From fe5e18510140b3e02f3f6f03ad449c218f1b8579 Mon Sep 17 00:00:00 2001 From: Purusharth S Date: Sat, 23 May 2020 18:57:11 +0530 Subject: add topic-name folder --- .../Taylor Series/TaylorSeriesQuestions.pdf | Bin 0 -> 119804 bytes .../Taylor Series/script1.py | 198 +++++++++++++++++++++ .../Taylor Series/script2.py | 195 ++++++++++++++++++++ .../Taylor Series/script3.py | 111 ++++++++++++ .../Taylor Series/script4.py | 82 +++++++++ 5 files changed, 586 insertions(+) create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/script1.py create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/script2.py create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/script3.py create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/script4.py (limited to 'FSF-2020/calculus/series-and-transformations/Taylor Series') diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf b/FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf new file mode 100644 index 0000000..2096f52 Binary files /dev/null and b/FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf differ diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/script1.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/script1.py new file mode 100644 index 0000000..e83eff8 --- /dev/null +++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/script1.py @@ -0,0 +1,198 @@ +from manimlib.imports import* +import math + +def formFormula(coeff_list,variable_list): + coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")] + variable_list=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")] + coeff_list[0].shift(2.2*UP+1.6*LEFT) + for i in range(0,3): + coeff_list[i].set_color(GOLD_A) + variable_list[i].next_to(coeff_list[i],buff=0.1) + if i!=2: + coeff_list[i+1].next_to(variable_list[i],buff=0.1) + dots=TextMobject("...") + dots.next_to(variable_list[2]) + expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots) + #expansion.scale(0.7) + return expansion,coeff_list + +class intro(Scene): + def construct(self): + equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$") + equation.scale(2) + equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED}) + text=TextMobject("let $a=0$") + text.scale(0.7) + text.shift(DOWN) + + self.play(Write(equation)) + self.wait(0.5) + self.play(FadeIn(text)) + self.wait(0.7) + self.play(FadeOut(equation),FadeOut(text)) + +class graphScene(GraphScene): + CONFIG = { + "x_min": -8, + "x_max": 8, + "y_min": -8, + "y_max": 8, + "graph_origin": ORIGIN, + "function_color": RED, + "axes_color": GREEN, + "x_axis_label": "$x$", + "y_axis_label": "$y$", + "exclude_zero_label": True, + "x_labeled_nums": range(-8, 8, 1), + } + def construct(self): + x_each_unit = self.x_axis_width / (self.x_max - self.x_min) + y_each_unit = self.y_axis_height / (self.y_max - self.y_min) + + generalized_eq_coeff=[] + variables_eq=[] + eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq) + trText1=TextMobject("let $T_{ n }(x)$:=") + eq.next_to(trText1) + trTextGrup=VGroup(trText1,eq) + trTextGrup.scale(0.5) + trTextGrup.to_corner(UP+RIGHT) + self.play(Write(trTextGrup)) + self.setup_axes(animate=True) + + fx=TextMobject("${ e }^{ -x^{ 2 } }$") + fx.scale(0.5) + fx.shift(ORIGIN+x_each_unit*7.5*RIGHT+y_each_unit*0.5*UP) + mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8) + self.play(ShowCreation(mainfunction)) + self.play(FadeIn(fx)) + self.wait(1.4) + + coeff=[TextMobject("$1$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")] + coeff[0].shift(3.39*UP+4.88*RIGHT) + coeff[0].scale(0.5) + coeff[1].shift(3.39*UP+5.3*RIGHT) + coeff[1].scale(0.275) + coeff[2].shift(3.39*UP+5.98*RIGHT) + coeff[2].scale(0.28) + + for obj in coeff: + obj.set_color(GOLD_A) + + firstApprox=[self.get_graph(lambda x:1,color=BLUE)] + secondApprox=[self.get_graph(lambda x:1,color=BLUE), + self.get_graph(lambda x:x+1,color=BLUE), + self.get_graph(lambda x:-x+1,color=BLUE)] + thirdApprox=[self.get_graph(lambda x:1-2*math.pow(x,2),color=BLUE), + self.get_graph(lambda x:1-0.1*math.pow(x,2),color=BLUE), + self.get_graph(lambda x:1,color=BLUE), + self.get_graph(lambda x:1+0.1*math.pow(x,2),color=BLUE), + self.get_graph(lambda x:1+math.pow(x,2),color=BLUE)] + + firstGraph=self.get_graph(lambda x:1,color=BLUE) + secondGraph=self.get_graph(lambda x:1-math.pow(x,2),color=BLUE) + + bottomText1=TextMobject("The polynomial should","satisfy","the function at $x=0$") + bottomText2=TextMobject("This gives","$a_{ 0 }=1$") + bottomText3=TextMobject("Now it could be of","any slope!") + #show graphs of second approx + bottomText4=TextMobject("Hence the","slopes","should","even match") + #final graph + bottomText5=TextMobject("This gives","$a_{ 1 }=0$") + bottomText6=TextMobject("Since the rate of change of this slope","could vary") + #show third approx graphs + bottomText7=TextMobject("Hence the","rate of change of these slopes","should also be","same!") + #final graph + bottomText8=TextMobject("This gives","$a_{ 2 }=-1$") + + bottomText1.set_color_by_tex_to_color_map({"satisfy":YELLOW}) + bottomText2.set_color_by_tex_to_color_map({"$a_{ 0 }=1$":BLUE}) + bottomText3.set_color_by_tex_to_color_map({"any slope!":YELLOW}) + bottomText4.set_color_by_tex_to_color_map({"slopes":BLUE,"even match":YELLOW}) + bottomText5.set_color_by_tex_to_color_map({"$a_{ 1 }=0$":BLUE}) + bottomText6.set_color_by_tex_to_color_map({"could vary":YELLOW}) + bottomText7.set_color_by_tex_to_color_map({"rate of change of these slopes":BLUE,"same!":YELLOW}) + bottomText8.set_color_by_tex_to_color_map({"$a_{ 2 }=-1$":BLUE}) + + bottomText1.scale(0.4) + bottomText2.scale(0.5) + bottomText3.scale(0.4) + bottomText4.scale(0.4) + bottomText5.scale(0.5) + bottomText6.scale(0.4) + bottomText7.scale(0.4) + bottomText8.scale(0.5) + + bottomText1.shift(4.5*RIGHT+2.5*DOWN) + bottomText2.shift(4.5*RIGHT+2.5*DOWN) + bottomText3.shift(4.5*RIGHT+2.5*DOWN) + bottomText4.shift(4.5*RIGHT+2.5*DOWN) + bottomText5.shift(4.5*RIGHT+2.5*DOWN) + bottomText6.shift(4.5*RIGHT+2.5*DOWN) + bottomText7.shift(4.5*RIGHT+2.5*DOWN) + bottomText8.shift(4.5*RIGHT+2.5*DOWN) + + self.play(Write(bottomText1)) + self.wait(1) + self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2)) + #change coeff in tn(x) + self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0])) + self.wait(1.5) + self.play(ReplacementTransform(bottomText2,bottomText3)) + self.wait(0.5) + self.play(ReplacementTransform(firstApprox[0],secondApprox[1])) + self.wait(0.5) + self.play(ReplacementTransform(secondApprox[1],secondApprox[0])) + self.wait(0.5) + self.play(ReplacementTransform(secondApprox[0],secondApprox[2])) + self.wait(1) + self.play(ReplacementTransform(bottomText3,bottomText4),FadeOut(secondApprox[2])) + self.wait(1) + self.play(Write(firstGraph),ReplacementTransform(bottomText4,bottomText5)) + #change a1 coeff + self.play(ReplacementTransform(generalized_eq_coeff[1],coeff[1])) + self.wait(1.5) + self.play(ReplacementTransform(bottomText5,bottomText6)) + self.play(ReplacementTransform(firstGraph,thirdApprox[0])) + self.wait(0.6) + self.play(ReplacementTransform(thirdApprox[0],thirdApprox[1])) + self.wait(0.6) + self.play(ReplacementTransform(thirdApprox[1],thirdApprox[2])) + self.wait(0.6) + self.play(ReplacementTransform(thirdApprox[2],thirdApprox[3])) + self.wait(0.6) + self.play(ReplacementTransform(thirdApprox[3],thirdApprox[4])) + self.wait(1.5) + self.play(ReplacementTransform(bottomText6,bottomText7)) + self.wait(1.5) + self.play(ReplacementTransform(bottomText7,bottomText8),ReplacementTransform(thirdApprox[4],secondGraph)) + self.play(ReplacementTransform(generalized_eq_coeff[2],coeff[2])) + self.wait(2) + + textFinal=TextMobject("And so on..!") + textFinal.scale(0.7) + textFinal.shift(4.5*RIGHT+2.5*DOWN) + self.play(ReplacementTransform(bottomText8,textFinal)) + self.wait(2.5) + + finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$") + finalFormula.scale(0.8) + finalFormula.set_color_by_tex_to_color_map({"$T_{ n }(x)$":GREEN,"$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$":RED}) + + self.play(FadeOut(self.axes),FadeOut(textFinal),FadeOut(secondGraph),FadeOut(trTextGrup),FadeOut(mainfunction),FadeOut(fx),FadeOut(coeff[0]),FadeOut(coeff[1]),FadeOut(coeff[2])) + self.play(Write(finalFormula)) + self.wait(2) + # self.play(ReplacementTransform(secondApprox[2],secondApprox[3])) + # self.wait(0.5) + # self.play(ReplacementTransform(secondApprox[3],secondApprox[4])) + # self.wait(0.5) + # self.play(ReplacementTransform(secondApprox[4],secondApprox[5])) + # self.wait(0.5) + # self.play(ReplacementTransform(secondApprox[0],secondApprox[0])) + # self.wait(0.5) + # self.play(ReplacementTransform(secondApprox[0],secondApprox[0])) + # self.wait(0.5) + + + + diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/script2.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/script2.py new file mode 100644 index 0000000..b5d0a53 --- /dev/null +++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/script2.py @@ -0,0 +1,195 @@ +from manimlib.imports import* +import math + + +class intro(Scene): + def construct(self): + equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$") + equation.scale(2) + equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED}) + text=TextMobject("at $a=1$") + text.scale(0.7) + text.shift(DOWN) + + shiftText=TextMobject("(Here we shift the origin to the point $x=1$)") + shiftText.scale(0.6) + shiftText.shift(2.4*DOWN) + + + self.play(Write(equation)) + self.wait(0.5) + self.play(FadeIn(text)) + self.wait(0.7) + self.play(Write(shiftText)) + self.wait(0.7) + self.play(FadeOut(equation),FadeOut(text),FadeOut(shiftText)) + + +def formFormula(coeff_list,variable_list): + coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")] + variable_list=[TextMobject("+"),TextMobject("${ (x-1) }$+"),TextMobject("${ (x-1) }^{ 2 }$")] + coeff_list[0].shift(2.2*UP+1.6*LEFT) + for i in range(0,3): + coeff_list[i].set_color(GOLD_A) + variable_list[i].next_to(coeff_list[i],buff=0.1) + if i!=2: + coeff_list[i+1].next_to(variable_list[i],buff=0.1) + dots=TextMobject("...") + dots.next_to(variable_list[2]) + expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots) + #expansion.scale(0.7) + return expansion,coeff_list + + +class graphScene(GraphScene): + CONFIG = { + "x_min": -8, + "x_max": 8, + "y_min": -8, + "y_max": 8, + "graph_origin": ORIGIN, + "function_color": RED, + "axes_color": GREEN, + "x_axis_label": "$x$", + "y_axis_label": "$y$", + "exclude_zero_label": True, + "x_labeled_nums": range(-8, 8, 1), + } + def construct(self): + x_each_unit = self.x_axis_width / (self.x_max - self.x_min) + y_each_unit = self.y_axis_height / (self.y_max - self.y_min) + + generalized_eq_coeff=[] + variables_eq=[] + eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq) + trText1=TextMobject("let $T_{ n }(x)$:=") + eq.next_to(trText1) + trTextGrup=VGroup(trText1,eq) + trTextGrup.scale(0.5) + trTextGrup.to_corner(UP+RIGHT) + self.play(Write(trTextGrup)) + self.setup_axes(animate=True) + + fx=TextMobject("${ e }^{ -x^{ 2 } }$") + fx.scale(0.5) + fx.shift(ORIGIN+x_each_unit*7.5*RIGHT+y_each_unit*0.5*UP) + mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8) + self.play(ShowCreation(mainfunction)) + self.play(FadeIn(fx)) + self.wait(1.4) + + coeff=[TextMobject("$e^{-1}$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")] + coeff[0].shift(3.33*UP+3.65*RIGHT) + coeff[0].scale(0.45) + coeff[1].shift(3.33*UP+4.13*RIGHT) + coeff[1].scale(0.275) + coeff[2].shift(3.33*UP+5.36*RIGHT) + coeff[2].scale(0.28) + + for obj in coeff: + obj.set_color(GOLD_A) + + firstApprox=[self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)] + secondApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5), + self.get_graph(lambda x:math.exp(-1)+3*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5), + self.get_graph(lambda x:math.exp(-1)-4*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)] + thirdApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5), + self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-0.1*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5), + self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_max=5.5,x_min=-5.5), + self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+0.5*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5), + self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5)] + + firstGraph=self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5) + secondGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5) + thirdGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5) + + bottomText1=TextMobject("Apply","$f(1)=T_{n}(1)$") + bottomText2=TextMobject("This gives","$a_{ 0 }=e^{-1}$") + bottomText3=TextMobject("Now it could be of","any slope!") + #show graphs of second approx + bottomText4=TextMobject("Hence","apply","$f'(1)=T_{n}'(1)$") + #final graph + bottomText5=TextMobject("This gives","$a_{ 1 }=-2e^{-1}$") + bottomText6=TextMobject("Since the rate of change of this slope","could vary") + #show third approx graphs + bottomText7=TextMobject("Hence also","apply","$f''(1)=T_{ n }''(1)$") + #final graph + bottomText8=TextMobject("This gives","$a_{ 2 }=e^{-1}$") + + bottomText1.set_color_by_tex_to_color_map({"Apply":YELLOW}) + bottomText2.set_color_by_tex_to_color_map({"$a_{ 0 }=e^{-1}$":BLUE}) + bottomText3.set_color_by_tex_to_color_map({"any slope!":YELLOW}) + bottomText4.set_color_by_tex_to_color_map({"apply":YELLOW}) + bottomText5.set_color_by_tex_to_color_map({"$a_{ 1 }=-2e^{-1}$":BLUE}) + bottomText6.set_color_by_tex_to_color_map({"could vary":YELLOW}) + bottomText7.set_color_by_tex_to_color_map({"apply":YELLOW}) + bottomText8.set_color_by_tex_to_color_map({"$a_{ 2 }=e^{-1}$":BLUE}) + + bottomText1.scale(0.4) + bottomText2.scale(0.5) + bottomText3.scale(0.4) + bottomText4.scale(0.4) + bottomText5.scale(0.5) + bottomText6.scale(0.4) + bottomText7.scale(0.4) + bottomText8.scale(0.5) + + bottomText1.shift(4.5*RIGHT+2.5*DOWN) + bottomText2.shift(4.5*RIGHT+2.5*DOWN) + bottomText3.shift(4.5*RIGHT+2.5*DOWN) + bottomText4.shift(4.5*RIGHT+2.5*DOWN) + bottomText5.shift(4.5*RIGHT+2.5*DOWN) + bottomText6.shift(4.5*RIGHT+2.5*DOWN) + bottomText7.shift(4.5*RIGHT+2.5*DOWN) + bottomText8.shift(4.5*RIGHT+2.5*DOWN) + + self.play(Write(bottomText1)) + self.wait(1) + self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2)) + #change coeff in tn(x) + self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0])) + self.wait(1.5) + self.play(ReplacementTransform(bottomText2,bottomText3)) + self.wait(0.5) + self.play(ReplacementTransform(firstApprox[0],secondApprox[1])) + self.wait(0.5) + self.play(ReplacementTransform(secondApprox[1],secondApprox[2])) + # self.wait(0.5) + # self.play(ReplacementTransform(secondApprox[2],secondApprox[0])) + self.wait(1) + self.play(ReplacementTransform(bottomText3,bottomText4),FadeOut(secondApprox[2])) + self.wait(1) + self.play(Write(secondGraph),ReplacementTransform(bottomText4,bottomText5)) + #change a1 coeff + self.play(ReplacementTransform(generalized_eq_coeff[1],coeff[1])) + self.wait(1.5) + self.play(ReplacementTransform(bottomText5,bottomText6)) + self.play(ReplacementTransform(secondGraph,thirdApprox[0])) + self.wait(0.6) + self.play(ReplacementTransform(thirdApprox[0],thirdApprox[1])) + # self.wait(0.6) + # self.play(ReplacementTransform(thirdApprox[1],thirdApprox[2])) + self.wait(0.6) + self.play(ReplacementTransform(thirdApprox[1],thirdApprox[3])) + self.wait(0.6) + self.play(ReplacementTransform(thirdApprox[3],thirdApprox[4])) + self.wait(1.5) + self.play(ReplacementTransform(bottomText6,bottomText7)) + self.wait(1.5) + self.play(ReplacementTransform(bottomText7,bottomText8),ReplacementTransform(thirdApprox[4],thirdGraph)) + self.play(ReplacementTransform(generalized_eq_coeff[2],coeff[2])) + self.wait(2) + + textFinal=TextMobject("And so on..!") + textFinal.scale(0.7) + textFinal.shift(4.5*RIGHT+2.5*DOWN) + self.play(ReplacementTransform(bottomText8,textFinal)) + self.wait(2.5) + + finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(1)+f'(1)(x-1)+\\frac { f''(1) }{ 2! }(x-1)^2+..+\\frac { { f }^{ n }(1) }{ n! } { (x-1) }^{ n }$") + finalFormula.scale(0.8) + finalFormula.set_color_by_tex_to_color_map({"$T_{ n }(x)$":GREEN,"$f(1)+f'(1)(x-1)+\\frac { f''(1) }{ 2! }(x-1)^2+..+\\frac { { f }^{ n }(1) }{ n! } { (x-1) }^{ n }$":RED}) + + self.play(FadeOut(self.axes),FadeOut(textFinal),FadeOut(thirdGraph),FadeOut(trTextGrup),FadeOut(mainfunction),FadeOut(fx),FadeOut(coeff[0]),FadeOut(coeff[1]),FadeOut(coeff[2])) + self.play(Write(finalFormula)) + self.wait(2) \ No newline at end of file diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/script3.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/script3.py new file mode 100644 index 0000000..a2870d4 --- /dev/null +++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/script3.py @@ -0,0 +1,111 @@ +from manimlib.imports import* +import math + + +class graphScene(GraphScene): + CONFIG = { + "x_min": -8, + "x_max": 8, + "y_min": -8, + "y_max": 8, + "graph_origin": ORIGIN, + "function_color": RED, + "axes_color": GREEN, + "x_axis_label": "$x$", + "y_axis_label": "$y$", + "exclude_zero_label": True, + "x_labeled_nums": range(-8, 8, 1), + } + def construct(self): + + x_each_unit = self.x_axis_width / (self.x_max - self.x_min) + y_each_unit = self.y_axis_height / (self.y_max - self.y_min) + + self.setup_axes(animate=True) + + lnx=self.get_graph(lambda x:math.log2(x),color=RED,x_min=0.01,x_max=8) + + bottomText1=TextMobject("Apply $f(x)=T_{n}(x)$") + bottomText2=TextMobject("Then apply $f'(x)=T_{n}'(x)$") + bottomText3=TextMobject("Then apply $f''(x)=T_{n}''(x)$") + bottomText4=TextMobject("and so on..") + + bottomText1.scale(0.5) + bottomText2.scale(0.5) + bottomText3.scale(0.5) + bottomText4.scale(0.5) + + bottomText1.shift(3*RIGHT+2*DOWN) + bottomText2.shift(3*RIGHT+2*DOWN) + bottomText3.shift(3*RIGHT+2*DOWN) + bottomText4.shift(3*RIGHT+2*DOWN) + + equations=[self.get_graph(lambda x:math.log2(2),color=BLUE), + self.get_graph(lambda x:math.log2(2)+(x-2)/2,color=BLUE), + self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8,color=BLUE), + self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24,color=BLUE), + self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64,color=BLUE), + self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160,color=BLUE), + self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160-((x-2)**6)/384,color=BLUE)] + + terms=[TextMobject("$T_{n}:=$"),TextMobject("$ln(2)$"),TextMobject("$+\\frac { x-2 }{ 2 } $"),TextMobject("$-\\frac { (x-2)^{2} }{ 8 }$"),TextMobject("+..")] + for obj in terms: + obj.scale(0.5) + + terms[0].shift(3*UP+3*RIGHT) + terms[1].next_to(terms[0],buff=0.1) + terms[2].next_to(terms[1],buff=0.1) + terms[3].next_to(terms[2],buff=0.1) + terms[4].next_to(terms[3],buff=0.1) + + self.play(ShowCreation(lnx)) + self.wait(1) + self.play(Write(bottomText1)) + self.wait(0.5) + self.play(ShowCreation(equations[0]),Write(terms[0]),Write(terms[1])) + self.wait(1) + self.play(ReplacementTransform(bottomText1,bottomText2)) + self.wait(0.5) + self.play(ReplacementTransform(equations[0],equations[1]),Write(terms[2])) + self.wait(1) + self.play(ReplacementTransform(bottomText2,bottomText3)) + self.wait(0.5) + self.play(ReplacementTransform(equations[1],equations[2]),Write(terms[3])) + self.wait(1) + self.play(ReplacementTransform(bottomText3,bottomText4),Write(terms[4])) + self.wait(1.5) + + self.play(FadeOut(terms[0]),FadeOut(terms[1]),FadeOut(terms[2]),FadeOut(terms[3]),FadeOut(terms[4]),FadeOut(bottomText4)) + + dline=DashedLine(start=ORIGIN+8*y_each_unit*UP,end=ORIGIN+8*y_each_unit*DOWN) + dline.shift(ORIGIN+x_each_unit*4*RIGHT) + + bottomText5=TextMobject("Here","after $x=4$",", the graph","continuously diverges away","from $ln(x)$") + bottomText5.scale(0.3) + bottomText5.shift(4.5*RIGHT+2*DOWN) + bottomText5.set_color_by_tex_to_color_map({"after $x=4$":YELLOW,"continuously diverges away":BLUE}) + + self.play(Write(bottomText5),Write(dline)) + self.wait(1) + self.play(ReplacementTransform(equations[2],equations[3])) + self.wait(0.3) + self.play(ReplacementTransform(equations[3],equations[4])) + self.wait(0.3) + self.play(ReplacementTransform(equations[4],equations[5])) + self.wait(0.3) + self.play(ReplacementTransform(equations[5],equations[6]),FadeOut(bottomText5)) + self.wait(1) + + circle=Circle(radius=ORIGIN+x_each_unit*2,color=PURPLE_E) + circle.shift(ORIGIN+RIGHT*x_each_unit*2) + radiusLine=Line(start=ORIGIN+x_each_unit*RIGHT*2,end=ORIGIN+x_each_unit*4*RIGHT,color=PURPLE_E) + radius=TextMobject("$R$") + radius.set_color(RED) + radius.scale(0.5) + radius.shift(ORIGIN+RIGHT*x_each_unit*2.45+DOWN*y_each_unit*0.6) + + self.play(FadeOut(equations[6]),Write(circle)) + self.wait(0.6) + self.play(Write(radiusLine)) + self.play(FadeIn(radius)) + self.wait(2) \ No newline at end of file diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/script4.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/script4.py new file mode 100644 index 0000000..1f41c97 --- /dev/null +++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/script4.py @@ -0,0 +1,82 @@ +from manimlib.imports import* +import math + + +class graphScene(GraphScene): + CONFIG = { + "x_min": -8, + "x_max": 8, + "y_min": -8, + "y_max": 8, + "graph_origin": ORIGIN, + "function_color": RED, + "axes_color": GREEN, + "x_axis_label": "$x$", + "y_axis_label": "$y$", + "exclude_zero_label": True, + "x_labeled_nums": range(-8, 8, 1), + } + def construct(self): + + x_each_unit = self.x_axis_width / (self.x_max - self.x_min) + y_each_unit = self.y_axis_height / (self.y_max - self.y_min) + + self.setup_axes(animate=True) + lnx=self.get_graph(lambda x:math.log2(x),color=RED,x_min=0.01,x_max=8) + equation=self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160-((x-2)**6)/384,color=BLUE) + + terms=[TextMobject("$T_{n}:=$"),TextMobject("$ln(2)$"),TextMobject("$+\\frac { x-2 }{ 2 } $"),TextMobject("$-\\frac { (x-2)^{2} }{ 8 }$"),TextMobject("+..")] + for obj in terms: + obj.scale(0.5) + + terms[0].shift(3*UP+3*RIGHT) + terms[1].next_to(terms[0],buff=0.1) + terms[2].next_to(terms[1],buff=0.1) + terms[3].next_to(terms[2],buff=0.1) + terms[4].next_to(terms[3],buff=0.1) + + self.play(ShowCreation(lnx)) + self.wait(1) + self.play(FadeIn(equation),FadeIn(terms[0]),FadeIn(terms[1]),FadeIn(terms[2]),FadeIn(terms[3]),FadeIn(terms[4])) + self.wait(1) + + bottomText1=TextMobject("$R_{n}(x)=\\frac { d }{ dx } ($","area bounded","$)$") + + bottomText1.set_color_by_tex_to_color_map({"area bounded":ORANGE}) + #bottomText2.set_color_by_tex_to_color_map({"area bounded":BLUE}) + arrow=TextMobject("$\downarrow$") + arrow.scale(2.5) + arrow.shift(ORIGIN+x_each_unit*RIGHT*9.5+UP*y_each_unit) + increasingText=TextMobject("Increases!") + increasingText.set_color(GREEN) + followupText=TextMobject("as n increase!") + followupText.scale(0.3) + followupText.shift(ORIGIN+x_each_unit*11*RIGHT+UP*y_each_unit*1.1) + increasingText.shift(ORIGIN+x_each_unit*11*RIGHT+UP*y_each_unit*1.6) + increasingText.scale(0.4) + + bottomText1.scale(0.5) + #bottomText2.scale(0.5) + #bottomText3.scale(0.5) + + bottomText1.shift(3.5*LEFT+2*DOWN) + #bottomText2.shift(3.5*LEFT+2.4*DOWN) + #bottomText3.shift(3.5*LEFT+2.8*DOWN) + + dline=DashedLine(start=ORIGIN+8*y_each_unit*UP,end=ORIGIN+8*y_each_unit*DOWN) + dline.shift(ORIGIN+x_each_unit*4*RIGHT) + + area1=self.get_riemann_rectangles(lnx,x_max=8,x_min=4,dx=0.01,start_color=BLUE,end_color=RED,stroke_width=0,fill_opacity=0.8) + area2=self.get_riemann_rectangles(equation,x_max=5.2,x_min=4,dx=0.025,start_color=BLACK,end_color=BLACK,stroke_width=0,fill_opacity=1) + + self.play(Write(dline)) + self.wait(0.5) + self.play(ShowCreation(area1),ShowCreation(area2),Write(bottomText1)) + # self.play(Write(bottomText2)) + # self.play(FadeIn(bottomText3)) + self.play(Write(arrow)) + self.wait(0.7) + self.play(Write(increasingText)) + self.play(FadeIn(followupText)) + self.wait(2) + \ No newline at end of file -- cgit From cea91d6c736439885819a4d44f62221a591d77b7 Mon Sep 17 00:00:00 2001 From: G Sri Harsha Date: Tue, 26 May 2020 14:42:48 +0530 Subject: updated question set --- .../Taylor Series/TaylorSeriesQuestions.pdf | Bin 119804 -> 125254 bytes 1 file changed, 0 insertions(+), 0 deletions(-) (limited to 'FSF-2020/calculus/series-and-transformations/Taylor Series') diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf b/FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf index 2096f52..46d46e1 100644 Binary files a/FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf and b/FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf differ -- cgit From 9b2de268f4be489a4a67c89be1b17d08ed76c25e Mon Sep 17 00:00:00 2001 From: G Sri Harsha Date: Tue, 26 May 2020 14:43:17 +0530 Subject: added gifs --- .../gifs/file1_Example_TaylorExpansion.gif | Bin 0 -> 446111 bytes .../gifs/file2_TaylorExpansionGeneralForm.gif | Bin 0 -> 308980 bytes .../Taylor Series/gifs/file3_radiusOfConvergence.gif | Bin 0 -> 391510 bytes .../Taylor Series/gifs/file4_DivergentRemainder.gif | Bin 0 -> 160149 bytes 4 files changed, 0 insertions(+), 0 deletions(-) create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file1_Example_TaylorExpansion.gif create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file2_TaylorExpansionGeneralForm.gif create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file3_radiusOfConvergence.gif create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file4_DivergentRemainder.gif (limited to 'FSF-2020/calculus/series-and-transformations/Taylor Series') diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file1_Example_TaylorExpansion.gif b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file1_Example_TaylorExpansion.gif new file mode 100644 index 0000000..ecd3272 Binary files /dev/null and b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file1_Example_TaylorExpansion.gif differ diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file2_TaylorExpansionGeneralForm.gif b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file2_TaylorExpansionGeneralForm.gif new file mode 100644 index 0000000..e6d9171 Binary files /dev/null and b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file2_TaylorExpansionGeneralForm.gif differ diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file3_radiusOfConvergence.gif b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file3_radiusOfConvergence.gif new file mode 100644 index 0000000..6b22d8d Binary files /dev/null and b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file3_radiusOfConvergence.gif differ diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file4_DivergentRemainder.gif b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file4_DivergentRemainder.gif new file mode 100644 index 0000000..2bb5185 Binary files /dev/null and b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file4_DivergentRemainder.gif differ -- cgit From b1bdfc21dfac1abf82fb10733eb21d098f9532b4 Mon Sep 17 00:00:00 2001 From: G Sri Harsha Date: Tue, 26 May 2020 14:43:50 +0530 Subject: Rename script1.py to video1_Example_TaylorExpansion.py.py --- .../Taylor Series/script1.py | 198 --------------------- .../video1_Example_TaylorExpansion.py.py | 198 +++++++++++++++++++++ 2 files changed, 198 insertions(+), 198 deletions(-) delete mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/script1.py create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py.py (limited to 'FSF-2020/calculus/series-and-transformations/Taylor Series') diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/script1.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/script1.py deleted file mode 100644 index e83eff8..0000000 --- a/FSF-2020/calculus/series-and-transformations/Taylor Series/script1.py +++ /dev/null @@ -1,198 +0,0 @@ -from manimlib.imports import* -import math - -def formFormula(coeff_list,variable_list): - coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")] - variable_list=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")] - coeff_list[0].shift(2.2*UP+1.6*LEFT) - for i in range(0,3): - coeff_list[i].set_color(GOLD_A) - variable_list[i].next_to(coeff_list[i],buff=0.1) - if i!=2: - coeff_list[i+1].next_to(variable_list[i],buff=0.1) - dots=TextMobject("...") - dots.next_to(variable_list[2]) - expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots) - #expansion.scale(0.7) - return expansion,coeff_list - -class intro(Scene): - def construct(self): - equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$") - equation.scale(2) - equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED}) - text=TextMobject("let $a=0$") - text.scale(0.7) - text.shift(DOWN) - - self.play(Write(equation)) - self.wait(0.5) - self.play(FadeIn(text)) - self.wait(0.7) - self.play(FadeOut(equation),FadeOut(text)) - -class graphScene(GraphScene): - CONFIG = { - "x_min": -8, - "x_max": 8, - "y_min": -8, - "y_max": 8, - "graph_origin": ORIGIN, - "function_color": RED, - "axes_color": GREEN, - "x_axis_label": "$x$", - "y_axis_label": "$y$", - "exclude_zero_label": True, - "x_labeled_nums": range(-8, 8, 1), - } - def construct(self): - x_each_unit = self.x_axis_width / (self.x_max - self.x_min) - y_each_unit = self.y_axis_height / (self.y_max - self.y_min) - - generalized_eq_coeff=[] - variables_eq=[] - eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq) - trText1=TextMobject("let $T_{ n }(x)$:=") - eq.next_to(trText1) - trTextGrup=VGroup(trText1,eq) - trTextGrup.scale(0.5) - trTextGrup.to_corner(UP+RIGHT) - self.play(Write(trTextGrup)) - self.setup_axes(animate=True) - - fx=TextMobject("${ e }^{ -x^{ 2 } }$") - fx.scale(0.5) - fx.shift(ORIGIN+x_each_unit*7.5*RIGHT+y_each_unit*0.5*UP) - mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8) - self.play(ShowCreation(mainfunction)) - self.play(FadeIn(fx)) - self.wait(1.4) - - coeff=[TextMobject("$1$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")] - coeff[0].shift(3.39*UP+4.88*RIGHT) - coeff[0].scale(0.5) - coeff[1].shift(3.39*UP+5.3*RIGHT) - coeff[1].scale(0.275) - coeff[2].shift(3.39*UP+5.98*RIGHT) - coeff[2].scale(0.28) - - for obj in coeff: - obj.set_color(GOLD_A) - - firstApprox=[self.get_graph(lambda x:1,color=BLUE)] - secondApprox=[self.get_graph(lambda x:1,color=BLUE), - self.get_graph(lambda x:x+1,color=BLUE), - self.get_graph(lambda x:-x+1,color=BLUE)] - thirdApprox=[self.get_graph(lambda x:1-2*math.pow(x,2),color=BLUE), - self.get_graph(lambda x:1-0.1*math.pow(x,2),color=BLUE), - self.get_graph(lambda x:1,color=BLUE), - self.get_graph(lambda x:1+0.1*math.pow(x,2),color=BLUE), - self.get_graph(lambda x:1+math.pow(x,2),color=BLUE)] - - firstGraph=self.get_graph(lambda x:1,color=BLUE) - secondGraph=self.get_graph(lambda x:1-math.pow(x,2),color=BLUE) - - bottomText1=TextMobject("The polynomial should","satisfy","the function at $x=0$") - bottomText2=TextMobject("This gives","$a_{ 0 }=1$") - bottomText3=TextMobject("Now it could be of","any slope!") - #show graphs of second approx - bottomText4=TextMobject("Hence the","slopes","should","even match") - #final graph - bottomText5=TextMobject("This gives","$a_{ 1 }=0$") - bottomText6=TextMobject("Since the rate of change of this slope","could vary") - #show third approx graphs - bottomText7=TextMobject("Hence the","rate of change of these slopes","should also be","same!") - #final graph - bottomText8=TextMobject("This gives","$a_{ 2 }=-1$") - - bottomText1.set_color_by_tex_to_color_map({"satisfy":YELLOW}) - bottomText2.set_color_by_tex_to_color_map({"$a_{ 0 }=1$":BLUE}) - bottomText3.set_color_by_tex_to_color_map({"any slope!":YELLOW}) - bottomText4.set_color_by_tex_to_color_map({"slopes":BLUE,"even match":YELLOW}) - bottomText5.set_color_by_tex_to_color_map({"$a_{ 1 }=0$":BLUE}) - bottomText6.set_color_by_tex_to_color_map({"could vary":YELLOW}) - bottomText7.set_color_by_tex_to_color_map({"rate of change of these slopes":BLUE,"same!":YELLOW}) - bottomText8.set_color_by_tex_to_color_map({"$a_{ 2 }=-1$":BLUE}) - - bottomText1.scale(0.4) - bottomText2.scale(0.5) - bottomText3.scale(0.4) - bottomText4.scale(0.4) - bottomText5.scale(0.5) - bottomText6.scale(0.4) - bottomText7.scale(0.4) - bottomText8.scale(0.5) - - bottomText1.shift(4.5*RIGHT+2.5*DOWN) - bottomText2.shift(4.5*RIGHT+2.5*DOWN) - bottomText3.shift(4.5*RIGHT+2.5*DOWN) - bottomText4.shift(4.5*RIGHT+2.5*DOWN) - bottomText5.shift(4.5*RIGHT+2.5*DOWN) - bottomText6.shift(4.5*RIGHT+2.5*DOWN) - bottomText7.shift(4.5*RIGHT+2.5*DOWN) - bottomText8.shift(4.5*RIGHT+2.5*DOWN) - - self.play(Write(bottomText1)) - self.wait(1) - self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2)) - #change coeff in tn(x) - self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0])) - self.wait(1.5) - self.play(ReplacementTransform(bottomText2,bottomText3)) - self.wait(0.5) - self.play(ReplacementTransform(firstApprox[0],secondApprox[1])) - self.wait(0.5) - self.play(ReplacementTransform(secondApprox[1],secondApprox[0])) - self.wait(0.5) - self.play(ReplacementTransform(secondApprox[0],secondApprox[2])) - self.wait(1) - self.play(ReplacementTransform(bottomText3,bottomText4),FadeOut(secondApprox[2])) - self.wait(1) - self.play(Write(firstGraph),ReplacementTransform(bottomText4,bottomText5)) - #change a1 coeff - self.play(ReplacementTransform(generalized_eq_coeff[1],coeff[1])) - self.wait(1.5) - self.play(ReplacementTransform(bottomText5,bottomText6)) - self.play(ReplacementTransform(firstGraph,thirdApprox[0])) - self.wait(0.6) - self.play(ReplacementTransform(thirdApprox[0],thirdApprox[1])) - self.wait(0.6) - self.play(ReplacementTransform(thirdApprox[1],thirdApprox[2])) - self.wait(0.6) - self.play(ReplacementTransform(thirdApprox[2],thirdApprox[3])) - self.wait(0.6) - self.play(ReplacementTransform(thirdApprox[3],thirdApprox[4])) - self.wait(1.5) - self.play(ReplacementTransform(bottomText6,bottomText7)) - self.wait(1.5) - self.play(ReplacementTransform(bottomText7,bottomText8),ReplacementTransform(thirdApprox[4],secondGraph)) - self.play(ReplacementTransform(generalized_eq_coeff[2],coeff[2])) - self.wait(2) - - textFinal=TextMobject("And so on..!") - textFinal.scale(0.7) - textFinal.shift(4.5*RIGHT+2.5*DOWN) - self.play(ReplacementTransform(bottomText8,textFinal)) - self.wait(2.5) - - finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$") - finalFormula.scale(0.8) - finalFormula.set_color_by_tex_to_color_map({"$T_{ n }(x)$":GREEN,"$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$":RED}) - - self.play(FadeOut(self.axes),FadeOut(textFinal),FadeOut(secondGraph),FadeOut(trTextGrup),FadeOut(mainfunction),FadeOut(fx),FadeOut(coeff[0]),FadeOut(coeff[1]),FadeOut(coeff[2])) - self.play(Write(finalFormula)) - self.wait(2) - # self.play(ReplacementTransform(secondApprox[2],secondApprox[3])) - # self.wait(0.5) - # self.play(ReplacementTransform(secondApprox[3],secondApprox[4])) - # self.wait(0.5) - # self.play(ReplacementTransform(secondApprox[4],secondApprox[5])) - # self.wait(0.5) - # self.play(ReplacementTransform(secondApprox[0],secondApprox[0])) - # self.wait(0.5) - # self.play(ReplacementTransform(secondApprox[0],secondApprox[0])) - # self.wait(0.5) - - - - diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py.py new file mode 100644 index 0000000..e83eff8 --- /dev/null +++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py.py @@ -0,0 +1,198 @@ +from manimlib.imports import* +import math + +def formFormula(coeff_list,variable_list): + coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")] + variable_list=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")] + coeff_list[0].shift(2.2*UP+1.6*LEFT) + for i in range(0,3): + coeff_list[i].set_color(GOLD_A) + variable_list[i].next_to(coeff_list[i],buff=0.1) + if i!=2: + coeff_list[i+1].next_to(variable_list[i],buff=0.1) + dots=TextMobject("...") + dots.next_to(variable_list[2]) + expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots) + #expansion.scale(0.7) + return expansion,coeff_list + +class intro(Scene): + def construct(self): + equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$") + equation.scale(2) + equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED}) + text=TextMobject("let $a=0$") + text.scale(0.7) + text.shift(DOWN) + + self.play(Write(equation)) + self.wait(0.5) + self.play(FadeIn(text)) + self.wait(0.7) + self.play(FadeOut(equation),FadeOut(text)) + +class graphScene(GraphScene): + CONFIG = { + "x_min": -8, + "x_max": 8, + "y_min": -8, + "y_max": 8, + "graph_origin": ORIGIN, + "function_color": RED, + "axes_color": GREEN, + "x_axis_label": "$x$", + "y_axis_label": "$y$", + "exclude_zero_label": True, + "x_labeled_nums": range(-8, 8, 1), + } + def construct(self): + x_each_unit = self.x_axis_width / (self.x_max - self.x_min) + y_each_unit = self.y_axis_height / (self.y_max - self.y_min) + + generalized_eq_coeff=[] + variables_eq=[] + eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq) + trText1=TextMobject("let $T_{ n }(x)$:=") + eq.next_to(trText1) + trTextGrup=VGroup(trText1,eq) + trTextGrup.scale(0.5) + trTextGrup.to_corner(UP+RIGHT) + self.play(Write(trTextGrup)) + self.setup_axes(animate=True) + + fx=TextMobject("${ e }^{ -x^{ 2 } }$") + fx.scale(0.5) + fx.shift(ORIGIN+x_each_unit*7.5*RIGHT+y_each_unit*0.5*UP) + mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8) + self.play(ShowCreation(mainfunction)) + self.play(FadeIn(fx)) + self.wait(1.4) + + coeff=[TextMobject("$1$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")] + coeff[0].shift(3.39*UP+4.88*RIGHT) + coeff[0].scale(0.5) + coeff[1].shift(3.39*UP+5.3*RIGHT) + coeff[1].scale(0.275) + coeff[2].shift(3.39*UP+5.98*RIGHT) + coeff[2].scale(0.28) + + for obj in coeff: + obj.set_color(GOLD_A) + + firstApprox=[self.get_graph(lambda x:1,color=BLUE)] + secondApprox=[self.get_graph(lambda x:1,color=BLUE), + self.get_graph(lambda x:x+1,color=BLUE), + self.get_graph(lambda x:-x+1,color=BLUE)] + thirdApprox=[self.get_graph(lambda x:1-2*math.pow(x,2),color=BLUE), + self.get_graph(lambda x:1-0.1*math.pow(x,2),color=BLUE), + self.get_graph(lambda x:1,color=BLUE), + self.get_graph(lambda x:1+0.1*math.pow(x,2),color=BLUE), + self.get_graph(lambda x:1+math.pow(x,2),color=BLUE)] + + firstGraph=self.get_graph(lambda x:1,color=BLUE) + secondGraph=self.get_graph(lambda x:1-math.pow(x,2),color=BLUE) + + bottomText1=TextMobject("The polynomial should","satisfy","the function at $x=0$") + bottomText2=TextMobject("This gives","$a_{ 0 }=1$") + bottomText3=TextMobject("Now it could be of","any slope!") + #show graphs of second approx + bottomText4=TextMobject("Hence the","slopes","should","even match") + #final graph + bottomText5=TextMobject("This gives","$a_{ 1 }=0$") + bottomText6=TextMobject("Since the rate of change of this slope","could vary") + #show third approx graphs + bottomText7=TextMobject("Hence the","rate of change of these slopes","should also be","same!") + #final graph + bottomText8=TextMobject("This gives","$a_{ 2 }=-1$") + + bottomText1.set_color_by_tex_to_color_map({"satisfy":YELLOW}) + bottomText2.set_color_by_tex_to_color_map({"$a_{ 0 }=1$":BLUE}) + bottomText3.set_color_by_tex_to_color_map({"any slope!":YELLOW}) + bottomText4.set_color_by_tex_to_color_map({"slopes":BLUE,"even match":YELLOW}) + bottomText5.set_color_by_tex_to_color_map({"$a_{ 1 }=0$":BLUE}) + bottomText6.set_color_by_tex_to_color_map({"could vary":YELLOW}) + bottomText7.set_color_by_tex_to_color_map({"rate of change of these slopes":BLUE,"same!":YELLOW}) + bottomText8.set_color_by_tex_to_color_map({"$a_{ 2 }=-1$":BLUE}) + + bottomText1.scale(0.4) + bottomText2.scale(0.5) + bottomText3.scale(0.4) + bottomText4.scale(0.4) + bottomText5.scale(0.5) + bottomText6.scale(0.4) + bottomText7.scale(0.4) + bottomText8.scale(0.5) + + bottomText1.shift(4.5*RIGHT+2.5*DOWN) + bottomText2.shift(4.5*RIGHT+2.5*DOWN) + bottomText3.shift(4.5*RIGHT+2.5*DOWN) + bottomText4.shift(4.5*RIGHT+2.5*DOWN) + bottomText5.shift(4.5*RIGHT+2.5*DOWN) + bottomText6.shift(4.5*RIGHT+2.5*DOWN) + bottomText7.shift(4.5*RIGHT+2.5*DOWN) + bottomText8.shift(4.5*RIGHT+2.5*DOWN) + + self.play(Write(bottomText1)) + self.wait(1) + self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2)) + #change coeff in tn(x) + self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0])) + self.wait(1.5) + self.play(ReplacementTransform(bottomText2,bottomText3)) + self.wait(0.5) + self.play(ReplacementTransform(firstApprox[0],secondApprox[1])) + self.wait(0.5) + self.play(ReplacementTransform(secondApprox[1],secondApprox[0])) + self.wait(0.5) + self.play(ReplacementTransform(secondApprox[0],secondApprox[2])) + self.wait(1) + self.play(ReplacementTransform(bottomText3,bottomText4),FadeOut(secondApprox[2])) + self.wait(1) + self.play(Write(firstGraph),ReplacementTransform(bottomText4,bottomText5)) + #change a1 coeff + self.play(ReplacementTransform(generalized_eq_coeff[1],coeff[1])) + self.wait(1.5) + self.play(ReplacementTransform(bottomText5,bottomText6)) + self.play(ReplacementTransform(firstGraph,thirdApprox[0])) + self.wait(0.6) + self.play(ReplacementTransform(thirdApprox[0],thirdApprox[1])) + self.wait(0.6) + self.play(ReplacementTransform(thirdApprox[1],thirdApprox[2])) + self.wait(0.6) + self.play(ReplacementTransform(thirdApprox[2],thirdApprox[3])) + self.wait(0.6) + self.play(ReplacementTransform(thirdApprox[3],thirdApprox[4])) + self.wait(1.5) + self.play(ReplacementTransform(bottomText6,bottomText7)) + self.wait(1.5) + self.play(ReplacementTransform(bottomText7,bottomText8),ReplacementTransform(thirdApprox[4],secondGraph)) + self.play(ReplacementTransform(generalized_eq_coeff[2],coeff[2])) + self.wait(2) + + textFinal=TextMobject("And so on..!") + textFinal.scale(0.7) + textFinal.shift(4.5*RIGHT+2.5*DOWN) + self.play(ReplacementTransform(bottomText8,textFinal)) + self.wait(2.5) + + finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$") + finalFormula.scale(0.8) + finalFormula.set_color_by_tex_to_color_map({"$T_{ n }(x)$":GREEN,"$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$":RED}) + + self.play(FadeOut(self.axes),FadeOut(textFinal),FadeOut(secondGraph),FadeOut(trTextGrup),FadeOut(mainfunction),FadeOut(fx),FadeOut(coeff[0]),FadeOut(coeff[1]),FadeOut(coeff[2])) + self.play(Write(finalFormula)) + self.wait(2) + # self.play(ReplacementTransform(secondApprox[2],secondApprox[3])) + # self.wait(0.5) + # self.play(ReplacementTransform(secondApprox[3],secondApprox[4])) + # self.wait(0.5) + # self.play(ReplacementTransform(secondApprox[4],secondApprox[5])) + # self.wait(0.5) + # self.play(ReplacementTransform(secondApprox[0],secondApprox[0])) + # self.wait(0.5) + # self.play(ReplacementTransform(secondApprox[0],secondApprox[0])) + # self.wait(0.5) + + + + -- cgit From 87e674818b1035402d3b5dd3a2f55f1df25eb9e4 Mon Sep 17 00:00:00 2001 From: G Sri Harsha Date: Tue, 26 May 2020 14:44:22 +0530 Subject: Rename script2.py to video2_TaylorExpansionGeneralForm.py.py --- .../Taylor Series/script2.py | 195 --------------------- .../video2_TaylorExpansionGeneralForm.py.py | 195 +++++++++++++++++++++ 2 files changed, 195 insertions(+), 195 deletions(-) delete mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/script2.py create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py.py (limited to 'FSF-2020/calculus/series-and-transformations/Taylor Series') diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/script2.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/script2.py deleted file mode 100644 index b5d0a53..0000000 --- a/FSF-2020/calculus/series-and-transformations/Taylor Series/script2.py +++ /dev/null @@ -1,195 +0,0 @@ -from manimlib.imports import* -import math - - -class intro(Scene): - def construct(self): - equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$") - equation.scale(2) - equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED}) - text=TextMobject("at $a=1$") - text.scale(0.7) - text.shift(DOWN) - - shiftText=TextMobject("(Here we shift the origin to the point $x=1$)") - shiftText.scale(0.6) - shiftText.shift(2.4*DOWN) - - - self.play(Write(equation)) - self.wait(0.5) - self.play(FadeIn(text)) - self.wait(0.7) - self.play(Write(shiftText)) - self.wait(0.7) - self.play(FadeOut(equation),FadeOut(text),FadeOut(shiftText)) - - -def formFormula(coeff_list,variable_list): - coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")] - variable_list=[TextMobject("+"),TextMobject("${ (x-1) }$+"),TextMobject("${ (x-1) }^{ 2 }$")] - coeff_list[0].shift(2.2*UP+1.6*LEFT) - for i in range(0,3): - coeff_list[i].set_color(GOLD_A) - variable_list[i].next_to(coeff_list[i],buff=0.1) - if i!=2: - coeff_list[i+1].next_to(variable_list[i],buff=0.1) - dots=TextMobject("...") - dots.next_to(variable_list[2]) - expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots) - #expansion.scale(0.7) - return expansion,coeff_list - - -class graphScene(GraphScene): - CONFIG = { - "x_min": -8, - "x_max": 8, - "y_min": -8, - "y_max": 8, - "graph_origin": ORIGIN, - "function_color": RED, - "axes_color": GREEN, - "x_axis_label": "$x$", - "y_axis_label": "$y$", - "exclude_zero_label": True, - "x_labeled_nums": range(-8, 8, 1), - } - def construct(self): - x_each_unit = self.x_axis_width / (self.x_max - self.x_min) - y_each_unit = self.y_axis_height / (self.y_max - self.y_min) - - generalized_eq_coeff=[] - variables_eq=[] - eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq) - trText1=TextMobject("let $T_{ n }(x)$:=") - eq.next_to(trText1) - trTextGrup=VGroup(trText1,eq) - trTextGrup.scale(0.5) - trTextGrup.to_corner(UP+RIGHT) - self.play(Write(trTextGrup)) - self.setup_axes(animate=True) - - fx=TextMobject("${ e }^{ -x^{ 2 } }$") - fx.scale(0.5) - fx.shift(ORIGIN+x_each_unit*7.5*RIGHT+y_each_unit*0.5*UP) - mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8) - self.play(ShowCreation(mainfunction)) - self.play(FadeIn(fx)) - self.wait(1.4) - - coeff=[TextMobject("$e^{-1}$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")] - coeff[0].shift(3.33*UP+3.65*RIGHT) - coeff[0].scale(0.45) - coeff[1].shift(3.33*UP+4.13*RIGHT) - coeff[1].scale(0.275) - coeff[2].shift(3.33*UP+5.36*RIGHT) - coeff[2].scale(0.28) - - for obj in coeff: - obj.set_color(GOLD_A) - - firstApprox=[self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)] - secondApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5), - self.get_graph(lambda x:math.exp(-1)+3*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5), - self.get_graph(lambda x:math.exp(-1)-4*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)] - thirdApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5), - self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-0.1*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5), - self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_max=5.5,x_min=-5.5), - self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+0.5*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5), - self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5)] - - firstGraph=self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5) - secondGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5) - thirdGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5) - - bottomText1=TextMobject("Apply","$f(1)=T_{n}(1)$") - bottomText2=TextMobject("This gives","$a_{ 0 }=e^{-1}$") - bottomText3=TextMobject("Now it could be of","any slope!") - #show graphs of second approx - bottomText4=TextMobject("Hence","apply","$f'(1)=T_{n}'(1)$") - #final graph - bottomText5=TextMobject("This gives","$a_{ 1 }=-2e^{-1}$") - bottomText6=TextMobject("Since the rate of change of this slope","could vary") - #show third approx graphs - bottomText7=TextMobject("Hence also","apply","$f''(1)=T_{ n }''(1)$") - #final graph - bottomText8=TextMobject("This gives","$a_{ 2 }=e^{-1}$") - - bottomText1.set_color_by_tex_to_color_map({"Apply":YELLOW}) - bottomText2.set_color_by_tex_to_color_map({"$a_{ 0 }=e^{-1}$":BLUE}) - bottomText3.set_color_by_tex_to_color_map({"any slope!":YELLOW}) - bottomText4.set_color_by_tex_to_color_map({"apply":YELLOW}) - bottomText5.set_color_by_tex_to_color_map({"$a_{ 1 }=-2e^{-1}$":BLUE}) - bottomText6.set_color_by_tex_to_color_map({"could vary":YELLOW}) - bottomText7.set_color_by_tex_to_color_map({"apply":YELLOW}) - bottomText8.set_color_by_tex_to_color_map({"$a_{ 2 }=e^{-1}$":BLUE}) - - bottomText1.scale(0.4) - bottomText2.scale(0.5) - bottomText3.scale(0.4) - bottomText4.scale(0.4) - bottomText5.scale(0.5) - bottomText6.scale(0.4) - bottomText7.scale(0.4) - bottomText8.scale(0.5) - - bottomText1.shift(4.5*RIGHT+2.5*DOWN) - bottomText2.shift(4.5*RIGHT+2.5*DOWN) - bottomText3.shift(4.5*RIGHT+2.5*DOWN) - bottomText4.shift(4.5*RIGHT+2.5*DOWN) - bottomText5.shift(4.5*RIGHT+2.5*DOWN) - bottomText6.shift(4.5*RIGHT+2.5*DOWN) - bottomText7.shift(4.5*RIGHT+2.5*DOWN) - bottomText8.shift(4.5*RIGHT+2.5*DOWN) - - self.play(Write(bottomText1)) - self.wait(1) - self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2)) - #change coeff in tn(x) - self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0])) - self.wait(1.5) - self.play(ReplacementTransform(bottomText2,bottomText3)) - self.wait(0.5) - self.play(ReplacementTransform(firstApprox[0],secondApprox[1])) - self.wait(0.5) - self.play(ReplacementTransform(secondApprox[1],secondApprox[2])) - # self.wait(0.5) - # self.play(ReplacementTransform(secondApprox[2],secondApprox[0])) - self.wait(1) - self.play(ReplacementTransform(bottomText3,bottomText4),FadeOut(secondApprox[2])) - self.wait(1) - self.play(Write(secondGraph),ReplacementTransform(bottomText4,bottomText5)) - #change a1 coeff - self.play(ReplacementTransform(generalized_eq_coeff[1],coeff[1])) - self.wait(1.5) - self.play(ReplacementTransform(bottomText5,bottomText6)) - self.play(ReplacementTransform(secondGraph,thirdApprox[0])) - self.wait(0.6) - self.play(ReplacementTransform(thirdApprox[0],thirdApprox[1])) - # self.wait(0.6) - # self.play(ReplacementTransform(thirdApprox[1],thirdApprox[2])) - self.wait(0.6) - self.play(ReplacementTransform(thirdApprox[1],thirdApprox[3])) - self.wait(0.6) - self.play(ReplacementTransform(thirdApprox[3],thirdApprox[4])) - self.wait(1.5) - self.play(ReplacementTransform(bottomText6,bottomText7)) - self.wait(1.5) - self.play(ReplacementTransform(bottomText7,bottomText8),ReplacementTransform(thirdApprox[4],thirdGraph)) - self.play(ReplacementTransform(generalized_eq_coeff[2],coeff[2])) - self.wait(2) - - textFinal=TextMobject("And so on..!") - textFinal.scale(0.7) - textFinal.shift(4.5*RIGHT+2.5*DOWN) - self.play(ReplacementTransform(bottomText8,textFinal)) - self.wait(2.5) - - finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(1)+f'(1)(x-1)+\\frac { f''(1) }{ 2! }(x-1)^2+..+\\frac { { f }^{ n }(1) }{ n! } { (x-1) }^{ n }$") - finalFormula.scale(0.8) - finalFormula.set_color_by_tex_to_color_map({"$T_{ n }(x)$":GREEN,"$f(1)+f'(1)(x-1)+\\frac { f''(1) }{ 2! }(x-1)^2+..+\\frac { { f }^{ n }(1) }{ n! } { (x-1) }^{ n }$":RED}) - - self.play(FadeOut(self.axes),FadeOut(textFinal),FadeOut(thirdGraph),FadeOut(trTextGrup),FadeOut(mainfunction),FadeOut(fx),FadeOut(coeff[0]),FadeOut(coeff[1]),FadeOut(coeff[2])) - self.play(Write(finalFormula)) - self.wait(2) \ No newline at end of file diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py.py new file mode 100644 index 0000000..f84cfe9 --- /dev/null +++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py.py @@ -0,0 +1,195 @@ +from manimlib.imports import* +import math + + +class intro(Scene): + def construct(self): + equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$") + equation.scale(2) + equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED}) + text=TextMobject("at $a=1$") + text.scale(0.7) + text.shift(DOWN) + + shiftText=TextMobject("(Here we shift the origin to the point $x=1$)") + shiftText.scale(0.6) + shiftText.shift(2.4*DOWN) + + + self.play(Write(equation)) + self.wait(0.5) + self.play(FadeIn(text)) + self.wait(0.7) + self.play(Write(shiftText)) + self.wait(0.7) + self.play(FadeOut(equation),FadeOut(text),FadeOut(shiftText)) + + +def formFormula(coeff_list,variable_list): + coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")] + variable_list=[TextMobject("+"),TextMobject("${ (x-1) }$+"),TextMobject("${ (x-1) }^{ 2 }$")] + coeff_list[0].shift(2.2*UP+1.6*LEFT) + for i in range(0,3): + coeff_list[i].set_color(GOLD_A) + variable_list[i].next_to(coeff_list[i],buff=0.1) + if i!=2: + coeff_list[i+1].next_to(variable_list[i],buff=0.1) + dots=TextMobject("...") + dots.next_to(variable_list[2]) + expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots) + #expansion.scale(0.7) + return expansion,coeff_list + + +class graphScene(GraphScene): + CONFIG = { + "x_min": -8, + "x_max": 8, + "y_min": -8, + "y_max": 8, + "graph_origin": ORIGIN, + "function_color": RED, + "axes_color": GREEN, + "x_axis_label": "$x$", + "y_axis_label": "$y$", + "exclude_zero_label": True, + "x_labeled_nums": range(-8, 8, 1), + } + def construct(self): + x_each_unit = self.x_axis_width / (self.x_max - self.x_min) + y_each_unit = self.y_axis_height / (self.y_max - self.y_min) + + generalized_eq_coeff=[] + variables_eq=[] + eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq) + trText1=TextMobject("let $T_{ n }(x)$:=") + eq.next_to(trText1) + trTextGrup=VGroup(trText1,eq) + trTextGrup.scale(0.5) + trTextGrup.to_corner(UP+RIGHT) + self.play(Write(trTextGrup)) + self.setup_axes(animate=True) + + fx=TextMobject("${ e }^{ -x^{ 2 } }$") + fx.scale(0.5) + fx.shift(ORIGIN+x_each_unit*7.5*RIGHT+y_each_unit*0.5*UP) + mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8) + self.play(ShowCreation(mainfunction)) + self.play(FadeIn(fx)) + self.wait(1.4) + + coeff=[TextMobject("$e^{-1}$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")] + coeff[0].shift(3.33*UP+3.65*RIGHT) + coeff[0].scale(0.45) + coeff[1].shift(3.33*UP+4.13*RIGHT) + coeff[1].scale(0.275) + coeff[2].shift(3.33*UP+5.36*RIGHT) + coeff[2].scale(0.28) + + for obj in coeff: + obj.set_color(GOLD_A) + + firstApprox=[self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)] + secondApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5), + self.get_graph(lambda x:math.exp(-1)+3*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5), + self.get_graph(lambda x:math.exp(-1)-4*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)] + thirdApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5), + self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-0.1*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5), + self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_max=5.5,x_min=-5.5), + self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+0.5*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5), + self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5)] + + firstGraph=self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5) + secondGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5) + thirdGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5) + + bottomText1=TextMobject("Apply","$f(1)=T_{n}(1)$") + bottomText2=TextMobject("This gives","$a_{ 0 }=e^{-1}$") + bottomText3=TextMobject("Now it could be of","any slope!") + #show graphs of second approx + bottomText4=TextMobject("Hence","apply","$f'(1)=T_{n}'(1)$") + #final graph + bottomText5=TextMobject("This gives","$a_{ 1 }=-2e^{-1}$") + bottomText6=TextMobject("Since the rate of change of this slope","could vary") + #show third approx graphs + bottomText7=TextMobject("Hence also","apply","$f''(1)=T_{ n }''(1)$") + #final graph + bottomText8=TextMobject("This gives","$a_{ 2 }=e^{-1}$") + + bottomText1.set_color_by_tex_to_color_map({"Apply":YELLOW}) + bottomText2.set_color_by_tex_to_color_map({"$a_{ 0 }=e^{-1}$":BLUE}) + bottomText3.set_color_by_tex_to_color_map({"any slope!":YELLOW}) + bottomText4.set_color_by_tex_to_color_map({"apply":YELLOW}) + bottomText5.set_color_by_tex_to_color_map({"$a_{ 1 }=-2e^{-1}$":BLUE}) + bottomText6.set_color_by_tex_to_color_map({"could vary":YELLOW}) + bottomText7.set_color_by_tex_to_color_map({"apply":YELLOW}) + bottomText8.set_color_by_tex_to_color_map({"$a_{ 2 }=e^{-1}$":BLUE}) + + bottomText1.scale(0.4) + bottomText2.scale(0.5) + bottomText3.scale(0.4) + bottomText4.scale(0.4) + bottomText5.scale(0.5) + bottomText6.scale(0.4) + bottomText7.scale(0.4) + bottomText8.scale(0.5) + + bottomText1.shift(4.5*RIGHT+2.5*DOWN) + bottomText2.shift(4.5*RIGHT+2.5*DOWN) + bottomText3.shift(4.5*RIGHT+2.5*DOWN) + bottomText4.shift(4.5*RIGHT+2.5*DOWN) + bottomText5.shift(4.5*RIGHT+2.5*DOWN) + bottomText6.shift(4.5*RIGHT+2.5*DOWN) + bottomText7.shift(4.5*RIGHT+2.5*DOWN) + bottomText8.shift(4.5*RIGHT+2.5*DOWN) + + self.play(Write(bottomText1)) + self.wait(1) + self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2)) + #change coeff in tn(x) + self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0])) + self.wait(1.5) + self.play(ReplacementTransform(bottomText2,bottomText3)) + self.wait(0.5) + self.play(ReplacementTransform(firstApprox[0],secondApprox[1])) + self.wait(0.5) + self.play(ReplacementTransform(secondApprox[1],secondApprox[2])) + # self.wait(0.5) + # self.play(ReplacementTransform(secondApprox[2],secondApprox[0])) + self.wait(1) + self.play(ReplacementTransform(bottomText3,bottomText4),FadeOut(secondApprox[2])) + self.wait(1) + self.play(Write(secondGraph),ReplacementTransform(bottomText4,bottomText5)) + #change a1 coeff + self.play(ReplacementTransform(generalized_eq_coeff[1],coeff[1])) + self.wait(1.5) + self.play(ReplacementTransform(bottomText5,bottomText6)) + self.play(ReplacementTransform(secondGraph,thirdApprox[0])) + self.wait(0.6) + self.play(ReplacementTransform(thirdApprox[0],thirdApprox[1])) + # self.wait(0.6) + # self.play(ReplacementTransform(thirdApprox[1],thirdApprox[2])) + self.wait(0.6) + self.play(ReplacementTransform(thirdApprox[1],thirdApprox[3])) + self.wait(0.6) + self.play(ReplacementTransform(thirdApprox[3],thirdApprox[4])) + self.wait(1.5) + self.play(ReplacementTransform(bottomText6,bottomText7)) + self.wait(1.5) + self.play(ReplacementTransform(bottomText7,bottomText8),ReplacementTransform(thirdApprox[4],thirdGraph)) + self.play(ReplacementTransform(generalized_eq_coeff[2],coeff[2])) + self.wait(2) + + textFinal=TextMobject("And so on..!") + textFinal.scale(0.7) + textFinal.shift(4.5*RIGHT+2.5*DOWN) + self.play(ReplacementTransform(bottomText8,textFinal)) + self.wait(2.5) + + finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(1)+f'(1)(x-1)+\\frac { f''(1) }{ 2! }(x-1)^2+..+\\frac { { f }^{ n }(1) }{ n! } { (x-1) }^{ n }$") + finalFormula.scale(0.8) + finalFormula.set_color_by_tex_to_color_map({"$T_{ n }(x)$":GREEN,"$f(1)+f'(1)(x-1)+\\frac { f''(1) }{ 2! }(x-1)^2+..+\\frac { { f }^{ n }(1) }{ n! } { (x-1) }^{ n }$":RED}) + + self.play(FadeOut(self.axes),FadeOut(textFinal),FadeOut(thirdGraph),FadeOut(trTextGrup),FadeOut(mainfunction),FadeOut(fx),FadeOut(coeff[0]),FadeOut(coeff[1]),FadeOut(coeff[2])) + self.play(Write(finalFormula)) + self.wait(2) -- cgit From 1fb63bccdf7d35a6f5c277b836a2477289baa282 Mon Sep 17 00:00:00 2001 From: G Sri Harsha Date: Tue, 26 May 2020 14:44:41 +0530 Subject: Rename video1_Example_TaylorExpansion.py.py to video1_Example_TaylorExpansion.py --- .../video1_Example_TaylorExpansion.py | 198 +++++++++++++++++++++ .../video1_Example_TaylorExpansion.py.py | 198 --------------------- 2 files changed, 198 insertions(+), 198 deletions(-) create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py delete mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py.py (limited to 'FSF-2020/calculus/series-and-transformations/Taylor Series') diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py new file mode 100644 index 0000000..e83eff8 --- /dev/null +++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py @@ -0,0 +1,198 @@ +from manimlib.imports import* +import math + +def formFormula(coeff_list,variable_list): + coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")] + variable_list=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")] + coeff_list[0].shift(2.2*UP+1.6*LEFT) + for i in range(0,3): + coeff_list[i].set_color(GOLD_A) + variable_list[i].next_to(coeff_list[i],buff=0.1) + if i!=2: + coeff_list[i+1].next_to(variable_list[i],buff=0.1) + dots=TextMobject("...") + dots.next_to(variable_list[2]) + expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots) + #expansion.scale(0.7) + return expansion,coeff_list + +class intro(Scene): + def construct(self): + equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$") + equation.scale(2) + equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED}) + text=TextMobject("let $a=0$") + text.scale(0.7) + text.shift(DOWN) + + self.play(Write(equation)) + self.wait(0.5) + self.play(FadeIn(text)) + self.wait(0.7) + self.play(FadeOut(equation),FadeOut(text)) + +class graphScene(GraphScene): + CONFIG = { + "x_min": -8, + "x_max": 8, + "y_min": -8, + "y_max": 8, + "graph_origin": ORIGIN, + "function_color": RED, + "axes_color": GREEN, + "x_axis_label": "$x$", + "y_axis_label": "$y$", + "exclude_zero_label": True, + "x_labeled_nums": range(-8, 8, 1), + } + def construct(self): + x_each_unit = self.x_axis_width / (self.x_max - self.x_min) + y_each_unit = self.y_axis_height / (self.y_max - self.y_min) + + generalized_eq_coeff=[] + variables_eq=[] + eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq) + trText1=TextMobject("let $T_{ n }(x)$:=") + eq.next_to(trText1) + trTextGrup=VGroup(trText1,eq) + trTextGrup.scale(0.5) + trTextGrup.to_corner(UP+RIGHT) + self.play(Write(trTextGrup)) + self.setup_axes(animate=True) + + fx=TextMobject("${ e }^{ -x^{ 2 } }$") + fx.scale(0.5) + fx.shift(ORIGIN+x_each_unit*7.5*RIGHT+y_each_unit*0.5*UP) + mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8) + self.play(ShowCreation(mainfunction)) + self.play(FadeIn(fx)) + self.wait(1.4) + + coeff=[TextMobject("$1$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")] + coeff[0].shift(3.39*UP+4.88*RIGHT) + coeff[0].scale(0.5) + coeff[1].shift(3.39*UP+5.3*RIGHT) + coeff[1].scale(0.275) + coeff[2].shift(3.39*UP+5.98*RIGHT) + coeff[2].scale(0.28) + + for obj in coeff: + obj.set_color(GOLD_A) + + firstApprox=[self.get_graph(lambda x:1,color=BLUE)] + secondApprox=[self.get_graph(lambda x:1,color=BLUE), + self.get_graph(lambda x:x+1,color=BLUE), + self.get_graph(lambda x:-x+1,color=BLUE)] + thirdApprox=[self.get_graph(lambda x:1-2*math.pow(x,2),color=BLUE), + self.get_graph(lambda x:1-0.1*math.pow(x,2),color=BLUE), + self.get_graph(lambda x:1,color=BLUE), + self.get_graph(lambda x:1+0.1*math.pow(x,2),color=BLUE), + self.get_graph(lambda x:1+math.pow(x,2),color=BLUE)] + + firstGraph=self.get_graph(lambda x:1,color=BLUE) + secondGraph=self.get_graph(lambda x:1-math.pow(x,2),color=BLUE) + + bottomText1=TextMobject("The polynomial should","satisfy","the function at $x=0$") + bottomText2=TextMobject("This gives","$a_{ 0 }=1$") + bottomText3=TextMobject("Now it could be of","any slope!") + #show graphs of second approx + bottomText4=TextMobject("Hence the","slopes","should","even match") + #final graph + bottomText5=TextMobject("This gives","$a_{ 1 }=0$") + bottomText6=TextMobject("Since the rate of change of this slope","could vary") + #show third approx graphs + bottomText7=TextMobject("Hence the","rate of change of these slopes","should also be","same!") + #final graph + bottomText8=TextMobject("This gives","$a_{ 2 }=-1$") + + bottomText1.set_color_by_tex_to_color_map({"satisfy":YELLOW}) + bottomText2.set_color_by_tex_to_color_map({"$a_{ 0 }=1$":BLUE}) + bottomText3.set_color_by_tex_to_color_map({"any slope!":YELLOW}) + bottomText4.set_color_by_tex_to_color_map({"slopes":BLUE,"even match":YELLOW}) + bottomText5.set_color_by_tex_to_color_map({"$a_{ 1 }=0$":BLUE}) + bottomText6.set_color_by_tex_to_color_map({"could vary":YELLOW}) + bottomText7.set_color_by_tex_to_color_map({"rate of change of these slopes":BLUE,"same!":YELLOW}) + bottomText8.set_color_by_tex_to_color_map({"$a_{ 2 }=-1$":BLUE}) + + bottomText1.scale(0.4) + bottomText2.scale(0.5) + bottomText3.scale(0.4) + bottomText4.scale(0.4) + bottomText5.scale(0.5) + bottomText6.scale(0.4) + bottomText7.scale(0.4) + bottomText8.scale(0.5) + + bottomText1.shift(4.5*RIGHT+2.5*DOWN) + bottomText2.shift(4.5*RIGHT+2.5*DOWN) + bottomText3.shift(4.5*RIGHT+2.5*DOWN) + bottomText4.shift(4.5*RIGHT+2.5*DOWN) + bottomText5.shift(4.5*RIGHT+2.5*DOWN) + bottomText6.shift(4.5*RIGHT+2.5*DOWN) + bottomText7.shift(4.5*RIGHT+2.5*DOWN) + bottomText8.shift(4.5*RIGHT+2.5*DOWN) + + self.play(Write(bottomText1)) + self.wait(1) + self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2)) + #change coeff in tn(x) + self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0])) + self.wait(1.5) + self.play(ReplacementTransform(bottomText2,bottomText3)) + self.wait(0.5) + self.play(ReplacementTransform(firstApprox[0],secondApprox[1])) + self.wait(0.5) + self.play(ReplacementTransform(secondApprox[1],secondApprox[0])) + self.wait(0.5) + self.play(ReplacementTransform(secondApprox[0],secondApprox[2])) + self.wait(1) + self.play(ReplacementTransform(bottomText3,bottomText4),FadeOut(secondApprox[2])) + self.wait(1) + self.play(Write(firstGraph),ReplacementTransform(bottomText4,bottomText5)) + #change a1 coeff + self.play(ReplacementTransform(generalized_eq_coeff[1],coeff[1])) + self.wait(1.5) + self.play(ReplacementTransform(bottomText5,bottomText6)) + self.play(ReplacementTransform(firstGraph,thirdApprox[0])) + self.wait(0.6) + self.play(ReplacementTransform(thirdApprox[0],thirdApprox[1])) + self.wait(0.6) + self.play(ReplacementTransform(thirdApprox[1],thirdApprox[2])) + self.wait(0.6) + self.play(ReplacementTransform(thirdApprox[2],thirdApprox[3])) + self.wait(0.6) + self.play(ReplacementTransform(thirdApprox[3],thirdApprox[4])) + self.wait(1.5) + self.play(ReplacementTransform(bottomText6,bottomText7)) + self.wait(1.5) + self.play(ReplacementTransform(bottomText7,bottomText8),ReplacementTransform(thirdApprox[4],secondGraph)) + self.play(ReplacementTransform(generalized_eq_coeff[2],coeff[2])) + self.wait(2) + + textFinal=TextMobject("And so on..!") + textFinal.scale(0.7) + textFinal.shift(4.5*RIGHT+2.5*DOWN) + self.play(ReplacementTransform(bottomText8,textFinal)) + self.wait(2.5) + + finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$") + finalFormula.scale(0.8) + finalFormula.set_color_by_tex_to_color_map({"$T_{ n }(x)$":GREEN,"$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$":RED}) + + self.play(FadeOut(self.axes),FadeOut(textFinal),FadeOut(secondGraph),FadeOut(trTextGrup),FadeOut(mainfunction),FadeOut(fx),FadeOut(coeff[0]),FadeOut(coeff[1]),FadeOut(coeff[2])) + self.play(Write(finalFormula)) + self.wait(2) + # self.play(ReplacementTransform(secondApprox[2],secondApprox[3])) + # self.wait(0.5) + # self.play(ReplacementTransform(secondApprox[3],secondApprox[4])) + # self.wait(0.5) + # self.play(ReplacementTransform(secondApprox[4],secondApprox[5])) + # self.wait(0.5) + # self.play(ReplacementTransform(secondApprox[0],secondApprox[0])) + # self.wait(0.5) + # self.play(ReplacementTransform(secondApprox[0],secondApprox[0])) + # self.wait(0.5) + + + + diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py.py deleted file mode 100644 index e83eff8..0000000 --- a/FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py.py +++ /dev/null @@ -1,198 +0,0 @@ -from manimlib.imports import* -import math - -def formFormula(coeff_list,variable_list): - coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")] - variable_list=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")] - coeff_list[0].shift(2.2*UP+1.6*LEFT) - for i in range(0,3): - coeff_list[i].set_color(GOLD_A) - variable_list[i].next_to(coeff_list[i],buff=0.1) - if i!=2: - coeff_list[i+1].next_to(variable_list[i],buff=0.1) - dots=TextMobject("...") - dots.next_to(variable_list[2]) - expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots) - #expansion.scale(0.7) - return expansion,coeff_list - -class intro(Scene): - def construct(self): - equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$") - equation.scale(2) - equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED}) - text=TextMobject("let $a=0$") - text.scale(0.7) - text.shift(DOWN) - - self.play(Write(equation)) - self.wait(0.5) - self.play(FadeIn(text)) - self.wait(0.7) - self.play(FadeOut(equation),FadeOut(text)) - -class graphScene(GraphScene): - CONFIG = { - "x_min": -8, - "x_max": 8, - "y_min": -8, - "y_max": 8, - "graph_origin": ORIGIN, - "function_color": RED, - "axes_color": GREEN, - "x_axis_label": "$x$", - "y_axis_label": "$y$", - "exclude_zero_label": True, - "x_labeled_nums": range(-8, 8, 1), - } - def construct(self): - x_each_unit = self.x_axis_width / (self.x_max - self.x_min) - y_each_unit = self.y_axis_height / (self.y_max - self.y_min) - - generalized_eq_coeff=[] - variables_eq=[] - eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq) - trText1=TextMobject("let $T_{ n }(x)$:=") - eq.next_to(trText1) - trTextGrup=VGroup(trText1,eq) - trTextGrup.scale(0.5) - trTextGrup.to_corner(UP+RIGHT) - self.play(Write(trTextGrup)) - self.setup_axes(animate=True) - - fx=TextMobject("${ e }^{ -x^{ 2 } }$") - fx.scale(0.5) - fx.shift(ORIGIN+x_each_unit*7.5*RIGHT+y_each_unit*0.5*UP) - mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8) - self.play(ShowCreation(mainfunction)) - self.play(FadeIn(fx)) - self.wait(1.4) - - coeff=[TextMobject("$1$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")] - coeff[0].shift(3.39*UP+4.88*RIGHT) - coeff[0].scale(0.5) - coeff[1].shift(3.39*UP+5.3*RIGHT) - coeff[1].scale(0.275) - coeff[2].shift(3.39*UP+5.98*RIGHT) - coeff[2].scale(0.28) - - for obj in coeff: - obj.set_color(GOLD_A) - - firstApprox=[self.get_graph(lambda x:1,color=BLUE)] - secondApprox=[self.get_graph(lambda x:1,color=BLUE), - self.get_graph(lambda x:x+1,color=BLUE), - self.get_graph(lambda x:-x+1,color=BLUE)] - thirdApprox=[self.get_graph(lambda x:1-2*math.pow(x,2),color=BLUE), - self.get_graph(lambda x:1-0.1*math.pow(x,2),color=BLUE), - self.get_graph(lambda x:1,color=BLUE), - self.get_graph(lambda x:1+0.1*math.pow(x,2),color=BLUE), - self.get_graph(lambda x:1+math.pow(x,2),color=BLUE)] - - firstGraph=self.get_graph(lambda x:1,color=BLUE) - secondGraph=self.get_graph(lambda x:1-math.pow(x,2),color=BLUE) - - bottomText1=TextMobject("The polynomial should","satisfy","the function at $x=0$") - bottomText2=TextMobject("This gives","$a_{ 0 }=1$") - bottomText3=TextMobject("Now it could be of","any slope!") - #show graphs of second approx - bottomText4=TextMobject("Hence the","slopes","should","even match") - #final graph - bottomText5=TextMobject("This gives","$a_{ 1 }=0$") - bottomText6=TextMobject("Since the rate of change of this slope","could vary") - #show third approx graphs - bottomText7=TextMobject("Hence the","rate of change of these slopes","should also be","same!") - #final graph - bottomText8=TextMobject("This gives","$a_{ 2 }=-1$") - - bottomText1.set_color_by_tex_to_color_map({"satisfy":YELLOW}) - bottomText2.set_color_by_tex_to_color_map({"$a_{ 0 }=1$":BLUE}) - bottomText3.set_color_by_tex_to_color_map({"any slope!":YELLOW}) - bottomText4.set_color_by_tex_to_color_map({"slopes":BLUE,"even match":YELLOW}) - bottomText5.set_color_by_tex_to_color_map({"$a_{ 1 }=0$":BLUE}) - bottomText6.set_color_by_tex_to_color_map({"could vary":YELLOW}) - bottomText7.set_color_by_tex_to_color_map({"rate of change of these slopes":BLUE,"same!":YELLOW}) - bottomText8.set_color_by_tex_to_color_map({"$a_{ 2 }=-1$":BLUE}) - - bottomText1.scale(0.4) - bottomText2.scale(0.5) - bottomText3.scale(0.4) - bottomText4.scale(0.4) - bottomText5.scale(0.5) - bottomText6.scale(0.4) - bottomText7.scale(0.4) - bottomText8.scale(0.5) - - bottomText1.shift(4.5*RIGHT+2.5*DOWN) - bottomText2.shift(4.5*RIGHT+2.5*DOWN) - bottomText3.shift(4.5*RIGHT+2.5*DOWN) - bottomText4.shift(4.5*RIGHT+2.5*DOWN) - bottomText5.shift(4.5*RIGHT+2.5*DOWN) - bottomText6.shift(4.5*RIGHT+2.5*DOWN) - bottomText7.shift(4.5*RIGHT+2.5*DOWN) - bottomText8.shift(4.5*RIGHT+2.5*DOWN) - - self.play(Write(bottomText1)) - self.wait(1) - self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2)) - #change coeff in tn(x) - self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0])) - self.wait(1.5) - self.play(ReplacementTransform(bottomText2,bottomText3)) - self.wait(0.5) - self.play(ReplacementTransform(firstApprox[0],secondApprox[1])) - self.wait(0.5) - self.play(ReplacementTransform(secondApprox[1],secondApprox[0])) - self.wait(0.5) - self.play(ReplacementTransform(secondApprox[0],secondApprox[2])) - self.wait(1) - self.play(ReplacementTransform(bottomText3,bottomText4),FadeOut(secondApprox[2])) - self.wait(1) - self.play(Write(firstGraph),ReplacementTransform(bottomText4,bottomText5)) - #change a1 coeff - self.play(ReplacementTransform(generalized_eq_coeff[1],coeff[1])) - self.wait(1.5) - self.play(ReplacementTransform(bottomText5,bottomText6)) - self.play(ReplacementTransform(firstGraph,thirdApprox[0])) - self.wait(0.6) - self.play(ReplacementTransform(thirdApprox[0],thirdApprox[1])) - self.wait(0.6) - self.play(ReplacementTransform(thirdApprox[1],thirdApprox[2])) - self.wait(0.6) - self.play(ReplacementTransform(thirdApprox[2],thirdApprox[3])) - self.wait(0.6) - self.play(ReplacementTransform(thirdApprox[3],thirdApprox[4])) - self.wait(1.5) - self.play(ReplacementTransform(bottomText6,bottomText7)) - self.wait(1.5) - self.play(ReplacementTransform(bottomText7,bottomText8),ReplacementTransform(thirdApprox[4],secondGraph)) - self.play(ReplacementTransform(generalized_eq_coeff[2],coeff[2])) - self.wait(2) - - textFinal=TextMobject("And so on..!") - textFinal.scale(0.7) - textFinal.shift(4.5*RIGHT+2.5*DOWN) - self.play(ReplacementTransform(bottomText8,textFinal)) - self.wait(2.5) - - finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$") - finalFormula.scale(0.8) - finalFormula.set_color_by_tex_to_color_map({"$T_{ n }(x)$":GREEN,"$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$":RED}) - - self.play(FadeOut(self.axes),FadeOut(textFinal),FadeOut(secondGraph),FadeOut(trTextGrup),FadeOut(mainfunction),FadeOut(fx),FadeOut(coeff[0]),FadeOut(coeff[1]),FadeOut(coeff[2])) - self.play(Write(finalFormula)) - self.wait(2) - # self.play(ReplacementTransform(secondApprox[2],secondApprox[3])) - # self.wait(0.5) - # self.play(ReplacementTransform(secondApprox[3],secondApprox[4])) - # self.wait(0.5) - # self.play(ReplacementTransform(secondApprox[4],secondApprox[5])) - # self.wait(0.5) - # self.play(ReplacementTransform(secondApprox[0],secondApprox[0])) - # self.wait(0.5) - # self.play(ReplacementTransform(secondApprox[0],secondApprox[0])) - # self.wait(0.5) - - - - -- cgit From 70572f4639b5576090a1b6bf1494803b28611d59 Mon Sep 17 00:00:00 2001 From: G Sri Harsha Date: Tue, 26 May 2020 14:45:03 +0530 Subject: Rename video2_TaylorExpansionGeneralForm.py.py to video2_TaylorExpansionGeneralForm.py --- .../video2_TaylorExpansionGeneralForm.py | 195 +++++++++++++++++++++ .../video2_TaylorExpansionGeneralForm.py.py | 195 --------------------- 2 files changed, 195 insertions(+), 195 deletions(-) create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py delete mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py.py (limited to 'FSF-2020/calculus/series-and-transformations/Taylor Series') diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py new file mode 100644 index 0000000..f84cfe9 --- /dev/null +++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py @@ -0,0 +1,195 @@ +from manimlib.imports import* +import math + + +class intro(Scene): + def construct(self): + equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$") + equation.scale(2) + equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED}) + text=TextMobject("at $a=1$") + text.scale(0.7) + text.shift(DOWN) + + shiftText=TextMobject("(Here we shift the origin to the point $x=1$)") + shiftText.scale(0.6) + shiftText.shift(2.4*DOWN) + + + self.play(Write(equation)) + self.wait(0.5) + self.play(FadeIn(text)) + self.wait(0.7) + self.play(Write(shiftText)) + self.wait(0.7) + self.play(FadeOut(equation),FadeOut(text),FadeOut(shiftText)) + + +def formFormula(coeff_list,variable_list): + coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")] + variable_list=[TextMobject("+"),TextMobject("${ (x-1) }$+"),TextMobject("${ (x-1) }^{ 2 }$")] + coeff_list[0].shift(2.2*UP+1.6*LEFT) + for i in range(0,3): + coeff_list[i].set_color(GOLD_A) + variable_list[i].next_to(coeff_list[i],buff=0.1) + if i!=2: + coeff_list[i+1].next_to(variable_list[i],buff=0.1) + dots=TextMobject("...") + dots.next_to(variable_list[2]) + expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots) + #expansion.scale(0.7) + return expansion,coeff_list + + +class graphScene(GraphScene): + CONFIG = { + "x_min": -8, + "x_max": 8, + "y_min": -8, + "y_max": 8, + "graph_origin": ORIGIN, + "function_color": RED, + "axes_color": GREEN, + "x_axis_label": "$x$", + "y_axis_label": "$y$", + "exclude_zero_label": True, + "x_labeled_nums": range(-8, 8, 1), + } + def construct(self): + x_each_unit = self.x_axis_width / (self.x_max - self.x_min) + y_each_unit = self.y_axis_height / (self.y_max - self.y_min) + + generalized_eq_coeff=[] + variables_eq=[] + eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq) + trText1=TextMobject("let $T_{ n }(x)$:=") + eq.next_to(trText1) + trTextGrup=VGroup(trText1,eq) + trTextGrup.scale(0.5) + trTextGrup.to_corner(UP+RIGHT) + self.play(Write(trTextGrup)) + self.setup_axes(animate=True) + + fx=TextMobject("${ e }^{ -x^{ 2 } }$") + fx.scale(0.5) + fx.shift(ORIGIN+x_each_unit*7.5*RIGHT+y_each_unit*0.5*UP) + mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8) + self.play(ShowCreation(mainfunction)) + self.play(FadeIn(fx)) + self.wait(1.4) + + coeff=[TextMobject("$e^{-1}$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")] + coeff[0].shift(3.33*UP+3.65*RIGHT) + coeff[0].scale(0.45) + coeff[1].shift(3.33*UP+4.13*RIGHT) + coeff[1].scale(0.275) + coeff[2].shift(3.33*UP+5.36*RIGHT) + coeff[2].scale(0.28) + + for obj in coeff: + obj.set_color(GOLD_A) + + firstApprox=[self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)] + secondApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5), + self.get_graph(lambda x:math.exp(-1)+3*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5), + self.get_graph(lambda x:math.exp(-1)-4*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)] + thirdApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5), + self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-0.1*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5), + self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_max=5.5,x_min=-5.5), + self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+0.5*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5), + self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5)] + + firstGraph=self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5) + secondGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5) + thirdGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5) + + bottomText1=TextMobject("Apply","$f(1)=T_{n}(1)$") + bottomText2=TextMobject("This gives","$a_{ 0 }=e^{-1}$") + bottomText3=TextMobject("Now it could be of","any slope!") + #show graphs of second approx + bottomText4=TextMobject("Hence","apply","$f'(1)=T_{n}'(1)$") + #final graph + bottomText5=TextMobject("This gives","$a_{ 1 }=-2e^{-1}$") + bottomText6=TextMobject("Since the rate of change of this slope","could vary") + #show third approx graphs + bottomText7=TextMobject("Hence also","apply","$f''(1)=T_{ n }''(1)$") + #final graph + bottomText8=TextMobject("This gives","$a_{ 2 }=e^{-1}$") + + bottomText1.set_color_by_tex_to_color_map({"Apply":YELLOW}) + bottomText2.set_color_by_tex_to_color_map({"$a_{ 0 }=e^{-1}$":BLUE}) + bottomText3.set_color_by_tex_to_color_map({"any slope!":YELLOW}) + bottomText4.set_color_by_tex_to_color_map({"apply":YELLOW}) + bottomText5.set_color_by_tex_to_color_map({"$a_{ 1 }=-2e^{-1}$":BLUE}) + bottomText6.set_color_by_tex_to_color_map({"could vary":YELLOW}) + bottomText7.set_color_by_tex_to_color_map({"apply":YELLOW}) + bottomText8.set_color_by_tex_to_color_map({"$a_{ 2 }=e^{-1}$":BLUE}) + + bottomText1.scale(0.4) + bottomText2.scale(0.5) + bottomText3.scale(0.4) + bottomText4.scale(0.4) + bottomText5.scale(0.5) + bottomText6.scale(0.4) + bottomText7.scale(0.4) + bottomText8.scale(0.5) + + bottomText1.shift(4.5*RIGHT+2.5*DOWN) + bottomText2.shift(4.5*RIGHT+2.5*DOWN) + bottomText3.shift(4.5*RIGHT+2.5*DOWN) + bottomText4.shift(4.5*RIGHT+2.5*DOWN) + bottomText5.shift(4.5*RIGHT+2.5*DOWN) + bottomText6.shift(4.5*RIGHT+2.5*DOWN) + bottomText7.shift(4.5*RIGHT+2.5*DOWN) + bottomText8.shift(4.5*RIGHT+2.5*DOWN) + + self.play(Write(bottomText1)) + self.wait(1) + self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2)) + #change coeff in tn(x) + self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0])) + self.wait(1.5) + self.play(ReplacementTransform(bottomText2,bottomText3)) + self.wait(0.5) + self.play(ReplacementTransform(firstApprox[0],secondApprox[1])) + self.wait(0.5) + self.play(ReplacementTransform(secondApprox[1],secondApprox[2])) + # self.wait(0.5) + # self.play(ReplacementTransform(secondApprox[2],secondApprox[0])) + self.wait(1) + self.play(ReplacementTransform(bottomText3,bottomText4),FadeOut(secondApprox[2])) + self.wait(1) + self.play(Write(secondGraph),ReplacementTransform(bottomText4,bottomText5)) + #change a1 coeff + self.play(ReplacementTransform(generalized_eq_coeff[1],coeff[1])) + self.wait(1.5) + self.play(ReplacementTransform(bottomText5,bottomText6)) + self.play(ReplacementTransform(secondGraph,thirdApprox[0])) + self.wait(0.6) + self.play(ReplacementTransform(thirdApprox[0],thirdApprox[1])) + # self.wait(0.6) + # self.play(ReplacementTransform(thirdApprox[1],thirdApprox[2])) + self.wait(0.6) + self.play(ReplacementTransform(thirdApprox[1],thirdApprox[3])) + self.wait(0.6) + self.play(ReplacementTransform(thirdApprox[3],thirdApprox[4])) + self.wait(1.5) + self.play(ReplacementTransform(bottomText6,bottomText7)) + self.wait(1.5) + self.play(ReplacementTransform(bottomText7,bottomText8),ReplacementTransform(thirdApprox[4],thirdGraph)) + self.play(ReplacementTransform(generalized_eq_coeff[2],coeff[2])) + self.wait(2) + + textFinal=TextMobject("And so on..!") + textFinal.scale(0.7) + textFinal.shift(4.5*RIGHT+2.5*DOWN) + self.play(ReplacementTransform(bottomText8,textFinal)) + self.wait(2.5) + + finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(1)+f'(1)(x-1)+\\frac { f''(1) }{ 2! }(x-1)^2+..+\\frac { { f }^{ n }(1) }{ n! } { (x-1) }^{ n }$") + finalFormula.scale(0.8) + finalFormula.set_color_by_tex_to_color_map({"$T_{ n }(x)$":GREEN,"$f(1)+f'(1)(x-1)+\\frac { f''(1) }{ 2! }(x-1)^2+..+\\frac { { f }^{ n }(1) }{ n! } { (x-1) }^{ n }$":RED}) + + self.play(FadeOut(self.axes),FadeOut(textFinal),FadeOut(thirdGraph),FadeOut(trTextGrup),FadeOut(mainfunction),FadeOut(fx),FadeOut(coeff[0]),FadeOut(coeff[1]),FadeOut(coeff[2])) + self.play(Write(finalFormula)) + self.wait(2) diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py.py deleted file mode 100644 index f84cfe9..0000000 --- a/FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py.py +++ /dev/null @@ -1,195 +0,0 @@ -from manimlib.imports import* -import math - - -class intro(Scene): - def construct(self): - equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$") - equation.scale(2) - equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED}) - text=TextMobject("at $a=1$") - text.scale(0.7) - text.shift(DOWN) - - shiftText=TextMobject("(Here we shift the origin to the point $x=1$)") - shiftText.scale(0.6) - shiftText.shift(2.4*DOWN) - - - self.play(Write(equation)) - self.wait(0.5) - self.play(FadeIn(text)) - self.wait(0.7) - self.play(Write(shiftText)) - self.wait(0.7) - self.play(FadeOut(equation),FadeOut(text),FadeOut(shiftText)) - - -def formFormula(coeff_list,variable_list): - coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")] - variable_list=[TextMobject("+"),TextMobject("${ (x-1) }$+"),TextMobject("${ (x-1) }^{ 2 }$")] - coeff_list[0].shift(2.2*UP+1.6*LEFT) - for i in range(0,3): - coeff_list[i].set_color(GOLD_A) - variable_list[i].next_to(coeff_list[i],buff=0.1) - if i!=2: - coeff_list[i+1].next_to(variable_list[i],buff=0.1) - dots=TextMobject("...") - dots.next_to(variable_list[2]) - expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots) - #expansion.scale(0.7) - return expansion,coeff_list - - -class graphScene(GraphScene): - CONFIG = { - "x_min": -8, - "x_max": 8, - "y_min": -8, - "y_max": 8, - "graph_origin": ORIGIN, - "function_color": RED, - "axes_color": GREEN, - "x_axis_label": "$x$", - "y_axis_label": "$y$", - "exclude_zero_label": True, - "x_labeled_nums": range(-8, 8, 1), - } - def construct(self): - x_each_unit = self.x_axis_width / (self.x_max - self.x_min) - y_each_unit = self.y_axis_height / (self.y_max - self.y_min) - - generalized_eq_coeff=[] - variables_eq=[] - eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq) - trText1=TextMobject("let $T_{ n }(x)$:=") - eq.next_to(trText1) - trTextGrup=VGroup(trText1,eq) - trTextGrup.scale(0.5) - trTextGrup.to_corner(UP+RIGHT) - self.play(Write(trTextGrup)) - self.setup_axes(animate=True) - - fx=TextMobject("${ e }^{ -x^{ 2 } }$") - fx.scale(0.5) - fx.shift(ORIGIN+x_each_unit*7.5*RIGHT+y_each_unit*0.5*UP) - mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8) - self.play(ShowCreation(mainfunction)) - self.play(FadeIn(fx)) - self.wait(1.4) - - coeff=[TextMobject("$e^{-1}$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")] - coeff[0].shift(3.33*UP+3.65*RIGHT) - coeff[0].scale(0.45) - coeff[1].shift(3.33*UP+4.13*RIGHT) - coeff[1].scale(0.275) - coeff[2].shift(3.33*UP+5.36*RIGHT) - coeff[2].scale(0.28) - - for obj in coeff: - obj.set_color(GOLD_A) - - firstApprox=[self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)] - secondApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5), - self.get_graph(lambda x:math.exp(-1)+3*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5), - self.get_graph(lambda x:math.exp(-1)-4*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)] - thirdApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5), - self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-0.1*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5), - self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_max=5.5,x_min=-5.5), - self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+0.5*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5), - self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5)] - - firstGraph=self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5) - secondGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5) - thirdGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5) - - bottomText1=TextMobject("Apply","$f(1)=T_{n}(1)$") - bottomText2=TextMobject("This gives","$a_{ 0 }=e^{-1}$") - bottomText3=TextMobject("Now it could be of","any slope!") - #show graphs of second approx - bottomText4=TextMobject("Hence","apply","$f'(1)=T_{n}'(1)$") - #final graph - bottomText5=TextMobject("This gives","$a_{ 1 }=-2e^{-1}$") - bottomText6=TextMobject("Since the rate of change of this slope","could vary") - #show third approx graphs - bottomText7=TextMobject("Hence also","apply","$f''(1)=T_{ n }''(1)$") - #final graph - bottomText8=TextMobject("This gives","$a_{ 2 }=e^{-1}$") - - bottomText1.set_color_by_tex_to_color_map({"Apply":YELLOW}) - bottomText2.set_color_by_tex_to_color_map({"$a_{ 0 }=e^{-1}$":BLUE}) - bottomText3.set_color_by_tex_to_color_map({"any slope!":YELLOW}) - bottomText4.set_color_by_tex_to_color_map({"apply":YELLOW}) - bottomText5.set_color_by_tex_to_color_map({"$a_{ 1 }=-2e^{-1}$":BLUE}) - bottomText6.set_color_by_tex_to_color_map({"could vary":YELLOW}) - bottomText7.set_color_by_tex_to_color_map({"apply":YELLOW}) - bottomText8.set_color_by_tex_to_color_map({"$a_{ 2 }=e^{-1}$":BLUE}) - - bottomText1.scale(0.4) - bottomText2.scale(0.5) - bottomText3.scale(0.4) - bottomText4.scale(0.4) - bottomText5.scale(0.5) - bottomText6.scale(0.4) - bottomText7.scale(0.4) - bottomText8.scale(0.5) - - bottomText1.shift(4.5*RIGHT+2.5*DOWN) - bottomText2.shift(4.5*RIGHT+2.5*DOWN) - bottomText3.shift(4.5*RIGHT+2.5*DOWN) - bottomText4.shift(4.5*RIGHT+2.5*DOWN) - bottomText5.shift(4.5*RIGHT+2.5*DOWN) - bottomText6.shift(4.5*RIGHT+2.5*DOWN) - bottomText7.shift(4.5*RIGHT+2.5*DOWN) - bottomText8.shift(4.5*RIGHT+2.5*DOWN) - - self.play(Write(bottomText1)) - self.wait(1) - self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2)) - #change coeff in tn(x) - self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0])) - self.wait(1.5) - self.play(ReplacementTransform(bottomText2,bottomText3)) - self.wait(0.5) - self.play(ReplacementTransform(firstApprox[0],secondApprox[1])) - self.wait(0.5) - self.play(ReplacementTransform(secondApprox[1],secondApprox[2])) - # self.wait(0.5) - # self.play(ReplacementTransform(secondApprox[2],secondApprox[0])) - self.wait(1) - self.play(ReplacementTransform(bottomText3,bottomText4),FadeOut(secondApprox[2])) - self.wait(1) - self.play(Write(secondGraph),ReplacementTransform(bottomText4,bottomText5)) - #change a1 coeff - self.play(ReplacementTransform(generalized_eq_coeff[1],coeff[1])) - self.wait(1.5) - self.play(ReplacementTransform(bottomText5,bottomText6)) - self.play(ReplacementTransform(secondGraph,thirdApprox[0])) - self.wait(0.6) - self.play(ReplacementTransform(thirdApprox[0],thirdApprox[1])) - # self.wait(0.6) - # self.play(ReplacementTransform(thirdApprox[1],thirdApprox[2])) - self.wait(0.6) - self.play(ReplacementTransform(thirdApprox[1],thirdApprox[3])) - self.wait(0.6) - self.play(ReplacementTransform(thirdApprox[3],thirdApprox[4])) - self.wait(1.5) - self.play(ReplacementTransform(bottomText6,bottomText7)) - self.wait(1.5) - self.play(ReplacementTransform(bottomText7,bottomText8),ReplacementTransform(thirdApprox[4],thirdGraph)) - self.play(ReplacementTransform(generalized_eq_coeff[2],coeff[2])) - self.wait(2) - - textFinal=TextMobject("And so on..!") - textFinal.scale(0.7) - textFinal.shift(4.5*RIGHT+2.5*DOWN) - self.play(ReplacementTransform(bottomText8,textFinal)) - self.wait(2.5) - - finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(1)+f'(1)(x-1)+\\frac { f''(1) }{ 2! }(x-1)^2+..+\\frac { { f }^{ n }(1) }{ n! } { (x-1) }^{ n }$") - finalFormula.scale(0.8) - finalFormula.set_color_by_tex_to_color_map({"$T_{ n }(x)$":GREEN,"$f(1)+f'(1)(x-1)+\\frac { f''(1) }{ 2! }(x-1)^2+..+\\frac { { f }^{ n }(1) }{ n! } { (x-1) }^{ n }$":RED}) - - self.play(FadeOut(self.axes),FadeOut(textFinal),FadeOut(thirdGraph),FadeOut(trTextGrup),FadeOut(mainfunction),FadeOut(fx),FadeOut(coeff[0]),FadeOut(coeff[1]),FadeOut(coeff[2])) - self.play(Write(finalFormula)) - self.wait(2) -- cgit From 6a04d04fcb710bf273be0e80471b692aa3f4d451 Mon Sep 17 00:00:00 2001 From: G Sri Harsha Date: Tue, 26 May 2020 14:45:25 +0530 Subject: Rename script3.py to video3_radiusOfConvergence.py --- .../Taylor Series/script3.py | 111 --------------------- .../Taylor Series/video3_radiusOfConvergence.py | 111 +++++++++++++++++++++ 2 files changed, 111 insertions(+), 111 deletions(-) delete mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/script3.py create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/video3_radiusOfConvergence.py (limited to 'FSF-2020/calculus/series-and-transformations/Taylor Series') diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/script3.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/script3.py deleted file mode 100644 index a2870d4..0000000 --- a/FSF-2020/calculus/series-and-transformations/Taylor Series/script3.py +++ /dev/null @@ -1,111 +0,0 @@ -from manimlib.imports import* -import math - - -class graphScene(GraphScene): - CONFIG = { - "x_min": -8, - "x_max": 8, - "y_min": -8, - "y_max": 8, - "graph_origin": ORIGIN, - "function_color": RED, - "axes_color": GREEN, - "x_axis_label": "$x$", - "y_axis_label": "$y$", - "exclude_zero_label": True, - "x_labeled_nums": range(-8, 8, 1), - } - def construct(self): - - x_each_unit = self.x_axis_width / (self.x_max - self.x_min) - y_each_unit = self.y_axis_height / (self.y_max - self.y_min) - - self.setup_axes(animate=True) - - lnx=self.get_graph(lambda x:math.log2(x),color=RED,x_min=0.01,x_max=8) - - bottomText1=TextMobject("Apply $f(x)=T_{n}(x)$") - bottomText2=TextMobject("Then apply $f'(x)=T_{n}'(x)$") - bottomText3=TextMobject("Then apply $f''(x)=T_{n}''(x)$") - bottomText4=TextMobject("and so on..") - - bottomText1.scale(0.5) - bottomText2.scale(0.5) - bottomText3.scale(0.5) - bottomText4.scale(0.5) - - bottomText1.shift(3*RIGHT+2*DOWN) - bottomText2.shift(3*RIGHT+2*DOWN) - bottomText3.shift(3*RIGHT+2*DOWN) - bottomText4.shift(3*RIGHT+2*DOWN) - - equations=[self.get_graph(lambda x:math.log2(2),color=BLUE), - self.get_graph(lambda x:math.log2(2)+(x-2)/2,color=BLUE), - self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8,color=BLUE), - self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24,color=BLUE), - self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64,color=BLUE), - self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160,color=BLUE), - self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160-((x-2)**6)/384,color=BLUE)] - - terms=[TextMobject("$T_{n}:=$"),TextMobject("$ln(2)$"),TextMobject("$+\\frac { x-2 }{ 2 } $"),TextMobject("$-\\frac { (x-2)^{2} }{ 8 }$"),TextMobject("+..")] - for obj in terms: - obj.scale(0.5) - - terms[0].shift(3*UP+3*RIGHT) - terms[1].next_to(terms[0],buff=0.1) - terms[2].next_to(terms[1],buff=0.1) - terms[3].next_to(terms[2],buff=0.1) - terms[4].next_to(terms[3],buff=0.1) - - self.play(ShowCreation(lnx)) - self.wait(1) - self.play(Write(bottomText1)) - self.wait(0.5) - self.play(ShowCreation(equations[0]),Write(terms[0]),Write(terms[1])) - self.wait(1) - self.play(ReplacementTransform(bottomText1,bottomText2)) - self.wait(0.5) - self.play(ReplacementTransform(equations[0],equations[1]),Write(terms[2])) - self.wait(1) - self.play(ReplacementTransform(bottomText2,bottomText3)) - self.wait(0.5) - self.play(ReplacementTransform(equations[1],equations[2]),Write(terms[3])) - self.wait(1) - self.play(ReplacementTransform(bottomText3,bottomText4),Write(terms[4])) - self.wait(1.5) - - self.play(FadeOut(terms[0]),FadeOut(terms[1]),FadeOut(terms[2]),FadeOut(terms[3]),FadeOut(terms[4]),FadeOut(bottomText4)) - - dline=DashedLine(start=ORIGIN+8*y_each_unit*UP,end=ORIGIN+8*y_each_unit*DOWN) - dline.shift(ORIGIN+x_each_unit*4*RIGHT) - - bottomText5=TextMobject("Here","after $x=4$",", the graph","continuously diverges away","from $ln(x)$") - bottomText5.scale(0.3) - bottomText5.shift(4.5*RIGHT+2*DOWN) - bottomText5.set_color_by_tex_to_color_map({"after $x=4$":YELLOW,"continuously diverges away":BLUE}) - - self.play(Write(bottomText5),Write(dline)) - self.wait(1) - self.play(ReplacementTransform(equations[2],equations[3])) - self.wait(0.3) - self.play(ReplacementTransform(equations[3],equations[4])) - self.wait(0.3) - self.play(ReplacementTransform(equations[4],equations[5])) - self.wait(0.3) - self.play(ReplacementTransform(equations[5],equations[6]),FadeOut(bottomText5)) - self.wait(1) - - circle=Circle(radius=ORIGIN+x_each_unit*2,color=PURPLE_E) - circle.shift(ORIGIN+RIGHT*x_each_unit*2) - radiusLine=Line(start=ORIGIN+x_each_unit*RIGHT*2,end=ORIGIN+x_each_unit*4*RIGHT,color=PURPLE_E) - radius=TextMobject("$R$") - radius.set_color(RED) - radius.scale(0.5) - radius.shift(ORIGIN+RIGHT*x_each_unit*2.45+DOWN*y_each_unit*0.6) - - self.play(FadeOut(equations[6]),Write(circle)) - self.wait(0.6) - self.play(Write(radiusLine)) - self.play(FadeIn(radius)) - self.wait(2) \ No newline at end of file diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/video3_radiusOfConvergence.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/video3_radiusOfConvergence.py new file mode 100644 index 0000000..a68afb6 --- /dev/null +++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/video3_radiusOfConvergence.py @@ -0,0 +1,111 @@ +from manimlib.imports import* +import math + + +class graphScene(GraphScene): + CONFIG = { + "x_min": -8, + "x_max": 8, + "y_min": -8, + "y_max": 8, + "graph_origin": ORIGIN, + "function_color": RED, + "axes_color": GREEN, + "x_axis_label": "$x$", + "y_axis_label": "$y$", + "exclude_zero_label": True, + "x_labeled_nums": range(-8, 8, 1), + } + def construct(self): + + x_each_unit = self.x_axis_width / (self.x_max - self.x_min) + y_each_unit = self.y_axis_height / (self.y_max - self.y_min) + + self.setup_axes(animate=True) + + lnx=self.get_graph(lambda x:math.log2(x),color=RED,x_min=0.01,x_max=8) + + bottomText1=TextMobject("Apply $f(x)=T_{n}(x)$") + bottomText2=TextMobject("Then apply $f'(x)=T_{n}'(x)$") + bottomText3=TextMobject("Then apply $f''(x)=T_{n}''(x)$") + bottomText4=TextMobject("and so on..") + + bottomText1.scale(0.5) + bottomText2.scale(0.5) + bottomText3.scale(0.5) + bottomText4.scale(0.5) + + bottomText1.shift(3*RIGHT+2*DOWN) + bottomText2.shift(3*RIGHT+2*DOWN) + bottomText3.shift(3*RIGHT+2*DOWN) + bottomText4.shift(3*RIGHT+2*DOWN) + + equations=[self.get_graph(lambda x:math.log2(2),color=BLUE), + self.get_graph(lambda x:math.log2(2)+(x-2)/2,color=BLUE), + self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8,color=BLUE), + self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24,color=BLUE), + self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64,color=BLUE), + self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160,color=BLUE), + self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160-((x-2)**6)/384,color=BLUE)] + + terms=[TextMobject("$T_{n}:=$"),TextMobject("$ln(2)$"),TextMobject("$+\\frac { x-2 }{ 2 } $"),TextMobject("$-\\frac { (x-2)^{2} }{ 8 }$"),TextMobject("+..")] + for obj in terms: + obj.scale(0.5) + + terms[0].shift(3*UP+3*RIGHT) + terms[1].next_to(terms[0],buff=0.1) + terms[2].next_to(terms[1],buff=0.1) + terms[3].next_to(terms[2],buff=0.1) + terms[4].next_to(terms[3],buff=0.1) + + self.play(ShowCreation(lnx)) + self.wait(1) + self.play(Write(bottomText1)) + self.wait(0.5) + self.play(ShowCreation(equations[0]),Write(terms[0]),Write(terms[1])) + self.wait(1) + self.play(ReplacementTransform(bottomText1,bottomText2)) + self.wait(0.5) + self.play(ReplacementTransform(equations[0],equations[1]),Write(terms[2])) + self.wait(1) + self.play(ReplacementTransform(bottomText2,bottomText3)) + self.wait(0.5) + self.play(ReplacementTransform(equations[1],equations[2]),Write(terms[3])) + self.wait(1) + self.play(ReplacementTransform(bottomText3,bottomText4),Write(terms[4])) + self.wait(1.5) + + self.play(FadeOut(terms[0]),FadeOut(terms[1]),FadeOut(terms[2]),FadeOut(terms[3]),FadeOut(terms[4]),FadeOut(bottomText4)) + + dline=DashedLine(start=ORIGIN+8*y_each_unit*UP,end=ORIGIN+8*y_each_unit*DOWN) + dline.shift(ORIGIN+x_each_unit*4*RIGHT) + + bottomText5=TextMobject("Here","after $x=4$",", the graph","continuously diverges away","from $ln(x)$") + bottomText5.scale(0.3) + bottomText5.shift(4.5*RIGHT+2*DOWN) + bottomText5.set_color_by_tex_to_color_map({"after $x=4$":YELLOW,"continuously diverges away":BLUE}) + + self.play(Write(bottomText5),Write(dline)) + self.wait(1) + self.play(ReplacementTransform(equations[2],equations[3])) + self.wait(0.3) + self.play(ReplacementTransform(equations[3],equations[4])) + self.wait(0.3) + self.play(ReplacementTransform(equations[4],equations[5])) + self.wait(0.3) + self.play(ReplacementTransform(equations[5],equations[6]),FadeOut(bottomText5)) + self.wait(1) + + circle=Circle(radius=ORIGIN+x_each_unit*2,color=PURPLE_E) + circle.shift(ORIGIN+RIGHT*x_each_unit*2) + radiusLine=Line(start=ORIGIN+x_each_unit*RIGHT*2,end=ORIGIN+x_each_unit*4*RIGHT,color=PURPLE_E) + radius=TextMobject("$R$") + radius.set_color(RED) + radius.scale(0.5) + radius.shift(ORIGIN+RIGHT*x_each_unit*2.45+DOWN*y_each_unit*0.6) + + self.play(FadeOut(equations[6]),Write(circle)) + self.wait(0.6) + self.play(Write(radiusLine)) + self.play(FadeIn(radius)) + self.wait(2) -- cgit From 476d9b46e164221923e8685fb4a3d07453f5c8cc Mon Sep 17 00:00:00 2001 From: G Sri Harsha Date: Tue, 26 May 2020 14:45:50 +0530 Subject: Rename script4.py to video4_DivergentRemainder.py --- .../Taylor Series/script4.py | 82 ---------------------- .../Taylor Series/video4_DivergentRemainder.py | 82 ++++++++++++++++++++++ 2 files changed, 82 insertions(+), 82 deletions(-) delete mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/script4.py create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/video4_DivergentRemainder.py (limited to 'FSF-2020/calculus/series-and-transformations/Taylor Series') diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/script4.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/script4.py deleted file mode 100644 index 1f41c97..0000000 --- a/FSF-2020/calculus/series-and-transformations/Taylor Series/script4.py +++ /dev/null @@ -1,82 +0,0 @@ -from manimlib.imports import* -import math - - -class graphScene(GraphScene): - CONFIG = { - "x_min": -8, - "x_max": 8, - "y_min": -8, - "y_max": 8, - "graph_origin": ORIGIN, - "function_color": RED, - "axes_color": GREEN, - "x_axis_label": "$x$", - "y_axis_label": "$y$", - "exclude_zero_label": True, - "x_labeled_nums": range(-8, 8, 1), - } - def construct(self): - - x_each_unit = self.x_axis_width / (self.x_max - self.x_min) - y_each_unit = self.y_axis_height / (self.y_max - self.y_min) - - self.setup_axes(animate=True) - lnx=self.get_graph(lambda x:math.log2(x),color=RED,x_min=0.01,x_max=8) - equation=self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160-((x-2)**6)/384,color=BLUE) - - terms=[TextMobject("$T_{n}:=$"),TextMobject("$ln(2)$"),TextMobject("$+\\frac { x-2 }{ 2 } $"),TextMobject("$-\\frac { (x-2)^{2} }{ 8 }$"),TextMobject("+..")] - for obj in terms: - obj.scale(0.5) - - terms[0].shift(3*UP+3*RIGHT) - terms[1].next_to(terms[0],buff=0.1) - terms[2].next_to(terms[1],buff=0.1) - terms[3].next_to(terms[2],buff=0.1) - terms[4].next_to(terms[3],buff=0.1) - - self.play(ShowCreation(lnx)) - self.wait(1) - self.play(FadeIn(equation),FadeIn(terms[0]),FadeIn(terms[1]),FadeIn(terms[2]),FadeIn(terms[3]),FadeIn(terms[4])) - self.wait(1) - - bottomText1=TextMobject("$R_{n}(x)=\\frac { d }{ dx } ($","area bounded","$)$") - - bottomText1.set_color_by_tex_to_color_map({"area bounded":ORANGE}) - #bottomText2.set_color_by_tex_to_color_map({"area bounded":BLUE}) - arrow=TextMobject("$\downarrow$") - arrow.scale(2.5) - arrow.shift(ORIGIN+x_each_unit*RIGHT*9.5+UP*y_each_unit) - increasingText=TextMobject("Increases!") - increasingText.set_color(GREEN) - followupText=TextMobject("as n increase!") - followupText.scale(0.3) - followupText.shift(ORIGIN+x_each_unit*11*RIGHT+UP*y_each_unit*1.1) - increasingText.shift(ORIGIN+x_each_unit*11*RIGHT+UP*y_each_unit*1.6) - increasingText.scale(0.4) - - bottomText1.scale(0.5) - #bottomText2.scale(0.5) - #bottomText3.scale(0.5) - - bottomText1.shift(3.5*LEFT+2*DOWN) - #bottomText2.shift(3.5*LEFT+2.4*DOWN) - #bottomText3.shift(3.5*LEFT+2.8*DOWN) - - dline=DashedLine(start=ORIGIN+8*y_each_unit*UP,end=ORIGIN+8*y_each_unit*DOWN) - dline.shift(ORIGIN+x_each_unit*4*RIGHT) - - area1=self.get_riemann_rectangles(lnx,x_max=8,x_min=4,dx=0.01,start_color=BLUE,end_color=RED,stroke_width=0,fill_opacity=0.8) - area2=self.get_riemann_rectangles(equation,x_max=5.2,x_min=4,dx=0.025,start_color=BLACK,end_color=BLACK,stroke_width=0,fill_opacity=1) - - self.play(Write(dline)) - self.wait(0.5) - self.play(ShowCreation(area1),ShowCreation(area2),Write(bottomText1)) - # self.play(Write(bottomText2)) - # self.play(FadeIn(bottomText3)) - self.play(Write(arrow)) - self.wait(0.7) - self.play(Write(increasingText)) - self.play(FadeIn(followupText)) - self.wait(2) - \ No newline at end of file diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/video4_DivergentRemainder.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/video4_DivergentRemainder.py new file mode 100644 index 0000000..5389039 --- /dev/null +++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/video4_DivergentRemainder.py @@ -0,0 +1,82 @@ +from manimlib.imports import* +import math + + +class graphScene(GraphScene): + CONFIG = { + "x_min": -8, + "x_max": 8, + "y_min": -8, + "y_max": 8, + "graph_origin": ORIGIN, + "function_color": RED, + "axes_color": GREEN, + "x_axis_label": "$x$", + "y_axis_label": "$y$", + "exclude_zero_label": True, + "x_labeled_nums": range(-8, 8, 1), + } + def construct(self): + + x_each_unit = self.x_axis_width / (self.x_max - self.x_min) + y_each_unit = self.y_axis_height / (self.y_max - self.y_min) + + self.setup_axes(animate=True) + lnx=self.get_graph(lambda x:math.log2(x),color=RED,x_min=0.01,x_max=8) + equation=self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160-((x-2)**6)/384,color=BLUE) + + terms=[TextMobject("$T_{n}:=$"),TextMobject("$ln(2)$"),TextMobject("$+\\frac { x-2 }{ 2 } $"),TextMobject("$-\\frac { (x-2)^{2} }{ 8 }$"),TextMobject("+..")] + for obj in terms: + obj.scale(0.5) + + terms[0].shift(3*UP+3*RIGHT) + terms[1].next_to(terms[0],buff=0.1) + terms[2].next_to(terms[1],buff=0.1) + terms[3].next_to(terms[2],buff=0.1) + terms[4].next_to(terms[3],buff=0.1) + + self.play(ShowCreation(lnx)) + self.wait(1) + self.play(FadeIn(equation),FadeIn(terms[0]),FadeIn(terms[1]),FadeIn(terms[2]),FadeIn(terms[3]),FadeIn(terms[4])) + self.wait(1) + + bottomText1=TextMobject("$R_{n}(x)=\\frac { d }{ dx } ($","area bounded","$)$") + + bottomText1.set_color_by_tex_to_color_map({"area bounded":ORANGE}) + #bottomText2.set_color_by_tex_to_color_map({"area bounded":BLUE}) + arrow=TextMobject("$\downarrow$") + arrow.scale(2.5) + arrow.shift(ORIGIN+x_each_unit*RIGHT*9.5+UP*y_each_unit) + increasingText=TextMobject("Increases!") + increasingText.set_color(GREEN) + followupText=TextMobject("as n increase!") + followupText.scale(0.3) + followupText.shift(ORIGIN+x_each_unit*11*RIGHT+UP*y_each_unit*1.1) + increasingText.shift(ORIGIN+x_each_unit*11*RIGHT+UP*y_each_unit*1.6) + increasingText.scale(0.4) + + bottomText1.scale(0.5) + #bottomText2.scale(0.5) + #bottomText3.scale(0.5) + + bottomText1.shift(3.5*LEFT+2*DOWN) + #bottomText2.shift(3.5*LEFT+2.4*DOWN) + #bottomText3.shift(3.5*LEFT+2.8*DOWN) + + dline=DashedLine(start=ORIGIN+8*y_each_unit*UP,end=ORIGIN+8*y_each_unit*DOWN) + dline.shift(ORIGIN+x_each_unit*4*RIGHT) + + area1=self.get_riemann_rectangles(lnx,x_max=8,x_min=4,dx=0.01,start_color=BLUE,end_color=RED,stroke_width=0,fill_opacity=0.8) + area2=self.get_riemann_rectangles(equation,x_max=5.2,x_min=4,dx=0.025,start_color=BLACK,end_color=BLACK,stroke_width=0,fill_opacity=1) + + self.play(Write(dline)) + self.wait(0.5) + self.play(ShowCreation(area1),ShowCreation(area2),Write(bottomText1)) + # self.play(Write(bottomText2)) + # self.play(FadeIn(bottomText3)) + self.play(Write(arrow)) + self.wait(0.7) + self.play(Write(increasingText)) + self.play(FadeIn(followupText)) + self.wait(2) + -- cgit From a933eb11ef98b70dbfec23d49e7b2cb97389c5de Mon Sep 17 00:00:00 2001 From: G Sri Harsha Date: Tue, 26 May 2020 14:49:37 +0530 Subject: Added gifs to readme.md --- .../series-and-transformations/Taylor Series/README.md | 11 +++++++++++ 1 file changed, 11 insertions(+) create mode 100644 FSF-2020/calculus/series-and-transformations/Taylor Series/README.md (limited to 'FSF-2020/calculus/series-and-transformations/Taylor Series') diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/README.md b/FSF-2020/calculus/series-and-transformations/Taylor Series/README.md new file mode 100644 index 0000000..ce3b088 --- /dev/null +++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/README.md @@ -0,0 +1,11 @@ +#### Example of Taylors expansion +![GIF1](gifs/file1_Example_TaylorExpansion.gif) + +#### Taylor Series GeneralForm +![GIF2](gifs/file2_TaylorExpansionGeneralForm.gif) + +#### Radius Of Convergence +![GIF3](gifs/file3_radiusOfConvergence.gif) + +#### Divergence of a Remainder +![GIF4](gifs/file4_DivergentRemainder.gif) -- cgit