summaryrefslogtreecommitdiff
path: root/FSF-2020
diff options
context:
space:
mode:
Diffstat (limited to 'FSF-2020')
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical_Points_mcq_questions.pdfbin0 -> 414750 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/README.md (renamed from FSF-2020/approximations-and-optimizations/README.md)0
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The_Second_Derivative_Test_MCQ.pdfbin0 -> 646880 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/div-curl-grad-and-all-that/README.md (renamed from FSF-2020/div-curl-grad-and-all-that/README.md)0
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/README.md (renamed from FSF-2020/geometry-of-planes-and-curves/README.md)0
-rw-r--r--FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/README.md1
-rw-r--r--FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/YlimitXdependent.gifbin0 -> 1170435 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/area_under_func.py73
-rw-r--r--FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/elementary_area.py144
-rw-r--r--FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/non_rect_region.py154
-rw-r--r--FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/surface.py236
-rw-r--r--FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/y_limit_dependent_on_x.py113
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/README.md (renamed from FSF-2020/integrals-of-multivariable-functions/README.md)0
-rw-r--r--FSF-2020/calculus-of-several-variables/triple-and-surface-integrals/README.md (renamed from FSF-2020/intro-to-calculus/README.md)0
-rw-r--r--FSF-2020/calculus/intro-to-calculus/README.md (renamed from FSF-2020/linear-transformations/README.md)0
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/PowerSeriesQuestions.pdfbin0 -> 112622 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/script1.py128
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/script2.py94
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/script3.py156
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/script4.py108
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/script5.py136
-rw-r--r--FSF-2020/calculus/series-and-transformations/README.md13
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdfbin0 -> 119804 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/script1.py198
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/script2.py195
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/script3.py111
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/script4.py82
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Linear Transformations (Linear Maps)/Animation.py (renamed from FSF-2020/multivariable-functions-and-paritial-derivatives/README.md)0
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/README.md9
-rw-r--r--FSF-2020/linear-algebra/vector-spaces/README.md (renamed from FSF-2020/series-and-transformations/README.md)0
-rw-r--r--FSF-2020/triple-and-surface-integrals/README.md0
-rw-r--r--FSF-2020/vector-spaces/README.md0
32 files changed, 1951 insertions, 0 deletions
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical_Points_mcq_questions.pdf b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical_Points_mcq_questions.pdf
new file mode 100644
index 0000000..25c4e4d
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical_Points_mcq_questions.pdf
Binary files differ
diff --git a/FSF-2020/approximations-and-optimizations/README.md b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/README.md
index f56f4e8..f56f4e8 100644
--- a/FSF-2020/approximations-and-optimizations/README.md
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/README.md
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The_Second_Derivative_Test_MCQ.pdf b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The_Second_Derivative_Test_MCQ.pdf
new file mode 100644
index 0000000..ca60cbf
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The_Second_Derivative_Test_MCQ.pdf
Binary files differ
diff --git a/FSF-2020/div-curl-grad-and-all-that/README.md b/FSF-2020/calculus-of-several-variables/div-curl-grad-and-all-that/README.md
index e69de29..e69de29 100644
--- a/FSF-2020/div-curl-grad-and-all-that/README.md
+++ b/FSF-2020/calculus-of-several-variables/div-curl-grad-and-all-that/README.md
diff --git a/FSF-2020/geometry-of-planes-and-curves/README.md b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/README.md
index e69de29..e69de29 100644
--- a/FSF-2020/geometry-of-planes-and-curves/README.md
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/README.md
diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/README.md b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/README.md
new file mode 100644
index 0000000..a321caf
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/README.md
@@ -0,0 +1 @@
+FSF2020--Somnath Pandit
diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/YlimitXdependent.gif b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/YlimitXdependent.gif
new file mode 100644
index 0000000..a2bfd9d
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/YlimitXdependent.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/area_under_func.py b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/area_under_func.py
new file mode 100644
index 0000000..773840c
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/area_under_func.py
@@ -0,0 +1,73 @@
+from manimlib.imports import *
+
+
+class AreaUnderIntegral(GraphScene):
+ CONFIG = {
+ "x_min" : 0,
+ "x_max" : 5,
+ "y_min" : 0,
+ "y_max" : 6,
+ "Func":lambda x : 1+x**2*np.exp(-.15*x**2)
+ }
+
+ def construct(self):
+ X = RIGHT*self.x_axis_width/(self.x_max- self.x_min)
+ Y = UP*self.y_axis_height/(self.y_max- self.y_min)
+
+ int_area_sym=TextMobject("$$\int_{a}^b f(x)dx$$").shift(2*UP)
+ area_mean_text = TextMobject(r"means area under the curve of $f(x)$ \\ in the region $a\leq x\leq b$").next_to(int_area_sym,DOWN)
+
+ opening_text=VGroup(*[int_area_sym,area_mean_text])
+ self.play(Write(opening_text),run_time=4)
+ self.wait(2)
+ self.play(FadeOut(opening_text))
+
+ self.setup_axes(animate=True)
+ func= self.get_graph(self.Func, x_min=0,x_max=5)
+ self.curve=func
+
+ func_text = TextMobject(r"$y = f(x)$").next_to(func,UP)
+ min_lim = self.get_vertical_line_to_graph(1,func,DashedLine,color=YELLOW)
+ tick_a=TextMobject(r"$a$").next_to(min_lim,DOWN)
+ max_lim = self.get_vertical_line_to_graph(4,func,DashedLine,color=YELLOW)
+ tick_b=TextMobject(r"$b$").next_to(max_lim,DOWN)
+
+ # area = self.get_area(func,1,4)
+
+ self.play(ShowCreation(func), ShowCreation(func_text))
+
+ self.wait(2)
+ self.play(ShowCreation(min_lim),Write(tick_a), ShowCreation(max_lim),Write(tick_b),run_time=0.5)
+
+
+ approx_text=TextMobject(r"The area can be approximated as \\ sum of small rectangles").next_to(func,4*Y)
+ self.play(Write(approx_text))
+
+ rect_list = self.get_riemann_rectangles_list(
+ self.curve, 5,
+ max_dx = 0.25,
+ x_min = 1,
+ x_max = 4,
+ )
+ flat_graph = self.get_graph(lambda t : 0)
+ rects = self.get_riemann_rectangles( flat_graph, x_min = 1, x_max = 4, dx = 0.5)
+ for new_rects in rect_list:
+ new_rects.set_fill(opacity = 0.8)
+ rects.align_submobjects(new_rects)
+ for alt_rect in rects[::2]:
+ alt_rect.set_fill(opacity = 0)
+ self.play(Transform(
+ rects, new_rects,
+ run_time = 1.5,
+ lag_ratio = 0.5
+ ))
+ conclude_text=TextMobject(r"Making the rectangles infinitesimally thin \\ we get the real area under the curve.").next_to(func,4*Y)
+ self.play(Transform(approx_text,conclude_text))
+ self.wait(3)
+ int_area_sym.next_to(self.curve,IN)
+ self.play(Transform(conclude_text,int_area_sym))
+
+ # self.play(ShowCreation(area))
+ self.wait(3)
+
+#uploaded by Somnath Pandit.FSF2020_Double_Integral
diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/elementary_area.py b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/elementary_area.py
new file mode 100644
index 0000000..362b6f8
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/elementary_area.py
@@ -0,0 +1,144 @@
+from manimlib.imports import *
+
+class ElementaryArea(GraphScene):
+ CONFIG = {
+ "x_min" : 0,
+ "x_max" : 2,
+ "y_min" : 0,
+ "y_max" : 2,
+ "x_tick_frequency" : 1,
+ "y_tick_frequency" : 1,
+ # "x_labeled_nums": list(np.arange(0,3)),
+ # "y_labeled_nums": list(np.arange(0 ,3)),
+ "x_axis_width": 6,
+ "y_axis_height": 6,
+ "graph_origin": ORIGIN+3.5*LEFT+3.5*DOWN,
+ }
+
+ def construct(self):
+ X = self.x_axis_width/(self.x_max- self.x_min)
+ Y = self.y_axis_height/(self.y_max- self.y_min)
+ self.X=X ;self.Y=Y
+ self.setup_axes(animate=False)
+
+ caption=TextMobject("The elementary area in ").to_edge(UP)
+ rect_text=TextMobject("Cartesian Coordinates").next_to(caption,DOWN,)
+ polar_text=TextMobject("Polar Coordinates").next_to(caption,DOWN,)
+
+ self.add(caption)
+ self.play(Write(rect_text))
+ self.get_rect_element()
+ # self.play(Write(polar_text))
+ self.play(ReplacementTransform(rect_text,polar_text),
+ FadeOut(VGroup(self.dydx,self.rect_brace_gr)))
+ self.get_polar_element()
+
+
+
+ def get_rect_element(self):
+ rect=Rectangle(
+ height=2, width=3,fill_color=BLUE_D,
+ fill_opacity=1, color=BLUE_D
+ ).scale(.75).move_to(
+ self.graph_origin+(RIGHT*self.X+UP*self.Y)
+ )
+ dx_brace=Brace(rect, DOWN, buff = SMALL_BUFF)
+ dx_label=dx_brace.get_text("$dx$", buff = SMALL_BUFF)
+ dx_brace_gr=VGroup(dx_brace,dx_label)
+
+ dy_brace=Brace(rect,RIGHT, buff = SMALL_BUFF)
+ dy_label=dy_brace.get_text("$dy$", buff = SMALL_BUFF)
+ dy_brace_gr=VGroup(dy_brace,dy_label)
+
+ brace_gr=VGroup(dx_brace_gr,dy_brace_gr)
+
+ dydx=TextMobject("$dxdy$",color=BLACK).next_to(rect,IN)
+
+ self.play(FadeIn(rect))
+ self.play(GrowFromCenter(brace_gr))
+ self.play(GrowFromCenter(dydx))
+
+ self.rect=rect
+ self.rect_brace_gr=brace_gr
+ self.dydx=dydx
+ self.wait(2)
+
+
+ def get_polar_element(self):
+ X=self.X ;Y=self.Y
+ theta1=25*DEGREES
+ dtheta=TAU/12
+ r_in=1.3*X ; r_out=1.9*X
+
+ arc=AnnularSector(
+ arc_center=self.graph_origin,
+ inner_radius=r_in,
+ outer_radius=r_out ,
+ angle= dtheta,
+ start_angle= theta1,
+ fill_opacity= 1,
+ stroke_width= 0,
+ color= BLUE_D,
+ )
+
+
+ # # #getting braces
+ r_in_theta1=self.graph_origin+r_in*(np.cos(theta1)*RIGHT+np.sin(theta1)*UP)
+ dr_line=Line(r_in_theta1,r_in_theta1+RIGHT*(r_out-r_in))
+ dr_brace=Brace(dr_line, DOWN, buff = SMALL_BUFF
+ ).rotate(theta1, about_point=r_in_theta1
+ )
+ dr_label=dr_brace.get_text("$dr$", buff = SMALL_BUFF)
+ dr_brace_gr=VGroup(dr_brace,dr_label)
+
+ theta2=theta1+dtheta
+ r_out_theta2=self.graph_origin+r_out*(
+ np.cos(theta2)*RIGHT+np.sin(theta2)*UP
+ )
+ rdt_line=Line(r_out_theta2,r_out_theta2
+ +DOWN*(r_out*dtheta)
+ )
+ rdt_brace=Brace(rdt_line, RIGHT,
+ buff = MED_SMALL_BUFF).rotate(
+ theta2-(dtheta/2), about_point=r_out_theta2
+ )
+ rdt_label=rdt_brace.get_text("$rd\\theta$",buff = SMALL_BUFF)
+ rdt_brace_gr=VGroup(rdt_brace,rdt_label)
+
+ #getting label r and dtheta
+ r1=DashedLine(self.graph_origin,r_in_theta1).set_color(RED)
+ r2=DashedLine(self.graph_origin,r_out_theta2).set_color(RED)
+ r_brace=Brace(r1, DOWN, buff = SMALL_BUFF).rotate(theta1, about_point=self.graph_origin)
+ r_label=r_brace.get_text("$r$", buff = SMALL_BUFF)
+ r_brace_gr=VGroup(r_brace,r_label)
+
+ dtheta_arc=Arc(
+ arc_center=self.graph_origin,
+ radius=.5*X,
+ angle= dtheta,
+ start_angle= theta1,
+ )
+ dtheta_arc_label=TextMobject("$d\\theta$").move_to(.99*dtheta_arc.get_corner(UR))
+ dtheta_label=VGroup(dtheta_arc,dtheta_arc_label)
+
+
+ rdrdt=TextMobject("$rdrd\\theta$",color=BLACK).next_to(arc,IN)
+ self.play(ReplacementTransform(self.rect,arc))
+ self.wait()
+ self.play(ShowCreation(r1),
+ ShowCreation(r2)
+ )
+ self.play(ShowCreation(r_brace_gr),
+ Write(dtheta_label)
+ )
+ self.wait()
+ self.play(GrowFromCenter(rdt_brace_gr))
+ self.wait(.5)
+ self.play(GrowFromCenter(dr_brace_gr))
+ self.wait(.5)
+ self.play(GrowFromCenter(rdrdt))
+
+ self.wait(2)
+
+
+ #uploaded by Somnath Pandit.FSF2020_Double_Integral
diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/non_rect_region.py b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/non_rect_region.py
new file mode 100644
index 0000000..793a000
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/non_rect_region.py
@@ -0,0 +1,154 @@
+from manimlib.imports import *
+
+class AreaUnderCurve(GraphScene):
+ CONFIG = {
+ "x_min" : -1,
+ "x_max" : 8,
+ "y_min" : -1,
+ "y_max" : 5,
+ "y_axis_label": "$y$",
+ "x_tick_frequency" : 1,
+ "y_tick_frequency" : 1,
+ "x_labeled_nums": list(np.arange(-1, 9)),
+ "y_labeled_nums": list(np.arange(-1, 6)),
+ "y_axis_height":5.5,
+ "graph_origin": ORIGIN+4*LEFT+2.5*DOWN,
+ }
+
+ def construct(self):
+ X = RIGHT*self.x_axis_width/(self.x_max- self.x_min)
+ Y = UP*self.y_axis_height/(self.y_max- self.y_min)
+
+ sofar_text=TextMobject(r"So far we have integrated over \\ rectangular regions")
+ self.play(Write(sofar_text))
+ self.play(sofar_text.to_edge,UP)
+
+ self.setup_axes(animate=False)
+
+ rect= self.get_graph(
+ lambda x : 3,
+ x_min = 0,
+ x_max = 5,
+ color = GREEN)
+
+ rect_region = self.get_riemann_rectangles(
+ rect,
+ x_min = 0,
+ x_max = 5,
+ dx =.01,
+ start_color = GREEN,
+ end_color = GREEN,
+ fill_opacity = 0.75,
+ stroke_width = 0,
+ )
+
+ self.play(ShowCreation(rect_region))
+ self.wait(.5)
+
+ rect_int=TextMobject(r"Here the integration limits are set as").to_edge(UP)
+ rect_lim=TextMobject(r"$$\int_{x=0}^{5}\int_{y=0}^{3}$$").next_to(rect_int,DOWN)
+ const_text=TextMobject(r"$\longleftarrow $ \textsf the limits are\\ constant values").next_to(rect_lim,RIGHT)
+
+ self.play(ReplacementTransform(sofar_text,rect_int))
+ self.wait(1.5)
+ self.play(FadeIn(rect_lim))
+ self.wait(2)
+ self.play(Write(const_text))
+ self.wait(2)
+ self.play(FadeOut(rect_int), FadeOut(rect_lim),FadeOut(const_text))
+
+
+ non_rect_text=TextMobject(r"Now we see how to integrate over \\ non-rectangular regions")
+ non_rect_text.to_edge(UP)
+ self.play(Write(non_rect_text))
+ self.wait(1.5)
+ self.play(FadeOut(rect_region))
+
+ c1= self.get_graph(
+ lambda x : x**2/4,
+ x_min = 0,
+ x_max = 4,
+ color = RED)
+
+ c1_region = self.get_riemann_rectangles(
+ c1,
+ x_min = 0,
+ x_max = 4,
+ dx =.01,
+ start_color = BLUE,
+ end_color = BLUE,
+ fill_opacity = 0.75,
+ stroke_width = 0,
+ )
+ self.add(c1,c1_region)
+ # self.wait(2)
+
+ c2= self.get_graph(
+ lambda x :12-2*x,
+ x_min = 4,
+ x_max = 6,
+ color = RED)
+
+ c2_region = self.get_riemann_rectangles(
+ c2,
+ x_min = 4,
+ x_max = 6,
+ dx =.01,
+ start_color = BLUE,
+ end_color = BLUE,
+ fill_opacity = .75,
+ stroke_width = 0,
+ )
+ self.add(c2_region,c2)
+ self.wait(1.5)
+ c=VGroup(*[c1,c2])
+
+ no_func_text=TextMobject(r"The whole region can't be expressed as\\ bounded by a single $f(x)$").next_to(c2,UP,buff=LARGE_BUFF)
+
+ self.play(ReplacementTransform(non_rect_text,no_func_text))
+ self.wait(1)
+ self.play(Indicate(c))
+ self.wait(2)
+
+ div_region_text=TextMobject(r"So the region is divided into two").next_to(c2,UP,buff=MED_LARGE_BUFF)
+ self.play(ReplacementTransform(no_func_text,div_region_text))
+
+ c2.set_color(YELLOW)
+ self.play(c2_region.set_color,YELLOW)
+ c1_text=TextMobject("$\dfrac{x^2}{4}$").next_to(c1,IN)
+ c2_text=TextMobject("$12-2x$").next_to(c2,IN+2*X)
+ c_text=VGroup(*[c1_text,c2_text])
+
+ self.play(FadeIn(c_text))
+ self.wait(.4)
+ self.play(Indicate(c1),Indicate(c1_text))
+ self.play(Indicate(c2),Indicate(c2_text))
+
+ easy_text=TextMobject(r"Now the limis can be set easily").next_to(c2,UP,buff=.5)
+ self.play(ReplacementTransform(div_region_text,easy_text))
+
+ c1_int=TextMobject(r"$$\int_{x=0}^{4}\int_{y=0}^{\dfrac{x^2}{4}}$$").next_to(c1,IN).shift(.5*(-X+1.3*Y))
+ c2_int=TextMobject(r"$$\int_{x=4}^{6}\int_{y=0}^{12-2x}$$").next_to(c2,IN+X)
+
+ self.play(ReplacementTransform(c1_text,c1_int),ReplacementTransform(c2_text,c2_int))
+ self.wait(2)
+
+ total_int=TextMobject(r"The total integraton= ").to_edge(UP)
+ plus=TextMobject("$$+$$").move_to(self.graph_origin+4*X+4.8*Y)
+ self.play(ReplacementTransform(easy_text,total_int))
+ self.play(c2_region.set_color,BLUE)
+ self.play(c1_int.next_to,c1,.1*UP, c2_int.next_to,plus,RIGHT, FadeIn(plus))
+
+ region=VGroup(*[c1_region,c2_region])
+ region.set_color(GREEN)
+ self.play(ShowCreation(region))
+ self.wait(3)
+
+
+
+#uploaded by Somnath Pandit.FSF2020_Double_Integral
+
+
+
+
+
diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/surface.py b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/surface.py
new file mode 100644
index 0000000..a794f46
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/surface.py
@@ -0,0 +1,236 @@
+from manimlib.imports import *
+
+class SurfacesAnimation(ThreeDScene):
+
+ CONFIG = {
+ "axes_config": {
+ "x_min": 0,
+ "x_max": 8,
+ "y_min": 0,
+ "y_max": 8,
+ "z_min": 0,
+ "z_max": 6,
+ "a":1 ,"b": 6, "c":2 , "d":6,
+ "axes_shift":-3*OUT + 5*LEFT,
+ "x_axis_config": {
+ "tick_frequency": 1,
+ # "include_tip": False,
+ },
+ "y_axis_config": {
+ "tick_frequency": 1,
+ # "include_tip": False,
+ },
+ "z_axis_config": {
+ "tick_frequency": 1,
+ # "include_tip": False,
+ },
+ "num_axis_pieces": 1,
+ },
+ "default_graph_style": {
+ "stroke_width": 2,
+ "stroke_color": WHITE,
+ },
+ "default_surface_config": {
+ "fill_opacity": 0.5,
+ "checkerboard_colors": [LIGHT_GREY],
+ "stroke_width": 0.5,
+ "stroke_color": WHITE,
+ "stroke_opacity": 0.5,
+ },
+ "Func": lambda x,y: 2+y/4+np.sin(x)
+ }
+
+
+ def construct(self):
+
+ self.setup_axes()
+ self.set_camera_orientation(distance=35,
+ phi=80 * DEGREES,
+ theta=-80 * DEGREES,
+ )
+
+ fn_text=TextMobject("$z=f(x,y)$").set_color(PINK)
+ self.add_fixed_in_frame_mobjects(fn_text)
+ fn_text.to_edge(TOP,buff=MED_SMALL_BUFF)
+
+ R=TextMobject("R").set_color(BLACK).scale(3)
+ R.move_to(self.axes.input_plane,IN)
+ self.add(R)
+
+ #get the surface
+ surface= self.get_surface(
+ self.axes, lambda x , y:
+ self.Func(x,y)
+ )
+ surface.set_style(
+ fill_opacity=0.8,
+ fill_color=PINK,
+ stroke_width=0.8,
+ stroke_color=WHITE,
+ )
+
+
+ self.begin_ambient_camera_rotation(rate=0.07)
+ self.play(Write(surface))
+ # self.play(LaggedStart(ShowCreation(surface)))
+
+ self.get_lines()
+ # self.play(FadeIn(self.axes.input_plane))
+ self.wait(3)
+
+ def get_surface(self,axes, func, **kwargs):
+ config = {
+ "u_min": axes.a,
+ "u_max": axes.b,
+ "v_min": axes.c,
+ "v_max": axes.d,
+ "resolution": (
+ (axes.y_max - axes.y_min) // axes.y_axis.tick_frequency,
+ (axes.x_max - axes.x_min) // axes.x_axis.tick_frequency,
+ ),
+ }
+
+ config.update(self.default_surface_config)
+ config.update(kwargs)
+ return ParametricSurface(
+ lambda x,y : axes.c2p(
+ x, y, func(x, y)
+ ),
+ **config
+ )
+
+ def get_lines(self):
+ axes = self.axes
+ labels=[axes.x_axis.n2p(axes.a), axes.x_axis.n2p(axes.b), axes.y_axis.n2p(axes.c),
+ axes.y_axis.n2p(axes.d)]
+
+
+ surface_corners=[]
+ for x,y,z in self.region_corners:
+ surface_corners.append([x,y,self.Func(x,y)])
+
+ lines=VGroup()
+ for start , end in zip(surface_corners,
+ self.region_corners):
+ lines.add(self.draw_lines(start,end,"RED"))
+
+ for start , end in zip(labels,
+ self.region_corners):
+ # lines.add(self.draw_lines(start,end,"BLUE"))
+ # print (start,end)
+ pass
+ self.play(ShowCreation(lines))
+
+
+ def draw_lines(self,start,end,color):
+ start=self.axes.c2p(*start)
+ end=self.axes.c2p(*end)
+ line=DashedLine(start,end,color=color)
+
+ return line
+
+ def get_three_d_axes(self, include_labels=True, include_numbers=True, **kwargs):
+ config = dict(self.axes_config)
+ config.update(kwargs)
+ axes = ThreeDAxes(**config)
+ axes.set_stroke(width=2)
+
+ if include_numbers:
+ self.add_axes_numbers(axes)
+
+ if include_labels:
+ self.add_axes_labels(axes)
+
+ # Adjust axis orientation
+ axes.x_axis.rotate(
+ 90 * DEGREES, RIGHT,
+ about_point=axes.c2p(0, 0, 0),
+ )
+ axes.y_axis.rotate(
+ 90 * DEGREES, UP,
+ about_point=axes.c2p(0, 0, 0),
+ )
+
+ # Add xy-plane
+ input_plane = self.get_surface(
+ axes, lambda x, t: 0
+ )
+ input_plane.set_style(
+ fill_opacity=0.5,
+ fill_color=TEAL,
+ stroke_width=0,
+ stroke_color=WHITE,
+ )
+
+ axes.input_plane = input_plane
+
+ self.region_corners=[
+ input_plane.get_corner(pos) for pos in (DL,DR,UR,UL)]
+
+ return axes
+
+
+ def setup_axes(self):
+ axes = self.get_three_d_axes(include_labels=True)
+ axes.add(axes.input_plane)
+ axes.scale(1)
+ # axes.center()
+ axes.shift(axes.axes_shift)
+
+ self.add(axes)
+ self.axes = axes
+
+ def add_axes_numbers(self, axes):
+ x_axis = axes.x_axis
+ y_axis = axes.y_axis
+ tex_vals_x = [
+ ("a", axes.a),
+ ("b", axes.b),
+ ]
+ tex_vals_y=[
+ ("c", axes.c),
+ ("d", axes.d)
+ ]
+ x_labels = VGroup()
+ y_labels = VGroup()
+ for tex, val in tex_vals_x:
+ label = TexMobject(tex)
+ label.scale(1)
+ label.next_to(x_axis.n2p(val), DOWN)
+ x_labels.add(label)
+ x_axis.add(x_labels)
+ x_axis.numbers = x_labels
+
+ for tex, val in tex_vals_y:
+ label = TexMobject(tex)
+ label.scale(1.5)
+ label.next_to(y_axis.n2p(val), LEFT)
+ label.rotate(90 * DEGREES)
+ y_labels.add(label)
+
+ y_axis.add(y_labels)
+ y_axis.numbers = y_labels
+
+ return axes
+
+ def add_axes_labels(self, axes):
+ x_label = TexMobject("x")
+ x_label.next_to(axes.x_axis.get_end(), RIGHT)
+ axes.x_axis.label = x_label
+
+ y_label = TextMobject("y")
+ y_label.rotate(90 * DEGREES, OUT)
+ y_label.next_to(axes.y_axis.get_end(), UP)
+ axes.y_axis.label = y_label
+
+ z_label = TextMobject("z")
+ z_label.rotate(90 * DEGREES, RIGHT)
+ z_label.next_to(axes.z_axis.get_zenith(), RIGHT)
+ axes.z_axis.label = z_label
+ for axis in axes:
+ axis.add(axis.label)
+ return axes
+
+
+
+#uploaded by Somnath Pandit.FSF2020_Double_Integral
diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/y_limit_dependent_on_x.py b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/y_limit_dependent_on_x.py
new file mode 100644
index 0000000..4894ebf
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/double-integrals/y_limit_dependent_on_x.py
@@ -0,0 +1,113 @@
+from manimlib.imports import *
+
+class YlimitXdependent(GraphScene):
+ CONFIG = {
+ "x_min" : 0,
+ "x_max" : 1,
+ "y_min" : 0,
+ "y_max" : 2,
+ "x_tick_frequency" : 1,
+ "y_tick_frequency" : 1,
+ "x_labeled_nums": list(np.arange(0,2)),
+ "y_labeled_nums": list(np.arange(0 ,3)),
+ "x_axis_width": 3.5,
+ "y_axis_height": 6,
+ "graph_origin": ORIGIN+2.5*LEFT+3*DOWN,
+ }
+
+ def construct(self):
+ X = RIGHT*self.x_axis_width/(self.x_max- self.x_min)
+ Y = UP*self.y_axis_height/(self.y_max- self.y_min)
+
+ self.setup_axes(animate=False)
+
+ line= self.get_graph(
+ lambda x : 2-2*x ,
+ x_min = 0,
+ x_max = 1,
+ color = RED)
+ line_eqn=TextMobject("2x+y=2").move_to(self.graph_origin+.8*X+Y).rotate(np.arctan(-2))
+ self.line=line
+
+ caption=TextMobject(r"See the value of $y$ \\ is changing with $x$").move_to(self.graph_origin+1.2*X+1.8*Y)
+ self.play(ShowCreation(line),Write(line_eqn))
+ # self.show_area()
+ self.show_rects()
+ self.play(Write(caption))
+ self.show_y_values_at_different_x()
+
+ self.wait(.5)
+
+ ###################
+ def show_area(self):
+ area = self.get_riemann_rectangles(
+ self.line,
+ x_min = 0,
+ x_max = 1,
+ dx =.0001,
+ start_color = BLUE,
+ end_color = BLUE,
+ fill_opacity = 1,
+ stroke_width = 0,
+ )
+ self.play(ShowCreation(area))
+ # self.transform_between_riemann_rects(self.rects,area)
+ self.area = area
+
+ def show_rects(self):
+ rects = self.get_riemann_rectangles(
+ self.line,
+ x_min = 0,
+ x_max = 1,
+ dx =.01,
+ start_color = BLUE,
+ end_color = BLUE,
+ fill_opacity =1,
+ stroke_width = 0,
+ )
+ # self.play(ShowCreation(rects))
+ # self.transform_between_riemann_rects(self.area,rects)
+ self.rects=rects
+
+ def show_y_values_at_different_x(self):
+ rects=self.rects
+ rect = rects[len(rects)*1//10]
+ dx_brace = Brace(rect, DOWN, buff = 0)
+ dx_label = dx_brace.get_text("$dx$", buff = SMALL_BUFF)
+ dx_brace_group = VGroup(dx_brace,dx_label)
+ rp=int(len(rects)/10)
+ rects_subset = self.rects[3*rp:5*rp]
+
+ last_rect = None
+ for rect in rects_subset:
+ brace = Brace(rect, LEFT, buff = 0)
+ y = TexMobject("y=2-2x")#.rotate(PI/2)
+ y.next_to(brace, LEFT, SMALL_BUFF)
+ anims = [
+ rect.set_fill, BLUE_E, 1,
+ dx_brace_group.next_to, rect, DOWN, SMALL_BUFF
+ ]
+ if last_rect is not None:
+ anims += [
+ last_rect.set_fill, None, 0,
+ # last_rect.set_fill, BLUE, .75,
+ ReplacementTransform(last_brace, brace),
+ ReplacementTransform(last_y, y),
+ ]
+ else:
+ anims += [
+ GrowFromCenter(brace),
+ Write(y)
+ ]
+ self.play(*anims)
+ # self.wait(.2)
+
+ last_rect = rect
+ last_brace = brace
+ last_y = y
+
+ y = last_y
+ y_brace = last_brace
+
+
+#uploaded by Somnath Pandit.FSF2020_Double_Integral
diff --git a/FSF-2020/integrals-of-multivariable-functions/README.md b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/README.md
index e69de29..e69de29 100644
--- a/FSF-2020/integrals-of-multivariable-functions/README.md
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/README.md
diff --git a/FSF-2020/intro-to-calculus/README.md b/FSF-2020/calculus-of-several-variables/triple-and-surface-integrals/README.md
index e69de29..e69de29 100644
--- a/FSF-2020/intro-to-calculus/README.md
+++ b/FSF-2020/calculus-of-several-variables/triple-and-surface-integrals/README.md
diff --git a/FSF-2020/linear-transformations/README.md b/FSF-2020/calculus/intro-to-calculus/README.md
index e69de29..e69de29 100644
--- a/FSF-2020/linear-transformations/README.md
+++ b/FSF-2020/calculus/intro-to-calculus/README.md
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/PowerSeriesQuestions.pdf b/FSF-2020/calculus/series-and-transformations/Power Series/PowerSeriesQuestions.pdf
new file mode 100644
index 0000000..04ed6d5
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/PowerSeriesQuestions.pdf
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/script1.py b/FSF-2020/calculus/series-and-transformations/Power Series/script1.py
new file mode 100644
index 0000000..28eb07c
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/script1.py
@@ -0,0 +1,128 @@
+from manimlib.imports import *
+
+
+def formFormula(coeff_list,variable_list):
+ coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ variable_list=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
+ coeff_list[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ coeff_list[i].set_color(GOLD_A)
+ variable_list[i].next_to(coeff_list[i],buff=0.1)
+ if i!=2:
+ coeff_list[i+1].next_to(variable_list[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variable_list[2])
+ expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots)
+ expansion.scale(0.7)
+ return expansion
+
+class pieChart(Scene):
+ def construct(self):
+ circle1=Circle(radius=3,color=BLUE)
+ powerText=TextMobject("Power Series")
+ powerText.scale(0.8)
+ self.play(FadeIn(powerText))
+ self.play(ShowCreation(circle1))
+ self.wait(1)
+
+ powerGroup=VGroup(circle1,powerText)
+
+ self.play(ApplyMethod(powerGroup.scale,0.5))
+ self.play(ApplyMethod(powerGroup.move_to,2.2*UP))
+ self.wait(0.5)
+ expansion_power_coeff=[]
+ variables_power=[]
+ expansion_power=formFormula(expansion_power_coeff,variables_power)
+ self.play(ReplacementTransform(powerText,expansion_power))
+ self.wait(1)
+
+ circle2=Circle(radius=1.5)
+ circle2.shift(2.2*UP)
+ expansion_geo_coeff=[0]*3
+ variables_geo=[0]*3
+ arrow1_2=Line(start=0.7*UP,end=2.5*LEFT)
+ expansion_geo_coeff=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ for i in range(0,3):
+ expansion_geo_coeff[i].set_color(GOLD_A)
+ variables_geo=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
+ expansion_geo_coeff[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ variables_geo[i].next_to(expansion_geo_coeff[i],buff=0.1)
+ if i!=2:
+ expansion_geo_coeff[i+1].next_to(variables_geo[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variables_geo[2])
+ expansion_geo=VGroup(expansion_geo_coeff[0],expansion_geo_coeff[1],expansion_geo_coeff[2],variables_geo[0],variables_geo[1],variables_geo[2],dots)
+ expansion_geo.scale(0.7)
+
+ self.play(ApplyMethod(circle2.shift,4*LEFT+2.5*DOWN),ApplyMethod(expansion_geo.shift,4*LEFT+2.5*DOWN))
+ self.add(arrow1_2)
+ self.wait(1)
+
+ ones=[TextMobject("1"),TextMobject("1"),TextMobject("1")]
+ for i in range(0,3):
+ ones[i].set_color(GOLD_A)
+ ones[0].shift(0.3*DOWN,5*LEFT)
+ ones[1].next_to(ones[0],buff=0.5)
+ ones[2].next_to(ones[1],buff=0.7)
+ self.play(ReplacementTransform(expansion_geo_coeff[0],ones[0]),ReplacementTransform(expansion_geo_coeff[1],ones[1]),ReplacementTransform(expansion_geo_coeff[2],ones[2]))
+ self.wait(1)
+ expansion_geo=VGroup(ones[0],ones[1],ones[2],variables_geo[0],variables_geo[1],variables_geo[2],dots)
+
+ expansion_geo_final=TextMobject("$1+x+{ x }^{ 2 }..$")
+ expansion_geo_final.scale(0.8)
+ expansion_geo_final.shift(0.3*DOWN+4*LEFT)
+ self.play(ReplacementTransform(expansion_geo,expansion_geo_final))
+ self.wait(1)
+
+ circle3=Circle(radius=1.5,color=GREEN)
+ circle3.shift(2.2*UP)
+ expansion_taylor_coeff=[0]*3
+ variables_taylor=[0]*3
+ arrow1_3=Line(start=0.7*UP,end=DOWN*0.3)
+ expansion_taylor_coeff=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ for i in range(0,3):
+ expansion_taylor_coeff[i].set_color(GOLD_A)
+ variables_taylor=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
+ expansion_taylor_coeff[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ variables_taylor[i].next_to(expansion_taylor_coeff[i],buff=0.1)
+ if i!=2:
+ expansion_taylor_coeff[i+1].next_to(variables_taylor[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variables_taylor[2])
+ expansion_taylor=VGroup(expansion_taylor_coeff[0],expansion_taylor_coeff[1],expansion_taylor_coeff[2],variables_taylor[0],variables_taylor[1],variables_taylor[2],dots)
+ expansion_taylor.scale(0.7)
+
+ self.play(ApplyMethod(circle3.shift,4*DOWN),ApplyMethod(expansion_taylor.shift,4*DOWN))
+ self.add(arrow1_3)
+ self.wait(1)
+
+ differentials=[TextMobject("$f(0)$"),TextMobject("${ f'\left( 0 \\right) }$"),TextMobject("$\\frac { f''\left( 0 \\right) }{ 2! }$")]
+ for i in range(0,3):
+ differentials[i].set_color(GOLD_A)
+ differentials[0].shift(1.8*DOWN+1.15*LEFT)
+ differentials[1].shift(1.8*DOWN+0.45*LEFT)
+ differentials[2].shift(1.8*DOWN+0.45*RIGHT)
+ differentials[0].scale(0.35)
+ differentials[1].scale(0.35)
+ differentials[2].scale(0.35)
+ self.play(ReplacementTransform(expansion_taylor_coeff[0],differentials[0]),ReplacementTransform(expansion_taylor_coeff[1],differentials[1]),ReplacementTransform(expansion_taylor_coeff[2],differentials[2]))
+ self.wait(2)
+ expansion_taylor_final=VGroup(differentials[0],differentials[1],differentials[2],variables_taylor[0],variables_taylor[1],variables_taylor[2],dots)
+
+ self.play(FadeOut(expansion_geo_final),FadeOut(expansion_taylor_final))
+ geoText=TextMobject("Geometric Series")
+ geoText.scale(0.7)
+ geoText.shift(4*LEFT+0.3*DOWN)
+ taylorText=TextMobject("Taylor Series")
+ taylorText.scale(0.7)
+ taylorText.shift(1.8*DOWN)
+ self.play(FadeIn(geoText),FadeIn(taylorText))
+ self.wait(1)
+
+ soOntext=TextMobject("So on..!")
+ soOntext.shift(4*RIGHT)
+ soOntext.scale(0.8)
+ self.play(FadeIn(soOntext))
+ self.wait(2)
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/script2.py b/FSF-2020/calculus/series-and-transformations/Power Series/script2.py
new file mode 100644
index 0000000..72356c6
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/script2.py
@@ -0,0 +1,94 @@
+from manimlib.imports import *
+import numpy as np
+
+
+class convergence(Scene):
+ def construct(self):
+ originalFormula=TextMobject("$\sum _{ n=0 }^{ \infty }{ { a }_{ n }{ x }^{ n } }$")
+ originalFormula.set_color(RED)
+ self.play(Write(originalFormula))
+ self.wait(1)
+ self.play(ApplyMethod(originalFormula.shift,2.7*UP))
+ self.wait(1)
+
+ terms=["$a_{ 0 }$","$a_{ 1 }x$","$a_{ 2 }x^{ 2 }$","$a_{ 3 }x^{ 3 }$","$a_{ 4 }x^{ 4 }$","$a_{ 5 }x^{ 5 }$","$a_{ 6 }x^{ 6 }$","$a_{ 7 }x^{ 7 }$","$a_{ 8 }x^{ 8 }$","$a_{ 9 }x^{ 9 }$","$a_{ 10 }x^{ 10 }$","$a_{ 11 }x^{ 11 }$"]
+ termsTogetherString="+".join(terms)
+ termsTogether=TextMobject(termsTogetherString+"...")
+ termsTogether.scale(0.8)
+ termsTogether.shift(2.7*UP)
+ self.play(ReplacementTransform(originalFormula,termsTogether))
+ self.wait(1)
+
+ termMobjectRect=[0]*12
+ termMobject=TextMobject(terms[0])
+ termMobject.shift(2.7*UP+6.2*LEFT)
+ for i in range(1,13):
+ termMobjectOld=termMobject
+ termMobjectOld.scale(0.8)
+ if(i<12):
+ termMobject=TextMobject(terms[i])
+ termMobject.next_to(termMobjectOld)
+ if(i==1):
+ rectDefine=TextMobject("Here","each rectangle","represents the","value of the term")
+ rectDefine.set_color_by_tex_to_color_map({"each rectangle":BLUE,"value of the term":YELLOW})
+ rectDefine.scale(0.7)
+ rectDefine.shift(3.2*DOWN)
+ self.play(Write(rectDefine))
+ self.wait(1)
+ if(i==2):
+ ratio=TextMobject("If $\\frac { a_{ n+1 } }{ { a }_{ n } } < 1$")
+ ratio.set_color(RED)
+ ratio.scale(0.7)
+ ratio.move_to(3.2*DOWN)
+ inequality=TextMobject("$a_{ n+1 } < a_{ n }$")
+ inequality.set_color(RED)
+ inequality.scale(0.7)
+ inequality.move_to(3.2*DOWN)
+ self.play(FadeOut(rectDefine))
+ self.play(Write(ratio))
+ self.wait(1)
+ self.play(ReplacementTransform(ratio,inequality))
+ self.wait(1)
+ #self.play(ApplyMethod(termMobjectOld.move_to,(2-0.3*i)*DOWN+RIGHT*0.2*i))
+ termMobjectRect[i-1]=Rectangle(height=0.1,width=(5-0.4*i))
+ termMobjectRect[i-1].move_to((2-0.2*i)*DOWN+RIGHT*0.2*i)
+ #rectangles[p] = termMobjectRect
+ #p+=1
+ self.play(ReplacementTransform(termMobjectOld,termMobjectRect[i-1]))
+
+ uparrow=TextMobject("$\\uparrow$")
+ uparrow.set_color(GREEN)
+ uparrow.scale(6)
+ uparrow.shift(4*RIGHT+0.5*DOWN)
+ self.play(ShowCreation(uparrow))
+ self.wait(1)
+
+ converges=TextMobject("Converges!")
+ converges.set_color(RED)
+ converges.scale(0.6)
+ converges.next_to(uparrow)
+ self.play(FadeIn(converges))
+ self.wait(2)
+
+ self.play(FadeOut(converges),FadeOut(uparrow),FadeOut(inequality))
+ self.wait(0.5)
+ rect=VGroup(termMobjectRect[0],termMobjectRect[1],termMobjectRect[2],termMobjectRect[3],termMobjectRect[4],termMobjectRect[5],termMobjectRect[6],termMobjectRect[7],termMobjectRect[8],termMobjectRect[9],termMobjectRect[10],termMobjectRect[11])
+ self.play(ApplyMethod(rect.scale,0.2))
+ for i in range(0,12):
+ self.play(ApplyMethod(termMobjectRect[i].shift,i*0.04*DOWN+(11-(3-0.11*i)*i)*LEFT*0.3))
+ func=TextMobject("$\\approx$","$f(x)$")
+ func.set_color_by_tex_to_color_map({"$f(x)$":RED})
+ func.scale(0.8)
+ func.shift(DOWN+4.5*RIGHT+0.1*UP)
+ self.play(FadeIn(func))
+
+ rightarrow=TextMobject("$\\rightarrow$")
+ rightarrow.set_color(GREEN)
+ rightarrow.scale(4)
+ rightarrow.shift(2*DOWN)
+ converges=TextMobject("Hence even the","sum converges!")
+ converges.set_color_by_tex_to_color_map({"sum converges!":RED})
+ converges.move_to(3*DOWN)
+ converges.scale(0.7)
+ self.play(Write(rightarrow),FadeIn(converges))
+ self.wait(2)
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/script3.py b/FSF-2020/calculus/series-and-transformations/Power Series/script3.py
new file mode 100644
index 0000000..f710f42
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/script3.py
@@ -0,0 +1,156 @@
+from manimlib.imports import*
+import math
+
+class intro(Scene):
+ def construct(self):
+ introText1=TextMobject("Let's analyse")
+ introText2=TextMobject("for")
+ function_main=TextMobject("$\sum { { (-1) }^{ n }{ x }^{ 2n } }$")
+ function_main.set_color(GREEN)
+ introText1.scale(1.2)
+ introText1.shift(2*UP)
+ introText2.scale(0.7)
+ introText2.shift(UP)
+ function_main.scale(2)
+ function_main.shift(DOWN)
+ function_expan=TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }+..$")
+ function_expan.set_color(RED)
+ function_expan.scale(1.2)
+ function_expan.shift(2*UP)
+
+ self.play(Write(introText1))
+ self.play(FadeIn(introText2))
+ self.wait(0.5)
+ self.play(Write(function_main))
+ self.wait(1)
+
+ self.play(FadeOut(introText1),FadeOut(introText2))
+ self.play(ApplyMethod(function_main.shift,3*UP))
+ self.wait(0.5)
+ self.play(ReplacementTransform(function_main,function_expan))
+ self.wait(1)
+ self.play(ApplyMethod(function_expan.scale,0.5))
+ function_expan.to_edge(UP+RIGHT)
+ self.play(ReplacementTransform(function_expan,function_expan))
+ self.wait(1)
+
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -8,
+ "y_max": 8,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-1, 2, 1),
+ "y_labeled_nums": range(0,2,1)
+ }
+
+ def construct(self):
+
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ function_expan=TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }+..$")
+ function_expan.set_color(RED)
+ function_expan.scale(0.6)
+ function_expan.to_edge(UP+RIGHT)
+ self.add(function_expan)
+
+ self.setup_axes(animate=True)
+
+ eqText=[TextMobject("$1$"),TextMobject("$1-{ x }^{ 2 }$"),TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }$"),TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }$")]
+ for i in range(0,len(eqText)):
+ eqText[i].scale(0.6)
+ eqText[i].set_color(BLUE)
+ eqText[i].shift(ORIGIN+UP*2*y_each_unit+RIGHT*3.3*x_each_unit)
+ eqTextTerm=TextMobject("And so on..!")
+ eqTextTerm.set_color(BLUE)
+ eqTextTerm.scale(0.6)
+ eqTextTerm.shift(ORIGIN+UP*2*y_each_unit+3*RIGHT*x_each_unit)
+ equation1 = self.get_graph(lambda x : 1,color = RED,x_min = -8,x_max=8)
+ equation2 = self.get_graph(lambda x : 1-math.pow(x,2),color = RED,x_min = -1.7,x_max=1.7)
+ equation3 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4),color = RED,x_min = -1.6,x_max=1.6)
+ equation4 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6),color = RED,x_min = -1.45,x_max=1.45)
+ equation5 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8),color = RED,x_min = -1.35,x_max=1.35)
+ equation6 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10),color = RED,x_min = -1.3,x_max=1.3)
+ equation7 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12),color = RED,x_min = -1.25,x_max=1.25)
+ equation8 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14),color = RED,x_min = -1.2,x_max=1.2)
+ equation9 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16),color = RED,x_min = -1.15,x_max=1.15)
+ equation10 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16)-math.pow(x,18),color = RED,x_min = -1.15,x_max=1.15)
+
+ textBtwAnim1=TextMobject("Here the graph just","oscilates")
+ textBtwAnim1.set_color_by_tex_to_color_map({"oscilates":BLUE})
+ textBtwAnim2=TextMobject("after","the","point","(as we add higher order terms)")
+ textBtwAnim2.set_color_by_tex_to_color_map({"after":BLUE,"point":YELLOW})
+ textBtwAnim3=TextMobject("$x=1$")
+ textBtwAnim1.scale(0.4)
+ textBtwAnim2.scale(0.4)
+ textBtwAnim3.scale(1.2)
+ textBtwAnim1.shift(2.1*DOWN+4.3*RIGHT)
+ textBtwAnim2.shift(2.4*DOWN+4.1*RIGHT)
+ textBtwAnim3.shift(2.9*DOWN+4.3*RIGHT)
+
+ self.play(ShowCreation(equation1),run_time=0.8)
+ self.add(eqText[0])
+ self.wait(1)
+ self.play(ReplacementTransform(equation1,equation2),ReplacementTransform(eqText[0],eqText[1]))
+ self.wait(0.5)
+ self.play(ReplacementTransform(equation2,equation3),ReplacementTransform(eqText[1],eqText[2]))
+ self.wait(0.4)
+ self.play(ReplacementTransform(equation3,equation4),ReplacementTransform(eqText[2],eqText[3]))
+ self.wait(0.3)
+ self.play(FadeOut(eqText[3]))
+ self.play(FadeIn(eqTextTerm))
+ self.play(Write(textBtwAnim1),Write(textBtwAnim2))
+ self.play(FadeIn(textBtwAnim3))
+ self.play(ReplacementTransform(equation4,equation5))
+ self.wait(0.2)
+ self.play(ReplacementTransform(equation5,equation6))
+ self.wait(0.2)
+ self.play(ReplacementTransform(equation6,equation7))
+ self.wait(0.2)
+ self.play(ReplacementTransform(equation7,equation8))
+ self.wait(0.2)
+ self.play(ReplacementTransform(equation8,equation9))
+ self.wait(0.2)
+ self.play(ReplacementTransform(equation9,equation10))
+ self.wait(1)
+
+ self.play(FadeOut(textBtwAnim1),FadeOut(textBtwAnim2),FadeOut(textBtwAnim3),FadeOut(equation10),FadeOut(eqTextTerm))
+ self.wait(1)
+
+ convergeLine=Line(start=ORIGIN+x_each_unit*LEFT,end=ORIGIN+x_each_unit*RIGHT,color=WHITE)
+ divergeLineLeft=Line(start=ORIGIN+x_each_unit*LEFT,end=ORIGIN+x_each_unit*LEFT*8,color=RED)
+ divergeLineRight=Line(start=ORIGIN+x_each_unit*RIGHT,end=ORIGIN+x_each_unit*8*RIGHT,color=RED)
+ circle1=Circle(radius=0.01,color=PURPLE_E)
+ circle2=Circle(radius=0.01,color=PURPLE_E)
+ circle1.shift(ORIGIN+LEFT*x_each_unit)
+ circle2.shift(ORIGIN+RIGHT*x_each_unit)
+ convergeText=TextMobject("Converges")
+ divergeText1=TextMobject("Diverges")
+ divergeText2=TextMobject("Diverges")
+ convergeText.set_color(GREEN)
+ divergeText1.set_color(RED)
+ divergeText2.set_color(RED)
+ convergeText.scale(0.5)
+ divergeText1.scale(0.5)
+ divergeText2.scale(0.5)
+ convergeText.shift(1.6*UP)
+ divergeText1.shift(0.3*UP+1.5*LEFT)
+ divergeText2.shift(0.3*UP+1.5*RIGHT)
+ self.play(Write(divergeLineLeft),Write(divergeLineRight))
+ self.play(FadeIn(convergeLine))
+ self.wait(0.5)
+ self.play(FadeOut(self.axes))
+ self.play(Write(circle1),Write(circle2))
+ self.wait(0.5)
+ self.play(ApplyMethod(convergeLine.shift,1.3*UP),ApplyMethod(function_expan.shift,5*LEFT+DOWN))
+ self.play(FadeIn(convergeText),FadeIn(divergeText1),FadeIn(divergeText2))
+ self.wait(2)
+
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/script4.py b/FSF-2020/calculus/series-and-transformations/Power Series/script4.py
new file mode 100644
index 0000000..412d20c
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/script4.py
@@ -0,0 +1,108 @@
+from manimlib.imports import *
+import math
+
+class intro(Scene):
+ def construct(self):
+ introText1=TextMobject("Consider the","above","example..")
+ introText1.scale(0.8)
+ introText1.set_color_by_tex_to_color_map({"above":YELLOW})
+ self.play(Write(introText1))
+ self.wait(1)
+
+class graphScene(GraphScene,MovingCameraScene):
+ CONFIG = {
+ "x_min": -5,
+ "x_max": 5,
+ "y_min": -5,
+ "y_max": 5,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-1, 2, 1),
+ "y_labeled_nums": range(0,2,1),
+ "y_axis_height":7,
+ "x_axis_width":7
+ }
+
+ def setup(self):
+ GraphScene.setup(self)
+ MovingCameraScene.setup(self)
+
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ function_expan=TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }+..$")
+ function_expan.scale(0.6)
+ function_expan.set_color(RED)
+ function_expan.to_edge(UP+RIGHT)
+ self.add(function_expan)
+
+ self.setup_axes()
+
+ equation = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16)-math.pow(x,18),color = RED,x_min = -1.1,x_max=1.1)
+ self.play(ShowCreation(equation))
+ self.wait(1)
+
+ dashLineLeft=DashedLine(start=ORIGIN+y_each_unit*5*UP,end=ORIGIN+y_each_unit*5*DOWN)
+ dashLineRight=DashedLine(start=ORIGIN+y_each_unit*5*UP,end=ORIGIN+y_each_unit*5*DOWN)
+ dashLineLeft.shift(ORIGIN+LEFT*x_each_unit)
+ dashLineRight.shift(ORIGIN+RIGHT*x_each_unit)
+ radiusLine=Line(start=ORIGIN,end=ORIGIN+RIGHT*x_each_unit)
+ rangeLine=Line(start=ORIGIN+LEFT*x_each_unit,end=ORIGIN+RIGHT*x_each_unit)
+ circle=Circle(radius=x_each_unit)
+ movingPoint=Circle(radius=0.025)
+ movingPoint.shift(ORIGIN+RIGHT*x_each_unit)
+ circleEq1=self.get_graph(lambda x:math.sqrt(1-x**2),color=BLUE,x_max=-1,x_min=1)
+ circleEq2=self.get_graph(lambda x:-math.sqrt(1-x**2),color=BLUE,x_max=1,x_min=-1)
+
+ self.play(Write(dashLineLeft),Write(dashLineRight))
+ self.wait(1)
+
+ equation_updated=self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16)-math.pow(x,18),color = GREEN,x_min = -1,x_max=1)
+ self.play(FadeOut(self.axes),ReplacementTransform(equation,equation_updated))
+ self.wait(0.5)
+ self.play(Write(radiusLine))
+ self.play(MoveAlongPath(movingPoint,circleEq1))
+ self.play(MoveAlongPath(movingPoint,circleEq2))
+ self.play(FadeIn(circle))
+ self.wait(1)
+
+ radiusText=TextMobject("Radius of convergence")
+ radiusText.scale(0.14)
+ radiusText.shift(ORIGIN+RIGHT*x_each_unit*0.45+DOWN*y_each_unit*0.2)
+
+ self.play(Write(radiusText))
+ self.wait(0.6)
+
+ self.camera_frame.save_state()
+ self.camera_frame.set_width(5.5)
+ self.play(self.camera_frame.move_to, ORIGIN)
+ self.wait(1)
+ self.camera_frame.set_width(14)
+ self.wait(1.3)
+
+ self.play(FadeOut(radiusText),FadeOut(circle),FadeOut(movingPoint))
+ extendLine=Line(start=ORIGIN,end=ORIGIN+x_each_unit*LEFT)
+ self.play(Write(extendLine))
+ doubleArrow=TextMobject("$\longleftrightarrow$")
+ doubleArrow.scale(1.6)
+ doubleArrow.set_color(BLUE)
+ doubleArrow.shift(ORIGIN+DOWN*y_each_unit*0.5)
+ self.play(FadeIn(doubleArrow))
+ self.wait(1)
+ rangeText=TextMobject("Interval of convergence")
+ rangeText.scale(0.15)
+ rangeText.shift(ORIGIN+y_each_unit*DOWN)
+ self.play(Write(rangeText))
+ self.wait(0.6)
+
+ self.camera_frame.save_state()
+ self.camera_frame.set_width(5.5)
+ self.play(self.camera_frame.move_to, ORIGIN)
+ self.wait(1)
+ self.camera_frame.set_width(14)
+ self.wait(1.5)
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/script5.py b/FSF-2020/calculus/series-and-transformations/Power Series/script5.py
new file mode 100644
index 0000000..e9681aa
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/script5.py
@@ -0,0 +1,136 @@
+from manimlib.imports import *
+import math
+
+class uniformlyConvergent(Scene):
+ def construct(self):
+ introText1=TextMobject("Again consider the","above","example")
+ introText2=TextMobject("Let","$g(x)=\\frac { 1 }{ 1+{ x }^{ 2 } }$","and","x=0.5 $\in$(-1,1)")
+ introText3=TextMobject("Lets analyse..","!")
+ introText1.scale(0.8)
+ introText2.scale(0.7)
+ introText3.scale(0.9)
+ introText3.shift(DOWN)
+ introText1.set_color_by_tex_to_color_map({"above":YELLOW})
+ introText2.set_color_by_tex_to_color_map({"$g(x)=\\frac { 1 }{ 1+{ x }^{ 2 } }$":BLUE,"x=0.5 $\in$(-1,1)":YELLOW})
+ introText3.set_color_by_tex_to_color_map({"!":GREEN})
+ self.play(Write(introText1))
+ self.wait(0.5)
+ self.play(FadeOut(introText1))
+ self.play(Write(introText2))
+ self.play(FadeIn(introText3))
+ self.wait(2)
+
+
+def gety(x,n):
+ ans=0
+ for i in range(0,n+1):
+ if(i%2==0):
+ ans+=(math.pow(x,2*i))
+ else:
+ ans-=(math.pow(x,2*i))
+ return ans
+
+def makeSeries(x,points,x_each_unit,y_each_unit):
+ p=0
+ for point in points:
+ y=gety(x,p)
+ point.shift(ORIGIN+RIGHT*x_each_unit*p+UP*y_each_unit*y)
+ p+=1
+
+def makeLines(x,numPoints,x_each_unit,y_each_unit):
+ lines=[0]*numPoints
+ for i in range(0,numPoints-1):
+ y=gety(x,i)
+ y_next=gety(x,i+1)
+ lines[i]=Line(start=ORIGIN+RIGHT*x_each_unit*i+UP*y_each_unit*y,end=ORIGIN+RIGHT*x_each_unit*(i+1)+UP*y_each_unit*y_next,color=RED)
+ return lines
+
+class graphScene(GraphScene,MovingCameraScene):
+ CONFIG = {
+ "x_min": -6,
+ "x_max": 6,
+ "y_min": -5,
+ "y_max": 5,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$k$",
+ "y_axis_label": "$f(\\frac{1}{2})_k$",
+ "exclude_zero_label": True,
+ "x_axis_width":7,
+ "y_axis_height":7
+ }
+
+ def setup(self):
+ GraphScene.setup(self)
+ MovingCameraScene.setup(self)
+
+
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+ sequence=TextMobject("$1$ , $1-(0.5)^2$ , $1-(0.5)^2+(0.5)^4..$")
+ sequence.set_color(RED)
+ sequence.scale(0.35)
+ sequence.to_edge(UP+RIGHT)
+ formula=TextMobject("$f(x)_{ k }=\sum _{ i=0 }^{ k }{ (-1)^{ i }(x)^{ 2i } } $")
+ formula.set_color(PURPLE_C)
+ formula.scale(0.4)
+ formula.shift(5.3*RIGHT+3*UP)
+ fLine=Line(start=ORIGIN+x_each_unit*6*LEFT,end=ORIGIN+x_each_unit*6*RIGHT)
+ fLine.shift(ORIGIN+(4/5)*y_each_unit*UP)
+ fLineText=TextMobject("$g(0.5)=\\frac { 4 }{ 5 } $")
+ fLineText.set_color(RED)
+ fLineText.scale(0.3)
+ fLineText.shift(UP*1.2*y_each_unit+RIGHT*x_each_unit+4*LEFT)
+ points=[Dot(radius=0.03,color=BLUE) for i in range(0,6)]
+ makeSeries(0.5,points,x_each_unit,y_each_unit)
+ lines=makeLines(0.5,6,x_each_unit,y_each_unit)
+
+
+ self.add(sequence)
+ self.add(formula)
+ self.setup_axes(animate=True)
+ self.play(Write(fLine))
+ self.add(fLineText)
+ for p in points:
+ self.add(p)
+ for p in range(0,5):
+ self.play(Write(lines[p]))
+ self.wait(0.5)
+ self.camera_frame.save_state()
+ self.camera_frame.set_width(0.6)
+ self.play(self.camera_frame.move_to, points[0])
+ self.wait(0.4)
+ self.play(self.camera_frame.move_to, points[1])
+ self.wait(0.4)
+ self.play(self.camera_frame.move_to, points[2])
+ self.wait(0.3)
+ self.play(self.camera_frame.move_to, points[3])
+ self.wait(1)
+ self.play(self.camera_frame.move_to,ORIGIN)
+ self.camera_frame.set_width(14)
+ self.wait(1)
+
+ explanation1=TextMobject("Since the series","converges","to")
+ explanation1.set_color_by_tex_to_color_map({"converges":YELLOW})
+ explanation2=TextMobject("$\\frac {4}{5}$")
+ explanation2.set_color(BLUE)
+ explanation3=TextMobject("Hence","$\\forall \epsilon>0$,","$\exists k$","such that,")
+ explanation3.set_color_by_tex_to_color_map({"$\\forall \epsilon>0$":BLUE,"$\exists k$":YELLOW})
+ explanation4=TextMobject("$\left| { f\left( \\frac { 1 }{ 2 } \\right) }_{ k }-\\frac { 4 }{ 5 } \\right| <$","$\epsilon$")
+ explanation4.set_color_by_tex_to_color_map({"$\epsilon$":RED})
+ explanation1.scale(0.5)
+ explanation3.scale(0.5)
+ explanation1.shift(1.8*DOWN+3.5*RIGHT)
+ explanation2.shift(2.4*DOWN+3.5*RIGHT)
+ explanation3.shift(1.8*DOWN+3.5*RIGHT)
+ explanation4.shift(2.4*DOWN+3.5*RIGHT)
+
+ self.play(Write(explanation1))
+ self.play(FadeIn(explanation2))
+ self.wait(1)
+ self.play(FadeOut(explanation1),FadeOut(explanation2))
+ self.play(Write(explanation3))
+ self.play(Write(explanation4))
+ self.wait(2)
diff --git a/FSF-2020/calculus/series-and-transformations/README.md b/FSF-2020/calculus/series-and-transformations/README.md
new file mode 100644
index 0000000..4747205
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/README.md
@@ -0,0 +1,13 @@
+Contributer: <b>G Sri Harsha</b>
+
+GitHub Handle: <a href="https://github.com/GSri30/">GSri30</a>
+
+Sub-Topics Covered:
+ <ul>
+ <li>Power Series
+ <li>Taylor Series
+ <li>Laplace Transformation
+ <li>Fourier Transformation
+ <li>z-Transform
+ <li>Constant-Q transform
+ </ul>
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf b/FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf
new file mode 100644
index 0000000..2096f52
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/script1.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/script1.py
new file mode 100644
index 0000000..e83eff8
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/script1.py
@@ -0,0 +1,198 @@
+from manimlib.imports import*
+import math
+
+def formFormula(coeff_list,variable_list):
+ coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ variable_list=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
+ coeff_list[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ coeff_list[i].set_color(GOLD_A)
+ variable_list[i].next_to(coeff_list[i],buff=0.1)
+ if i!=2:
+ coeff_list[i+1].next_to(variable_list[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variable_list[2])
+ expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots)
+ #expansion.scale(0.7)
+ return expansion,coeff_list
+
+class intro(Scene):
+ def construct(self):
+ equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$")
+ equation.scale(2)
+ equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED})
+ text=TextMobject("let $a=0$")
+ text.scale(0.7)
+ text.shift(DOWN)
+
+ self.play(Write(equation))
+ self.wait(0.5)
+ self.play(FadeIn(text))
+ self.wait(0.7)
+ self.play(FadeOut(equation),FadeOut(text))
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -8,
+ "y_max": 8,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-8, 8, 1),
+ }
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ generalized_eq_coeff=[]
+ variables_eq=[]
+ eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq)
+ trText1=TextMobject("let $T_{ n }(x)$:=")
+ eq.next_to(trText1)
+ trTextGrup=VGroup(trText1,eq)
+ trTextGrup.scale(0.5)
+ trTextGrup.to_corner(UP+RIGHT)
+ self.play(Write(trTextGrup))
+ self.setup_axes(animate=True)
+
+ fx=TextMobject("${ e }^{ -x^{ 2 } }$")
+ fx.scale(0.5)
+ fx.shift(ORIGIN+x_each_unit*7.5*RIGHT+y_each_unit*0.5*UP)
+ mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8)
+ self.play(ShowCreation(mainfunction))
+ self.play(FadeIn(fx))
+ self.wait(1.4)
+
+ coeff=[TextMobject("$1$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")]
+ coeff[0].shift(3.39*UP+4.88*RIGHT)
+ coeff[0].scale(0.5)
+ coeff[1].shift(3.39*UP+5.3*RIGHT)
+ coeff[1].scale(0.275)
+ coeff[2].shift(3.39*UP+5.98*RIGHT)
+ coeff[2].scale(0.28)
+
+ for obj in coeff:
+ obj.set_color(GOLD_A)
+
+ firstApprox=[self.get_graph(lambda x:1,color=BLUE)]
+ secondApprox=[self.get_graph(lambda x:1,color=BLUE),
+ self.get_graph(lambda x:x+1,color=BLUE),
+ self.get_graph(lambda x:-x+1,color=BLUE)]
+ thirdApprox=[self.get_graph(lambda x:1-2*math.pow(x,2),color=BLUE),
+ self.get_graph(lambda x:1-0.1*math.pow(x,2),color=BLUE),
+ self.get_graph(lambda x:1,color=BLUE),
+ self.get_graph(lambda x:1+0.1*math.pow(x,2),color=BLUE),
+ self.get_graph(lambda x:1+math.pow(x,2),color=BLUE)]
+
+ firstGraph=self.get_graph(lambda x:1,color=BLUE)
+ secondGraph=self.get_graph(lambda x:1-math.pow(x,2),color=BLUE)
+
+ bottomText1=TextMobject("The polynomial should","satisfy","the function at $x=0$")
+ bottomText2=TextMobject("This gives","$a_{ 0 }=1$")
+ bottomText3=TextMobject("Now it could be of","any slope!")
+ #show graphs of second approx
+ bottomText4=TextMobject("Hence the","slopes","should","even match")
+ #final graph
+ bottomText5=TextMobject("This gives","$a_{ 1 }=0$")
+ bottomText6=TextMobject("Since the rate of change of this slope","could vary")
+ #show third approx graphs
+ bottomText7=TextMobject("Hence the","rate of change of these slopes","should also be","same!")
+ #final graph
+ bottomText8=TextMobject("This gives","$a_{ 2 }=-1$")
+
+ bottomText1.set_color_by_tex_to_color_map({"satisfy":YELLOW})
+ bottomText2.set_color_by_tex_to_color_map({"$a_{ 0 }=1$":BLUE})
+ bottomText3.set_color_by_tex_to_color_map({"any slope!":YELLOW})
+ bottomText4.set_color_by_tex_to_color_map({"slopes":BLUE,"even match":YELLOW})
+ bottomText5.set_color_by_tex_to_color_map({"$a_{ 1 }=0$":BLUE})
+ bottomText6.set_color_by_tex_to_color_map({"could vary":YELLOW})
+ bottomText7.set_color_by_tex_to_color_map({"rate of change of these slopes":BLUE,"same!":YELLOW})
+ bottomText8.set_color_by_tex_to_color_map({"$a_{ 2 }=-1$":BLUE})
+
+ bottomText1.scale(0.4)
+ bottomText2.scale(0.5)
+ bottomText3.scale(0.4)
+ bottomText4.scale(0.4)
+ bottomText5.scale(0.5)
+ bottomText6.scale(0.4)
+ bottomText7.scale(0.4)
+ bottomText8.scale(0.5)
+
+ bottomText1.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText2.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText3.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText4.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText5.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText6.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText7.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText8.shift(4.5*RIGHT+2.5*DOWN)
+
+ self.play(Write(bottomText1))
+ self.wait(1)
+ self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2))
+ #change coeff in tn(x)
+ self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText2,bottomText3))
+ self.wait(0.5)
+ self.play(ReplacementTransform(firstApprox[0],secondApprox[1]))
+ self.wait(0.5)
+ self.play(ReplacementTransform(secondApprox[1],secondApprox[0]))
+ self.wait(0.5)
+ self.play(ReplacementTransform(secondApprox[0],secondApprox[2]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText3,bottomText4),FadeOut(secondApprox[2]))
+ self.wait(1)
+ self.play(Write(firstGraph),ReplacementTransform(bottomText4,bottomText5))
+ #change a1 coeff
+ self.play(ReplacementTransform(generalized_eq_coeff[1],coeff[1]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText5,bottomText6))
+ self.play(ReplacementTransform(firstGraph,thirdApprox[0]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[0],thirdApprox[1]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[1],thirdApprox[2]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[2],thirdApprox[3]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[3],thirdApprox[4]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText6,bottomText7))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText7,bottomText8),ReplacementTransform(thirdApprox[4],secondGraph))
+ self.play(ReplacementTransform(generalized_eq_coeff[2],coeff[2]))
+ self.wait(2)
+
+ textFinal=TextMobject("And so on..!")
+ textFinal.scale(0.7)
+ textFinal.shift(4.5*RIGHT+2.5*DOWN)
+ self.play(ReplacementTransform(bottomText8,textFinal))
+ self.wait(2.5)
+
+ finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$")
+ finalFormula.scale(0.8)
+ finalFormula.set_color_by_tex_to_color_map({"$T_{ n }(x)$":GREEN,"$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$":RED})
+
+ self.play(FadeOut(self.axes),FadeOut(textFinal),FadeOut(secondGraph),FadeOut(trTextGrup),FadeOut(mainfunction),FadeOut(fx),FadeOut(coeff[0]),FadeOut(coeff[1]),FadeOut(coeff[2]))
+ self.play(Write(finalFormula))
+ self.wait(2)
+ # self.play(ReplacementTransform(secondApprox[2],secondApprox[3]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[3],secondApprox[4]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[4],secondApprox[5]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[0],secondApprox[0]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[0],secondApprox[0]))
+ # self.wait(0.5)
+
+
+
+
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/script2.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/script2.py
new file mode 100644
index 0000000..b5d0a53
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/script2.py
@@ -0,0 +1,195 @@
+from manimlib.imports import*
+import math
+
+
+class intro(Scene):
+ def construct(self):
+ equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$")
+ equation.scale(2)
+ equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED})
+ text=TextMobject("at $a=1$")
+ text.scale(0.7)
+ text.shift(DOWN)
+
+ shiftText=TextMobject("(Here we shift the origin to the point $x=1$)")
+ shiftText.scale(0.6)
+ shiftText.shift(2.4*DOWN)
+
+
+ self.play(Write(equation))
+ self.wait(0.5)
+ self.play(FadeIn(text))
+ self.wait(0.7)
+ self.play(Write(shiftText))
+ self.wait(0.7)
+ self.play(FadeOut(equation),FadeOut(text),FadeOut(shiftText))
+
+
+def formFormula(coeff_list,variable_list):
+ coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ variable_list=[TextMobject("+"),TextMobject("${ (x-1) }$+"),TextMobject("${ (x-1) }^{ 2 }$")]
+ coeff_list[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ coeff_list[i].set_color(GOLD_A)
+ variable_list[i].next_to(coeff_list[i],buff=0.1)
+ if i!=2:
+ coeff_list[i+1].next_to(variable_list[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variable_list[2])
+ expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots)
+ #expansion.scale(0.7)
+ return expansion,coeff_list
+
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -8,
+ "y_max": 8,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-8, 8, 1),
+ }
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ generalized_eq_coeff=[]
+ variables_eq=[]
+ eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq)
+ trText1=TextMobject("let $T_{ n }(x)$:=")
+ eq.next_to(trText1)
+ trTextGrup=VGroup(trText1,eq)
+ trTextGrup.scale(0.5)
+ trTextGrup.to_corner(UP+RIGHT)
+ self.play(Write(trTextGrup))
+ self.setup_axes(animate=True)
+
+ fx=TextMobject("${ e }^{ -x^{ 2 } }$")
+ fx.scale(0.5)
+ fx.shift(ORIGIN+x_each_unit*7.5*RIGHT+y_each_unit*0.5*UP)
+ mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8)
+ self.play(ShowCreation(mainfunction))
+ self.play(FadeIn(fx))
+ self.wait(1.4)
+
+ coeff=[TextMobject("$e^{-1}$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")]
+ coeff[0].shift(3.33*UP+3.65*RIGHT)
+ coeff[0].scale(0.45)
+ coeff[1].shift(3.33*UP+4.13*RIGHT)
+ coeff[1].scale(0.275)
+ coeff[2].shift(3.33*UP+5.36*RIGHT)
+ coeff[2].scale(0.28)
+
+ for obj in coeff:
+ obj.set_color(GOLD_A)
+
+ firstApprox=[self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)]
+ secondApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5),
+ self.get_graph(lambda x:math.exp(-1)+3*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5),
+ self.get_graph(lambda x:math.exp(-1)-4*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)]
+ thirdApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
+ self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-0.1*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
+ self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_max=5.5,x_min=-5.5),
+ self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+0.5*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
+ self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5)]
+
+ firstGraph=self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)
+ secondGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)
+ thirdGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5)
+
+ bottomText1=TextMobject("Apply","$f(1)=T_{n}(1)$")
+ bottomText2=TextMobject("This gives","$a_{ 0 }=e^{-1}$")
+ bottomText3=TextMobject("Now it could be of","any slope!")
+ #show graphs of second approx
+ bottomText4=TextMobject("Hence","apply","$f'(1)=T_{n}'(1)$")
+ #final graph
+ bottomText5=TextMobject("This gives","$a_{ 1 }=-2e^{-1}$")
+ bottomText6=TextMobject("Since the rate of change of this slope","could vary")
+ #show third approx graphs
+ bottomText7=TextMobject("Hence also","apply","$f''(1)=T_{ n }''(1)$")
+ #final graph
+ bottomText8=TextMobject("This gives","$a_{ 2 }=e^{-1}$")
+
+ bottomText1.set_color_by_tex_to_color_map({"Apply":YELLOW})
+ bottomText2.set_color_by_tex_to_color_map({"$a_{ 0 }=e^{-1}$":BLUE})
+ bottomText3.set_color_by_tex_to_color_map({"any slope!":YELLOW})
+ bottomText4.set_color_by_tex_to_color_map({"apply":YELLOW})
+ bottomText5.set_color_by_tex_to_color_map({"$a_{ 1 }=-2e^{-1}$":BLUE})
+ bottomText6.set_color_by_tex_to_color_map({"could vary":YELLOW})
+ bottomText7.set_color_by_tex_to_color_map({"apply":YELLOW})
+ bottomText8.set_color_by_tex_to_color_map({"$a_{ 2 }=e^{-1}$":BLUE})
+
+ bottomText1.scale(0.4)
+ bottomText2.scale(0.5)
+ bottomText3.scale(0.4)
+ bottomText4.scale(0.4)
+ bottomText5.scale(0.5)
+ bottomText6.scale(0.4)
+ bottomText7.scale(0.4)
+ bottomText8.scale(0.5)
+
+ bottomText1.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText2.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText3.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText4.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText5.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText6.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText7.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText8.shift(4.5*RIGHT+2.5*DOWN)
+
+ self.play(Write(bottomText1))
+ self.wait(1)
+ self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2))
+ #change coeff in tn(x)
+ self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText2,bottomText3))
+ self.wait(0.5)
+ self.play(ReplacementTransform(firstApprox[0],secondApprox[1]))
+ self.wait(0.5)
+ self.play(ReplacementTransform(secondApprox[1],secondApprox[2]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[2],secondApprox[0]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText3,bottomText4),FadeOut(secondApprox[2]))
+ self.wait(1)
+ self.play(Write(secondGraph),ReplacementTransform(bottomText4,bottomText5))
+ #change a1 coeff
+ self.play(ReplacementTransform(generalized_eq_coeff[1],coeff[1]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText5,bottomText6))
+ self.play(ReplacementTransform(secondGraph,thirdApprox[0]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[0],thirdApprox[1]))
+ # self.wait(0.6)
+ # self.play(ReplacementTransform(thirdApprox[1],thirdApprox[2]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[1],thirdApprox[3]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[3],thirdApprox[4]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText6,bottomText7))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText7,bottomText8),ReplacementTransform(thirdApprox[4],thirdGraph))
+ self.play(ReplacementTransform(generalized_eq_coeff[2],coeff[2]))
+ self.wait(2)
+
+ textFinal=TextMobject("And so on..!")
+ textFinal.scale(0.7)
+ textFinal.shift(4.5*RIGHT+2.5*DOWN)
+ self.play(ReplacementTransform(bottomText8,textFinal))
+ self.wait(2.5)
+
+ finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(1)+f'(1)(x-1)+\\frac { f''(1) }{ 2! }(x-1)^2+..+\\frac { { f }^{ n }(1) }{ n! } { (x-1) }^{ n }$")
+ finalFormula.scale(0.8)
+ finalFormula.set_color_by_tex_to_color_map({"$T_{ n }(x)$":GREEN,"$f(1)+f'(1)(x-1)+\\frac { f''(1) }{ 2! }(x-1)^2+..+\\frac { { f }^{ n }(1) }{ n! } { (x-1) }^{ n }$":RED})
+
+ self.play(FadeOut(self.axes),FadeOut(textFinal),FadeOut(thirdGraph),FadeOut(trTextGrup),FadeOut(mainfunction),FadeOut(fx),FadeOut(coeff[0]),FadeOut(coeff[1]),FadeOut(coeff[2]))
+ self.play(Write(finalFormula))
+ self.wait(2) \ No newline at end of file
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/script3.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/script3.py
new file mode 100644
index 0000000..a2870d4
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/script3.py
@@ -0,0 +1,111 @@
+from manimlib.imports import*
+import math
+
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -8,
+ "y_max": 8,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-8, 8, 1),
+ }
+ def construct(self):
+
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ self.setup_axes(animate=True)
+
+ lnx=self.get_graph(lambda x:math.log2(x),color=RED,x_min=0.01,x_max=8)
+
+ bottomText1=TextMobject("Apply $f(x)=T_{n}(x)$")
+ bottomText2=TextMobject("Then apply $f'(x)=T_{n}'(x)$")
+ bottomText3=TextMobject("Then apply $f''(x)=T_{n}''(x)$")
+ bottomText4=TextMobject("and so on..")
+
+ bottomText1.scale(0.5)
+ bottomText2.scale(0.5)
+ bottomText3.scale(0.5)
+ bottomText4.scale(0.5)
+
+ bottomText1.shift(3*RIGHT+2*DOWN)
+ bottomText2.shift(3*RIGHT+2*DOWN)
+ bottomText3.shift(3*RIGHT+2*DOWN)
+ bottomText4.shift(3*RIGHT+2*DOWN)
+
+ equations=[self.get_graph(lambda x:math.log2(2),color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2,color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8,color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24,color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64,color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160,color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160-((x-2)**6)/384,color=BLUE)]
+
+ terms=[TextMobject("$T_{n}:=$"),TextMobject("$ln(2)$"),TextMobject("$+\\frac { x-2 }{ 2 } $"),TextMobject("$-\\frac { (x-2)^{2} }{ 8 }$"),TextMobject("+..")]
+ for obj in terms:
+ obj.scale(0.5)
+
+ terms[0].shift(3*UP+3*RIGHT)
+ terms[1].next_to(terms[0],buff=0.1)
+ terms[2].next_to(terms[1],buff=0.1)
+ terms[3].next_to(terms[2],buff=0.1)
+ terms[4].next_to(terms[3],buff=0.1)
+
+ self.play(ShowCreation(lnx))
+ self.wait(1)
+ self.play(Write(bottomText1))
+ self.wait(0.5)
+ self.play(ShowCreation(equations[0]),Write(terms[0]),Write(terms[1]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText1,bottomText2))
+ self.wait(0.5)
+ self.play(ReplacementTransform(equations[0],equations[1]),Write(terms[2]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText2,bottomText3))
+ self.wait(0.5)
+ self.play(ReplacementTransform(equations[1],equations[2]),Write(terms[3]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText3,bottomText4),Write(terms[4]))
+ self.wait(1.5)
+
+ self.play(FadeOut(terms[0]),FadeOut(terms[1]),FadeOut(terms[2]),FadeOut(terms[3]),FadeOut(terms[4]),FadeOut(bottomText4))
+
+ dline=DashedLine(start=ORIGIN+8*y_each_unit*UP,end=ORIGIN+8*y_each_unit*DOWN)
+ dline.shift(ORIGIN+x_each_unit*4*RIGHT)
+
+ bottomText5=TextMobject("Here","after $x=4$",", the graph","continuously diverges away","from $ln(x)$")
+ bottomText5.scale(0.3)
+ bottomText5.shift(4.5*RIGHT+2*DOWN)
+ bottomText5.set_color_by_tex_to_color_map({"after $x=4$":YELLOW,"continuously diverges away":BLUE})
+
+ self.play(Write(bottomText5),Write(dline))
+ self.wait(1)
+ self.play(ReplacementTransform(equations[2],equations[3]))
+ self.wait(0.3)
+ self.play(ReplacementTransform(equations[3],equations[4]))
+ self.wait(0.3)
+ self.play(ReplacementTransform(equations[4],equations[5]))
+ self.wait(0.3)
+ self.play(ReplacementTransform(equations[5],equations[6]),FadeOut(bottomText5))
+ self.wait(1)
+
+ circle=Circle(radius=ORIGIN+x_each_unit*2,color=PURPLE_E)
+ circle.shift(ORIGIN+RIGHT*x_each_unit*2)
+ radiusLine=Line(start=ORIGIN+x_each_unit*RIGHT*2,end=ORIGIN+x_each_unit*4*RIGHT,color=PURPLE_E)
+ radius=TextMobject("$R$")
+ radius.set_color(RED)
+ radius.scale(0.5)
+ radius.shift(ORIGIN+RIGHT*x_each_unit*2.45+DOWN*y_each_unit*0.6)
+
+ self.play(FadeOut(equations[6]),Write(circle))
+ self.wait(0.6)
+ self.play(Write(radiusLine))
+ self.play(FadeIn(radius))
+ self.wait(2) \ No newline at end of file
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/script4.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/script4.py
new file mode 100644
index 0000000..1f41c97
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/script4.py
@@ -0,0 +1,82 @@
+from manimlib.imports import*
+import math
+
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -8,
+ "y_max": 8,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-8, 8, 1),
+ }
+ def construct(self):
+
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ self.setup_axes(animate=True)
+ lnx=self.get_graph(lambda x:math.log2(x),color=RED,x_min=0.01,x_max=8)
+ equation=self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160-((x-2)**6)/384,color=BLUE)
+
+ terms=[TextMobject("$T_{n}:=$"),TextMobject("$ln(2)$"),TextMobject("$+\\frac { x-2 }{ 2 } $"),TextMobject("$-\\frac { (x-2)^{2} }{ 8 }$"),TextMobject("+..")]
+ for obj in terms:
+ obj.scale(0.5)
+
+ terms[0].shift(3*UP+3*RIGHT)
+ terms[1].next_to(terms[0],buff=0.1)
+ terms[2].next_to(terms[1],buff=0.1)
+ terms[3].next_to(terms[2],buff=0.1)
+ terms[4].next_to(terms[3],buff=0.1)
+
+ self.play(ShowCreation(lnx))
+ self.wait(1)
+ self.play(FadeIn(equation),FadeIn(terms[0]),FadeIn(terms[1]),FadeIn(terms[2]),FadeIn(terms[3]),FadeIn(terms[4]))
+ self.wait(1)
+
+ bottomText1=TextMobject("$R_{n}(x)=\\frac { d }{ dx } ($","area bounded","$)$")
+
+ bottomText1.set_color_by_tex_to_color_map({"area bounded":ORANGE})
+ #bottomText2.set_color_by_tex_to_color_map({"area bounded":BLUE})
+ arrow=TextMobject("$\downarrow$")
+ arrow.scale(2.5)
+ arrow.shift(ORIGIN+x_each_unit*RIGHT*9.5+UP*y_each_unit)
+ increasingText=TextMobject("Increases!")
+ increasingText.set_color(GREEN)
+ followupText=TextMobject("as n increase!")
+ followupText.scale(0.3)
+ followupText.shift(ORIGIN+x_each_unit*11*RIGHT+UP*y_each_unit*1.1)
+ increasingText.shift(ORIGIN+x_each_unit*11*RIGHT+UP*y_each_unit*1.6)
+ increasingText.scale(0.4)
+
+ bottomText1.scale(0.5)
+ #bottomText2.scale(0.5)
+ #bottomText3.scale(0.5)
+
+ bottomText1.shift(3.5*LEFT+2*DOWN)
+ #bottomText2.shift(3.5*LEFT+2.4*DOWN)
+ #bottomText3.shift(3.5*LEFT+2.8*DOWN)
+
+ dline=DashedLine(start=ORIGIN+8*y_each_unit*UP,end=ORIGIN+8*y_each_unit*DOWN)
+ dline.shift(ORIGIN+x_each_unit*4*RIGHT)
+
+ area1=self.get_riemann_rectangles(lnx,x_max=8,x_min=4,dx=0.01,start_color=BLUE,end_color=RED,stroke_width=0,fill_opacity=0.8)
+ area2=self.get_riemann_rectangles(equation,x_max=5.2,x_min=4,dx=0.025,start_color=BLACK,end_color=BLACK,stroke_width=0,fill_opacity=1)
+
+ self.play(Write(dline))
+ self.wait(0.5)
+ self.play(ShowCreation(area1),ShowCreation(area2),Write(bottomText1))
+ # self.play(Write(bottomText2))
+ # self.play(FadeIn(bottomText3))
+ self.play(Write(arrow))
+ self.wait(0.7)
+ self.play(Write(increasingText))
+ self.play(FadeIn(followupText))
+ self.wait(2)
+ \ No newline at end of file
diff --git a/FSF-2020/multivariable-functions-and-paritial-derivatives/README.md b/FSF-2020/linear-algebra/linear-transformations/Linear Transformations (Linear Maps)/Animation.py
index e69de29..e69de29 100644
--- a/FSF-2020/multivariable-functions-and-paritial-derivatives/README.md
+++ b/FSF-2020/linear-algebra/linear-transformations/Linear Transformations (Linear Maps)/Animation.py
diff --git a/FSF-2020/linear-algebra/linear-transformations/README.md b/FSF-2020/linear-algebra/linear-transformations/README.md
new file mode 100644
index 0000000..692201e
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/README.md
@@ -0,0 +1,9 @@
+# Contributer: Archit Sangal
+My Github Account : <a href="https://github.com/architsangal">architsangal</a>
+<br/></br>
+## Sub-Topics Covered:
++ Vector Space Homomorphisms (Linear Maps)
++ The Four Fundamental Subspaces
++ Rank-Nullity Theorem
++ Orthonormal basis
++ Gramm-Schmidt Orthogonalization Process
diff --git a/FSF-2020/series-and-transformations/README.md b/FSF-2020/linear-algebra/vector-spaces/README.md
index e69de29..e69de29 100644
--- a/FSF-2020/series-and-transformations/README.md
+++ b/FSF-2020/linear-algebra/vector-spaces/README.md
diff --git a/FSF-2020/triple-and-surface-integrals/README.md b/FSF-2020/triple-and-surface-integrals/README.md
deleted file mode 100644
index e69de29..0000000
--- a/FSF-2020/triple-and-surface-integrals/README.md
+++ /dev/null
diff --git a/FSF-2020/vector-spaces/README.md b/FSF-2020/vector-spaces/README.md
deleted file mode 100644
index e69de29..0000000
--- a/FSF-2020/vector-spaces/README.md
+++ /dev/null