From bf773aca98a71c3d2cd5ff99aac2f2e853456178 Mon Sep 17 00:00:00 2001 From: Saarth Deshpande Date: Sun, 19 Jul 2020 17:12:03 +0530 Subject: final UPLOAD --- .../file6_fs2.py | 90 ++++++++++++++++++++++ 1 file changed, 90 insertions(+) create mode 100644 FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file6_fs2.py (limited to 'FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file6_fs2.py') diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file6_fs2.py b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file6_fs2.py new file mode 100644 index 0000000..0c74685 --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file6_fs2.py @@ -0,0 +1,90 @@ +from manimlib.imports import * + +class fs2(SpecialThreeDScene): + CONFIG = { + "x_min": -2, + "x_max": 2, + "y_min": -6, + "y_max": 6, + "graph_origin": ORIGIN + } + def construct(self): + axes = ThreeDAxes() + # text = TextMobject(r'$\frac{dB}{ds} = -\tau N$ \\ $\frac{dB}{ds}$ gives the direction of N, \\ while $\tau$ gives its magnitude.').scale(0.7).shift(3*UP + 3*LEFT) + self.set_camera_orientation(phi = 75*DEGREES, theta=135*DEGREES) + # self.move_camera(distance=0) + + # rprime = np.array([2*np.cos(t), -np.sin(t) - (2*np.sin(2*t)), 0]) + # t = rprime / np.sqrt(np.dot(rprime, rprime)) + # rpp = np.array([-2*np.sin(t), -np.cos(t) - (4*np.cos(2*t)), 0]) + # n = rpp / np.dot(rpp, rpp) + # b = np.cross(rprime, rpp) + text = TextMobject(r'$\frac{dB}{ds}$', r'$= -\tau$', r'$N$').shift(2*UP + 4*LEFT) + text.set_color_by_tex_to_color_map({ + r'$\frac{dB}{ds}$': YELLOW, + r'$N$': RED_C + }) + + dot = Dot().rotate(PI/2) + alpha = ValueTracker(0) + t = alpha.get_value + figure = ParametricFunction( + lambda t: np.array([ + np.sinh(t), + np.cosh(t), + 2*t + ]), t_min = -3, t_max = 3, color=BLUE + ).scale(0.5).move_to(ORIGIN) + vector_x = self.get_tangent_vector(t()%1, figure,scale=2) + vector_y = self.get_normal_vector(t(),figure,scale=2) + vector_x.add_updater( + lambda m: m.become( + self.get_tangent_vector(t()%1,figure,scale=2) + ) + ) + vector_y.add_updater( + lambda m: m.become( + self.get_normal_vector(t(),figure,scale=2) + ) + ) + dot.add_updater(lambda m: m.move_to(vector_y.get_start())) + + + + self.add_fixed_in_frame_mobjects(text) + self.play(FadeIn(figure), FadeIn(axes), FadeIn(text)) + self.begin_ambient_camera_rotation(rate = 0.1) + self.wait(1) + self.add(vector_x, vector_y,dot) + self.play(alpha.increment_value, 0.999, run_time=20, rate_func=rush_from) + self.wait(1) + self.remove(figure, vector_x, vector_y,dot) + self.play(FadeOut(figure), FadeOut(axes), FadeOut(text)) + + def get_tangent_vector(self, proportion, curve, dx=0.001, scale=1): + t = proportion.copy() + coord_i = curve.point_from_proportion(proportion) + rprime = np.array([np.cosh(t), np.sinh(t), 2]) + T = rprime / np.sqrt(np.dot(rprime, rprime)) + rpp = np.array([np.sinh(t), np.cosh(t), 0]) + n = rpp / np.dot(rpp, rpp) + # b = (np.cross(T, n)[0] - 0.5, np.cross(T, n)[1], coord_i[2] + 1) + b = np.cross(T, n) + # coord_f = curve.point_from_proportion(proportion + dx) + coord_f = b + reference_line = Line(coord_i,coord_f) + unit_vector = reference_line.get_unit_vector() * 1 + vector = Arrow(coord_i , coord_i + unit_vector, color = YELLOW, buff=0) + return vector + + def get_normal_vector(self, proportion, curve, dx=0.001, scale=1): + coord_i = curve.point_from_proportion(proportion) + coord_f = curve.point_from_proportion(proportion + dx) + t = proportion.copy()/7 + rpp = np.array([np.sinh(t), np.cosh(t), 0]) + length = np.sqrt(np.dot(rpp, rpp)) + length = 1/(1 + np.exp(-length)) + reference_line = Line(coord_i,coord_f).rotate(PI/2).set_width(length).scale(2) + unit_vector = reference_line.get_vector() * 0.7 + vector = Arrow(coord_i, coord_i + unit_vector, color = RED_C, buff=0) + return vector -- cgit