from manimlib.imports import* import math as m class DegenerateHessian(ThreeDScene): def construct(self): heading = TextMobject("Degenerate Hessian Matrix",color = BLUE) h_text = TextMobject("For $det \\hspace{1mm} H = 0$, the surface of the function at the critical point would be flat.").scale(0.7) axes = ThreeDAxes() label_x = TextMobject("$x$").shift([5.5,-0.3,0]) #---- x axis label_y = TextMobject("$y$").shift([-0.3,5.5,0]).rotate(-4.5) #---- y axis #---- function f(x,y) f_surface = ParametricSurface( lambda u, v: np.array([ u, v, -4*u**3-v**3 ]),u_min = -0.8, u_max = 0.8, v_min = -0.8, v_max = 0.8).set_color(TEAL).shift([0,1,0]).scale(1.3) #---- function f(x,y) zoom_surface = ParametricSurface( lambda u, v: np.array([ u, v, -4*u**3-v**3 ]),u_min = -0.8, u_max = 0.8, v_min = -0.8, v_max = 0.8).set_color(TEAL).shift([0,1,0]).scale(2.5) f_text= TextMobject("surface of the function").to_corner(UL).scale(0.5) d = Dot(color = "#800000").shift([0,1,0]) #---- critical point d2 = Dot(color = "#800000").shift([0,0.7,0]) #---- critical point plane = Rectangle(color = YELLOW,fill_opacity= 0.3).shift([0,0.6,0]).rotate(m.radians(90)).scale(0.4) self.set_camera_orientation(phi = 70*DEGREES, theta = 45*DEGREES) self.add_fixed_in_frame_mobjects(heading) self.wait(1) self.play(FadeOut(heading)) self.add_fixed_in_frame_mobjects(h_text) self.wait(2) self.play(FadeOut(h_text)) self.wait(1) self.add(axes) self.add(label_x) self.add(label_y) self.play(Write(f_surface)) self.add_fixed_in_frame_mobjects(f_text) self.wait(1) self.play(Write(d)) self.wait(1) self.play(ReplacementTransform(f_surface,zoom_surface),ReplacementTransform(d,d2)) self.wait(2) self.play(Write(plane)) self.wait(1)