From f516d1b082ed5e107e37e0c5a43916ca14816bef Mon Sep 17 00:00:00 2001 From: Somnath Pandit Date: Thu, 28 May 2020 10:19:46 +0530 Subject: draft submission --- .../fubini's-theorem/file2_surface2.gif | Bin 2556585 -> 3791121 bytes .../fubini's-theorem/file2_surface2.py | 16 +- .../file3.o_iteration_methods_checkpoint.gif | Bin 0 -> 465521 bytes .../file3.o_iteration_methods_checkpoint.py | 226 +++++++++++ .../fubini's-theorem/file3_iteration_methods.gif | Bin 0 -> 1762897 bytes .../fubini's-theorem/file3_iteration_methods.py | 428 +++++++++++++++++++++ .../file3_iteration_methods_checkpoint.gif | Bin 465521 -> 0 bytes .../file3_iteration_methods_checkpoint.py | 226 ----------- .../fubini's-theorem/file4_iteration_methods.gif | Bin 1762897 -> 0 bytes .../fubini's-theorem/file4_iteration_methods.py | 428 --------------------- 10 files changed, 664 insertions(+), 660 deletions(-) create mode 100644 FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file3.o_iteration_methods_checkpoint.gif create mode 100644 FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file3.o_iteration_methods_checkpoint.py create mode 100644 FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file3_iteration_methods.gif create mode 100644 FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file3_iteration_methods.py delete mode 100644 FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file3_iteration_methods_checkpoint.gif delete mode 100644 FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file3_iteration_methods_checkpoint.py delete mode 100644 FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file4_iteration_methods.gif delete mode 100644 FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file4_iteration_methods.py diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file2_surface2.gif b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file2_surface2.gif index ac13f21..37c4b1d 100644 Binary files a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file2_surface2.gif and b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file2_surface2.gif differ diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file2_surface2.py b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file2_surface2.py index c998f3b..3160fdb 100644 --- a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file2_surface2.py +++ b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file2_surface2.py @@ -63,7 +63,7 @@ class SurfacesAnimation(ThreeDScene): surface.set_style( fill_opacity=.5, fill_color=BLUE_E, - stroke_width=0.2, + stroke_width=0.4, stroke_color=WHITE, ) #get boundary curves @@ -85,17 +85,18 @@ class SurfacesAnimation(ThreeDScene): self.add(c1,c2,c1_label,c2_label) - self.begin_ambient_camera_rotation(rate=0.4) + self.begin_ambient_camera_rotation(rate=0.24) self.get_region(self.axes,c1,c2) self.play(Write(surface)) self.get_lines() - self.wait(1) + self.wait(3.5) self.stop_ambient_camera_rotation() + self.wait(.5) self.move_camera( distance=20, phi=10 * DEGREES, theta=80 * DEGREES, - run_time=2.5 + run_time=3 ) self.wait(2) @@ -128,7 +129,7 @@ class SurfacesAnimation(ThreeDScene): R=TextMobject("R").set_color(PINK).scale(2).rotate(180*DEGREES , OUT) R.move_to(region,IN+RIGHT) - self.play(Write(region)) + self.play(ShowCreation(region)) self.add(R) def get_surface(self,axes, func, **kwargs): @@ -279,8 +280,11 @@ class SurfacesAnimation(ThreeDScene): axes.z_axis.label = z_label for axis in axes: axis.add(axis.label) - return axes + return axes #uploaded by Somnath Pandit.FSF2020_Fubini's_Theorem + + + diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file3.o_iteration_methods_checkpoint.gif b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file3.o_iteration_methods_checkpoint.gif new file mode 100644 index 0000000..2e507f9 Binary files /dev/null and b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file3.o_iteration_methods_checkpoint.gif differ diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file3.o_iteration_methods_checkpoint.py b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file3.o_iteration_methods_checkpoint.py new file mode 100644 index 0000000..55f91d3 --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file3.o_iteration_methods_checkpoint.py @@ -0,0 +1,226 @@ +from manimlib.imports import * + +class IterationMethods(GraphScene): + CONFIG = { + "x_min" : 0, + "x_max" : 1, + "y_min" : 0, + "y_max" : 1, + "x_tick_frequency" : 1, + "y_tick_frequency" : 1, + "x_labeled_nums": list(np.arange(0,2)), + "y_labeled_nums": list(np.arange(0 ,2)), + "x_axis_width": 6, + "y_axis_height": 6, + "graph_origin": ORIGIN+4*LEFT+3*DOWN, + "area_color": PINK , + "area_opacity": .6, + } + + def construct(self): + X = RIGHT*self.x_axis_width/(self.x_max- self.x_min) + Y = UP*self.y_axis_height/(self.y_max- self.y_min) + + # self.intro_scene() + self.setup_axes(animate=True) + + + curve1= self.get_graph( + lambda x : x**2 , + x_min = 0, + x_max = 1, + color = ORANGE) + c1_eqn=self.get_graph_label( + curve1, + label="y=x^2", + x_val=.5, + direction=RIGHT, + buff=MED_LARGE_BUFF, + color=ORANGE, + ) + + curve2= self.get_graph( + lambda x : x , + x_min = 0, + x_max = 1, + color = YELLOW) + c2_eqn=self.get_graph_label( + curve2, + label="y=x", + x_val=.5, + direction=LEFT, + buff=MED_LARGE_BUFF, + color=YELLOW, + ) + self.curve1=curve1 + self.curve2=curve2 + + caption_y_int=TextMobject(r"Observe the limits\\ of integration").to_corner(UR) + int_lim=TextMobject( + "$$\\int_0^1$$" + ).next_to( + caption_y_int,DOWN,buff=.5 + ).align_to( + caption_y_int,LEFT + ) + + self.play(ShowCreation(VGroup(curve1,curve2)),Write(VGroup(c2_eqn,c1_eqn))) + rects=self.get_rects() + + self.play(Write(caption_y_int)) + self.show_integral_values_at_different_x() + self.wait(1) + self.add(int_lim) + self.play(FadeOut(self.brace_group)) + self.play(ApplyMethod( + self.y_int.next_to, + int_lim,RIGHT,buff=0)) + + self.play(ApplyMethod( + self.dx_label.next_to, + self.y_int,RIGHT)) + + self.show_area() + + self.wait(2) + + ################### + def intro_scene(self): + text=TextMobject(r"How different orders of \textbf{iterated integral}\\ works over the same region ?" ) + self.play(Write(text),run_time=4) + self.wait(2) + self.play(FadeOut(text)) + + + def show_area(self): + area = self.bounded_riemann_rectangles( + self.curve1, + self.curve2, + x_min = 0, + x_max = 1, + dx =.001, + start_color = self.area_color, + end_color = self.area_color, + fill_opacity = 1, + stroke_width = 0, + ) + self.play(ShowCreation(area)) + # self.transform_between_riemann_rects(self.rects,area) + self.area = area + + def get_rects(self): + rects = self.bounded_riemann_rectangles( + self.curve1, + self.curve2, + x_min = 0, + x_max = 1, + dx =.01, + start_color = self.area_color, + end_color = self.area_color, + fill_opacity =self.area_opacity, + stroke_width = 0, + ) + # self.transform_between_riemann_rects(self.area,rects) + self.rects=rects + return rects + + def show_integral_values_at_different_x(self): + rects=self.rects + rect = rects[len(rects)*1//10] + dx_brace = Brace(rect, DOWN, buff = 0) + dx_label = dx_brace.get_text("$dx$", buff = SMALL_BUFF) + dx_brace_group = VGroup(dx_brace,dx_label) + rp=int(len(rects)/10) + rects_subset = self.rects[4*rp:5*rp] + + last_rect = None + for rect in rects_subset: + brace = Brace(rect, LEFT, buff =.1) + y_int = TexMobject("\\int_{x^2}^{x}dy")#.rotate(PI/2) + y_int.next_to(brace, LEFT, MED_SMALL_BUFF) + anims = [ + rect.set_fill, self.area_color, 1, + dx_brace_group.next_to, rect, DOWN, SMALL_BUFF + ] + if last_rect is not None: + anims += [ + last_rect.set_fill, None, 0, + # last_rect.set_fill, self.area_color, self.area_opacity, + ReplacementTransform(last_brace, brace), + ReplacementTransform(last_y_int, y_int), + ] + else: + anims += [ + GrowFromCenter(brace), + Write(y_int) + ] + self.play(*anims) + # self.wait(.2) + + last_rect = rect + last_brace = brace + last_y_int = y_int + + y_int = last_y_int + y_brace = last_brace + self.brace_group=VGroup(y_brace,dx_brace,rect) + self.y_int=y_int + self.dx_label=dx_label + + + def bounded_riemann_rectangles( + self, + graph1, + graph2, + x_min=None, + x_max=None, + dx=0.01, + input_sample_type="center", + stroke_width=1, + stroke_color=BLACK, + fill_opacity=1, + start_color=None, + end_color=None, + show_signed_area=True, + width_scale_factor=1.001 + ): + x_min = x_min if x_min is not None else self.x_min + x_max = x_max if x_max is not None else self.x_max + if start_color is None: + start_color = self.default_riemann_start_color + if end_color is None: + end_color = self.default_riemann_end_color + rectangles = VGroup() + x_range = np.arange(x_min, x_max, dx) + colors = color_gradient([start_color, end_color], len(x_range)) + for x, color in zip(x_range, colors): + if input_sample_type == "left": + sample_input = x + elif input_sample_type == "right": + sample_input = x + dx + elif input_sample_type == "center": + sample_input = x + 0.5 * dx + else: + raise Exception("Invalid input sample type") + graph1_point = self.input_to_graph_point(sample_input, graph1) + graph1_point_dx= self.input_to_graph_point(sample_input + width_scale_factor * dx, graph1) + graph2_point = self.input_to_graph_point(sample_input, graph2) + + points = VGroup(*list(map(VectorizedPoint, [ + graph1_point, + graph1_point_dx, + graph2_point + ]))) + + rect = Rectangle() + rect.replace(points, stretch=True) + if graph1_point[1] < self.graph_origin[1] and show_signed_area: + fill_color = invert_color(color) + else: + fill_color = color + rect.set_fill(fill_color, opacity=fill_opacity) + rect.set_stroke(stroke_color, width=stroke_width) + rectangles.add(rect) + return rectangles + +#uploaded by Somnath Pandit.FSF2020_Fubini's_Theorem diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file3_iteration_methods.gif b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file3_iteration_methods.gif new file mode 100644 index 0000000..e73dd8e Binary files /dev/null and b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file3_iteration_methods.gif differ diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file3_iteration_methods.py b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file3_iteration_methods.py new file mode 100644 index 0000000..662242a --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file3_iteration_methods.py @@ -0,0 +1,428 @@ +from manimlib.imports import * + +class IterationMethods(GraphScene): + CONFIG = { + "x_min" : 0, + "x_max" : 1, + "y_min" : 0, + "y_max" : 1, + "x_tick_frequency" : 1, + "y_tick_frequency" : 1, + "x_labeled_nums": list(np.arange(0,2)), + "y_labeled_nums": list(np.arange(0 ,2)), + "x_axis_width": 6, + "y_axis_height": 6, + "graph_origin": ORIGIN+4.5*LEFT+3*DOWN, + "area_color": PINK , + "area_opacity": .6, + } + + def construct(self): + X = RIGHT*self.x_axis_width/(self.x_max- self.x_min) + Y = UP*self.y_axis_height/(self.y_max- self.y_min) + + self.intro_scene() + self.setup_axes(animate=True) + + + curve1= self.get_graph( + lambda x : x**2 , + x_min = 0, + x_max = 1, + color = ORANGE) + c1_eqn=self.get_graph_label( + curve1, + label="y=x^2", + x_val=.5, + direction=RIGHT, + buff=MED_LARGE_BUFF, + color=ORANGE, + ) + + curve2= self.get_graph( + lambda x : x , + x_min = 0, + x_max = 1, + color = YELLOW) + c2_eqn=self.get_graph_label( + curve2, + label="y=x", + x_val=.7, + direction=LEFT, + buff=MED_LARGE_BUFF, + color=YELLOW, + ) + self.curve1=curve1 + self.curve2=curve2 + + caption_limit=TextMobject(r"Observe the limits\\ of integration").to_corner(UR) + int_lim=TextMobject( + "$$\\int_0^1$$" + ).next_to( + caption_limit,DOWN,buff=.5 + ).align_to( + caption_limit,LEFT + ) + + self.play(ShowCreation(VGroup(curve1,curve2)),Write(VGroup(c2_eqn,c1_eqn))) + + self.play(Write(caption_limit)) + self.get_rects() + self.show_integral_values_at_different_x() + self.wait(1) + self.add(int_lim) + + self.integral_setup(int_lim,first_y=True) + + + self.another_method_scene() + self.remove(self.area) + self.wait() + + c1_eqn_y=self.get_graph_label( + curve1, + label="x=\sqrt y", + x_val=.6, + direction=RIGHT, + buff=MED_LARGE_BUFF, + color=ORANGE, + ) + c2_eqn_y=self.get_graph_label( + curve2, + label="x=y", + x_val=.7, + direction=LEFT, + buff=MED_LARGE_BUFF, + color=YELLOW, + ) + self.play( + ReplacementTransform(c1_eqn,c1_eqn_y), + ReplacementTransform(c2_eqn,c2_eqn_y) + ) + self.get_rects(base_y=True) + self.show_integral_values_at_different_y() + self.wait(1) + + int_lim_y=int_lim.copy() + int_lim_y.next_to(int_lim,DOWN) + equal=TextMobject("$$=$$").next_to(int_lim_y,LEFT) + self.add(equal,int_lim_y) + + self.integral_setup(int_lim_y,first_y=False) + + self.wait(2) + + ################### + def intro_scene(self): + text=TextMobject(r"How different orders of \textbf{iterated integral}\\ works over the same region ?" ) + self.play(Write(text),run_time=4) + self.wait(2) + self.play(FadeOut(text)) + + def another_method_scene(self): + text=TextMobject(r"The other method\\ of iteration") + text.next_to(self.curve1,UP,buff=-1) + self.play(GrowFromCenter(text)) + self.wait(2) + self.play(LaggedStart(FadeOut(text),lag_ratio=2)) + + def integral_setup(self,ref_object,first_y=True): + if first_y: + area=self.get_area() + self.area=area + self.play(FadeOut(self.brace_group)) + self.play(ApplyMethod( + self.y_int.next_to, + ref_object,RIGHT,buff=0) + ) + + self.play(ApplyMethod( + self.dx_label.next_to, + self.y_int,RIGHT), + ShowCreation(area),run_time=4 + ) + else: + area=self.get_area(base_y=True) + self.area=area + self.play( + FadeOut(self.y_brace_group), + Rotate(self.x_int,PI/2) + ) + self.play(ApplyMethod( + self.x_int.next_to, + ref_object,RIGHT,buff=0) + ) + self.play(ApplyMethod( + self.dy_label.next_to, + self.x_int,RIGHT), + ShowCreation(area),run_time=4 + ) + + def get_area(self,base_y=False): + if base_y: + area = self.bounded_riemann_rectangles_y( + lambda x: x, + lambda x: np.sqrt(x), + y_min = 0, + y_max = 1, + dy =.001, + start_color = self.area_color, + end_color = self.area_color, + fill_opacity =self.area_opacity, + stroke_width = 0, + ) + self.y_area = area + else: + area = self.bounded_riemann_rectangles( + self.curve1, + self.curve2, + x_min = 0, + x_max = 1, + dx =.001, + start_color = self.area_color, + end_color = self.area_color, + fill_opacity =self.area_opacity, + stroke_width = 0, + ) + self.area = area + + # self.transform_between_riemann_rects(self.rects,area) + return area + + def get_rects(self,base_y=False): + if base_y: + rects = self.bounded_riemann_rectangles_y( + lambda x: x, + lambda x: np.sqrt(x), + y_min = 0, + y_max = 1, + dy =.01, + start_color = self.area_color, + end_color = self.area_color, + fill_opacity =self.area_opacity, + stroke_width = 0, + ) + self.y_rects=rects + else: + rects = self.bounded_riemann_rectangles( + self.curve1, + self.curve2, + x_min = 0, + x_max = 1, + dx =.01, + start_color = self.area_color, + end_color = self.area_color, + fill_opacity =self.area_opacity, + stroke_width = 0, + ) + self.rects=rects + # self.transform_between_riemann_rects(self.area,rects) + + return rects + + def show_integral_values_at_different_x(self): + rects=self.rects + rect = rects[len(rects)*1//10] + dx_brace = Brace(rect, DOWN, buff = 0) + dx_label = dx_brace.get_text("$dx$", buff = SMALL_BUFF) + dx_brace_group = VGroup(dx_brace,dx_label) + rp=int(len(rects)/20) + rects_subset = rects[6*rp:7*rp] + + last_rect = None + for rect in rects_subset: + brace = Brace(rect, LEFT, buff =.1) + y_int = TexMobject("\\int_{x^2}^{x}dy")#.rotate(PI/2) + y_int.next_to(brace, LEFT, MED_SMALL_BUFF) + anims = [ + rect.set_fill, self.area_color, 1, + dx_brace_group.next_to, rect, DOWN, SMALL_BUFF + ] + if last_rect is not None: + anims += [ + last_rect.set_fill, None, 0, + # last_rect.set_fill, self.area_color, self.area_opacity, + ReplacementTransform(last_brace, brace), + ReplacementTransform(last_y_int, y_int), + ] + else: + anims += [ + GrowFromCenter(brace), + Write(y_int) + ] + self.play(*anims) + # self.wait(.2) + + last_rect = rect + last_brace = brace + last_y_int = y_int + + y_int = last_y_int + y_brace = last_brace + self.brace_group=VGroup(y_brace,dx_brace,rect) + self.y_int=y_int + self.dx_label=dx_label + + def show_integral_values_at_different_y(self): + rects=self.y_rects + rect = rects[len(rects)*1//10] + dy_brace = Brace(rect, LEFT, buff = 0) + dy_label = dy_brace.get_text("$dy$", buff = SMALL_BUFF) + dy_brace_group = VGroup(dy_brace,dy_label) + rp=int(len(rects)/20) + rects_subset = rects[5*rp:6*rp] + + last_rect = None + for rect in rects_subset: + brace = Brace(rect, DOWN, buff =.1) + x_int = TexMobject("\\int_{y}^{\sqrt y}dx").rotate(-PI/2) + x_int.next_to(brace, DOWN, SMALL_BUFF) + anims = [ + rect.set_fill, self.area_color, 1, + dy_brace_group.next_to, rect, LEFT, SMALL_BUFF + ] + if last_rect is not None: + anims += [ + last_rect.set_fill, None, 0, + # last_rect.set_fill, self.area_color, self.area_opacity, + ReplacementTransform(last_brace, brace), + ReplacementTransform(last_x_int, x_int), + ] + else: + anims += [ + GrowFromCenter(brace), + Write(x_int) + ] + self.play(*anims) + # self.wait(.2) + + last_rect = rect + last_brace = brace + last_x_int = x_int + + x_int = last_x_int + y_brace = last_brace + self.y_brace_group=VGroup(y_brace,dy_brace,rect) + self.x_int=x_int + self.dy_label=dy_label + + + def bounded_riemann_rectangles( + self, + graph1, + graph2, + x_min=None, + x_max=None, + dx=0.01, + input_sample_type="center", + stroke_width=1, + stroke_color=BLACK, + fill_opacity=1, + start_color=None, + end_color=None, + show_signed_area=True, + width_scale_factor=1.001 + ): + x_min = x_min if x_min is not None else self.x_min + x_max = x_max if x_max is not None else self.x_max + if start_color is None: + start_color = self.default_riemann_start_color + if end_color is None: + end_color = self.default_riemann_end_color + rectangles = VGroup() + x_range = np.arange(x_min, x_max, dx) + colors = color_gradient([start_color, end_color], len(x_range)) + for x, color in zip(x_range, colors): + if input_sample_type == "left": + sample_input = x + elif input_sample_type == "right": + sample_input = x + dx + elif input_sample_type == "center": + sample_input = x + 0.5 * dx + else: + raise Exception("Invalid input sample type") + graph1_point = self.input_to_graph_point(sample_input, graph1) + graph1_point_dx= self.input_to_graph_point(sample_input + width_scale_factor * dx, graph1) + graph2_point = self.input_to_graph_point(sample_input, graph2) + + points = VGroup(*list(map(VectorizedPoint, [ + graph1_point, + graph1_point_dx, + graph2_point + ]))) + + rect = Rectangle() + rect.replace(points, stretch=True) + if graph1_point[1] < self.graph_origin[1] and show_signed_area: + fill_color = invert_color(color) + else: + fill_color = color + rect.set_fill(fill_color, opacity=fill_opacity) + rect.set_stroke(stroke_color, width=stroke_width) + rectangles.add(rect) + return rectangles + + def bounded_riemann_rectangles_y( + self, + graph1, + graph2, + y_min=None, + y_max=None, + dy=0.01, + input_sample_type="center", + stroke_width=1, + stroke_color=BLACK, + fill_opacity=1, + start_color=None, + end_color=None, + show_signed_area=True, + width_scale_factor=1.001 + ): + y_min = y_min if y_min is not None else self.y_min + y_max = y_max if y_max is not None else self.y_max + if start_color is None: + start_color = self.default_riemann_start_color + if end_color is None: + end_color = self.default_riemann_end_color + rectangles = VGroup() + y_range = np.arange(y_min, y_max, dy) + colors = color_gradient([start_color, end_color], len(y_range)) + for y, color in zip(y_range, colors): + if input_sample_type == "left": + sample_input = y + elif input_sample_type == "right": + sample_input = y + dy + elif input_sample_type == "center": + sample_input = y + 0.5 * dy + else: + raise Exception("Invalid input sample type") + graph1_point = self.coords_to_point( + graph1(sample_input),sample_input + ) + dy_input=sample_input + width_scale_factor * dy + graph1_point_dy= self.coords_to_point( + graph1(dy_input),dy_input + ) + graph2_point = self.coords_to_point( + graph2(sample_input),sample_input + ) + + points = VGroup(*list(map(VectorizedPoint, [ + graph1_point, + graph1_point_dy, + graph2_point + ]))) + + rect = Rectangle() + rect.replace(points, stretch=True) + if graph1_point[1] < self.graph_origin[1] and show_signed_area: + fill_color = invert_color(color) + else: + fill_color = color + rect.set_fill(fill_color, opacity=fill_opacity) + rect.set_stroke(stroke_color, width=stroke_width) + rectangles.add(rect) + return rectangles + + +#uploaded by Somnath Pandit.FSF2020_Fubini's_Theorem diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file3_iteration_methods_checkpoint.gif b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file3_iteration_methods_checkpoint.gif deleted file mode 100644 index 2e507f9..0000000 Binary files a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file3_iteration_methods_checkpoint.gif and /dev/null differ diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file3_iteration_methods_checkpoint.py b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file3_iteration_methods_checkpoint.py deleted file mode 100644 index 55f91d3..0000000 --- a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file3_iteration_methods_checkpoint.py +++ /dev/null @@ -1,226 +0,0 @@ -from manimlib.imports import * - -class IterationMethods(GraphScene): - CONFIG = { - "x_min" : 0, - "x_max" : 1, - "y_min" : 0, - "y_max" : 1, - "x_tick_frequency" : 1, - "y_tick_frequency" : 1, - "x_labeled_nums": list(np.arange(0,2)), - "y_labeled_nums": list(np.arange(0 ,2)), - "x_axis_width": 6, - "y_axis_height": 6, - "graph_origin": ORIGIN+4*LEFT+3*DOWN, - "area_color": PINK , - "area_opacity": .6, - } - - def construct(self): - X = RIGHT*self.x_axis_width/(self.x_max- self.x_min) - Y = UP*self.y_axis_height/(self.y_max- self.y_min) - - # self.intro_scene() - self.setup_axes(animate=True) - - - curve1= self.get_graph( - lambda x : x**2 , - x_min = 0, - x_max = 1, - color = ORANGE) - c1_eqn=self.get_graph_label( - curve1, - label="y=x^2", - x_val=.5, - direction=RIGHT, - buff=MED_LARGE_BUFF, - color=ORANGE, - ) - - curve2= self.get_graph( - lambda x : x , - x_min = 0, - x_max = 1, - color = YELLOW) - c2_eqn=self.get_graph_label( - curve2, - label="y=x", - x_val=.5, - direction=LEFT, - buff=MED_LARGE_BUFF, - color=YELLOW, - ) - self.curve1=curve1 - self.curve2=curve2 - - caption_y_int=TextMobject(r"Observe the limits\\ of integration").to_corner(UR) - int_lim=TextMobject( - "$$\\int_0^1$$" - ).next_to( - caption_y_int,DOWN,buff=.5 - ).align_to( - caption_y_int,LEFT - ) - - self.play(ShowCreation(VGroup(curve1,curve2)),Write(VGroup(c2_eqn,c1_eqn))) - rects=self.get_rects() - - self.play(Write(caption_y_int)) - self.show_integral_values_at_different_x() - self.wait(1) - self.add(int_lim) - self.play(FadeOut(self.brace_group)) - self.play(ApplyMethod( - self.y_int.next_to, - int_lim,RIGHT,buff=0)) - - self.play(ApplyMethod( - self.dx_label.next_to, - self.y_int,RIGHT)) - - self.show_area() - - self.wait(2) - - ################### - def intro_scene(self): - text=TextMobject(r"How different orders of \textbf{iterated integral}\\ works over the same region ?" ) - self.play(Write(text),run_time=4) - self.wait(2) - self.play(FadeOut(text)) - - - def show_area(self): - area = self.bounded_riemann_rectangles( - self.curve1, - self.curve2, - x_min = 0, - x_max = 1, - dx =.001, - start_color = self.area_color, - end_color = self.area_color, - fill_opacity = 1, - stroke_width = 0, - ) - self.play(ShowCreation(area)) - # self.transform_between_riemann_rects(self.rects,area) - self.area = area - - def get_rects(self): - rects = self.bounded_riemann_rectangles( - self.curve1, - self.curve2, - x_min = 0, - x_max = 1, - dx =.01, - start_color = self.area_color, - end_color = self.area_color, - fill_opacity =self.area_opacity, - stroke_width = 0, - ) - # self.transform_between_riemann_rects(self.area,rects) - self.rects=rects - return rects - - def show_integral_values_at_different_x(self): - rects=self.rects - rect = rects[len(rects)*1//10] - dx_brace = Brace(rect, DOWN, buff = 0) - dx_label = dx_brace.get_text("$dx$", buff = SMALL_BUFF) - dx_brace_group = VGroup(dx_brace,dx_label) - rp=int(len(rects)/10) - rects_subset = self.rects[4*rp:5*rp] - - last_rect = None - for rect in rects_subset: - brace = Brace(rect, LEFT, buff =.1) - y_int = TexMobject("\\int_{x^2}^{x}dy")#.rotate(PI/2) - y_int.next_to(brace, LEFT, MED_SMALL_BUFF) - anims = [ - rect.set_fill, self.area_color, 1, - dx_brace_group.next_to, rect, DOWN, SMALL_BUFF - ] - if last_rect is not None: - anims += [ - last_rect.set_fill, None, 0, - # last_rect.set_fill, self.area_color, self.area_opacity, - ReplacementTransform(last_brace, brace), - ReplacementTransform(last_y_int, y_int), - ] - else: - anims += [ - GrowFromCenter(brace), - Write(y_int) - ] - self.play(*anims) - # self.wait(.2) - - last_rect = rect - last_brace = brace - last_y_int = y_int - - y_int = last_y_int - y_brace = last_brace - self.brace_group=VGroup(y_brace,dx_brace,rect) - self.y_int=y_int - self.dx_label=dx_label - - - def bounded_riemann_rectangles( - self, - graph1, - graph2, - x_min=None, - x_max=None, - dx=0.01, - input_sample_type="center", - stroke_width=1, - stroke_color=BLACK, - fill_opacity=1, - start_color=None, - end_color=None, - show_signed_area=True, - width_scale_factor=1.001 - ): - x_min = x_min if x_min is not None else self.x_min - x_max = x_max if x_max is not None else self.x_max - if start_color is None: - start_color = self.default_riemann_start_color - if end_color is None: - end_color = self.default_riemann_end_color - rectangles = VGroup() - x_range = np.arange(x_min, x_max, dx) - colors = color_gradient([start_color, end_color], len(x_range)) - for x, color in zip(x_range, colors): - if input_sample_type == "left": - sample_input = x - elif input_sample_type == "right": - sample_input = x + dx - elif input_sample_type == "center": - sample_input = x + 0.5 * dx - else: - raise Exception("Invalid input sample type") - graph1_point = self.input_to_graph_point(sample_input, graph1) - graph1_point_dx= self.input_to_graph_point(sample_input + width_scale_factor * dx, graph1) - graph2_point = self.input_to_graph_point(sample_input, graph2) - - points = VGroup(*list(map(VectorizedPoint, [ - graph1_point, - graph1_point_dx, - graph2_point - ]))) - - rect = Rectangle() - rect.replace(points, stretch=True) - if graph1_point[1] < self.graph_origin[1] and show_signed_area: - fill_color = invert_color(color) - else: - fill_color = color - rect.set_fill(fill_color, opacity=fill_opacity) - rect.set_stroke(stroke_color, width=stroke_width) - rectangles.add(rect) - return rectangles - -#uploaded by Somnath Pandit.FSF2020_Fubini's_Theorem diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file4_iteration_methods.gif b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file4_iteration_methods.gif deleted file mode 100644 index e73dd8e..0000000 Binary files a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file4_iteration_methods.gif and /dev/null differ diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file4_iteration_methods.py b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file4_iteration_methods.py deleted file mode 100644 index 662242a..0000000 --- a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file4_iteration_methods.py +++ /dev/null @@ -1,428 +0,0 @@ -from manimlib.imports import * - -class IterationMethods(GraphScene): - CONFIG = { - "x_min" : 0, - "x_max" : 1, - "y_min" : 0, - "y_max" : 1, - "x_tick_frequency" : 1, - "y_tick_frequency" : 1, - "x_labeled_nums": list(np.arange(0,2)), - "y_labeled_nums": list(np.arange(0 ,2)), - "x_axis_width": 6, - "y_axis_height": 6, - "graph_origin": ORIGIN+4.5*LEFT+3*DOWN, - "area_color": PINK , - "area_opacity": .6, - } - - def construct(self): - X = RIGHT*self.x_axis_width/(self.x_max- self.x_min) - Y = UP*self.y_axis_height/(self.y_max- self.y_min) - - self.intro_scene() - self.setup_axes(animate=True) - - - curve1= self.get_graph( - lambda x : x**2 , - x_min = 0, - x_max = 1, - color = ORANGE) - c1_eqn=self.get_graph_label( - curve1, - label="y=x^2", - x_val=.5, - direction=RIGHT, - buff=MED_LARGE_BUFF, - color=ORANGE, - ) - - curve2= self.get_graph( - lambda x : x , - x_min = 0, - x_max = 1, - color = YELLOW) - c2_eqn=self.get_graph_label( - curve2, - label="y=x", - x_val=.7, - direction=LEFT, - buff=MED_LARGE_BUFF, - color=YELLOW, - ) - self.curve1=curve1 - self.curve2=curve2 - - caption_limit=TextMobject(r"Observe the limits\\ of integration").to_corner(UR) - int_lim=TextMobject( - "$$\\int_0^1$$" - ).next_to( - caption_limit,DOWN,buff=.5 - ).align_to( - caption_limit,LEFT - ) - - self.play(ShowCreation(VGroup(curve1,curve2)),Write(VGroup(c2_eqn,c1_eqn))) - - self.play(Write(caption_limit)) - self.get_rects() - self.show_integral_values_at_different_x() - self.wait(1) - self.add(int_lim) - - self.integral_setup(int_lim,first_y=True) - - - self.another_method_scene() - self.remove(self.area) - self.wait() - - c1_eqn_y=self.get_graph_label( - curve1, - label="x=\sqrt y", - x_val=.6, - direction=RIGHT, - buff=MED_LARGE_BUFF, - color=ORANGE, - ) - c2_eqn_y=self.get_graph_label( - curve2, - label="x=y", - x_val=.7, - direction=LEFT, - buff=MED_LARGE_BUFF, - color=YELLOW, - ) - self.play( - ReplacementTransform(c1_eqn,c1_eqn_y), - ReplacementTransform(c2_eqn,c2_eqn_y) - ) - self.get_rects(base_y=True) - self.show_integral_values_at_different_y() - self.wait(1) - - int_lim_y=int_lim.copy() - int_lim_y.next_to(int_lim,DOWN) - equal=TextMobject("$$=$$").next_to(int_lim_y,LEFT) - self.add(equal,int_lim_y) - - self.integral_setup(int_lim_y,first_y=False) - - self.wait(2) - - ################### - def intro_scene(self): - text=TextMobject(r"How different orders of \textbf{iterated integral}\\ works over the same region ?" ) - self.play(Write(text),run_time=4) - self.wait(2) - self.play(FadeOut(text)) - - def another_method_scene(self): - text=TextMobject(r"The other method\\ of iteration") - text.next_to(self.curve1,UP,buff=-1) - self.play(GrowFromCenter(text)) - self.wait(2) - self.play(LaggedStart(FadeOut(text),lag_ratio=2)) - - def integral_setup(self,ref_object,first_y=True): - if first_y: - area=self.get_area() - self.area=area - self.play(FadeOut(self.brace_group)) - self.play(ApplyMethod( - self.y_int.next_to, - ref_object,RIGHT,buff=0) - ) - - self.play(ApplyMethod( - self.dx_label.next_to, - self.y_int,RIGHT), - ShowCreation(area),run_time=4 - ) - else: - area=self.get_area(base_y=True) - self.area=area - self.play( - FadeOut(self.y_brace_group), - Rotate(self.x_int,PI/2) - ) - self.play(ApplyMethod( - self.x_int.next_to, - ref_object,RIGHT,buff=0) - ) - self.play(ApplyMethod( - self.dy_label.next_to, - self.x_int,RIGHT), - ShowCreation(area),run_time=4 - ) - - def get_area(self,base_y=False): - if base_y: - area = self.bounded_riemann_rectangles_y( - lambda x: x, - lambda x: np.sqrt(x), - y_min = 0, - y_max = 1, - dy =.001, - start_color = self.area_color, - end_color = self.area_color, - fill_opacity =self.area_opacity, - stroke_width = 0, - ) - self.y_area = area - else: - area = self.bounded_riemann_rectangles( - self.curve1, - self.curve2, - x_min = 0, - x_max = 1, - dx =.001, - start_color = self.area_color, - end_color = self.area_color, - fill_opacity =self.area_opacity, - stroke_width = 0, - ) - self.area = area - - # self.transform_between_riemann_rects(self.rects,area) - return area - - def get_rects(self,base_y=False): - if base_y: - rects = self.bounded_riemann_rectangles_y( - lambda x: x, - lambda x: np.sqrt(x), - y_min = 0, - y_max = 1, - dy =.01, - start_color = self.area_color, - end_color = self.area_color, - fill_opacity =self.area_opacity, - stroke_width = 0, - ) - self.y_rects=rects - else: - rects = self.bounded_riemann_rectangles( - self.curve1, - self.curve2, - x_min = 0, - x_max = 1, - dx =.01, - start_color = self.area_color, - end_color = self.area_color, - fill_opacity =self.area_opacity, - stroke_width = 0, - ) - self.rects=rects - # self.transform_between_riemann_rects(self.area,rects) - - return rects - - def show_integral_values_at_different_x(self): - rects=self.rects - rect = rects[len(rects)*1//10] - dx_brace = Brace(rect, DOWN, buff = 0) - dx_label = dx_brace.get_text("$dx$", buff = SMALL_BUFF) - dx_brace_group = VGroup(dx_brace,dx_label) - rp=int(len(rects)/20) - rects_subset = rects[6*rp:7*rp] - - last_rect = None - for rect in rects_subset: - brace = Brace(rect, LEFT, buff =.1) - y_int = TexMobject("\\int_{x^2}^{x}dy")#.rotate(PI/2) - y_int.next_to(brace, LEFT, MED_SMALL_BUFF) - anims = [ - rect.set_fill, self.area_color, 1, - dx_brace_group.next_to, rect, DOWN, SMALL_BUFF - ] - if last_rect is not None: - anims += [ - last_rect.set_fill, None, 0, - # last_rect.set_fill, self.area_color, self.area_opacity, - ReplacementTransform(last_brace, brace), - ReplacementTransform(last_y_int, y_int), - ] - else: - anims += [ - GrowFromCenter(brace), - Write(y_int) - ] - self.play(*anims) - # self.wait(.2) - - last_rect = rect - last_brace = brace - last_y_int = y_int - - y_int = last_y_int - y_brace = last_brace - self.brace_group=VGroup(y_brace,dx_brace,rect) - self.y_int=y_int - self.dx_label=dx_label - - def show_integral_values_at_different_y(self): - rects=self.y_rects - rect = rects[len(rects)*1//10] - dy_brace = Brace(rect, LEFT, buff = 0) - dy_label = dy_brace.get_text("$dy$", buff = SMALL_BUFF) - dy_brace_group = VGroup(dy_brace,dy_label) - rp=int(len(rects)/20) - rects_subset = rects[5*rp:6*rp] - - last_rect = None - for rect in rects_subset: - brace = Brace(rect, DOWN, buff =.1) - x_int = TexMobject("\\int_{y}^{\sqrt y}dx").rotate(-PI/2) - x_int.next_to(brace, DOWN, SMALL_BUFF) - anims = [ - rect.set_fill, self.area_color, 1, - dy_brace_group.next_to, rect, LEFT, SMALL_BUFF - ] - if last_rect is not None: - anims += [ - last_rect.set_fill, None, 0, - # last_rect.set_fill, self.area_color, self.area_opacity, - ReplacementTransform(last_brace, brace), - ReplacementTransform(last_x_int, x_int), - ] - else: - anims += [ - GrowFromCenter(brace), - Write(x_int) - ] - self.play(*anims) - # self.wait(.2) - - last_rect = rect - last_brace = brace - last_x_int = x_int - - x_int = last_x_int - y_brace = last_brace - self.y_brace_group=VGroup(y_brace,dy_brace,rect) - self.x_int=x_int - self.dy_label=dy_label - - - def bounded_riemann_rectangles( - self, - graph1, - graph2, - x_min=None, - x_max=None, - dx=0.01, - input_sample_type="center", - stroke_width=1, - stroke_color=BLACK, - fill_opacity=1, - start_color=None, - end_color=None, - show_signed_area=True, - width_scale_factor=1.001 - ): - x_min = x_min if x_min is not None else self.x_min - x_max = x_max if x_max is not None else self.x_max - if start_color is None: - start_color = self.default_riemann_start_color - if end_color is None: - end_color = self.default_riemann_end_color - rectangles = VGroup() - x_range = np.arange(x_min, x_max, dx) - colors = color_gradient([start_color, end_color], len(x_range)) - for x, color in zip(x_range, colors): - if input_sample_type == "left": - sample_input = x - elif input_sample_type == "right": - sample_input = x + dx - elif input_sample_type == "center": - sample_input = x + 0.5 * dx - else: - raise Exception("Invalid input sample type") - graph1_point = self.input_to_graph_point(sample_input, graph1) - graph1_point_dx= self.input_to_graph_point(sample_input + width_scale_factor * dx, graph1) - graph2_point = self.input_to_graph_point(sample_input, graph2) - - points = VGroup(*list(map(VectorizedPoint, [ - graph1_point, - graph1_point_dx, - graph2_point - ]))) - - rect = Rectangle() - rect.replace(points, stretch=True) - if graph1_point[1] < self.graph_origin[1] and show_signed_area: - fill_color = invert_color(color) - else: - fill_color = color - rect.set_fill(fill_color, opacity=fill_opacity) - rect.set_stroke(stroke_color, width=stroke_width) - rectangles.add(rect) - return rectangles - - def bounded_riemann_rectangles_y( - self, - graph1, - graph2, - y_min=None, - y_max=None, - dy=0.01, - input_sample_type="center", - stroke_width=1, - stroke_color=BLACK, - fill_opacity=1, - start_color=None, - end_color=None, - show_signed_area=True, - width_scale_factor=1.001 - ): - y_min = y_min if y_min is not None else self.y_min - y_max = y_max if y_max is not None else self.y_max - if start_color is None: - start_color = self.default_riemann_start_color - if end_color is None: - end_color = self.default_riemann_end_color - rectangles = VGroup() - y_range = np.arange(y_min, y_max, dy) - colors = color_gradient([start_color, end_color], len(y_range)) - for y, color in zip(y_range, colors): - if input_sample_type == "left": - sample_input = y - elif input_sample_type == "right": - sample_input = y + dy - elif input_sample_type == "center": - sample_input = y + 0.5 * dy - else: - raise Exception("Invalid input sample type") - graph1_point = self.coords_to_point( - graph1(sample_input),sample_input - ) - dy_input=sample_input + width_scale_factor * dy - graph1_point_dy= self.coords_to_point( - graph1(dy_input),dy_input - ) - graph2_point = self.coords_to_point( - graph2(sample_input),sample_input - ) - - points = VGroup(*list(map(VectorizedPoint, [ - graph1_point, - graph1_point_dy, - graph2_point - ]))) - - rect = Rectangle() - rect.replace(points, stretch=True) - if graph1_point[1] < self.graph_origin[1] and show_signed_area: - fill_color = invert_color(color) - else: - fill_color = color - rect.set_fill(fill_color, opacity=fill_opacity) - rect.set_stroke(stroke_color, width=stroke_width) - rectangles.add(rect) - return rectangles - - -#uploaded by Somnath Pandit.FSF2020_Fubini's_Theorem -- cgit