From fe5e18510140b3e02f3f6f03ad449c218f1b8579 Mon Sep 17 00:00:00 2001
From: Purusharth S
Date: Sat, 23 May 2020 18:57:11 +0530
Subject: add topic-name folder
---
.../Critical_Points_mcq_questions.pdf | Bin 414750 -> 0 bytes
.../approximations-and-optimizations/README.md | 9 -
.../The_Second_Derivative_Test_MCQ.pdf | Bin 646880 -> 0 bytes
.../Critical_Points_mcq_questions.pdf | Bin 0 -> 414750 bytes
.../approximations-and-optimizations/README.md | 9 +
.../The_Second_Derivative_Test_MCQ.pdf | Bin 0 -> 646880 bytes
.../integrals-of-multivariable-functions/README.md | 1 +
.../double-integrals/YlimitXdependent.gif | Bin 0 -> 1170435 bytes
.../double-integrals/area_under_func.py | 73 +++++++
.../double-integrals/elementary_area.py | 144 +++++++++++++
.../double-integrals/non_rect_region.py | 154 ++++++++++++++
.../double-integrals/surface.py | 236 +++++++++++++++++++++
.../double-integrals/y_limit_dependent_on_x.py | 113 ++++++++++
.../Power Series/PowerSeriesQuestions.pdf | Bin 0 -> 112622 bytes
.../Power Series/script1.py | 128 +++++++++++
.../Power Series/script2.py | 94 ++++++++
.../Power Series/script3.py | 156 ++++++++++++++
.../Power Series/script4.py | 108 ++++++++++
.../Power Series/script5.py | 136 ++++++++++++
.../calculus/series-and-transformations/README.md | 13 ++
.../Taylor Series/TaylorSeriesQuestions.pdf | Bin 0 -> 119804 bytes
.../Taylor Series/script1.py | 198 +++++++++++++++++
.../Taylor Series/script2.py | 195 +++++++++++++++++
.../Taylor Series/script3.py | 111 ++++++++++
.../Taylor Series/script4.py | 82 +++++++
FSF-2020/div-curl-grad-and-all-that/README.md | 0
FSF-2020/geometry-of-planes-and-curves/README.md | 0
.../integrals-of-multivariable-functions/README.md | 1 -
.../double-integrals/YlimitXdependent.gif | Bin 1170435 -> 0 bytes
.../double-integrals/area_under_func.py | 73 -------
.../double-integrals/elementary_area.py | 144 -------------
.../double-integrals/non_rect_region.py | 154 --------------
.../double-integrals/surface.py | 236 ---------------------
.../double-integrals/y_limit_dependent_on_x.py | 113 ----------
FSF-2020/intro-to-calculus/README.md | 0
.../Animation.py | 0
.../linear-transformations/README.md | 9 +
FSF-2020/linear-algebra/vector-spaces/README.md | 0
.../Animation.py | 0
FSF-2020/linear-transformations/README.md | 9 -
.../README.md | 0
.../Power Series/PowerSeriesQuestions.pdf | Bin 112622 -> 0 bytes
.../Power Series/script1.py | 128 -----------
.../Power Series/script2.py | 94 --------
.../Power Series/script3.py | 156 --------------
.../Power Series/script4.py | 108 ----------
.../Power Series/script5.py | 136 ------------
FSF-2020/series-and-transformations/README.md | 13 --
.../Taylor Series/TaylorSeriesQuestions.pdf | Bin 119804 -> 0 bytes
.../Taylor Series/script1.py | 198 -----------------
.../Taylor Series/script2.py | 195 -----------------
.../Taylor Series/script3.py | 111 ----------
.../Taylor Series/script4.py | 82 -------
FSF-2020/triple-and-surface-integrals/README.md | 0
FSF-2020/vector-spaces/README.md | 0
55 files changed, 1960 insertions(+), 1960 deletions(-)
delete mode 100644 FSF-2020/approximations-and-optimizations/Critical_Points_mcq_questions.pdf
delete mode 100644 FSF-2020/approximations-and-optimizations/README.md
delete mode 100644 FSF-2020/approximations-and-optimizations/The_Second_Derivative_Test_MCQ.pdf
create mode 100644 FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical_Points_mcq_questions.pdf
create mode 100644 FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The_Second_Derivative_Test_MCQ.pdf
create mode 100644 FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/YlimitXdependent.gif
create mode 100644 FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/area_under_func.py
create mode 100644 FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/elementary_area.py
create mode 100644 FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/non_rect_region.py
create mode 100644 FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/surface.py
create mode 100644 FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/y_limit_dependent_on_x.py
create mode 100644 FSF-2020/calculus/series-and-transformations/Power Series/PowerSeriesQuestions.pdf
create mode 100644 FSF-2020/calculus/series-and-transformations/Power Series/script1.py
create mode 100644 FSF-2020/calculus/series-and-transformations/Power Series/script2.py
create mode 100644 FSF-2020/calculus/series-and-transformations/Power Series/script3.py
create mode 100644 FSF-2020/calculus/series-and-transformations/Power Series/script4.py
create mode 100644 FSF-2020/calculus/series-and-transformations/Power Series/script5.py
create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf
create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/script1.py
create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/script2.py
create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/script3.py
create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/script4.py
delete mode 100644 FSF-2020/div-curl-grad-and-all-that/README.md
delete mode 100644 FSF-2020/geometry-of-planes-and-curves/README.md
delete mode 100644 FSF-2020/integrals-of-multivariable-functions/README.md
delete mode 100644 FSF-2020/integrals-of-multivariable-functions/double-integrals/YlimitXdependent.gif
delete mode 100644 FSF-2020/integrals-of-multivariable-functions/double-integrals/area_under_func.py
delete mode 100644 FSF-2020/integrals-of-multivariable-functions/double-integrals/elementary_area.py
delete mode 100644 FSF-2020/integrals-of-multivariable-functions/double-integrals/non_rect_region.py
delete mode 100644 FSF-2020/integrals-of-multivariable-functions/double-integrals/surface.py
delete mode 100644 FSF-2020/integrals-of-multivariable-functions/double-integrals/y_limit_dependent_on_x.py
delete mode 100644 FSF-2020/intro-to-calculus/README.md
create mode 100644 FSF-2020/linear-algebra/linear-transformations/Linear Transformations (Linear Maps)/Animation.py
create mode 100644 FSF-2020/linear-algebra/linear-transformations/README.md
create mode 100644 FSF-2020/linear-algebra/vector-spaces/README.md
delete mode 100644 FSF-2020/linear-transformations/Linear Transformations (Linear Maps)/Animation.py
delete mode 100644 FSF-2020/linear-transformations/README.md
delete mode 100644 FSF-2020/multivariable-functions-and-paritial-derivatives/README.md
delete mode 100644 FSF-2020/series-and-transformations/Power Series/PowerSeriesQuestions.pdf
delete mode 100644 FSF-2020/series-and-transformations/Power Series/script1.py
delete mode 100644 FSF-2020/series-and-transformations/Power Series/script2.py
delete mode 100644 FSF-2020/series-and-transformations/Power Series/script3.py
delete mode 100644 FSF-2020/series-and-transformations/Power Series/script4.py
delete mode 100644 FSF-2020/series-and-transformations/Power Series/script5.py
delete mode 100644 FSF-2020/series-and-transformations/README.md
delete mode 100644 FSF-2020/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf
delete mode 100644 FSF-2020/series-and-transformations/Taylor Series/script1.py
delete mode 100644 FSF-2020/series-and-transformations/Taylor Series/script2.py
delete mode 100644 FSF-2020/series-and-transformations/Taylor Series/script3.py
delete mode 100644 FSF-2020/series-and-transformations/Taylor Series/script4.py
delete mode 100644 FSF-2020/triple-and-surface-integrals/README.md
delete mode 100644 FSF-2020/vector-spaces/README.md
(limited to 'FSF-2020')
diff --git a/FSF-2020/approximations-and-optimizations/Critical_Points_mcq_questions.pdf b/FSF-2020/approximations-and-optimizations/Critical_Points_mcq_questions.pdf
deleted file mode 100644
index 25c4e4d..0000000
Binary files a/FSF-2020/approximations-and-optimizations/Critical_Points_mcq_questions.pdf and /dev/null differ
diff --git a/FSF-2020/approximations-and-optimizations/README.md b/FSF-2020/approximations-and-optimizations/README.md
deleted file mode 100644
index f56f4e8..0000000
--- a/FSF-2020/approximations-and-optimizations/README.md
+++ /dev/null
@@ -1,9 +0,0 @@
-# Contributor: Vaishnavi Bisht
-Github: https://github.com/vnb09
-
-## Sub-Topics Covered:
-+ Critical Points
-+ The Second Derivative Test
-+ Tangent Plane Approximations
-+ Total Differential
-+ Lagrange Multipliers
diff --git a/FSF-2020/approximations-and-optimizations/The_Second_Derivative_Test_MCQ.pdf b/FSF-2020/approximations-and-optimizations/The_Second_Derivative_Test_MCQ.pdf
deleted file mode 100644
index ca60cbf..0000000
Binary files a/FSF-2020/approximations-and-optimizations/The_Second_Derivative_Test_MCQ.pdf and /dev/null differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical_Points_mcq_questions.pdf b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical_Points_mcq_questions.pdf
new file mode 100644
index 0000000..25c4e4d
Binary files /dev/null and b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical_Points_mcq_questions.pdf differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/README.md b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/README.md
index e69de29..f56f4e8 100644
--- a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/README.md
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/README.md
@@ -0,0 +1,9 @@
+# Contributor: Vaishnavi Bisht
+Github: https://github.com/vnb09
+
+## Sub-Topics Covered:
++ Critical Points
++ The Second Derivative Test
++ Tangent Plane Approximations
++ Total Differential
++ Lagrange Multipliers
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The_Second_Derivative_Test_MCQ.pdf b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The_Second_Derivative_Test_MCQ.pdf
new file mode 100644
index 0000000..ca60cbf
Binary files /dev/null and b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The_Second_Derivative_Test_MCQ.pdf differ
diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/README.md b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/README.md
index e69de29..a321caf 100644
--- a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/README.md
+++ b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/README.md
@@ -0,0 +1 @@
+FSF2020--Somnath Pandit
diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/YlimitXdependent.gif b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/YlimitXdependent.gif
new file mode 100644
index 0000000..a2bfd9d
Binary files /dev/null and b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/YlimitXdependent.gif differ
diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/area_under_func.py b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/area_under_func.py
new file mode 100644
index 0000000..773840c
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/area_under_func.py
@@ -0,0 +1,73 @@
+from manimlib.imports import *
+
+
+class AreaUnderIntegral(GraphScene):
+ CONFIG = {
+ "x_min" : 0,
+ "x_max" : 5,
+ "y_min" : 0,
+ "y_max" : 6,
+ "Func":lambda x : 1+x**2*np.exp(-.15*x**2)
+ }
+
+ def construct(self):
+ X = RIGHT*self.x_axis_width/(self.x_max- self.x_min)
+ Y = UP*self.y_axis_height/(self.y_max- self.y_min)
+
+ int_area_sym=TextMobject("$$\int_{a}^b f(x)dx$$").shift(2*UP)
+ area_mean_text = TextMobject(r"means area under the curve of $f(x)$ \\ in the region $a\leq x\leq b$").next_to(int_area_sym,DOWN)
+
+ opening_text=VGroup(*[int_area_sym,area_mean_text])
+ self.play(Write(opening_text),run_time=4)
+ self.wait(2)
+ self.play(FadeOut(opening_text))
+
+ self.setup_axes(animate=True)
+ func= self.get_graph(self.Func, x_min=0,x_max=5)
+ self.curve=func
+
+ func_text = TextMobject(r"$y = f(x)$").next_to(func,UP)
+ min_lim = self.get_vertical_line_to_graph(1,func,DashedLine,color=YELLOW)
+ tick_a=TextMobject(r"$a$").next_to(min_lim,DOWN)
+ max_lim = self.get_vertical_line_to_graph(4,func,DashedLine,color=YELLOW)
+ tick_b=TextMobject(r"$b$").next_to(max_lim,DOWN)
+
+ # area = self.get_area(func,1,4)
+
+ self.play(ShowCreation(func), ShowCreation(func_text))
+
+ self.wait(2)
+ self.play(ShowCreation(min_lim),Write(tick_a), ShowCreation(max_lim),Write(tick_b),run_time=0.5)
+
+
+ approx_text=TextMobject(r"The area can be approximated as \\ sum of small rectangles").next_to(func,4*Y)
+ self.play(Write(approx_text))
+
+ rect_list = self.get_riemann_rectangles_list(
+ self.curve, 5,
+ max_dx = 0.25,
+ x_min = 1,
+ x_max = 4,
+ )
+ flat_graph = self.get_graph(lambda t : 0)
+ rects = self.get_riemann_rectangles( flat_graph, x_min = 1, x_max = 4, dx = 0.5)
+ for new_rects in rect_list:
+ new_rects.set_fill(opacity = 0.8)
+ rects.align_submobjects(new_rects)
+ for alt_rect in rects[::2]:
+ alt_rect.set_fill(opacity = 0)
+ self.play(Transform(
+ rects, new_rects,
+ run_time = 1.5,
+ lag_ratio = 0.5
+ ))
+ conclude_text=TextMobject(r"Making the rectangles infinitesimally thin \\ we get the real area under the curve.").next_to(func,4*Y)
+ self.play(Transform(approx_text,conclude_text))
+ self.wait(3)
+ int_area_sym.next_to(self.curve,IN)
+ self.play(Transform(conclude_text,int_area_sym))
+
+ # self.play(ShowCreation(area))
+ self.wait(3)
+
+#uploaded by Somnath Pandit.FSF2020_Double_Integral
diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/elementary_area.py b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/elementary_area.py
new file mode 100644
index 0000000..362b6f8
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/elementary_area.py
@@ -0,0 +1,144 @@
+from manimlib.imports import *
+
+class ElementaryArea(GraphScene):
+ CONFIG = {
+ "x_min" : 0,
+ "x_max" : 2,
+ "y_min" : 0,
+ "y_max" : 2,
+ "x_tick_frequency" : 1,
+ "y_tick_frequency" : 1,
+ # "x_labeled_nums": list(np.arange(0,3)),
+ # "y_labeled_nums": list(np.arange(0 ,3)),
+ "x_axis_width": 6,
+ "y_axis_height": 6,
+ "graph_origin": ORIGIN+3.5*LEFT+3.5*DOWN,
+ }
+
+ def construct(self):
+ X = self.x_axis_width/(self.x_max- self.x_min)
+ Y = self.y_axis_height/(self.y_max- self.y_min)
+ self.X=X ;self.Y=Y
+ self.setup_axes(animate=False)
+
+ caption=TextMobject("The elementary area in ").to_edge(UP)
+ rect_text=TextMobject("Cartesian Coordinates").next_to(caption,DOWN,)
+ polar_text=TextMobject("Polar Coordinates").next_to(caption,DOWN,)
+
+ self.add(caption)
+ self.play(Write(rect_text))
+ self.get_rect_element()
+ # self.play(Write(polar_text))
+ self.play(ReplacementTransform(rect_text,polar_text),
+ FadeOut(VGroup(self.dydx,self.rect_brace_gr)))
+ self.get_polar_element()
+
+
+
+ def get_rect_element(self):
+ rect=Rectangle(
+ height=2, width=3,fill_color=BLUE_D,
+ fill_opacity=1, color=BLUE_D
+ ).scale(.75).move_to(
+ self.graph_origin+(RIGHT*self.X+UP*self.Y)
+ )
+ dx_brace=Brace(rect, DOWN, buff = SMALL_BUFF)
+ dx_label=dx_brace.get_text("$dx$", buff = SMALL_BUFF)
+ dx_brace_gr=VGroup(dx_brace,dx_label)
+
+ dy_brace=Brace(rect,RIGHT, buff = SMALL_BUFF)
+ dy_label=dy_brace.get_text("$dy$", buff = SMALL_BUFF)
+ dy_brace_gr=VGroup(dy_brace,dy_label)
+
+ brace_gr=VGroup(dx_brace_gr,dy_brace_gr)
+
+ dydx=TextMobject("$dxdy$",color=BLACK).next_to(rect,IN)
+
+ self.play(FadeIn(rect))
+ self.play(GrowFromCenter(brace_gr))
+ self.play(GrowFromCenter(dydx))
+
+ self.rect=rect
+ self.rect_brace_gr=brace_gr
+ self.dydx=dydx
+ self.wait(2)
+
+
+ def get_polar_element(self):
+ X=self.X ;Y=self.Y
+ theta1=25*DEGREES
+ dtheta=TAU/12
+ r_in=1.3*X ; r_out=1.9*X
+
+ arc=AnnularSector(
+ arc_center=self.graph_origin,
+ inner_radius=r_in,
+ outer_radius=r_out ,
+ angle= dtheta,
+ start_angle= theta1,
+ fill_opacity= 1,
+ stroke_width= 0,
+ color= BLUE_D,
+ )
+
+
+ # # #getting braces
+ r_in_theta1=self.graph_origin+r_in*(np.cos(theta1)*RIGHT+np.sin(theta1)*UP)
+ dr_line=Line(r_in_theta1,r_in_theta1+RIGHT*(r_out-r_in))
+ dr_brace=Brace(dr_line, DOWN, buff = SMALL_BUFF
+ ).rotate(theta1, about_point=r_in_theta1
+ )
+ dr_label=dr_brace.get_text("$dr$", buff = SMALL_BUFF)
+ dr_brace_gr=VGroup(dr_brace,dr_label)
+
+ theta2=theta1+dtheta
+ r_out_theta2=self.graph_origin+r_out*(
+ np.cos(theta2)*RIGHT+np.sin(theta2)*UP
+ )
+ rdt_line=Line(r_out_theta2,r_out_theta2
+ +DOWN*(r_out*dtheta)
+ )
+ rdt_brace=Brace(rdt_line, RIGHT,
+ buff = MED_SMALL_BUFF).rotate(
+ theta2-(dtheta/2), about_point=r_out_theta2
+ )
+ rdt_label=rdt_brace.get_text("$rd\\theta$",buff = SMALL_BUFF)
+ rdt_brace_gr=VGroup(rdt_brace,rdt_label)
+
+ #getting label r and dtheta
+ r1=DashedLine(self.graph_origin,r_in_theta1).set_color(RED)
+ r2=DashedLine(self.graph_origin,r_out_theta2).set_color(RED)
+ r_brace=Brace(r1, DOWN, buff = SMALL_BUFF).rotate(theta1, about_point=self.graph_origin)
+ r_label=r_brace.get_text("$r$", buff = SMALL_BUFF)
+ r_brace_gr=VGroup(r_brace,r_label)
+
+ dtheta_arc=Arc(
+ arc_center=self.graph_origin,
+ radius=.5*X,
+ angle= dtheta,
+ start_angle= theta1,
+ )
+ dtheta_arc_label=TextMobject("$d\\theta$").move_to(.99*dtheta_arc.get_corner(UR))
+ dtheta_label=VGroup(dtheta_arc,dtheta_arc_label)
+
+
+ rdrdt=TextMobject("$rdrd\\theta$",color=BLACK).next_to(arc,IN)
+ self.play(ReplacementTransform(self.rect,arc))
+ self.wait()
+ self.play(ShowCreation(r1),
+ ShowCreation(r2)
+ )
+ self.play(ShowCreation(r_brace_gr),
+ Write(dtheta_label)
+ )
+ self.wait()
+ self.play(GrowFromCenter(rdt_brace_gr))
+ self.wait(.5)
+ self.play(GrowFromCenter(dr_brace_gr))
+ self.wait(.5)
+ self.play(GrowFromCenter(rdrdt))
+
+ self.wait(2)
+
+
+ #uploaded by Somnath Pandit.FSF2020_Double_Integral
diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/non_rect_region.py b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/non_rect_region.py
new file mode 100644
index 0000000..793a000
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/non_rect_region.py
@@ -0,0 +1,154 @@
+from manimlib.imports import *
+
+class AreaUnderCurve(GraphScene):
+ CONFIG = {
+ "x_min" : -1,
+ "x_max" : 8,
+ "y_min" : -1,
+ "y_max" : 5,
+ "y_axis_label": "$y$",
+ "x_tick_frequency" : 1,
+ "y_tick_frequency" : 1,
+ "x_labeled_nums": list(np.arange(-1, 9)),
+ "y_labeled_nums": list(np.arange(-1, 6)),
+ "y_axis_height":5.5,
+ "graph_origin": ORIGIN+4*LEFT+2.5*DOWN,
+ }
+
+ def construct(self):
+ X = RIGHT*self.x_axis_width/(self.x_max- self.x_min)
+ Y = UP*self.y_axis_height/(self.y_max- self.y_min)
+
+ sofar_text=TextMobject(r"So far we have integrated over \\ rectangular regions")
+ self.play(Write(sofar_text))
+ self.play(sofar_text.to_edge,UP)
+
+ self.setup_axes(animate=False)
+
+ rect= self.get_graph(
+ lambda x : 3,
+ x_min = 0,
+ x_max = 5,
+ color = GREEN)
+
+ rect_region = self.get_riemann_rectangles(
+ rect,
+ x_min = 0,
+ x_max = 5,
+ dx =.01,
+ start_color = GREEN,
+ end_color = GREEN,
+ fill_opacity = 0.75,
+ stroke_width = 0,
+ )
+
+ self.play(ShowCreation(rect_region))
+ self.wait(.5)
+
+ rect_int=TextMobject(r"Here the integration limits are set as").to_edge(UP)
+ rect_lim=TextMobject(r"$$\int_{x=0}^{5}\int_{y=0}^{3}$$").next_to(rect_int,DOWN)
+ const_text=TextMobject(r"$\longleftarrow $ \textsf the limits are\\ constant values").next_to(rect_lim,RIGHT)
+
+ self.play(ReplacementTransform(sofar_text,rect_int))
+ self.wait(1.5)
+ self.play(FadeIn(rect_lim))
+ self.wait(2)
+ self.play(Write(const_text))
+ self.wait(2)
+ self.play(FadeOut(rect_int), FadeOut(rect_lim),FadeOut(const_text))
+
+
+ non_rect_text=TextMobject(r"Now we see how to integrate over \\ non-rectangular regions")
+ non_rect_text.to_edge(UP)
+ self.play(Write(non_rect_text))
+ self.wait(1.5)
+ self.play(FadeOut(rect_region))
+
+ c1= self.get_graph(
+ lambda x : x**2/4,
+ x_min = 0,
+ x_max = 4,
+ color = RED)
+
+ c1_region = self.get_riemann_rectangles(
+ c1,
+ x_min = 0,
+ x_max = 4,
+ dx =.01,
+ start_color = BLUE,
+ end_color = BLUE,
+ fill_opacity = 0.75,
+ stroke_width = 0,
+ )
+ self.add(c1,c1_region)
+ # self.wait(2)
+
+ c2= self.get_graph(
+ lambda x :12-2*x,
+ x_min = 4,
+ x_max = 6,
+ color = RED)
+
+ c2_region = self.get_riemann_rectangles(
+ c2,
+ x_min = 4,
+ x_max = 6,
+ dx =.01,
+ start_color = BLUE,
+ end_color = BLUE,
+ fill_opacity = .75,
+ stroke_width = 0,
+ )
+ self.add(c2_region,c2)
+ self.wait(1.5)
+ c=VGroup(*[c1,c2])
+
+ no_func_text=TextMobject(r"The whole region can't be expressed as\\ bounded by a single $f(x)$").next_to(c2,UP,buff=LARGE_BUFF)
+
+ self.play(ReplacementTransform(non_rect_text,no_func_text))
+ self.wait(1)
+ self.play(Indicate(c))
+ self.wait(2)
+
+ div_region_text=TextMobject(r"So the region is divided into two").next_to(c2,UP,buff=MED_LARGE_BUFF)
+ self.play(ReplacementTransform(no_func_text,div_region_text))
+
+ c2.set_color(YELLOW)
+ self.play(c2_region.set_color,YELLOW)
+ c1_text=TextMobject("$\dfrac{x^2}{4}$").next_to(c1,IN)
+ c2_text=TextMobject("$12-2x$").next_to(c2,IN+2*X)
+ c_text=VGroup(*[c1_text,c2_text])
+
+ self.play(FadeIn(c_text))
+ self.wait(.4)
+ self.play(Indicate(c1),Indicate(c1_text))
+ self.play(Indicate(c2),Indicate(c2_text))
+
+ easy_text=TextMobject(r"Now the limis can be set easily").next_to(c2,UP,buff=.5)
+ self.play(ReplacementTransform(div_region_text,easy_text))
+
+ c1_int=TextMobject(r"$$\int_{x=0}^{4}\int_{y=0}^{\dfrac{x^2}{4}}$$").next_to(c1,IN).shift(.5*(-X+1.3*Y))
+ c2_int=TextMobject(r"$$\int_{x=4}^{6}\int_{y=0}^{12-2x}$$").next_to(c2,IN+X)
+
+ self.play(ReplacementTransform(c1_text,c1_int),ReplacementTransform(c2_text,c2_int))
+ self.wait(2)
+
+ total_int=TextMobject(r"The total integraton= ").to_edge(UP)
+ plus=TextMobject("$$+$$").move_to(self.graph_origin+4*X+4.8*Y)
+ self.play(ReplacementTransform(easy_text,total_int))
+ self.play(c2_region.set_color,BLUE)
+ self.play(c1_int.next_to,c1,.1*UP, c2_int.next_to,plus,RIGHT, FadeIn(plus))
+
+ region=VGroup(*[c1_region,c2_region])
+ region.set_color(GREEN)
+ self.play(ShowCreation(region))
+ self.wait(3)
+
+
+
+#uploaded by Somnath Pandit.FSF2020_Double_Integral
+
+
+
+
+
diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/surface.py b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/surface.py
new file mode 100644
index 0000000..a794f46
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/surface.py
@@ -0,0 +1,236 @@
+from manimlib.imports import *
+
+class SurfacesAnimation(ThreeDScene):
+
+ CONFIG = {
+ "axes_config": {
+ "x_min": 0,
+ "x_max": 8,
+ "y_min": 0,
+ "y_max": 8,
+ "z_min": 0,
+ "z_max": 6,
+ "a":1 ,"b": 6, "c":2 , "d":6,
+ "axes_shift":-3*OUT + 5*LEFT,
+ "x_axis_config": {
+ "tick_frequency": 1,
+ # "include_tip": False,
+ },
+ "y_axis_config": {
+ "tick_frequency": 1,
+ # "include_tip": False,
+ },
+ "z_axis_config": {
+ "tick_frequency": 1,
+ # "include_tip": False,
+ },
+ "num_axis_pieces": 1,
+ },
+ "default_graph_style": {
+ "stroke_width": 2,
+ "stroke_color": WHITE,
+ },
+ "default_surface_config": {
+ "fill_opacity": 0.5,
+ "checkerboard_colors": [LIGHT_GREY],
+ "stroke_width": 0.5,
+ "stroke_color": WHITE,
+ "stroke_opacity": 0.5,
+ },
+ "Func": lambda x,y: 2+y/4+np.sin(x)
+ }
+
+
+ def construct(self):
+
+ self.setup_axes()
+ self.set_camera_orientation(distance=35,
+ phi=80 * DEGREES,
+ theta=-80 * DEGREES,
+ )
+
+ fn_text=TextMobject("$z=f(x,y)$").set_color(PINK)
+ self.add_fixed_in_frame_mobjects(fn_text)
+ fn_text.to_edge(TOP,buff=MED_SMALL_BUFF)
+
+ R=TextMobject("R").set_color(BLACK).scale(3)
+ R.move_to(self.axes.input_plane,IN)
+ self.add(R)
+
+ #get the surface
+ surface= self.get_surface(
+ self.axes, lambda x , y:
+ self.Func(x,y)
+ )
+ surface.set_style(
+ fill_opacity=0.8,
+ fill_color=PINK,
+ stroke_width=0.8,
+ stroke_color=WHITE,
+ )
+
+
+ self.begin_ambient_camera_rotation(rate=0.07)
+ self.play(Write(surface))
+ # self.play(LaggedStart(ShowCreation(surface)))
+
+ self.get_lines()
+ # self.play(FadeIn(self.axes.input_plane))
+ self.wait(3)
+
+ def get_surface(self,axes, func, **kwargs):
+ config = {
+ "u_min": axes.a,
+ "u_max": axes.b,
+ "v_min": axes.c,
+ "v_max": axes.d,
+ "resolution": (
+ (axes.y_max - axes.y_min) // axes.y_axis.tick_frequency,
+ (axes.x_max - axes.x_min) // axes.x_axis.tick_frequency,
+ ),
+ }
+
+ config.update(self.default_surface_config)
+ config.update(kwargs)
+ return ParametricSurface(
+ lambda x,y : axes.c2p(
+ x, y, func(x, y)
+ ),
+ **config
+ )
+
+ def get_lines(self):
+ axes = self.axes
+ labels=[axes.x_axis.n2p(axes.a), axes.x_axis.n2p(axes.b), axes.y_axis.n2p(axes.c),
+ axes.y_axis.n2p(axes.d)]
+
+
+ surface_corners=[]
+ for x,y,z in self.region_corners:
+ surface_corners.append([x,y,self.Func(x,y)])
+
+ lines=VGroup()
+ for start , end in zip(surface_corners,
+ self.region_corners):
+ lines.add(self.draw_lines(start,end,"RED"))
+
+ for start , end in zip(labels,
+ self.region_corners):
+ # lines.add(self.draw_lines(start,end,"BLUE"))
+ # print (start,end)
+ pass
+ self.play(ShowCreation(lines))
+
+
+ def draw_lines(self,start,end,color):
+ start=self.axes.c2p(*start)
+ end=self.axes.c2p(*end)
+ line=DashedLine(start,end,color=color)
+
+ return line
+
+ def get_three_d_axes(self, include_labels=True, include_numbers=True, **kwargs):
+ config = dict(self.axes_config)
+ config.update(kwargs)
+ axes = ThreeDAxes(**config)
+ axes.set_stroke(width=2)
+
+ if include_numbers:
+ self.add_axes_numbers(axes)
+
+ if include_labels:
+ self.add_axes_labels(axes)
+
+ # Adjust axis orientation
+ axes.x_axis.rotate(
+ 90 * DEGREES, RIGHT,
+ about_point=axes.c2p(0, 0, 0),
+ )
+ axes.y_axis.rotate(
+ 90 * DEGREES, UP,
+ about_point=axes.c2p(0, 0, 0),
+ )
+
+ # Add xy-plane
+ input_plane = self.get_surface(
+ axes, lambda x, t: 0
+ )
+ input_plane.set_style(
+ fill_opacity=0.5,
+ fill_color=TEAL,
+ stroke_width=0,
+ stroke_color=WHITE,
+ )
+
+ axes.input_plane = input_plane
+
+ self.region_corners=[
+ input_plane.get_corner(pos) for pos in (DL,DR,UR,UL)]
+
+ return axes
+
+
+ def setup_axes(self):
+ axes = self.get_three_d_axes(include_labels=True)
+ axes.add(axes.input_plane)
+ axes.scale(1)
+ # axes.center()
+ axes.shift(axes.axes_shift)
+
+ self.add(axes)
+ self.axes = axes
+
+ def add_axes_numbers(self, axes):
+ x_axis = axes.x_axis
+ y_axis = axes.y_axis
+ tex_vals_x = [
+ ("a", axes.a),
+ ("b", axes.b),
+ ]
+ tex_vals_y=[
+ ("c", axes.c),
+ ("d", axes.d)
+ ]
+ x_labels = VGroup()
+ y_labels = VGroup()
+ for tex, val in tex_vals_x:
+ label = TexMobject(tex)
+ label.scale(1)
+ label.next_to(x_axis.n2p(val), DOWN)
+ x_labels.add(label)
+ x_axis.add(x_labels)
+ x_axis.numbers = x_labels
+
+ for tex, val in tex_vals_y:
+ label = TexMobject(tex)
+ label.scale(1.5)
+ label.next_to(y_axis.n2p(val), LEFT)
+ label.rotate(90 * DEGREES)
+ y_labels.add(label)
+
+ y_axis.add(y_labels)
+ y_axis.numbers = y_labels
+
+ return axes
+
+ def add_axes_labels(self, axes):
+ x_label = TexMobject("x")
+ x_label.next_to(axes.x_axis.get_end(), RIGHT)
+ axes.x_axis.label = x_label
+
+ y_label = TextMobject("y")
+ y_label.rotate(90 * DEGREES, OUT)
+ y_label.next_to(axes.y_axis.get_end(), UP)
+ axes.y_axis.label = y_label
+
+ z_label = TextMobject("z")
+ z_label.rotate(90 * DEGREES, RIGHT)
+ z_label.next_to(axes.z_axis.get_zenith(), RIGHT)
+ axes.z_axis.label = z_label
+ for axis in axes:
+ axis.add(axis.label)
+ return axes
+
+
+
+#uploaded by Somnath Pandit.FSF2020_Double_Integral
diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/y_limit_dependent_on_x.py b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/y_limit_dependent_on_x.py
new file mode 100644
index 0000000..4894ebf
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/y_limit_dependent_on_x.py
@@ -0,0 +1,113 @@
+from manimlib.imports import *
+
+class YlimitXdependent(GraphScene):
+ CONFIG = {
+ "x_min" : 0,
+ "x_max" : 1,
+ "y_min" : 0,
+ "y_max" : 2,
+ "x_tick_frequency" : 1,
+ "y_tick_frequency" : 1,
+ "x_labeled_nums": list(np.arange(0,2)),
+ "y_labeled_nums": list(np.arange(0 ,3)),
+ "x_axis_width": 3.5,
+ "y_axis_height": 6,
+ "graph_origin": ORIGIN+2.5*LEFT+3*DOWN,
+ }
+
+ def construct(self):
+ X = RIGHT*self.x_axis_width/(self.x_max- self.x_min)
+ Y = UP*self.y_axis_height/(self.y_max- self.y_min)
+
+ self.setup_axes(animate=False)
+
+ line= self.get_graph(
+ lambda x : 2-2*x ,
+ x_min = 0,
+ x_max = 1,
+ color = RED)
+ line_eqn=TextMobject("2x+y=2").move_to(self.graph_origin+.8*X+Y).rotate(np.arctan(-2))
+ self.line=line
+
+ caption=TextMobject(r"See the value of $y$ \\ is changing with $x$").move_to(self.graph_origin+1.2*X+1.8*Y)
+ self.play(ShowCreation(line),Write(line_eqn))
+ # self.show_area()
+ self.show_rects()
+ self.play(Write(caption))
+ self.show_y_values_at_different_x()
+
+ self.wait(.5)
+
+ ###################
+ def show_area(self):
+ area = self.get_riemann_rectangles(
+ self.line,
+ x_min = 0,
+ x_max = 1,
+ dx =.0001,
+ start_color = BLUE,
+ end_color = BLUE,
+ fill_opacity = 1,
+ stroke_width = 0,
+ )
+ self.play(ShowCreation(area))
+ # self.transform_between_riemann_rects(self.rects,area)
+ self.area = area
+
+ def show_rects(self):
+ rects = self.get_riemann_rectangles(
+ self.line,
+ x_min = 0,
+ x_max = 1,
+ dx =.01,
+ start_color = BLUE,
+ end_color = BLUE,
+ fill_opacity =1,
+ stroke_width = 0,
+ )
+ # self.play(ShowCreation(rects))
+ # self.transform_between_riemann_rects(self.area,rects)
+ self.rects=rects
+
+ def show_y_values_at_different_x(self):
+ rects=self.rects
+ rect = rects[len(rects)*1//10]
+ dx_brace = Brace(rect, DOWN, buff = 0)
+ dx_label = dx_brace.get_text("$dx$", buff = SMALL_BUFF)
+ dx_brace_group = VGroup(dx_brace,dx_label)
+ rp=int(len(rects)/10)
+ rects_subset = self.rects[3*rp:5*rp]
+
+ last_rect = None
+ for rect in rects_subset:
+ brace = Brace(rect, LEFT, buff = 0)
+ y = TexMobject("y=2-2x")#.rotate(PI/2)
+ y.next_to(brace, LEFT, SMALL_BUFF)
+ anims = [
+ rect.set_fill, BLUE_E, 1,
+ dx_brace_group.next_to, rect, DOWN, SMALL_BUFF
+ ]
+ if last_rect is not None:
+ anims += [
+ last_rect.set_fill, None, 0,
+ # last_rect.set_fill, BLUE, .75,
+ ReplacementTransform(last_brace, brace),
+ ReplacementTransform(last_y, y),
+ ]
+ else:
+ anims += [
+ GrowFromCenter(brace),
+ Write(y)
+ ]
+ self.play(*anims)
+ # self.wait(.2)
+
+ last_rect = rect
+ last_brace = brace
+ last_y = y
+
+ y = last_y
+ y_brace = last_brace
+
+
+#uploaded by Somnath Pandit.FSF2020_Double_Integral
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/PowerSeriesQuestions.pdf b/FSF-2020/calculus/series-and-transformations/Power Series/PowerSeriesQuestions.pdf
new file mode 100644
index 0000000..04ed6d5
Binary files /dev/null and b/FSF-2020/calculus/series-and-transformations/Power Series/PowerSeriesQuestions.pdf differ
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/script1.py b/FSF-2020/calculus/series-and-transformations/Power Series/script1.py
new file mode 100644
index 0000000..28eb07c
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/script1.py
@@ -0,0 +1,128 @@
+from manimlib.imports import *
+
+
+def formFormula(coeff_list,variable_list):
+ coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ variable_list=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
+ coeff_list[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ coeff_list[i].set_color(GOLD_A)
+ variable_list[i].next_to(coeff_list[i],buff=0.1)
+ if i!=2:
+ coeff_list[i+1].next_to(variable_list[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variable_list[2])
+ expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots)
+ expansion.scale(0.7)
+ return expansion
+
+class pieChart(Scene):
+ def construct(self):
+ circle1=Circle(radius=3,color=BLUE)
+ powerText=TextMobject("Power Series")
+ powerText.scale(0.8)
+ self.play(FadeIn(powerText))
+ self.play(ShowCreation(circle1))
+ self.wait(1)
+
+ powerGroup=VGroup(circle1,powerText)
+
+ self.play(ApplyMethod(powerGroup.scale,0.5))
+ self.play(ApplyMethod(powerGroup.move_to,2.2*UP))
+ self.wait(0.5)
+ expansion_power_coeff=[]
+ variables_power=[]
+ expansion_power=formFormula(expansion_power_coeff,variables_power)
+ self.play(ReplacementTransform(powerText,expansion_power))
+ self.wait(1)
+
+ circle2=Circle(radius=1.5)
+ circle2.shift(2.2*UP)
+ expansion_geo_coeff=[0]*3
+ variables_geo=[0]*3
+ arrow1_2=Line(start=0.7*UP,end=2.5*LEFT)
+ expansion_geo_coeff=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ for i in range(0,3):
+ expansion_geo_coeff[i].set_color(GOLD_A)
+ variables_geo=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
+ expansion_geo_coeff[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ variables_geo[i].next_to(expansion_geo_coeff[i],buff=0.1)
+ if i!=2:
+ expansion_geo_coeff[i+1].next_to(variables_geo[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variables_geo[2])
+ expansion_geo=VGroup(expansion_geo_coeff[0],expansion_geo_coeff[1],expansion_geo_coeff[2],variables_geo[0],variables_geo[1],variables_geo[2],dots)
+ expansion_geo.scale(0.7)
+
+ self.play(ApplyMethod(circle2.shift,4*LEFT+2.5*DOWN),ApplyMethod(expansion_geo.shift,4*LEFT+2.5*DOWN))
+ self.add(arrow1_2)
+ self.wait(1)
+
+ ones=[TextMobject("1"),TextMobject("1"),TextMobject("1")]
+ for i in range(0,3):
+ ones[i].set_color(GOLD_A)
+ ones[0].shift(0.3*DOWN,5*LEFT)
+ ones[1].next_to(ones[0],buff=0.5)
+ ones[2].next_to(ones[1],buff=0.7)
+ self.play(ReplacementTransform(expansion_geo_coeff[0],ones[0]),ReplacementTransform(expansion_geo_coeff[1],ones[1]),ReplacementTransform(expansion_geo_coeff[2],ones[2]))
+ self.wait(1)
+ expansion_geo=VGroup(ones[0],ones[1],ones[2],variables_geo[0],variables_geo[1],variables_geo[2],dots)
+
+ expansion_geo_final=TextMobject("$1+x+{ x }^{ 2 }..$")
+ expansion_geo_final.scale(0.8)
+ expansion_geo_final.shift(0.3*DOWN+4*LEFT)
+ self.play(ReplacementTransform(expansion_geo,expansion_geo_final))
+ self.wait(1)
+
+ circle3=Circle(radius=1.5,color=GREEN)
+ circle3.shift(2.2*UP)
+ expansion_taylor_coeff=[0]*3
+ variables_taylor=[0]*3
+ arrow1_3=Line(start=0.7*UP,end=DOWN*0.3)
+ expansion_taylor_coeff=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ for i in range(0,3):
+ expansion_taylor_coeff[i].set_color(GOLD_A)
+ variables_taylor=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
+ expansion_taylor_coeff[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ variables_taylor[i].next_to(expansion_taylor_coeff[i],buff=0.1)
+ if i!=2:
+ expansion_taylor_coeff[i+1].next_to(variables_taylor[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variables_taylor[2])
+ expansion_taylor=VGroup(expansion_taylor_coeff[0],expansion_taylor_coeff[1],expansion_taylor_coeff[2],variables_taylor[0],variables_taylor[1],variables_taylor[2],dots)
+ expansion_taylor.scale(0.7)
+
+ self.play(ApplyMethod(circle3.shift,4*DOWN),ApplyMethod(expansion_taylor.shift,4*DOWN))
+ self.add(arrow1_3)
+ self.wait(1)
+
+ differentials=[TextMobject("$f(0)$"),TextMobject("${ f'\left( 0 \\right) }$"),TextMobject("$\\frac { f''\left( 0 \\right) }{ 2! }$")]
+ for i in range(0,3):
+ differentials[i].set_color(GOLD_A)
+ differentials[0].shift(1.8*DOWN+1.15*LEFT)
+ differentials[1].shift(1.8*DOWN+0.45*LEFT)
+ differentials[2].shift(1.8*DOWN+0.45*RIGHT)
+ differentials[0].scale(0.35)
+ differentials[1].scale(0.35)
+ differentials[2].scale(0.35)
+ self.play(ReplacementTransform(expansion_taylor_coeff[0],differentials[0]),ReplacementTransform(expansion_taylor_coeff[1],differentials[1]),ReplacementTransform(expansion_taylor_coeff[2],differentials[2]))
+ self.wait(2)
+ expansion_taylor_final=VGroup(differentials[0],differentials[1],differentials[2],variables_taylor[0],variables_taylor[1],variables_taylor[2],dots)
+
+ self.play(FadeOut(expansion_geo_final),FadeOut(expansion_taylor_final))
+ geoText=TextMobject("Geometric Series")
+ geoText.scale(0.7)
+ geoText.shift(4*LEFT+0.3*DOWN)
+ taylorText=TextMobject("Taylor Series")
+ taylorText.scale(0.7)
+ taylorText.shift(1.8*DOWN)
+ self.play(FadeIn(geoText),FadeIn(taylorText))
+ self.wait(1)
+
+ soOntext=TextMobject("So on..!")
+ soOntext.shift(4*RIGHT)
+ soOntext.scale(0.8)
+ self.play(FadeIn(soOntext))
+ self.wait(2)
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/script2.py b/FSF-2020/calculus/series-and-transformations/Power Series/script2.py
new file mode 100644
index 0000000..72356c6
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/script2.py
@@ -0,0 +1,94 @@
+from manimlib.imports import *
+import numpy as np
+
+
+class convergence(Scene):
+ def construct(self):
+ originalFormula=TextMobject("$\sum _{ n=0 }^{ \infty }{ { a }_{ n }{ x }^{ n } }$")
+ originalFormula.set_color(RED)
+ self.play(Write(originalFormula))
+ self.wait(1)
+ self.play(ApplyMethod(originalFormula.shift,2.7*UP))
+ self.wait(1)
+
+ terms=["$a_{ 0 }$","$a_{ 1 }x$","$a_{ 2 }x^{ 2 }$","$a_{ 3 }x^{ 3 }$","$a_{ 4 }x^{ 4 }$","$a_{ 5 }x^{ 5 }$","$a_{ 6 }x^{ 6 }$","$a_{ 7 }x^{ 7 }$","$a_{ 8 }x^{ 8 }$","$a_{ 9 }x^{ 9 }$","$a_{ 10 }x^{ 10 }$","$a_{ 11 }x^{ 11 }$"]
+ termsTogetherString="+".join(terms)
+ termsTogether=TextMobject(termsTogetherString+"...")
+ termsTogether.scale(0.8)
+ termsTogether.shift(2.7*UP)
+ self.play(ReplacementTransform(originalFormula,termsTogether))
+ self.wait(1)
+
+ termMobjectRect=[0]*12
+ termMobject=TextMobject(terms[0])
+ termMobject.shift(2.7*UP+6.2*LEFT)
+ for i in range(1,13):
+ termMobjectOld=termMobject
+ termMobjectOld.scale(0.8)
+ if(i<12):
+ termMobject=TextMobject(terms[i])
+ termMobject.next_to(termMobjectOld)
+ if(i==1):
+ rectDefine=TextMobject("Here","each rectangle","represents the","value of the term")
+ rectDefine.set_color_by_tex_to_color_map({"each rectangle":BLUE,"value of the term":YELLOW})
+ rectDefine.scale(0.7)
+ rectDefine.shift(3.2*DOWN)
+ self.play(Write(rectDefine))
+ self.wait(1)
+ if(i==2):
+ ratio=TextMobject("If $\\frac { a_{ n+1 } }{ { a }_{ n } } < 1$")
+ ratio.set_color(RED)
+ ratio.scale(0.7)
+ ratio.move_to(3.2*DOWN)
+ inequality=TextMobject("$a_{ n+1 } < a_{ n }$")
+ inequality.set_color(RED)
+ inequality.scale(0.7)
+ inequality.move_to(3.2*DOWN)
+ self.play(FadeOut(rectDefine))
+ self.play(Write(ratio))
+ self.wait(1)
+ self.play(ReplacementTransform(ratio,inequality))
+ self.wait(1)
+ #self.play(ApplyMethod(termMobjectOld.move_to,(2-0.3*i)*DOWN+RIGHT*0.2*i))
+ termMobjectRect[i-1]=Rectangle(height=0.1,width=(5-0.4*i))
+ termMobjectRect[i-1].move_to((2-0.2*i)*DOWN+RIGHT*0.2*i)
+ #rectangles[p] = termMobjectRect
+ #p+=1
+ self.play(ReplacementTransform(termMobjectOld,termMobjectRect[i-1]))
+
+ uparrow=TextMobject("$\\uparrow$")
+ uparrow.set_color(GREEN)
+ uparrow.scale(6)
+ uparrow.shift(4*RIGHT+0.5*DOWN)
+ self.play(ShowCreation(uparrow))
+ self.wait(1)
+
+ converges=TextMobject("Converges!")
+ converges.set_color(RED)
+ converges.scale(0.6)
+ converges.next_to(uparrow)
+ self.play(FadeIn(converges))
+ self.wait(2)
+
+ self.play(FadeOut(converges),FadeOut(uparrow),FadeOut(inequality))
+ self.wait(0.5)
+ rect=VGroup(termMobjectRect[0],termMobjectRect[1],termMobjectRect[2],termMobjectRect[3],termMobjectRect[4],termMobjectRect[5],termMobjectRect[6],termMobjectRect[7],termMobjectRect[8],termMobjectRect[9],termMobjectRect[10],termMobjectRect[11])
+ self.play(ApplyMethod(rect.scale,0.2))
+ for i in range(0,12):
+ self.play(ApplyMethod(termMobjectRect[i].shift,i*0.04*DOWN+(11-(3-0.11*i)*i)*LEFT*0.3))
+ func=TextMobject("$\\approx$","$f(x)$")
+ func.set_color_by_tex_to_color_map({"$f(x)$":RED})
+ func.scale(0.8)
+ func.shift(DOWN+4.5*RIGHT+0.1*UP)
+ self.play(FadeIn(func))
+
+ rightarrow=TextMobject("$\\rightarrow$")
+ rightarrow.set_color(GREEN)
+ rightarrow.scale(4)
+ rightarrow.shift(2*DOWN)
+ converges=TextMobject("Hence even the","sum converges!")
+ converges.set_color_by_tex_to_color_map({"sum converges!":RED})
+ converges.move_to(3*DOWN)
+ converges.scale(0.7)
+ self.play(Write(rightarrow),FadeIn(converges))
+ self.wait(2)
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/script3.py b/FSF-2020/calculus/series-and-transformations/Power Series/script3.py
new file mode 100644
index 0000000..f710f42
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/script3.py
@@ -0,0 +1,156 @@
+from manimlib.imports import*
+import math
+
+class intro(Scene):
+ def construct(self):
+ introText1=TextMobject("Let's analyse")
+ introText2=TextMobject("for")
+ function_main=TextMobject("$\sum { { (-1) }^{ n }{ x }^{ 2n } }$")
+ function_main.set_color(GREEN)
+ introText1.scale(1.2)
+ introText1.shift(2*UP)
+ introText2.scale(0.7)
+ introText2.shift(UP)
+ function_main.scale(2)
+ function_main.shift(DOWN)
+ function_expan=TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }+..$")
+ function_expan.set_color(RED)
+ function_expan.scale(1.2)
+ function_expan.shift(2*UP)
+
+ self.play(Write(introText1))
+ self.play(FadeIn(introText2))
+ self.wait(0.5)
+ self.play(Write(function_main))
+ self.wait(1)
+
+ self.play(FadeOut(introText1),FadeOut(introText2))
+ self.play(ApplyMethod(function_main.shift,3*UP))
+ self.wait(0.5)
+ self.play(ReplacementTransform(function_main,function_expan))
+ self.wait(1)
+ self.play(ApplyMethod(function_expan.scale,0.5))
+ function_expan.to_edge(UP+RIGHT)
+ self.play(ReplacementTransform(function_expan,function_expan))
+ self.wait(1)
+
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -8,
+ "y_max": 8,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-1, 2, 1),
+ "y_labeled_nums": range(0,2,1)
+ }
+
+ def construct(self):
+
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ function_expan=TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }+..$")
+ function_expan.set_color(RED)
+ function_expan.scale(0.6)
+ function_expan.to_edge(UP+RIGHT)
+ self.add(function_expan)
+
+ self.setup_axes(animate=True)
+
+ eqText=[TextMobject("$1$"),TextMobject("$1-{ x }^{ 2 }$"),TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }$"),TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }$")]
+ for i in range(0,len(eqText)):
+ eqText[i].scale(0.6)
+ eqText[i].set_color(BLUE)
+ eqText[i].shift(ORIGIN+UP*2*y_each_unit+RIGHT*3.3*x_each_unit)
+ eqTextTerm=TextMobject("And so on..!")
+ eqTextTerm.set_color(BLUE)
+ eqTextTerm.scale(0.6)
+ eqTextTerm.shift(ORIGIN+UP*2*y_each_unit+3*RIGHT*x_each_unit)
+ equation1 = self.get_graph(lambda x : 1,color = RED,x_min = -8,x_max=8)
+ equation2 = self.get_graph(lambda x : 1-math.pow(x,2),color = RED,x_min = -1.7,x_max=1.7)
+ equation3 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4),color = RED,x_min = -1.6,x_max=1.6)
+ equation4 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6),color = RED,x_min = -1.45,x_max=1.45)
+ equation5 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8),color = RED,x_min = -1.35,x_max=1.35)
+ equation6 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10),color = RED,x_min = -1.3,x_max=1.3)
+ equation7 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12),color = RED,x_min = -1.25,x_max=1.25)
+ equation8 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14),color = RED,x_min = -1.2,x_max=1.2)
+ equation9 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16),color = RED,x_min = -1.15,x_max=1.15)
+ equation10 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16)-math.pow(x,18),color = RED,x_min = -1.15,x_max=1.15)
+
+ textBtwAnim1=TextMobject("Here the graph just","oscilates")
+ textBtwAnim1.set_color_by_tex_to_color_map({"oscilates":BLUE})
+ textBtwAnim2=TextMobject("after","the","point","(as we add higher order terms)")
+ textBtwAnim2.set_color_by_tex_to_color_map({"after":BLUE,"point":YELLOW})
+ textBtwAnim3=TextMobject("$x=1$")
+ textBtwAnim1.scale(0.4)
+ textBtwAnim2.scale(0.4)
+ textBtwAnim3.scale(1.2)
+ textBtwAnim1.shift(2.1*DOWN+4.3*RIGHT)
+ textBtwAnim2.shift(2.4*DOWN+4.1*RIGHT)
+ textBtwAnim3.shift(2.9*DOWN+4.3*RIGHT)
+
+ self.play(ShowCreation(equation1),run_time=0.8)
+ self.add(eqText[0])
+ self.wait(1)
+ self.play(ReplacementTransform(equation1,equation2),ReplacementTransform(eqText[0],eqText[1]))
+ self.wait(0.5)
+ self.play(ReplacementTransform(equation2,equation3),ReplacementTransform(eqText[1],eqText[2]))
+ self.wait(0.4)
+ self.play(ReplacementTransform(equation3,equation4),ReplacementTransform(eqText[2],eqText[3]))
+ self.wait(0.3)
+ self.play(FadeOut(eqText[3]))
+ self.play(FadeIn(eqTextTerm))
+ self.play(Write(textBtwAnim1),Write(textBtwAnim2))
+ self.play(FadeIn(textBtwAnim3))
+ self.play(ReplacementTransform(equation4,equation5))
+ self.wait(0.2)
+ self.play(ReplacementTransform(equation5,equation6))
+ self.wait(0.2)
+ self.play(ReplacementTransform(equation6,equation7))
+ self.wait(0.2)
+ self.play(ReplacementTransform(equation7,equation8))
+ self.wait(0.2)
+ self.play(ReplacementTransform(equation8,equation9))
+ self.wait(0.2)
+ self.play(ReplacementTransform(equation9,equation10))
+ self.wait(1)
+
+ self.play(FadeOut(textBtwAnim1),FadeOut(textBtwAnim2),FadeOut(textBtwAnim3),FadeOut(equation10),FadeOut(eqTextTerm))
+ self.wait(1)
+
+ convergeLine=Line(start=ORIGIN+x_each_unit*LEFT,end=ORIGIN+x_each_unit*RIGHT,color=WHITE)
+ divergeLineLeft=Line(start=ORIGIN+x_each_unit*LEFT,end=ORIGIN+x_each_unit*LEFT*8,color=RED)
+ divergeLineRight=Line(start=ORIGIN+x_each_unit*RIGHT,end=ORIGIN+x_each_unit*8*RIGHT,color=RED)
+ circle1=Circle(radius=0.01,color=PURPLE_E)
+ circle2=Circle(radius=0.01,color=PURPLE_E)
+ circle1.shift(ORIGIN+LEFT*x_each_unit)
+ circle2.shift(ORIGIN+RIGHT*x_each_unit)
+ convergeText=TextMobject("Converges")
+ divergeText1=TextMobject("Diverges")
+ divergeText2=TextMobject("Diverges")
+ convergeText.set_color(GREEN)
+ divergeText1.set_color(RED)
+ divergeText2.set_color(RED)
+ convergeText.scale(0.5)
+ divergeText1.scale(0.5)
+ divergeText2.scale(0.5)
+ convergeText.shift(1.6*UP)
+ divergeText1.shift(0.3*UP+1.5*LEFT)
+ divergeText2.shift(0.3*UP+1.5*RIGHT)
+ self.play(Write(divergeLineLeft),Write(divergeLineRight))
+ self.play(FadeIn(convergeLine))
+ self.wait(0.5)
+ self.play(FadeOut(self.axes))
+ self.play(Write(circle1),Write(circle2))
+ self.wait(0.5)
+ self.play(ApplyMethod(convergeLine.shift,1.3*UP),ApplyMethod(function_expan.shift,5*LEFT+DOWN))
+ self.play(FadeIn(convergeText),FadeIn(divergeText1),FadeIn(divergeText2))
+ self.wait(2)
+
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/script4.py b/FSF-2020/calculus/series-and-transformations/Power Series/script4.py
new file mode 100644
index 0000000..412d20c
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/script4.py
@@ -0,0 +1,108 @@
+from manimlib.imports import *
+import math
+
+class intro(Scene):
+ def construct(self):
+ introText1=TextMobject("Consider the","above","example..")
+ introText1.scale(0.8)
+ introText1.set_color_by_tex_to_color_map({"above":YELLOW})
+ self.play(Write(introText1))
+ self.wait(1)
+
+class graphScene(GraphScene,MovingCameraScene):
+ CONFIG = {
+ "x_min": -5,
+ "x_max": 5,
+ "y_min": -5,
+ "y_max": 5,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-1, 2, 1),
+ "y_labeled_nums": range(0,2,1),
+ "y_axis_height":7,
+ "x_axis_width":7
+ }
+
+ def setup(self):
+ GraphScene.setup(self)
+ MovingCameraScene.setup(self)
+
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ function_expan=TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }+..$")
+ function_expan.scale(0.6)
+ function_expan.set_color(RED)
+ function_expan.to_edge(UP+RIGHT)
+ self.add(function_expan)
+
+ self.setup_axes()
+
+ equation = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16)-math.pow(x,18),color = RED,x_min = -1.1,x_max=1.1)
+ self.play(ShowCreation(equation))
+ self.wait(1)
+
+ dashLineLeft=DashedLine(start=ORIGIN+y_each_unit*5*UP,end=ORIGIN+y_each_unit*5*DOWN)
+ dashLineRight=DashedLine(start=ORIGIN+y_each_unit*5*UP,end=ORIGIN+y_each_unit*5*DOWN)
+ dashLineLeft.shift(ORIGIN+LEFT*x_each_unit)
+ dashLineRight.shift(ORIGIN+RIGHT*x_each_unit)
+ radiusLine=Line(start=ORIGIN,end=ORIGIN+RIGHT*x_each_unit)
+ rangeLine=Line(start=ORIGIN+LEFT*x_each_unit,end=ORIGIN+RIGHT*x_each_unit)
+ circle=Circle(radius=x_each_unit)
+ movingPoint=Circle(radius=0.025)
+ movingPoint.shift(ORIGIN+RIGHT*x_each_unit)
+ circleEq1=self.get_graph(lambda x:math.sqrt(1-x**2),color=BLUE,x_max=-1,x_min=1)
+ circleEq2=self.get_graph(lambda x:-math.sqrt(1-x**2),color=BLUE,x_max=1,x_min=-1)
+
+ self.play(Write(dashLineLeft),Write(dashLineRight))
+ self.wait(1)
+
+ equation_updated=self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16)-math.pow(x,18),color = GREEN,x_min = -1,x_max=1)
+ self.play(FadeOut(self.axes),ReplacementTransform(equation,equation_updated))
+ self.wait(0.5)
+ self.play(Write(radiusLine))
+ self.play(MoveAlongPath(movingPoint,circleEq1))
+ self.play(MoveAlongPath(movingPoint,circleEq2))
+ self.play(FadeIn(circle))
+ self.wait(1)
+
+ radiusText=TextMobject("Radius of convergence")
+ radiusText.scale(0.14)
+ radiusText.shift(ORIGIN+RIGHT*x_each_unit*0.45+DOWN*y_each_unit*0.2)
+
+ self.play(Write(radiusText))
+ self.wait(0.6)
+
+ self.camera_frame.save_state()
+ self.camera_frame.set_width(5.5)
+ self.play(self.camera_frame.move_to, ORIGIN)
+ self.wait(1)
+ self.camera_frame.set_width(14)
+ self.wait(1.3)
+
+ self.play(FadeOut(radiusText),FadeOut(circle),FadeOut(movingPoint))
+ extendLine=Line(start=ORIGIN,end=ORIGIN+x_each_unit*LEFT)
+ self.play(Write(extendLine))
+ doubleArrow=TextMobject("$\longleftrightarrow$")
+ doubleArrow.scale(1.6)
+ doubleArrow.set_color(BLUE)
+ doubleArrow.shift(ORIGIN+DOWN*y_each_unit*0.5)
+ self.play(FadeIn(doubleArrow))
+ self.wait(1)
+ rangeText=TextMobject("Interval of convergence")
+ rangeText.scale(0.15)
+ rangeText.shift(ORIGIN+y_each_unit*DOWN)
+ self.play(Write(rangeText))
+ self.wait(0.6)
+
+ self.camera_frame.save_state()
+ self.camera_frame.set_width(5.5)
+ self.play(self.camera_frame.move_to, ORIGIN)
+ self.wait(1)
+ self.camera_frame.set_width(14)
+ self.wait(1.5)
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/script5.py b/FSF-2020/calculus/series-and-transformations/Power Series/script5.py
new file mode 100644
index 0000000..e9681aa
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/script5.py
@@ -0,0 +1,136 @@
+from manimlib.imports import *
+import math
+
+class uniformlyConvergent(Scene):
+ def construct(self):
+ introText1=TextMobject("Again consider the","above","example")
+ introText2=TextMobject("Let","$g(x)=\\frac { 1 }{ 1+{ x }^{ 2 } }$","and","x=0.5 $\in$(-1,1)")
+ introText3=TextMobject("Lets analyse..","!")
+ introText1.scale(0.8)
+ introText2.scale(0.7)
+ introText3.scale(0.9)
+ introText3.shift(DOWN)
+ introText1.set_color_by_tex_to_color_map({"above":YELLOW})
+ introText2.set_color_by_tex_to_color_map({"$g(x)=\\frac { 1 }{ 1+{ x }^{ 2 } }$":BLUE,"x=0.5 $\in$(-1,1)":YELLOW})
+ introText3.set_color_by_tex_to_color_map({"!":GREEN})
+ self.play(Write(introText1))
+ self.wait(0.5)
+ self.play(FadeOut(introText1))
+ self.play(Write(introText2))
+ self.play(FadeIn(introText3))
+ self.wait(2)
+
+
+def gety(x,n):
+ ans=0
+ for i in range(0,n+1):
+ if(i%2==0):
+ ans+=(math.pow(x,2*i))
+ else:
+ ans-=(math.pow(x,2*i))
+ return ans
+
+def makeSeries(x,points,x_each_unit,y_each_unit):
+ p=0
+ for point in points:
+ y=gety(x,p)
+ point.shift(ORIGIN+RIGHT*x_each_unit*p+UP*y_each_unit*y)
+ p+=1
+
+def makeLines(x,numPoints,x_each_unit,y_each_unit):
+ lines=[0]*numPoints
+ for i in range(0,numPoints-1):
+ y=gety(x,i)
+ y_next=gety(x,i+1)
+ lines[i]=Line(start=ORIGIN+RIGHT*x_each_unit*i+UP*y_each_unit*y,end=ORIGIN+RIGHT*x_each_unit*(i+1)+UP*y_each_unit*y_next,color=RED)
+ return lines
+
+class graphScene(GraphScene,MovingCameraScene):
+ CONFIG = {
+ "x_min": -6,
+ "x_max": 6,
+ "y_min": -5,
+ "y_max": 5,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$k$",
+ "y_axis_label": "$f(\\frac{1}{2})_k$",
+ "exclude_zero_label": True,
+ "x_axis_width":7,
+ "y_axis_height":7
+ }
+
+ def setup(self):
+ GraphScene.setup(self)
+ MovingCameraScene.setup(self)
+
+
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+ sequence=TextMobject("$1$ , $1-(0.5)^2$ , $1-(0.5)^2+(0.5)^4..$")
+ sequence.set_color(RED)
+ sequence.scale(0.35)
+ sequence.to_edge(UP+RIGHT)
+ formula=TextMobject("$f(x)_{ k }=\sum _{ i=0 }^{ k }{ (-1)^{ i }(x)^{ 2i } } $")
+ formula.set_color(PURPLE_C)
+ formula.scale(0.4)
+ formula.shift(5.3*RIGHT+3*UP)
+ fLine=Line(start=ORIGIN+x_each_unit*6*LEFT,end=ORIGIN+x_each_unit*6*RIGHT)
+ fLine.shift(ORIGIN+(4/5)*y_each_unit*UP)
+ fLineText=TextMobject("$g(0.5)=\\frac { 4 }{ 5 } $")
+ fLineText.set_color(RED)
+ fLineText.scale(0.3)
+ fLineText.shift(UP*1.2*y_each_unit+RIGHT*x_each_unit+4*LEFT)
+ points=[Dot(radius=0.03,color=BLUE) for i in range(0,6)]
+ makeSeries(0.5,points,x_each_unit,y_each_unit)
+ lines=makeLines(0.5,6,x_each_unit,y_each_unit)
+
+
+ self.add(sequence)
+ self.add(formula)
+ self.setup_axes(animate=True)
+ self.play(Write(fLine))
+ self.add(fLineText)
+ for p in points:
+ self.add(p)
+ for p in range(0,5):
+ self.play(Write(lines[p]))
+ self.wait(0.5)
+ self.camera_frame.save_state()
+ self.camera_frame.set_width(0.6)
+ self.play(self.camera_frame.move_to, points[0])
+ self.wait(0.4)
+ self.play(self.camera_frame.move_to, points[1])
+ self.wait(0.4)
+ self.play(self.camera_frame.move_to, points[2])
+ self.wait(0.3)
+ self.play(self.camera_frame.move_to, points[3])
+ self.wait(1)
+ self.play(self.camera_frame.move_to,ORIGIN)
+ self.camera_frame.set_width(14)
+ self.wait(1)
+
+ explanation1=TextMobject("Since the series","converges","to")
+ explanation1.set_color_by_tex_to_color_map({"converges":YELLOW})
+ explanation2=TextMobject("$\\frac {4}{5}$")
+ explanation2.set_color(BLUE)
+ explanation3=TextMobject("Hence","$\\forall \epsilon>0$,","$\exists k$","such that,")
+ explanation3.set_color_by_tex_to_color_map({"$\\forall \epsilon>0$":BLUE,"$\exists k$":YELLOW})
+ explanation4=TextMobject("$\left| { f\left( \\frac { 1 }{ 2 } \\right) }_{ k }-\\frac { 4 }{ 5 } \\right| <$","$\epsilon$")
+ explanation4.set_color_by_tex_to_color_map({"$\epsilon$":RED})
+ explanation1.scale(0.5)
+ explanation3.scale(0.5)
+ explanation1.shift(1.8*DOWN+3.5*RIGHT)
+ explanation2.shift(2.4*DOWN+3.5*RIGHT)
+ explanation3.shift(1.8*DOWN+3.5*RIGHT)
+ explanation4.shift(2.4*DOWN+3.5*RIGHT)
+
+ self.play(Write(explanation1))
+ self.play(FadeIn(explanation2))
+ self.wait(1)
+ self.play(FadeOut(explanation1),FadeOut(explanation2))
+ self.play(Write(explanation3))
+ self.play(Write(explanation4))
+ self.wait(2)
diff --git a/FSF-2020/calculus/series-and-transformations/README.md b/FSF-2020/calculus/series-and-transformations/README.md
index e69de29..4747205 100644
--- a/FSF-2020/calculus/series-and-transformations/README.md
+++ b/FSF-2020/calculus/series-and-transformations/README.md
@@ -0,0 +1,13 @@
+Contributer: G Sri Harsha
+
+GitHub Handle: GSri30
+
+Sub-Topics Covered:
+
+ - Power Series
+
- Taylor Series
+
- Laplace Transformation
+
- Fourier Transformation
+
- z-Transform
+
- Constant-Q transform
+
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf b/FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf
new file mode 100644
index 0000000..2096f52
Binary files /dev/null and b/FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf differ
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/script1.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/script1.py
new file mode 100644
index 0000000..e83eff8
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/script1.py
@@ -0,0 +1,198 @@
+from manimlib.imports import*
+import math
+
+def formFormula(coeff_list,variable_list):
+ coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ variable_list=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
+ coeff_list[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ coeff_list[i].set_color(GOLD_A)
+ variable_list[i].next_to(coeff_list[i],buff=0.1)
+ if i!=2:
+ coeff_list[i+1].next_to(variable_list[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variable_list[2])
+ expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots)
+ #expansion.scale(0.7)
+ return expansion,coeff_list
+
+class intro(Scene):
+ def construct(self):
+ equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$")
+ equation.scale(2)
+ equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED})
+ text=TextMobject("let $a=0$")
+ text.scale(0.7)
+ text.shift(DOWN)
+
+ self.play(Write(equation))
+ self.wait(0.5)
+ self.play(FadeIn(text))
+ self.wait(0.7)
+ self.play(FadeOut(equation),FadeOut(text))
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -8,
+ "y_max": 8,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-8, 8, 1),
+ }
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ generalized_eq_coeff=[]
+ variables_eq=[]
+ eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq)
+ trText1=TextMobject("let $T_{ n }(x)$:=")
+ eq.next_to(trText1)
+ trTextGrup=VGroup(trText1,eq)
+ trTextGrup.scale(0.5)
+ trTextGrup.to_corner(UP+RIGHT)
+ self.play(Write(trTextGrup))
+ self.setup_axes(animate=True)
+
+ fx=TextMobject("${ e }^{ -x^{ 2 } }$")
+ fx.scale(0.5)
+ fx.shift(ORIGIN+x_each_unit*7.5*RIGHT+y_each_unit*0.5*UP)
+ mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8)
+ self.play(ShowCreation(mainfunction))
+ self.play(FadeIn(fx))
+ self.wait(1.4)
+
+ coeff=[TextMobject("$1$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")]
+ coeff[0].shift(3.39*UP+4.88*RIGHT)
+ coeff[0].scale(0.5)
+ coeff[1].shift(3.39*UP+5.3*RIGHT)
+ coeff[1].scale(0.275)
+ coeff[2].shift(3.39*UP+5.98*RIGHT)
+ coeff[2].scale(0.28)
+
+ for obj in coeff:
+ obj.set_color(GOLD_A)
+
+ firstApprox=[self.get_graph(lambda x:1,color=BLUE)]
+ secondApprox=[self.get_graph(lambda x:1,color=BLUE),
+ self.get_graph(lambda x:x+1,color=BLUE),
+ self.get_graph(lambda x:-x+1,color=BLUE)]
+ thirdApprox=[self.get_graph(lambda x:1-2*math.pow(x,2),color=BLUE),
+ self.get_graph(lambda x:1-0.1*math.pow(x,2),color=BLUE),
+ self.get_graph(lambda x:1,color=BLUE),
+ self.get_graph(lambda x:1+0.1*math.pow(x,2),color=BLUE),
+ self.get_graph(lambda x:1+math.pow(x,2),color=BLUE)]
+
+ firstGraph=self.get_graph(lambda x:1,color=BLUE)
+ secondGraph=self.get_graph(lambda x:1-math.pow(x,2),color=BLUE)
+
+ bottomText1=TextMobject("The polynomial should","satisfy","the function at $x=0$")
+ bottomText2=TextMobject("This gives","$a_{ 0 }=1$")
+ bottomText3=TextMobject("Now it could be of","any slope!")
+ #show graphs of second approx
+ bottomText4=TextMobject("Hence the","slopes","should","even match")
+ #final graph
+ bottomText5=TextMobject("This gives","$a_{ 1 }=0$")
+ bottomText6=TextMobject("Since the rate of change of this slope","could vary")
+ #show third approx graphs
+ bottomText7=TextMobject("Hence the","rate of change of these slopes","should also be","same!")
+ #final graph
+ bottomText8=TextMobject("This gives","$a_{ 2 }=-1$")
+
+ bottomText1.set_color_by_tex_to_color_map({"satisfy":YELLOW})
+ bottomText2.set_color_by_tex_to_color_map({"$a_{ 0 }=1$":BLUE})
+ bottomText3.set_color_by_tex_to_color_map({"any slope!":YELLOW})
+ bottomText4.set_color_by_tex_to_color_map({"slopes":BLUE,"even match":YELLOW})
+ bottomText5.set_color_by_tex_to_color_map({"$a_{ 1 }=0$":BLUE})
+ bottomText6.set_color_by_tex_to_color_map({"could vary":YELLOW})
+ bottomText7.set_color_by_tex_to_color_map({"rate of change of these slopes":BLUE,"same!":YELLOW})
+ bottomText8.set_color_by_tex_to_color_map({"$a_{ 2 }=-1$":BLUE})
+
+ bottomText1.scale(0.4)
+ bottomText2.scale(0.5)
+ bottomText3.scale(0.4)
+ bottomText4.scale(0.4)
+ bottomText5.scale(0.5)
+ bottomText6.scale(0.4)
+ bottomText7.scale(0.4)
+ bottomText8.scale(0.5)
+
+ bottomText1.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText2.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText3.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText4.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText5.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText6.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText7.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText8.shift(4.5*RIGHT+2.5*DOWN)
+
+ self.play(Write(bottomText1))
+ self.wait(1)
+ self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2))
+ #change coeff in tn(x)
+ self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText2,bottomText3))
+ self.wait(0.5)
+ self.play(ReplacementTransform(firstApprox[0],secondApprox[1]))
+ self.wait(0.5)
+ self.play(ReplacementTransform(secondApprox[1],secondApprox[0]))
+ self.wait(0.5)
+ self.play(ReplacementTransform(secondApprox[0],secondApprox[2]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText3,bottomText4),FadeOut(secondApprox[2]))
+ self.wait(1)
+ self.play(Write(firstGraph),ReplacementTransform(bottomText4,bottomText5))
+ #change a1 coeff
+ self.play(ReplacementTransform(generalized_eq_coeff[1],coeff[1]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText5,bottomText6))
+ self.play(ReplacementTransform(firstGraph,thirdApprox[0]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[0],thirdApprox[1]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[1],thirdApprox[2]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[2],thirdApprox[3]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[3],thirdApprox[4]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText6,bottomText7))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText7,bottomText8),ReplacementTransform(thirdApprox[4],secondGraph))
+ self.play(ReplacementTransform(generalized_eq_coeff[2],coeff[2]))
+ self.wait(2)
+
+ textFinal=TextMobject("And so on..!")
+ textFinal.scale(0.7)
+ textFinal.shift(4.5*RIGHT+2.5*DOWN)
+ self.play(ReplacementTransform(bottomText8,textFinal))
+ self.wait(2.5)
+
+ finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$")
+ finalFormula.scale(0.8)
+ finalFormula.set_color_by_tex_to_color_map({"$T_{ n }(x)$":GREEN,"$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$":RED})
+
+ self.play(FadeOut(self.axes),FadeOut(textFinal),FadeOut(secondGraph),FadeOut(trTextGrup),FadeOut(mainfunction),FadeOut(fx),FadeOut(coeff[0]),FadeOut(coeff[1]),FadeOut(coeff[2]))
+ self.play(Write(finalFormula))
+ self.wait(2)
+ # self.play(ReplacementTransform(secondApprox[2],secondApprox[3]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[3],secondApprox[4]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[4],secondApprox[5]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[0],secondApprox[0]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[0],secondApprox[0]))
+ # self.wait(0.5)
+
+
+
+
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/script2.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/script2.py
new file mode 100644
index 0000000..b5d0a53
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/script2.py
@@ -0,0 +1,195 @@
+from manimlib.imports import*
+import math
+
+
+class intro(Scene):
+ def construct(self):
+ equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$")
+ equation.scale(2)
+ equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED})
+ text=TextMobject("at $a=1$")
+ text.scale(0.7)
+ text.shift(DOWN)
+
+ shiftText=TextMobject("(Here we shift the origin to the point $x=1$)")
+ shiftText.scale(0.6)
+ shiftText.shift(2.4*DOWN)
+
+
+ self.play(Write(equation))
+ self.wait(0.5)
+ self.play(FadeIn(text))
+ self.wait(0.7)
+ self.play(Write(shiftText))
+ self.wait(0.7)
+ self.play(FadeOut(equation),FadeOut(text),FadeOut(shiftText))
+
+
+def formFormula(coeff_list,variable_list):
+ coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ variable_list=[TextMobject("+"),TextMobject("${ (x-1) }$+"),TextMobject("${ (x-1) }^{ 2 }$")]
+ coeff_list[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ coeff_list[i].set_color(GOLD_A)
+ variable_list[i].next_to(coeff_list[i],buff=0.1)
+ if i!=2:
+ coeff_list[i+1].next_to(variable_list[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variable_list[2])
+ expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots)
+ #expansion.scale(0.7)
+ return expansion,coeff_list
+
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -8,
+ "y_max": 8,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-8, 8, 1),
+ }
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ generalized_eq_coeff=[]
+ variables_eq=[]
+ eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq)
+ trText1=TextMobject("let $T_{ n }(x)$:=")
+ eq.next_to(trText1)
+ trTextGrup=VGroup(trText1,eq)
+ trTextGrup.scale(0.5)
+ trTextGrup.to_corner(UP+RIGHT)
+ self.play(Write(trTextGrup))
+ self.setup_axes(animate=True)
+
+ fx=TextMobject("${ e }^{ -x^{ 2 } }$")
+ fx.scale(0.5)
+ fx.shift(ORIGIN+x_each_unit*7.5*RIGHT+y_each_unit*0.5*UP)
+ mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8)
+ self.play(ShowCreation(mainfunction))
+ self.play(FadeIn(fx))
+ self.wait(1.4)
+
+ coeff=[TextMobject("$e^{-1}$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")]
+ coeff[0].shift(3.33*UP+3.65*RIGHT)
+ coeff[0].scale(0.45)
+ coeff[1].shift(3.33*UP+4.13*RIGHT)
+ coeff[1].scale(0.275)
+ coeff[2].shift(3.33*UP+5.36*RIGHT)
+ coeff[2].scale(0.28)
+
+ for obj in coeff:
+ obj.set_color(GOLD_A)
+
+ firstApprox=[self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)]
+ secondApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5),
+ self.get_graph(lambda x:math.exp(-1)+3*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5),
+ self.get_graph(lambda x:math.exp(-1)-4*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)]
+ thirdApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
+ self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-0.1*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
+ self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_max=5.5,x_min=-5.5),
+ self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+0.5*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
+ self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5)]
+
+ firstGraph=self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)
+ secondGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)
+ thirdGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5)
+
+ bottomText1=TextMobject("Apply","$f(1)=T_{n}(1)$")
+ bottomText2=TextMobject("This gives","$a_{ 0 }=e^{-1}$")
+ bottomText3=TextMobject("Now it could be of","any slope!")
+ #show graphs of second approx
+ bottomText4=TextMobject("Hence","apply","$f'(1)=T_{n}'(1)$")
+ #final graph
+ bottomText5=TextMobject("This gives","$a_{ 1 }=-2e^{-1}$")
+ bottomText6=TextMobject("Since the rate of change of this slope","could vary")
+ #show third approx graphs
+ bottomText7=TextMobject("Hence also","apply","$f''(1)=T_{ n }''(1)$")
+ #final graph
+ bottomText8=TextMobject("This gives","$a_{ 2 }=e^{-1}$")
+
+ bottomText1.set_color_by_tex_to_color_map({"Apply":YELLOW})
+ bottomText2.set_color_by_tex_to_color_map({"$a_{ 0 }=e^{-1}$":BLUE})
+ bottomText3.set_color_by_tex_to_color_map({"any slope!":YELLOW})
+ bottomText4.set_color_by_tex_to_color_map({"apply":YELLOW})
+ bottomText5.set_color_by_tex_to_color_map({"$a_{ 1 }=-2e^{-1}$":BLUE})
+ bottomText6.set_color_by_tex_to_color_map({"could vary":YELLOW})
+ bottomText7.set_color_by_tex_to_color_map({"apply":YELLOW})
+ bottomText8.set_color_by_tex_to_color_map({"$a_{ 2 }=e^{-1}$":BLUE})
+
+ bottomText1.scale(0.4)
+ bottomText2.scale(0.5)
+ bottomText3.scale(0.4)
+ bottomText4.scale(0.4)
+ bottomText5.scale(0.5)
+ bottomText6.scale(0.4)
+ bottomText7.scale(0.4)
+ bottomText8.scale(0.5)
+
+ bottomText1.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText2.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText3.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText4.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText5.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText6.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText7.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText8.shift(4.5*RIGHT+2.5*DOWN)
+
+ self.play(Write(bottomText1))
+ self.wait(1)
+ self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2))
+ #change coeff in tn(x)
+ self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText2,bottomText3))
+ self.wait(0.5)
+ self.play(ReplacementTransform(firstApprox[0],secondApprox[1]))
+ self.wait(0.5)
+ self.play(ReplacementTransform(secondApprox[1],secondApprox[2]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[2],secondApprox[0]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText3,bottomText4),FadeOut(secondApprox[2]))
+ self.wait(1)
+ self.play(Write(secondGraph),ReplacementTransform(bottomText4,bottomText5))
+ #change a1 coeff
+ self.play(ReplacementTransform(generalized_eq_coeff[1],coeff[1]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText5,bottomText6))
+ self.play(ReplacementTransform(secondGraph,thirdApprox[0]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[0],thirdApprox[1]))
+ # self.wait(0.6)
+ # self.play(ReplacementTransform(thirdApprox[1],thirdApprox[2]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[1],thirdApprox[3]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[3],thirdApprox[4]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText6,bottomText7))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText7,bottomText8),ReplacementTransform(thirdApprox[4],thirdGraph))
+ self.play(ReplacementTransform(generalized_eq_coeff[2],coeff[2]))
+ self.wait(2)
+
+ textFinal=TextMobject("And so on..!")
+ textFinal.scale(0.7)
+ textFinal.shift(4.5*RIGHT+2.5*DOWN)
+ self.play(ReplacementTransform(bottomText8,textFinal))
+ self.wait(2.5)
+
+ finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(1)+f'(1)(x-1)+\\frac { f''(1) }{ 2! }(x-1)^2+..+\\frac { { f }^{ n }(1) }{ n! } { (x-1) }^{ n }$")
+ finalFormula.scale(0.8)
+ finalFormula.set_color_by_tex_to_color_map({"$T_{ n }(x)$":GREEN,"$f(1)+f'(1)(x-1)+\\frac { f''(1) }{ 2! }(x-1)^2+..+\\frac { { f }^{ n }(1) }{ n! } { (x-1) }^{ n }$":RED})
+
+ self.play(FadeOut(self.axes),FadeOut(textFinal),FadeOut(thirdGraph),FadeOut(trTextGrup),FadeOut(mainfunction),FadeOut(fx),FadeOut(coeff[0]),FadeOut(coeff[1]),FadeOut(coeff[2]))
+ self.play(Write(finalFormula))
+ self.wait(2)
\ No newline at end of file
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/script3.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/script3.py
new file mode 100644
index 0000000..a2870d4
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/script3.py
@@ -0,0 +1,111 @@
+from manimlib.imports import*
+import math
+
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -8,
+ "y_max": 8,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-8, 8, 1),
+ }
+ def construct(self):
+
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ self.setup_axes(animate=True)
+
+ lnx=self.get_graph(lambda x:math.log2(x),color=RED,x_min=0.01,x_max=8)
+
+ bottomText1=TextMobject("Apply $f(x)=T_{n}(x)$")
+ bottomText2=TextMobject("Then apply $f'(x)=T_{n}'(x)$")
+ bottomText3=TextMobject("Then apply $f''(x)=T_{n}''(x)$")
+ bottomText4=TextMobject("and so on..")
+
+ bottomText1.scale(0.5)
+ bottomText2.scale(0.5)
+ bottomText3.scale(0.5)
+ bottomText4.scale(0.5)
+
+ bottomText1.shift(3*RIGHT+2*DOWN)
+ bottomText2.shift(3*RIGHT+2*DOWN)
+ bottomText3.shift(3*RIGHT+2*DOWN)
+ bottomText4.shift(3*RIGHT+2*DOWN)
+
+ equations=[self.get_graph(lambda x:math.log2(2),color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2,color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8,color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24,color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64,color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160,color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160-((x-2)**6)/384,color=BLUE)]
+
+ terms=[TextMobject("$T_{n}:=$"),TextMobject("$ln(2)$"),TextMobject("$+\\frac { x-2 }{ 2 } $"),TextMobject("$-\\frac { (x-2)^{2} }{ 8 }$"),TextMobject("+..")]
+ for obj in terms:
+ obj.scale(0.5)
+
+ terms[0].shift(3*UP+3*RIGHT)
+ terms[1].next_to(terms[0],buff=0.1)
+ terms[2].next_to(terms[1],buff=0.1)
+ terms[3].next_to(terms[2],buff=0.1)
+ terms[4].next_to(terms[3],buff=0.1)
+
+ self.play(ShowCreation(lnx))
+ self.wait(1)
+ self.play(Write(bottomText1))
+ self.wait(0.5)
+ self.play(ShowCreation(equations[0]),Write(terms[0]),Write(terms[1]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText1,bottomText2))
+ self.wait(0.5)
+ self.play(ReplacementTransform(equations[0],equations[1]),Write(terms[2]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText2,bottomText3))
+ self.wait(0.5)
+ self.play(ReplacementTransform(equations[1],equations[2]),Write(terms[3]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText3,bottomText4),Write(terms[4]))
+ self.wait(1.5)
+
+ self.play(FadeOut(terms[0]),FadeOut(terms[1]),FadeOut(terms[2]),FadeOut(terms[3]),FadeOut(terms[4]),FadeOut(bottomText4))
+
+ dline=DashedLine(start=ORIGIN+8*y_each_unit*UP,end=ORIGIN+8*y_each_unit*DOWN)
+ dline.shift(ORIGIN+x_each_unit*4*RIGHT)
+
+ bottomText5=TextMobject("Here","after $x=4$",", the graph","continuously diverges away","from $ln(x)$")
+ bottomText5.scale(0.3)
+ bottomText5.shift(4.5*RIGHT+2*DOWN)
+ bottomText5.set_color_by_tex_to_color_map({"after $x=4$":YELLOW,"continuously diverges away":BLUE})
+
+ self.play(Write(bottomText5),Write(dline))
+ self.wait(1)
+ self.play(ReplacementTransform(equations[2],equations[3]))
+ self.wait(0.3)
+ self.play(ReplacementTransform(equations[3],equations[4]))
+ self.wait(0.3)
+ self.play(ReplacementTransform(equations[4],equations[5]))
+ self.wait(0.3)
+ self.play(ReplacementTransform(equations[5],equations[6]),FadeOut(bottomText5))
+ self.wait(1)
+
+ circle=Circle(radius=ORIGIN+x_each_unit*2,color=PURPLE_E)
+ circle.shift(ORIGIN+RIGHT*x_each_unit*2)
+ radiusLine=Line(start=ORIGIN+x_each_unit*RIGHT*2,end=ORIGIN+x_each_unit*4*RIGHT,color=PURPLE_E)
+ radius=TextMobject("$R$")
+ radius.set_color(RED)
+ radius.scale(0.5)
+ radius.shift(ORIGIN+RIGHT*x_each_unit*2.45+DOWN*y_each_unit*0.6)
+
+ self.play(FadeOut(equations[6]),Write(circle))
+ self.wait(0.6)
+ self.play(Write(radiusLine))
+ self.play(FadeIn(radius))
+ self.wait(2)
\ No newline at end of file
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/script4.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/script4.py
new file mode 100644
index 0000000..1f41c97
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/script4.py
@@ -0,0 +1,82 @@
+from manimlib.imports import*
+import math
+
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -8,
+ "y_max": 8,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-8, 8, 1),
+ }
+ def construct(self):
+
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ self.setup_axes(animate=True)
+ lnx=self.get_graph(lambda x:math.log2(x),color=RED,x_min=0.01,x_max=8)
+ equation=self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160-((x-2)**6)/384,color=BLUE)
+
+ terms=[TextMobject("$T_{n}:=$"),TextMobject("$ln(2)$"),TextMobject("$+\\frac { x-2 }{ 2 } $"),TextMobject("$-\\frac { (x-2)^{2} }{ 8 }$"),TextMobject("+..")]
+ for obj in terms:
+ obj.scale(0.5)
+
+ terms[0].shift(3*UP+3*RIGHT)
+ terms[1].next_to(terms[0],buff=0.1)
+ terms[2].next_to(terms[1],buff=0.1)
+ terms[3].next_to(terms[2],buff=0.1)
+ terms[4].next_to(terms[3],buff=0.1)
+
+ self.play(ShowCreation(lnx))
+ self.wait(1)
+ self.play(FadeIn(equation),FadeIn(terms[0]),FadeIn(terms[1]),FadeIn(terms[2]),FadeIn(terms[3]),FadeIn(terms[4]))
+ self.wait(1)
+
+ bottomText1=TextMobject("$R_{n}(x)=\\frac { d }{ dx } ($","area bounded","$)$")
+
+ bottomText1.set_color_by_tex_to_color_map({"area bounded":ORANGE})
+ #bottomText2.set_color_by_tex_to_color_map({"area bounded":BLUE})
+ arrow=TextMobject("$\downarrow$")
+ arrow.scale(2.5)
+ arrow.shift(ORIGIN+x_each_unit*RIGHT*9.5+UP*y_each_unit)
+ increasingText=TextMobject("Increases!")
+ increasingText.set_color(GREEN)
+ followupText=TextMobject("as n increase!")
+ followupText.scale(0.3)
+ followupText.shift(ORIGIN+x_each_unit*11*RIGHT+UP*y_each_unit*1.1)
+ increasingText.shift(ORIGIN+x_each_unit*11*RIGHT+UP*y_each_unit*1.6)
+ increasingText.scale(0.4)
+
+ bottomText1.scale(0.5)
+ #bottomText2.scale(0.5)
+ #bottomText3.scale(0.5)
+
+ bottomText1.shift(3.5*LEFT+2*DOWN)
+ #bottomText2.shift(3.5*LEFT+2.4*DOWN)
+ #bottomText3.shift(3.5*LEFT+2.8*DOWN)
+
+ dline=DashedLine(start=ORIGIN+8*y_each_unit*UP,end=ORIGIN+8*y_each_unit*DOWN)
+ dline.shift(ORIGIN+x_each_unit*4*RIGHT)
+
+ area1=self.get_riemann_rectangles(lnx,x_max=8,x_min=4,dx=0.01,start_color=BLUE,end_color=RED,stroke_width=0,fill_opacity=0.8)
+ area2=self.get_riemann_rectangles(equation,x_max=5.2,x_min=4,dx=0.025,start_color=BLACK,end_color=BLACK,stroke_width=0,fill_opacity=1)
+
+ self.play(Write(dline))
+ self.wait(0.5)
+ self.play(ShowCreation(area1),ShowCreation(area2),Write(bottomText1))
+ # self.play(Write(bottomText2))
+ # self.play(FadeIn(bottomText3))
+ self.play(Write(arrow))
+ self.wait(0.7)
+ self.play(Write(increasingText))
+ self.play(FadeIn(followupText))
+ self.wait(2)
+
\ No newline at end of file
diff --git a/FSF-2020/div-curl-grad-and-all-that/README.md b/FSF-2020/div-curl-grad-and-all-that/README.md
deleted file mode 100644
index e69de29..0000000
diff --git a/FSF-2020/geometry-of-planes-and-curves/README.md b/FSF-2020/geometry-of-planes-and-curves/README.md
deleted file mode 100644
index e69de29..0000000
diff --git a/FSF-2020/integrals-of-multivariable-functions/README.md b/FSF-2020/integrals-of-multivariable-functions/README.md
deleted file mode 100644
index a321caf..0000000
--- a/FSF-2020/integrals-of-multivariable-functions/README.md
+++ /dev/null
@@ -1 +0,0 @@
-FSF2020--Somnath Pandit
diff --git a/FSF-2020/integrals-of-multivariable-functions/double-integrals/YlimitXdependent.gif b/FSF-2020/integrals-of-multivariable-functions/double-integrals/YlimitXdependent.gif
deleted file mode 100644
index a2bfd9d..0000000
Binary files a/FSF-2020/integrals-of-multivariable-functions/double-integrals/YlimitXdependent.gif and /dev/null differ
diff --git a/FSF-2020/integrals-of-multivariable-functions/double-integrals/area_under_func.py b/FSF-2020/integrals-of-multivariable-functions/double-integrals/area_under_func.py
deleted file mode 100644
index 773840c..0000000
--- a/FSF-2020/integrals-of-multivariable-functions/double-integrals/area_under_func.py
+++ /dev/null
@@ -1,73 +0,0 @@
-from manimlib.imports import *
-
-
-class AreaUnderIntegral(GraphScene):
- CONFIG = {
- "x_min" : 0,
- "x_max" : 5,
- "y_min" : 0,
- "y_max" : 6,
- "Func":lambda x : 1+x**2*np.exp(-.15*x**2)
- }
-
- def construct(self):
- X = RIGHT*self.x_axis_width/(self.x_max- self.x_min)
- Y = UP*self.y_axis_height/(self.y_max- self.y_min)
-
- int_area_sym=TextMobject("$$\int_{a}^b f(x)dx$$").shift(2*UP)
- area_mean_text = TextMobject(r"means area under the curve of $f(x)$ \\ in the region $a\leq x\leq b$").next_to(int_area_sym,DOWN)
-
- opening_text=VGroup(*[int_area_sym,area_mean_text])
- self.play(Write(opening_text),run_time=4)
- self.wait(2)
- self.play(FadeOut(opening_text))
-
- self.setup_axes(animate=True)
- func= self.get_graph(self.Func, x_min=0,x_max=5)
- self.curve=func
-
- func_text = TextMobject(r"$y = f(x)$").next_to(func,UP)
- min_lim = self.get_vertical_line_to_graph(1,func,DashedLine,color=YELLOW)
- tick_a=TextMobject(r"$a$").next_to(min_lim,DOWN)
- max_lim = self.get_vertical_line_to_graph(4,func,DashedLine,color=YELLOW)
- tick_b=TextMobject(r"$b$").next_to(max_lim,DOWN)
-
- # area = self.get_area(func,1,4)
-
- self.play(ShowCreation(func), ShowCreation(func_text))
-
- self.wait(2)
- self.play(ShowCreation(min_lim),Write(tick_a), ShowCreation(max_lim),Write(tick_b),run_time=0.5)
-
-
- approx_text=TextMobject(r"The area can be approximated as \\ sum of small rectangles").next_to(func,4*Y)
- self.play(Write(approx_text))
-
- rect_list = self.get_riemann_rectangles_list(
- self.curve, 5,
- max_dx = 0.25,
- x_min = 1,
- x_max = 4,
- )
- flat_graph = self.get_graph(lambda t : 0)
- rects = self.get_riemann_rectangles( flat_graph, x_min = 1, x_max = 4, dx = 0.5)
- for new_rects in rect_list:
- new_rects.set_fill(opacity = 0.8)
- rects.align_submobjects(new_rects)
- for alt_rect in rects[::2]:
- alt_rect.set_fill(opacity = 0)
- self.play(Transform(
- rects, new_rects,
- run_time = 1.5,
- lag_ratio = 0.5
- ))
- conclude_text=TextMobject(r"Making the rectangles infinitesimally thin \\ we get the real area under the curve.").next_to(func,4*Y)
- self.play(Transform(approx_text,conclude_text))
- self.wait(3)
- int_area_sym.next_to(self.curve,IN)
- self.play(Transform(conclude_text,int_area_sym))
-
- # self.play(ShowCreation(area))
- self.wait(3)
-
-#uploaded by Somnath Pandit.FSF2020_Double_Integral
diff --git a/FSF-2020/integrals-of-multivariable-functions/double-integrals/elementary_area.py b/FSF-2020/integrals-of-multivariable-functions/double-integrals/elementary_area.py
deleted file mode 100644
index 362b6f8..0000000
--- a/FSF-2020/integrals-of-multivariable-functions/double-integrals/elementary_area.py
+++ /dev/null
@@ -1,144 +0,0 @@
-from manimlib.imports import *
-
-class ElementaryArea(GraphScene):
- CONFIG = {
- "x_min" : 0,
- "x_max" : 2,
- "y_min" : 0,
- "y_max" : 2,
- "x_tick_frequency" : 1,
- "y_tick_frequency" : 1,
- # "x_labeled_nums": list(np.arange(0,3)),
- # "y_labeled_nums": list(np.arange(0 ,3)),
- "x_axis_width": 6,
- "y_axis_height": 6,
- "graph_origin": ORIGIN+3.5*LEFT+3.5*DOWN,
- }
-
- def construct(self):
- X = self.x_axis_width/(self.x_max- self.x_min)
- Y = self.y_axis_height/(self.y_max- self.y_min)
- self.X=X ;self.Y=Y
- self.setup_axes(animate=False)
-
- caption=TextMobject("The elementary area in ").to_edge(UP)
- rect_text=TextMobject("Cartesian Coordinates").next_to(caption,DOWN,)
- polar_text=TextMobject("Polar Coordinates").next_to(caption,DOWN,)
-
- self.add(caption)
- self.play(Write(rect_text))
- self.get_rect_element()
- # self.play(Write(polar_text))
- self.play(ReplacementTransform(rect_text,polar_text),
- FadeOut(VGroup(self.dydx,self.rect_brace_gr)))
- self.get_polar_element()
-
-
-
- def get_rect_element(self):
- rect=Rectangle(
- height=2, width=3,fill_color=BLUE_D,
- fill_opacity=1, color=BLUE_D
- ).scale(.75).move_to(
- self.graph_origin+(RIGHT*self.X+UP*self.Y)
- )
- dx_brace=Brace(rect, DOWN, buff = SMALL_BUFF)
- dx_label=dx_brace.get_text("$dx$", buff = SMALL_BUFF)
- dx_brace_gr=VGroup(dx_brace,dx_label)
-
- dy_brace=Brace(rect,RIGHT, buff = SMALL_BUFF)
- dy_label=dy_brace.get_text("$dy$", buff = SMALL_BUFF)
- dy_brace_gr=VGroup(dy_brace,dy_label)
-
- brace_gr=VGroup(dx_brace_gr,dy_brace_gr)
-
- dydx=TextMobject("$dxdy$",color=BLACK).next_to(rect,IN)
-
- self.play(FadeIn(rect))
- self.play(GrowFromCenter(brace_gr))
- self.play(GrowFromCenter(dydx))
-
- self.rect=rect
- self.rect_brace_gr=brace_gr
- self.dydx=dydx
- self.wait(2)
-
-
- def get_polar_element(self):
- X=self.X ;Y=self.Y
- theta1=25*DEGREES
- dtheta=TAU/12
- r_in=1.3*X ; r_out=1.9*X
-
- arc=AnnularSector(
- arc_center=self.graph_origin,
- inner_radius=r_in,
- outer_radius=r_out ,
- angle= dtheta,
- start_angle= theta1,
- fill_opacity= 1,
- stroke_width= 0,
- color= BLUE_D,
- )
-
-
- # # #getting braces
- r_in_theta1=self.graph_origin+r_in*(np.cos(theta1)*RIGHT+np.sin(theta1)*UP)
- dr_line=Line(r_in_theta1,r_in_theta1+RIGHT*(r_out-r_in))
- dr_brace=Brace(dr_line, DOWN, buff = SMALL_BUFF
- ).rotate(theta1, about_point=r_in_theta1
- )
- dr_label=dr_brace.get_text("$dr$", buff = SMALL_BUFF)
- dr_brace_gr=VGroup(dr_brace,dr_label)
-
- theta2=theta1+dtheta
- r_out_theta2=self.graph_origin+r_out*(
- np.cos(theta2)*RIGHT+np.sin(theta2)*UP
- )
- rdt_line=Line(r_out_theta2,r_out_theta2
- +DOWN*(r_out*dtheta)
- )
- rdt_brace=Brace(rdt_line, RIGHT,
- buff = MED_SMALL_BUFF).rotate(
- theta2-(dtheta/2), about_point=r_out_theta2
- )
- rdt_label=rdt_brace.get_text("$rd\\theta$",buff = SMALL_BUFF)
- rdt_brace_gr=VGroup(rdt_brace,rdt_label)
-
- #getting label r and dtheta
- r1=DashedLine(self.graph_origin,r_in_theta1).set_color(RED)
- r2=DashedLine(self.graph_origin,r_out_theta2).set_color(RED)
- r_brace=Brace(r1, DOWN, buff = SMALL_BUFF).rotate(theta1, about_point=self.graph_origin)
- r_label=r_brace.get_text("$r$", buff = SMALL_BUFF)
- r_brace_gr=VGroup(r_brace,r_label)
-
- dtheta_arc=Arc(
- arc_center=self.graph_origin,
- radius=.5*X,
- angle= dtheta,
- start_angle= theta1,
- )
- dtheta_arc_label=TextMobject("$d\\theta$").move_to(.99*dtheta_arc.get_corner(UR))
- dtheta_label=VGroup(dtheta_arc,dtheta_arc_label)
-
-
- rdrdt=TextMobject("$rdrd\\theta$",color=BLACK).next_to(arc,IN)
- self.play(ReplacementTransform(self.rect,arc))
- self.wait()
- self.play(ShowCreation(r1),
- ShowCreation(r2)
- )
- self.play(ShowCreation(r_brace_gr),
- Write(dtheta_label)
- )
- self.wait()
- self.play(GrowFromCenter(rdt_brace_gr))
- self.wait(.5)
- self.play(GrowFromCenter(dr_brace_gr))
- self.wait(.5)
- self.play(GrowFromCenter(rdrdt))
-
- self.wait(2)
-
-
- #uploaded by Somnath Pandit.FSF2020_Double_Integral
diff --git a/FSF-2020/integrals-of-multivariable-functions/double-integrals/non_rect_region.py b/FSF-2020/integrals-of-multivariable-functions/double-integrals/non_rect_region.py
deleted file mode 100644
index 793a000..0000000
--- a/FSF-2020/integrals-of-multivariable-functions/double-integrals/non_rect_region.py
+++ /dev/null
@@ -1,154 +0,0 @@
-from manimlib.imports import *
-
-class AreaUnderCurve(GraphScene):
- CONFIG = {
- "x_min" : -1,
- "x_max" : 8,
- "y_min" : -1,
- "y_max" : 5,
- "y_axis_label": "$y$",
- "x_tick_frequency" : 1,
- "y_tick_frequency" : 1,
- "x_labeled_nums": list(np.arange(-1, 9)),
- "y_labeled_nums": list(np.arange(-1, 6)),
- "y_axis_height":5.5,
- "graph_origin": ORIGIN+4*LEFT+2.5*DOWN,
- }
-
- def construct(self):
- X = RIGHT*self.x_axis_width/(self.x_max- self.x_min)
- Y = UP*self.y_axis_height/(self.y_max- self.y_min)
-
- sofar_text=TextMobject(r"So far we have integrated over \\ rectangular regions")
- self.play(Write(sofar_text))
- self.play(sofar_text.to_edge,UP)
-
- self.setup_axes(animate=False)
-
- rect= self.get_graph(
- lambda x : 3,
- x_min = 0,
- x_max = 5,
- color = GREEN)
-
- rect_region = self.get_riemann_rectangles(
- rect,
- x_min = 0,
- x_max = 5,
- dx =.01,
- start_color = GREEN,
- end_color = GREEN,
- fill_opacity = 0.75,
- stroke_width = 0,
- )
-
- self.play(ShowCreation(rect_region))
- self.wait(.5)
-
- rect_int=TextMobject(r"Here the integration limits are set as").to_edge(UP)
- rect_lim=TextMobject(r"$$\int_{x=0}^{5}\int_{y=0}^{3}$$").next_to(rect_int,DOWN)
- const_text=TextMobject(r"$\longleftarrow $ \textsf the limits are\\ constant values").next_to(rect_lim,RIGHT)
-
- self.play(ReplacementTransform(sofar_text,rect_int))
- self.wait(1.5)
- self.play(FadeIn(rect_lim))
- self.wait(2)
- self.play(Write(const_text))
- self.wait(2)
- self.play(FadeOut(rect_int), FadeOut(rect_lim),FadeOut(const_text))
-
-
- non_rect_text=TextMobject(r"Now we see how to integrate over \\ non-rectangular regions")
- non_rect_text.to_edge(UP)
- self.play(Write(non_rect_text))
- self.wait(1.5)
- self.play(FadeOut(rect_region))
-
- c1= self.get_graph(
- lambda x : x**2/4,
- x_min = 0,
- x_max = 4,
- color = RED)
-
- c1_region = self.get_riemann_rectangles(
- c1,
- x_min = 0,
- x_max = 4,
- dx =.01,
- start_color = BLUE,
- end_color = BLUE,
- fill_opacity = 0.75,
- stroke_width = 0,
- )
- self.add(c1,c1_region)
- # self.wait(2)
-
- c2= self.get_graph(
- lambda x :12-2*x,
- x_min = 4,
- x_max = 6,
- color = RED)
-
- c2_region = self.get_riemann_rectangles(
- c2,
- x_min = 4,
- x_max = 6,
- dx =.01,
- start_color = BLUE,
- end_color = BLUE,
- fill_opacity = .75,
- stroke_width = 0,
- )
- self.add(c2_region,c2)
- self.wait(1.5)
- c=VGroup(*[c1,c2])
-
- no_func_text=TextMobject(r"The whole region can't be expressed as\\ bounded by a single $f(x)$").next_to(c2,UP,buff=LARGE_BUFF)
-
- self.play(ReplacementTransform(non_rect_text,no_func_text))
- self.wait(1)
- self.play(Indicate(c))
- self.wait(2)
-
- div_region_text=TextMobject(r"So the region is divided into two").next_to(c2,UP,buff=MED_LARGE_BUFF)
- self.play(ReplacementTransform(no_func_text,div_region_text))
-
- c2.set_color(YELLOW)
- self.play(c2_region.set_color,YELLOW)
- c1_text=TextMobject("$\dfrac{x^2}{4}$").next_to(c1,IN)
- c2_text=TextMobject("$12-2x$").next_to(c2,IN+2*X)
- c_text=VGroup(*[c1_text,c2_text])
-
- self.play(FadeIn(c_text))
- self.wait(.4)
- self.play(Indicate(c1),Indicate(c1_text))
- self.play(Indicate(c2),Indicate(c2_text))
-
- easy_text=TextMobject(r"Now the limis can be set easily").next_to(c2,UP,buff=.5)
- self.play(ReplacementTransform(div_region_text,easy_text))
-
- c1_int=TextMobject(r"$$\int_{x=0}^{4}\int_{y=0}^{\dfrac{x^2}{4}}$$").next_to(c1,IN).shift(.5*(-X+1.3*Y))
- c2_int=TextMobject(r"$$\int_{x=4}^{6}\int_{y=0}^{12-2x}$$").next_to(c2,IN+X)
-
- self.play(ReplacementTransform(c1_text,c1_int),ReplacementTransform(c2_text,c2_int))
- self.wait(2)
-
- total_int=TextMobject(r"The total integraton= ").to_edge(UP)
- plus=TextMobject("$$+$$").move_to(self.graph_origin+4*X+4.8*Y)
- self.play(ReplacementTransform(easy_text,total_int))
- self.play(c2_region.set_color,BLUE)
- self.play(c1_int.next_to,c1,.1*UP, c2_int.next_to,plus,RIGHT, FadeIn(plus))
-
- region=VGroup(*[c1_region,c2_region])
- region.set_color(GREEN)
- self.play(ShowCreation(region))
- self.wait(3)
-
-
-
-#uploaded by Somnath Pandit.FSF2020_Double_Integral
-
-
-
-
-
diff --git a/FSF-2020/integrals-of-multivariable-functions/double-integrals/surface.py b/FSF-2020/integrals-of-multivariable-functions/double-integrals/surface.py
deleted file mode 100644
index a794f46..0000000
--- a/FSF-2020/integrals-of-multivariable-functions/double-integrals/surface.py
+++ /dev/null
@@ -1,236 +0,0 @@
-from manimlib.imports import *
-
-class SurfacesAnimation(ThreeDScene):
-
- CONFIG = {
- "axes_config": {
- "x_min": 0,
- "x_max": 8,
- "y_min": 0,
- "y_max": 8,
- "z_min": 0,
- "z_max": 6,
- "a":1 ,"b": 6, "c":2 , "d":6,
- "axes_shift":-3*OUT + 5*LEFT,
- "x_axis_config": {
- "tick_frequency": 1,
- # "include_tip": False,
- },
- "y_axis_config": {
- "tick_frequency": 1,
- # "include_tip": False,
- },
- "z_axis_config": {
- "tick_frequency": 1,
- # "include_tip": False,
- },
- "num_axis_pieces": 1,
- },
- "default_graph_style": {
- "stroke_width": 2,
- "stroke_color": WHITE,
- },
- "default_surface_config": {
- "fill_opacity": 0.5,
- "checkerboard_colors": [LIGHT_GREY],
- "stroke_width": 0.5,
- "stroke_color": WHITE,
- "stroke_opacity": 0.5,
- },
- "Func": lambda x,y: 2+y/4+np.sin(x)
- }
-
-
- def construct(self):
-
- self.setup_axes()
- self.set_camera_orientation(distance=35,
- phi=80 * DEGREES,
- theta=-80 * DEGREES,
- )
-
- fn_text=TextMobject("$z=f(x,y)$").set_color(PINK)
- self.add_fixed_in_frame_mobjects(fn_text)
- fn_text.to_edge(TOP,buff=MED_SMALL_BUFF)
-
- R=TextMobject("R").set_color(BLACK).scale(3)
- R.move_to(self.axes.input_plane,IN)
- self.add(R)
-
- #get the surface
- surface= self.get_surface(
- self.axes, lambda x , y:
- self.Func(x,y)
- )
- surface.set_style(
- fill_opacity=0.8,
- fill_color=PINK,
- stroke_width=0.8,
- stroke_color=WHITE,
- )
-
-
- self.begin_ambient_camera_rotation(rate=0.07)
- self.play(Write(surface))
- # self.play(LaggedStart(ShowCreation(surface)))
-
- self.get_lines()
- # self.play(FadeIn(self.axes.input_plane))
- self.wait(3)
-
- def get_surface(self,axes, func, **kwargs):
- config = {
- "u_min": axes.a,
- "u_max": axes.b,
- "v_min": axes.c,
- "v_max": axes.d,
- "resolution": (
- (axes.y_max - axes.y_min) // axes.y_axis.tick_frequency,
- (axes.x_max - axes.x_min) // axes.x_axis.tick_frequency,
- ),
- }
-
- config.update(self.default_surface_config)
- config.update(kwargs)
- return ParametricSurface(
- lambda x,y : axes.c2p(
- x, y, func(x, y)
- ),
- **config
- )
-
- def get_lines(self):
- axes = self.axes
- labels=[axes.x_axis.n2p(axes.a), axes.x_axis.n2p(axes.b), axes.y_axis.n2p(axes.c),
- axes.y_axis.n2p(axes.d)]
-
-
- surface_corners=[]
- for x,y,z in self.region_corners:
- surface_corners.append([x,y,self.Func(x,y)])
-
- lines=VGroup()
- for start , end in zip(surface_corners,
- self.region_corners):
- lines.add(self.draw_lines(start,end,"RED"))
-
- for start , end in zip(labels,
- self.region_corners):
- # lines.add(self.draw_lines(start,end,"BLUE"))
- # print (start,end)
- pass
- self.play(ShowCreation(lines))
-
-
- def draw_lines(self,start,end,color):
- start=self.axes.c2p(*start)
- end=self.axes.c2p(*end)
- line=DashedLine(start,end,color=color)
-
- return line
-
- def get_three_d_axes(self, include_labels=True, include_numbers=True, **kwargs):
- config = dict(self.axes_config)
- config.update(kwargs)
- axes = ThreeDAxes(**config)
- axes.set_stroke(width=2)
-
- if include_numbers:
- self.add_axes_numbers(axes)
-
- if include_labels:
- self.add_axes_labels(axes)
-
- # Adjust axis orientation
- axes.x_axis.rotate(
- 90 * DEGREES, RIGHT,
- about_point=axes.c2p(0, 0, 0),
- )
- axes.y_axis.rotate(
- 90 * DEGREES, UP,
- about_point=axes.c2p(0, 0, 0),
- )
-
- # Add xy-plane
- input_plane = self.get_surface(
- axes, lambda x, t: 0
- )
- input_plane.set_style(
- fill_opacity=0.5,
- fill_color=TEAL,
- stroke_width=0,
- stroke_color=WHITE,
- )
-
- axes.input_plane = input_plane
-
- self.region_corners=[
- input_plane.get_corner(pos) for pos in (DL,DR,UR,UL)]
-
- return axes
-
-
- def setup_axes(self):
- axes = self.get_three_d_axes(include_labels=True)
- axes.add(axes.input_plane)
- axes.scale(1)
- # axes.center()
- axes.shift(axes.axes_shift)
-
- self.add(axes)
- self.axes = axes
-
- def add_axes_numbers(self, axes):
- x_axis = axes.x_axis
- y_axis = axes.y_axis
- tex_vals_x = [
- ("a", axes.a),
- ("b", axes.b),
- ]
- tex_vals_y=[
- ("c", axes.c),
- ("d", axes.d)
- ]
- x_labels = VGroup()
- y_labels = VGroup()
- for tex, val in tex_vals_x:
- label = TexMobject(tex)
- label.scale(1)
- label.next_to(x_axis.n2p(val), DOWN)
- x_labels.add(label)
- x_axis.add(x_labels)
- x_axis.numbers = x_labels
-
- for tex, val in tex_vals_y:
- label = TexMobject(tex)
- label.scale(1.5)
- label.next_to(y_axis.n2p(val), LEFT)
- label.rotate(90 * DEGREES)
- y_labels.add(label)
-
- y_axis.add(y_labels)
- y_axis.numbers = y_labels
-
- return axes
-
- def add_axes_labels(self, axes):
- x_label = TexMobject("x")
- x_label.next_to(axes.x_axis.get_end(), RIGHT)
- axes.x_axis.label = x_label
-
- y_label = TextMobject("y")
- y_label.rotate(90 * DEGREES, OUT)
- y_label.next_to(axes.y_axis.get_end(), UP)
- axes.y_axis.label = y_label
-
- z_label = TextMobject("z")
- z_label.rotate(90 * DEGREES, RIGHT)
- z_label.next_to(axes.z_axis.get_zenith(), RIGHT)
- axes.z_axis.label = z_label
- for axis in axes:
- axis.add(axis.label)
- return axes
-
-
-
-#uploaded by Somnath Pandit.FSF2020_Double_Integral
diff --git a/FSF-2020/integrals-of-multivariable-functions/double-integrals/y_limit_dependent_on_x.py b/FSF-2020/integrals-of-multivariable-functions/double-integrals/y_limit_dependent_on_x.py
deleted file mode 100644
index 4894ebf..0000000
--- a/FSF-2020/integrals-of-multivariable-functions/double-integrals/y_limit_dependent_on_x.py
+++ /dev/null
@@ -1,113 +0,0 @@
-from manimlib.imports import *
-
-class YlimitXdependent(GraphScene):
- CONFIG = {
- "x_min" : 0,
- "x_max" : 1,
- "y_min" : 0,
- "y_max" : 2,
- "x_tick_frequency" : 1,
- "y_tick_frequency" : 1,
- "x_labeled_nums": list(np.arange(0,2)),
- "y_labeled_nums": list(np.arange(0 ,3)),
- "x_axis_width": 3.5,
- "y_axis_height": 6,
- "graph_origin": ORIGIN+2.5*LEFT+3*DOWN,
- }
-
- def construct(self):
- X = RIGHT*self.x_axis_width/(self.x_max- self.x_min)
- Y = UP*self.y_axis_height/(self.y_max- self.y_min)
-
- self.setup_axes(animate=False)
-
- line= self.get_graph(
- lambda x : 2-2*x ,
- x_min = 0,
- x_max = 1,
- color = RED)
- line_eqn=TextMobject("2x+y=2").move_to(self.graph_origin+.8*X+Y).rotate(np.arctan(-2))
- self.line=line
-
- caption=TextMobject(r"See the value of $y$ \\ is changing with $x$").move_to(self.graph_origin+1.2*X+1.8*Y)
- self.play(ShowCreation(line),Write(line_eqn))
- # self.show_area()
- self.show_rects()
- self.play(Write(caption))
- self.show_y_values_at_different_x()
-
- self.wait(.5)
-
- ###################
- def show_area(self):
- area = self.get_riemann_rectangles(
- self.line,
- x_min = 0,
- x_max = 1,
- dx =.0001,
- start_color = BLUE,
- end_color = BLUE,
- fill_opacity = 1,
- stroke_width = 0,
- )
- self.play(ShowCreation(area))
- # self.transform_between_riemann_rects(self.rects,area)
- self.area = area
-
- def show_rects(self):
- rects = self.get_riemann_rectangles(
- self.line,
- x_min = 0,
- x_max = 1,
- dx =.01,
- start_color = BLUE,
- end_color = BLUE,
- fill_opacity =1,
- stroke_width = 0,
- )
- # self.play(ShowCreation(rects))
- # self.transform_between_riemann_rects(self.area,rects)
- self.rects=rects
-
- def show_y_values_at_different_x(self):
- rects=self.rects
- rect = rects[len(rects)*1//10]
- dx_brace = Brace(rect, DOWN, buff = 0)
- dx_label = dx_brace.get_text("$dx$", buff = SMALL_BUFF)
- dx_brace_group = VGroup(dx_brace,dx_label)
- rp=int(len(rects)/10)
- rects_subset = self.rects[3*rp:5*rp]
-
- last_rect = None
- for rect in rects_subset:
- brace = Brace(rect, LEFT, buff = 0)
- y = TexMobject("y=2-2x")#.rotate(PI/2)
- y.next_to(brace, LEFT, SMALL_BUFF)
- anims = [
- rect.set_fill, BLUE_E, 1,
- dx_brace_group.next_to, rect, DOWN, SMALL_BUFF
- ]
- if last_rect is not None:
- anims += [
- last_rect.set_fill, None, 0,
- # last_rect.set_fill, BLUE, .75,
- ReplacementTransform(last_brace, brace),
- ReplacementTransform(last_y, y),
- ]
- else:
- anims += [
- GrowFromCenter(brace),
- Write(y)
- ]
- self.play(*anims)
- # self.wait(.2)
-
- last_rect = rect
- last_brace = brace
- last_y = y
-
- y = last_y
- y_brace = last_brace
-
-
-#uploaded by Somnath Pandit.FSF2020_Double_Integral
diff --git a/FSF-2020/intro-to-calculus/README.md b/FSF-2020/intro-to-calculus/README.md
deleted file mode 100644
index e69de29..0000000
diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear Transformations (Linear Maps)/Animation.py b/FSF-2020/linear-algebra/linear-transformations/Linear Transformations (Linear Maps)/Animation.py
new file mode 100644
index 0000000..e69de29
diff --git a/FSF-2020/linear-algebra/linear-transformations/README.md b/FSF-2020/linear-algebra/linear-transformations/README.md
new file mode 100644
index 0000000..692201e
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/README.md
@@ -0,0 +1,9 @@
+# Contributer: Archit Sangal
+My Github Account : architsangal
+
+## Sub-Topics Covered:
++ Vector Space Homomorphisms (Linear Maps)
++ The Four Fundamental Subspaces
++ Rank-Nullity Theorem
++ Orthonormal basis
++ Gramm-Schmidt Orthogonalization Process
diff --git a/FSF-2020/linear-algebra/vector-spaces/README.md b/FSF-2020/linear-algebra/vector-spaces/README.md
new file mode 100644
index 0000000..e69de29
diff --git a/FSF-2020/linear-transformations/Linear Transformations (Linear Maps)/Animation.py b/FSF-2020/linear-transformations/Linear Transformations (Linear Maps)/Animation.py
deleted file mode 100644
index e69de29..0000000
diff --git a/FSF-2020/linear-transformations/README.md b/FSF-2020/linear-transformations/README.md
deleted file mode 100644
index 692201e..0000000
--- a/FSF-2020/linear-transformations/README.md
+++ /dev/null
@@ -1,9 +0,0 @@
-# Contributer: Archit Sangal
-My Github Account : architsangal
-
-## Sub-Topics Covered:
-+ Vector Space Homomorphisms (Linear Maps)
-+ The Four Fundamental Subspaces
-+ Rank-Nullity Theorem
-+ Orthonormal basis
-+ Gramm-Schmidt Orthogonalization Process
diff --git a/FSF-2020/multivariable-functions-and-paritial-derivatives/README.md b/FSF-2020/multivariable-functions-and-paritial-derivatives/README.md
deleted file mode 100644
index e69de29..0000000
diff --git a/FSF-2020/series-and-transformations/Power Series/PowerSeriesQuestions.pdf b/FSF-2020/series-and-transformations/Power Series/PowerSeriesQuestions.pdf
deleted file mode 100644
index 04ed6d5..0000000
Binary files a/FSF-2020/series-and-transformations/Power Series/PowerSeriesQuestions.pdf and /dev/null differ
diff --git a/FSF-2020/series-and-transformations/Power Series/script1.py b/FSF-2020/series-and-transformations/Power Series/script1.py
deleted file mode 100644
index 28eb07c..0000000
--- a/FSF-2020/series-and-transformations/Power Series/script1.py
+++ /dev/null
@@ -1,128 +0,0 @@
-from manimlib.imports import *
-
-
-def formFormula(coeff_list,variable_list):
- coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
- variable_list=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
- coeff_list[0].shift(2.2*UP+1.6*LEFT)
- for i in range(0,3):
- coeff_list[i].set_color(GOLD_A)
- variable_list[i].next_to(coeff_list[i],buff=0.1)
- if i!=2:
- coeff_list[i+1].next_to(variable_list[i],buff=0.1)
- dots=TextMobject("...")
- dots.next_to(variable_list[2])
- expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots)
- expansion.scale(0.7)
- return expansion
-
-class pieChart(Scene):
- def construct(self):
- circle1=Circle(radius=3,color=BLUE)
- powerText=TextMobject("Power Series")
- powerText.scale(0.8)
- self.play(FadeIn(powerText))
- self.play(ShowCreation(circle1))
- self.wait(1)
-
- powerGroup=VGroup(circle1,powerText)
-
- self.play(ApplyMethod(powerGroup.scale,0.5))
- self.play(ApplyMethod(powerGroup.move_to,2.2*UP))
- self.wait(0.5)
- expansion_power_coeff=[]
- variables_power=[]
- expansion_power=formFormula(expansion_power_coeff,variables_power)
- self.play(ReplacementTransform(powerText,expansion_power))
- self.wait(1)
-
- circle2=Circle(radius=1.5)
- circle2.shift(2.2*UP)
- expansion_geo_coeff=[0]*3
- variables_geo=[0]*3
- arrow1_2=Line(start=0.7*UP,end=2.5*LEFT)
- expansion_geo_coeff=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
- for i in range(0,3):
- expansion_geo_coeff[i].set_color(GOLD_A)
- variables_geo=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
- expansion_geo_coeff[0].shift(2.2*UP+1.6*LEFT)
- for i in range(0,3):
- variables_geo[i].next_to(expansion_geo_coeff[i],buff=0.1)
- if i!=2:
- expansion_geo_coeff[i+1].next_to(variables_geo[i],buff=0.1)
- dots=TextMobject("...")
- dots.next_to(variables_geo[2])
- expansion_geo=VGroup(expansion_geo_coeff[0],expansion_geo_coeff[1],expansion_geo_coeff[2],variables_geo[0],variables_geo[1],variables_geo[2],dots)
- expansion_geo.scale(0.7)
-
- self.play(ApplyMethod(circle2.shift,4*LEFT+2.5*DOWN),ApplyMethod(expansion_geo.shift,4*LEFT+2.5*DOWN))
- self.add(arrow1_2)
- self.wait(1)
-
- ones=[TextMobject("1"),TextMobject("1"),TextMobject("1")]
- for i in range(0,3):
- ones[i].set_color(GOLD_A)
- ones[0].shift(0.3*DOWN,5*LEFT)
- ones[1].next_to(ones[0],buff=0.5)
- ones[2].next_to(ones[1],buff=0.7)
- self.play(ReplacementTransform(expansion_geo_coeff[0],ones[0]),ReplacementTransform(expansion_geo_coeff[1],ones[1]),ReplacementTransform(expansion_geo_coeff[2],ones[2]))
- self.wait(1)
- expansion_geo=VGroup(ones[0],ones[1],ones[2],variables_geo[0],variables_geo[1],variables_geo[2],dots)
-
- expansion_geo_final=TextMobject("$1+x+{ x }^{ 2 }..$")
- expansion_geo_final.scale(0.8)
- expansion_geo_final.shift(0.3*DOWN+4*LEFT)
- self.play(ReplacementTransform(expansion_geo,expansion_geo_final))
- self.wait(1)
-
- circle3=Circle(radius=1.5,color=GREEN)
- circle3.shift(2.2*UP)
- expansion_taylor_coeff=[0]*3
- variables_taylor=[0]*3
- arrow1_3=Line(start=0.7*UP,end=DOWN*0.3)
- expansion_taylor_coeff=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
- for i in range(0,3):
- expansion_taylor_coeff[i].set_color(GOLD_A)
- variables_taylor=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
- expansion_taylor_coeff[0].shift(2.2*UP+1.6*LEFT)
- for i in range(0,3):
- variables_taylor[i].next_to(expansion_taylor_coeff[i],buff=0.1)
- if i!=2:
- expansion_taylor_coeff[i+1].next_to(variables_taylor[i],buff=0.1)
- dots=TextMobject("...")
- dots.next_to(variables_taylor[2])
- expansion_taylor=VGroup(expansion_taylor_coeff[0],expansion_taylor_coeff[1],expansion_taylor_coeff[2],variables_taylor[0],variables_taylor[1],variables_taylor[2],dots)
- expansion_taylor.scale(0.7)
-
- self.play(ApplyMethod(circle3.shift,4*DOWN),ApplyMethod(expansion_taylor.shift,4*DOWN))
- self.add(arrow1_3)
- self.wait(1)
-
- differentials=[TextMobject("$f(0)$"),TextMobject("${ f'\left( 0 \\right) }$"),TextMobject("$\\frac { f''\left( 0 \\right) }{ 2! }$")]
- for i in range(0,3):
- differentials[i].set_color(GOLD_A)
- differentials[0].shift(1.8*DOWN+1.15*LEFT)
- differentials[1].shift(1.8*DOWN+0.45*LEFT)
- differentials[2].shift(1.8*DOWN+0.45*RIGHT)
- differentials[0].scale(0.35)
- differentials[1].scale(0.35)
- differentials[2].scale(0.35)
- self.play(ReplacementTransform(expansion_taylor_coeff[0],differentials[0]),ReplacementTransform(expansion_taylor_coeff[1],differentials[1]),ReplacementTransform(expansion_taylor_coeff[2],differentials[2]))
- self.wait(2)
- expansion_taylor_final=VGroup(differentials[0],differentials[1],differentials[2],variables_taylor[0],variables_taylor[1],variables_taylor[2],dots)
-
- self.play(FadeOut(expansion_geo_final),FadeOut(expansion_taylor_final))
- geoText=TextMobject("Geometric Series")
- geoText.scale(0.7)
- geoText.shift(4*LEFT+0.3*DOWN)
- taylorText=TextMobject("Taylor Series")
- taylorText.scale(0.7)
- taylorText.shift(1.8*DOWN)
- self.play(FadeIn(geoText),FadeIn(taylorText))
- self.wait(1)
-
- soOntext=TextMobject("So on..!")
- soOntext.shift(4*RIGHT)
- soOntext.scale(0.8)
- self.play(FadeIn(soOntext))
- self.wait(2)
diff --git a/FSF-2020/series-and-transformations/Power Series/script2.py b/FSF-2020/series-and-transformations/Power Series/script2.py
deleted file mode 100644
index 72356c6..0000000
--- a/FSF-2020/series-and-transformations/Power Series/script2.py
+++ /dev/null
@@ -1,94 +0,0 @@
-from manimlib.imports import *
-import numpy as np
-
-
-class convergence(Scene):
- def construct(self):
- originalFormula=TextMobject("$\sum _{ n=0 }^{ \infty }{ { a }_{ n }{ x }^{ n } }$")
- originalFormula.set_color(RED)
- self.play(Write(originalFormula))
- self.wait(1)
- self.play(ApplyMethod(originalFormula.shift,2.7*UP))
- self.wait(1)
-
- terms=["$a_{ 0 }$","$a_{ 1 }x$","$a_{ 2 }x^{ 2 }$","$a_{ 3 }x^{ 3 }$","$a_{ 4 }x^{ 4 }$","$a_{ 5 }x^{ 5 }$","$a_{ 6 }x^{ 6 }$","$a_{ 7 }x^{ 7 }$","$a_{ 8 }x^{ 8 }$","$a_{ 9 }x^{ 9 }$","$a_{ 10 }x^{ 10 }$","$a_{ 11 }x^{ 11 }$"]
- termsTogetherString="+".join(terms)
- termsTogether=TextMobject(termsTogetherString+"...")
- termsTogether.scale(0.8)
- termsTogether.shift(2.7*UP)
- self.play(ReplacementTransform(originalFormula,termsTogether))
- self.wait(1)
-
- termMobjectRect=[0]*12
- termMobject=TextMobject(terms[0])
- termMobject.shift(2.7*UP+6.2*LEFT)
- for i in range(1,13):
- termMobjectOld=termMobject
- termMobjectOld.scale(0.8)
- if(i<12):
- termMobject=TextMobject(terms[i])
- termMobject.next_to(termMobjectOld)
- if(i==1):
- rectDefine=TextMobject("Here","each rectangle","represents the","value of the term")
- rectDefine.set_color_by_tex_to_color_map({"each rectangle":BLUE,"value of the term":YELLOW})
- rectDefine.scale(0.7)
- rectDefine.shift(3.2*DOWN)
- self.play(Write(rectDefine))
- self.wait(1)
- if(i==2):
- ratio=TextMobject("If $\\frac { a_{ n+1 } }{ { a }_{ n } } < 1$")
- ratio.set_color(RED)
- ratio.scale(0.7)
- ratio.move_to(3.2*DOWN)
- inequality=TextMobject("$a_{ n+1 } < a_{ n }$")
- inequality.set_color(RED)
- inequality.scale(0.7)
- inequality.move_to(3.2*DOWN)
- self.play(FadeOut(rectDefine))
- self.play(Write(ratio))
- self.wait(1)
- self.play(ReplacementTransform(ratio,inequality))
- self.wait(1)
- #self.play(ApplyMethod(termMobjectOld.move_to,(2-0.3*i)*DOWN+RIGHT*0.2*i))
- termMobjectRect[i-1]=Rectangle(height=0.1,width=(5-0.4*i))
- termMobjectRect[i-1].move_to((2-0.2*i)*DOWN+RIGHT*0.2*i)
- #rectangles[p] = termMobjectRect
- #p+=1
- self.play(ReplacementTransform(termMobjectOld,termMobjectRect[i-1]))
-
- uparrow=TextMobject("$\\uparrow$")
- uparrow.set_color(GREEN)
- uparrow.scale(6)
- uparrow.shift(4*RIGHT+0.5*DOWN)
- self.play(ShowCreation(uparrow))
- self.wait(1)
-
- converges=TextMobject("Converges!")
- converges.set_color(RED)
- converges.scale(0.6)
- converges.next_to(uparrow)
- self.play(FadeIn(converges))
- self.wait(2)
-
- self.play(FadeOut(converges),FadeOut(uparrow),FadeOut(inequality))
- self.wait(0.5)
- rect=VGroup(termMobjectRect[0],termMobjectRect[1],termMobjectRect[2],termMobjectRect[3],termMobjectRect[4],termMobjectRect[5],termMobjectRect[6],termMobjectRect[7],termMobjectRect[8],termMobjectRect[9],termMobjectRect[10],termMobjectRect[11])
- self.play(ApplyMethod(rect.scale,0.2))
- for i in range(0,12):
- self.play(ApplyMethod(termMobjectRect[i].shift,i*0.04*DOWN+(11-(3-0.11*i)*i)*LEFT*0.3))
- func=TextMobject("$\\approx$","$f(x)$")
- func.set_color_by_tex_to_color_map({"$f(x)$":RED})
- func.scale(0.8)
- func.shift(DOWN+4.5*RIGHT+0.1*UP)
- self.play(FadeIn(func))
-
- rightarrow=TextMobject("$\\rightarrow$")
- rightarrow.set_color(GREEN)
- rightarrow.scale(4)
- rightarrow.shift(2*DOWN)
- converges=TextMobject("Hence even the","sum converges!")
- converges.set_color_by_tex_to_color_map({"sum converges!":RED})
- converges.move_to(3*DOWN)
- converges.scale(0.7)
- self.play(Write(rightarrow),FadeIn(converges))
- self.wait(2)
diff --git a/FSF-2020/series-and-transformations/Power Series/script3.py b/FSF-2020/series-and-transformations/Power Series/script3.py
deleted file mode 100644
index f710f42..0000000
--- a/FSF-2020/series-and-transformations/Power Series/script3.py
+++ /dev/null
@@ -1,156 +0,0 @@
-from manimlib.imports import*
-import math
-
-class intro(Scene):
- def construct(self):
- introText1=TextMobject("Let's analyse")
- introText2=TextMobject("for")
- function_main=TextMobject("$\sum { { (-1) }^{ n }{ x }^{ 2n } }$")
- function_main.set_color(GREEN)
- introText1.scale(1.2)
- introText1.shift(2*UP)
- introText2.scale(0.7)
- introText2.shift(UP)
- function_main.scale(2)
- function_main.shift(DOWN)
- function_expan=TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }+..$")
- function_expan.set_color(RED)
- function_expan.scale(1.2)
- function_expan.shift(2*UP)
-
- self.play(Write(introText1))
- self.play(FadeIn(introText2))
- self.wait(0.5)
- self.play(Write(function_main))
- self.wait(1)
-
- self.play(FadeOut(introText1),FadeOut(introText2))
- self.play(ApplyMethod(function_main.shift,3*UP))
- self.wait(0.5)
- self.play(ReplacementTransform(function_main,function_expan))
- self.wait(1)
- self.play(ApplyMethod(function_expan.scale,0.5))
- function_expan.to_edge(UP+RIGHT)
- self.play(ReplacementTransform(function_expan,function_expan))
- self.wait(1)
-
-
-class graphScene(GraphScene):
- CONFIG = {
- "x_min": -8,
- "x_max": 8,
- "y_min": -8,
- "y_max": 8,
- "graph_origin": ORIGIN,
- "function_color": RED,
- "axes_color": GREEN,
- "x_axis_label": "$x$",
- "y_axis_label": "$y$",
- "exclude_zero_label": True,
- "x_labeled_nums": range(-1, 2, 1),
- "y_labeled_nums": range(0,2,1)
- }
-
- def construct(self):
-
- x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
- y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
-
- function_expan=TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }+..$")
- function_expan.set_color(RED)
- function_expan.scale(0.6)
- function_expan.to_edge(UP+RIGHT)
- self.add(function_expan)
-
- self.setup_axes(animate=True)
-
- eqText=[TextMobject("$1$"),TextMobject("$1-{ x }^{ 2 }$"),TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }$"),TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }$")]
- for i in range(0,len(eqText)):
- eqText[i].scale(0.6)
- eqText[i].set_color(BLUE)
- eqText[i].shift(ORIGIN+UP*2*y_each_unit+RIGHT*3.3*x_each_unit)
- eqTextTerm=TextMobject("And so on..!")
- eqTextTerm.set_color(BLUE)
- eqTextTerm.scale(0.6)
- eqTextTerm.shift(ORIGIN+UP*2*y_each_unit+3*RIGHT*x_each_unit)
- equation1 = self.get_graph(lambda x : 1,color = RED,x_min = -8,x_max=8)
- equation2 = self.get_graph(lambda x : 1-math.pow(x,2),color = RED,x_min = -1.7,x_max=1.7)
- equation3 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4),color = RED,x_min = -1.6,x_max=1.6)
- equation4 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6),color = RED,x_min = -1.45,x_max=1.45)
- equation5 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8),color = RED,x_min = -1.35,x_max=1.35)
- equation6 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10),color = RED,x_min = -1.3,x_max=1.3)
- equation7 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12),color = RED,x_min = -1.25,x_max=1.25)
- equation8 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14),color = RED,x_min = -1.2,x_max=1.2)
- equation9 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16),color = RED,x_min = -1.15,x_max=1.15)
- equation10 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16)-math.pow(x,18),color = RED,x_min = -1.15,x_max=1.15)
-
- textBtwAnim1=TextMobject("Here the graph just","oscilates")
- textBtwAnim1.set_color_by_tex_to_color_map({"oscilates":BLUE})
- textBtwAnim2=TextMobject("after","the","point","(as we add higher order terms)")
- textBtwAnim2.set_color_by_tex_to_color_map({"after":BLUE,"point":YELLOW})
- textBtwAnim3=TextMobject("$x=1$")
- textBtwAnim1.scale(0.4)
- textBtwAnim2.scale(0.4)
- textBtwAnim3.scale(1.2)
- textBtwAnim1.shift(2.1*DOWN+4.3*RIGHT)
- textBtwAnim2.shift(2.4*DOWN+4.1*RIGHT)
- textBtwAnim3.shift(2.9*DOWN+4.3*RIGHT)
-
- self.play(ShowCreation(equation1),run_time=0.8)
- self.add(eqText[0])
- self.wait(1)
- self.play(ReplacementTransform(equation1,equation2),ReplacementTransform(eqText[0],eqText[1]))
- self.wait(0.5)
- self.play(ReplacementTransform(equation2,equation3),ReplacementTransform(eqText[1],eqText[2]))
- self.wait(0.4)
- self.play(ReplacementTransform(equation3,equation4),ReplacementTransform(eqText[2],eqText[3]))
- self.wait(0.3)
- self.play(FadeOut(eqText[3]))
- self.play(FadeIn(eqTextTerm))
- self.play(Write(textBtwAnim1),Write(textBtwAnim2))
- self.play(FadeIn(textBtwAnim3))
- self.play(ReplacementTransform(equation4,equation5))
- self.wait(0.2)
- self.play(ReplacementTransform(equation5,equation6))
- self.wait(0.2)
- self.play(ReplacementTransform(equation6,equation7))
- self.wait(0.2)
- self.play(ReplacementTransform(equation7,equation8))
- self.wait(0.2)
- self.play(ReplacementTransform(equation8,equation9))
- self.wait(0.2)
- self.play(ReplacementTransform(equation9,equation10))
- self.wait(1)
-
- self.play(FadeOut(textBtwAnim1),FadeOut(textBtwAnim2),FadeOut(textBtwAnim3),FadeOut(equation10),FadeOut(eqTextTerm))
- self.wait(1)
-
- convergeLine=Line(start=ORIGIN+x_each_unit*LEFT,end=ORIGIN+x_each_unit*RIGHT,color=WHITE)
- divergeLineLeft=Line(start=ORIGIN+x_each_unit*LEFT,end=ORIGIN+x_each_unit*LEFT*8,color=RED)
- divergeLineRight=Line(start=ORIGIN+x_each_unit*RIGHT,end=ORIGIN+x_each_unit*8*RIGHT,color=RED)
- circle1=Circle(radius=0.01,color=PURPLE_E)
- circle2=Circle(radius=0.01,color=PURPLE_E)
- circle1.shift(ORIGIN+LEFT*x_each_unit)
- circle2.shift(ORIGIN+RIGHT*x_each_unit)
- convergeText=TextMobject("Converges")
- divergeText1=TextMobject("Diverges")
- divergeText2=TextMobject("Diverges")
- convergeText.set_color(GREEN)
- divergeText1.set_color(RED)
- divergeText2.set_color(RED)
- convergeText.scale(0.5)
- divergeText1.scale(0.5)
- divergeText2.scale(0.5)
- convergeText.shift(1.6*UP)
- divergeText1.shift(0.3*UP+1.5*LEFT)
- divergeText2.shift(0.3*UP+1.5*RIGHT)
- self.play(Write(divergeLineLeft),Write(divergeLineRight))
- self.play(FadeIn(convergeLine))
- self.wait(0.5)
- self.play(FadeOut(self.axes))
- self.play(Write(circle1),Write(circle2))
- self.wait(0.5)
- self.play(ApplyMethod(convergeLine.shift,1.3*UP),ApplyMethod(function_expan.shift,5*LEFT+DOWN))
- self.play(FadeIn(convergeText),FadeIn(divergeText1),FadeIn(divergeText2))
- self.wait(2)
-
diff --git a/FSF-2020/series-and-transformations/Power Series/script4.py b/FSF-2020/series-and-transformations/Power Series/script4.py
deleted file mode 100644
index 412d20c..0000000
--- a/FSF-2020/series-and-transformations/Power Series/script4.py
+++ /dev/null
@@ -1,108 +0,0 @@
-from manimlib.imports import *
-import math
-
-class intro(Scene):
- def construct(self):
- introText1=TextMobject("Consider the","above","example..")
- introText1.scale(0.8)
- introText1.set_color_by_tex_to_color_map({"above":YELLOW})
- self.play(Write(introText1))
- self.wait(1)
-
-class graphScene(GraphScene,MovingCameraScene):
- CONFIG = {
- "x_min": -5,
- "x_max": 5,
- "y_min": -5,
- "y_max": 5,
- "graph_origin": ORIGIN,
- "function_color": RED,
- "axes_color": GREEN,
- "x_axis_label": "$x$",
- "y_axis_label": "$y$",
- "exclude_zero_label": True,
- "x_labeled_nums": range(-1, 2, 1),
- "y_labeled_nums": range(0,2,1),
- "y_axis_height":7,
- "x_axis_width":7
- }
-
- def setup(self):
- GraphScene.setup(self)
- MovingCameraScene.setup(self)
-
- def construct(self):
- x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
- y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
-
- function_expan=TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }+..$")
- function_expan.scale(0.6)
- function_expan.set_color(RED)
- function_expan.to_edge(UP+RIGHT)
- self.add(function_expan)
-
- self.setup_axes()
-
- equation = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16)-math.pow(x,18),color = RED,x_min = -1.1,x_max=1.1)
- self.play(ShowCreation(equation))
- self.wait(1)
-
- dashLineLeft=DashedLine(start=ORIGIN+y_each_unit*5*UP,end=ORIGIN+y_each_unit*5*DOWN)
- dashLineRight=DashedLine(start=ORIGIN+y_each_unit*5*UP,end=ORIGIN+y_each_unit*5*DOWN)
- dashLineLeft.shift(ORIGIN+LEFT*x_each_unit)
- dashLineRight.shift(ORIGIN+RIGHT*x_each_unit)
- radiusLine=Line(start=ORIGIN,end=ORIGIN+RIGHT*x_each_unit)
- rangeLine=Line(start=ORIGIN+LEFT*x_each_unit,end=ORIGIN+RIGHT*x_each_unit)
- circle=Circle(radius=x_each_unit)
- movingPoint=Circle(radius=0.025)
- movingPoint.shift(ORIGIN+RIGHT*x_each_unit)
- circleEq1=self.get_graph(lambda x:math.sqrt(1-x**2),color=BLUE,x_max=-1,x_min=1)
- circleEq2=self.get_graph(lambda x:-math.sqrt(1-x**2),color=BLUE,x_max=1,x_min=-1)
-
- self.play(Write(dashLineLeft),Write(dashLineRight))
- self.wait(1)
-
- equation_updated=self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16)-math.pow(x,18),color = GREEN,x_min = -1,x_max=1)
- self.play(FadeOut(self.axes),ReplacementTransform(equation,equation_updated))
- self.wait(0.5)
- self.play(Write(radiusLine))
- self.play(MoveAlongPath(movingPoint,circleEq1))
- self.play(MoveAlongPath(movingPoint,circleEq2))
- self.play(FadeIn(circle))
- self.wait(1)
-
- radiusText=TextMobject("Radius of convergence")
- radiusText.scale(0.14)
- radiusText.shift(ORIGIN+RIGHT*x_each_unit*0.45+DOWN*y_each_unit*0.2)
-
- self.play(Write(radiusText))
- self.wait(0.6)
-
- self.camera_frame.save_state()
- self.camera_frame.set_width(5.5)
- self.play(self.camera_frame.move_to, ORIGIN)
- self.wait(1)
- self.camera_frame.set_width(14)
- self.wait(1.3)
-
- self.play(FadeOut(radiusText),FadeOut(circle),FadeOut(movingPoint))
- extendLine=Line(start=ORIGIN,end=ORIGIN+x_each_unit*LEFT)
- self.play(Write(extendLine))
- doubleArrow=TextMobject("$\longleftrightarrow$")
- doubleArrow.scale(1.6)
- doubleArrow.set_color(BLUE)
- doubleArrow.shift(ORIGIN+DOWN*y_each_unit*0.5)
- self.play(FadeIn(doubleArrow))
- self.wait(1)
- rangeText=TextMobject("Interval of convergence")
- rangeText.scale(0.15)
- rangeText.shift(ORIGIN+y_each_unit*DOWN)
- self.play(Write(rangeText))
- self.wait(0.6)
-
- self.camera_frame.save_state()
- self.camera_frame.set_width(5.5)
- self.play(self.camera_frame.move_to, ORIGIN)
- self.wait(1)
- self.camera_frame.set_width(14)
- self.wait(1.5)
diff --git a/FSF-2020/series-and-transformations/Power Series/script5.py b/FSF-2020/series-and-transformations/Power Series/script5.py
deleted file mode 100644
index e9681aa..0000000
--- a/FSF-2020/series-and-transformations/Power Series/script5.py
+++ /dev/null
@@ -1,136 +0,0 @@
-from manimlib.imports import *
-import math
-
-class uniformlyConvergent(Scene):
- def construct(self):
- introText1=TextMobject("Again consider the","above","example")
- introText2=TextMobject("Let","$g(x)=\\frac { 1 }{ 1+{ x }^{ 2 } }$","and","x=0.5 $\in$(-1,1)")
- introText3=TextMobject("Lets analyse..","!")
- introText1.scale(0.8)
- introText2.scale(0.7)
- introText3.scale(0.9)
- introText3.shift(DOWN)
- introText1.set_color_by_tex_to_color_map({"above":YELLOW})
- introText2.set_color_by_tex_to_color_map({"$g(x)=\\frac { 1 }{ 1+{ x }^{ 2 } }$":BLUE,"x=0.5 $\in$(-1,1)":YELLOW})
- introText3.set_color_by_tex_to_color_map({"!":GREEN})
- self.play(Write(introText1))
- self.wait(0.5)
- self.play(FadeOut(introText1))
- self.play(Write(introText2))
- self.play(FadeIn(introText3))
- self.wait(2)
-
-
-def gety(x,n):
- ans=0
- for i in range(0,n+1):
- if(i%2==0):
- ans+=(math.pow(x,2*i))
- else:
- ans-=(math.pow(x,2*i))
- return ans
-
-def makeSeries(x,points,x_each_unit,y_each_unit):
- p=0
- for point in points:
- y=gety(x,p)
- point.shift(ORIGIN+RIGHT*x_each_unit*p+UP*y_each_unit*y)
- p+=1
-
-def makeLines(x,numPoints,x_each_unit,y_each_unit):
- lines=[0]*numPoints
- for i in range(0,numPoints-1):
- y=gety(x,i)
- y_next=gety(x,i+1)
- lines[i]=Line(start=ORIGIN+RIGHT*x_each_unit*i+UP*y_each_unit*y,end=ORIGIN+RIGHT*x_each_unit*(i+1)+UP*y_each_unit*y_next,color=RED)
- return lines
-
-class graphScene(GraphScene,MovingCameraScene):
- CONFIG = {
- "x_min": -6,
- "x_max": 6,
- "y_min": -5,
- "y_max": 5,
- "graph_origin": ORIGIN,
- "function_color": RED,
- "axes_color": GREEN,
- "x_axis_label": "$k$",
- "y_axis_label": "$f(\\frac{1}{2})_k$",
- "exclude_zero_label": True,
- "x_axis_width":7,
- "y_axis_height":7
- }
-
- def setup(self):
- GraphScene.setup(self)
- MovingCameraScene.setup(self)
-
-
- def construct(self):
- x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
- y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
- sequence=TextMobject("$1$ , $1-(0.5)^2$ , $1-(0.5)^2+(0.5)^4..$")
- sequence.set_color(RED)
- sequence.scale(0.35)
- sequence.to_edge(UP+RIGHT)
- formula=TextMobject("$f(x)_{ k }=\sum _{ i=0 }^{ k }{ (-1)^{ i }(x)^{ 2i } } $")
- formula.set_color(PURPLE_C)
- formula.scale(0.4)
- formula.shift(5.3*RIGHT+3*UP)
- fLine=Line(start=ORIGIN+x_each_unit*6*LEFT,end=ORIGIN+x_each_unit*6*RIGHT)
- fLine.shift(ORIGIN+(4/5)*y_each_unit*UP)
- fLineText=TextMobject("$g(0.5)=\\frac { 4 }{ 5 } $")
- fLineText.set_color(RED)
- fLineText.scale(0.3)
- fLineText.shift(UP*1.2*y_each_unit+RIGHT*x_each_unit+4*LEFT)
- points=[Dot(radius=0.03,color=BLUE) for i in range(0,6)]
- makeSeries(0.5,points,x_each_unit,y_each_unit)
- lines=makeLines(0.5,6,x_each_unit,y_each_unit)
-
-
- self.add(sequence)
- self.add(formula)
- self.setup_axes(animate=True)
- self.play(Write(fLine))
- self.add(fLineText)
- for p in points:
- self.add(p)
- for p in range(0,5):
- self.play(Write(lines[p]))
- self.wait(0.5)
- self.camera_frame.save_state()
- self.camera_frame.set_width(0.6)
- self.play(self.camera_frame.move_to, points[0])
- self.wait(0.4)
- self.play(self.camera_frame.move_to, points[1])
- self.wait(0.4)
- self.play(self.camera_frame.move_to, points[2])
- self.wait(0.3)
- self.play(self.camera_frame.move_to, points[3])
- self.wait(1)
- self.play(self.camera_frame.move_to,ORIGIN)
- self.camera_frame.set_width(14)
- self.wait(1)
-
- explanation1=TextMobject("Since the series","converges","to")
- explanation1.set_color_by_tex_to_color_map({"converges":YELLOW})
- explanation2=TextMobject("$\\frac {4}{5}$")
- explanation2.set_color(BLUE)
- explanation3=TextMobject("Hence","$\\forall \epsilon>0$,","$\exists k$","such that,")
- explanation3.set_color_by_tex_to_color_map({"$\\forall \epsilon>0$":BLUE,"$\exists k$":YELLOW})
- explanation4=TextMobject("$\left| { f\left( \\frac { 1 }{ 2 } \\right) }_{ k }-\\frac { 4 }{ 5 } \\right| <$","$\epsilon$")
- explanation4.set_color_by_tex_to_color_map({"$\epsilon$":RED})
- explanation1.scale(0.5)
- explanation3.scale(0.5)
- explanation1.shift(1.8*DOWN+3.5*RIGHT)
- explanation2.shift(2.4*DOWN+3.5*RIGHT)
- explanation3.shift(1.8*DOWN+3.5*RIGHT)
- explanation4.shift(2.4*DOWN+3.5*RIGHT)
-
- self.play(Write(explanation1))
- self.play(FadeIn(explanation2))
- self.wait(1)
- self.play(FadeOut(explanation1),FadeOut(explanation2))
- self.play(Write(explanation3))
- self.play(Write(explanation4))
- self.wait(2)
diff --git a/FSF-2020/series-and-transformations/README.md b/FSF-2020/series-and-transformations/README.md
deleted file mode 100644
index 4747205..0000000
--- a/FSF-2020/series-and-transformations/README.md
+++ /dev/null
@@ -1,13 +0,0 @@
-Contributer: G Sri Harsha
-
-GitHub Handle: GSri30
-
-Sub-Topics Covered:
-
- - Power Series
-
- Taylor Series
-
- Laplace Transformation
-
- Fourier Transformation
-
- z-Transform
-
- Constant-Q transform
-
diff --git a/FSF-2020/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf b/FSF-2020/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf
deleted file mode 100644
index 2096f52..0000000
Binary files a/FSF-2020/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf and /dev/null differ
diff --git a/FSF-2020/series-and-transformations/Taylor Series/script1.py b/FSF-2020/series-and-transformations/Taylor Series/script1.py
deleted file mode 100644
index e83eff8..0000000
--- a/FSF-2020/series-and-transformations/Taylor Series/script1.py
+++ /dev/null
@@ -1,198 +0,0 @@
-from manimlib.imports import*
-import math
-
-def formFormula(coeff_list,variable_list):
- coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
- variable_list=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
- coeff_list[0].shift(2.2*UP+1.6*LEFT)
- for i in range(0,3):
- coeff_list[i].set_color(GOLD_A)
- variable_list[i].next_to(coeff_list[i],buff=0.1)
- if i!=2:
- coeff_list[i+1].next_to(variable_list[i],buff=0.1)
- dots=TextMobject("...")
- dots.next_to(variable_list[2])
- expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots)
- #expansion.scale(0.7)
- return expansion,coeff_list
-
-class intro(Scene):
- def construct(self):
- equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$")
- equation.scale(2)
- equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED})
- text=TextMobject("let $a=0$")
- text.scale(0.7)
- text.shift(DOWN)
-
- self.play(Write(equation))
- self.wait(0.5)
- self.play(FadeIn(text))
- self.wait(0.7)
- self.play(FadeOut(equation),FadeOut(text))
-
-class graphScene(GraphScene):
- CONFIG = {
- "x_min": -8,
- "x_max": 8,
- "y_min": -8,
- "y_max": 8,
- "graph_origin": ORIGIN,
- "function_color": RED,
- "axes_color": GREEN,
- "x_axis_label": "$x$",
- "y_axis_label": "$y$",
- "exclude_zero_label": True,
- "x_labeled_nums": range(-8, 8, 1),
- }
- def construct(self):
- x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
- y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
-
- generalized_eq_coeff=[]
- variables_eq=[]
- eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq)
- trText1=TextMobject("let $T_{ n }(x)$:=")
- eq.next_to(trText1)
- trTextGrup=VGroup(trText1,eq)
- trTextGrup.scale(0.5)
- trTextGrup.to_corner(UP+RIGHT)
- self.play(Write(trTextGrup))
- self.setup_axes(animate=True)
-
- fx=TextMobject("${ e }^{ -x^{ 2 } }$")
- fx.scale(0.5)
- fx.shift(ORIGIN+x_each_unit*7.5*RIGHT+y_each_unit*0.5*UP)
- mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8)
- self.play(ShowCreation(mainfunction))
- self.play(FadeIn(fx))
- self.wait(1.4)
-
- coeff=[TextMobject("$1$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")]
- coeff[0].shift(3.39*UP+4.88*RIGHT)
- coeff[0].scale(0.5)
- coeff[1].shift(3.39*UP+5.3*RIGHT)
- coeff[1].scale(0.275)
- coeff[2].shift(3.39*UP+5.98*RIGHT)
- coeff[2].scale(0.28)
-
- for obj in coeff:
- obj.set_color(GOLD_A)
-
- firstApprox=[self.get_graph(lambda x:1,color=BLUE)]
- secondApprox=[self.get_graph(lambda x:1,color=BLUE),
- self.get_graph(lambda x:x+1,color=BLUE),
- self.get_graph(lambda x:-x+1,color=BLUE)]
- thirdApprox=[self.get_graph(lambda x:1-2*math.pow(x,2),color=BLUE),
- self.get_graph(lambda x:1-0.1*math.pow(x,2),color=BLUE),
- self.get_graph(lambda x:1,color=BLUE),
- self.get_graph(lambda x:1+0.1*math.pow(x,2),color=BLUE),
- self.get_graph(lambda x:1+math.pow(x,2),color=BLUE)]
-
- firstGraph=self.get_graph(lambda x:1,color=BLUE)
- secondGraph=self.get_graph(lambda x:1-math.pow(x,2),color=BLUE)
-
- bottomText1=TextMobject("The polynomial should","satisfy","the function at $x=0$")
- bottomText2=TextMobject("This gives","$a_{ 0 }=1$")
- bottomText3=TextMobject("Now it could be of","any slope!")
- #show graphs of second approx
- bottomText4=TextMobject("Hence the","slopes","should","even match")
- #final graph
- bottomText5=TextMobject("This gives","$a_{ 1 }=0$")
- bottomText6=TextMobject("Since the rate of change of this slope","could vary")
- #show third approx graphs
- bottomText7=TextMobject("Hence the","rate of change of these slopes","should also be","same!")
- #final graph
- bottomText8=TextMobject("This gives","$a_{ 2 }=-1$")
-
- bottomText1.set_color_by_tex_to_color_map({"satisfy":YELLOW})
- bottomText2.set_color_by_tex_to_color_map({"$a_{ 0 }=1$":BLUE})
- bottomText3.set_color_by_tex_to_color_map({"any slope!":YELLOW})
- bottomText4.set_color_by_tex_to_color_map({"slopes":BLUE,"even match":YELLOW})
- bottomText5.set_color_by_tex_to_color_map({"$a_{ 1 }=0$":BLUE})
- bottomText6.set_color_by_tex_to_color_map({"could vary":YELLOW})
- bottomText7.set_color_by_tex_to_color_map({"rate of change of these slopes":BLUE,"same!":YELLOW})
- bottomText8.set_color_by_tex_to_color_map({"$a_{ 2 }=-1$":BLUE})
-
- bottomText1.scale(0.4)
- bottomText2.scale(0.5)
- bottomText3.scale(0.4)
- bottomText4.scale(0.4)
- bottomText5.scale(0.5)
- bottomText6.scale(0.4)
- bottomText7.scale(0.4)
- bottomText8.scale(0.5)
-
- bottomText1.shift(4.5*RIGHT+2.5*DOWN)
- bottomText2.shift(4.5*RIGHT+2.5*DOWN)
- bottomText3.shift(4.5*RIGHT+2.5*DOWN)
- bottomText4.shift(4.5*RIGHT+2.5*DOWN)
- bottomText5.shift(4.5*RIGHT+2.5*DOWN)
- bottomText6.shift(4.5*RIGHT+2.5*DOWN)
- bottomText7.shift(4.5*RIGHT+2.5*DOWN)
- bottomText8.shift(4.5*RIGHT+2.5*DOWN)
-
- self.play(Write(bottomText1))
- self.wait(1)
- self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2))
- #change coeff in tn(x)
- self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0]))
- self.wait(1.5)
- self.play(ReplacementTransform(bottomText2,bottomText3))
- self.wait(0.5)
- self.play(ReplacementTransform(firstApprox[0],secondApprox[1]))
- self.wait(0.5)
- self.play(ReplacementTransform(secondApprox[1],secondApprox[0]))
- self.wait(0.5)
- self.play(ReplacementTransform(secondApprox[0],secondApprox[2]))
- self.wait(1)
- self.play(ReplacementTransform(bottomText3,bottomText4),FadeOut(secondApprox[2]))
- self.wait(1)
- self.play(Write(firstGraph),ReplacementTransform(bottomText4,bottomText5))
- #change a1 coeff
- self.play(ReplacementTransform(generalized_eq_coeff[1],coeff[1]))
- self.wait(1.5)
- self.play(ReplacementTransform(bottomText5,bottomText6))
- self.play(ReplacementTransform(firstGraph,thirdApprox[0]))
- self.wait(0.6)
- self.play(ReplacementTransform(thirdApprox[0],thirdApprox[1]))
- self.wait(0.6)
- self.play(ReplacementTransform(thirdApprox[1],thirdApprox[2]))
- self.wait(0.6)
- self.play(ReplacementTransform(thirdApprox[2],thirdApprox[3]))
- self.wait(0.6)
- self.play(ReplacementTransform(thirdApprox[3],thirdApprox[4]))
- self.wait(1.5)
- self.play(ReplacementTransform(bottomText6,bottomText7))
- self.wait(1.5)
- self.play(ReplacementTransform(bottomText7,bottomText8),ReplacementTransform(thirdApprox[4],secondGraph))
- self.play(ReplacementTransform(generalized_eq_coeff[2],coeff[2]))
- self.wait(2)
-
- textFinal=TextMobject("And so on..!")
- textFinal.scale(0.7)
- textFinal.shift(4.5*RIGHT+2.5*DOWN)
- self.play(ReplacementTransform(bottomText8,textFinal))
- self.wait(2.5)
-
- finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$")
- finalFormula.scale(0.8)
- finalFormula.set_color_by_tex_to_color_map({"$T_{ n }(x)$":GREEN,"$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$":RED})
-
- self.play(FadeOut(self.axes),FadeOut(textFinal),FadeOut(secondGraph),FadeOut(trTextGrup),FadeOut(mainfunction),FadeOut(fx),FadeOut(coeff[0]),FadeOut(coeff[1]),FadeOut(coeff[2]))
- self.play(Write(finalFormula))
- self.wait(2)
- # self.play(ReplacementTransform(secondApprox[2],secondApprox[3]))
- # self.wait(0.5)
- # self.play(ReplacementTransform(secondApprox[3],secondApprox[4]))
- # self.wait(0.5)
- # self.play(ReplacementTransform(secondApprox[4],secondApprox[5]))
- # self.wait(0.5)
- # self.play(ReplacementTransform(secondApprox[0],secondApprox[0]))
- # self.wait(0.5)
- # self.play(ReplacementTransform(secondApprox[0],secondApprox[0]))
- # self.wait(0.5)
-
-
-
-
diff --git a/FSF-2020/series-and-transformations/Taylor Series/script2.py b/FSF-2020/series-and-transformations/Taylor Series/script2.py
deleted file mode 100644
index b5d0a53..0000000
--- a/FSF-2020/series-and-transformations/Taylor Series/script2.py
+++ /dev/null
@@ -1,195 +0,0 @@
-from manimlib.imports import*
-import math
-
-
-class intro(Scene):
- def construct(self):
- equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$")
- equation.scale(2)
- equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED})
- text=TextMobject("at $a=1$")
- text.scale(0.7)
- text.shift(DOWN)
-
- shiftText=TextMobject("(Here we shift the origin to the point $x=1$)")
- shiftText.scale(0.6)
- shiftText.shift(2.4*DOWN)
-
-
- self.play(Write(equation))
- self.wait(0.5)
- self.play(FadeIn(text))
- self.wait(0.7)
- self.play(Write(shiftText))
- self.wait(0.7)
- self.play(FadeOut(equation),FadeOut(text),FadeOut(shiftText))
-
-
-def formFormula(coeff_list,variable_list):
- coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
- variable_list=[TextMobject("+"),TextMobject("${ (x-1) }$+"),TextMobject("${ (x-1) }^{ 2 }$")]
- coeff_list[0].shift(2.2*UP+1.6*LEFT)
- for i in range(0,3):
- coeff_list[i].set_color(GOLD_A)
- variable_list[i].next_to(coeff_list[i],buff=0.1)
- if i!=2:
- coeff_list[i+1].next_to(variable_list[i],buff=0.1)
- dots=TextMobject("...")
- dots.next_to(variable_list[2])
- expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots)
- #expansion.scale(0.7)
- return expansion,coeff_list
-
-
-class graphScene(GraphScene):
- CONFIG = {
- "x_min": -8,
- "x_max": 8,
- "y_min": -8,
- "y_max": 8,
- "graph_origin": ORIGIN,
- "function_color": RED,
- "axes_color": GREEN,
- "x_axis_label": "$x$",
- "y_axis_label": "$y$",
- "exclude_zero_label": True,
- "x_labeled_nums": range(-8, 8, 1),
- }
- def construct(self):
- x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
- y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
-
- generalized_eq_coeff=[]
- variables_eq=[]
- eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq)
- trText1=TextMobject("let $T_{ n }(x)$:=")
- eq.next_to(trText1)
- trTextGrup=VGroup(trText1,eq)
- trTextGrup.scale(0.5)
- trTextGrup.to_corner(UP+RIGHT)
- self.play(Write(trTextGrup))
- self.setup_axes(animate=True)
-
- fx=TextMobject("${ e }^{ -x^{ 2 } }$")
- fx.scale(0.5)
- fx.shift(ORIGIN+x_each_unit*7.5*RIGHT+y_each_unit*0.5*UP)
- mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8)
- self.play(ShowCreation(mainfunction))
- self.play(FadeIn(fx))
- self.wait(1.4)
-
- coeff=[TextMobject("$e^{-1}$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")]
- coeff[0].shift(3.33*UP+3.65*RIGHT)
- coeff[0].scale(0.45)
- coeff[1].shift(3.33*UP+4.13*RIGHT)
- coeff[1].scale(0.275)
- coeff[2].shift(3.33*UP+5.36*RIGHT)
- coeff[2].scale(0.28)
-
- for obj in coeff:
- obj.set_color(GOLD_A)
-
- firstApprox=[self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)]
- secondApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5),
- self.get_graph(lambda x:math.exp(-1)+3*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5),
- self.get_graph(lambda x:math.exp(-1)-4*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)]
- thirdApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
- self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-0.1*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
- self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_max=5.5,x_min=-5.5),
- self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+0.5*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
- self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5)]
-
- firstGraph=self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)
- secondGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)
- thirdGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5)
-
- bottomText1=TextMobject("Apply","$f(1)=T_{n}(1)$")
- bottomText2=TextMobject("This gives","$a_{ 0 }=e^{-1}$")
- bottomText3=TextMobject("Now it could be of","any slope!")
- #show graphs of second approx
- bottomText4=TextMobject("Hence","apply","$f'(1)=T_{n}'(1)$")
- #final graph
- bottomText5=TextMobject("This gives","$a_{ 1 }=-2e^{-1}$")
- bottomText6=TextMobject("Since the rate of change of this slope","could vary")
- #show third approx graphs
- bottomText7=TextMobject("Hence also","apply","$f''(1)=T_{ n }''(1)$")
- #final graph
- bottomText8=TextMobject("This gives","$a_{ 2 }=e^{-1}$")
-
- bottomText1.set_color_by_tex_to_color_map({"Apply":YELLOW})
- bottomText2.set_color_by_tex_to_color_map({"$a_{ 0 }=e^{-1}$":BLUE})
- bottomText3.set_color_by_tex_to_color_map({"any slope!":YELLOW})
- bottomText4.set_color_by_tex_to_color_map({"apply":YELLOW})
- bottomText5.set_color_by_tex_to_color_map({"$a_{ 1 }=-2e^{-1}$":BLUE})
- bottomText6.set_color_by_tex_to_color_map({"could vary":YELLOW})
- bottomText7.set_color_by_tex_to_color_map({"apply":YELLOW})
- bottomText8.set_color_by_tex_to_color_map({"$a_{ 2 }=e^{-1}$":BLUE})
-
- bottomText1.scale(0.4)
- bottomText2.scale(0.5)
- bottomText3.scale(0.4)
- bottomText4.scale(0.4)
- bottomText5.scale(0.5)
- bottomText6.scale(0.4)
- bottomText7.scale(0.4)
- bottomText8.scale(0.5)
-
- bottomText1.shift(4.5*RIGHT+2.5*DOWN)
- bottomText2.shift(4.5*RIGHT+2.5*DOWN)
- bottomText3.shift(4.5*RIGHT+2.5*DOWN)
- bottomText4.shift(4.5*RIGHT+2.5*DOWN)
- bottomText5.shift(4.5*RIGHT+2.5*DOWN)
- bottomText6.shift(4.5*RIGHT+2.5*DOWN)
- bottomText7.shift(4.5*RIGHT+2.5*DOWN)
- bottomText8.shift(4.5*RIGHT+2.5*DOWN)
-
- self.play(Write(bottomText1))
- self.wait(1)
- self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2))
- #change coeff in tn(x)
- self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0]))
- self.wait(1.5)
- self.play(ReplacementTransform(bottomText2,bottomText3))
- self.wait(0.5)
- self.play(ReplacementTransform(firstApprox[0],secondApprox[1]))
- self.wait(0.5)
- self.play(ReplacementTransform(secondApprox[1],secondApprox[2]))
- # self.wait(0.5)
- # self.play(ReplacementTransform(secondApprox[2],secondApprox[0]))
- self.wait(1)
- self.play(ReplacementTransform(bottomText3,bottomText4),FadeOut(secondApprox[2]))
- self.wait(1)
- self.play(Write(secondGraph),ReplacementTransform(bottomText4,bottomText5))
- #change a1 coeff
- self.play(ReplacementTransform(generalized_eq_coeff[1],coeff[1]))
- self.wait(1.5)
- self.play(ReplacementTransform(bottomText5,bottomText6))
- self.play(ReplacementTransform(secondGraph,thirdApprox[0]))
- self.wait(0.6)
- self.play(ReplacementTransform(thirdApprox[0],thirdApprox[1]))
- # self.wait(0.6)
- # self.play(ReplacementTransform(thirdApprox[1],thirdApprox[2]))
- self.wait(0.6)
- self.play(ReplacementTransform(thirdApprox[1],thirdApprox[3]))
- self.wait(0.6)
- self.play(ReplacementTransform(thirdApprox[3],thirdApprox[4]))
- self.wait(1.5)
- self.play(ReplacementTransform(bottomText6,bottomText7))
- self.wait(1.5)
- self.play(ReplacementTransform(bottomText7,bottomText8),ReplacementTransform(thirdApprox[4],thirdGraph))
- self.play(ReplacementTransform(generalized_eq_coeff[2],coeff[2]))
- self.wait(2)
-
- textFinal=TextMobject("And so on..!")
- textFinal.scale(0.7)
- textFinal.shift(4.5*RIGHT+2.5*DOWN)
- self.play(ReplacementTransform(bottomText8,textFinal))
- self.wait(2.5)
-
- finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(1)+f'(1)(x-1)+\\frac { f''(1) }{ 2! }(x-1)^2+..+\\frac { { f }^{ n }(1) }{ n! } { (x-1) }^{ n }$")
- finalFormula.scale(0.8)
- finalFormula.set_color_by_tex_to_color_map({"$T_{ n }(x)$":GREEN,"$f(1)+f'(1)(x-1)+\\frac { f''(1) }{ 2! }(x-1)^2+..+\\frac { { f }^{ n }(1) }{ n! } { (x-1) }^{ n }$":RED})
-
- self.play(FadeOut(self.axes),FadeOut(textFinal),FadeOut(thirdGraph),FadeOut(trTextGrup),FadeOut(mainfunction),FadeOut(fx),FadeOut(coeff[0]),FadeOut(coeff[1]),FadeOut(coeff[2]))
- self.play(Write(finalFormula))
- self.wait(2)
\ No newline at end of file
diff --git a/FSF-2020/series-and-transformations/Taylor Series/script3.py b/FSF-2020/series-and-transformations/Taylor Series/script3.py
deleted file mode 100644
index a2870d4..0000000
--- a/FSF-2020/series-and-transformations/Taylor Series/script3.py
+++ /dev/null
@@ -1,111 +0,0 @@
-from manimlib.imports import*
-import math
-
-
-class graphScene(GraphScene):
- CONFIG = {
- "x_min": -8,
- "x_max": 8,
- "y_min": -8,
- "y_max": 8,
- "graph_origin": ORIGIN,
- "function_color": RED,
- "axes_color": GREEN,
- "x_axis_label": "$x$",
- "y_axis_label": "$y$",
- "exclude_zero_label": True,
- "x_labeled_nums": range(-8, 8, 1),
- }
- def construct(self):
-
- x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
- y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
-
- self.setup_axes(animate=True)
-
- lnx=self.get_graph(lambda x:math.log2(x),color=RED,x_min=0.01,x_max=8)
-
- bottomText1=TextMobject("Apply $f(x)=T_{n}(x)$")
- bottomText2=TextMobject("Then apply $f'(x)=T_{n}'(x)$")
- bottomText3=TextMobject("Then apply $f''(x)=T_{n}''(x)$")
- bottomText4=TextMobject("and so on..")
-
- bottomText1.scale(0.5)
- bottomText2.scale(0.5)
- bottomText3.scale(0.5)
- bottomText4.scale(0.5)
-
- bottomText1.shift(3*RIGHT+2*DOWN)
- bottomText2.shift(3*RIGHT+2*DOWN)
- bottomText3.shift(3*RIGHT+2*DOWN)
- bottomText4.shift(3*RIGHT+2*DOWN)
-
- equations=[self.get_graph(lambda x:math.log2(2),color=BLUE),
- self.get_graph(lambda x:math.log2(2)+(x-2)/2,color=BLUE),
- self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8,color=BLUE),
- self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24,color=BLUE),
- self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64,color=BLUE),
- self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160,color=BLUE),
- self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160-((x-2)**6)/384,color=BLUE)]
-
- terms=[TextMobject("$T_{n}:=$"),TextMobject("$ln(2)$"),TextMobject("$+\\frac { x-2 }{ 2 } $"),TextMobject("$-\\frac { (x-2)^{2} }{ 8 }$"),TextMobject("+..")]
- for obj in terms:
- obj.scale(0.5)
-
- terms[0].shift(3*UP+3*RIGHT)
- terms[1].next_to(terms[0],buff=0.1)
- terms[2].next_to(terms[1],buff=0.1)
- terms[3].next_to(terms[2],buff=0.1)
- terms[4].next_to(terms[3],buff=0.1)
-
- self.play(ShowCreation(lnx))
- self.wait(1)
- self.play(Write(bottomText1))
- self.wait(0.5)
- self.play(ShowCreation(equations[0]),Write(terms[0]),Write(terms[1]))
- self.wait(1)
- self.play(ReplacementTransform(bottomText1,bottomText2))
- self.wait(0.5)
- self.play(ReplacementTransform(equations[0],equations[1]),Write(terms[2]))
- self.wait(1)
- self.play(ReplacementTransform(bottomText2,bottomText3))
- self.wait(0.5)
- self.play(ReplacementTransform(equations[1],equations[2]),Write(terms[3]))
- self.wait(1)
- self.play(ReplacementTransform(bottomText3,bottomText4),Write(terms[4]))
- self.wait(1.5)
-
- self.play(FadeOut(terms[0]),FadeOut(terms[1]),FadeOut(terms[2]),FadeOut(terms[3]),FadeOut(terms[4]),FadeOut(bottomText4))
-
- dline=DashedLine(start=ORIGIN+8*y_each_unit*UP,end=ORIGIN+8*y_each_unit*DOWN)
- dline.shift(ORIGIN+x_each_unit*4*RIGHT)
-
- bottomText5=TextMobject("Here","after $x=4$",", the graph","continuously diverges away","from $ln(x)$")
- bottomText5.scale(0.3)
- bottomText5.shift(4.5*RIGHT+2*DOWN)
- bottomText5.set_color_by_tex_to_color_map({"after $x=4$":YELLOW,"continuously diverges away":BLUE})
-
- self.play(Write(bottomText5),Write(dline))
- self.wait(1)
- self.play(ReplacementTransform(equations[2],equations[3]))
- self.wait(0.3)
- self.play(ReplacementTransform(equations[3],equations[4]))
- self.wait(0.3)
- self.play(ReplacementTransform(equations[4],equations[5]))
- self.wait(0.3)
- self.play(ReplacementTransform(equations[5],equations[6]),FadeOut(bottomText5))
- self.wait(1)
-
- circle=Circle(radius=ORIGIN+x_each_unit*2,color=PURPLE_E)
- circle.shift(ORIGIN+RIGHT*x_each_unit*2)
- radiusLine=Line(start=ORIGIN+x_each_unit*RIGHT*2,end=ORIGIN+x_each_unit*4*RIGHT,color=PURPLE_E)
- radius=TextMobject("$R$")
- radius.set_color(RED)
- radius.scale(0.5)
- radius.shift(ORIGIN+RIGHT*x_each_unit*2.45+DOWN*y_each_unit*0.6)
-
- self.play(FadeOut(equations[6]),Write(circle))
- self.wait(0.6)
- self.play(Write(radiusLine))
- self.play(FadeIn(radius))
- self.wait(2)
\ No newline at end of file
diff --git a/FSF-2020/series-and-transformations/Taylor Series/script4.py b/FSF-2020/series-and-transformations/Taylor Series/script4.py
deleted file mode 100644
index 1f41c97..0000000
--- a/FSF-2020/series-and-transformations/Taylor Series/script4.py
+++ /dev/null
@@ -1,82 +0,0 @@
-from manimlib.imports import*
-import math
-
-
-class graphScene(GraphScene):
- CONFIG = {
- "x_min": -8,
- "x_max": 8,
- "y_min": -8,
- "y_max": 8,
- "graph_origin": ORIGIN,
- "function_color": RED,
- "axes_color": GREEN,
- "x_axis_label": "$x$",
- "y_axis_label": "$y$",
- "exclude_zero_label": True,
- "x_labeled_nums": range(-8, 8, 1),
- }
- def construct(self):
-
- x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
- y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
-
- self.setup_axes(animate=True)
- lnx=self.get_graph(lambda x:math.log2(x),color=RED,x_min=0.01,x_max=8)
- equation=self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160-((x-2)**6)/384,color=BLUE)
-
- terms=[TextMobject("$T_{n}:=$"),TextMobject("$ln(2)$"),TextMobject("$+\\frac { x-2 }{ 2 } $"),TextMobject("$-\\frac { (x-2)^{2} }{ 8 }$"),TextMobject("+..")]
- for obj in terms:
- obj.scale(0.5)
-
- terms[0].shift(3*UP+3*RIGHT)
- terms[1].next_to(terms[0],buff=0.1)
- terms[2].next_to(terms[1],buff=0.1)
- terms[3].next_to(terms[2],buff=0.1)
- terms[4].next_to(terms[3],buff=0.1)
-
- self.play(ShowCreation(lnx))
- self.wait(1)
- self.play(FadeIn(equation),FadeIn(terms[0]),FadeIn(terms[1]),FadeIn(terms[2]),FadeIn(terms[3]),FadeIn(terms[4]))
- self.wait(1)
-
- bottomText1=TextMobject("$R_{n}(x)=\\frac { d }{ dx } ($","area bounded","$)$")
-
- bottomText1.set_color_by_tex_to_color_map({"area bounded":ORANGE})
- #bottomText2.set_color_by_tex_to_color_map({"area bounded":BLUE})
- arrow=TextMobject("$\downarrow$")
- arrow.scale(2.5)
- arrow.shift(ORIGIN+x_each_unit*RIGHT*9.5+UP*y_each_unit)
- increasingText=TextMobject("Increases!")
- increasingText.set_color(GREEN)
- followupText=TextMobject("as n increase!")
- followupText.scale(0.3)
- followupText.shift(ORIGIN+x_each_unit*11*RIGHT+UP*y_each_unit*1.1)
- increasingText.shift(ORIGIN+x_each_unit*11*RIGHT+UP*y_each_unit*1.6)
- increasingText.scale(0.4)
-
- bottomText1.scale(0.5)
- #bottomText2.scale(0.5)
- #bottomText3.scale(0.5)
-
- bottomText1.shift(3.5*LEFT+2*DOWN)
- #bottomText2.shift(3.5*LEFT+2.4*DOWN)
- #bottomText3.shift(3.5*LEFT+2.8*DOWN)
-
- dline=DashedLine(start=ORIGIN+8*y_each_unit*UP,end=ORIGIN+8*y_each_unit*DOWN)
- dline.shift(ORIGIN+x_each_unit*4*RIGHT)
-
- area1=self.get_riemann_rectangles(lnx,x_max=8,x_min=4,dx=0.01,start_color=BLUE,end_color=RED,stroke_width=0,fill_opacity=0.8)
- area2=self.get_riemann_rectangles(equation,x_max=5.2,x_min=4,dx=0.025,start_color=BLACK,end_color=BLACK,stroke_width=0,fill_opacity=1)
-
- self.play(Write(dline))
- self.wait(0.5)
- self.play(ShowCreation(area1),ShowCreation(area2),Write(bottomText1))
- # self.play(Write(bottomText2))
- # self.play(FadeIn(bottomText3))
- self.play(Write(arrow))
- self.wait(0.7)
- self.play(Write(increasingText))
- self.play(FadeIn(followupText))
- self.wait(2)
-
\ No newline at end of file
diff --git a/FSF-2020/triple-and-surface-integrals/README.md b/FSF-2020/triple-and-surface-integrals/README.md
deleted file mode 100644
index e69de29..0000000
diff --git a/FSF-2020/vector-spaces/README.md b/FSF-2020/vector-spaces/README.md
deleted file mode 100644
index e69de29..0000000
--
cgit