From e92c84ba37bd991b5a7f093fbc411280568ea380 Mon Sep 17 00:00:00 2001 From: nishanpoojary Date: Tue, 26 May 2020 12:34:24 +0530 Subject: Upload scalar-functions Folder --- .../scalar-functions/file4_neural_nets.py | 177 +++++++++++++++++++++ 1 file changed, 177 insertions(+) create mode 100644 FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/file4_neural_nets.py (limited to 'FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/file4_neural_nets.py') diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/file4_neural_nets.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/file4_neural_nets.py new file mode 100644 index 0000000..eb6bf45 --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/file4_neural_nets.py @@ -0,0 +1,177 @@ +from manimlib.imports import * + +class SigmoidFunc(GraphScene): + CONFIG = { + "x_min": -4, + "x_max": 4, + "y_min": -1, + "y_max": 1, + "graph_origin": ORIGIN + 0.8*DOWN, + "x_labeled_nums": list(range(-4, 5)), + "y_labeled_nums": list(range(-1, 2)), + "y_axis_height": 4.5, + } + def construct(self): + XTD = self.x_axis_width/(self.x_max- self.x_min) + YTD = self.y_axis_height/(self.y_max- self.y_min) + + topic = TextMobject("Sigmoid Function") + topic.move_to(3.2*UP) + topic.set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE) + + self.setup_axes(animate = True) + sigmoid_func = self.get_graph(lambda x : (1/(1 + np.exp(-x))), x_min = -4, x_max = 4) + sigmoid_lab = self.get_graph_label(sigmoid_func, label = r"\frac{1}{1 + e^{-z}}") + + + + + self.play(ShowCreation(sigmoid_func),Write(sigmoid_lab)) + self.play(Write(topic)) + self.wait(2) + self.play(FadeOut(sigmoid_func), FadeOut(sigmoid_lab)) + self.wait(1) + + + +class NeuralNet(GraphScene): + def construct(self): + + sigmoid_exp = TextMobject(r"g(z) = g($\theta^T$ X) = $\frac{1}{1 + e^{-z}}$") + sigmoid_exp.move_to(3*UP + 4*LEFT) + sigmoid_exp.scale(0.8) + sigmoid_exp.set_color(BLUE) + sigmoid_exp1 = TextMobject(r"Predict: 'y = 1'",r"When g(z) $\geq$ 0.5, z $\geq$ 0, $\theta^T$ X $\geq$ 0") + sigmoid_exp2 = TextMobject(r"Predict: 'y = 0'", r"When g(z) $\leq$ 0.5, z $\leq$ 0, $\theta^T$ X $\leq$ 0") + sigmoid_exp1.scale(0.5) + sigmoid_exp2.scale(0.5) + sigmoid_exp1.set_color(PURPLE) + sigmoid_exp2.set_color(PURPLE) + + sigmoid_exp1[0].next_to(sigmoid_exp, 1.5*DOWN) + sigmoid_exp1[1].next_to(sigmoid_exp1[0], DOWN) + sigmoid_exp2[0].next_to(sigmoid_exp1[1], 1.5*DOWN) + sigmoid_exp2[1].next_to(sigmoid_exp2[0], DOWN) + + + self.play(Write(sigmoid_exp)) + self.play(Write(sigmoid_exp1[0]), Write(sigmoid_exp1[1])) + self.play(Write(sigmoid_exp2[0]), Write(sigmoid_exp2[1])) + self.wait(2) + + + neuron1 = Circle() + neuron1.set_fill(YELLOW_A, opacity = 0.5) + + neuron2 = Circle() + neuron2.set_fill(ORANGE, opacity = 0.5) + + neuron3 = Circle() + neuron3.set_fill(GREEN_E, opacity = 0.5) + + neuron1.move_to(2*UP+RIGHT) + neuron2.move_to(2*DOWN+RIGHT) + neuron3.move_to(4*RIGHT) + + arrow1 = Arrow(neuron1.get_right(),neuron3.get_left(),buff=0.1) + arrow1.set_color(RED) + arrow2 = Arrow(neuron2.get_right(),neuron3.get_left(),buff=0.1) + arrow2.set_color(RED) + + arrow3 = Arrow(neuron3.get_right(),7*RIGHT,buff=0.1) + arrow3.set_color(RED) + + + sign1 = TextMobject("+1") + sign1.move_to(2*UP+RIGHT) + sign1.scale(2) + sign2 = TextMobject(r"$x_1$") + sign2.move_to(2*DOWN+RIGHT) + sign2.scale(2) + sign3 = TextMobject(r"$h_{\theta}(x)$") + sign3.move_to(6*RIGHT+0.4*DOWN) + sign3.scale(0.7) + sign4 = TextMobject(r"$= g(10 - 20x_1)$") + sign4.next_to(sign3,DOWN) + sign4.scale(0.5) + sign5 = TextMobject(r"$= g(10 - 20x_1)$") + sign5.next_to(sign3,DOWN) + sign5.scale(0.5) + sign6 = TextMobject(r"$= g(10 - 20x_1)$") + sign6.next_to(sign3,DOWN) + sign6.scale(0.5) + + + weight1 = TextMobject("10") + weight1.next_to(arrow1,UP) + weight2 = TextMobject("-20") + weight2.next_to(arrow2,DOWN) + + gate = TextMobject("NOT GATE") + gate.set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE) + gate.scale(1.5) + gate.move_to(3*RIGHT+3.5*UP) + + + + truth_table = TextMobject(r"\begin{displaymath}\begin{array}{|c|c|} x & y\\ \hline 1 & 0 \\0 & 1 \\\end{array}\end{displaymath}") + truth_table.next_to(sigmoid_exp2[1], 3*DOWN) + + values = TextMobject("1", "0") + values.scale(2) + + sign4_trans1 = TextMobject(r"$= g(10 - 20(1))$") + sign4_trans2 = TextMobject(r"$= g(10 - 20(0))$") + sign4_trans1.next_to(sign3,DOWN) + sign4_trans2.next_to(sign3,DOWN) + sign4_trans1.scale(0.5) + sign4_trans2.scale(0.5) + + + + output1 = TextMobject("y = 0") + output2 = TextMobject("y = 1") + output1.next_to(sign4,DOWN) + output2.next_to(sign4,DOWN) + output1.scale(1.5) + output2.scale(1.5) + + + + self.play(ShowCreation(neuron1),ShowCreation(neuron2)) + self.play(ShowCreation(neuron3)) + self.play(ShowCreation(sign1),ShowCreation(sign2)) + self.wait(1) + + self.play(GrowArrow(arrow1)) + self.play(GrowArrow(arrow2)) + self.play(ShowCreation(weight1),ShowCreation(weight2)) + + + + self.play(GrowArrow(arrow3)) + self.play(Write(sign3),Write(sign4)) + + self.play(Write(gate)) + self.play(ShowCreation(truth_table)) + + self.play(ApplyMethod(values[0].move_to, 2*DOWN+RIGHT)) + self.play(FadeOut(values[0])) + self.play(Transform(sign4,sign4_trans1)) + self.play(Write(output1)) + self.wait(1) + self.play(FadeOut(output1)) + self.play(Transform(sign4, sign5)) + + + self.play(ApplyMethod(values[1].move_to, 2*DOWN+RIGHT)) + self.play(FadeOut(values[1])) + self.play(Transform(sign4,sign4_trans2)) + self.play(Write(output2)) + self.wait(1) + self.play(FadeOut(output2)) + self.play(Transform(sign4, sign6)) + + self.wait(2) + + -- cgit