From a240c40156d5a05eb0ec95d2002241ab84ebca81 Mon Sep 17 00:00:00 2001
From: Purusharth S
Date: Sat, 23 May 2020 18:32:54 +0530
Subject: add topic folders
---
FSF-2020/calculus/intro-to-calculus/README.md | 0
FSF-2020/calculus/series-and-transformations/README.md | 0
2 files changed, 0 insertions(+), 0 deletions(-)
create mode 100644 FSF-2020/calculus/intro-to-calculus/README.md
create mode 100644 FSF-2020/calculus/series-and-transformations/README.md
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/intro-to-calculus/README.md b/FSF-2020/calculus/intro-to-calculus/README.md
new file mode 100644
index 0000000..e69de29
diff --git a/FSF-2020/calculus/series-and-transformations/README.md b/FSF-2020/calculus/series-and-transformations/README.md
new file mode 100644
index 0000000..e69de29
--
cgit
From fe5e18510140b3e02f3f6f03ad449c218f1b8579 Mon Sep 17 00:00:00 2001
From: Purusharth S
Date: Sat, 23 May 2020 18:57:11 +0530
Subject: add topic-name folder
---
.../Power Series/PowerSeriesQuestions.pdf | Bin 0 -> 112622 bytes
.../Power Series/script1.py | 128 +++++++++++++
.../Power Series/script2.py | 94 ++++++++++
.../Power Series/script3.py | 156 ++++++++++++++++
.../Power Series/script4.py | 108 +++++++++++
.../Power Series/script5.py | 136 ++++++++++++++
.../calculus/series-and-transformations/README.md | 13 ++
.../Taylor Series/TaylorSeriesQuestions.pdf | Bin 0 -> 119804 bytes
.../Taylor Series/script1.py | 198 +++++++++++++++++++++
.../Taylor Series/script2.py | 195 ++++++++++++++++++++
.../Taylor Series/script3.py | 111 ++++++++++++
.../Taylor Series/script4.py | 82 +++++++++
12 files changed, 1221 insertions(+)
create mode 100644 FSF-2020/calculus/series-and-transformations/Power Series/PowerSeriesQuestions.pdf
create mode 100644 FSF-2020/calculus/series-and-transformations/Power Series/script1.py
create mode 100644 FSF-2020/calculus/series-and-transformations/Power Series/script2.py
create mode 100644 FSF-2020/calculus/series-and-transformations/Power Series/script3.py
create mode 100644 FSF-2020/calculus/series-and-transformations/Power Series/script4.py
create mode 100644 FSF-2020/calculus/series-and-transformations/Power Series/script5.py
create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf
create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/script1.py
create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/script2.py
create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/script3.py
create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/script4.py
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/PowerSeriesQuestions.pdf b/FSF-2020/calculus/series-and-transformations/Power Series/PowerSeriesQuestions.pdf
new file mode 100644
index 0000000..04ed6d5
Binary files /dev/null and b/FSF-2020/calculus/series-and-transformations/Power Series/PowerSeriesQuestions.pdf differ
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/script1.py b/FSF-2020/calculus/series-and-transformations/Power Series/script1.py
new file mode 100644
index 0000000..28eb07c
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/script1.py
@@ -0,0 +1,128 @@
+from manimlib.imports import *
+
+
+def formFormula(coeff_list,variable_list):
+ coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ variable_list=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
+ coeff_list[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ coeff_list[i].set_color(GOLD_A)
+ variable_list[i].next_to(coeff_list[i],buff=0.1)
+ if i!=2:
+ coeff_list[i+1].next_to(variable_list[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variable_list[2])
+ expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots)
+ expansion.scale(0.7)
+ return expansion
+
+class pieChart(Scene):
+ def construct(self):
+ circle1=Circle(radius=3,color=BLUE)
+ powerText=TextMobject("Power Series")
+ powerText.scale(0.8)
+ self.play(FadeIn(powerText))
+ self.play(ShowCreation(circle1))
+ self.wait(1)
+
+ powerGroup=VGroup(circle1,powerText)
+
+ self.play(ApplyMethod(powerGroup.scale,0.5))
+ self.play(ApplyMethod(powerGroup.move_to,2.2*UP))
+ self.wait(0.5)
+ expansion_power_coeff=[]
+ variables_power=[]
+ expansion_power=formFormula(expansion_power_coeff,variables_power)
+ self.play(ReplacementTransform(powerText,expansion_power))
+ self.wait(1)
+
+ circle2=Circle(radius=1.5)
+ circle2.shift(2.2*UP)
+ expansion_geo_coeff=[0]*3
+ variables_geo=[0]*3
+ arrow1_2=Line(start=0.7*UP,end=2.5*LEFT)
+ expansion_geo_coeff=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ for i in range(0,3):
+ expansion_geo_coeff[i].set_color(GOLD_A)
+ variables_geo=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
+ expansion_geo_coeff[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ variables_geo[i].next_to(expansion_geo_coeff[i],buff=0.1)
+ if i!=2:
+ expansion_geo_coeff[i+1].next_to(variables_geo[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variables_geo[2])
+ expansion_geo=VGroup(expansion_geo_coeff[0],expansion_geo_coeff[1],expansion_geo_coeff[2],variables_geo[0],variables_geo[1],variables_geo[2],dots)
+ expansion_geo.scale(0.7)
+
+ self.play(ApplyMethod(circle2.shift,4*LEFT+2.5*DOWN),ApplyMethod(expansion_geo.shift,4*LEFT+2.5*DOWN))
+ self.add(arrow1_2)
+ self.wait(1)
+
+ ones=[TextMobject("1"),TextMobject("1"),TextMobject("1")]
+ for i in range(0,3):
+ ones[i].set_color(GOLD_A)
+ ones[0].shift(0.3*DOWN,5*LEFT)
+ ones[1].next_to(ones[0],buff=0.5)
+ ones[2].next_to(ones[1],buff=0.7)
+ self.play(ReplacementTransform(expansion_geo_coeff[0],ones[0]),ReplacementTransform(expansion_geo_coeff[1],ones[1]),ReplacementTransform(expansion_geo_coeff[2],ones[2]))
+ self.wait(1)
+ expansion_geo=VGroup(ones[0],ones[1],ones[2],variables_geo[0],variables_geo[1],variables_geo[2],dots)
+
+ expansion_geo_final=TextMobject("$1+x+{ x }^{ 2 }..$")
+ expansion_geo_final.scale(0.8)
+ expansion_geo_final.shift(0.3*DOWN+4*LEFT)
+ self.play(ReplacementTransform(expansion_geo,expansion_geo_final))
+ self.wait(1)
+
+ circle3=Circle(radius=1.5,color=GREEN)
+ circle3.shift(2.2*UP)
+ expansion_taylor_coeff=[0]*3
+ variables_taylor=[0]*3
+ arrow1_3=Line(start=0.7*UP,end=DOWN*0.3)
+ expansion_taylor_coeff=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ for i in range(0,3):
+ expansion_taylor_coeff[i].set_color(GOLD_A)
+ variables_taylor=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
+ expansion_taylor_coeff[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ variables_taylor[i].next_to(expansion_taylor_coeff[i],buff=0.1)
+ if i!=2:
+ expansion_taylor_coeff[i+1].next_to(variables_taylor[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variables_taylor[2])
+ expansion_taylor=VGroup(expansion_taylor_coeff[0],expansion_taylor_coeff[1],expansion_taylor_coeff[2],variables_taylor[0],variables_taylor[1],variables_taylor[2],dots)
+ expansion_taylor.scale(0.7)
+
+ self.play(ApplyMethod(circle3.shift,4*DOWN),ApplyMethod(expansion_taylor.shift,4*DOWN))
+ self.add(arrow1_3)
+ self.wait(1)
+
+ differentials=[TextMobject("$f(0)$"),TextMobject("${ f'\left( 0 \\right) }$"),TextMobject("$\\frac { f''\left( 0 \\right) }{ 2! }$")]
+ for i in range(0,3):
+ differentials[i].set_color(GOLD_A)
+ differentials[0].shift(1.8*DOWN+1.15*LEFT)
+ differentials[1].shift(1.8*DOWN+0.45*LEFT)
+ differentials[2].shift(1.8*DOWN+0.45*RIGHT)
+ differentials[0].scale(0.35)
+ differentials[1].scale(0.35)
+ differentials[2].scale(0.35)
+ self.play(ReplacementTransform(expansion_taylor_coeff[0],differentials[0]),ReplacementTransform(expansion_taylor_coeff[1],differentials[1]),ReplacementTransform(expansion_taylor_coeff[2],differentials[2]))
+ self.wait(2)
+ expansion_taylor_final=VGroup(differentials[0],differentials[1],differentials[2],variables_taylor[0],variables_taylor[1],variables_taylor[2],dots)
+
+ self.play(FadeOut(expansion_geo_final),FadeOut(expansion_taylor_final))
+ geoText=TextMobject("Geometric Series")
+ geoText.scale(0.7)
+ geoText.shift(4*LEFT+0.3*DOWN)
+ taylorText=TextMobject("Taylor Series")
+ taylorText.scale(0.7)
+ taylorText.shift(1.8*DOWN)
+ self.play(FadeIn(geoText),FadeIn(taylorText))
+ self.wait(1)
+
+ soOntext=TextMobject("So on..!")
+ soOntext.shift(4*RIGHT)
+ soOntext.scale(0.8)
+ self.play(FadeIn(soOntext))
+ self.wait(2)
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/script2.py b/FSF-2020/calculus/series-and-transformations/Power Series/script2.py
new file mode 100644
index 0000000..72356c6
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/script2.py
@@ -0,0 +1,94 @@
+from manimlib.imports import *
+import numpy as np
+
+
+class convergence(Scene):
+ def construct(self):
+ originalFormula=TextMobject("$\sum _{ n=0 }^{ \infty }{ { a }_{ n }{ x }^{ n } }$")
+ originalFormula.set_color(RED)
+ self.play(Write(originalFormula))
+ self.wait(1)
+ self.play(ApplyMethod(originalFormula.shift,2.7*UP))
+ self.wait(1)
+
+ terms=["$a_{ 0 }$","$a_{ 1 }x$","$a_{ 2 }x^{ 2 }$","$a_{ 3 }x^{ 3 }$","$a_{ 4 }x^{ 4 }$","$a_{ 5 }x^{ 5 }$","$a_{ 6 }x^{ 6 }$","$a_{ 7 }x^{ 7 }$","$a_{ 8 }x^{ 8 }$","$a_{ 9 }x^{ 9 }$","$a_{ 10 }x^{ 10 }$","$a_{ 11 }x^{ 11 }$"]
+ termsTogetherString="+".join(terms)
+ termsTogether=TextMobject(termsTogetherString+"...")
+ termsTogether.scale(0.8)
+ termsTogether.shift(2.7*UP)
+ self.play(ReplacementTransform(originalFormula,termsTogether))
+ self.wait(1)
+
+ termMobjectRect=[0]*12
+ termMobject=TextMobject(terms[0])
+ termMobject.shift(2.7*UP+6.2*LEFT)
+ for i in range(1,13):
+ termMobjectOld=termMobject
+ termMobjectOld.scale(0.8)
+ if(i<12):
+ termMobject=TextMobject(terms[i])
+ termMobject.next_to(termMobjectOld)
+ if(i==1):
+ rectDefine=TextMobject("Here","each rectangle","represents the","value of the term")
+ rectDefine.set_color_by_tex_to_color_map({"each rectangle":BLUE,"value of the term":YELLOW})
+ rectDefine.scale(0.7)
+ rectDefine.shift(3.2*DOWN)
+ self.play(Write(rectDefine))
+ self.wait(1)
+ if(i==2):
+ ratio=TextMobject("If $\\frac { a_{ n+1 } }{ { a }_{ n } } < 1$")
+ ratio.set_color(RED)
+ ratio.scale(0.7)
+ ratio.move_to(3.2*DOWN)
+ inequality=TextMobject("$a_{ n+1 } < a_{ n }$")
+ inequality.set_color(RED)
+ inequality.scale(0.7)
+ inequality.move_to(3.2*DOWN)
+ self.play(FadeOut(rectDefine))
+ self.play(Write(ratio))
+ self.wait(1)
+ self.play(ReplacementTransform(ratio,inequality))
+ self.wait(1)
+ #self.play(ApplyMethod(termMobjectOld.move_to,(2-0.3*i)*DOWN+RIGHT*0.2*i))
+ termMobjectRect[i-1]=Rectangle(height=0.1,width=(5-0.4*i))
+ termMobjectRect[i-1].move_to((2-0.2*i)*DOWN+RIGHT*0.2*i)
+ #rectangles[p] = termMobjectRect
+ #p+=1
+ self.play(ReplacementTransform(termMobjectOld,termMobjectRect[i-1]))
+
+ uparrow=TextMobject("$\\uparrow$")
+ uparrow.set_color(GREEN)
+ uparrow.scale(6)
+ uparrow.shift(4*RIGHT+0.5*DOWN)
+ self.play(ShowCreation(uparrow))
+ self.wait(1)
+
+ converges=TextMobject("Converges!")
+ converges.set_color(RED)
+ converges.scale(0.6)
+ converges.next_to(uparrow)
+ self.play(FadeIn(converges))
+ self.wait(2)
+
+ self.play(FadeOut(converges),FadeOut(uparrow),FadeOut(inequality))
+ self.wait(0.5)
+ rect=VGroup(termMobjectRect[0],termMobjectRect[1],termMobjectRect[2],termMobjectRect[3],termMobjectRect[4],termMobjectRect[5],termMobjectRect[6],termMobjectRect[7],termMobjectRect[8],termMobjectRect[9],termMobjectRect[10],termMobjectRect[11])
+ self.play(ApplyMethod(rect.scale,0.2))
+ for i in range(0,12):
+ self.play(ApplyMethod(termMobjectRect[i].shift,i*0.04*DOWN+(11-(3-0.11*i)*i)*LEFT*0.3))
+ func=TextMobject("$\\approx$","$f(x)$")
+ func.set_color_by_tex_to_color_map({"$f(x)$":RED})
+ func.scale(0.8)
+ func.shift(DOWN+4.5*RIGHT+0.1*UP)
+ self.play(FadeIn(func))
+
+ rightarrow=TextMobject("$\\rightarrow$")
+ rightarrow.set_color(GREEN)
+ rightarrow.scale(4)
+ rightarrow.shift(2*DOWN)
+ converges=TextMobject("Hence even the","sum converges!")
+ converges.set_color_by_tex_to_color_map({"sum converges!":RED})
+ converges.move_to(3*DOWN)
+ converges.scale(0.7)
+ self.play(Write(rightarrow),FadeIn(converges))
+ self.wait(2)
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/script3.py b/FSF-2020/calculus/series-and-transformations/Power Series/script3.py
new file mode 100644
index 0000000..f710f42
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/script3.py
@@ -0,0 +1,156 @@
+from manimlib.imports import*
+import math
+
+class intro(Scene):
+ def construct(self):
+ introText1=TextMobject("Let's analyse")
+ introText2=TextMobject("for")
+ function_main=TextMobject("$\sum { { (-1) }^{ n }{ x }^{ 2n } }$")
+ function_main.set_color(GREEN)
+ introText1.scale(1.2)
+ introText1.shift(2*UP)
+ introText2.scale(0.7)
+ introText2.shift(UP)
+ function_main.scale(2)
+ function_main.shift(DOWN)
+ function_expan=TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }+..$")
+ function_expan.set_color(RED)
+ function_expan.scale(1.2)
+ function_expan.shift(2*UP)
+
+ self.play(Write(introText1))
+ self.play(FadeIn(introText2))
+ self.wait(0.5)
+ self.play(Write(function_main))
+ self.wait(1)
+
+ self.play(FadeOut(introText1),FadeOut(introText2))
+ self.play(ApplyMethod(function_main.shift,3*UP))
+ self.wait(0.5)
+ self.play(ReplacementTransform(function_main,function_expan))
+ self.wait(1)
+ self.play(ApplyMethod(function_expan.scale,0.5))
+ function_expan.to_edge(UP+RIGHT)
+ self.play(ReplacementTransform(function_expan,function_expan))
+ self.wait(1)
+
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -8,
+ "y_max": 8,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-1, 2, 1),
+ "y_labeled_nums": range(0,2,1)
+ }
+
+ def construct(self):
+
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ function_expan=TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }+..$")
+ function_expan.set_color(RED)
+ function_expan.scale(0.6)
+ function_expan.to_edge(UP+RIGHT)
+ self.add(function_expan)
+
+ self.setup_axes(animate=True)
+
+ eqText=[TextMobject("$1$"),TextMobject("$1-{ x }^{ 2 }$"),TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }$"),TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }$")]
+ for i in range(0,len(eqText)):
+ eqText[i].scale(0.6)
+ eqText[i].set_color(BLUE)
+ eqText[i].shift(ORIGIN+UP*2*y_each_unit+RIGHT*3.3*x_each_unit)
+ eqTextTerm=TextMobject("And so on..!")
+ eqTextTerm.set_color(BLUE)
+ eqTextTerm.scale(0.6)
+ eqTextTerm.shift(ORIGIN+UP*2*y_each_unit+3*RIGHT*x_each_unit)
+ equation1 = self.get_graph(lambda x : 1,color = RED,x_min = -8,x_max=8)
+ equation2 = self.get_graph(lambda x : 1-math.pow(x,2),color = RED,x_min = -1.7,x_max=1.7)
+ equation3 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4),color = RED,x_min = -1.6,x_max=1.6)
+ equation4 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6),color = RED,x_min = -1.45,x_max=1.45)
+ equation5 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8),color = RED,x_min = -1.35,x_max=1.35)
+ equation6 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10),color = RED,x_min = -1.3,x_max=1.3)
+ equation7 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12),color = RED,x_min = -1.25,x_max=1.25)
+ equation8 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14),color = RED,x_min = -1.2,x_max=1.2)
+ equation9 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16),color = RED,x_min = -1.15,x_max=1.15)
+ equation10 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16)-math.pow(x,18),color = RED,x_min = -1.15,x_max=1.15)
+
+ textBtwAnim1=TextMobject("Here the graph just","oscilates")
+ textBtwAnim1.set_color_by_tex_to_color_map({"oscilates":BLUE})
+ textBtwAnim2=TextMobject("after","the","point","(as we add higher order terms)")
+ textBtwAnim2.set_color_by_tex_to_color_map({"after":BLUE,"point":YELLOW})
+ textBtwAnim3=TextMobject("$x=1$")
+ textBtwAnim1.scale(0.4)
+ textBtwAnim2.scale(0.4)
+ textBtwAnim3.scale(1.2)
+ textBtwAnim1.shift(2.1*DOWN+4.3*RIGHT)
+ textBtwAnim2.shift(2.4*DOWN+4.1*RIGHT)
+ textBtwAnim3.shift(2.9*DOWN+4.3*RIGHT)
+
+ self.play(ShowCreation(equation1),run_time=0.8)
+ self.add(eqText[0])
+ self.wait(1)
+ self.play(ReplacementTransform(equation1,equation2),ReplacementTransform(eqText[0],eqText[1]))
+ self.wait(0.5)
+ self.play(ReplacementTransform(equation2,equation3),ReplacementTransform(eqText[1],eqText[2]))
+ self.wait(0.4)
+ self.play(ReplacementTransform(equation3,equation4),ReplacementTransform(eqText[2],eqText[3]))
+ self.wait(0.3)
+ self.play(FadeOut(eqText[3]))
+ self.play(FadeIn(eqTextTerm))
+ self.play(Write(textBtwAnim1),Write(textBtwAnim2))
+ self.play(FadeIn(textBtwAnim3))
+ self.play(ReplacementTransform(equation4,equation5))
+ self.wait(0.2)
+ self.play(ReplacementTransform(equation5,equation6))
+ self.wait(0.2)
+ self.play(ReplacementTransform(equation6,equation7))
+ self.wait(0.2)
+ self.play(ReplacementTransform(equation7,equation8))
+ self.wait(0.2)
+ self.play(ReplacementTransform(equation8,equation9))
+ self.wait(0.2)
+ self.play(ReplacementTransform(equation9,equation10))
+ self.wait(1)
+
+ self.play(FadeOut(textBtwAnim1),FadeOut(textBtwAnim2),FadeOut(textBtwAnim3),FadeOut(equation10),FadeOut(eqTextTerm))
+ self.wait(1)
+
+ convergeLine=Line(start=ORIGIN+x_each_unit*LEFT,end=ORIGIN+x_each_unit*RIGHT,color=WHITE)
+ divergeLineLeft=Line(start=ORIGIN+x_each_unit*LEFT,end=ORIGIN+x_each_unit*LEFT*8,color=RED)
+ divergeLineRight=Line(start=ORIGIN+x_each_unit*RIGHT,end=ORIGIN+x_each_unit*8*RIGHT,color=RED)
+ circle1=Circle(radius=0.01,color=PURPLE_E)
+ circle2=Circle(radius=0.01,color=PURPLE_E)
+ circle1.shift(ORIGIN+LEFT*x_each_unit)
+ circle2.shift(ORIGIN+RIGHT*x_each_unit)
+ convergeText=TextMobject("Converges")
+ divergeText1=TextMobject("Diverges")
+ divergeText2=TextMobject("Diverges")
+ convergeText.set_color(GREEN)
+ divergeText1.set_color(RED)
+ divergeText2.set_color(RED)
+ convergeText.scale(0.5)
+ divergeText1.scale(0.5)
+ divergeText2.scale(0.5)
+ convergeText.shift(1.6*UP)
+ divergeText1.shift(0.3*UP+1.5*LEFT)
+ divergeText2.shift(0.3*UP+1.5*RIGHT)
+ self.play(Write(divergeLineLeft),Write(divergeLineRight))
+ self.play(FadeIn(convergeLine))
+ self.wait(0.5)
+ self.play(FadeOut(self.axes))
+ self.play(Write(circle1),Write(circle2))
+ self.wait(0.5)
+ self.play(ApplyMethod(convergeLine.shift,1.3*UP),ApplyMethod(function_expan.shift,5*LEFT+DOWN))
+ self.play(FadeIn(convergeText),FadeIn(divergeText1),FadeIn(divergeText2))
+ self.wait(2)
+
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/script4.py b/FSF-2020/calculus/series-and-transformations/Power Series/script4.py
new file mode 100644
index 0000000..412d20c
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/script4.py
@@ -0,0 +1,108 @@
+from manimlib.imports import *
+import math
+
+class intro(Scene):
+ def construct(self):
+ introText1=TextMobject("Consider the","above","example..")
+ introText1.scale(0.8)
+ introText1.set_color_by_tex_to_color_map({"above":YELLOW})
+ self.play(Write(introText1))
+ self.wait(1)
+
+class graphScene(GraphScene,MovingCameraScene):
+ CONFIG = {
+ "x_min": -5,
+ "x_max": 5,
+ "y_min": -5,
+ "y_max": 5,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-1, 2, 1),
+ "y_labeled_nums": range(0,2,1),
+ "y_axis_height":7,
+ "x_axis_width":7
+ }
+
+ def setup(self):
+ GraphScene.setup(self)
+ MovingCameraScene.setup(self)
+
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ function_expan=TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }+..$")
+ function_expan.scale(0.6)
+ function_expan.set_color(RED)
+ function_expan.to_edge(UP+RIGHT)
+ self.add(function_expan)
+
+ self.setup_axes()
+
+ equation = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16)-math.pow(x,18),color = RED,x_min = -1.1,x_max=1.1)
+ self.play(ShowCreation(equation))
+ self.wait(1)
+
+ dashLineLeft=DashedLine(start=ORIGIN+y_each_unit*5*UP,end=ORIGIN+y_each_unit*5*DOWN)
+ dashLineRight=DashedLine(start=ORIGIN+y_each_unit*5*UP,end=ORIGIN+y_each_unit*5*DOWN)
+ dashLineLeft.shift(ORIGIN+LEFT*x_each_unit)
+ dashLineRight.shift(ORIGIN+RIGHT*x_each_unit)
+ radiusLine=Line(start=ORIGIN,end=ORIGIN+RIGHT*x_each_unit)
+ rangeLine=Line(start=ORIGIN+LEFT*x_each_unit,end=ORIGIN+RIGHT*x_each_unit)
+ circle=Circle(radius=x_each_unit)
+ movingPoint=Circle(radius=0.025)
+ movingPoint.shift(ORIGIN+RIGHT*x_each_unit)
+ circleEq1=self.get_graph(lambda x:math.sqrt(1-x**2),color=BLUE,x_max=-1,x_min=1)
+ circleEq2=self.get_graph(lambda x:-math.sqrt(1-x**2),color=BLUE,x_max=1,x_min=-1)
+
+ self.play(Write(dashLineLeft),Write(dashLineRight))
+ self.wait(1)
+
+ equation_updated=self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16)-math.pow(x,18),color = GREEN,x_min = -1,x_max=1)
+ self.play(FadeOut(self.axes),ReplacementTransform(equation,equation_updated))
+ self.wait(0.5)
+ self.play(Write(radiusLine))
+ self.play(MoveAlongPath(movingPoint,circleEq1))
+ self.play(MoveAlongPath(movingPoint,circleEq2))
+ self.play(FadeIn(circle))
+ self.wait(1)
+
+ radiusText=TextMobject("Radius of convergence")
+ radiusText.scale(0.14)
+ radiusText.shift(ORIGIN+RIGHT*x_each_unit*0.45+DOWN*y_each_unit*0.2)
+
+ self.play(Write(radiusText))
+ self.wait(0.6)
+
+ self.camera_frame.save_state()
+ self.camera_frame.set_width(5.5)
+ self.play(self.camera_frame.move_to, ORIGIN)
+ self.wait(1)
+ self.camera_frame.set_width(14)
+ self.wait(1.3)
+
+ self.play(FadeOut(radiusText),FadeOut(circle),FadeOut(movingPoint))
+ extendLine=Line(start=ORIGIN,end=ORIGIN+x_each_unit*LEFT)
+ self.play(Write(extendLine))
+ doubleArrow=TextMobject("$\longleftrightarrow$")
+ doubleArrow.scale(1.6)
+ doubleArrow.set_color(BLUE)
+ doubleArrow.shift(ORIGIN+DOWN*y_each_unit*0.5)
+ self.play(FadeIn(doubleArrow))
+ self.wait(1)
+ rangeText=TextMobject("Interval of convergence")
+ rangeText.scale(0.15)
+ rangeText.shift(ORIGIN+y_each_unit*DOWN)
+ self.play(Write(rangeText))
+ self.wait(0.6)
+
+ self.camera_frame.save_state()
+ self.camera_frame.set_width(5.5)
+ self.play(self.camera_frame.move_to, ORIGIN)
+ self.wait(1)
+ self.camera_frame.set_width(14)
+ self.wait(1.5)
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/script5.py b/FSF-2020/calculus/series-and-transformations/Power Series/script5.py
new file mode 100644
index 0000000..e9681aa
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/script5.py
@@ -0,0 +1,136 @@
+from manimlib.imports import *
+import math
+
+class uniformlyConvergent(Scene):
+ def construct(self):
+ introText1=TextMobject("Again consider the","above","example")
+ introText2=TextMobject("Let","$g(x)=\\frac { 1 }{ 1+{ x }^{ 2 } }$","and","x=0.5 $\in$(-1,1)")
+ introText3=TextMobject("Lets analyse..","!")
+ introText1.scale(0.8)
+ introText2.scale(0.7)
+ introText3.scale(0.9)
+ introText3.shift(DOWN)
+ introText1.set_color_by_tex_to_color_map({"above":YELLOW})
+ introText2.set_color_by_tex_to_color_map({"$g(x)=\\frac { 1 }{ 1+{ x }^{ 2 } }$":BLUE,"x=0.5 $\in$(-1,1)":YELLOW})
+ introText3.set_color_by_tex_to_color_map({"!":GREEN})
+ self.play(Write(introText1))
+ self.wait(0.5)
+ self.play(FadeOut(introText1))
+ self.play(Write(introText2))
+ self.play(FadeIn(introText3))
+ self.wait(2)
+
+
+def gety(x,n):
+ ans=0
+ for i in range(0,n+1):
+ if(i%2==0):
+ ans+=(math.pow(x,2*i))
+ else:
+ ans-=(math.pow(x,2*i))
+ return ans
+
+def makeSeries(x,points,x_each_unit,y_each_unit):
+ p=0
+ for point in points:
+ y=gety(x,p)
+ point.shift(ORIGIN+RIGHT*x_each_unit*p+UP*y_each_unit*y)
+ p+=1
+
+def makeLines(x,numPoints,x_each_unit,y_each_unit):
+ lines=[0]*numPoints
+ for i in range(0,numPoints-1):
+ y=gety(x,i)
+ y_next=gety(x,i+1)
+ lines[i]=Line(start=ORIGIN+RIGHT*x_each_unit*i+UP*y_each_unit*y,end=ORIGIN+RIGHT*x_each_unit*(i+1)+UP*y_each_unit*y_next,color=RED)
+ return lines
+
+class graphScene(GraphScene,MovingCameraScene):
+ CONFIG = {
+ "x_min": -6,
+ "x_max": 6,
+ "y_min": -5,
+ "y_max": 5,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$k$",
+ "y_axis_label": "$f(\\frac{1}{2})_k$",
+ "exclude_zero_label": True,
+ "x_axis_width":7,
+ "y_axis_height":7
+ }
+
+ def setup(self):
+ GraphScene.setup(self)
+ MovingCameraScene.setup(self)
+
+
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+ sequence=TextMobject("$1$ , $1-(0.5)^2$ , $1-(0.5)^2+(0.5)^4..$")
+ sequence.set_color(RED)
+ sequence.scale(0.35)
+ sequence.to_edge(UP+RIGHT)
+ formula=TextMobject("$f(x)_{ k }=\sum _{ i=0 }^{ k }{ (-1)^{ i }(x)^{ 2i } } $")
+ formula.set_color(PURPLE_C)
+ formula.scale(0.4)
+ formula.shift(5.3*RIGHT+3*UP)
+ fLine=Line(start=ORIGIN+x_each_unit*6*LEFT,end=ORIGIN+x_each_unit*6*RIGHT)
+ fLine.shift(ORIGIN+(4/5)*y_each_unit*UP)
+ fLineText=TextMobject("$g(0.5)=\\frac { 4 }{ 5 } $")
+ fLineText.set_color(RED)
+ fLineText.scale(0.3)
+ fLineText.shift(UP*1.2*y_each_unit+RIGHT*x_each_unit+4*LEFT)
+ points=[Dot(radius=0.03,color=BLUE) for i in range(0,6)]
+ makeSeries(0.5,points,x_each_unit,y_each_unit)
+ lines=makeLines(0.5,6,x_each_unit,y_each_unit)
+
+
+ self.add(sequence)
+ self.add(formula)
+ self.setup_axes(animate=True)
+ self.play(Write(fLine))
+ self.add(fLineText)
+ for p in points:
+ self.add(p)
+ for p in range(0,5):
+ self.play(Write(lines[p]))
+ self.wait(0.5)
+ self.camera_frame.save_state()
+ self.camera_frame.set_width(0.6)
+ self.play(self.camera_frame.move_to, points[0])
+ self.wait(0.4)
+ self.play(self.camera_frame.move_to, points[1])
+ self.wait(0.4)
+ self.play(self.camera_frame.move_to, points[2])
+ self.wait(0.3)
+ self.play(self.camera_frame.move_to, points[3])
+ self.wait(1)
+ self.play(self.camera_frame.move_to,ORIGIN)
+ self.camera_frame.set_width(14)
+ self.wait(1)
+
+ explanation1=TextMobject("Since the series","converges","to")
+ explanation1.set_color_by_tex_to_color_map({"converges":YELLOW})
+ explanation2=TextMobject("$\\frac {4}{5}$")
+ explanation2.set_color(BLUE)
+ explanation3=TextMobject("Hence","$\\forall \epsilon>0$,","$\exists k$","such that,")
+ explanation3.set_color_by_tex_to_color_map({"$\\forall \epsilon>0$":BLUE,"$\exists k$":YELLOW})
+ explanation4=TextMobject("$\left| { f\left( \\frac { 1 }{ 2 } \\right) }_{ k }-\\frac { 4 }{ 5 } \\right| <$","$\epsilon$")
+ explanation4.set_color_by_tex_to_color_map({"$\epsilon$":RED})
+ explanation1.scale(0.5)
+ explanation3.scale(0.5)
+ explanation1.shift(1.8*DOWN+3.5*RIGHT)
+ explanation2.shift(2.4*DOWN+3.5*RIGHT)
+ explanation3.shift(1.8*DOWN+3.5*RIGHT)
+ explanation4.shift(2.4*DOWN+3.5*RIGHT)
+
+ self.play(Write(explanation1))
+ self.play(FadeIn(explanation2))
+ self.wait(1)
+ self.play(FadeOut(explanation1),FadeOut(explanation2))
+ self.play(Write(explanation3))
+ self.play(Write(explanation4))
+ self.wait(2)
diff --git a/FSF-2020/calculus/series-and-transformations/README.md b/FSF-2020/calculus/series-and-transformations/README.md
index e69de29..4747205 100644
--- a/FSF-2020/calculus/series-and-transformations/README.md
+++ b/FSF-2020/calculus/series-and-transformations/README.md
@@ -0,0 +1,13 @@
+Contributer: G Sri Harsha
+
+GitHub Handle: GSri30
+
+Sub-Topics Covered:
+
+ - Power Series
+
- Taylor Series
+
- Laplace Transformation
+
- Fourier Transformation
+
- z-Transform
+
- Constant-Q transform
+
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf b/FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf
new file mode 100644
index 0000000..2096f52
Binary files /dev/null and b/FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf differ
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/script1.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/script1.py
new file mode 100644
index 0000000..e83eff8
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/script1.py
@@ -0,0 +1,198 @@
+from manimlib.imports import*
+import math
+
+def formFormula(coeff_list,variable_list):
+ coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ variable_list=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
+ coeff_list[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ coeff_list[i].set_color(GOLD_A)
+ variable_list[i].next_to(coeff_list[i],buff=0.1)
+ if i!=2:
+ coeff_list[i+1].next_to(variable_list[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variable_list[2])
+ expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots)
+ #expansion.scale(0.7)
+ return expansion,coeff_list
+
+class intro(Scene):
+ def construct(self):
+ equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$")
+ equation.scale(2)
+ equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED})
+ text=TextMobject("let $a=0$")
+ text.scale(0.7)
+ text.shift(DOWN)
+
+ self.play(Write(equation))
+ self.wait(0.5)
+ self.play(FadeIn(text))
+ self.wait(0.7)
+ self.play(FadeOut(equation),FadeOut(text))
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -8,
+ "y_max": 8,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-8, 8, 1),
+ }
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ generalized_eq_coeff=[]
+ variables_eq=[]
+ eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq)
+ trText1=TextMobject("let $T_{ n }(x)$:=")
+ eq.next_to(trText1)
+ trTextGrup=VGroup(trText1,eq)
+ trTextGrup.scale(0.5)
+ trTextGrup.to_corner(UP+RIGHT)
+ self.play(Write(trTextGrup))
+ self.setup_axes(animate=True)
+
+ fx=TextMobject("${ e }^{ -x^{ 2 } }$")
+ fx.scale(0.5)
+ fx.shift(ORIGIN+x_each_unit*7.5*RIGHT+y_each_unit*0.5*UP)
+ mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8)
+ self.play(ShowCreation(mainfunction))
+ self.play(FadeIn(fx))
+ self.wait(1.4)
+
+ coeff=[TextMobject("$1$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")]
+ coeff[0].shift(3.39*UP+4.88*RIGHT)
+ coeff[0].scale(0.5)
+ coeff[1].shift(3.39*UP+5.3*RIGHT)
+ coeff[1].scale(0.275)
+ coeff[2].shift(3.39*UP+5.98*RIGHT)
+ coeff[2].scale(0.28)
+
+ for obj in coeff:
+ obj.set_color(GOLD_A)
+
+ firstApprox=[self.get_graph(lambda x:1,color=BLUE)]
+ secondApprox=[self.get_graph(lambda x:1,color=BLUE),
+ self.get_graph(lambda x:x+1,color=BLUE),
+ self.get_graph(lambda x:-x+1,color=BLUE)]
+ thirdApprox=[self.get_graph(lambda x:1-2*math.pow(x,2),color=BLUE),
+ self.get_graph(lambda x:1-0.1*math.pow(x,2),color=BLUE),
+ self.get_graph(lambda x:1,color=BLUE),
+ self.get_graph(lambda x:1+0.1*math.pow(x,2),color=BLUE),
+ self.get_graph(lambda x:1+math.pow(x,2),color=BLUE)]
+
+ firstGraph=self.get_graph(lambda x:1,color=BLUE)
+ secondGraph=self.get_graph(lambda x:1-math.pow(x,2),color=BLUE)
+
+ bottomText1=TextMobject("The polynomial should","satisfy","the function at $x=0$")
+ bottomText2=TextMobject("This gives","$a_{ 0 }=1$")
+ bottomText3=TextMobject("Now it could be of","any slope!")
+ #show graphs of second approx
+ bottomText4=TextMobject("Hence the","slopes","should","even match")
+ #final graph
+ bottomText5=TextMobject("This gives","$a_{ 1 }=0$")
+ bottomText6=TextMobject("Since the rate of change of this slope","could vary")
+ #show third approx graphs
+ bottomText7=TextMobject("Hence the","rate of change of these slopes","should also be","same!")
+ #final graph
+ bottomText8=TextMobject("This gives","$a_{ 2 }=-1$")
+
+ bottomText1.set_color_by_tex_to_color_map({"satisfy":YELLOW})
+ bottomText2.set_color_by_tex_to_color_map({"$a_{ 0 }=1$":BLUE})
+ bottomText3.set_color_by_tex_to_color_map({"any slope!":YELLOW})
+ bottomText4.set_color_by_tex_to_color_map({"slopes":BLUE,"even match":YELLOW})
+ bottomText5.set_color_by_tex_to_color_map({"$a_{ 1 }=0$":BLUE})
+ bottomText6.set_color_by_tex_to_color_map({"could vary":YELLOW})
+ bottomText7.set_color_by_tex_to_color_map({"rate of change of these slopes":BLUE,"same!":YELLOW})
+ bottomText8.set_color_by_tex_to_color_map({"$a_{ 2 }=-1$":BLUE})
+
+ bottomText1.scale(0.4)
+ bottomText2.scale(0.5)
+ bottomText3.scale(0.4)
+ bottomText4.scale(0.4)
+ bottomText5.scale(0.5)
+ bottomText6.scale(0.4)
+ bottomText7.scale(0.4)
+ bottomText8.scale(0.5)
+
+ bottomText1.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText2.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText3.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText4.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText5.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText6.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText7.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText8.shift(4.5*RIGHT+2.5*DOWN)
+
+ self.play(Write(bottomText1))
+ self.wait(1)
+ self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2))
+ #change coeff in tn(x)
+ self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText2,bottomText3))
+ self.wait(0.5)
+ self.play(ReplacementTransform(firstApprox[0],secondApprox[1]))
+ self.wait(0.5)
+ self.play(ReplacementTransform(secondApprox[1],secondApprox[0]))
+ self.wait(0.5)
+ self.play(ReplacementTransform(secondApprox[0],secondApprox[2]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText3,bottomText4),FadeOut(secondApprox[2]))
+ self.wait(1)
+ self.play(Write(firstGraph),ReplacementTransform(bottomText4,bottomText5))
+ #change a1 coeff
+ self.play(ReplacementTransform(generalized_eq_coeff[1],coeff[1]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText5,bottomText6))
+ self.play(ReplacementTransform(firstGraph,thirdApprox[0]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[0],thirdApprox[1]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[1],thirdApprox[2]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[2],thirdApprox[3]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[3],thirdApprox[4]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText6,bottomText7))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText7,bottomText8),ReplacementTransform(thirdApprox[4],secondGraph))
+ self.play(ReplacementTransform(generalized_eq_coeff[2],coeff[2]))
+ self.wait(2)
+
+ textFinal=TextMobject("And so on..!")
+ textFinal.scale(0.7)
+ textFinal.shift(4.5*RIGHT+2.5*DOWN)
+ self.play(ReplacementTransform(bottomText8,textFinal))
+ self.wait(2.5)
+
+ finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$")
+ finalFormula.scale(0.8)
+ finalFormula.set_color_by_tex_to_color_map({"$T_{ n }(x)$":GREEN,"$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$":RED})
+
+ self.play(FadeOut(self.axes),FadeOut(textFinal),FadeOut(secondGraph),FadeOut(trTextGrup),FadeOut(mainfunction),FadeOut(fx),FadeOut(coeff[0]),FadeOut(coeff[1]),FadeOut(coeff[2]))
+ self.play(Write(finalFormula))
+ self.wait(2)
+ # self.play(ReplacementTransform(secondApprox[2],secondApprox[3]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[3],secondApprox[4]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[4],secondApprox[5]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[0],secondApprox[0]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[0],secondApprox[0]))
+ # self.wait(0.5)
+
+
+
+
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/script2.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/script2.py
new file mode 100644
index 0000000..b5d0a53
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/script2.py
@@ -0,0 +1,195 @@
+from manimlib.imports import*
+import math
+
+
+class intro(Scene):
+ def construct(self):
+ equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$")
+ equation.scale(2)
+ equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED})
+ text=TextMobject("at $a=1$")
+ text.scale(0.7)
+ text.shift(DOWN)
+
+ shiftText=TextMobject("(Here we shift the origin to the point $x=1$)")
+ shiftText.scale(0.6)
+ shiftText.shift(2.4*DOWN)
+
+
+ self.play(Write(equation))
+ self.wait(0.5)
+ self.play(FadeIn(text))
+ self.wait(0.7)
+ self.play(Write(shiftText))
+ self.wait(0.7)
+ self.play(FadeOut(equation),FadeOut(text),FadeOut(shiftText))
+
+
+def formFormula(coeff_list,variable_list):
+ coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ variable_list=[TextMobject("+"),TextMobject("${ (x-1) }$+"),TextMobject("${ (x-1) }^{ 2 }$")]
+ coeff_list[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ coeff_list[i].set_color(GOLD_A)
+ variable_list[i].next_to(coeff_list[i],buff=0.1)
+ if i!=2:
+ coeff_list[i+1].next_to(variable_list[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variable_list[2])
+ expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots)
+ #expansion.scale(0.7)
+ return expansion,coeff_list
+
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -8,
+ "y_max": 8,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-8, 8, 1),
+ }
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ generalized_eq_coeff=[]
+ variables_eq=[]
+ eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq)
+ trText1=TextMobject("let $T_{ n }(x)$:=")
+ eq.next_to(trText1)
+ trTextGrup=VGroup(trText1,eq)
+ trTextGrup.scale(0.5)
+ trTextGrup.to_corner(UP+RIGHT)
+ self.play(Write(trTextGrup))
+ self.setup_axes(animate=True)
+
+ fx=TextMobject("${ e }^{ -x^{ 2 } }$")
+ fx.scale(0.5)
+ fx.shift(ORIGIN+x_each_unit*7.5*RIGHT+y_each_unit*0.5*UP)
+ mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8)
+ self.play(ShowCreation(mainfunction))
+ self.play(FadeIn(fx))
+ self.wait(1.4)
+
+ coeff=[TextMobject("$e^{-1}$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")]
+ coeff[0].shift(3.33*UP+3.65*RIGHT)
+ coeff[0].scale(0.45)
+ coeff[1].shift(3.33*UP+4.13*RIGHT)
+ coeff[1].scale(0.275)
+ coeff[2].shift(3.33*UP+5.36*RIGHT)
+ coeff[2].scale(0.28)
+
+ for obj in coeff:
+ obj.set_color(GOLD_A)
+
+ firstApprox=[self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)]
+ secondApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5),
+ self.get_graph(lambda x:math.exp(-1)+3*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5),
+ self.get_graph(lambda x:math.exp(-1)-4*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)]
+ thirdApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
+ self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-0.1*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
+ self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_max=5.5,x_min=-5.5),
+ self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+0.5*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
+ self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5)]
+
+ firstGraph=self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)
+ secondGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)
+ thirdGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5)
+
+ bottomText1=TextMobject("Apply","$f(1)=T_{n}(1)$")
+ bottomText2=TextMobject("This gives","$a_{ 0 }=e^{-1}$")
+ bottomText3=TextMobject("Now it could be of","any slope!")
+ #show graphs of second approx
+ bottomText4=TextMobject("Hence","apply","$f'(1)=T_{n}'(1)$")
+ #final graph
+ bottomText5=TextMobject("This gives","$a_{ 1 }=-2e^{-1}$")
+ bottomText6=TextMobject("Since the rate of change of this slope","could vary")
+ #show third approx graphs
+ bottomText7=TextMobject("Hence also","apply","$f''(1)=T_{ n }''(1)$")
+ #final graph
+ bottomText8=TextMobject("This gives","$a_{ 2 }=e^{-1}$")
+
+ bottomText1.set_color_by_tex_to_color_map({"Apply":YELLOW})
+ bottomText2.set_color_by_tex_to_color_map({"$a_{ 0 }=e^{-1}$":BLUE})
+ bottomText3.set_color_by_tex_to_color_map({"any slope!":YELLOW})
+ bottomText4.set_color_by_tex_to_color_map({"apply":YELLOW})
+ bottomText5.set_color_by_tex_to_color_map({"$a_{ 1 }=-2e^{-1}$":BLUE})
+ bottomText6.set_color_by_tex_to_color_map({"could vary":YELLOW})
+ bottomText7.set_color_by_tex_to_color_map({"apply":YELLOW})
+ bottomText8.set_color_by_tex_to_color_map({"$a_{ 2 }=e^{-1}$":BLUE})
+
+ bottomText1.scale(0.4)
+ bottomText2.scale(0.5)
+ bottomText3.scale(0.4)
+ bottomText4.scale(0.4)
+ bottomText5.scale(0.5)
+ bottomText6.scale(0.4)
+ bottomText7.scale(0.4)
+ bottomText8.scale(0.5)
+
+ bottomText1.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText2.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText3.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText4.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText5.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText6.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText7.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText8.shift(4.5*RIGHT+2.5*DOWN)
+
+ self.play(Write(bottomText1))
+ self.wait(1)
+ self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2))
+ #change coeff in tn(x)
+ self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText2,bottomText3))
+ self.wait(0.5)
+ self.play(ReplacementTransform(firstApprox[0],secondApprox[1]))
+ self.wait(0.5)
+ self.play(ReplacementTransform(secondApprox[1],secondApprox[2]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[2],secondApprox[0]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText3,bottomText4),FadeOut(secondApprox[2]))
+ self.wait(1)
+ self.play(Write(secondGraph),ReplacementTransform(bottomText4,bottomText5))
+ #change a1 coeff
+ self.play(ReplacementTransform(generalized_eq_coeff[1],coeff[1]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText5,bottomText6))
+ self.play(ReplacementTransform(secondGraph,thirdApprox[0]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[0],thirdApprox[1]))
+ # self.wait(0.6)
+ # self.play(ReplacementTransform(thirdApprox[1],thirdApprox[2]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[1],thirdApprox[3]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[3],thirdApprox[4]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText6,bottomText7))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText7,bottomText8),ReplacementTransform(thirdApprox[4],thirdGraph))
+ self.play(ReplacementTransform(generalized_eq_coeff[2],coeff[2]))
+ self.wait(2)
+
+ textFinal=TextMobject("And so on..!")
+ textFinal.scale(0.7)
+ textFinal.shift(4.5*RIGHT+2.5*DOWN)
+ self.play(ReplacementTransform(bottomText8,textFinal))
+ self.wait(2.5)
+
+ finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(1)+f'(1)(x-1)+\\frac { f''(1) }{ 2! }(x-1)^2+..+\\frac { { f }^{ n }(1) }{ n! } { (x-1) }^{ n }$")
+ finalFormula.scale(0.8)
+ finalFormula.set_color_by_tex_to_color_map({"$T_{ n }(x)$":GREEN,"$f(1)+f'(1)(x-1)+\\frac { f''(1) }{ 2! }(x-1)^2+..+\\frac { { f }^{ n }(1) }{ n! } { (x-1) }^{ n }$":RED})
+
+ self.play(FadeOut(self.axes),FadeOut(textFinal),FadeOut(thirdGraph),FadeOut(trTextGrup),FadeOut(mainfunction),FadeOut(fx),FadeOut(coeff[0]),FadeOut(coeff[1]),FadeOut(coeff[2]))
+ self.play(Write(finalFormula))
+ self.wait(2)
\ No newline at end of file
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/script3.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/script3.py
new file mode 100644
index 0000000..a2870d4
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/script3.py
@@ -0,0 +1,111 @@
+from manimlib.imports import*
+import math
+
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -8,
+ "y_max": 8,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-8, 8, 1),
+ }
+ def construct(self):
+
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ self.setup_axes(animate=True)
+
+ lnx=self.get_graph(lambda x:math.log2(x),color=RED,x_min=0.01,x_max=8)
+
+ bottomText1=TextMobject("Apply $f(x)=T_{n}(x)$")
+ bottomText2=TextMobject("Then apply $f'(x)=T_{n}'(x)$")
+ bottomText3=TextMobject("Then apply $f''(x)=T_{n}''(x)$")
+ bottomText4=TextMobject("and so on..")
+
+ bottomText1.scale(0.5)
+ bottomText2.scale(0.5)
+ bottomText3.scale(0.5)
+ bottomText4.scale(0.5)
+
+ bottomText1.shift(3*RIGHT+2*DOWN)
+ bottomText2.shift(3*RIGHT+2*DOWN)
+ bottomText3.shift(3*RIGHT+2*DOWN)
+ bottomText4.shift(3*RIGHT+2*DOWN)
+
+ equations=[self.get_graph(lambda x:math.log2(2),color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2,color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8,color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24,color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64,color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160,color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160-((x-2)**6)/384,color=BLUE)]
+
+ terms=[TextMobject("$T_{n}:=$"),TextMobject("$ln(2)$"),TextMobject("$+\\frac { x-2 }{ 2 } $"),TextMobject("$-\\frac { (x-2)^{2} }{ 8 }$"),TextMobject("+..")]
+ for obj in terms:
+ obj.scale(0.5)
+
+ terms[0].shift(3*UP+3*RIGHT)
+ terms[1].next_to(terms[0],buff=0.1)
+ terms[2].next_to(terms[1],buff=0.1)
+ terms[3].next_to(terms[2],buff=0.1)
+ terms[4].next_to(terms[3],buff=0.1)
+
+ self.play(ShowCreation(lnx))
+ self.wait(1)
+ self.play(Write(bottomText1))
+ self.wait(0.5)
+ self.play(ShowCreation(equations[0]),Write(terms[0]),Write(terms[1]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText1,bottomText2))
+ self.wait(0.5)
+ self.play(ReplacementTransform(equations[0],equations[1]),Write(terms[2]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText2,bottomText3))
+ self.wait(0.5)
+ self.play(ReplacementTransform(equations[1],equations[2]),Write(terms[3]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText3,bottomText4),Write(terms[4]))
+ self.wait(1.5)
+
+ self.play(FadeOut(terms[0]),FadeOut(terms[1]),FadeOut(terms[2]),FadeOut(terms[3]),FadeOut(terms[4]),FadeOut(bottomText4))
+
+ dline=DashedLine(start=ORIGIN+8*y_each_unit*UP,end=ORIGIN+8*y_each_unit*DOWN)
+ dline.shift(ORIGIN+x_each_unit*4*RIGHT)
+
+ bottomText5=TextMobject("Here","after $x=4$",", the graph","continuously diverges away","from $ln(x)$")
+ bottomText5.scale(0.3)
+ bottomText5.shift(4.5*RIGHT+2*DOWN)
+ bottomText5.set_color_by_tex_to_color_map({"after $x=4$":YELLOW,"continuously diverges away":BLUE})
+
+ self.play(Write(bottomText5),Write(dline))
+ self.wait(1)
+ self.play(ReplacementTransform(equations[2],equations[3]))
+ self.wait(0.3)
+ self.play(ReplacementTransform(equations[3],equations[4]))
+ self.wait(0.3)
+ self.play(ReplacementTransform(equations[4],equations[5]))
+ self.wait(0.3)
+ self.play(ReplacementTransform(equations[5],equations[6]),FadeOut(bottomText5))
+ self.wait(1)
+
+ circle=Circle(radius=ORIGIN+x_each_unit*2,color=PURPLE_E)
+ circle.shift(ORIGIN+RIGHT*x_each_unit*2)
+ radiusLine=Line(start=ORIGIN+x_each_unit*RIGHT*2,end=ORIGIN+x_each_unit*4*RIGHT,color=PURPLE_E)
+ radius=TextMobject("$R$")
+ radius.set_color(RED)
+ radius.scale(0.5)
+ radius.shift(ORIGIN+RIGHT*x_each_unit*2.45+DOWN*y_each_unit*0.6)
+
+ self.play(FadeOut(equations[6]),Write(circle))
+ self.wait(0.6)
+ self.play(Write(radiusLine))
+ self.play(FadeIn(radius))
+ self.wait(2)
\ No newline at end of file
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/script4.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/script4.py
new file mode 100644
index 0000000..1f41c97
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/script4.py
@@ -0,0 +1,82 @@
+from manimlib.imports import*
+import math
+
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -8,
+ "y_max": 8,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-8, 8, 1),
+ }
+ def construct(self):
+
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ self.setup_axes(animate=True)
+ lnx=self.get_graph(lambda x:math.log2(x),color=RED,x_min=0.01,x_max=8)
+ equation=self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160-((x-2)**6)/384,color=BLUE)
+
+ terms=[TextMobject("$T_{n}:=$"),TextMobject("$ln(2)$"),TextMobject("$+\\frac { x-2 }{ 2 } $"),TextMobject("$-\\frac { (x-2)^{2} }{ 8 }$"),TextMobject("+..")]
+ for obj in terms:
+ obj.scale(0.5)
+
+ terms[0].shift(3*UP+3*RIGHT)
+ terms[1].next_to(terms[0],buff=0.1)
+ terms[2].next_to(terms[1],buff=0.1)
+ terms[3].next_to(terms[2],buff=0.1)
+ terms[4].next_to(terms[3],buff=0.1)
+
+ self.play(ShowCreation(lnx))
+ self.wait(1)
+ self.play(FadeIn(equation),FadeIn(terms[0]),FadeIn(terms[1]),FadeIn(terms[2]),FadeIn(terms[3]),FadeIn(terms[4]))
+ self.wait(1)
+
+ bottomText1=TextMobject("$R_{n}(x)=\\frac { d }{ dx } ($","area bounded","$)$")
+
+ bottomText1.set_color_by_tex_to_color_map({"area bounded":ORANGE})
+ #bottomText2.set_color_by_tex_to_color_map({"area bounded":BLUE})
+ arrow=TextMobject("$\downarrow$")
+ arrow.scale(2.5)
+ arrow.shift(ORIGIN+x_each_unit*RIGHT*9.5+UP*y_each_unit)
+ increasingText=TextMobject("Increases!")
+ increasingText.set_color(GREEN)
+ followupText=TextMobject("as n increase!")
+ followupText.scale(0.3)
+ followupText.shift(ORIGIN+x_each_unit*11*RIGHT+UP*y_each_unit*1.1)
+ increasingText.shift(ORIGIN+x_each_unit*11*RIGHT+UP*y_each_unit*1.6)
+ increasingText.scale(0.4)
+
+ bottomText1.scale(0.5)
+ #bottomText2.scale(0.5)
+ #bottomText3.scale(0.5)
+
+ bottomText1.shift(3.5*LEFT+2*DOWN)
+ #bottomText2.shift(3.5*LEFT+2.4*DOWN)
+ #bottomText3.shift(3.5*LEFT+2.8*DOWN)
+
+ dline=DashedLine(start=ORIGIN+8*y_each_unit*UP,end=ORIGIN+8*y_each_unit*DOWN)
+ dline.shift(ORIGIN+x_each_unit*4*RIGHT)
+
+ area1=self.get_riemann_rectangles(lnx,x_max=8,x_min=4,dx=0.01,start_color=BLUE,end_color=RED,stroke_width=0,fill_opacity=0.8)
+ area2=self.get_riemann_rectangles(equation,x_max=5.2,x_min=4,dx=0.025,start_color=BLACK,end_color=BLACK,stroke_width=0,fill_opacity=1)
+
+ self.play(Write(dline))
+ self.wait(0.5)
+ self.play(ShowCreation(area1),ShowCreation(area2),Write(bottomText1))
+ # self.play(Write(bottomText2))
+ # self.play(FadeIn(bottomText3))
+ self.play(Write(arrow))
+ self.wait(0.7)
+ self.play(Write(increasingText))
+ self.play(FadeIn(followupText))
+ self.wait(2)
+
\ No newline at end of file
--
cgit
From 1e686327480f17e623f1aa51885ba44a7486ae99 Mon Sep 17 00:00:00 2001
From: stayaryan
Date: Tue, 26 May 2020 13:34:16 +0530
Subject: Update README.md
---
FSF-2020/calculus/intro-to-calculus/README.md | 8 ++++++++
1 file changed, 8 insertions(+)
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/intro-to-calculus/README.md b/FSF-2020/calculus/intro-to-calculus/README.md
index e69de29..a417361 100644
--- a/FSF-2020/calculus/intro-to-calculus/README.md
+++ b/FSF-2020/calculus/intro-to-calculus/README.md
@@ -0,0 +1,8 @@
+Contributor: Aryan Singh
+Subtopics covered
+ - When do limits exist?
+ - How Fast am I going?-An intro to derivatives
+ - Infinte sums in a nutshell(Riemann integrals)
+ - Fundamental Theorem of calculus
+ - Volume and surface area of Gabriel's Horn
+ - Infinite sequences and series
--
cgit
From 3cbdadc15fd43741da0593dc28c793f5bc4f4605 Mon Sep 17 00:00:00 2001
From: G Sri Harsha
Date: Tue, 26 May 2020 13:37:12 +0530
Subject: Create README.md
---
FSF-2020/calculus/series-and-transformations/Power Series/README.md | 1 +
1 file changed, 1 insertion(+)
create mode 100644 FSF-2020/calculus/series-and-transformations/Power Series/README.md
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/README.md b/FSF-2020/calculus/series-and-transformations/Power Series/README.md
new file mode 100644
index 0000000..8b13789
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/README.md
@@ -0,0 +1 @@
+
--
cgit
From d6ca601016946a89ac1075e6053a34238a7e7747 Mon Sep 17 00:00:00 2001
From: G Sri Harsha
Date: Tue, 26 May 2020 13:38:49 +0530
Subject: Add files via upload
---
.../Power Series/gifs/file2_convergence_Intuition.gif | Bin 0 -> 98910 bytes
1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 FSF-2020/calculus/series-and-transformations/Power Series/gifs/file2_convergence_Intuition.gif
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file2_convergence_Intuition.gif b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file2_convergence_Intuition.gif
new file mode 100644
index 0000000..9463ac2
Binary files /dev/null and b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file2_convergence_Intuition.gif differ
--
cgit
From 2f42a032081080b48b621f5e5dd2d8501ff742f4 Mon Sep 17 00:00:00 2001
From: G Sri Harsha
Date: Tue, 26 May 2020 13:40:14 +0530
Subject: Update README.md
---
FSF-2020/calculus/series-and-transformations/Power Series/README.md | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/README.md b/FSF-2020/calculus/series-and-transformations/Power Series/README.md
index 8b13789..ff82d8a 100644
--- a/FSF-2020/calculus/series-and-transformations/Power Series/README.md
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/README.md
@@ -1 +1 @@
-
+![GIF1](\gifs\file2_convergence_Intuition.gif)
--
cgit
From 428291edcb643526c6b3b23d27004457c9cb074a Mon Sep 17 00:00:00 2001
From: G Sri Harsha
Date: Tue, 26 May 2020 13:40:40 +0530
Subject: Update README.md
---
FSF-2020/calculus/series-and-transformations/Power Series/README.md | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/README.md b/FSF-2020/calculus/series-and-transformations/Power Series/README.md
index ff82d8a..17fd0a8 100644
--- a/FSF-2020/calculus/series-and-transformations/Power Series/README.md
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/README.md
@@ -1 +1 @@
-![GIF1](\gifs\file2_convergence_Intuition.gif)
+![GIF1](gifs\file2_convergence_Intuition.gif)
--
cgit
From d9996901cc7d1039f45c4163792d77066223811c Mon Sep 17 00:00:00 2001
From: G Sri Harsha
Date: Tue, 26 May 2020 13:40:57 +0530
Subject: Update README.md
---
FSF-2020/calculus/series-and-transformations/Power Series/README.md | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/README.md b/FSF-2020/calculus/series-and-transformations/Power Series/README.md
index 17fd0a8..daf65fe 100644
--- a/FSF-2020/calculus/series-and-transformations/Power Series/README.md
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/README.md
@@ -1 +1 @@
-![GIF1](gifs\file2_convergence_Intuition.gif)
+![GIF1](file2_convergence_Intuition.gif)
--
cgit
From 37506a553accfe614fc6d84b6f37c1ed4d2193b6 Mon Sep 17 00:00:00 2001
From: G Sri Harsha
Date: Tue, 26 May 2020 13:43:09 +0530
Subject: Update README.md
---
FSF-2020/calculus/series-and-transformations/Power Series/README.md | 2 +-
1 file changed, 1 insertion(+), 1 deletion(-)
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/README.md b/FSF-2020/calculus/series-and-transformations/Power Series/README.md
index daf65fe..d06a3a5 100644
--- a/FSF-2020/calculus/series-and-transformations/Power Series/README.md
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/README.md
@@ -1 +1 @@
-![GIF1](file2_convergence_Intuition.gif)
+![GIF1](gifs/file2_convergence_Intuition.gif)
--
cgit
From ed2614068a6f37ea7913d48e38356ef84ed22729 Mon Sep 17 00:00:00 2001
From: G Sri Harsha
Date: Tue, 26 May 2020 13:56:54 +0530
Subject: Add files via upload
---
.../gifs/file3_convergence_of_a_function.gif | Bin 0 -> 415313 bytes
1 file changed, 0 insertions(+), 0 deletions(-)
create mode 100644 FSF-2020/calculus/series-and-transformations/Power Series/gifs/file3_convergence_of_a_function.gif
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file3_convergence_of_a_function.gif b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file3_convergence_of_a_function.gif
new file mode 100644
index 0000000..836e044
Binary files /dev/null and b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file3_convergence_of_a_function.gif differ
--
cgit
From ef8ccf090a9a02a82ea1551dcd633dc4900358a1 Mon Sep 17 00:00:00 2001
From: G Sri Harsha
Date: Tue, 26 May 2020 13:57:38 +0530
Subject: Update README.md
---
FSF-2020/calculus/series-and-transformations/Power Series/README.md | 2 ++
1 file changed, 2 insertions(+)
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/README.md b/FSF-2020/calculus/series-and-transformations/Power Series/README.md
index d06a3a5..acf07b7 100644
--- a/FSF-2020/calculus/series-and-transformations/Power Series/README.md
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/README.md
@@ -1 +1,3 @@
![GIF1](gifs/file2_convergence_Intuition.gif)
+
+![GIF2](gifs/file3_convergence_of_a_function.gif)
--
cgit
From f1aae8412472c2039dd3323427ea416f7092db7b Mon Sep 17 00:00:00 2001
From: G Sri Harsha
Date: Tue, 26 May 2020 14:32:23 +0530
Subject: Add files via upload
---
.../Power Series/PowerSeriesQuestions.pdf | Bin 112622 -> 118730 bytes
1 file changed, 0 insertions(+), 0 deletions(-)
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/PowerSeriesQuestions.pdf b/FSF-2020/calculus/series-and-transformations/Power Series/PowerSeriesQuestions.pdf
index 04ed6d5..9fc409b 100644
Binary files a/FSF-2020/calculus/series-and-transformations/Power Series/PowerSeriesQuestions.pdf and b/FSF-2020/calculus/series-and-transformations/Power Series/PowerSeriesQuestions.pdf differ
--
cgit
From 5a2423fa9b3b66f109336f003b087bbcc57e9598 Mon Sep 17 00:00:00 2001
From: G Sri Harsha
Date: Tue, 26 May 2020 14:33:06 +0530
Subject: Delete script1.py
---
.../Power Series/script1.py | 128 ---------------------
1 file changed, 128 deletions(-)
delete mode 100644 FSF-2020/calculus/series-and-transformations/Power Series/script1.py
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/script1.py b/FSF-2020/calculus/series-and-transformations/Power Series/script1.py
deleted file mode 100644
index 28eb07c..0000000
--- a/FSF-2020/calculus/series-and-transformations/Power Series/script1.py
+++ /dev/null
@@ -1,128 +0,0 @@
-from manimlib.imports import *
-
-
-def formFormula(coeff_list,variable_list):
- coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
- variable_list=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
- coeff_list[0].shift(2.2*UP+1.6*LEFT)
- for i in range(0,3):
- coeff_list[i].set_color(GOLD_A)
- variable_list[i].next_to(coeff_list[i],buff=0.1)
- if i!=2:
- coeff_list[i+1].next_to(variable_list[i],buff=0.1)
- dots=TextMobject("...")
- dots.next_to(variable_list[2])
- expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots)
- expansion.scale(0.7)
- return expansion
-
-class pieChart(Scene):
- def construct(self):
- circle1=Circle(radius=3,color=BLUE)
- powerText=TextMobject("Power Series")
- powerText.scale(0.8)
- self.play(FadeIn(powerText))
- self.play(ShowCreation(circle1))
- self.wait(1)
-
- powerGroup=VGroup(circle1,powerText)
-
- self.play(ApplyMethod(powerGroup.scale,0.5))
- self.play(ApplyMethod(powerGroup.move_to,2.2*UP))
- self.wait(0.5)
- expansion_power_coeff=[]
- variables_power=[]
- expansion_power=formFormula(expansion_power_coeff,variables_power)
- self.play(ReplacementTransform(powerText,expansion_power))
- self.wait(1)
-
- circle2=Circle(radius=1.5)
- circle2.shift(2.2*UP)
- expansion_geo_coeff=[0]*3
- variables_geo=[0]*3
- arrow1_2=Line(start=0.7*UP,end=2.5*LEFT)
- expansion_geo_coeff=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
- for i in range(0,3):
- expansion_geo_coeff[i].set_color(GOLD_A)
- variables_geo=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
- expansion_geo_coeff[0].shift(2.2*UP+1.6*LEFT)
- for i in range(0,3):
- variables_geo[i].next_to(expansion_geo_coeff[i],buff=0.1)
- if i!=2:
- expansion_geo_coeff[i+1].next_to(variables_geo[i],buff=0.1)
- dots=TextMobject("...")
- dots.next_to(variables_geo[2])
- expansion_geo=VGroup(expansion_geo_coeff[0],expansion_geo_coeff[1],expansion_geo_coeff[2],variables_geo[0],variables_geo[1],variables_geo[2],dots)
- expansion_geo.scale(0.7)
-
- self.play(ApplyMethod(circle2.shift,4*LEFT+2.5*DOWN),ApplyMethod(expansion_geo.shift,4*LEFT+2.5*DOWN))
- self.add(arrow1_2)
- self.wait(1)
-
- ones=[TextMobject("1"),TextMobject("1"),TextMobject("1")]
- for i in range(0,3):
- ones[i].set_color(GOLD_A)
- ones[0].shift(0.3*DOWN,5*LEFT)
- ones[1].next_to(ones[0],buff=0.5)
- ones[2].next_to(ones[1],buff=0.7)
- self.play(ReplacementTransform(expansion_geo_coeff[0],ones[0]),ReplacementTransform(expansion_geo_coeff[1],ones[1]),ReplacementTransform(expansion_geo_coeff[2],ones[2]))
- self.wait(1)
- expansion_geo=VGroup(ones[0],ones[1],ones[2],variables_geo[0],variables_geo[1],variables_geo[2],dots)
-
- expansion_geo_final=TextMobject("$1+x+{ x }^{ 2 }..$")
- expansion_geo_final.scale(0.8)
- expansion_geo_final.shift(0.3*DOWN+4*LEFT)
- self.play(ReplacementTransform(expansion_geo,expansion_geo_final))
- self.wait(1)
-
- circle3=Circle(radius=1.5,color=GREEN)
- circle3.shift(2.2*UP)
- expansion_taylor_coeff=[0]*3
- variables_taylor=[0]*3
- arrow1_3=Line(start=0.7*UP,end=DOWN*0.3)
- expansion_taylor_coeff=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
- for i in range(0,3):
- expansion_taylor_coeff[i].set_color(GOLD_A)
- variables_taylor=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
- expansion_taylor_coeff[0].shift(2.2*UP+1.6*LEFT)
- for i in range(0,3):
- variables_taylor[i].next_to(expansion_taylor_coeff[i],buff=0.1)
- if i!=2:
- expansion_taylor_coeff[i+1].next_to(variables_taylor[i],buff=0.1)
- dots=TextMobject("...")
- dots.next_to(variables_taylor[2])
- expansion_taylor=VGroup(expansion_taylor_coeff[0],expansion_taylor_coeff[1],expansion_taylor_coeff[2],variables_taylor[0],variables_taylor[1],variables_taylor[2],dots)
- expansion_taylor.scale(0.7)
-
- self.play(ApplyMethod(circle3.shift,4*DOWN),ApplyMethod(expansion_taylor.shift,4*DOWN))
- self.add(arrow1_3)
- self.wait(1)
-
- differentials=[TextMobject("$f(0)$"),TextMobject("${ f'\left( 0 \\right) }$"),TextMobject("$\\frac { f''\left( 0 \\right) }{ 2! }$")]
- for i in range(0,3):
- differentials[i].set_color(GOLD_A)
- differentials[0].shift(1.8*DOWN+1.15*LEFT)
- differentials[1].shift(1.8*DOWN+0.45*LEFT)
- differentials[2].shift(1.8*DOWN+0.45*RIGHT)
- differentials[0].scale(0.35)
- differentials[1].scale(0.35)
- differentials[2].scale(0.35)
- self.play(ReplacementTransform(expansion_taylor_coeff[0],differentials[0]),ReplacementTransform(expansion_taylor_coeff[1],differentials[1]),ReplacementTransform(expansion_taylor_coeff[2],differentials[2]))
- self.wait(2)
- expansion_taylor_final=VGroup(differentials[0],differentials[1],differentials[2],variables_taylor[0],variables_taylor[1],variables_taylor[2],dots)
-
- self.play(FadeOut(expansion_geo_final),FadeOut(expansion_taylor_final))
- geoText=TextMobject("Geometric Series")
- geoText.scale(0.7)
- geoText.shift(4*LEFT+0.3*DOWN)
- taylorText=TextMobject("Taylor Series")
- taylorText.scale(0.7)
- taylorText.shift(1.8*DOWN)
- self.play(FadeIn(geoText),FadeIn(taylorText))
- self.wait(1)
-
- soOntext=TextMobject("So on..!")
- soOntext.shift(4*RIGHT)
- soOntext.scale(0.8)
- self.play(FadeIn(soOntext))
- self.wait(2)
--
cgit
From 3a3da8845f29e8bf3b1f6ea9d2938eadd80cb1f6 Mon Sep 17 00:00:00 2001
From: G Sri Harsha
Date: Tue, 26 May 2020 14:33:14 +0530
Subject: Delete script2.py
---
.../Power Series/script2.py | 94 ----------------------
1 file changed, 94 deletions(-)
delete mode 100644 FSF-2020/calculus/series-and-transformations/Power Series/script2.py
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/script2.py b/FSF-2020/calculus/series-and-transformations/Power Series/script2.py
deleted file mode 100644
index 72356c6..0000000
--- a/FSF-2020/calculus/series-and-transformations/Power Series/script2.py
+++ /dev/null
@@ -1,94 +0,0 @@
-from manimlib.imports import *
-import numpy as np
-
-
-class convergence(Scene):
- def construct(self):
- originalFormula=TextMobject("$\sum _{ n=0 }^{ \infty }{ { a }_{ n }{ x }^{ n } }$")
- originalFormula.set_color(RED)
- self.play(Write(originalFormula))
- self.wait(1)
- self.play(ApplyMethod(originalFormula.shift,2.7*UP))
- self.wait(1)
-
- terms=["$a_{ 0 }$","$a_{ 1 }x$","$a_{ 2 }x^{ 2 }$","$a_{ 3 }x^{ 3 }$","$a_{ 4 }x^{ 4 }$","$a_{ 5 }x^{ 5 }$","$a_{ 6 }x^{ 6 }$","$a_{ 7 }x^{ 7 }$","$a_{ 8 }x^{ 8 }$","$a_{ 9 }x^{ 9 }$","$a_{ 10 }x^{ 10 }$","$a_{ 11 }x^{ 11 }$"]
- termsTogetherString="+".join(terms)
- termsTogether=TextMobject(termsTogetherString+"...")
- termsTogether.scale(0.8)
- termsTogether.shift(2.7*UP)
- self.play(ReplacementTransform(originalFormula,termsTogether))
- self.wait(1)
-
- termMobjectRect=[0]*12
- termMobject=TextMobject(terms[0])
- termMobject.shift(2.7*UP+6.2*LEFT)
- for i in range(1,13):
- termMobjectOld=termMobject
- termMobjectOld.scale(0.8)
- if(i<12):
- termMobject=TextMobject(terms[i])
- termMobject.next_to(termMobjectOld)
- if(i==1):
- rectDefine=TextMobject("Here","each rectangle","represents the","value of the term")
- rectDefine.set_color_by_tex_to_color_map({"each rectangle":BLUE,"value of the term":YELLOW})
- rectDefine.scale(0.7)
- rectDefine.shift(3.2*DOWN)
- self.play(Write(rectDefine))
- self.wait(1)
- if(i==2):
- ratio=TextMobject("If $\\frac { a_{ n+1 } }{ { a }_{ n } } < 1$")
- ratio.set_color(RED)
- ratio.scale(0.7)
- ratio.move_to(3.2*DOWN)
- inequality=TextMobject("$a_{ n+1 } < a_{ n }$")
- inequality.set_color(RED)
- inequality.scale(0.7)
- inequality.move_to(3.2*DOWN)
- self.play(FadeOut(rectDefine))
- self.play(Write(ratio))
- self.wait(1)
- self.play(ReplacementTransform(ratio,inequality))
- self.wait(1)
- #self.play(ApplyMethod(termMobjectOld.move_to,(2-0.3*i)*DOWN+RIGHT*0.2*i))
- termMobjectRect[i-1]=Rectangle(height=0.1,width=(5-0.4*i))
- termMobjectRect[i-1].move_to((2-0.2*i)*DOWN+RIGHT*0.2*i)
- #rectangles[p] = termMobjectRect
- #p+=1
- self.play(ReplacementTransform(termMobjectOld,termMobjectRect[i-1]))
-
- uparrow=TextMobject("$\\uparrow$")
- uparrow.set_color(GREEN)
- uparrow.scale(6)
- uparrow.shift(4*RIGHT+0.5*DOWN)
- self.play(ShowCreation(uparrow))
- self.wait(1)
-
- converges=TextMobject("Converges!")
- converges.set_color(RED)
- converges.scale(0.6)
- converges.next_to(uparrow)
- self.play(FadeIn(converges))
- self.wait(2)
-
- self.play(FadeOut(converges),FadeOut(uparrow),FadeOut(inequality))
- self.wait(0.5)
- rect=VGroup(termMobjectRect[0],termMobjectRect[1],termMobjectRect[2],termMobjectRect[3],termMobjectRect[4],termMobjectRect[5],termMobjectRect[6],termMobjectRect[7],termMobjectRect[8],termMobjectRect[9],termMobjectRect[10],termMobjectRect[11])
- self.play(ApplyMethod(rect.scale,0.2))
- for i in range(0,12):
- self.play(ApplyMethod(termMobjectRect[i].shift,i*0.04*DOWN+(11-(3-0.11*i)*i)*LEFT*0.3))
- func=TextMobject("$\\approx$","$f(x)$")
- func.set_color_by_tex_to_color_map({"$f(x)$":RED})
- func.scale(0.8)
- func.shift(DOWN+4.5*RIGHT+0.1*UP)
- self.play(FadeIn(func))
-
- rightarrow=TextMobject("$\\rightarrow$")
- rightarrow.set_color(GREEN)
- rightarrow.scale(4)
- rightarrow.shift(2*DOWN)
- converges=TextMobject("Hence even the","sum converges!")
- converges.set_color_by_tex_to_color_map({"sum converges!":RED})
- converges.move_to(3*DOWN)
- converges.scale(0.7)
- self.play(Write(rightarrow),FadeIn(converges))
- self.wait(2)
--
cgit
From 6e570da33384e47c5c6533f50f06342be29e4e4d Mon Sep 17 00:00:00 2001
From: G Sri Harsha
Date: Tue, 26 May 2020 14:33:30 +0530
Subject: Add files via upload
---
.../Power Series/video1_pieChart.py | 128 +++++++++++++++++++++
.../Power Series/video2_convergence_Intuition.py | 94 +++++++++++++++
2 files changed, 222 insertions(+)
create mode 100644 FSF-2020/calculus/series-and-transformations/Power Series/video1_pieChart.py
create mode 100644 FSF-2020/calculus/series-and-transformations/Power Series/video2_convergence_Intuition.py
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/video1_pieChart.py b/FSF-2020/calculus/series-and-transformations/Power Series/video1_pieChart.py
new file mode 100644
index 0000000..28eb07c
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/video1_pieChart.py
@@ -0,0 +1,128 @@
+from manimlib.imports import *
+
+
+def formFormula(coeff_list,variable_list):
+ coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ variable_list=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
+ coeff_list[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ coeff_list[i].set_color(GOLD_A)
+ variable_list[i].next_to(coeff_list[i],buff=0.1)
+ if i!=2:
+ coeff_list[i+1].next_to(variable_list[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variable_list[2])
+ expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots)
+ expansion.scale(0.7)
+ return expansion
+
+class pieChart(Scene):
+ def construct(self):
+ circle1=Circle(radius=3,color=BLUE)
+ powerText=TextMobject("Power Series")
+ powerText.scale(0.8)
+ self.play(FadeIn(powerText))
+ self.play(ShowCreation(circle1))
+ self.wait(1)
+
+ powerGroup=VGroup(circle1,powerText)
+
+ self.play(ApplyMethod(powerGroup.scale,0.5))
+ self.play(ApplyMethod(powerGroup.move_to,2.2*UP))
+ self.wait(0.5)
+ expansion_power_coeff=[]
+ variables_power=[]
+ expansion_power=formFormula(expansion_power_coeff,variables_power)
+ self.play(ReplacementTransform(powerText,expansion_power))
+ self.wait(1)
+
+ circle2=Circle(radius=1.5)
+ circle2.shift(2.2*UP)
+ expansion_geo_coeff=[0]*3
+ variables_geo=[0]*3
+ arrow1_2=Line(start=0.7*UP,end=2.5*LEFT)
+ expansion_geo_coeff=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ for i in range(0,3):
+ expansion_geo_coeff[i].set_color(GOLD_A)
+ variables_geo=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
+ expansion_geo_coeff[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ variables_geo[i].next_to(expansion_geo_coeff[i],buff=0.1)
+ if i!=2:
+ expansion_geo_coeff[i+1].next_to(variables_geo[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variables_geo[2])
+ expansion_geo=VGroup(expansion_geo_coeff[0],expansion_geo_coeff[1],expansion_geo_coeff[2],variables_geo[0],variables_geo[1],variables_geo[2],dots)
+ expansion_geo.scale(0.7)
+
+ self.play(ApplyMethod(circle2.shift,4*LEFT+2.5*DOWN),ApplyMethod(expansion_geo.shift,4*LEFT+2.5*DOWN))
+ self.add(arrow1_2)
+ self.wait(1)
+
+ ones=[TextMobject("1"),TextMobject("1"),TextMobject("1")]
+ for i in range(0,3):
+ ones[i].set_color(GOLD_A)
+ ones[0].shift(0.3*DOWN,5*LEFT)
+ ones[1].next_to(ones[0],buff=0.5)
+ ones[2].next_to(ones[1],buff=0.7)
+ self.play(ReplacementTransform(expansion_geo_coeff[0],ones[0]),ReplacementTransform(expansion_geo_coeff[1],ones[1]),ReplacementTransform(expansion_geo_coeff[2],ones[2]))
+ self.wait(1)
+ expansion_geo=VGroup(ones[0],ones[1],ones[2],variables_geo[0],variables_geo[1],variables_geo[2],dots)
+
+ expansion_geo_final=TextMobject("$1+x+{ x }^{ 2 }..$")
+ expansion_geo_final.scale(0.8)
+ expansion_geo_final.shift(0.3*DOWN+4*LEFT)
+ self.play(ReplacementTransform(expansion_geo,expansion_geo_final))
+ self.wait(1)
+
+ circle3=Circle(radius=1.5,color=GREEN)
+ circle3.shift(2.2*UP)
+ expansion_taylor_coeff=[0]*3
+ variables_taylor=[0]*3
+ arrow1_3=Line(start=0.7*UP,end=DOWN*0.3)
+ expansion_taylor_coeff=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ for i in range(0,3):
+ expansion_taylor_coeff[i].set_color(GOLD_A)
+ variables_taylor=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
+ expansion_taylor_coeff[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ variables_taylor[i].next_to(expansion_taylor_coeff[i],buff=0.1)
+ if i!=2:
+ expansion_taylor_coeff[i+1].next_to(variables_taylor[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variables_taylor[2])
+ expansion_taylor=VGroup(expansion_taylor_coeff[0],expansion_taylor_coeff[1],expansion_taylor_coeff[2],variables_taylor[0],variables_taylor[1],variables_taylor[2],dots)
+ expansion_taylor.scale(0.7)
+
+ self.play(ApplyMethod(circle3.shift,4*DOWN),ApplyMethod(expansion_taylor.shift,4*DOWN))
+ self.add(arrow1_3)
+ self.wait(1)
+
+ differentials=[TextMobject("$f(0)$"),TextMobject("${ f'\left( 0 \\right) }$"),TextMobject("$\\frac { f''\left( 0 \\right) }{ 2! }$")]
+ for i in range(0,3):
+ differentials[i].set_color(GOLD_A)
+ differentials[0].shift(1.8*DOWN+1.15*LEFT)
+ differentials[1].shift(1.8*DOWN+0.45*LEFT)
+ differentials[2].shift(1.8*DOWN+0.45*RIGHT)
+ differentials[0].scale(0.35)
+ differentials[1].scale(0.35)
+ differentials[2].scale(0.35)
+ self.play(ReplacementTransform(expansion_taylor_coeff[0],differentials[0]),ReplacementTransform(expansion_taylor_coeff[1],differentials[1]),ReplacementTransform(expansion_taylor_coeff[2],differentials[2]))
+ self.wait(2)
+ expansion_taylor_final=VGroup(differentials[0],differentials[1],differentials[2],variables_taylor[0],variables_taylor[1],variables_taylor[2],dots)
+
+ self.play(FadeOut(expansion_geo_final),FadeOut(expansion_taylor_final))
+ geoText=TextMobject("Geometric Series")
+ geoText.scale(0.7)
+ geoText.shift(4*LEFT+0.3*DOWN)
+ taylorText=TextMobject("Taylor Series")
+ taylorText.scale(0.7)
+ taylorText.shift(1.8*DOWN)
+ self.play(FadeIn(geoText),FadeIn(taylorText))
+ self.wait(1)
+
+ soOntext=TextMobject("So on..!")
+ soOntext.shift(4*RIGHT)
+ soOntext.scale(0.8)
+ self.play(FadeIn(soOntext))
+ self.wait(2)
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/video2_convergence_Intuition.py b/FSF-2020/calculus/series-and-transformations/Power Series/video2_convergence_Intuition.py
new file mode 100644
index 0000000..72356c6
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/video2_convergence_Intuition.py
@@ -0,0 +1,94 @@
+from manimlib.imports import *
+import numpy as np
+
+
+class convergence(Scene):
+ def construct(self):
+ originalFormula=TextMobject("$\sum _{ n=0 }^{ \infty }{ { a }_{ n }{ x }^{ n } }$")
+ originalFormula.set_color(RED)
+ self.play(Write(originalFormula))
+ self.wait(1)
+ self.play(ApplyMethod(originalFormula.shift,2.7*UP))
+ self.wait(1)
+
+ terms=["$a_{ 0 }$","$a_{ 1 }x$","$a_{ 2 }x^{ 2 }$","$a_{ 3 }x^{ 3 }$","$a_{ 4 }x^{ 4 }$","$a_{ 5 }x^{ 5 }$","$a_{ 6 }x^{ 6 }$","$a_{ 7 }x^{ 7 }$","$a_{ 8 }x^{ 8 }$","$a_{ 9 }x^{ 9 }$","$a_{ 10 }x^{ 10 }$","$a_{ 11 }x^{ 11 }$"]
+ termsTogetherString="+".join(terms)
+ termsTogether=TextMobject(termsTogetherString+"...")
+ termsTogether.scale(0.8)
+ termsTogether.shift(2.7*UP)
+ self.play(ReplacementTransform(originalFormula,termsTogether))
+ self.wait(1)
+
+ termMobjectRect=[0]*12
+ termMobject=TextMobject(terms[0])
+ termMobject.shift(2.7*UP+6.2*LEFT)
+ for i in range(1,13):
+ termMobjectOld=termMobject
+ termMobjectOld.scale(0.8)
+ if(i<12):
+ termMobject=TextMobject(terms[i])
+ termMobject.next_to(termMobjectOld)
+ if(i==1):
+ rectDefine=TextMobject("Here","each rectangle","represents the","value of the term")
+ rectDefine.set_color_by_tex_to_color_map({"each rectangle":BLUE,"value of the term":YELLOW})
+ rectDefine.scale(0.7)
+ rectDefine.shift(3.2*DOWN)
+ self.play(Write(rectDefine))
+ self.wait(1)
+ if(i==2):
+ ratio=TextMobject("If $\\frac { a_{ n+1 } }{ { a }_{ n } } < 1$")
+ ratio.set_color(RED)
+ ratio.scale(0.7)
+ ratio.move_to(3.2*DOWN)
+ inequality=TextMobject("$a_{ n+1 } < a_{ n }$")
+ inequality.set_color(RED)
+ inequality.scale(0.7)
+ inequality.move_to(3.2*DOWN)
+ self.play(FadeOut(rectDefine))
+ self.play(Write(ratio))
+ self.wait(1)
+ self.play(ReplacementTransform(ratio,inequality))
+ self.wait(1)
+ #self.play(ApplyMethod(termMobjectOld.move_to,(2-0.3*i)*DOWN+RIGHT*0.2*i))
+ termMobjectRect[i-1]=Rectangle(height=0.1,width=(5-0.4*i))
+ termMobjectRect[i-1].move_to((2-0.2*i)*DOWN+RIGHT*0.2*i)
+ #rectangles[p] = termMobjectRect
+ #p+=1
+ self.play(ReplacementTransform(termMobjectOld,termMobjectRect[i-1]))
+
+ uparrow=TextMobject("$\\uparrow$")
+ uparrow.set_color(GREEN)
+ uparrow.scale(6)
+ uparrow.shift(4*RIGHT+0.5*DOWN)
+ self.play(ShowCreation(uparrow))
+ self.wait(1)
+
+ converges=TextMobject("Converges!")
+ converges.set_color(RED)
+ converges.scale(0.6)
+ converges.next_to(uparrow)
+ self.play(FadeIn(converges))
+ self.wait(2)
+
+ self.play(FadeOut(converges),FadeOut(uparrow),FadeOut(inequality))
+ self.wait(0.5)
+ rect=VGroup(termMobjectRect[0],termMobjectRect[1],termMobjectRect[2],termMobjectRect[3],termMobjectRect[4],termMobjectRect[5],termMobjectRect[6],termMobjectRect[7],termMobjectRect[8],termMobjectRect[9],termMobjectRect[10],termMobjectRect[11])
+ self.play(ApplyMethod(rect.scale,0.2))
+ for i in range(0,12):
+ self.play(ApplyMethod(termMobjectRect[i].shift,i*0.04*DOWN+(11-(3-0.11*i)*i)*LEFT*0.3))
+ func=TextMobject("$\\approx$","$f(x)$")
+ func.set_color_by_tex_to_color_map({"$f(x)$":RED})
+ func.scale(0.8)
+ func.shift(DOWN+4.5*RIGHT+0.1*UP)
+ self.play(FadeIn(func))
+
+ rightarrow=TextMobject("$\\rightarrow$")
+ rightarrow.set_color(GREEN)
+ rightarrow.scale(4)
+ rightarrow.shift(2*DOWN)
+ converges=TextMobject("Hence even the","sum converges!")
+ converges.set_color_by_tex_to_color_map({"sum converges!":RED})
+ converges.move_to(3*DOWN)
+ converges.scale(0.7)
+ self.play(Write(rightarrow),FadeIn(converges))
+ self.wait(2)
--
cgit
From 0f6097a427663085ac4d373d77e9c7c9aca4c5a7 Mon Sep 17 00:00:00 2001
From: G Sri Harsha
Date: Tue, 26 May 2020 14:34:22 +0530
Subject: Rename script3.py to video3_convergence_of_a_function.py
---
.../Power Series/script3.py | 156 ---------------------
.../video3_convergence_of_a_function.py | 156 +++++++++++++++++++++
2 files changed, 156 insertions(+), 156 deletions(-)
delete mode 100644 FSF-2020/calculus/series-and-transformations/Power Series/script3.py
create mode 100644 FSF-2020/calculus/series-and-transformations/Power Series/video3_convergence_of_a_function.py
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/script3.py b/FSF-2020/calculus/series-and-transformations/Power Series/script3.py
deleted file mode 100644
index f710f42..0000000
--- a/FSF-2020/calculus/series-and-transformations/Power Series/script3.py
+++ /dev/null
@@ -1,156 +0,0 @@
-from manimlib.imports import*
-import math
-
-class intro(Scene):
- def construct(self):
- introText1=TextMobject("Let's analyse")
- introText2=TextMobject("for")
- function_main=TextMobject("$\sum { { (-1) }^{ n }{ x }^{ 2n } }$")
- function_main.set_color(GREEN)
- introText1.scale(1.2)
- introText1.shift(2*UP)
- introText2.scale(0.7)
- introText2.shift(UP)
- function_main.scale(2)
- function_main.shift(DOWN)
- function_expan=TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }+..$")
- function_expan.set_color(RED)
- function_expan.scale(1.2)
- function_expan.shift(2*UP)
-
- self.play(Write(introText1))
- self.play(FadeIn(introText2))
- self.wait(0.5)
- self.play(Write(function_main))
- self.wait(1)
-
- self.play(FadeOut(introText1),FadeOut(introText2))
- self.play(ApplyMethod(function_main.shift,3*UP))
- self.wait(0.5)
- self.play(ReplacementTransform(function_main,function_expan))
- self.wait(1)
- self.play(ApplyMethod(function_expan.scale,0.5))
- function_expan.to_edge(UP+RIGHT)
- self.play(ReplacementTransform(function_expan,function_expan))
- self.wait(1)
-
-
-class graphScene(GraphScene):
- CONFIG = {
- "x_min": -8,
- "x_max": 8,
- "y_min": -8,
- "y_max": 8,
- "graph_origin": ORIGIN,
- "function_color": RED,
- "axes_color": GREEN,
- "x_axis_label": "$x$",
- "y_axis_label": "$y$",
- "exclude_zero_label": True,
- "x_labeled_nums": range(-1, 2, 1),
- "y_labeled_nums": range(0,2,1)
- }
-
- def construct(self):
-
- x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
- y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
-
- function_expan=TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }+..$")
- function_expan.set_color(RED)
- function_expan.scale(0.6)
- function_expan.to_edge(UP+RIGHT)
- self.add(function_expan)
-
- self.setup_axes(animate=True)
-
- eqText=[TextMobject("$1$"),TextMobject("$1-{ x }^{ 2 }$"),TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }$"),TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }$")]
- for i in range(0,len(eqText)):
- eqText[i].scale(0.6)
- eqText[i].set_color(BLUE)
- eqText[i].shift(ORIGIN+UP*2*y_each_unit+RIGHT*3.3*x_each_unit)
- eqTextTerm=TextMobject("And so on..!")
- eqTextTerm.set_color(BLUE)
- eqTextTerm.scale(0.6)
- eqTextTerm.shift(ORIGIN+UP*2*y_each_unit+3*RIGHT*x_each_unit)
- equation1 = self.get_graph(lambda x : 1,color = RED,x_min = -8,x_max=8)
- equation2 = self.get_graph(lambda x : 1-math.pow(x,2),color = RED,x_min = -1.7,x_max=1.7)
- equation3 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4),color = RED,x_min = -1.6,x_max=1.6)
- equation4 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6),color = RED,x_min = -1.45,x_max=1.45)
- equation5 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8),color = RED,x_min = -1.35,x_max=1.35)
- equation6 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10),color = RED,x_min = -1.3,x_max=1.3)
- equation7 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12),color = RED,x_min = -1.25,x_max=1.25)
- equation8 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14),color = RED,x_min = -1.2,x_max=1.2)
- equation9 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16),color = RED,x_min = -1.15,x_max=1.15)
- equation10 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16)-math.pow(x,18),color = RED,x_min = -1.15,x_max=1.15)
-
- textBtwAnim1=TextMobject("Here the graph just","oscilates")
- textBtwAnim1.set_color_by_tex_to_color_map({"oscilates":BLUE})
- textBtwAnim2=TextMobject("after","the","point","(as we add higher order terms)")
- textBtwAnim2.set_color_by_tex_to_color_map({"after":BLUE,"point":YELLOW})
- textBtwAnim3=TextMobject("$x=1$")
- textBtwAnim1.scale(0.4)
- textBtwAnim2.scale(0.4)
- textBtwAnim3.scale(1.2)
- textBtwAnim1.shift(2.1*DOWN+4.3*RIGHT)
- textBtwAnim2.shift(2.4*DOWN+4.1*RIGHT)
- textBtwAnim3.shift(2.9*DOWN+4.3*RIGHT)
-
- self.play(ShowCreation(equation1),run_time=0.8)
- self.add(eqText[0])
- self.wait(1)
- self.play(ReplacementTransform(equation1,equation2),ReplacementTransform(eqText[0],eqText[1]))
- self.wait(0.5)
- self.play(ReplacementTransform(equation2,equation3),ReplacementTransform(eqText[1],eqText[2]))
- self.wait(0.4)
- self.play(ReplacementTransform(equation3,equation4),ReplacementTransform(eqText[2],eqText[3]))
- self.wait(0.3)
- self.play(FadeOut(eqText[3]))
- self.play(FadeIn(eqTextTerm))
- self.play(Write(textBtwAnim1),Write(textBtwAnim2))
- self.play(FadeIn(textBtwAnim3))
- self.play(ReplacementTransform(equation4,equation5))
- self.wait(0.2)
- self.play(ReplacementTransform(equation5,equation6))
- self.wait(0.2)
- self.play(ReplacementTransform(equation6,equation7))
- self.wait(0.2)
- self.play(ReplacementTransform(equation7,equation8))
- self.wait(0.2)
- self.play(ReplacementTransform(equation8,equation9))
- self.wait(0.2)
- self.play(ReplacementTransform(equation9,equation10))
- self.wait(1)
-
- self.play(FadeOut(textBtwAnim1),FadeOut(textBtwAnim2),FadeOut(textBtwAnim3),FadeOut(equation10),FadeOut(eqTextTerm))
- self.wait(1)
-
- convergeLine=Line(start=ORIGIN+x_each_unit*LEFT,end=ORIGIN+x_each_unit*RIGHT,color=WHITE)
- divergeLineLeft=Line(start=ORIGIN+x_each_unit*LEFT,end=ORIGIN+x_each_unit*LEFT*8,color=RED)
- divergeLineRight=Line(start=ORIGIN+x_each_unit*RIGHT,end=ORIGIN+x_each_unit*8*RIGHT,color=RED)
- circle1=Circle(radius=0.01,color=PURPLE_E)
- circle2=Circle(radius=0.01,color=PURPLE_E)
- circle1.shift(ORIGIN+LEFT*x_each_unit)
- circle2.shift(ORIGIN+RIGHT*x_each_unit)
- convergeText=TextMobject("Converges")
- divergeText1=TextMobject("Diverges")
- divergeText2=TextMobject("Diverges")
- convergeText.set_color(GREEN)
- divergeText1.set_color(RED)
- divergeText2.set_color(RED)
- convergeText.scale(0.5)
- divergeText1.scale(0.5)
- divergeText2.scale(0.5)
- convergeText.shift(1.6*UP)
- divergeText1.shift(0.3*UP+1.5*LEFT)
- divergeText2.shift(0.3*UP+1.5*RIGHT)
- self.play(Write(divergeLineLeft),Write(divergeLineRight))
- self.play(FadeIn(convergeLine))
- self.wait(0.5)
- self.play(FadeOut(self.axes))
- self.play(Write(circle1),Write(circle2))
- self.wait(0.5)
- self.play(ApplyMethod(convergeLine.shift,1.3*UP),ApplyMethod(function_expan.shift,5*LEFT+DOWN))
- self.play(FadeIn(convergeText),FadeIn(divergeText1),FadeIn(divergeText2))
- self.wait(2)
-
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/video3_convergence_of_a_function.py b/FSF-2020/calculus/series-and-transformations/Power Series/video3_convergence_of_a_function.py
new file mode 100644
index 0000000..f710f42
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/video3_convergence_of_a_function.py
@@ -0,0 +1,156 @@
+from manimlib.imports import*
+import math
+
+class intro(Scene):
+ def construct(self):
+ introText1=TextMobject("Let's analyse")
+ introText2=TextMobject("for")
+ function_main=TextMobject("$\sum { { (-1) }^{ n }{ x }^{ 2n } }$")
+ function_main.set_color(GREEN)
+ introText1.scale(1.2)
+ introText1.shift(2*UP)
+ introText2.scale(0.7)
+ introText2.shift(UP)
+ function_main.scale(2)
+ function_main.shift(DOWN)
+ function_expan=TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }+..$")
+ function_expan.set_color(RED)
+ function_expan.scale(1.2)
+ function_expan.shift(2*UP)
+
+ self.play(Write(introText1))
+ self.play(FadeIn(introText2))
+ self.wait(0.5)
+ self.play(Write(function_main))
+ self.wait(1)
+
+ self.play(FadeOut(introText1),FadeOut(introText2))
+ self.play(ApplyMethod(function_main.shift,3*UP))
+ self.wait(0.5)
+ self.play(ReplacementTransform(function_main,function_expan))
+ self.wait(1)
+ self.play(ApplyMethod(function_expan.scale,0.5))
+ function_expan.to_edge(UP+RIGHT)
+ self.play(ReplacementTransform(function_expan,function_expan))
+ self.wait(1)
+
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -8,
+ "y_max": 8,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-1, 2, 1),
+ "y_labeled_nums": range(0,2,1)
+ }
+
+ def construct(self):
+
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ function_expan=TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }+..$")
+ function_expan.set_color(RED)
+ function_expan.scale(0.6)
+ function_expan.to_edge(UP+RIGHT)
+ self.add(function_expan)
+
+ self.setup_axes(animate=True)
+
+ eqText=[TextMobject("$1$"),TextMobject("$1-{ x }^{ 2 }$"),TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }$"),TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }$")]
+ for i in range(0,len(eqText)):
+ eqText[i].scale(0.6)
+ eqText[i].set_color(BLUE)
+ eqText[i].shift(ORIGIN+UP*2*y_each_unit+RIGHT*3.3*x_each_unit)
+ eqTextTerm=TextMobject("And so on..!")
+ eqTextTerm.set_color(BLUE)
+ eqTextTerm.scale(0.6)
+ eqTextTerm.shift(ORIGIN+UP*2*y_each_unit+3*RIGHT*x_each_unit)
+ equation1 = self.get_graph(lambda x : 1,color = RED,x_min = -8,x_max=8)
+ equation2 = self.get_graph(lambda x : 1-math.pow(x,2),color = RED,x_min = -1.7,x_max=1.7)
+ equation3 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4),color = RED,x_min = -1.6,x_max=1.6)
+ equation4 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6),color = RED,x_min = -1.45,x_max=1.45)
+ equation5 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8),color = RED,x_min = -1.35,x_max=1.35)
+ equation6 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10),color = RED,x_min = -1.3,x_max=1.3)
+ equation7 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12),color = RED,x_min = -1.25,x_max=1.25)
+ equation8 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14),color = RED,x_min = -1.2,x_max=1.2)
+ equation9 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16),color = RED,x_min = -1.15,x_max=1.15)
+ equation10 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16)-math.pow(x,18),color = RED,x_min = -1.15,x_max=1.15)
+
+ textBtwAnim1=TextMobject("Here the graph just","oscilates")
+ textBtwAnim1.set_color_by_tex_to_color_map({"oscilates":BLUE})
+ textBtwAnim2=TextMobject("after","the","point","(as we add higher order terms)")
+ textBtwAnim2.set_color_by_tex_to_color_map({"after":BLUE,"point":YELLOW})
+ textBtwAnim3=TextMobject("$x=1$")
+ textBtwAnim1.scale(0.4)
+ textBtwAnim2.scale(0.4)
+ textBtwAnim3.scale(1.2)
+ textBtwAnim1.shift(2.1*DOWN+4.3*RIGHT)
+ textBtwAnim2.shift(2.4*DOWN+4.1*RIGHT)
+ textBtwAnim3.shift(2.9*DOWN+4.3*RIGHT)
+
+ self.play(ShowCreation(equation1),run_time=0.8)
+ self.add(eqText[0])
+ self.wait(1)
+ self.play(ReplacementTransform(equation1,equation2),ReplacementTransform(eqText[0],eqText[1]))
+ self.wait(0.5)
+ self.play(ReplacementTransform(equation2,equation3),ReplacementTransform(eqText[1],eqText[2]))
+ self.wait(0.4)
+ self.play(ReplacementTransform(equation3,equation4),ReplacementTransform(eqText[2],eqText[3]))
+ self.wait(0.3)
+ self.play(FadeOut(eqText[3]))
+ self.play(FadeIn(eqTextTerm))
+ self.play(Write(textBtwAnim1),Write(textBtwAnim2))
+ self.play(FadeIn(textBtwAnim3))
+ self.play(ReplacementTransform(equation4,equation5))
+ self.wait(0.2)
+ self.play(ReplacementTransform(equation5,equation6))
+ self.wait(0.2)
+ self.play(ReplacementTransform(equation6,equation7))
+ self.wait(0.2)
+ self.play(ReplacementTransform(equation7,equation8))
+ self.wait(0.2)
+ self.play(ReplacementTransform(equation8,equation9))
+ self.wait(0.2)
+ self.play(ReplacementTransform(equation9,equation10))
+ self.wait(1)
+
+ self.play(FadeOut(textBtwAnim1),FadeOut(textBtwAnim2),FadeOut(textBtwAnim3),FadeOut(equation10),FadeOut(eqTextTerm))
+ self.wait(1)
+
+ convergeLine=Line(start=ORIGIN+x_each_unit*LEFT,end=ORIGIN+x_each_unit*RIGHT,color=WHITE)
+ divergeLineLeft=Line(start=ORIGIN+x_each_unit*LEFT,end=ORIGIN+x_each_unit*LEFT*8,color=RED)
+ divergeLineRight=Line(start=ORIGIN+x_each_unit*RIGHT,end=ORIGIN+x_each_unit*8*RIGHT,color=RED)
+ circle1=Circle(radius=0.01,color=PURPLE_E)
+ circle2=Circle(radius=0.01,color=PURPLE_E)
+ circle1.shift(ORIGIN+LEFT*x_each_unit)
+ circle2.shift(ORIGIN+RIGHT*x_each_unit)
+ convergeText=TextMobject("Converges")
+ divergeText1=TextMobject("Diverges")
+ divergeText2=TextMobject("Diverges")
+ convergeText.set_color(GREEN)
+ divergeText1.set_color(RED)
+ divergeText2.set_color(RED)
+ convergeText.scale(0.5)
+ divergeText1.scale(0.5)
+ divergeText2.scale(0.5)
+ convergeText.shift(1.6*UP)
+ divergeText1.shift(0.3*UP+1.5*LEFT)
+ divergeText2.shift(0.3*UP+1.5*RIGHT)
+ self.play(Write(divergeLineLeft),Write(divergeLineRight))
+ self.play(FadeIn(convergeLine))
+ self.wait(0.5)
+ self.play(FadeOut(self.axes))
+ self.play(Write(circle1),Write(circle2))
+ self.wait(0.5)
+ self.play(ApplyMethod(convergeLine.shift,1.3*UP),ApplyMethod(function_expan.shift,5*LEFT+DOWN))
+ self.play(FadeIn(convergeText),FadeIn(divergeText1),FadeIn(divergeText2))
+ self.wait(2)
+
--
cgit
From 121c40ed2c33708e6c633ce69654526671af0147 Mon Sep 17 00:00:00 2001
From: G Sri Harsha
Date: Tue, 26 May 2020 14:34:49 +0530
Subject: Rename script4.py to video4_radius_and_intervalOfConvergence.py
---
.../Power Series/script4.py | 108 ---------------------
.../video4_radius_and_intervalOfConvergence.py | 108 +++++++++++++++++++++
2 files changed, 108 insertions(+), 108 deletions(-)
delete mode 100644 FSF-2020/calculus/series-and-transformations/Power Series/script4.py
create mode 100644 FSF-2020/calculus/series-and-transformations/Power Series/video4_radius_and_intervalOfConvergence.py
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/script4.py b/FSF-2020/calculus/series-and-transformations/Power Series/script4.py
deleted file mode 100644
index 412d20c..0000000
--- a/FSF-2020/calculus/series-and-transformations/Power Series/script4.py
+++ /dev/null
@@ -1,108 +0,0 @@
-from manimlib.imports import *
-import math
-
-class intro(Scene):
- def construct(self):
- introText1=TextMobject("Consider the","above","example..")
- introText1.scale(0.8)
- introText1.set_color_by_tex_to_color_map({"above":YELLOW})
- self.play(Write(introText1))
- self.wait(1)
-
-class graphScene(GraphScene,MovingCameraScene):
- CONFIG = {
- "x_min": -5,
- "x_max": 5,
- "y_min": -5,
- "y_max": 5,
- "graph_origin": ORIGIN,
- "function_color": RED,
- "axes_color": GREEN,
- "x_axis_label": "$x$",
- "y_axis_label": "$y$",
- "exclude_zero_label": True,
- "x_labeled_nums": range(-1, 2, 1),
- "y_labeled_nums": range(0,2,1),
- "y_axis_height":7,
- "x_axis_width":7
- }
-
- def setup(self):
- GraphScene.setup(self)
- MovingCameraScene.setup(self)
-
- def construct(self):
- x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
- y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
-
- function_expan=TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }+..$")
- function_expan.scale(0.6)
- function_expan.set_color(RED)
- function_expan.to_edge(UP+RIGHT)
- self.add(function_expan)
-
- self.setup_axes()
-
- equation = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16)-math.pow(x,18),color = RED,x_min = -1.1,x_max=1.1)
- self.play(ShowCreation(equation))
- self.wait(1)
-
- dashLineLeft=DashedLine(start=ORIGIN+y_each_unit*5*UP,end=ORIGIN+y_each_unit*5*DOWN)
- dashLineRight=DashedLine(start=ORIGIN+y_each_unit*5*UP,end=ORIGIN+y_each_unit*5*DOWN)
- dashLineLeft.shift(ORIGIN+LEFT*x_each_unit)
- dashLineRight.shift(ORIGIN+RIGHT*x_each_unit)
- radiusLine=Line(start=ORIGIN,end=ORIGIN+RIGHT*x_each_unit)
- rangeLine=Line(start=ORIGIN+LEFT*x_each_unit,end=ORIGIN+RIGHT*x_each_unit)
- circle=Circle(radius=x_each_unit)
- movingPoint=Circle(radius=0.025)
- movingPoint.shift(ORIGIN+RIGHT*x_each_unit)
- circleEq1=self.get_graph(lambda x:math.sqrt(1-x**2),color=BLUE,x_max=-1,x_min=1)
- circleEq2=self.get_graph(lambda x:-math.sqrt(1-x**2),color=BLUE,x_max=1,x_min=-1)
-
- self.play(Write(dashLineLeft),Write(dashLineRight))
- self.wait(1)
-
- equation_updated=self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16)-math.pow(x,18),color = GREEN,x_min = -1,x_max=1)
- self.play(FadeOut(self.axes),ReplacementTransform(equation,equation_updated))
- self.wait(0.5)
- self.play(Write(radiusLine))
- self.play(MoveAlongPath(movingPoint,circleEq1))
- self.play(MoveAlongPath(movingPoint,circleEq2))
- self.play(FadeIn(circle))
- self.wait(1)
-
- radiusText=TextMobject("Radius of convergence")
- radiusText.scale(0.14)
- radiusText.shift(ORIGIN+RIGHT*x_each_unit*0.45+DOWN*y_each_unit*0.2)
-
- self.play(Write(radiusText))
- self.wait(0.6)
-
- self.camera_frame.save_state()
- self.camera_frame.set_width(5.5)
- self.play(self.camera_frame.move_to, ORIGIN)
- self.wait(1)
- self.camera_frame.set_width(14)
- self.wait(1.3)
-
- self.play(FadeOut(radiusText),FadeOut(circle),FadeOut(movingPoint))
- extendLine=Line(start=ORIGIN,end=ORIGIN+x_each_unit*LEFT)
- self.play(Write(extendLine))
- doubleArrow=TextMobject("$\longleftrightarrow$")
- doubleArrow.scale(1.6)
- doubleArrow.set_color(BLUE)
- doubleArrow.shift(ORIGIN+DOWN*y_each_unit*0.5)
- self.play(FadeIn(doubleArrow))
- self.wait(1)
- rangeText=TextMobject("Interval of convergence")
- rangeText.scale(0.15)
- rangeText.shift(ORIGIN+y_each_unit*DOWN)
- self.play(Write(rangeText))
- self.wait(0.6)
-
- self.camera_frame.save_state()
- self.camera_frame.set_width(5.5)
- self.play(self.camera_frame.move_to, ORIGIN)
- self.wait(1)
- self.camera_frame.set_width(14)
- self.wait(1.5)
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/video4_radius_and_intervalOfConvergence.py b/FSF-2020/calculus/series-and-transformations/Power Series/video4_radius_and_intervalOfConvergence.py
new file mode 100644
index 0000000..412d20c
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/video4_radius_and_intervalOfConvergence.py
@@ -0,0 +1,108 @@
+from manimlib.imports import *
+import math
+
+class intro(Scene):
+ def construct(self):
+ introText1=TextMobject("Consider the","above","example..")
+ introText1.scale(0.8)
+ introText1.set_color_by_tex_to_color_map({"above":YELLOW})
+ self.play(Write(introText1))
+ self.wait(1)
+
+class graphScene(GraphScene,MovingCameraScene):
+ CONFIG = {
+ "x_min": -5,
+ "x_max": 5,
+ "y_min": -5,
+ "y_max": 5,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-1, 2, 1),
+ "y_labeled_nums": range(0,2,1),
+ "y_axis_height":7,
+ "x_axis_width":7
+ }
+
+ def setup(self):
+ GraphScene.setup(self)
+ MovingCameraScene.setup(self)
+
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ function_expan=TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }+..$")
+ function_expan.scale(0.6)
+ function_expan.set_color(RED)
+ function_expan.to_edge(UP+RIGHT)
+ self.add(function_expan)
+
+ self.setup_axes()
+
+ equation = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16)-math.pow(x,18),color = RED,x_min = -1.1,x_max=1.1)
+ self.play(ShowCreation(equation))
+ self.wait(1)
+
+ dashLineLeft=DashedLine(start=ORIGIN+y_each_unit*5*UP,end=ORIGIN+y_each_unit*5*DOWN)
+ dashLineRight=DashedLine(start=ORIGIN+y_each_unit*5*UP,end=ORIGIN+y_each_unit*5*DOWN)
+ dashLineLeft.shift(ORIGIN+LEFT*x_each_unit)
+ dashLineRight.shift(ORIGIN+RIGHT*x_each_unit)
+ radiusLine=Line(start=ORIGIN,end=ORIGIN+RIGHT*x_each_unit)
+ rangeLine=Line(start=ORIGIN+LEFT*x_each_unit,end=ORIGIN+RIGHT*x_each_unit)
+ circle=Circle(radius=x_each_unit)
+ movingPoint=Circle(radius=0.025)
+ movingPoint.shift(ORIGIN+RIGHT*x_each_unit)
+ circleEq1=self.get_graph(lambda x:math.sqrt(1-x**2),color=BLUE,x_max=-1,x_min=1)
+ circleEq2=self.get_graph(lambda x:-math.sqrt(1-x**2),color=BLUE,x_max=1,x_min=-1)
+
+ self.play(Write(dashLineLeft),Write(dashLineRight))
+ self.wait(1)
+
+ equation_updated=self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16)-math.pow(x,18),color = GREEN,x_min = -1,x_max=1)
+ self.play(FadeOut(self.axes),ReplacementTransform(equation,equation_updated))
+ self.wait(0.5)
+ self.play(Write(radiusLine))
+ self.play(MoveAlongPath(movingPoint,circleEq1))
+ self.play(MoveAlongPath(movingPoint,circleEq2))
+ self.play(FadeIn(circle))
+ self.wait(1)
+
+ radiusText=TextMobject("Radius of convergence")
+ radiusText.scale(0.14)
+ radiusText.shift(ORIGIN+RIGHT*x_each_unit*0.45+DOWN*y_each_unit*0.2)
+
+ self.play(Write(radiusText))
+ self.wait(0.6)
+
+ self.camera_frame.save_state()
+ self.camera_frame.set_width(5.5)
+ self.play(self.camera_frame.move_to, ORIGIN)
+ self.wait(1)
+ self.camera_frame.set_width(14)
+ self.wait(1.3)
+
+ self.play(FadeOut(radiusText),FadeOut(circle),FadeOut(movingPoint))
+ extendLine=Line(start=ORIGIN,end=ORIGIN+x_each_unit*LEFT)
+ self.play(Write(extendLine))
+ doubleArrow=TextMobject("$\longleftrightarrow$")
+ doubleArrow.scale(1.6)
+ doubleArrow.set_color(BLUE)
+ doubleArrow.shift(ORIGIN+DOWN*y_each_unit*0.5)
+ self.play(FadeIn(doubleArrow))
+ self.wait(1)
+ rangeText=TextMobject("Interval of convergence")
+ rangeText.scale(0.15)
+ rangeText.shift(ORIGIN+y_each_unit*DOWN)
+ self.play(Write(rangeText))
+ self.wait(0.6)
+
+ self.camera_frame.save_state()
+ self.camera_frame.set_width(5.5)
+ self.play(self.camera_frame.move_to, ORIGIN)
+ self.wait(1)
+ self.camera_frame.set_width(14)
+ self.wait(1.5)
--
cgit
From b7d0db731712d3603f5c18cffbf19cc1e81f9a42 Mon Sep 17 00:00:00 2001
From: G Sri Harsha
Date: Tue, 26 May 2020 14:35:15 +0530
Subject: Rename script5.py to video5_UniformConvergence.py
---
.../Power Series/script5.py | 136 ---------------------
.../Power Series/video5_UniformConvergence.py | 136 +++++++++++++++++++++
2 files changed, 136 insertions(+), 136 deletions(-)
delete mode 100644 FSF-2020/calculus/series-and-transformations/Power Series/script5.py
create mode 100644 FSF-2020/calculus/series-and-transformations/Power Series/video5_UniformConvergence.py
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/script5.py b/FSF-2020/calculus/series-and-transformations/Power Series/script5.py
deleted file mode 100644
index e9681aa..0000000
--- a/FSF-2020/calculus/series-and-transformations/Power Series/script5.py
+++ /dev/null
@@ -1,136 +0,0 @@
-from manimlib.imports import *
-import math
-
-class uniformlyConvergent(Scene):
- def construct(self):
- introText1=TextMobject("Again consider the","above","example")
- introText2=TextMobject("Let","$g(x)=\\frac { 1 }{ 1+{ x }^{ 2 } }$","and","x=0.5 $\in$(-1,1)")
- introText3=TextMobject("Lets analyse..","!")
- introText1.scale(0.8)
- introText2.scale(0.7)
- introText3.scale(0.9)
- introText3.shift(DOWN)
- introText1.set_color_by_tex_to_color_map({"above":YELLOW})
- introText2.set_color_by_tex_to_color_map({"$g(x)=\\frac { 1 }{ 1+{ x }^{ 2 } }$":BLUE,"x=0.5 $\in$(-1,1)":YELLOW})
- introText3.set_color_by_tex_to_color_map({"!":GREEN})
- self.play(Write(introText1))
- self.wait(0.5)
- self.play(FadeOut(introText1))
- self.play(Write(introText2))
- self.play(FadeIn(introText3))
- self.wait(2)
-
-
-def gety(x,n):
- ans=0
- for i in range(0,n+1):
- if(i%2==0):
- ans+=(math.pow(x,2*i))
- else:
- ans-=(math.pow(x,2*i))
- return ans
-
-def makeSeries(x,points,x_each_unit,y_each_unit):
- p=0
- for point in points:
- y=gety(x,p)
- point.shift(ORIGIN+RIGHT*x_each_unit*p+UP*y_each_unit*y)
- p+=1
-
-def makeLines(x,numPoints,x_each_unit,y_each_unit):
- lines=[0]*numPoints
- for i in range(0,numPoints-1):
- y=gety(x,i)
- y_next=gety(x,i+1)
- lines[i]=Line(start=ORIGIN+RIGHT*x_each_unit*i+UP*y_each_unit*y,end=ORIGIN+RIGHT*x_each_unit*(i+1)+UP*y_each_unit*y_next,color=RED)
- return lines
-
-class graphScene(GraphScene,MovingCameraScene):
- CONFIG = {
- "x_min": -6,
- "x_max": 6,
- "y_min": -5,
- "y_max": 5,
- "graph_origin": ORIGIN,
- "function_color": RED,
- "axes_color": GREEN,
- "x_axis_label": "$k$",
- "y_axis_label": "$f(\\frac{1}{2})_k$",
- "exclude_zero_label": True,
- "x_axis_width":7,
- "y_axis_height":7
- }
-
- def setup(self):
- GraphScene.setup(self)
- MovingCameraScene.setup(self)
-
-
- def construct(self):
- x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
- y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
- sequence=TextMobject("$1$ , $1-(0.5)^2$ , $1-(0.5)^2+(0.5)^4..$")
- sequence.set_color(RED)
- sequence.scale(0.35)
- sequence.to_edge(UP+RIGHT)
- formula=TextMobject("$f(x)_{ k }=\sum _{ i=0 }^{ k }{ (-1)^{ i }(x)^{ 2i } } $")
- formula.set_color(PURPLE_C)
- formula.scale(0.4)
- formula.shift(5.3*RIGHT+3*UP)
- fLine=Line(start=ORIGIN+x_each_unit*6*LEFT,end=ORIGIN+x_each_unit*6*RIGHT)
- fLine.shift(ORIGIN+(4/5)*y_each_unit*UP)
- fLineText=TextMobject("$g(0.5)=\\frac { 4 }{ 5 } $")
- fLineText.set_color(RED)
- fLineText.scale(0.3)
- fLineText.shift(UP*1.2*y_each_unit+RIGHT*x_each_unit+4*LEFT)
- points=[Dot(radius=0.03,color=BLUE) for i in range(0,6)]
- makeSeries(0.5,points,x_each_unit,y_each_unit)
- lines=makeLines(0.5,6,x_each_unit,y_each_unit)
-
-
- self.add(sequence)
- self.add(formula)
- self.setup_axes(animate=True)
- self.play(Write(fLine))
- self.add(fLineText)
- for p in points:
- self.add(p)
- for p in range(0,5):
- self.play(Write(lines[p]))
- self.wait(0.5)
- self.camera_frame.save_state()
- self.camera_frame.set_width(0.6)
- self.play(self.camera_frame.move_to, points[0])
- self.wait(0.4)
- self.play(self.camera_frame.move_to, points[1])
- self.wait(0.4)
- self.play(self.camera_frame.move_to, points[2])
- self.wait(0.3)
- self.play(self.camera_frame.move_to, points[3])
- self.wait(1)
- self.play(self.camera_frame.move_to,ORIGIN)
- self.camera_frame.set_width(14)
- self.wait(1)
-
- explanation1=TextMobject("Since the series","converges","to")
- explanation1.set_color_by_tex_to_color_map({"converges":YELLOW})
- explanation2=TextMobject("$\\frac {4}{5}$")
- explanation2.set_color(BLUE)
- explanation3=TextMobject("Hence","$\\forall \epsilon>0$,","$\exists k$","such that,")
- explanation3.set_color_by_tex_to_color_map({"$\\forall \epsilon>0$":BLUE,"$\exists k$":YELLOW})
- explanation4=TextMobject("$\left| { f\left( \\frac { 1 }{ 2 } \\right) }_{ k }-\\frac { 4 }{ 5 } \\right| <$","$\epsilon$")
- explanation4.set_color_by_tex_to_color_map({"$\epsilon$":RED})
- explanation1.scale(0.5)
- explanation3.scale(0.5)
- explanation1.shift(1.8*DOWN+3.5*RIGHT)
- explanation2.shift(2.4*DOWN+3.5*RIGHT)
- explanation3.shift(1.8*DOWN+3.5*RIGHT)
- explanation4.shift(2.4*DOWN+3.5*RIGHT)
-
- self.play(Write(explanation1))
- self.play(FadeIn(explanation2))
- self.wait(1)
- self.play(FadeOut(explanation1),FadeOut(explanation2))
- self.play(Write(explanation3))
- self.play(Write(explanation4))
- self.wait(2)
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/video5_UniformConvergence.py b/FSF-2020/calculus/series-and-transformations/Power Series/video5_UniformConvergence.py
new file mode 100644
index 0000000..e9681aa
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/video5_UniformConvergence.py
@@ -0,0 +1,136 @@
+from manimlib.imports import *
+import math
+
+class uniformlyConvergent(Scene):
+ def construct(self):
+ introText1=TextMobject("Again consider the","above","example")
+ introText2=TextMobject("Let","$g(x)=\\frac { 1 }{ 1+{ x }^{ 2 } }$","and","x=0.5 $\in$(-1,1)")
+ introText3=TextMobject("Lets analyse..","!")
+ introText1.scale(0.8)
+ introText2.scale(0.7)
+ introText3.scale(0.9)
+ introText3.shift(DOWN)
+ introText1.set_color_by_tex_to_color_map({"above":YELLOW})
+ introText2.set_color_by_tex_to_color_map({"$g(x)=\\frac { 1 }{ 1+{ x }^{ 2 } }$":BLUE,"x=0.5 $\in$(-1,1)":YELLOW})
+ introText3.set_color_by_tex_to_color_map({"!":GREEN})
+ self.play(Write(introText1))
+ self.wait(0.5)
+ self.play(FadeOut(introText1))
+ self.play(Write(introText2))
+ self.play(FadeIn(introText3))
+ self.wait(2)
+
+
+def gety(x,n):
+ ans=0
+ for i in range(0,n+1):
+ if(i%2==0):
+ ans+=(math.pow(x,2*i))
+ else:
+ ans-=(math.pow(x,2*i))
+ return ans
+
+def makeSeries(x,points,x_each_unit,y_each_unit):
+ p=0
+ for point in points:
+ y=gety(x,p)
+ point.shift(ORIGIN+RIGHT*x_each_unit*p+UP*y_each_unit*y)
+ p+=1
+
+def makeLines(x,numPoints,x_each_unit,y_each_unit):
+ lines=[0]*numPoints
+ for i in range(0,numPoints-1):
+ y=gety(x,i)
+ y_next=gety(x,i+1)
+ lines[i]=Line(start=ORIGIN+RIGHT*x_each_unit*i+UP*y_each_unit*y,end=ORIGIN+RIGHT*x_each_unit*(i+1)+UP*y_each_unit*y_next,color=RED)
+ return lines
+
+class graphScene(GraphScene,MovingCameraScene):
+ CONFIG = {
+ "x_min": -6,
+ "x_max": 6,
+ "y_min": -5,
+ "y_max": 5,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$k$",
+ "y_axis_label": "$f(\\frac{1}{2})_k$",
+ "exclude_zero_label": True,
+ "x_axis_width":7,
+ "y_axis_height":7
+ }
+
+ def setup(self):
+ GraphScene.setup(self)
+ MovingCameraScene.setup(self)
+
+
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+ sequence=TextMobject("$1$ , $1-(0.5)^2$ , $1-(0.5)^2+(0.5)^4..$")
+ sequence.set_color(RED)
+ sequence.scale(0.35)
+ sequence.to_edge(UP+RIGHT)
+ formula=TextMobject("$f(x)_{ k }=\sum _{ i=0 }^{ k }{ (-1)^{ i }(x)^{ 2i } } $")
+ formula.set_color(PURPLE_C)
+ formula.scale(0.4)
+ formula.shift(5.3*RIGHT+3*UP)
+ fLine=Line(start=ORIGIN+x_each_unit*6*LEFT,end=ORIGIN+x_each_unit*6*RIGHT)
+ fLine.shift(ORIGIN+(4/5)*y_each_unit*UP)
+ fLineText=TextMobject("$g(0.5)=\\frac { 4 }{ 5 } $")
+ fLineText.set_color(RED)
+ fLineText.scale(0.3)
+ fLineText.shift(UP*1.2*y_each_unit+RIGHT*x_each_unit+4*LEFT)
+ points=[Dot(radius=0.03,color=BLUE) for i in range(0,6)]
+ makeSeries(0.5,points,x_each_unit,y_each_unit)
+ lines=makeLines(0.5,6,x_each_unit,y_each_unit)
+
+
+ self.add(sequence)
+ self.add(formula)
+ self.setup_axes(animate=True)
+ self.play(Write(fLine))
+ self.add(fLineText)
+ for p in points:
+ self.add(p)
+ for p in range(0,5):
+ self.play(Write(lines[p]))
+ self.wait(0.5)
+ self.camera_frame.save_state()
+ self.camera_frame.set_width(0.6)
+ self.play(self.camera_frame.move_to, points[0])
+ self.wait(0.4)
+ self.play(self.camera_frame.move_to, points[1])
+ self.wait(0.4)
+ self.play(self.camera_frame.move_to, points[2])
+ self.wait(0.3)
+ self.play(self.camera_frame.move_to, points[3])
+ self.wait(1)
+ self.play(self.camera_frame.move_to,ORIGIN)
+ self.camera_frame.set_width(14)
+ self.wait(1)
+
+ explanation1=TextMobject("Since the series","converges","to")
+ explanation1.set_color_by_tex_to_color_map({"converges":YELLOW})
+ explanation2=TextMobject("$\\frac {4}{5}$")
+ explanation2.set_color(BLUE)
+ explanation3=TextMobject("Hence","$\\forall \epsilon>0$,","$\exists k$","such that,")
+ explanation3.set_color_by_tex_to_color_map({"$\\forall \epsilon>0$":BLUE,"$\exists k$":YELLOW})
+ explanation4=TextMobject("$\left| { f\left( \\frac { 1 }{ 2 } \\right) }_{ k }-\\frac { 4 }{ 5 } \\right| <$","$\epsilon$")
+ explanation4.set_color_by_tex_to_color_map({"$\epsilon$":RED})
+ explanation1.scale(0.5)
+ explanation3.scale(0.5)
+ explanation1.shift(1.8*DOWN+3.5*RIGHT)
+ explanation2.shift(2.4*DOWN+3.5*RIGHT)
+ explanation3.shift(1.8*DOWN+3.5*RIGHT)
+ explanation4.shift(2.4*DOWN+3.5*RIGHT)
+
+ self.play(Write(explanation1))
+ self.play(FadeIn(explanation2))
+ self.wait(1)
+ self.play(FadeOut(explanation1),FadeOut(explanation2))
+ self.play(Write(explanation3))
+ self.play(Write(explanation4))
+ self.wait(2)
--
cgit
From 90171632dcfdeadb90c680c94d1a9cb803837d91 Mon Sep 17 00:00:00 2001
From: G Sri Harsha
Date: Tue, 26 May 2020 14:35:48 +0530
Subject: Add files via upload
---
.../Power Series/gifs/file1_pieChart.gif | Bin 0 -> 347111 bytes
.../gifs/file4_radius_and_intervalOfConvergence.gif | Bin 0 -> 213252 bytes
.../Power Series/gifs/file5_UniformConvergence.gif | Bin 0 -> 276475 bytes
3 files changed, 0 insertions(+), 0 deletions(-)
create mode 100644 FSF-2020/calculus/series-and-transformations/Power Series/gifs/file1_pieChart.gif
create mode 100644 FSF-2020/calculus/series-and-transformations/Power Series/gifs/file4_radius_and_intervalOfConvergence.gif
create mode 100644 FSF-2020/calculus/series-and-transformations/Power Series/gifs/file5_UniformConvergence.gif
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file1_pieChart.gif b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file1_pieChart.gif
new file mode 100644
index 0000000..f102f6d
Binary files /dev/null and b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file1_pieChart.gif differ
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file4_radius_and_intervalOfConvergence.gif b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file4_radius_and_intervalOfConvergence.gif
new file mode 100644
index 0000000..e8dbff4
Binary files /dev/null and b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file4_radius_and_intervalOfConvergence.gif differ
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file5_UniformConvergence.gif b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file5_UniformConvergence.gif
new file mode 100644
index 0000000..44cd78b
Binary files /dev/null and b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file5_UniformConvergence.gif differ
--
cgit
From 7b27056aa7977bdb5cd1d1a20721c5536c59b5e7 Mon Sep 17 00:00:00 2001
From: G Sri Harsha
Date: Tue, 26 May 2020 14:40:50 +0530
Subject: added gifs
---
.../series-and-transformations/Power Series/README.md | 15 +++++++++++++--
1 file changed, 13 insertions(+), 2 deletions(-)
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/README.md b/FSF-2020/calculus/series-and-transformations/Power Series/README.md
index acf07b7..85c6fc4 100644
--- a/FSF-2020/calculus/series-and-transformations/Power Series/README.md
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/README.md
@@ -1,3 +1,14 @@
-![GIF1](gifs/file2_convergence_Intuition.gif)
+#### PieChart
+![GIF1](gifs/file1_pieChart.gif)
-![GIF2](gifs/file3_convergence_of_a_function.gif)
+#### Convergence Intuition
+![GIF2](gifs/file2_convergence_Intuition.gif)
+
+#### Convergence of a function
+![GIF3](gifs/file3_convergence_of_a_function.gif)
+
+#### Radius and IntervalOfConvergence
+![GIF4](gifs/file4_radius_and_intervalOfConvergence.gif)
+
+#### Uniform Convergence
+![GIF5](gifs/file5_UniformConvergence.gif)
--
cgit
From cea91d6c736439885819a4d44f62221a591d77b7 Mon Sep 17 00:00:00 2001
From: G Sri Harsha
Date: Tue, 26 May 2020 14:42:48 +0530
Subject: updated question set
---
.../Taylor Series/TaylorSeriesQuestions.pdf | Bin 119804 -> 125254 bytes
1 file changed, 0 insertions(+), 0 deletions(-)
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf b/FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf
index 2096f52..46d46e1 100644
Binary files a/FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf and b/FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf differ
--
cgit
From 9b2de268f4be489a4a67c89be1b17d08ed76c25e Mon Sep 17 00:00:00 2001
From: G Sri Harsha
Date: Tue, 26 May 2020 14:43:17 +0530
Subject: added gifs
---
.../gifs/file1_Example_TaylorExpansion.gif | Bin 0 -> 446111 bytes
.../gifs/file2_TaylorExpansionGeneralForm.gif | Bin 0 -> 308980 bytes
.../Taylor Series/gifs/file3_radiusOfConvergence.gif | Bin 0 -> 391510 bytes
.../Taylor Series/gifs/file4_DivergentRemainder.gif | Bin 0 -> 160149 bytes
4 files changed, 0 insertions(+), 0 deletions(-)
create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file1_Example_TaylorExpansion.gif
create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file2_TaylorExpansionGeneralForm.gif
create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file3_radiusOfConvergence.gif
create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file4_DivergentRemainder.gif
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file1_Example_TaylorExpansion.gif b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file1_Example_TaylorExpansion.gif
new file mode 100644
index 0000000..ecd3272
Binary files /dev/null and b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file1_Example_TaylorExpansion.gif differ
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file2_TaylorExpansionGeneralForm.gif b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file2_TaylorExpansionGeneralForm.gif
new file mode 100644
index 0000000..e6d9171
Binary files /dev/null and b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file2_TaylorExpansionGeneralForm.gif differ
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file3_radiusOfConvergence.gif b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file3_radiusOfConvergence.gif
new file mode 100644
index 0000000..6b22d8d
Binary files /dev/null and b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file3_radiusOfConvergence.gif differ
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file4_DivergentRemainder.gif b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file4_DivergentRemainder.gif
new file mode 100644
index 0000000..2bb5185
Binary files /dev/null and b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file4_DivergentRemainder.gif differ
--
cgit
From b1bdfc21dfac1abf82fb10733eb21d098f9532b4 Mon Sep 17 00:00:00 2001
From: G Sri Harsha
Date: Tue, 26 May 2020 14:43:50 +0530
Subject: Rename script1.py to video1_Example_TaylorExpansion.py.py
---
.../Taylor Series/script1.py | 198 ---------------------
.../video1_Example_TaylorExpansion.py.py | 198 +++++++++++++++++++++
2 files changed, 198 insertions(+), 198 deletions(-)
delete mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/script1.py
create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py.py
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/script1.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/script1.py
deleted file mode 100644
index e83eff8..0000000
--- a/FSF-2020/calculus/series-and-transformations/Taylor Series/script1.py
+++ /dev/null
@@ -1,198 +0,0 @@
-from manimlib.imports import*
-import math
-
-def formFormula(coeff_list,variable_list):
- coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
- variable_list=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
- coeff_list[0].shift(2.2*UP+1.6*LEFT)
- for i in range(0,3):
- coeff_list[i].set_color(GOLD_A)
- variable_list[i].next_to(coeff_list[i],buff=0.1)
- if i!=2:
- coeff_list[i+1].next_to(variable_list[i],buff=0.1)
- dots=TextMobject("...")
- dots.next_to(variable_list[2])
- expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots)
- #expansion.scale(0.7)
- return expansion,coeff_list
-
-class intro(Scene):
- def construct(self):
- equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$")
- equation.scale(2)
- equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED})
- text=TextMobject("let $a=0$")
- text.scale(0.7)
- text.shift(DOWN)
-
- self.play(Write(equation))
- self.wait(0.5)
- self.play(FadeIn(text))
- self.wait(0.7)
- self.play(FadeOut(equation),FadeOut(text))
-
-class graphScene(GraphScene):
- CONFIG = {
- "x_min": -8,
- "x_max": 8,
- "y_min": -8,
- "y_max": 8,
- "graph_origin": ORIGIN,
- "function_color": RED,
- "axes_color": GREEN,
- "x_axis_label": "$x$",
- "y_axis_label": "$y$",
- "exclude_zero_label": True,
- "x_labeled_nums": range(-8, 8, 1),
- }
- def construct(self):
- x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
- y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
-
- generalized_eq_coeff=[]
- variables_eq=[]
- eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq)
- trText1=TextMobject("let $T_{ n }(x)$:=")
- eq.next_to(trText1)
- trTextGrup=VGroup(trText1,eq)
- trTextGrup.scale(0.5)
- trTextGrup.to_corner(UP+RIGHT)
- self.play(Write(trTextGrup))
- self.setup_axes(animate=True)
-
- fx=TextMobject("${ e }^{ -x^{ 2 } }$")
- fx.scale(0.5)
- fx.shift(ORIGIN+x_each_unit*7.5*RIGHT+y_each_unit*0.5*UP)
- mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8)
- self.play(ShowCreation(mainfunction))
- self.play(FadeIn(fx))
- self.wait(1.4)
-
- coeff=[TextMobject("$1$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")]
- coeff[0].shift(3.39*UP+4.88*RIGHT)
- coeff[0].scale(0.5)
- coeff[1].shift(3.39*UP+5.3*RIGHT)
- coeff[1].scale(0.275)
- coeff[2].shift(3.39*UP+5.98*RIGHT)
- coeff[2].scale(0.28)
-
- for obj in coeff:
- obj.set_color(GOLD_A)
-
- firstApprox=[self.get_graph(lambda x:1,color=BLUE)]
- secondApprox=[self.get_graph(lambda x:1,color=BLUE),
- self.get_graph(lambda x:x+1,color=BLUE),
- self.get_graph(lambda x:-x+1,color=BLUE)]
- thirdApprox=[self.get_graph(lambda x:1-2*math.pow(x,2),color=BLUE),
- self.get_graph(lambda x:1-0.1*math.pow(x,2),color=BLUE),
- self.get_graph(lambda x:1,color=BLUE),
- self.get_graph(lambda x:1+0.1*math.pow(x,2),color=BLUE),
- self.get_graph(lambda x:1+math.pow(x,2),color=BLUE)]
-
- firstGraph=self.get_graph(lambda x:1,color=BLUE)
- secondGraph=self.get_graph(lambda x:1-math.pow(x,2),color=BLUE)
-
- bottomText1=TextMobject("The polynomial should","satisfy","the function at $x=0$")
- bottomText2=TextMobject("This gives","$a_{ 0 }=1$")
- bottomText3=TextMobject("Now it could be of","any slope!")
- #show graphs of second approx
- bottomText4=TextMobject("Hence the","slopes","should","even match")
- #final graph
- bottomText5=TextMobject("This gives","$a_{ 1 }=0$")
- bottomText6=TextMobject("Since the rate of change of this slope","could vary")
- #show third approx graphs
- bottomText7=TextMobject("Hence the","rate of change of these slopes","should also be","same!")
- #final graph
- bottomText8=TextMobject("This gives","$a_{ 2 }=-1$")
-
- bottomText1.set_color_by_tex_to_color_map({"satisfy":YELLOW})
- bottomText2.set_color_by_tex_to_color_map({"$a_{ 0 }=1$":BLUE})
- bottomText3.set_color_by_tex_to_color_map({"any slope!":YELLOW})
- bottomText4.set_color_by_tex_to_color_map({"slopes":BLUE,"even match":YELLOW})
- bottomText5.set_color_by_tex_to_color_map({"$a_{ 1 }=0$":BLUE})
- bottomText6.set_color_by_tex_to_color_map({"could vary":YELLOW})
- bottomText7.set_color_by_tex_to_color_map({"rate of change of these slopes":BLUE,"same!":YELLOW})
- bottomText8.set_color_by_tex_to_color_map({"$a_{ 2 }=-1$":BLUE})
-
- bottomText1.scale(0.4)
- bottomText2.scale(0.5)
- bottomText3.scale(0.4)
- bottomText4.scale(0.4)
- bottomText5.scale(0.5)
- bottomText6.scale(0.4)
- bottomText7.scale(0.4)
- bottomText8.scale(0.5)
-
- bottomText1.shift(4.5*RIGHT+2.5*DOWN)
- bottomText2.shift(4.5*RIGHT+2.5*DOWN)
- bottomText3.shift(4.5*RIGHT+2.5*DOWN)
- bottomText4.shift(4.5*RIGHT+2.5*DOWN)
- bottomText5.shift(4.5*RIGHT+2.5*DOWN)
- bottomText6.shift(4.5*RIGHT+2.5*DOWN)
- bottomText7.shift(4.5*RIGHT+2.5*DOWN)
- bottomText8.shift(4.5*RIGHT+2.5*DOWN)
-
- self.play(Write(bottomText1))
- self.wait(1)
- self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2))
- #change coeff in tn(x)
- self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0]))
- self.wait(1.5)
- self.play(ReplacementTransform(bottomText2,bottomText3))
- self.wait(0.5)
- self.play(ReplacementTransform(firstApprox[0],secondApprox[1]))
- self.wait(0.5)
- self.play(ReplacementTransform(secondApprox[1],secondApprox[0]))
- self.wait(0.5)
- self.play(ReplacementTransform(secondApprox[0],secondApprox[2]))
- self.wait(1)
- self.play(ReplacementTransform(bottomText3,bottomText4),FadeOut(secondApprox[2]))
- self.wait(1)
- self.play(Write(firstGraph),ReplacementTransform(bottomText4,bottomText5))
- #change a1 coeff
- self.play(ReplacementTransform(generalized_eq_coeff[1],coeff[1]))
- self.wait(1.5)
- self.play(ReplacementTransform(bottomText5,bottomText6))
- self.play(ReplacementTransform(firstGraph,thirdApprox[0]))
- self.wait(0.6)
- self.play(ReplacementTransform(thirdApprox[0],thirdApprox[1]))
- self.wait(0.6)
- self.play(ReplacementTransform(thirdApprox[1],thirdApprox[2]))
- self.wait(0.6)
- self.play(ReplacementTransform(thirdApprox[2],thirdApprox[3]))
- self.wait(0.6)
- self.play(ReplacementTransform(thirdApprox[3],thirdApprox[4]))
- self.wait(1.5)
- self.play(ReplacementTransform(bottomText6,bottomText7))
- self.wait(1.5)
- self.play(ReplacementTransform(bottomText7,bottomText8),ReplacementTransform(thirdApprox[4],secondGraph))
- self.play(ReplacementTransform(generalized_eq_coeff[2],coeff[2]))
- self.wait(2)
-
- textFinal=TextMobject("And so on..!")
- textFinal.scale(0.7)
- textFinal.shift(4.5*RIGHT+2.5*DOWN)
- self.play(ReplacementTransform(bottomText8,textFinal))
- self.wait(2.5)
-
- finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$")
- finalFormula.scale(0.8)
- finalFormula.set_color_by_tex_to_color_map({"$T_{ n }(x)$":GREEN,"$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$":RED})
-
- self.play(FadeOut(self.axes),FadeOut(textFinal),FadeOut(secondGraph),FadeOut(trTextGrup),FadeOut(mainfunction),FadeOut(fx),FadeOut(coeff[0]),FadeOut(coeff[1]),FadeOut(coeff[2]))
- self.play(Write(finalFormula))
- self.wait(2)
- # self.play(ReplacementTransform(secondApprox[2],secondApprox[3]))
- # self.wait(0.5)
- # self.play(ReplacementTransform(secondApprox[3],secondApprox[4]))
- # self.wait(0.5)
- # self.play(ReplacementTransform(secondApprox[4],secondApprox[5]))
- # self.wait(0.5)
- # self.play(ReplacementTransform(secondApprox[0],secondApprox[0]))
- # self.wait(0.5)
- # self.play(ReplacementTransform(secondApprox[0],secondApprox[0]))
- # self.wait(0.5)
-
-
-
-
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py.py
new file mode 100644
index 0000000..e83eff8
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py.py
@@ -0,0 +1,198 @@
+from manimlib.imports import*
+import math
+
+def formFormula(coeff_list,variable_list):
+ coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ variable_list=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
+ coeff_list[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ coeff_list[i].set_color(GOLD_A)
+ variable_list[i].next_to(coeff_list[i],buff=0.1)
+ if i!=2:
+ coeff_list[i+1].next_to(variable_list[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variable_list[2])
+ expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots)
+ #expansion.scale(0.7)
+ return expansion,coeff_list
+
+class intro(Scene):
+ def construct(self):
+ equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$")
+ equation.scale(2)
+ equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED})
+ text=TextMobject("let $a=0$")
+ text.scale(0.7)
+ text.shift(DOWN)
+
+ self.play(Write(equation))
+ self.wait(0.5)
+ self.play(FadeIn(text))
+ self.wait(0.7)
+ self.play(FadeOut(equation),FadeOut(text))
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -8,
+ "y_max": 8,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-8, 8, 1),
+ }
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ generalized_eq_coeff=[]
+ variables_eq=[]
+ eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq)
+ trText1=TextMobject("let $T_{ n }(x)$:=")
+ eq.next_to(trText1)
+ trTextGrup=VGroup(trText1,eq)
+ trTextGrup.scale(0.5)
+ trTextGrup.to_corner(UP+RIGHT)
+ self.play(Write(trTextGrup))
+ self.setup_axes(animate=True)
+
+ fx=TextMobject("${ e }^{ -x^{ 2 } }$")
+ fx.scale(0.5)
+ fx.shift(ORIGIN+x_each_unit*7.5*RIGHT+y_each_unit*0.5*UP)
+ mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8)
+ self.play(ShowCreation(mainfunction))
+ self.play(FadeIn(fx))
+ self.wait(1.4)
+
+ coeff=[TextMobject("$1$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")]
+ coeff[0].shift(3.39*UP+4.88*RIGHT)
+ coeff[0].scale(0.5)
+ coeff[1].shift(3.39*UP+5.3*RIGHT)
+ coeff[1].scale(0.275)
+ coeff[2].shift(3.39*UP+5.98*RIGHT)
+ coeff[2].scale(0.28)
+
+ for obj in coeff:
+ obj.set_color(GOLD_A)
+
+ firstApprox=[self.get_graph(lambda x:1,color=BLUE)]
+ secondApprox=[self.get_graph(lambda x:1,color=BLUE),
+ self.get_graph(lambda x:x+1,color=BLUE),
+ self.get_graph(lambda x:-x+1,color=BLUE)]
+ thirdApprox=[self.get_graph(lambda x:1-2*math.pow(x,2),color=BLUE),
+ self.get_graph(lambda x:1-0.1*math.pow(x,2),color=BLUE),
+ self.get_graph(lambda x:1,color=BLUE),
+ self.get_graph(lambda x:1+0.1*math.pow(x,2),color=BLUE),
+ self.get_graph(lambda x:1+math.pow(x,2),color=BLUE)]
+
+ firstGraph=self.get_graph(lambda x:1,color=BLUE)
+ secondGraph=self.get_graph(lambda x:1-math.pow(x,2),color=BLUE)
+
+ bottomText1=TextMobject("The polynomial should","satisfy","the function at $x=0$")
+ bottomText2=TextMobject("This gives","$a_{ 0 }=1$")
+ bottomText3=TextMobject("Now it could be of","any slope!")
+ #show graphs of second approx
+ bottomText4=TextMobject("Hence the","slopes","should","even match")
+ #final graph
+ bottomText5=TextMobject("This gives","$a_{ 1 }=0$")
+ bottomText6=TextMobject("Since the rate of change of this slope","could vary")
+ #show third approx graphs
+ bottomText7=TextMobject("Hence the","rate of change of these slopes","should also be","same!")
+ #final graph
+ bottomText8=TextMobject("This gives","$a_{ 2 }=-1$")
+
+ bottomText1.set_color_by_tex_to_color_map({"satisfy":YELLOW})
+ bottomText2.set_color_by_tex_to_color_map({"$a_{ 0 }=1$":BLUE})
+ bottomText3.set_color_by_tex_to_color_map({"any slope!":YELLOW})
+ bottomText4.set_color_by_tex_to_color_map({"slopes":BLUE,"even match":YELLOW})
+ bottomText5.set_color_by_tex_to_color_map({"$a_{ 1 }=0$":BLUE})
+ bottomText6.set_color_by_tex_to_color_map({"could vary":YELLOW})
+ bottomText7.set_color_by_tex_to_color_map({"rate of change of these slopes":BLUE,"same!":YELLOW})
+ bottomText8.set_color_by_tex_to_color_map({"$a_{ 2 }=-1$":BLUE})
+
+ bottomText1.scale(0.4)
+ bottomText2.scale(0.5)
+ bottomText3.scale(0.4)
+ bottomText4.scale(0.4)
+ bottomText5.scale(0.5)
+ bottomText6.scale(0.4)
+ bottomText7.scale(0.4)
+ bottomText8.scale(0.5)
+
+ bottomText1.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText2.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText3.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText4.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText5.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText6.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText7.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText8.shift(4.5*RIGHT+2.5*DOWN)
+
+ self.play(Write(bottomText1))
+ self.wait(1)
+ self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2))
+ #change coeff in tn(x)
+ self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText2,bottomText3))
+ self.wait(0.5)
+ self.play(ReplacementTransform(firstApprox[0],secondApprox[1]))
+ self.wait(0.5)
+ self.play(ReplacementTransform(secondApprox[1],secondApprox[0]))
+ self.wait(0.5)
+ self.play(ReplacementTransform(secondApprox[0],secondApprox[2]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText3,bottomText4),FadeOut(secondApprox[2]))
+ self.wait(1)
+ self.play(Write(firstGraph),ReplacementTransform(bottomText4,bottomText5))
+ #change a1 coeff
+ self.play(ReplacementTransform(generalized_eq_coeff[1],coeff[1]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText5,bottomText6))
+ self.play(ReplacementTransform(firstGraph,thirdApprox[0]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[0],thirdApprox[1]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[1],thirdApprox[2]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[2],thirdApprox[3]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[3],thirdApprox[4]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText6,bottomText7))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText7,bottomText8),ReplacementTransform(thirdApprox[4],secondGraph))
+ self.play(ReplacementTransform(generalized_eq_coeff[2],coeff[2]))
+ self.wait(2)
+
+ textFinal=TextMobject("And so on..!")
+ textFinal.scale(0.7)
+ textFinal.shift(4.5*RIGHT+2.5*DOWN)
+ self.play(ReplacementTransform(bottomText8,textFinal))
+ self.wait(2.5)
+
+ finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$")
+ finalFormula.scale(0.8)
+ finalFormula.set_color_by_tex_to_color_map({"$T_{ n }(x)$":GREEN,"$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$":RED})
+
+ self.play(FadeOut(self.axes),FadeOut(textFinal),FadeOut(secondGraph),FadeOut(trTextGrup),FadeOut(mainfunction),FadeOut(fx),FadeOut(coeff[0]),FadeOut(coeff[1]),FadeOut(coeff[2]))
+ self.play(Write(finalFormula))
+ self.wait(2)
+ # self.play(ReplacementTransform(secondApprox[2],secondApprox[3]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[3],secondApprox[4]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[4],secondApprox[5]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[0],secondApprox[0]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[0],secondApprox[0]))
+ # self.wait(0.5)
+
+
+
+
--
cgit
From 87e674818b1035402d3b5dd3a2f55f1df25eb9e4 Mon Sep 17 00:00:00 2001
From: G Sri Harsha
Date: Tue, 26 May 2020 14:44:22 +0530
Subject: Rename script2.py to video2_TaylorExpansionGeneralForm.py.py
---
.../Taylor Series/script2.py | 195 ---------------------
.../video2_TaylorExpansionGeneralForm.py.py | 195 +++++++++++++++++++++
2 files changed, 195 insertions(+), 195 deletions(-)
delete mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/script2.py
create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py.py
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/script2.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/script2.py
deleted file mode 100644
index b5d0a53..0000000
--- a/FSF-2020/calculus/series-and-transformations/Taylor Series/script2.py
+++ /dev/null
@@ -1,195 +0,0 @@
-from manimlib.imports import*
-import math
-
-
-class intro(Scene):
- def construct(self):
- equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$")
- equation.scale(2)
- equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED})
- text=TextMobject("at $a=1$")
- text.scale(0.7)
- text.shift(DOWN)
-
- shiftText=TextMobject("(Here we shift the origin to the point $x=1$)")
- shiftText.scale(0.6)
- shiftText.shift(2.4*DOWN)
-
-
- self.play(Write(equation))
- self.wait(0.5)
- self.play(FadeIn(text))
- self.wait(0.7)
- self.play(Write(shiftText))
- self.wait(0.7)
- self.play(FadeOut(equation),FadeOut(text),FadeOut(shiftText))
-
-
-def formFormula(coeff_list,variable_list):
- coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
- variable_list=[TextMobject("+"),TextMobject("${ (x-1) }$+"),TextMobject("${ (x-1) }^{ 2 }$")]
- coeff_list[0].shift(2.2*UP+1.6*LEFT)
- for i in range(0,3):
- coeff_list[i].set_color(GOLD_A)
- variable_list[i].next_to(coeff_list[i],buff=0.1)
- if i!=2:
- coeff_list[i+1].next_to(variable_list[i],buff=0.1)
- dots=TextMobject("...")
- dots.next_to(variable_list[2])
- expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots)
- #expansion.scale(0.7)
- return expansion,coeff_list
-
-
-class graphScene(GraphScene):
- CONFIG = {
- "x_min": -8,
- "x_max": 8,
- "y_min": -8,
- "y_max": 8,
- "graph_origin": ORIGIN,
- "function_color": RED,
- "axes_color": GREEN,
- "x_axis_label": "$x$",
- "y_axis_label": "$y$",
- "exclude_zero_label": True,
- "x_labeled_nums": range(-8, 8, 1),
- }
- def construct(self):
- x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
- y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
-
- generalized_eq_coeff=[]
- variables_eq=[]
- eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq)
- trText1=TextMobject("let $T_{ n }(x)$:=")
- eq.next_to(trText1)
- trTextGrup=VGroup(trText1,eq)
- trTextGrup.scale(0.5)
- trTextGrup.to_corner(UP+RIGHT)
- self.play(Write(trTextGrup))
- self.setup_axes(animate=True)
-
- fx=TextMobject("${ e }^{ -x^{ 2 } }$")
- fx.scale(0.5)
- fx.shift(ORIGIN+x_each_unit*7.5*RIGHT+y_each_unit*0.5*UP)
- mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8)
- self.play(ShowCreation(mainfunction))
- self.play(FadeIn(fx))
- self.wait(1.4)
-
- coeff=[TextMobject("$e^{-1}$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")]
- coeff[0].shift(3.33*UP+3.65*RIGHT)
- coeff[0].scale(0.45)
- coeff[1].shift(3.33*UP+4.13*RIGHT)
- coeff[1].scale(0.275)
- coeff[2].shift(3.33*UP+5.36*RIGHT)
- coeff[2].scale(0.28)
-
- for obj in coeff:
- obj.set_color(GOLD_A)
-
- firstApprox=[self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)]
- secondApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5),
- self.get_graph(lambda x:math.exp(-1)+3*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5),
- self.get_graph(lambda x:math.exp(-1)-4*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)]
- thirdApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
- self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-0.1*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
- self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_max=5.5,x_min=-5.5),
- self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+0.5*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
- self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5)]
-
- firstGraph=self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)
- secondGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)
- thirdGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5)
-
- bottomText1=TextMobject("Apply","$f(1)=T_{n}(1)$")
- bottomText2=TextMobject("This gives","$a_{ 0 }=e^{-1}$")
- bottomText3=TextMobject("Now it could be of","any slope!")
- #show graphs of second approx
- bottomText4=TextMobject("Hence","apply","$f'(1)=T_{n}'(1)$")
- #final graph
- bottomText5=TextMobject("This gives","$a_{ 1 }=-2e^{-1}$")
- bottomText6=TextMobject("Since the rate of change of this slope","could vary")
- #show third approx graphs
- bottomText7=TextMobject("Hence also","apply","$f''(1)=T_{ n }''(1)$")
- #final graph
- bottomText8=TextMobject("This gives","$a_{ 2 }=e^{-1}$")
-
- bottomText1.set_color_by_tex_to_color_map({"Apply":YELLOW})
- bottomText2.set_color_by_tex_to_color_map({"$a_{ 0 }=e^{-1}$":BLUE})
- bottomText3.set_color_by_tex_to_color_map({"any slope!":YELLOW})
- bottomText4.set_color_by_tex_to_color_map({"apply":YELLOW})
- bottomText5.set_color_by_tex_to_color_map({"$a_{ 1 }=-2e^{-1}$":BLUE})
- bottomText6.set_color_by_tex_to_color_map({"could vary":YELLOW})
- bottomText7.set_color_by_tex_to_color_map({"apply":YELLOW})
- bottomText8.set_color_by_tex_to_color_map({"$a_{ 2 }=e^{-1}$":BLUE})
-
- bottomText1.scale(0.4)
- bottomText2.scale(0.5)
- bottomText3.scale(0.4)
- bottomText4.scale(0.4)
- bottomText5.scale(0.5)
- bottomText6.scale(0.4)
- bottomText7.scale(0.4)
- bottomText8.scale(0.5)
-
- bottomText1.shift(4.5*RIGHT+2.5*DOWN)
- bottomText2.shift(4.5*RIGHT+2.5*DOWN)
- bottomText3.shift(4.5*RIGHT+2.5*DOWN)
- bottomText4.shift(4.5*RIGHT+2.5*DOWN)
- bottomText5.shift(4.5*RIGHT+2.5*DOWN)
- bottomText6.shift(4.5*RIGHT+2.5*DOWN)
- bottomText7.shift(4.5*RIGHT+2.5*DOWN)
- bottomText8.shift(4.5*RIGHT+2.5*DOWN)
-
- self.play(Write(bottomText1))
- self.wait(1)
- self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2))
- #change coeff in tn(x)
- self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0]))
- self.wait(1.5)
- self.play(ReplacementTransform(bottomText2,bottomText3))
- self.wait(0.5)
- self.play(ReplacementTransform(firstApprox[0],secondApprox[1]))
- self.wait(0.5)
- self.play(ReplacementTransform(secondApprox[1],secondApprox[2]))
- # self.wait(0.5)
- # self.play(ReplacementTransform(secondApprox[2],secondApprox[0]))
- self.wait(1)
- self.play(ReplacementTransform(bottomText3,bottomText4),FadeOut(secondApprox[2]))
- self.wait(1)
- self.play(Write(secondGraph),ReplacementTransform(bottomText4,bottomText5))
- #change a1 coeff
- self.play(ReplacementTransform(generalized_eq_coeff[1],coeff[1]))
- self.wait(1.5)
- self.play(ReplacementTransform(bottomText5,bottomText6))
- self.play(ReplacementTransform(secondGraph,thirdApprox[0]))
- self.wait(0.6)
- self.play(ReplacementTransform(thirdApprox[0],thirdApprox[1]))
- # self.wait(0.6)
- # self.play(ReplacementTransform(thirdApprox[1],thirdApprox[2]))
- self.wait(0.6)
- self.play(ReplacementTransform(thirdApprox[1],thirdApprox[3]))
- self.wait(0.6)
- self.play(ReplacementTransform(thirdApprox[3],thirdApprox[4]))
- self.wait(1.5)
- self.play(ReplacementTransform(bottomText6,bottomText7))
- self.wait(1.5)
- self.play(ReplacementTransform(bottomText7,bottomText8),ReplacementTransform(thirdApprox[4],thirdGraph))
- self.play(ReplacementTransform(generalized_eq_coeff[2],coeff[2]))
- self.wait(2)
-
- textFinal=TextMobject("And so on..!")
- textFinal.scale(0.7)
- textFinal.shift(4.5*RIGHT+2.5*DOWN)
- self.play(ReplacementTransform(bottomText8,textFinal))
- self.wait(2.5)
-
- finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(1)+f'(1)(x-1)+\\frac { f''(1) }{ 2! }(x-1)^2+..+\\frac { { f }^{ n }(1) }{ n! } { (x-1) }^{ n }$")
- finalFormula.scale(0.8)
- finalFormula.set_color_by_tex_to_color_map({"$T_{ n }(x)$":GREEN,"$f(1)+f'(1)(x-1)+\\frac { f''(1) }{ 2! }(x-1)^2+..+\\frac { { f }^{ n }(1) }{ n! } { (x-1) }^{ n }$":RED})
-
- self.play(FadeOut(self.axes),FadeOut(textFinal),FadeOut(thirdGraph),FadeOut(trTextGrup),FadeOut(mainfunction),FadeOut(fx),FadeOut(coeff[0]),FadeOut(coeff[1]),FadeOut(coeff[2]))
- self.play(Write(finalFormula))
- self.wait(2)
\ No newline at end of file
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py.py
new file mode 100644
index 0000000..f84cfe9
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py.py
@@ -0,0 +1,195 @@
+from manimlib.imports import*
+import math
+
+
+class intro(Scene):
+ def construct(self):
+ equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$")
+ equation.scale(2)
+ equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED})
+ text=TextMobject("at $a=1$")
+ text.scale(0.7)
+ text.shift(DOWN)
+
+ shiftText=TextMobject("(Here we shift the origin to the point $x=1$)")
+ shiftText.scale(0.6)
+ shiftText.shift(2.4*DOWN)
+
+
+ self.play(Write(equation))
+ self.wait(0.5)
+ self.play(FadeIn(text))
+ self.wait(0.7)
+ self.play(Write(shiftText))
+ self.wait(0.7)
+ self.play(FadeOut(equation),FadeOut(text),FadeOut(shiftText))
+
+
+def formFormula(coeff_list,variable_list):
+ coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ variable_list=[TextMobject("+"),TextMobject("${ (x-1) }$+"),TextMobject("${ (x-1) }^{ 2 }$")]
+ coeff_list[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ coeff_list[i].set_color(GOLD_A)
+ variable_list[i].next_to(coeff_list[i],buff=0.1)
+ if i!=2:
+ coeff_list[i+1].next_to(variable_list[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variable_list[2])
+ expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots)
+ #expansion.scale(0.7)
+ return expansion,coeff_list
+
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -8,
+ "y_max": 8,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-8, 8, 1),
+ }
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ generalized_eq_coeff=[]
+ variables_eq=[]
+ eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq)
+ trText1=TextMobject("let $T_{ n }(x)$:=")
+ eq.next_to(trText1)
+ trTextGrup=VGroup(trText1,eq)
+ trTextGrup.scale(0.5)
+ trTextGrup.to_corner(UP+RIGHT)
+ self.play(Write(trTextGrup))
+ self.setup_axes(animate=True)
+
+ fx=TextMobject("${ e }^{ -x^{ 2 } }$")
+ fx.scale(0.5)
+ fx.shift(ORIGIN+x_each_unit*7.5*RIGHT+y_each_unit*0.5*UP)
+ mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8)
+ self.play(ShowCreation(mainfunction))
+ self.play(FadeIn(fx))
+ self.wait(1.4)
+
+ coeff=[TextMobject("$e^{-1}$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")]
+ coeff[0].shift(3.33*UP+3.65*RIGHT)
+ coeff[0].scale(0.45)
+ coeff[1].shift(3.33*UP+4.13*RIGHT)
+ coeff[1].scale(0.275)
+ coeff[2].shift(3.33*UP+5.36*RIGHT)
+ coeff[2].scale(0.28)
+
+ for obj in coeff:
+ obj.set_color(GOLD_A)
+
+ firstApprox=[self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)]
+ secondApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5),
+ self.get_graph(lambda x:math.exp(-1)+3*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5),
+ self.get_graph(lambda x:math.exp(-1)-4*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)]
+ thirdApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
+ self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-0.1*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
+ self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_max=5.5,x_min=-5.5),
+ self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+0.5*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
+ self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5)]
+
+ firstGraph=self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)
+ secondGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)
+ thirdGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5)
+
+ bottomText1=TextMobject("Apply","$f(1)=T_{n}(1)$")
+ bottomText2=TextMobject("This gives","$a_{ 0 }=e^{-1}$")
+ bottomText3=TextMobject("Now it could be of","any slope!")
+ #show graphs of second approx
+ bottomText4=TextMobject("Hence","apply","$f'(1)=T_{n}'(1)$")
+ #final graph
+ bottomText5=TextMobject("This gives","$a_{ 1 }=-2e^{-1}$")
+ bottomText6=TextMobject("Since the rate of change of this slope","could vary")
+ #show third approx graphs
+ bottomText7=TextMobject("Hence also","apply","$f''(1)=T_{ n }''(1)$")
+ #final graph
+ bottomText8=TextMobject("This gives","$a_{ 2 }=e^{-1}$")
+
+ bottomText1.set_color_by_tex_to_color_map({"Apply":YELLOW})
+ bottomText2.set_color_by_tex_to_color_map({"$a_{ 0 }=e^{-1}$":BLUE})
+ bottomText3.set_color_by_tex_to_color_map({"any slope!":YELLOW})
+ bottomText4.set_color_by_tex_to_color_map({"apply":YELLOW})
+ bottomText5.set_color_by_tex_to_color_map({"$a_{ 1 }=-2e^{-1}$":BLUE})
+ bottomText6.set_color_by_tex_to_color_map({"could vary":YELLOW})
+ bottomText7.set_color_by_tex_to_color_map({"apply":YELLOW})
+ bottomText8.set_color_by_tex_to_color_map({"$a_{ 2 }=e^{-1}$":BLUE})
+
+ bottomText1.scale(0.4)
+ bottomText2.scale(0.5)
+ bottomText3.scale(0.4)
+ bottomText4.scale(0.4)
+ bottomText5.scale(0.5)
+ bottomText6.scale(0.4)
+ bottomText7.scale(0.4)
+ bottomText8.scale(0.5)
+
+ bottomText1.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText2.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText3.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText4.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText5.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText6.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText7.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText8.shift(4.5*RIGHT+2.5*DOWN)
+
+ self.play(Write(bottomText1))
+ self.wait(1)
+ self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2))
+ #change coeff in tn(x)
+ self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText2,bottomText3))
+ self.wait(0.5)
+ self.play(ReplacementTransform(firstApprox[0],secondApprox[1]))
+ self.wait(0.5)
+ self.play(ReplacementTransform(secondApprox[1],secondApprox[2]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[2],secondApprox[0]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText3,bottomText4),FadeOut(secondApprox[2]))
+ self.wait(1)
+ self.play(Write(secondGraph),ReplacementTransform(bottomText4,bottomText5))
+ #change a1 coeff
+ self.play(ReplacementTransform(generalized_eq_coeff[1],coeff[1]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText5,bottomText6))
+ self.play(ReplacementTransform(secondGraph,thirdApprox[0]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[0],thirdApprox[1]))
+ # self.wait(0.6)
+ # self.play(ReplacementTransform(thirdApprox[1],thirdApprox[2]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[1],thirdApprox[3]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[3],thirdApprox[4]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText6,bottomText7))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText7,bottomText8),ReplacementTransform(thirdApprox[4],thirdGraph))
+ self.play(ReplacementTransform(generalized_eq_coeff[2],coeff[2]))
+ self.wait(2)
+
+ textFinal=TextMobject("And so on..!")
+ textFinal.scale(0.7)
+ textFinal.shift(4.5*RIGHT+2.5*DOWN)
+ self.play(ReplacementTransform(bottomText8,textFinal))
+ self.wait(2.5)
+
+ finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(1)+f'(1)(x-1)+\\frac { f''(1) }{ 2! }(x-1)^2+..+\\frac { { f }^{ n }(1) }{ n! } { (x-1) }^{ n }$")
+ finalFormula.scale(0.8)
+ finalFormula.set_color_by_tex_to_color_map({"$T_{ n }(x)$":GREEN,"$f(1)+f'(1)(x-1)+\\frac { f''(1) }{ 2! }(x-1)^2+..+\\frac { { f }^{ n }(1) }{ n! } { (x-1) }^{ n }$":RED})
+
+ self.play(FadeOut(self.axes),FadeOut(textFinal),FadeOut(thirdGraph),FadeOut(trTextGrup),FadeOut(mainfunction),FadeOut(fx),FadeOut(coeff[0]),FadeOut(coeff[1]),FadeOut(coeff[2]))
+ self.play(Write(finalFormula))
+ self.wait(2)
--
cgit
From 1fb63bccdf7d35a6f5c277b836a2477289baa282 Mon Sep 17 00:00:00 2001
From: G Sri Harsha
Date: Tue, 26 May 2020 14:44:41 +0530
Subject: Rename video1_Example_TaylorExpansion.py.py to
video1_Example_TaylorExpansion.py
---
.../video1_Example_TaylorExpansion.py | 198 +++++++++++++++++++++
.../video1_Example_TaylorExpansion.py.py | 198 ---------------------
2 files changed, 198 insertions(+), 198 deletions(-)
create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py
delete mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py.py
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py
new file mode 100644
index 0000000..e83eff8
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py
@@ -0,0 +1,198 @@
+from manimlib.imports import*
+import math
+
+def formFormula(coeff_list,variable_list):
+ coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ variable_list=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
+ coeff_list[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ coeff_list[i].set_color(GOLD_A)
+ variable_list[i].next_to(coeff_list[i],buff=0.1)
+ if i!=2:
+ coeff_list[i+1].next_to(variable_list[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variable_list[2])
+ expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots)
+ #expansion.scale(0.7)
+ return expansion,coeff_list
+
+class intro(Scene):
+ def construct(self):
+ equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$")
+ equation.scale(2)
+ equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED})
+ text=TextMobject("let $a=0$")
+ text.scale(0.7)
+ text.shift(DOWN)
+
+ self.play(Write(equation))
+ self.wait(0.5)
+ self.play(FadeIn(text))
+ self.wait(0.7)
+ self.play(FadeOut(equation),FadeOut(text))
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -8,
+ "y_max": 8,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-8, 8, 1),
+ }
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ generalized_eq_coeff=[]
+ variables_eq=[]
+ eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq)
+ trText1=TextMobject("let $T_{ n }(x)$:=")
+ eq.next_to(trText1)
+ trTextGrup=VGroup(trText1,eq)
+ trTextGrup.scale(0.5)
+ trTextGrup.to_corner(UP+RIGHT)
+ self.play(Write(trTextGrup))
+ self.setup_axes(animate=True)
+
+ fx=TextMobject("${ e }^{ -x^{ 2 } }$")
+ fx.scale(0.5)
+ fx.shift(ORIGIN+x_each_unit*7.5*RIGHT+y_each_unit*0.5*UP)
+ mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8)
+ self.play(ShowCreation(mainfunction))
+ self.play(FadeIn(fx))
+ self.wait(1.4)
+
+ coeff=[TextMobject("$1$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")]
+ coeff[0].shift(3.39*UP+4.88*RIGHT)
+ coeff[0].scale(0.5)
+ coeff[1].shift(3.39*UP+5.3*RIGHT)
+ coeff[1].scale(0.275)
+ coeff[2].shift(3.39*UP+5.98*RIGHT)
+ coeff[2].scale(0.28)
+
+ for obj in coeff:
+ obj.set_color(GOLD_A)
+
+ firstApprox=[self.get_graph(lambda x:1,color=BLUE)]
+ secondApprox=[self.get_graph(lambda x:1,color=BLUE),
+ self.get_graph(lambda x:x+1,color=BLUE),
+ self.get_graph(lambda x:-x+1,color=BLUE)]
+ thirdApprox=[self.get_graph(lambda x:1-2*math.pow(x,2),color=BLUE),
+ self.get_graph(lambda x:1-0.1*math.pow(x,2),color=BLUE),
+ self.get_graph(lambda x:1,color=BLUE),
+ self.get_graph(lambda x:1+0.1*math.pow(x,2),color=BLUE),
+ self.get_graph(lambda x:1+math.pow(x,2),color=BLUE)]
+
+ firstGraph=self.get_graph(lambda x:1,color=BLUE)
+ secondGraph=self.get_graph(lambda x:1-math.pow(x,2),color=BLUE)
+
+ bottomText1=TextMobject("The polynomial should","satisfy","the function at $x=0$")
+ bottomText2=TextMobject("This gives","$a_{ 0 }=1$")
+ bottomText3=TextMobject("Now it could be of","any slope!")
+ #show graphs of second approx
+ bottomText4=TextMobject("Hence the","slopes","should","even match")
+ #final graph
+ bottomText5=TextMobject("This gives","$a_{ 1 }=0$")
+ bottomText6=TextMobject("Since the rate of change of this slope","could vary")
+ #show third approx graphs
+ bottomText7=TextMobject("Hence the","rate of change of these slopes","should also be","same!")
+ #final graph
+ bottomText8=TextMobject("This gives","$a_{ 2 }=-1$")
+
+ bottomText1.set_color_by_tex_to_color_map({"satisfy":YELLOW})
+ bottomText2.set_color_by_tex_to_color_map({"$a_{ 0 }=1$":BLUE})
+ bottomText3.set_color_by_tex_to_color_map({"any slope!":YELLOW})
+ bottomText4.set_color_by_tex_to_color_map({"slopes":BLUE,"even match":YELLOW})
+ bottomText5.set_color_by_tex_to_color_map({"$a_{ 1 }=0$":BLUE})
+ bottomText6.set_color_by_tex_to_color_map({"could vary":YELLOW})
+ bottomText7.set_color_by_tex_to_color_map({"rate of change of these slopes":BLUE,"same!":YELLOW})
+ bottomText8.set_color_by_tex_to_color_map({"$a_{ 2 }=-1$":BLUE})
+
+ bottomText1.scale(0.4)
+ bottomText2.scale(0.5)
+ bottomText3.scale(0.4)
+ bottomText4.scale(0.4)
+ bottomText5.scale(0.5)
+ bottomText6.scale(0.4)
+ bottomText7.scale(0.4)
+ bottomText8.scale(0.5)
+
+ bottomText1.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText2.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText3.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText4.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText5.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText6.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText7.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText8.shift(4.5*RIGHT+2.5*DOWN)
+
+ self.play(Write(bottomText1))
+ self.wait(1)
+ self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2))
+ #change coeff in tn(x)
+ self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText2,bottomText3))
+ self.wait(0.5)
+ self.play(ReplacementTransform(firstApprox[0],secondApprox[1]))
+ self.wait(0.5)
+ self.play(ReplacementTransform(secondApprox[1],secondApprox[0]))
+ self.wait(0.5)
+ self.play(ReplacementTransform(secondApprox[0],secondApprox[2]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText3,bottomText4),FadeOut(secondApprox[2]))
+ self.wait(1)
+ self.play(Write(firstGraph),ReplacementTransform(bottomText4,bottomText5))
+ #change a1 coeff
+ self.play(ReplacementTransform(generalized_eq_coeff[1],coeff[1]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText5,bottomText6))
+ self.play(ReplacementTransform(firstGraph,thirdApprox[0]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[0],thirdApprox[1]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[1],thirdApprox[2]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[2],thirdApprox[3]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[3],thirdApprox[4]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText6,bottomText7))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText7,bottomText8),ReplacementTransform(thirdApprox[4],secondGraph))
+ self.play(ReplacementTransform(generalized_eq_coeff[2],coeff[2]))
+ self.wait(2)
+
+ textFinal=TextMobject("And so on..!")
+ textFinal.scale(0.7)
+ textFinal.shift(4.5*RIGHT+2.5*DOWN)
+ self.play(ReplacementTransform(bottomText8,textFinal))
+ self.wait(2.5)
+
+ finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$")
+ finalFormula.scale(0.8)
+ finalFormula.set_color_by_tex_to_color_map({"$T_{ n }(x)$":GREEN,"$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$":RED})
+
+ self.play(FadeOut(self.axes),FadeOut(textFinal),FadeOut(secondGraph),FadeOut(trTextGrup),FadeOut(mainfunction),FadeOut(fx),FadeOut(coeff[0]),FadeOut(coeff[1]),FadeOut(coeff[2]))
+ self.play(Write(finalFormula))
+ self.wait(2)
+ # self.play(ReplacementTransform(secondApprox[2],secondApprox[3]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[3],secondApprox[4]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[4],secondApprox[5]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[0],secondApprox[0]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[0],secondApprox[0]))
+ # self.wait(0.5)
+
+
+
+
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py.py
deleted file mode 100644
index e83eff8..0000000
--- a/FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py.py
+++ /dev/null
@@ -1,198 +0,0 @@
-from manimlib.imports import*
-import math
-
-def formFormula(coeff_list,variable_list):
- coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
- variable_list=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
- coeff_list[0].shift(2.2*UP+1.6*LEFT)
- for i in range(0,3):
- coeff_list[i].set_color(GOLD_A)
- variable_list[i].next_to(coeff_list[i],buff=0.1)
- if i!=2:
- coeff_list[i+1].next_to(variable_list[i],buff=0.1)
- dots=TextMobject("...")
- dots.next_to(variable_list[2])
- expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots)
- #expansion.scale(0.7)
- return expansion,coeff_list
-
-class intro(Scene):
- def construct(self):
- equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$")
- equation.scale(2)
- equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED})
- text=TextMobject("let $a=0$")
- text.scale(0.7)
- text.shift(DOWN)
-
- self.play(Write(equation))
- self.wait(0.5)
- self.play(FadeIn(text))
- self.wait(0.7)
- self.play(FadeOut(equation),FadeOut(text))
-
-class graphScene(GraphScene):
- CONFIG = {
- "x_min": -8,
- "x_max": 8,
- "y_min": -8,
- "y_max": 8,
- "graph_origin": ORIGIN,
- "function_color": RED,
- "axes_color": GREEN,
- "x_axis_label": "$x$",
- "y_axis_label": "$y$",
- "exclude_zero_label": True,
- "x_labeled_nums": range(-8, 8, 1),
- }
- def construct(self):
- x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
- y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
-
- generalized_eq_coeff=[]
- variables_eq=[]
- eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq)
- trText1=TextMobject("let $T_{ n }(x)$:=")
- eq.next_to(trText1)
- trTextGrup=VGroup(trText1,eq)
- trTextGrup.scale(0.5)
- trTextGrup.to_corner(UP+RIGHT)
- self.play(Write(trTextGrup))
- self.setup_axes(animate=True)
-
- fx=TextMobject("${ e }^{ -x^{ 2 } }$")
- fx.scale(0.5)
- fx.shift(ORIGIN+x_each_unit*7.5*RIGHT+y_each_unit*0.5*UP)
- mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8)
- self.play(ShowCreation(mainfunction))
- self.play(FadeIn(fx))
- self.wait(1.4)
-
- coeff=[TextMobject("$1$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")]
- coeff[0].shift(3.39*UP+4.88*RIGHT)
- coeff[0].scale(0.5)
- coeff[1].shift(3.39*UP+5.3*RIGHT)
- coeff[1].scale(0.275)
- coeff[2].shift(3.39*UP+5.98*RIGHT)
- coeff[2].scale(0.28)
-
- for obj in coeff:
- obj.set_color(GOLD_A)
-
- firstApprox=[self.get_graph(lambda x:1,color=BLUE)]
- secondApprox=[self.get_graph(lambda x:1,color=BLUE),
- self.get_graph(lambda x:x+1,color=BLUE),
- self.get_graph(lambda x:-x+1,color=BLUE)]
- thirdApprox=[self.get_graph(lambda x:1-2*math.pow(x,2),color=BLUE),
- self.get_graph(lambda x:1-0.1*math.pow(x,2),color=BLUE),
- self.get_graph(lambda x:1,color=BLUE),
- self.get_graph(lambda x:1+0.1*math.pow(x,2),color=BLUE),
- self.get_graph(lambda x:1+math.pow(x,2),color=BLUE)]
-
- firstGraph=self.get_graph(lambda x:1,color=BLUE)
- secondGraph=self.get_graph(lambda x:1-math.pow(x,2),color=BLUE)
-
- bottomText1=TextMobject("The polynomial should","satisfy","the function at $x=0$")
- bottomText2=TextMobject("This gives","$a_{ 0 }=1$")
- bottomText3=TextMobject("Now it could be of","any slope!")
- #show graphs of second approx
- bottomText4=TextMobject("Hence the","slopes","should","even match")
- #final graph
- bottomText5=TextMobject("This gives","$a_{ 1 }=0$")
- bottomText6=TextMobject("Since the rate of change of this slope","could vary")
- #show third approx graphs
- bottomText7=TextMobject("Hence the","rate of change of these slopes","should also be","same!")
- #final graph
- bottomText8=TextMobject("This gives","$a_{ 2 }=-1$")
-
- bottomText1.set_color_by_tex_to_color_map({"satisfy":YELLOW})
- bottomText2.set_color_by_tex_to_color_map({"$a_{ 0 }=1$":BLUE})
- bottomText3.set_color_by_tex_to_color_map({"any slope!":YELLOW})
- bottomText4.set_color_by_tex_to_color_map({"slopes":BLUE,"even match":YELLOW})
- bottomText5.set_color_by_tex_to_color_map({"$a_{ 1 }=0$":BLUE})
- bottomText6.set_color_by_tex_to_color_map({"could vary":YELLOW})
- bottomText7.set_color_by_tex_to_color_map({"rate of change of these slopes":BLUE,"same!":YELLOW})
- bottomText8.set_color_by_tex_to_color_map({"$a_{ 2 }=-1$":BLUE})
-
- bottomText1.scale(0.4)
- bottomText2.scale(0.5)
- bottomText3.scale(0.4)
- bottomText4.scale(0.4)
- bottomText5.scale(0.5)
- bottomText6.scale(0.4)
- bottomText7.scale(0.4)
- bottomText8.scale(0.5)
-
- bottomText1.shift(4.5*RIGHT+2.5*DOWN)
- bottomText2.shift(4.5*RIGHT+2.5*DOWN)
- bottomText3.shift(4.5*RIGHT+2.5*DOWN)
- bottomText4.shift(4.5*RIGHT+2.5*DOWN)
- bottomText5.shift(4.5*RIGHT+2.5*DOWN)
- bottomText6.shift(4.5*RIGHT+2.5*DOWN)
- bottomText7.shift(4.5*RIGHT+2.5*DOWN)
- bottomText8.shift(4.5*RIGHT+2.5*DOWN)
-
- self.play(Write(bottomText1))
- self.wait(1)
- self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2))
- #change coeff in tn(x)
- self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0]))
- self.wait(1.5)
- self.play(ReplacementTransform(bottomText2,bottomText3))
- self.wait(0.5)
- self.play(ReplacementTransform(firstApprox[0],secondApprox[1]))
- self.wait(0.5)
- self.play(ReplacementTransform(secondApprox[1],secondApprox[0]))
- self.wait(0.5)
- self.play(ReplacementTransform(secondApprox[0],secondApprox[2]))
- self.wait(1)
- self.play(ReplacementTransform(bottomText3,bottomText4),FadeOut(secondApprox[2]))
- self.wait(1)
- self.play(Write(firstGraph),ReplacementTransform(bottomText4,bottomText5))
- #change a1 coeff
- self.play(ReplacementTransform(generalized_eq_coeff[1],coeff[1]))
- self.wait(1.5)
- self.play(ReplacementTransform(bottomText5,bottomText6))
- self.play(ReplacementTransform(firstGraph,thirdApprox[0]))
- self.wait(0.6)
- self.play(ReplacementTransform(thirdApprox[0],thirdApprox[1]))
- self.wait(0.6)
- self.play(ReplacementTransform(thirdApprox[1],thirdApprox[2]))
- self.wait(0.6)
- self.play(ReplacementTransform(thirdApprox[2],thirdApprox[3]))
- self.wait(0.6)
- self.play(ReplacementTransform(thirdApprox[3],thirdApprox[4]))
- self.wait(1.5)
- self.play(ReplacementTransform(bottomText6,bottomText7))
- self.wait(1.5)
- self.play(ReplacementTransform(bottomText7,bottomText8),ReplacementTransform(thirdApprox[4],secondGraph))
- self.play(ReplacementTransform(generalized_eq_coeff[2],coeff[2]))
- self.wait(2)
-
- textFinal=TextMobject("And so on..!")
- textFinal.scale(0.7)
- textFinal.shift(4.5*RIGHT+2.5*DOWN)
- self.play(ReplacementTransform(bottomText8,textFinal))
- self.wait(2.5)
-
- finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$")
- finalFormula.scale(0.8)
- finalFormula.set_color_by_tex_to_color_map({"$T_{ n }(x)$":GREEN,"$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$":RED})
-
- self.play(FadeOut(self.axes),FadeOut(textFinal),FadeOut(secondGraph),FadeOut(trTextGrup),FadeOut(mainfunction),FadeOut(fx),FadeOut(coeff[0]),FadeOut(coeff[1]),FadeOut(coeff[2]))
- self.play(Write(finalFormula))
- self.wait(2)
- # self.play(ReplacementTransform(secondApprox[2],secondApprox[3]))
- # self.wait(0.5)
- # self.play(ReplacementTransform(secondApprox[3],secondApprox[4]))
- # self.wait(0.5)
- # self.play(ReplacementTransform(secondApprox[4],secondApprox[5]))
- # self.wait(0.5)
- # self.play(ReplacementTransform(secondApprox[0],secondApprox[0]))
- # self.wait(0.5)
- # self.play(ReplacementTransform(secondApprox[0],secondApprox[0]))
- # self.wait(0.5)
-
-
-
-
--
cgit
From 70572f4639b5576090a1b6bf1494803b28611d59 Mon Sep 17 00:00:00 2001
From: G Sri Harsha
Date: Tue, 26 May 2020 14:45:03 +0530
Subject: Rename video2_TaylorExpansionGeneralForm.py.py to
video2_TaylorExpansionGeneralForm.py
---
.../video2_TaylorExpansionGeneralForm.py | 195 +++++++++++++++++++++
.../video2_TaylorExpansionGeneralForm.py.py | 195 ---------------------
2 files changed, 195 insertions(+), 195 deletions(-)
create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py
delete mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py.py
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py
new file mode 100644
index 0000000..f84cfe9
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py
@@ -0,0 +1,195 @@
+from manimlib.imports import*
+import math
+
+
+class intro(Scene):
+ def construct(self):
+ equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$")
+ equation.scale(2)
+ equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED})
+ text=TextMobject("at $a=1$")
+ text.scale(0.7)
+ text.shift(DOWN)
+
+ shiftText=TextMobject("(Here we shift the origin to the point $x=1$)")
+ shiftText.scale(0.6)
+ shiftText.shift(2.4*DOWN)
+
+
+ self.play(Write(equation))
+ self.wait(0.5)
+ self.play(FadeIn(text))
+ self.wait(0.7)
+ self.play(Write(shiftText))
+ self.wait(0.7)
+ self.play(FadeOut(equation),FadeOut(text),FadeOut(shiftText))
+
+
+def formFormula(coeff_list,variable_list):
+ coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ variable_list=[TextMobject("+"),TextMobject("${ (x-1) }$+"),TextMobject("${ (x-1) }^{ 2 }$")]
+ coeff_list[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ coeff_list[i].set_color(GOLD_A)
+ variable_list[i].next_to(coeff_list[i],buff=0.1)
+ if i!=2:
+ coeff_list[i+1].next_to(variable_list[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variable_list[2])
+ expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots)
+ #expansion.scale(0.7)
+ return expansion,coeff_list
+
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -8,
+ "y_max": 8,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-8, 8, 1),
+ }
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ generalized_eq_coeff=[]
+ variables_eq=[]
+ eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq)
+ trText1=TextMobject("let $T_{ n }(x)$:=")
+ eq.next_to(trText1)
+ trTextGrup=VGroup(trText1,eq)
+ trTextGrup.scale(0.5)
+ trTextGrup.to_corner(UP+RIGHT)
+ self.play(Write(trTextGrup))
+ self.setup_axes(animate=True)
+
+ fx=TextMobject("${ e }^{ -x^{ 2 } }$")
+ fx.scale(0.5)
+ fx.shift(ORIGIN+x_each_unit*7.5*RIGHT+y_each_unit*0.5*UP)
+ mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8)
+ self.play(ShowCreation(mainfunction))
+ self.play(FadeIn(fx))
+ self.wait(1.4)
+
+ coeff=[TextMobject("$e^{-1}$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")]
+ coeff[0].shift(3.33*UP+3.65*RIGHT)
+ coeff[0].scale(0.45)
+ coeff[1].shift(3.33*UP+4.13*RIGHT)
+ coeff[1].scale(0.275)
+ coeff[2].shift(3.33*UP+5.36*RIGHT)
+ coeff[2].scale(0.28)
+
+ for obj in coeff:
+ obj.set_color(GOLD_A)
+
+ firstApprox=[self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)]
+ secondApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5),
+ self.get_graph(lambda x:math.exp(-1)+3*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5),
+ self.get_graph(lambda x:math.exp(-1)-4*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)]
+ thirdApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
+ self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-0.1*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
+ self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_max=5.5,x_min=-5.5),
+ self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+0.5*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
+ self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5)]
+
+ firstGraph=self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)
+ secondGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)
+ thirdGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5)
+
+ bottomText1=TextMobject("Apply","$f(1)=T_{n}(1)$")
+ bottomText2=TextMobject("This gives","$a_{ 0 }=e^{-1}$")
+ bottomText3=TextMobject("Now it could be of","any slope!")
+ #show graphs of second approx
+ bottomText4=TextMobject("Hence","apply","$f'(1)=T_{n}'(1)$")
+ #final graph
+ bottomText5=TextMobject("This gives","$a_{ 1 }=-2e^{-1}$")
+ bottomText6=TextMobject("Since the rate of change of this slope","could vary")
+ #show third approx graphs
+ bottomText7=TextMobject("Hence also","apply","$f''(1)=T_{ n }''(1)$")
+ #final graph
+ bottomText8=TextMobject("This gives","$a_{ 2 }=e^{-1}$")
+
+ bottomText1.set_color_by_tex_to_color_map({"Apply":YELLOW})
+ bottomText2.set_color_by_tex_to_color_map({"$a_{ 0 }=e^{-1}$":BLUE})
+ bottomText3.set_color_by_tex_to_color_map({"any slope!":YELLOW})
+ bottomText4.set_color_by_tex_to_color_map({"apply":YELLOW})
+ bottomText5.set_color_by_tex_to_color_map({"$a_{ 1 }=-2e^{-1}$":BLUE})
+ bottomText6.set_color_by_tex_to_color_map({"could vary":YELLOW})
+ bottomText7.set_color_by_tex_to_color_map({"apply":YELLOW})
+ bottomText8.set_color_by_tex_to_color_map({"$a_{ 2 }=e^{-1}$":BLUE})
+
+ bottomText1.scale(0.4)
+ bottomText2.scale(0.5)
+ bottomText3.scale(0.4)
+ bottomText4.scale(0.4)
+ bottomText5.scale(0.5)
+ bottomText6.scale(0.4)
+ bottomText7.scale(0.4)
+ bottomText8.scale(0.5)
+
+ bottomText1.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText2.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText3.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText4.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText5.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText6.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText7.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText8.shift(4.5*RIGHT+2.5*DOWN)
+
+ self.play(Write(bottomText1))
+ self.wait(1)
+ self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2))
+ #change coeff in tn(x)
+ self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText2,bottomText3))
+ self.wait(0.5)
+ self.play(ReplacementTransform(firstApprox[0],secondApprox[1]))
+ self.wait(0.5)
+ self.play(ReplacementTransform(secondApprox[1],secondApprox[2]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[2],secondApprox[0]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText3,bottomText4),FadeOut(secondApprox[2]))
+ self.wait(1)
+ self.play(Write(secondGraph),ReplacementTransform(bottomText4,bottomText5))
+ #change a1 coeff
+ self.play(ReplacementTransform(generalized_eq_coeff[1],coeff[1]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText5,bottomText6))
+ self.play(ReplacementTransform(secondGraph,thirdApprox[0]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[0],thirdApprox[1]))
+ # self.wait(0.6)
+ # self.play(ReplacementTransform(thirdApprox[1],thirdApprox[2]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[1],thirdApprox[3]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[3],thirdApprox[4]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText6,bottomText7))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText7,bottomText8),ReplacementTransform(thirdApprox[4],thirdGraph))
+ self.play(ReplacementTransform(generalized_eq_coeff[2],coeff[2]))
+ self.wait(2)
+
+ textFinal=TextMobject("And so on..!")
+ textFinal.scale(0.7)
+ textFinal.shift(4.5*RIGHT+2.5*DOWN)
+ self.play(ReplacementTransform(bottomText8,textFinal))
+ self.wait(2.5)
+
+ finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(1)+f'(1)(x-1)+\\frac { f''(1) }{ 2! }(x-1)^2+..+\\frac { { f }^{ n }(1) }{ n! } { (x-1) }^{ n }$")
+ finalFormula.scale(0.8)
+ finalFormula.set_color_by_tex_to_color_map({"$T_{ n }(x)$":GREEN,"$f(1)+f'(1)(x-1)+\\frac { f''(1) }{ 2! }(x-1)^2+..+\\frac { { f }^{ n }(1) }{ n! } { (x-1) }^{ n }$":RED})
+
+ self.play(FadeOut(self.axes),FadeOut(textFinal),FadeOut(thirdGraph),FadeOut(trTextGrup),FadeOut(mainfunction),FadeOut(fx),FadeOut(coeff[0]),FadeOut(coeff[1]),FadeOut(coeff[2]))
+ self.play(Write(finalFormula))
+ self.wait(2)
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py.py
deleted file mode 100644
index f84cfe9..0000000
--- a/FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py.py
+++ /dev/null
@@ -1,195 +0,0 @@
-from manimlib.imports import*
-import math
-
-
-class intro(Scene):
- def construct(self):
- equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$")
- equation.scale(2)
- equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED})
- text=TextMobject("at $a=1$")
- text.scale(0.7)
- text.shift(DOWN)
-
- shiftText=TextMobject("(Here we shift the origin to the point $x=1$)")
- shiftText.scale(0.6)
- shiftText.shift(2.4*DOWN)
-
-
- self.play(Write(equation))
- self.wait(0.5)
- self.play(FadeIn(text))
- self.wait(0.7)
- self.play(Write(shiftText))
- self.wait(0.7)
- self.play(FadeOut(equation),FadeOut(text),FadeOut(shiftText))
-
-
-def formFormula(coeff_list,variable_list):
- coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
- variable_list=[TextMobject("+"),TextMobject("${ (x-1) }$+"),TextMobject("${ (x-1) }^{ 2 }$")]
- coeff_list[0].shift(2.2*UP+1.6*LEFT)
- for i in range(0,3):
- coeff_list[i].set_color(GOLD_A)
- variable_list[i].next_to(coeff_list[i],buff=0.1)
- if i!=2:
- coeff_list[i+1].next_to(variable_list[i],buff=0.1)
- dots=TextMobject("...")
- dots.next_to(variable_list[2])
- expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots)
- #expansion.scale(0.7)
- return expansion,coeff_list
-
-
-class graphScene(GraphScene):
- CONFIG = {
- "x_min": -8,
- "x_max": 8,
- "y_min": -8,
- "y_max": 8,
- "graph_origin": ORIGIN,
- "function_color": RED,
- "axes_color": GREEN,
- "x_axis_label": "$x$",
- "y_axis_label": "$y$",
- "exclude_zero_label": True,
- "x_labeled_nums": range(-8, 8, 1),
- }
- def construct(self):
- x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
- y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
-
- generalized_eq_coeff=[]
- variables_eq=[]
- eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq)
- trText1=TextMobject("let $T_{ n }(x)$:=")
- eq.next_to(trText1)
- trTextGrup=VGroup(trText1,eq)
- trTextGrup.scale(0.5)
- trTextGrup.to_corner(UP+RIGHT)
- self.play(Write(trTextGrup))
- self.setup_axes(animate=True)
-
- fx=TextMobject("${ e }^{ -x^{ 2 } }$")
- fx.scale(0.5)
- fx.shift(ORIGIN+x_each_unit*7.5*RIGHT+y_each_unit*0.5*UP)
- mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8)
- self.play(ShowCreation(mainfunction))
- self.play(FadeIn(fx))
- self.wait(1.4)
-
- coeff=[TextMobject("$e^{-1}$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")]
- coeff[0].shift(3.33*UP+3.65*RIGHT)
- coeff[0].scale(0.45)
- coeff[1].shift(3.33*UP+4.13*RIGHT)
- coeff[1].scale(0.275)
- coeff[2].shift(3.33*UP+5.36*RIGHT)
- coeff[2].scale(0.28)
-
- for obj in coeff:
- obj.set_color(GOLD_A)
-
- firstApprox=[self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)]
- secondApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5),
- self.get_graph(lambda x:math.exp(-1)+3*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5),
- self.get_graph(lambda x:math.exp(-1)-4*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)]
- thirdApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
- self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-0.1*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
- self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_max=5.5,x_min=-5.5),
- self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+0.5*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
- self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5)]
-
- firstGraph=self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)
- secondGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)
- thirdGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5)
-
- bottomText1=TextMobject("Apply","$f(1)=T_{n}(1)$")
- bottomText2=TextMobject("This gives","$a_{ 0 }=e^{-1}$")
- bottomText3=TextMobject("Now it could be of","any slope!")
- #show graphs of second approx
- bottomText4=TextMobject("Hence","apply","$f'(1)=T_{n}'(1)$")
- #final graph
- bottomText5=TextMobject("This gives","$a_{ 1 }=-2e^{-1}$")
- bottomText6=TextMobject("Since the rate of change of this slope","could vary")
- #show third approx graphs
- bottomText7=TextMobject("Hence also","apply","$f''(1)=T_{ n }''(1)$")
- #final graph
- bottomText8=TextMobject("This gives","$a_{ 2 }=e^{-1}$")
-
- bottomText1.set_color_by_tex_to_color_map({"Apply":YELLOW})
- bottomText2.set_color_by_tex_to_color_map({"$a_{ 0 }=e^{-1}$":BLUE})
- bottomText3.set_color_by_tex_to_color_map({"any slope!":YELLOW})
- bottomText4.set_color_by_tex_to_color_map({"apply":YELLOW})
- bottomText5.set_color_by_tex_to_color_map({"$a_{ 1 }=-2e^{-1}$":BLUE})
- bottomText6.set_color_by_tex_to_color_map({"could vary":YELLOW})
- bottomText7.set_color_by_tex_to_color_map({"apply":YELLOW})
- bottomText8.set_color_by_tex_to_color_map({"$a_{ 2 }=e^{-1}$":BLUE})
-
- bottomText1.scale(0.4)
- bottomText2.scale(0.5)
- bottomText3.scale(0.4)
- bottomText4.scale(0.4)
- bottomText5.scale(0.5)
- bottomText6.scale(0.4)
- bottomText7.scale(0.4)
- bottomText8.scale(0.5)
-
- bottomText1.shift(4.5*RIGHT+2.5*DOWN)
- bottomText2.shift(4.5*RIGHT+2.5*DOWN)
- bottomText3.shift(4.5*RIGHT+2.5*DOWN)
- bottomText4.shift(4.5*RIGHT+2.5*DOWN)
- bottomText5.shift(4.5*RIGHT+2.5*DOWN)
- bottomText6.shift(4.5*RIGHT+2.5*DOWN)
- bottomText7.shift(4.5*RIGHT+2.5*DOWN)
- bottomText8.shift(4.5*RIGHT+2.5*DOWN)
-
- self.play(Write(bottomText1))
- self.wait(1)
- self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2))
- #change coeff in tn(x)
- self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0]))
- self.wait(1.5)
- self.play(ReplacementTransform(bottomText2,bottomText3))
- self.wait(0.5)
- self.play(ReplacementTransform(firstApprox[0],secondApprox[1]))
- self.wait(0.5)
- self.play(ReplacementTransform(secondApprox[1],secondApprox[2]))
- # self.wait(0.5)
- # self.play(ReplacementTransform(secondApprox[2],secondApprox[0]))
- self.wait(1)
- self.play(ReplacementTransform(bottomText3,bottomText4),FadeOut(secondApprox[2]))
- self.wait(1)
- self.play(Write(secondGraph),ReplacementTransform(bottomText4,bottomText5))
- #change a1 coeff
- self.play(ReplacementTransform(generalized_eq_coeff[1],coeff[1]))
- self.wait(1.5)
- self.play(ReplacementTransform(bottomText5,bottomText6))
- self.play(ReplacementTransform(secondGraph,thirdApprox[0]))
- self.wait(0.6)
- self.play(ReplacementTransform(thirdApprox[0],thirdApprox[1]))
- # self.wait(0.6)
- # self.play(ReplacementTransform(thirdApprox[1],thirdApprox[2]))
- self.wait(0.6)
- self.play(ReplacementTransform(thirdApprox[1],thirdApprox[3]))
- self.wait(0.6)
- self.play(ReplacementTransform(thirdApprox[3],thirdApprox[4]))
- self.wait(1.5)
- self.play(ReplacementTransform(bottomText6,bottomText7))
- self.wait(1.5)
- self.play(ReplacementTransform(bottomText7,bottomText8),ReplacementTransform(thirdApprox[4],thirdGraph))
- self.play(ReplacementTransform(generalized_eq_coeff[2],coeff[2]))
- self.wait(2)
-
- textFinal=TextMobject("And so on..!")
- textFinal.scale(0.7)
- textFinal.shift(4.5*RIGHT+2.5*DOWN)
- self.play(ReplacementTransform(bottomText8,textFinal))
- self.wait(2.5)
-
- finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(1)+f'(1)(x-1)+\\frac { f''(1) }{ 2! }(x-1)^2+..+\\frac { { f }^{ n }(1) }{ n! } { (x-1) }^{ n }$")
- finalFormula.scale(0.8)
- finalFormula.set_color_by_tex_to_color_map({"$T_{ n }(x)$":GREEN,"$f(1)+f'(1)(x-1)+\\frac { f''(1) }{ 2! }(x-1)^2+..+\\frac { { f }^{ n }(1) }{ n! } { (x-1) }^{ n }$":RED})
-
- self.play(FadeOut(self.axes),FadeOut(textFinal),FadeOut(thirdGraph),FadeOut(trTextGrup),FadeOut(mainfunction),FadeOut(fx),FadeOut(coeff[0]),FadeOut(coeff[1]),FadeOut(coeff[2]))
- self.play(Write(finalFormula))
- self.wait(2)
--
cgit
From 6a04d04fcb710bf273be0e80471b692aa3f4d451 Mon Sep 17 00:00:00 2001
From: G Sri Harsha
Date: Tue, 26 May 2020 14:45:25 +0530
Subject: Rename script3.py to video3_radiusOfConvergence.py
---
.../Taylor Series/script3.py | 111 ---------------------
.../Taylor Series/video3_radiusOfConvergence.py | 111 +++++++++++++++++++++
2 files changed, 111 insertions(+), 111 deletions(-)
delete mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/script3.py
create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/video3_radiusOfConvergence.py
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/script3.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/script3.py
deleted file mode 100644
index a2870d4..0000000
--- a/FSF-2020/calculus/series-and-transformations/Taylor Series/script3.py
+++ /dev/null
@@ -1,111 +0,0 @@
-from manimlib.imports import*
-import math
-
-
-class graphScene(GraphScene):
- CONFIG = {
- "x_min": -8,
- "x_max": 8,
- "y_min": -8,
- "y_max": 8,
- "graph_origin": ORIGIN,
- "function_color": RED,
- "axes_color": GREEN,
- "x_axis_label": "$x$",
- "y_axis_label": "$y$",
- "exclude_zero_label": True,
- "x_labeled_nums": range(-8, 8, 1),
- }
- def construct(self):
-
- x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
- y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
-
- self.setup_axes(animate=True)
-
- lnx=self.get_graph(lambda x:math.log2(x),color=RED,x_min=0.01,x_max=8)
-
- bottomText1=TextMobject("Apply $f(x)=T_{n}(x)$")
- bottomText2=TextMobject("Then apply $f'(x)=T_{n}'(x)$")
- bottomText3=TextMobject("Then apply $f''(x)=T_{n}''(x)$")
- bottomText4=TextMobject("and so on..")
-
- bottomText1.scale(0.5)
- bottomText2.scale(0.5)
- bottomText3.scale(0.5)
- bottomText4.scale(0.5)
-
- bottomText1.shift(3*RIGHT+2*DOWN)
- bottomText2.shift(3*RIGHT+2*DOWN)
- bottomText3.shift(3*RIGHT+2*DOWN)
- bottomText4.shift(3*RIGHT+2*DOWN)
-
- equations=[self.get_graph(lambda x:math.log2(2),color=BLUE),
- self.get_graph(lambda x:math.log2(2)+(x-2)/2,color=BLUE),
- self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8,color=BLUE),
- self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24,color=BLUE),
- self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64,color=BLUE),
- self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160,color=BLUE),
- self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160-((x-2)**6)/384,color=BLUE)]
-
- terms=[TextMobject("$T_{n}:=$"),TextMobject("$ln(2)$"),TextMobject("$+\\frac { x-2 }{ 2 } $"),TextMobject("$-\\frac { (x-2)^{2} }{ 8 }$"),TextMobject("+..")]
- for obj in terms:
- obj.scale(0.5)
-
- terms[0].shift(3*UP+3*RIGHT)
- terms[1].next_to(terms[0],buff=0.1)
- terms[2].next_to(terms[1],buff=0.1)
- terms[3].next_to(terms[2],buff=0.1)
- terms[4].next_to(terms[3],buff=0.1)
-
- self.play(ShowCreation(lnx))
- self.wait(1)
- self.play(Write(bottomText1))
- self.wait(0.5)
- self.play(ShowCreation(equations[0]),Write(terms[0]),Write(terms[1]))
- self.wait(1)
- self.play(ReplacementTransform(bottomText1,bottomText2))
- self.wait(0.5)
- self.play(ReplacementTransform(equations[0],equations[1]),Write(terms[2]))
- self.wait(1)
- self.play(ReplacementTransform(bottomText2,bottomText3))
- self.wait(0.5)
- self.play(ReplacementTransform(equations[1],equations[2]),Write(terms[3]))
- self.wait(1)
- self.play(ReplacementTransform(bottomText3,bottomText4),Write(terms[4]))
- self.wait(1.5)
-
- self.play(FadeOut(terms[0]),FadeOut(terms[1]),FadeOut(terms[2]),FadeOut(terms[3]),FadeOut(terms[4]),FadeOut(bottomText4))
-
- dline=DashedLine(start=ORIGIN+8*y_each_unit*UP,end=ORIGIN+8*y_each_unit*DOWN)
- dline.shift(ORIGIN+x_each_unit*4*RIGHT)
-
- bottomText5=TextMobject("Here","after $x=4$",", the graph","continuously diverges away","from $ln(x)$")
- bottomText5.scale(0.3)
- bottomText5.shift(4.5*RIGHT+2*DOWN)
- bottomText5.set_color_by_tex_to_color_map({"after $x=4$":YELLOW,"continuously diverges away":BLUE})
-
- self.play(Write(bottomText5),Write(dline))
- self.wait(1)
- self.play(ReplacementTransform(equations[2],equations[3]))
- self.wait(0.3)
- self.play(ReplacementTransform(equations[3],equations[4]))
- self.wait(0.3)
- self.play(ReplacementTransform(equations[4],equations[5]))
- self.wait(0.3)
- self.play(ReplacementTransform(equations[5],equations[6]),FadeOut(bottomText5))
- self.wait(1)
-
- circle=Circle(radius=ORIGIN+x_each_unit*2,color=PURPLE_E)
- circle.shift(ORIGIN+RIGHT*x_each_unit*2)
- radiusLine=Line(start=ORIGIN+x_each_unit*RIGHT*2,end=ORIGIN+x_each_unit*4*RIGHT,color=PURPLE_E)
- radius=TextMobject("$R$")
- radius.set_color(RED)
- radius.scale(0.5)
- radius.shift(ORIGIN+RIGHT*x_each_unit*2.45+DOWN*y_each_unit*0.6)
-
- self.play(FadeOut(equations[6]),Write(circle))
- self.wait(0.6)
- self.play(Write(radiusLine))
- self.play(FadeIn(radius))
- self.wait(2)
\ No newline at end of file
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/video3_radiusOfConvergence.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/video3_radiusOfConvergence.py
new file mode 100644
index 0000000..a68afb6
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/video3_radiusOfConvergence.py
@@ -0,0 +1,111 @@
+from manimlib.imports import*
+import math
+
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -8,
+ "y_max": 8,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-8, 8, 1),
+ }
+ def construct(self):
+
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ self.setup_axes(animate=True)
+
+ lnx=self.get_graph(lambda x:math.log2(x),color=RED,x_min=0.01,x_max=8)
+
+ bottomText1=TextMobject("Apply $f(x)=T_{n}(x)$")
+ bottomText2=TextMobject("Then apply $f'(x)=T_{n}'(x)$")
+ bottomText3=TextMobject("Then apply $f''(x)=T_{n}''(x)$")
+ bottomText4=TextMobject("and so on..")
+
+ bottomText1.scale(0.5)
+ bottomText2.scale(0.5)
+ bottomText3.scale(0.5)
+ bottomText4.scale(0.5)
+
+ bottomText1.shift(3*RIGHT+2*DOWN)
+ bottomText2.shift(3*RIGHT+2*DOWN)
+ bottomText3.shift(3*RIGHT+2*DOWN)
+ bottomText4.shift(3*RIGHT+2*DOWN)
+
+ equations=[self.get_graph(lambda x:math.log2(2),color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2,color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8,color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24,color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64,color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160,color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160-((x-2)**6)/384,color=BLUE)]
+
+ terms=[TextMobject("$T_{n}:=$"),TextMobject("$ln(2)$"),TextMobject("$+\\frac { x-2 }{ 2 } $"),TextMobject("$-\\frac { (x-2)^{2} }{ 8 }$"),TextMobject("+..")]
+ for obj in terms:
+ obj.scale(0.5)
+
+ terms[0].shift(3*UP+3*RIGHT)
+ terms[1].next_to(terms[0],buff=0.1)
+ terms[2].next_to(terms[1],buff=0.1)
+ terms[3].next_to(terms[2],buff=0.1)
+ terms[4].next_to(terms[3],buff=0.1)
+
+ self.play(ShowCreation(lnx))
+ self.wait(1)
+ self.play(Write(bottomText1))
+ self.wait(0.5)
+ self.play(ShowCreation(equations[0]),Write(terms[0]),Write(terms[1]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText1,bottomText2))
+ self.wait(0.5)
+ self.play(ReplacementTransform(equations[0],equations[1]),Write(terms[2]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText2,bottomText3))
+ self.wait(0.5)
+ self.play(ReplacementTransform(equations[1],equations[2]),Write(terms[3]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText3,bottomText4),Write(terms[4]))
+ self.wait(1.5)
+
+ self.play(FadeOut(terms[0]),FadeOut(terms[1]),FadeOut(terms[2]),FadeOut(terms[3]),FadeOut(terms[4]),FadeOut(bottomText4))
+
+ dline=DashedLine(start=ORIGIN+8*y_each_unit*UP,end=ORIGIN+8*y_each_unit*DOWN)
+ dline.shift(ORIGIN+x_each_unit*4*RIGHT)
+
+ bottomText5=TextMobject("Here","after $x=4$",", the graph","continuously diverges away","from $ln(x)$")
+ bottomText5.scale(0.3)
+ bottomText5.shift(4.5*RIGHT+2*DOWN)
+ bottomText5.set_color_by_tex_to_color_map({"after $x=4$":YELLOW,"continuously diverges away":BLUE})
+
+ self.play(Write(bottomText5),Write(dline))
+ self.wait(1)
+ self.play(ReplacementTransform(equations[2],equations[3]))
+ self.wait(0.3)
+ self.play(ReplacementTransform(equations[3],equations[4]))
+ self.wait(0.3)
+ self.play(ReplacementTransform(equations[4],equations[5]))
+ self.wait(0.3)
+ self.play(ReplacementTransform(equations[5],equations[6]),FadeOut(bottomText5))
+ self.wait(1)
+
+ circle=Circle(radius=ORIGIN+x_each_unit*2,color=PURPLE_E)
+ circle.shift(ORIGIN+RIGHT*x_each_unit*2)
+ radiusLine=Line(start=ORIGIN+x_each_unit*RIGHT*2,end=ORIGIN+x_each_unit*4*RIGHT,color=PURPLE_E)
+ radius=TextMobject("$R$")
+ radius.set_color(RED)
+ radius.scale(0.5)
+ radius.shift(ORIGIN+RIGHT*x_each_unit*2.45+DOWN*y_each_unit*0.6)
+
+ self.play(FadeOut(equations[6]),Write(circle))
+ self.wait(0.6)
+ self.play(Write(radiusLine))
+ self.play(FadeIn(radius))
+ self.wait(2)
--
cgit
From 476d9b46e164221923e8685fb4a3d07453f5c8cc Mon Sep 17 00:00:00 2001
From: G Sri Harsha
Date: Tue, 26 May 2020 14:45:50 +0530
Subject: Rename script4.py to video4_DivergentRemainder.py
---
.../Taylor Series/script4.py | 82 ----------------------
.../Taylor Series/video4_DivergentRemainder.py | 82 ++++++++++++++++++++++
2 files changed, 82 insertions(+), 82 deletions(-)
delete mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/script4.py
create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/video4_DivergentRemainder.py
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/script4.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/script4.py
deleted file mode 100644
index 1f41c97..0000000
--- a/FSF-2020/calculus/series-and-transformations/Taylor Series/script4.py
+++ /dev/null
@@ -1,82 +0,0 @@
-from manimlib.imports import*
-import math
-
-
-class graphScene(GraphScene):
- CONFIG = {
- "x_min": -8,
- "x_max": 8,
- "y_min": -8,
- "y_max": 8,
- "graph_origin": ORIGIN,
- "function_color": RED,
- "axes_color": GREEN,
- "x_axis_label": "$x$",
- "y_axis_label": "$y$",
- "exclude_zero_label": True,
- "x_labeled_nums": range(-8, 8, 1),
- }
- def construct(self):
-
- x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
- y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
-
- self.setup_axes(animate=True)
- lnx=self.get_graph(lambda x:math.log2(x),color=RED,x_min=0.01,x_max=8)
- equation=self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160-((x-2)**6)/384,color=BLUE)
-
- terms=[TextMobject("$T_{n}:=$"),TextMobject("$ln(2)$"),TextMobject("$+\\frac { x-2 }{ 2 } $"),TextMobject("$-\\frac { (x-2)^{2} }{ 8 }$"),TextMobject("+..")]
- for obj in terms:
- obj.scale(0.5)
-
- terms[0].shift(3*UP+3*RIGHT)
- terms[1].next_to(terms[0],buff=0.1)
- terms[2].next_to(terms[1],buff=0.1)
- terms[3].next_to(terms[2],buff=0.1)
- terms[4].next_to(terms[3],buff=0.1)
-
- self.play(ShowCreation(lnx))
- self.wait(1)
- self.play(FadeIn(equation),FadeIn(terms[0]),FadeIn(terms[1]),FadeIn(terms[2]),FadeIn(terms[3]),FadeIn(terms[4]))
- self.wait(1)
-
- bottomText1=TextMobject("$R_{n}(x)=\\frac { d }{ dx } ($","area bounded","$)$")
-
- bottomText1.set_color_by_tex_to_color_map({"area bounded":ORANGE})
- #bottomText2.set_color_by_tex_to_color_map({"area bounded":BLUE})
- arrow=TextMobject("$\downarrow$")
- arrow.scale(2.5)
- arrow.shift(ORIGIN+x_each_unit*RIGHT*9.5+UP*y_each_unit)
- increasingText=TextMobject("Increases!")
- increasingText.set_color(GREEN)
- followupText=TextMobject("as n increase!")
- followupText.scale(0.3)
- followupText.shift(ORIGIN+x_each_unit*11*RIGHT+UP*y_each_unit*1.1)
- increasingText.shift(ORIGIN+x_each_unit*11*RIGHT+UP*y_each_unit*1.6)
- increasingText.scale(0.4)
-
- bottomText1.scale(0.5)
- #bottomText2.scale(0.5)
- #bottomText3.scale(0.5)
-
- bottomText1.shift(3.5*LEFT+2*DOWN)
- #bottomText2.shift(3.5*LEFT+2.4*DOWN)
- #bottomText3.shift(3.5*LEFT+2.8*DOWN)
-
- dline=DashedLine(start=ORIGIN+8*y_each_unit*UP,end=ORIGIN+8*y_each_unit*DOWN)
- dline.shift(ORIGIN+x_each_unit*4*RIGHT)
-
- area1=self.get_riemann_rectangles(lnx,x_max=8,x_min=4,dx=0.01,start_color=BLUE,end_color=RED,stroke_width=0,fill_opacity=0.8)
- area2=self.get_riemann_rectangles(equation,x_max=5.2,x_min=4,dx=0.025,start_color=BLACK,end_color=BLACK,stroke_width=0,fill_opacity=1)
-
- self.play(Write(dline))
- self.wait(0.5)
- self.play(ShowCreation(area1),ShowCreation(area2),Write(bottomText1))
- # self.play(Write(bottomText2))
- # self.play(FadeIn(bottomText3))
- self.play(Write(arrow))
- self.wait(0.7)
- self.play(Write(increasingText))
- self.play(FadeIn(followupText))
- self.wait(2)
-
\ No newline at end of file
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/video4_DivergentRemainder.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/video4_DivergentRemainder.py
new file mode 100644
index 0000000..5389039
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/video4_DivergentRemainder.py
@@ -0,0 +1,82 @@
+from manimlib.imports import*
+import math
+
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -8,
+ "y_max": 8,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-8, 8, 1),
+ }
+ def construct(self):
+
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ self.setup_axes(animate=True)
+ lnx=self.get_graph(lambda x:math.log2(x),color=RED,x_min=0.01,x_max=8)
+ equation=self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160-((x-2)**6)/384,color=BLUE)
+
+ terms=[TextMobject("$T_{n}:=$"),TextMobject("$ln(2)$"),TextMobject("$+\\frac { x-2 }{ 2 } $"),TextMobject("$-\\frac { (x-2)^{2} }{ 8 }$"),TextMobject("+..")]
+ for obj in terms:
+ obj.scale(0.5)
+
+ terms[0].shift(3*UP+3*RIGHT)
+ terms[1].next_to(terms[0],buff=0.1)
+ terms[2].next_to(terms[1],buff=0.1)
+ terms[3].next_to(terms[2],buff=0.1)
+ terms[4].next_to(terms[3],buff=0.1)
+
+ self.play(ShowCreation(lnx))
+ self.wait(1)
+ self.play(FadeIn(equation),FadeIn(terms[0]),FadeIn(terms[1]),FadeIn(terms[2]),FadeIn(terms[3]),FadeIn(terms[4]))
+ self.wait(1)
+
+ bottomText1=TextMobject("$R_{n}(x)=\\frac { d }{ dx } ($","area bounded","$)$")
+
+ bottomText1.set_color_by_tex_to_color_map({"area bounded":ORANGE})
+ #bottomText2.set_color_by_tex_to_color_map({"area bounded":BLUE})
+ arrow=TextMobject("$\downarrow$")
+ arrow.scale(2.5)
+ arrow.shift(ORIGIN+x_each_unit*RIGHT*9.5+UP*y_each_unit)
+ increasingText=TextMobject("Increases!")
+ increasingText.set_color(GREEN)
+ followupText=TextMobject("as n increase!")
+ followupText.scale(0.3)
+ followupText.shift(ORIGIN+x_each_unit*11*RIGHT+UP*y_each_unit*1.1)
+ increasingText.shift(ORIGIN+x_each_unit*11*RIGHT+UP*y_each_unit*1.6)
+ increasingText.scale(0.4)
+
+ bottomText1.scale(0.5)
+ #bottomText2.scale(0.5)
+ #bottomText3.scale(0.5)
+
+ bottomText1.shift(3.5*LEFT+2*DOWN)
+ #bottomText2.shift(3.5*LEFT+2.4*DOWN)
+ #bottomText3.shift(3.5*LEFT+2.8*DOWN)
+
+ dline=DashedLine(start=ORIGIN+8*y_each_unit*UP,end=ORIGIN+8*y_each_unit*DOWN)
+ dline.shift(ORIGIN+x_each_unit*4*RIGHT)
+
+ area1=self.get_riemann_rectangles(lnx,x_max=8,x_min=4,dx=0.01,start_color=BLUE,end_color=RED,stroke_width=0,fill_opacity=0.8)
+ area2=self.get_riemann_rectangles(equation,x_max=5.2,x_min=4,dx=0.025,start_color=BLACK,end_color=BLACK,stroke_width=0,fill_opacity=1)
+
+ self.play(Write(dline))
+ self.wait(0.5)
+ self.play(ShowCreation(area1),ShowCreation(area2),Write(bottomText1))
+ # self.play(Write(bottomText2))
+ # self.play(FadeIn(bottomText3))
+ self.play(Write(arrow))
+ self.wait(0.7)
+ self.play(Write(increasingText))
+ self.play(FadeIn(followupText))
+ self.wait(2)
+
--
cgit
From a933eb11ef98b70dbfec23d49e7b2cb97389c5de Mon Sep 17 00:00:00 2001
From: G Sri Harsha
Date: Tue, 26 May 2020 14:49:37 +0530
Subject: Added gifs to readme.md
---
.../series-and-transformations/Taylor Series/README.md | 11 +++++++++++
1 file changed, 11 insertions(+)
create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/README.md
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/README.md b/FSF-2020/calculus/series-and-transformations/Taylor Series/README.md
new file mode 100644
index 0000000..ce3b088
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/README.md
@@ -0,0 +1,11 @@
+#### Example of Taylors expansion
+![GIF1](gifs/file1_Example_TaylorExpansion.gif)
+
+#### Taylor Series GeneralForm
+![GIF2](gifs/file2_TaylorExpansionGeneralForm.gif)
+
+#### Radius Of Convergence
+![GIF3](gifs/file3_radiusOfConvergence.gif)
+
+#### Divergence of a Remainder
+![GIF4](gifs/file4_DivergentRemainder.gif)
--
cgit
From 3064bf04b5fa63a303abdf7dfcc099186ad4350b Mon Sep 17 00:00:00 2001
From: G Sri Harsha
Date: Fri, 29 May 2020 18:18:47 +0530
Subject: Add files via upload
---
.../Laplace Transformations/gifs/DiracFunction.gif | Bin 0 -> 60841 bytes
.../gifs/DiracFunctionFormation.gif | Bin 0 -> 315096 bytes
.../gifs/LtransformDiracFunction.gif | Bin 0 -> 99703 bytes
.../gifs/LtransformUnitStepFunction.gif | Bin 0 -> 151025 bytes
.../gifs/UnitStepFunctionExample.gif | Bin 0 -> 192755 bytes
.../Laplace Transformations/gifs/basicIntuition.gif | Bin 0 -> 113203 bytes
.../gifs/solvingDEintuition.gif | Bin 0 -> 196162 bytes
.../Laplace Transformations/gifs/unitStepFunction.gif | Bin 0 -> 56604 bytes
8 files changed, 0 insertions(+), 0 deletions(-)
create mode 100644 FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/DiracFunction.gif
create mode 100644 FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/DiracFunctionFormation.gif
create mode 100644 FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/LtransformDiracFunction.gif
create mode 100644 FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/LtransformUnitStepFunction.gif
create mode 100644 FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/UnitStepFunctionExample.gif
create mode 100644 FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/basicIntuition.gif
create mode 100644 FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/solvingDEintuition.gif
create mode 100644 FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/unitStepFunction.gif
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/DiracFunction.gif b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/DiracFunction.gif
new file mode 100644
index 0000000..cb62ed2
Binary files /dev/null and b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/DiracFunction.gif differ
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/DiracFunctionFormation.gif b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/DiracFunctionFormation.gif
new file mode 100644
index 0000000..23acbe9
Binary files /dev/null and b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/DiracFunctionFormation.gif differ
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/LtransformDiracFunction.gif b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/LtransformDiracFunction.gif
new file mode 100644
index 0000000..b1d50b5
Binary files /dev/null and b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/LtransformDiracFunction.gif differ
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/LtransformUnitStepFunction.gif b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/LtransformUnitStepFunction.gif
new file mode 100644
index 0000000..ccbd791
Binary files /dev/null and b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/LtransformUnitStepFunction.gif differ
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/UnitStepFunctionExample.gif b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/UnitStepFunctionExample.gif
new file mode 100644
index 0000000..2b1c38f
Binary files /dev/null and b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/UnitStepFunctionExample.gif differ
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/basicIntuition.gif b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/basicIntuition.gif
new file mode 100644
index 0000000..3b974bb
Binary files /dev/null and b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/basicIntuition.gif differ
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/solvingDEintuition.gif b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/solvingDEintuition.gif
new file mode 100644
index 0000000..9883a8c
Binary files /dev/null and b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/solvingDEintuition.gif differ
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/unitStepFunction.gif b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/unitStepFunction.gif
new file mode 100644
index 0000000..16757e1
Binary files /dev/null and b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/gifs/unitStepFunction.gif differ
--
cgit
From a356b658294689d860a63b5213b4ddb2a235b515 Mon Sep 17 00:00:00 2001
From: G Sri Harsha
Date: Fri, 29 May 2020 18:24:25 +0530
Subject: Added gifs
---
.../Laplace Transformations/README.md | 21 +++++++++++++++++++++
1 file changed, 21 insertions(+)
create mode 100644 FSF-2020/calculus/series-and-transformations/Laplace Transformations/README.md
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/README.md b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/README.md
new file mode 100644
index 0000000..2d8f06b
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/README.md
@@ -0,0 +1,21 @@
+###Basic Intuition
+![GIF1](gifs/basicIntuition.gif)
+
+###Solving D.E.intuition
+![GIF2](gifs/solvingDEintuition.gif)
+
+###Unit Step Function
+####Part1
+![GIF3](gifs/unitStepFunction.gif)
+####Part2
+![GIF4](gifs/UnitStepFunctionExample.gif)
+####Part3
+![GIF5](gifs/LtransformUnitStepFunction.gif)
+
+###Dirac Delta Function
+####Part1
+![GIF6](gifs/DiracFunction.gif)
+####Part2
+![GIF7](gifs/DiracFunctionFormation.gif)
+####Part3
+![GIF8](gifs/LtransformDiracFunction.gif)
--
cgit
From f299ffa1757488368e9d0bbef71f8b2a1792639c Mon Sep 17 00:00:00 2001
From: G Sri Harsha
Date: Fri, 29 May 2020 18:25:52 +0530
Subject: Updated Gifs
---
.../Laplace Transformations/README.md | 20 ++++++++++----------
1 file changed, 10 insertions(+), 10 deletions(-)
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/README.md b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/README.md
index 2d8f06b..d4cd8bc 100644
--- a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/README.md
+++ b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/README.md
@@ -1,21 +1,21 @@
-###Basic Intuition
+### Basic Intuition
![GIF1](gifs/basicIntuition.gif)
-###Solving D.E.intuition
+### Solving D.E.intuition
![GIF2](gifs/solvingDEintuition.gif)
-###Unit Step Function
-####Part1
+### Unit Step Function
+#### Part1
![GIF3](gifs/unitStepFunction.gif)
-####Part2
+#### Part2
![GIF4](gifs/UnitStepFunctionExample.gif)
-####Part3
+#### Part3
![GIF5](gifs/LtransformUnitStepFunction.gif)
-###Dirac Delta Function
-####Part1
+### Dirac Delta Function
+#### Part1
![GIF6](gifs/DiracFunction.gif)
-####Part2
+#### Part2
![GIF7](gifs/DiracFunctionFormation.gif)
-####Part3
+#### Part3
![GIF8](gifs/LtransformDiracFunction.gif)
--
cgit
From 8f4d09e3556a899190545d0dfe068fb31ac5b15c Mon Sep 17 00:00:00 2001
From: G Sri Harsha
Date: Fri, 29 May 2020 18:26:34 +0530
Subject: Add files via upload
---
.../file5_formationDiracDeltaFunction.py | 142 +++++++++++++++++++++
1 file changed, 142 insertions(+)
create mode 100644 FSF-2020/calculus/series-and-transformations/Laplace Transformations/file5_formationDiracDeltaFunction.py
(limited to 'FSF-2020/calculus')
diff --git a/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file5_formationDiracDeltaFunction.py b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file5_formationDiracDeltaFunction.py
new file mode 100644
index 0000000..565a7cb
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Laplace Transformations/file5_formationDiracDeltaFunction.py
@@ -0,0 +1,142 @@
+from manimlib.imports import *
+import math
+import pylatex
+
+def func(x,t):
+ if(x>-t and x