from manimlib.imports import* #---- tangent plane is parallel to the surface of the funtion at a point class firstScene(ThreeDScene): def construct(self): s1_text=TextMobject("Suppose, the point $(x,y)$ lies on the surface of the function.").scale(0.5).shift(2*UP) s2_text=TextMobject("When zooming on that point, the surface would appear more and more like a plane.").scale(0.5).shift(1*UP) s3_text=TextMobject("This plane is called the tangent plane.").scale(0.5) #---- graph of function f(x,y) = -x^2-y^2 f = ParametricSurface( lambda u, v: np.array([ u, v, -u**2-v**2 ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [YELLOW_B,YELLOW_C,YELLOW_D, YELLOW_E]).shift([0,0,0]).scale(1) d = Dot([0,0,0],color = '#800000') #---- critical point r = Rectangle(color = PURPLE,fill_opacity=0.2).shift([0.1,0,0]).scale(0.3) #---- tangent plane s = ParametricSurface( lambda u, v: np.array([ u, v, -u**2-v**2 ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [YELLOW_B,YELLOW_C,YELLOW_D, YELLOW_E]).shift([0,0,0]).scale(3.5) d2 = Dot([0,0,2.5],color = '#800000') #---- changing position of critical point r2 = Rectangle(color = PURPLE,fill_opacity=0.5).shift([0.1,0,2.5]).scale(0.3) #---- changing position of tangent plane self.set_camera_orientation(phi = 50 * DEGREES, theta = 45 * DEGREES) self.add_fixed_in_frame_mobjects(s1_text) self.add_fixed_in_frame_mobjects(s2_text) self.add_fixed_in_frame_mobjects(s3_text) self.wait(2) self.play(FadeOut(s1_text)) self.play(FadeOut(s2_text)) self.play(FadeOut(s3_text)) self.wait(1) self.play(Write(f)) self.play(Write(d)) self.play(Write(r)) self.wait(2) self.play(ReplacementTransform(f,s),ReplacementTransform(d,d2),ReplacementTransform(r,r2)) self.wait(2)