summaryrefslogtreecommitdiff
path: root/FSF-2020
diff options
context:
space:
mode:
Diffstat (limited to 'FSF-2020')
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/README.md14
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file4_Relative_Maximum_and_Relative_Minimum.gifbin0 -> 1587319 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file4_Relative_Maximum_and_Relative_Minimum.py51
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file4_Types_of_critical_points.gifbin3864765 -> 0 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file4_Types_of_critical_points.py134
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file5_Saddle_Point.gifbin0 -> 7136893 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file5_Saddle_Point.py71
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file6_f(x,y)=(y-x)(1-2x-3y).gif (renamed from FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file5_f(x,y)=(y-x)(1-2x-3y).gif)bin1522415 -> 1522415 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file6_f(x,y)=(y-x)(1-2x-3y).py (renamed from FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file5_f(x,y)=(y-x)(1-2x-3y).py)0
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/README.md21
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file2_Degenerate_Hessian_Matrix.gifbin3202838 -> 0 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file2_Degenerate_Hessian_Matrix.py52
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file2_Nondegenerate_Hessian_Matrix.gifbin0 -> 2047897 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file2_Nondegenerate_Hessian_Matrix.py158
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file3_Degenerate_Hessian_Matrix.gifbin0 -> 652724 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file3_Degenerate_Hessian_Matrix.py56
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file3_Nondegenerate_Hessian_Matrix.gifbin8724439 -> 0 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file3_Nondegenerate_Hessian_Matrix.py145
18 files changed, 367 insertions, 335 deletions
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/README.md b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/README.md
index 5bd9cc5..857d298 100644
--- a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/README.md
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/README.md
@@ -19,14 +19,20 @@
<br/></br>
<br/></br>
-<tab>file4_Types_of_critical_points
+<tab>file4_Relative_Maximum_and_Relative_Minimum
-![file4_Types_of_critical_points](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file4_Types_of_critical_points.gif?raw=true)
+![file4_Relative_Maxima_and_Relative_Minima](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file4_Relative_Maximum_and_Relative_Minimum.gif?raw=true)
<br/></br>
<br/></br>
-<tab>file5_f(x,y)=(y-x)(1-2x-3y)
+<tab>file5_Saddle_Point
-![file5_f(x,y)=(y-x)(1-2x-3y)](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file5_f(x%2Cy)%3D(y-x)(1-2x-3y).gif?raw=true)
+![file5_Saddle_Point](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file5_Saddle_Point.gif?raw=true)
+<br/></br>
+<br/></br>
+
+<tab>file6_f(x,y)=(y-x)(1-2x-3y)
+
+![file6_f(x,y)=(y-x)(1-2x-3y)](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file6_f(x%2Cy)%3D(y-x)(1-2x-3y).gif?raw=true)
<br/></br>
<br/></br>
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file4_Relative_Maximum_and_Relative_Minimum.gif b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file4_Relative_Maximum_and_Relative_Minimum.gif
new file mode 100644
index 0000000..6b93359
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file4_Relative_Maximum_and_Relative_Minimum.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file4_Relative_Maximum_and_Relative_Minimum.py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file4_Relative_Maximum_and_Relative_Minimum.py
new file mode 100644
index 0000000..3bd810d
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file4_Relative_Maximum_and_Relative_Minimum.py
@@ -0,0 +1,51 @@
+from manimlib.imports import*
+import math as m
+
+#---- locating extrema of a funtion using critical points
+class Extrema(ThreeDScene):
+ def construct(self):
+
+ h_text = TextMobject("Relative Maximum and Relative Minimum",color = GREEN)
+
+ axes = ThreeDAxes()
+ label_x = TextMobject("$x$").shift([5.5,-0.3,0]) #---- x axis
+ label_y = TextMobject("$y$").shift([-0.3,5.5,0]).rotate(-4.5) #---- y axis
+
+ #---- f(x,y) = 5(x+y)e^(-x^2-y^2)
+ surface = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ 5*(u+v)*m.exp(-u**2-v**2)
+ ]),u_min = -PI, u_max = PI, v_min = -PI, v_max = PI).set_color(TEAL).shift([0,0,0]).fade(0.4)
+
+ d1 = Dot(color = YELLOW).shift([0.5,0.5,3.02]) #---- critical point for maxima
+ l1 = Line([0.5,0.5,0.1],[0.5,0.5,3],color = YELLOW)
+
+ d2 = Dot(color = YELLOW).shift([-1.15,0,-2.98]) #---- critical point for minima
+ l2 = Line([-1.15,0,0],[-1.15,0,-2.98],color = YELLOW)
+
+ max_text = TextMobject("Relative Maximum").shift(3.1*UP+1.5*RIGHT).scale(0.5)
+ min_text = TextMobject("Relative Minimum").shift(3.1*DOWN+1.5*LEFT).scale(0.5)
+
+ self.add_fixed_in_frame_mobjects(h_text)
+ self.wait(1)
+ self.wait(1)
+ self.play(FadeOut(h_text))
+ self.wait(1)
+ self.set_camera_orientation(phi = 100*DEGREES, theta = -40*DEGREES)
+ self.add(axes)
+ self.add(label_x)
+ self.add(label_y)
+ self.play(Write(surface))
+ self.wait(1)
+ self.play(Write(l1),Write(d1))
+ self.add_fixed_in_frame_mobjects(max_text)
+ self.wait(1)
+ self.play(Write(l2),Write(d2))
+ self.add_fixed_in_frame_mobjects(min_text)
+ self.wait(1)
+ self.wait(1)
+ self.play(FadeOut(l1),FadeOut(d1),FadeOut(l2),FadeOut(d2),FadeOut(max_text),FadeOut(min_text))
+ self.begin_ambient_camera_rotation(rate = 0.3)
+ self.wait(3)
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file4_Types_of_critical_points.gif b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file4_Types_of_critical_points.gif
deleted file mode 100644
index 91e7084..0000000
--- a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file4_Types_of_critical_points.gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file4_Types_of_critical_points.py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file4_Types_of_critical_points.py
deleted file mode 100644
index 656fb68..0000000
--- a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file4_Types_of_critical_points.py
+++ /dev/null
@@ -1,134 +0,0 @@
-from manimlib.imports import*
-
-
-#---- Relative Maxima
-class firstScene(ThreeDScene):
- def construct(self):
-
- r_text = TextMobject("Relative Maximum at ORIGIN",color ='#87CEFA')
-
- axes = ThreeDAxes()
- label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis
- label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis
-
- #----graph of the function f(x,y) = -x**2-y**2
- surface = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- -u**2-v**2
- ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [YELLOW_B,YELLOW_C,YELLOW_D, YELLOW_E]).scale(1.5).shift([0,0,-0.51]).fade(0.3)
-
- f_text = TextMobject("$f(x,y) = -x^2-y^2$").to_corner(UL)
-
- d = Dot(color = "#800000").shift([0,0,0]) #---- critical point
-
- self.set_camera_orientation(phi = 75 * DEGREES, theta = 45 * DEGREES)
- self.add_fixed_in_frame_mobjects(r_text)
- self.wait(1)
- self.play(FadeOut(r_text))
- self.begin_ambient_camera_rotation(rate = 0.1)
- self.add(axes)
- self.add(label_x)
- self.add(label_y)
- self.play(Write(surface),Write(d))
- self.add_fixed_in_frame_mobjects(f_text)
- self.wait(2)
- self.play(FadeOut(axes),FadeOut(surface),FadeOut(f_text),FadeOut(d),FadeOut(label_x),FadeOut(label_y))
-
-
-#---- Relative Minima
-class secondScene(ThreeDScene):
- def construct(self):
-
- r2_text = TextMobject("Relative Minimum at ORIGIN",color ='#87CEFA')
-
- axes = ThreeDAxes()
- label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis
- label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis
-
- #----graph of the function g(x,y) = x**2+y**2
- surface = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- u**2+v**2
- ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors =[TEAL_B,TEAL_C,TEAL_D,TEAL_E]).scale(1.5).shift([0,0,0.55]).fade(0.1)
-
- d = Dot(color = "#800000").shift([0,0,0]) #---- critical point
-
- g_text = TextMobject("$f(x,y) = x^2+y^2$").to_corner(UL)
-
- self.set_camera_orientation(phi = 75 * DEGREES, theta = 45 * DEGREES)
- self.add_fixed_in_frame_mobjects(r2_text)
- self.wait(1)
- self.play(FadeOut(r2_text))
- self.begin_ambient_camera_rotation(rate = 0.1)
- self.add(axes)
- self.add(label_x)
- self.add(label_y)
- self.play(Write(surface),Write(d))
- self.add_fixed_in_frame_mobjects(g_text)
- self.wait(2)
- self.play(FadeOut(axes),FadeOut(surface),FadeOut(g_text),FadeOut(d),FadeOut(label_x),FadeOut(label_y))
-
-
-
-#---- Saddle Point
-class thirdScene(ThreeDScene):
- def construct(self):
-
- r3_text = TextMobject("Saddle Point", color = '#87CEFA')
-
- axes = ThreeDAxes()
- label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis
- label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis
-
- #---- graph of function h(x,y) = -x^2 + y^2
- surface = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- -u**2+v**2
- ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1,checkerboard_colors = [PURPLE_B,PURPLE_C,PURPLE_D,PURPLE_E]).scale(1.5).shift([0,0,0])
-
- #---- curve(trace) along x axis
- curve_x = ParametricSurface(
- lambda u, v: np.array([
- u*0.4,
- v,
- v**2
- ]),v_min = -1, v_max = 1, u_min = -0.2, u_max = 0.2).shift([0,0,0.34]).scale(1.5).set_color("#800000")
-
- #---- curve(trace) along y axis
- curve_y = ParametricSurface(
- lambda u, v: np.array([
- u,
- v*0.4,
- -u**2
- ]),v_min = -0.2, v_max = 0.2, u_min = -1, u_max = 1).scale(1.6).shift([0,0,-0.1]).set_color("#800000")
-
- d = Dot(color = GREEN).shift([0,0,0.1]) #---- critical point
-
- h_text = TextMobject("$f(x,y) = -x^2+y^2$").to_corner(UL)
-
- self.add_fixed_in_frame_mobjects(r3_text)
- self.wait(1)
- self.set_camera_orientation(phi = 50 * DEGREES,theta = 45 * DEGREES)
- self.play(FadeOut(r3_text))
- self.add(axes)
- self.add(label_x)
- self.add(label_y)
- self.begin_ambient_camera_rotation(rate = 0.3)
- self.add_fixed_in_frame_mobjects(h_text)
- self.play(Write(surface))
- self.wait(1)
- self.add(curve_y)
- self.add(d)
- self.wait(1)
- self.play(FadeOut(curve_y))
- self.wait(1)
- self.add(curve_x)
- self.wait(1)
- self.add(d)
- self.wait(1)
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file5_Saddle_Point.gif b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file5_Saddle_Point.gif
new file mode 100644
index 0000000..7300f3a
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file5_Saddle_Point.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file5_Saddle_Point.py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file5_Saddle_Point.py
new file mode 100644
index 0000000..67dbb18
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file5_Saddle_Point.py
@@ -0,0 +1,71 @@
+from manimlib.imports import*
+import math as m
+
+#---- saddle point of a function
+class SaddlePoint(ThreeDScene):
+ def construct(self):
+
+ h_text = TextMobject("Saddle Point",color = GREEN)
+
+ axes = ThreeDAxes()
+ label_x = TextMobject("$x$").shift([5.5,-0.3,0]) #---- x axis
+ label_y = TextMobject("$y$").shift([-0.3,5.5,0]).rotate(-4.5) #---- y axis
+
+ #---- f(x,y) = -x^2-y^2
+ surface = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ u**2-v**2
+ ]),u_min = -1, u_max = 1, v_min = -1, v_max = 1,checkerboard_colors = [BLUE_B,BLUE_C,BLUE_D,BLUE_E]).shift([0,0,0]).scale(3)
+
+ #---- curve(trace) along y axis
+ curve_x = ParametricSurface(
+ lambda u, v: np.array([
+ u*0.1,
+ v,
+ v**2
+ ]),v_min = -1, v_max = 1, u_min = -0.2, u_max = 0.2).shift([0,0,-2]).scale(3.1).set_color("#800000").rotate(m.radians(180),UP)
+
+ x_text = TextMobject("A dip at critical point along x axis").scale(0.5).to_corner(UL)
+
+ #---- curve(trace) along x axis
+ curve_y = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v*0.1,
+ -u**2
+ ]),v_min = -0.2, v_max = 0.2, u_min = -1, u_max = 1).scale(3).shift([0.1,0,2.2]).set_color("#800000").rotate(m.radians(182),DOWN)
+
+ y_text = TextMobject("A peak at critical point along y axis").scale(0.5).to_corner(UL)
+
+ d = Dot(color = YELLOW).shift([0,-0.22,0]) #---- critical point(saddle point)
+
+ self.add_fixed_in_frame_mobjects(h_text)
+ self.wait(1)
+ self.play(FadeOut(h_text))
+ self.wait(1)
+ self.set_camera_orientation(phi = 75*DEGREES, theta = 40*DEGREES)
+ self.add(axes)
+ self.add(label_x)
+ self.add(label_y)
+ self.play(Write(surface))
+ self.wait(1)
+ self.move_camera(phi = 45*DEGREES, theta = 70*DEGREES)
+ self.add(curve_y)
+ self.play(Write(d))
+ self.wait(1)
+ self.add_fixed_in_frame_mobjects(x_text)
+ self.wait(1)
+ self.wait(1)
+ self.play(FadeOut(curve_y),FadeOut(d),FadeOut(x_text))
+ self.wait(1)
+ self.move_camera(phi = 40*DEGREES, theta = 30*DEGREES)
+ self.add(curve_x)
+ self.play(Write(d))
+ self.wait(1)
+ self.add_fixed_in_frame_mobjects(y_text)
+ self.begin_ambient_camera_rotation(rate = 0.3)
+ self.wait(3)
+ self.play(FadeOut(curve_x),FadeOut(d),FadeOut(y_text))
+ self.wait(1)
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file5_f(x,y)=(y-x)(1-2x-3y).gif b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file6_f(x,y)=(y-x)(1-2x-3y).gif
index 4bc92f8..4bc92f8 100644
--- a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file5_f(x,y)=(y-x)(1-2x-3y).gif
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file6_f(x,y)=(y-x)(1-2x-3y).gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file5_f(x,y)=(y-x)(1-2x-3y).py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file6_f(x,y)=(y-x)(1-2x-3y).py
index 41c3b61..41c3b61 100644
--- a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file5_f(x,y)=(y-x)(1-2x-3y).py
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file6_f(x,y)=(y-x)(1-2x-3y).py
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/README.md b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/README.md
new file mode 100644
index 0000000..e9cc918
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/README.md
@@ -0,0 +1,21 @@
+<h1><div align=”center”><b>SubTopic: The Second Derivative Test</b></h1></div>
+<br/></br>
+
+<tab>file1_Second_order_partial_derivatives
+
+![file1_Second_order_partial_derivatives](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file1_Second_order_partial_derivatives.gif?raw=true)
+<br/></br>
+<br/></br>
+
+<tab>file2_Nondegenerate_Hessian_Matrix
+
+![file2_Nondegenerate_Hessian_Matrix](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file2_Nondegenerate_Hessian_Matrix.gif?raw=true)
+<br/></br>
+<br/></br>
+
+<tab>file3_Degenerate_Hessian_Matrix
+
+![file3_Degenerate_Hessian_Matrix](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file3_Degenerate_Hessian_Matrix.gif?raw=true)
+<br/></br>
+<br/></br>
+
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file2_Degenerate_Hessian_Matrix.gif b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file2_Degenerate_Hessian_Matrix.gif
deleted file mode 100644
index d49cdd5..0000000
--- a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file2_Degenerate_Hessian_Matrix.gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file2_Degenerate_Hessian_Matrix.py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file2_Degenerate_Hessian_Matrix.py
deleted file mode 100644
index c1e3516..0000000
--- a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file2_Degenerate_Hessian_Matrix.py
+++ /dev/null
@@ -1,52 +0,0 @@
-from manimlib.imports import*
-
-class firstscene(Scene):
- def construct(self):
-
- h_text = TextMobject("Degenerate Hessian Matrix", color = RED).scale(1).shift(UP)
-
-
- f_text = TextMobject("$f(x,y) = 2x^3+y^3$", color = TEAL).scale(1).to_corner(UL)
- c_text = TextMobject("Critical Point: $(0,0)$", color = TEAL).scale(1).next_to(f_text).shift(DOWN+4.3*LEFT)
- m_text = TextMobject("\\begin{equation*} D_2(x,y)= \\begin{vmatrix} 12x\\space & 0\\space \\\\ 0 & 6y \\end{vmatrix} \\end{equation*}",color = YELLOW)
- d_text = TextMobject("\\begin{equation*} D_2(0,0)= \\begin{vmatrix} 0 \\space & 0\\space \\\\ 0 & 0 \\end{vmatrix} \\end{equation*}",color = PURPLE)
-
-
- t_text = TextMobject("$D_2 = 0$(Inconclusive)", color = TEAL).scale(1).shift(2*DOWN)
-
- self.play(ShowCreation(h_text))
- self.wait(1)
- self.play(FadeOut(h_text))
- self.wait(1)
- self.play(ShowCreation(f_text))
- self.wait(1)
- self.play(ShowCreation(c_text))
- self.wait(1)
- self.play(ShowCreation(m_text))
- self.wait(2)
- self.play(ReplacementTransform(m_text,d_text))
- self.wait(1)
- self.play(ShowCreation(t_text))
- self.wait(2)
-
-
-class SecondScene(ThreeDScene):
- def construct(self):
- axes = ThreeDAxes()
-
- f = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- (2*u**3)+v**3
- ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[TEAL_C,YELLOW_D,BLUE_E],
- resolution=(20, 20)).scale(1)
-
- self.set_camera_orientation(phi=25 * DEGREES,theta = 80*DEGREES)
- self.begin_ambient_camera_rotation(rate=0.1)
-
- f_text = TextMobject("$f(x,y) = 2x^3+y^3$",color = ORANGE).shift(2*DOWN+2*RIGHT).scale(0.8)
- self.add_fixed_in_frame_mobjects(f_text)
- self.add(axes)
- self.play(Write(f))
- self.wait(2)
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file2_Nondegenerate_Hessian_Matrix.gif b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file2_Nondegenerate_Hessian_Matrix.gif
new file mode 100644
index 0000000..0d58b4f
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file2_Nondegenerate_Hessian_Matrix.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file2_Nondegenerate_Hessian_Matrix.py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file2_Nondegenerate_Hessian_Matrix.py
new file mode 100644
index 0000000..32c1559
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file2_Nondegenerate_Hessian_Matrix.py
@@ -0,0 +1,158 @@
+from manimlib.imports import*
+import math as m
+
+class Minima(ThreeDScene):
+ def construct(self):
+
+ heading = TextMobject("Nondegenerate Hessian Matrix",color = BLUE)
+
+ axes = ThreeDAxes()
+ label_x = TextMobject("$x$").shift([5.5,-0.3,0]) #---- x axis
+ label_y = TextMobject("$y$").shift([-0.3,5.5,0]).rotate(-4.5) #---- y axis
+
+ h_text = TextMobject("Case 1: $\\frac{\\partial^2 f}{\\partial x^2}>0$ and $\\frac{\\partial^2 f}{\\partial y^2}>0$").scale(1)
+
+ #---- determiniant of Hessian Matrix
+ hessian_surface = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ -0.5*m.exp(-u**2-v**2)
+ ]),u_min = -PI, u_max = PI, v_min = -PI, v_max =PI).set_color(TEAL).shift([0,0,0]).scale(1).fade(0.2)
+
+ det_text= TextMobject("$det \\hspace{1mm} H = (\\frac{\\partial^2 f}{\\partial x^2})(\\frac{\\partial^2 f}{\\partial y^2})-(\\frac{\\partial^2 f}{\\partial x \\partial y})^2 $").to_corner(UL).scale(0.7)
+
+ #---- function f(x,y)
+ f_surface = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ u**2+v**2
+ ]),u_min = -1.3, u_max = 1.3, v_min = -1.3, v_max = 1.3).set_color(TEAL).shift([0,0,-0.5])
+
+ f_text= TextMobject("surface of the function").to_corner(UL).scale(0.8)
+
+ d = Dot(color = "#800000").shift([0,0,-0.52]) #---- critical point
+
+ self.set_camera_orientation(phi = 75*DEGREES, theta = 40*DEGREES)
+ self.add_fixed_in_frame_mobjects(heading)
+ self.wait(1)
+ self.play(FadeOut(heading))
+ self.wait(1)
+ self.add_fixed_in_frame_mobjects(h_text)
+ self.wait(1)
+ self.play(FadeOut(h_text))
+ self.wait(1)
+ self.add(axes)
+ self.add(label_x)
+ self.add(label_y)
+ self.play(Write(hessian_surface))
+ self.wait(1)
+ self.add_fixed_in_frame_mobjects(det_text)
+ self.move_camera(phi = 90*DEGREES, theta= 60*DEGREES)
+ self.play(Write(d))
+ self.wait(1)
+ self.play(FadeOut(det_text),ReplacementTransform(hessian_surface,f_surface))
+ self.wait(1)
+ self.add_fixed_in_frame_mobjects(f_text)
+ self.wait(1)
+ self.play(FadeOut(f_text),FadeOut(f_surface),FadeOut(axes),FadeOut(label_x),FadeOut(label_y),FadeOut(d))
+
+class Maxima(ThreeDScene):
+ def construct(self):
+
+ axes = ThreeDAxes()
+ label_x = TextMobject("$x$").shift([5.5,-0.3,0]) #---- x axis
+ label_y = TextMobject("$y$").shift([-0.3,5.5,0]).rotate(-4.5) #---- y axis
+
+ h_text = TextMobject("Case 2: $\\frac{\\partial^2 f}{\\partial x^2}<0$ and $\\frac{\\partial^2 f}{\\partial y^2}<0$").scale(1)
+
+ #---- determiniant of Hessian Matrix
+ hessian_surface = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ 0.5*m.exp(-u**2-v**2)
+ ]),u_min = -PI, u_max = PI, v_min = -PI, v_max =PI).set_color(TEAL).shift([0,0,0]).scale(1).fade(0.2)
+
+ det_text= TextMobject("$det \\hspace{1mm} H = (\\frac{\\partial^2 f}{\\partial x^2})(\\frac{\\partial^2 f}{\\partial y^2})-(\\frac{\\partial^2 f}{\\partial x \\partial y})^2 $").to_corner(UL).scale(0.7)
+
+ #---- function g(x,y)
+ g_surface = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ -u**2-v**2
+ ]),u_min = -1.3, u_max = 1.3, v_min = -1.3, v_max = 1.3).set_color(TEAL).shift([0,0,0.5])
+
+ g_text= TextMobject("surface of the function").to_corner(UL).scale(0.8)
+
+ d = Dot(color = "#800000").shift([0,0,0.5]) #---- critical point
+
+ self.set_camera_orientation(phi = 75*DEGREES, theta = 40*DEGREES)
+ self.add_fixed_in_frame_mobjects(h_text)
+ self.wait(1)
+ self.play(FadeOut(h_text))
+ self.wait(1)
+ self.add(axes)
+ self.add(label_x)
+ self.add(label_y)
+ self.play(Write(hessian_surface))
+ self.wait(1)
+ self.add_fixed_in_frame_mobjects(det_text)
+ self.play(Write(d))
+ self.wait(1)
+ self.play(FadeOut(det_text),ReplacementTransform(hessian_surface,g_surface))
+ self.wait(1)
+ self.add_fixed_in_frame_mobjects(g_text)
+ self.wait(1)
+ self.play(FadeOut(g_text),FadeOut(g_surface),FadeOut(axes),FadeOut(label_x),FadeOut(label_y),FadeOut(d))
+
+class SaddlePoint(ThreeDScene):
+ def construct(self):
+
+ axes = ThreeDAxes()
+ label_x = TextMobject("$x$").shift([5.5,-0.3,0]) #---- x axis
+ label_y = TextMobject("$y$").shift([-0.3,5.5,0]).rotate(-4.5) #---- y axis
+
+ h_text = TextMobject("Case 3: $\\frac{\\partial^2 f}{\\partial x^2}$ and $\\frac{\\partial^2 f}{\\partial y^2}$ have opposite signs").scale(1)
+
+ #---- determiniant of Hessian Matrix
+ hessian_surface = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ m.exp(0.5*u**2-0.5*v**2)
+ ]),u_min = -1.2, u_max = 1.2, v_min = -2.5, v_max = 2.5).set_color(TEAL).shift([0,0,-1]).scale(1).fade(0.2)
+
+ det_text= TextMobject("$det \\hspace{1mm} H = (\\frac{\\partial^2 f}{\\partial x^2})(\\frac{\\partial^2 f}{\\partial y^2})-(\\frac{\\partial^2 f}{\\partial x \\partial y})^2 $").to_corner(UL).scale(0.7)
+
+ #---- function p(x,y)
+ p_surface = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ u**2-v**2
+ ]),u_min = -1, u_max = 1, v_min = -1, v_max =1).set_color(TEAL).shift([0,0,0]).scale(2)
+
+ p_text= TextMobject("surface of the function").to_corner(UL).scale(0.8)
+
+ d = Dot(color = "#800000").shift([0,0,0]) #---- critical point
+
+ self.set_camera_orientation(phi = 80*DEGREES, theta = 60*DEGREES)
+ self.add_fixed_in_frame_mobjects(h_text)
+ self.wait(1)
+ self.play(FadeOut(h_text))
+ self.wait(1)
+ self.add(axes)
+ self.add(label_x)
+ self.add(label_y)
+ self.wait(1)
+ self.play(Write(hessian_surface))
+ self.play(Write(d))
+ self.wait(1)
+ self.add_fixed_in_frame_mobjects(det_text)
+ self.wait(2)
+ self.play(FadeOut(det_text),ReplacementTransform(hessian_surface,p_surface))
+ self.add_fixed_in_frame_mobjects(p_text)
+ self.wait(2)
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file3_Degenerate_Hessian_Matrix.gif b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file3_Degenerate_Hessian_Matrix.gif
new file mode 100644
index 0000000..36fd25c
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file3_Degenerate_Hessian_Matrix.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file3_Degenerate_Hessian_Matrix.py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file3_Degenerate_Hessian_Matrix.py
new file mode 100644
index 0000000..732ef4f
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file3_Degenerate_Hessian_Matrix.py
@@ -0,0 +1,56 @@
+from manimlib.imports import*
+import math as m
+
+class DegenerateHessian(ThreeDScene):
+ def construct(self):
+
+ heading = TextMobject("Degenerate Hessian Matrix",color = BLUE)
+
+ h_text = TextMobject("For $det \\hspace{1mm} H = 0$, the surface of the function at the critical point would be flat.").scale(0.7)
+
+ axes = ThreeDAxes()
+ label_x = TextMobject("$x$").shift([5.5,-0.3,0]) #---- x axis
+ label_y = TextMobject("$y$").shift([-0.3,5.5,0]).rotate(-4.5) #---- y axis
+
+ #---- function f(x,y)
+ f_surface = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ -4*u**3-v**3
+ ]),u_min = -0.8, u_max = 0.8, v_min = -0.8, v_max = 0.8).set_color(TEAL).shift([0,1,0]).scale(1.3)
+
+ #---- function f(x,y)
+ zoom_surface = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ -4*u**3-v**3
+ ]),u_min = -0.8, u_max = 0.8, v_min = -0.8, v_max = 0.8).set_color(TEAL).shift([0,1,0]).scale(2.5)
+
+ f_text= TextMobject("surface of the function").to_corner(UL).scale(0.5)
+
+ d = Dot(color = "#800000").shift([0,1,0]) #---- critical point
+ d2 = Dot(color = "#800000").shift([0,0.7,0]) #---- critical point
+ plane = Rectangle(color = YELLOW,fill_opacity= 0.3).shift([0,0.6,0]).rotate(m.radians(90)).scale(0.4)
+
+ self.set_camera_orientation(phi = 70*DEGREES, theta = 45*DEGREES)
+ self.add_fixed_in_frame_mobjects(heading)
+ self.wait(1)
+ self.play(FadeOut(heading))
+ self.add_fixed_in_frame_mobjects(h_text)
+ self.wait(2)
+ self.play(FadeOut(h_text))
+ self.wait(1)
+ self.add(axes)
+ self.add(label_x)
+ self.add(label_y)
+ self.play(Write(f_surface))
+ self.add_fixed_in_frame_mobjects(f_text)
+ self.wait(1)
+ self.play(Write(d))
+ self.wait(1)
+ self.play(ReplacementTransform(f_surface,zoom_surface),ReplacementTransform(d,d2))
+ self.wait(2)
+ self.play(Write(plane))
+ self.wait(1)
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file3_Nondegenerate_Hessian_Matrix.gif b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file3_Nondegenerate_Hessian_Matrix.gif
deleted file mode 100644
index 2b0acb3..0000000
--- a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file3_Nondegenerate_Hessian_Matrix.gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file3_Nondegenerate_Hessian_Matrix.py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file3_Nondegenerate_Hessian_Matrix.py
deleted file mode 100644
index 3056842..0000000
--- a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file3_Nondegenerate_Hessian_Matrix.py
+++ /dev/null
@@ -1,145 +0,0 @@
-from manimlib.imports import*
-
-class firstScene(Scene):
- def construct(self):
-
- e_text = TextMobject("Case 3: One positive and one negative eigenvalue", color = YELLOW).scale(1).shift(3*UP+1*LEFT)
- f_text = TextMobject("$f(x,y) = x^2-2y^2-2x$").scale(0.8).next_to(e_text).shift(6*LEFT+DOWN)
- c_text = TextMobject("Critical Point: $(1,0)$").scale(0.8).next_to(f_text).shift(DOWN+4*LEFT)
- d_text = TextMobject("\\begin{equation*} D_2(1,0)= \\begin{vmatrix} 2 \\space & 0\\space \\\\ 0 & -4 \\end{vmatrix} \\end{equation*}",color = GREEN).scale(0.9)
-
- t_text = TextMobject("$D_2 = -8<0$ (Saddle Point)", color = BLUE).scale(0.9).shift(2*DOWN)
-
- self.play(ShowCreation(e_text))
- self.wait(1)
- self.play(ShowCreation(f_text))
- self.wait(1)
- self.play(ShowCreation(c_text))
- self.wait(1)
- self.play(ShowCreation(d_text))
- self.wait(1)
- self.play(ShowCreation(t_text))
- self.wait(2)
-
-class SaddlePoint(ThreeDScene):
- def construct(self):
- axes = ThreeDAxes()
- f = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- u**2-2*v**2-2*u
- ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[RED_C,PURPLE_D,YELLOW_E],
- resolution=(20, 20)).scale(1)
-
- self.set_camera_orientation(phi=35 * DEGREES,theta=80*DEGREES)
- self.begin_ambient_camera_rotation(rate=0.4)
-
- f_text = TextMobject("$f(x,y) = x^2-2y^2-2x$",color = GREEN).shift(2*DOWN+2*RIGHT).scale(0.8)
- self.add_fixed_in_frame_mobjects(f_text)
- self.add(axes)
- self.play(Write(f))
- self.wait(3)
-
-
-class secondScene(Scene):
- def construct(self):
-
- h_text = TextMobject("NonDegenerate Hessian Matrix", color = GREEN).scale(1).shift(UP)
- e_text = TextMobject("Case 1: Two positive eigenvalues", color = PINK).scale(1).shift(3*UP+2*LEFT)
- f_text = TextMobject("$f(x,y) = 2x^2+3y^2-2yx$",color = TEAL).scale(0.8).next_to(e_text).shift(6*LEFT+DOWN)
- c_text = TextMobject("Critical Point: $(0,0)$",color = TEAL).scale(0.8).next_to(f_text).shift(DOWN+4.5*LEFT)
- d_text = TextMobject("\\begin{equation*} D_2(0,0)= \\begin{vmatrix} 4 \\space & -2\\space \\\\ -2 & 6 \\end{vmatrix} \\end{equation*}",color = PINK).scale(0.9)
-
- t_text = TextMobject("$D_2 = 20>0$ (Relative Maxima or Relative Minima)", color = YELLOW).scale(0.9).shift(1*DOWN)
- tm_text = TextMobject("$D_1 = \\frac{\\partial^2 f}{\\partial x^2} =4 >0$ (Relative Minima)", color = YELLOW).scale(0.9).shift(2*DOWN)
-
-
- self.play(ShowCreation(h_text))
- self.wait(1)
- self.play(FadeOut(h_text))
- self.wait(1)
- self.play(ShowCreation(e_text))
- self.wait(1)
- self.play(ShowCreation(f_text))
- self.wait(1)
- self.play(ShowCreation(c_text))
- self.wait(1)
- self.play(ShowCreation(d_text))
- self.wait(1)
- self.play(ShowCreation(t_text))
- self.wait(1)
- self.play(ShowCreation(tm_text))
- self.wait(2)
- self.play(FadeOut(e_text),FadeOut(f_text),FadeOut(c_text),FadeOut(d_text),FadeOut(t_text),FadeOut(tm_text))
-
-class Minima(ThreeDScene):
- def construct(self):
- axes = ThreeDAxes()
- f = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- 2*u**2+3*v**2-2*v*u
- ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[BLUE_C,YELLOW_D,GREEN_E],
- resolution=(20, 20)).scale(1)
-
- self.set_camera_orientation(phi=10 * DEGREES,theta=90*DEGREES)
- self.begin_ambient_camera_rotation(rate=0.2)
-
- f_text = TextMobject("$f(x,y) = 2x^2+3y^2-2yx$",color = PURPLE).shift(2*DOWN+3*RIGHT).scale(0.8)
- self.add_fixed_in_frame_mobjects(f_text)
- self.add(axes)
- self.play(Write(f))
- self.wait(2)
-
-
-class thirdScene(Scene):
- def construct(self):
-
-
- e_text = TextMobject("Case 2: Two negative eigenvalues", color = RED).scale(1).shift(3*UP+2*LEFT)
- f_text = TextMobject("$f(x,y) = -x^2-4y^2$",color = BLUE).scale(0.8).next_to(e_text).shift(6*LEFT+DOWN)
- c_text = TextMobject("Critical Point: $(0,0)$",color = BLUE).scale(0.8).next_to(f_text).shift(DOWN+3.8*LEFT)
- d_text = TextMobject("\\begin{equation*} D_2(0,0)= \\begin{vmatrix} -2 \\space & 0\\space \\\\ 0 & -8 \\end{vmatrix} \\end{equation*}",color = TEAL).scale(0.9)
-
- t_text = TextMobject("$D_2 = 16>0$ (Relative Maxima or Relative Minima)" ).scale(0.9).shift(1*DOWN)
- tm_text = TextMobject("$D_1 = \\frac{\\partial^2 f}{\\partial x^2} =-2 <0$ (Relative Maxima)").scale(0.9).shift(2*DOWN)
-
-
- self.play(ShowCreation(e_text))
- self.wait(1)
- self.play(ShowCreation(f_text))
- self.wait(1)
- self.play(ShowCreation(c_text))
- self.wait(1)
- self.play(ShowCreation(d_text))
- self.wait(1)
- self.play(ShowCreation(t_text))
- self.wait(1)
- self.play(ShowCreation(tm_text))
- self.wait(2)
- self.play(FadeOut(e_text),FadeOut(f_text),FadeOut(c_text),FadeOut(d_text),FadeOut(t_text),FadeOut(tm_text))
-
-
-class Maxima(ThreeDScene):
- def construct(self):
- axes = ThreeDAxes()
- f = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- -u**2-4*v**2
- ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[BLUE_C,PURPLE_D,TEAL_E],
- resolution=(20, 20)).scale(1)
-
- self.set_camera_orientation(phi=75 * DEGREES)
- self.begin_ambient_camera_rotation(rate=0.4)
-
- f_text = TextMobject("$f(x,y) = -x^2-4y^2$",color = YELLOW).shift(2*DOWN+3*RIGHT).scale(0.8)
- self.add_fixed_in_frame_mobjects(f_text)
- self.add(axes)
- self.play(Write(f))
- self.wait(1)
- self.move_camera(phi=30*DEGREES,theta=45*DEGREES,run_time=5)
- self.wait(2)