Partial Derivatives MCQ Questions

July 10, 2020

Questions

- Q1. The partial derivatives of a function with respect to some variable t, are just like ordinary derivatives, except you keep any other variables constant (i.e. replacing these variables with their constant values).
 - a. True
 - b. False
- Q2. Find the partial derivative of function $f(x, y) = 3 x^2 y^2$ with respect to y.
 - a. $\frac{\partial f}{\partial y} = -2y$ b. $\frac{\partial f}{\partial y} = 3 - 2y$ c. $\frac{\partial f}{\partial y} = -2x$ d. $\frac{\partial f}{\partial y} = 3 - x^2$
- Q3. Find the second-order partial derivative f''_{xy} of function $f(x, y) = 6x^2 2xy$.
 - a. $\frac{\partial^2 f}{\partial x \partial y} = 6x^2 2x$ b. $\frac{\partial^2 f}{\partial x \partial y} = -2$ c. $\frac{\partial^2 f}{\partial x \partial y} = 12$ d. $\frac{\partial^2 f}{\partial x \partial y} = 12x - 2y$
- Q4. Find the second-order partial derivative f''_{yx} of function $f(x, y) = -x^3y^2 + 3yx$ at the point (1, 2).

a.
$$\frac{\partial^2 f}{\partial y \partial x} = 12$$

b. $\frac{\partial^2 f}{\partial y \partial x} = -1$
c. $\frac{\partial^2 f}{\partial y \partial x} = 0$
d. $\frac{\partial^2 f}{\partial y \partial x} = -9$

- Q5. Comment on the second-order partial derivative f''_{xy} and f''_{yx} of function $f(x,y) = -x^3y^2 + 3yx$.
 - a. They are same $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$. b. They are different $\frac{\partial^2 f}{\partial x \partial y} \neq \frac{\partial^2 f}{\partial y \partial x}$.
- Q6. If $y = u^3$, and $u = t^2 + 2$, then find $\frac{dy}{dt}$.

a.
$$\frac{dy}{dt} = 6t^3 + 12t$$

b.
$$\frac{dy}{dt} = 6t^3$$

c.
$$\frac{dy}{dt} = 12t$$

d.
$$\frac{dy}{dt} = 3t^2 \cdot 2u$$

Answer Key

Q1. True

- Q2. $\frac{\partial f}{\partial y} = -2y$
- Q3. $\frac{\partial^2 f}{\partial x \partial y} = -2$
- Q4. $\frac{\partial^2 f}{\partial y \partial x} = -9$
- Q5. They are same $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$

Q6.
$$\frac{dy}{dt} = 6t^3 + 12t$$