line)) text1 = TextMobject("Moving small", r"$dy$", r"steps").scale(0.6).move_to(3*UP + 3.5*RIGHT).set_color_by_gradient(RED, ORANGE, YELLOW, BLUE, PURPLE) text2 = TextMobject("Observing change in function, keeping", r"$x$", r"constant").scale(0.6).move_to(2.6*UP + 3.5*RIGHT).set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE) slope_text = TexMobject("Slope =", "{\\partial", "f", "\\over", "\\partial", "y}").scale(0.6).move_to(2*UP + 3.5*RIGHT) slope_text[0].set_color("#006400") slope_text.set_color_by_tex("\\partial",PINK) slope_text.set_color_by_tex("f",YELLOW_C) slope_text[5].set_color(RED_C) self.add_fixed_in_frame_mobjects(text1, text2) self.wait() self.add_fixed_in_frame_mobjects(slope_text) dot = Dot().rotate(PI/2).set_color(RED_C) alpha = ValueTracker(0) vector = self.get_tangent_vector(alpha.get_value(),parabola,scale=1.5) dot.add_updater(lambda m: m.move_to(vector.get_center())) self.play( ShowCreation(parabola), GrowFromCenter(dot), GrowArrow(vector) ) vector.add_updater( lambda m: m.become( self.get_tangent_vector(alpha.get_value()%1,parabola,scale=1.5) ) ) self.add(vector,dot) self.play(alpha.increment_value, 1, run_time=10, rate_func=linear) self.wait() ''' for i in np.arange(-2,2,0.2): self.play(ReplacementTransform(Line(np.array([0,i,0]), np.array([0,i,-i*i + 2]), color = BLUE_C), Line(np.array([0,i+0.2,0]), np.array([0,i+0.2,-(i+0.2)**2 + 2]), color = BLUE_C))) #self.wait() ''' self.wait() self.play(FadeOut(parabola), FadeOut(line), FadeOut(vector), FadeOut(dot), FadeOut(text1), FadeOut(text2), FadeOut(slope_text),FadeOut(surface_eqn)) #self.move_camera(phi=80* DEGREES,theta= 90*DEGREES) self.play(ReplacementTransform(paraboloid_y, paraboloid_copy)) self.wait() def get_tangent_vector(self, proportion, curve, dx=0.001, scale=1): coord_i = curve.point_from_proportion(proportion) coord_f = curve.point_from_proportion(proportion + dx) reference_line = Line(coord_i,coord_f) unit_vector = reference_line.get_unit_vector() * scale vector = Line(coord_i - unit_vector, coord_i + unit_vector, color = "#006400", buff=0) return vector