summaryrefslogtreecommitdiff
path: root/FSF-2020
diff options
context:
space:
mode:
Diffstat (limited to 'FSF-2020')
-rw-r--r--FSF-2020/approximations-and-optimizations/Critical-Points/file4_Types_of_critical_points.py172
1 files changed, 99 insertions, 73 deletions
diff --git a/FSF-2020/approximations-and-optimizations/Critical-Points/file4_Types_of_critical_points.py b/FSF-2020/approximations-and-optimizations/Critical-Points/file4_Types_of_critical_points.py
index 42703ba..656fb68 100644
--- a/FSF-2020/approximations-and-optimizations/Critical-Points/file4_Types_of_critical_points.py
+++ b/FSF-2020/approximations-and-optimizations/Critical-Points/file4_Types_of_critical_points.py
@@ -1,108 +1,134 @@
-from manimlib.imports import *
+from manimlib.imports import*
+
-
-class MaximaScene(ThreeDScene):
+#---- Relative Maxima
+class firstScene(ThreeDScene):
def construct(self):
- axes = ThreeDAxes()
-
+
r_text = TextMobject("Relative Maximum at ORIGIN",color ='#87CEFA')
- f_text = TextMobject("$f(x,y) = -x^2-y^2$").to_corner(UL)
- #----graph of first function f(x,y) = -x**2-y**2
- f = ParametricSurface(
+ axes = ThreeDAxes()
+ label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis
+ label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis
+
+ #----graph of the function f(x,y) = -x**2-y**2
+ surface = ParametricSurface(
lambda u, v: np.array([
u,
v,
-u**2-v**2
- ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [YELLOW_B,YELLOW_C,YELLOW_D, YELLOW_E],
- resolution = (20, 20)).scale(1.5).shift([0,0,-0.51]).fade(0.3)
-
- d = Dot(np.array([0,0,0]), color = '#800000') #---- critical point
-
- self.set_camera_orientation(phi = 75 * DEGREES, theta = -45 * DEGREES )
+ ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [YELLOW_B,YELLOW_C,YELLOW_D, YELLOW_E]).scale(1.5).shift([0,0,-0.51]).fade(0.3)
+
+ f_text = TextMobject("$f(x,y) = -x^2-y^2$").to_corner(UL)
+
+ d = Dot(color = "#800000").shift([0,0,0]) #---- critical point
+
+ self.set_camera_orientation(phi = 75 * DEGREES, theta = 45 * DEGREES)
self.add_fixed_in_frame_mobjects(r_text)
self.wait(1)
self.play(FadeOut(r_text))
+ self.begin_ambient_camera_rotation(rate = 0.1)
self.add(axes)
- self.play(Write(f),Write(d))
+ self.add(label_x)
+ self.add(label_y)
+ self.play(Write(surface),Write(d))
self.add_fixed_in_frame_mobjects(f_text)
self.wait(2)
- self.play(FadeOut(axes),FadeOut(f),FadeOut(f_text),FadeOut(d))
-
-class SaddlePoint(ThreeDScene):
+ self.play(FadeOut(axes),FadeOut(surface),FadeOut(f_text),FadeOut(d),FadeOut(label_x),FadeOut(label_y))
+
+
+#---- Relative Minima
+class secondScene(ThreeDScene):
def construct(self):
- r2_text = TextMobject("Saddle Point",color ='#87CEFA')
+ r2_text = TextMobject("Relative Minimum at ORIGIN",color ='#87CEFA')
+
axes = ThreeDAxes()
-
- #----graph of third function f(x,y) = -x**2+y**2
- f2 = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- -u**2+v**2
- ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1,checkerboard_colors = [PURPLE_B,PURPLE_C,PURPLE_D,PURPLE_E]).scale(1.5).shift([0,0,0])
-
- #---- trace along y axis
- a = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- v**2
- ]),v_min = -1, v_max = 1, u_min = -0.2, u_max = 0.2).shift([0,0,0.36]).scale(1.5).set_color(GREEN)
-
- #---- trace along x axis
- b = ParametricSurface(
+ label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis
+ label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis
+
+ #----graph of the function g(x,y) = x**2+y**2
+ surface = ParametricSurface(
lambda u, v: np.array([
u,
v,
- -u**2
- ]),v_min = -0.2, v_max = 0.2, u_min = -1, u_max = 1).scale(1.6).shift([0,0,-0.1]).set_color(GREEN)
-
- d = Dot(color = '#800000').shift([0,0,0.1]) #---- critical point
-
- f2_text = TextMobject("$f(x,y) = -x^2+y^2$").to_corner(UL)
+ u**2+v**2
+ ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors =[TEAL_B,TEAL_C,TEAL_D,TEAL_E]).scale(1.5).shift([0,0,0.55]).fade(0.1)
+
+ d = Dot(color = "#800000").shift([0,0,0]) #---- critical point
+ g_text = TextMobject("$f(x,y) = x^2+y^2$").to_corner(UL)
+
+ self.set_camera_orientation(phi = 75 * DEGREES, theta = 45 * DEGREES)
self.add_fixed_in_frame_mobjects(r2_text)
self.wait(1)
- self.set_camera_orientation(phi=75*DEGREES,theta=10*DEGREES)
self.play(FadeOut(r2_text))
- self.add(axes)
- self.begin_ambient_camera_rotation(rate=0.4)
- self.add_fixed_in_frame_mobjects(f2_text)
- self.play(Write(f2))
- self.add(b)
- self.wait(1)
- self.add(a)
- self.wait(3)
- self.add(d)
+ self.begin_ambient_camera_rotation(rate = 0.1)
+ self.add(axes)
+ self.add(label_x)
+ self.add(label_y)
+ self.play(Write(surface),Write(d))
+ self.add_fixed_in_frame_mobjects(g_text)
self.wait(2)
-
-
-class MinimaScene(ThreeDScene):
+ self.play(FadeOut(axes),FadeOut(surface),FadeOut(g_text),FadeOut(d),FadeOut(label_x),FadeOut(label_y))
+
+
+
+#---- Saddle Point
+class thirdScene(ThreeDScene):
def construct(self):
-
- r3_text = TextMobject("Relative Minimum at ORIGIN",color ='#87CEFA')
+
+ r3_text = TextMobject("Saddle Point", color = '#87CEFA')
+
axes = ThreeDAxes()
-
- f3_text = TextMobject("$f(x,y) = x^2+y^2$").to_corner(UL)
-
- #----graph of third function f(x,y) = x**2+y**2
- f3 = ParametricSurface(
+ label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis
+ label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis
+
+ #---- graph of function h(x,y) = -x^2 + y^2
+ surface = ParametricSurface(
lambda u, v: np.array([
u,
v,
- u**2+v**2
- ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors =[TEAL_B,TEAL_C,TEAL_D,TEAL_E],
- resolution = (20, 20)).scale(1.5).shift([0,0,0.55]).fade(0.1)
+ -u**2+v**2
+ ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1,checkerboard_colors = [PURPLE_B,PURPLE_C,PURPLE_D,PURPLE_E]).scale(1.5).shift([0,0,0])
- self.set_camera_orientation(phi = 75 * DEGREES, theta = -45 * DEGREES )
- d = Dot(np.array([0,0,0]), color = '#800000') #---- critical point
+ #---- curve(trace) along x axis
+ curve_x = ParametricSurface(
+ lambda u, v: np.array([
+ u*0.4,
+ v,
+ v**2
+ ]),v_min = -1, v_max = 1, u_min = -0.2, u_max = 0.2).shift([0,0,0.34]).scale(1.5).set_color("#800000")
+
+ #---- curve(trace) along y axis
+ curve_y = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v*0.4,
+ -u**2
+ ]),v_min = -0.2, v_max = 0.2, u_min = -1, u_max = 1).scale(1.6).shift([0,0,-0.1]).set_color("#800000")
+ d = Dot(color = GREEN).shift([0,0,0.1]) #---- critical point
+
+ h_text = TextMobject("$f(x,y) = -x^2+y^2$").to_corner(UL)
+
self.add_fixed_in_frame_mobjects(r3_text)
self.wait(1)
+ self.set_camera_orientation(phi = 50 * DEGREES,theta = 45 * DEGREES)
self.play(FadeOut(r3_text))
- self.add(axes)
- self.play(Write(f3),Write(d))
- self.add_fixed_in_frame_mobjects(f3_text)
- self.wait(2)
+ self.add(axes)
+ self.add(label_x)
+ self.add(label_y)
+ self.begin_ambient_camera_rotation(rate = 0.3)
+ self.add_fixed_in_frame_mobjects(h_text)
+ self.play(Write(surface))
+ self.wait(1)
+ self.add(curve_y)
+ self.add(d)
+ self.wait(1)
+ self.play(FadeOut(curve_y))
+ self.wait(1)
+ self.add(curve_x)
+ self.wait(1)
+ self.add(d)
+ self.wait(1)