diff options
Diffstat (limited to 'FSF-2020/linear-algebra')
57 files changed, 2674 insertions, 3 deletions
diff --git a/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/README.md b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/README.md new file mode 100644 index 0000000..832aa5d --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/README.md @@ -0,0 +1,18 @@ +# Contributer: Archit Sangal +My Github Account : <a href="https://github.com/architsangal">architsangal</a> (https://github.com/architsangal) +<br/></br> + +## Sub-Topics Covered: ++ Gramm-Schmidt Orthogonalization Process + +#### Video 1: Introduction to Gram-Schmidt Orthogonalization Process +![GIF1](file7.gif) + +#### Video 2: Obtaining orthogonal vectors using projections +![GIF2](file8.gif) + +#### Video 3: Visual Explanation of how Gram-Schmidt Orthogonalization Process give mutually orthonormal vectors +![GIF3](file5.gif) + +#### Video 4: Example of Orthonormal Vectors which are different from standard basis +![GIF4](file6.gif)
\ No newline at end of file diff --git a/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file1_introduction.py b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file1_introduction.py new file mode 100644 index 0000000..ccd23c9 --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file1_introduction.py @@ -0,0 +1,33 @@ +from manimlib.imports import * + +class Orthonormal(Scene): + def construct(self): + Centre = DOWN + arrow_1 = Arrow(start = Centre+ORIGIN,end = Centre+1.414*(UP+RIGHT)) + arrow_2 = Arrow(start = Centre+ORIGIN,end = Centre+2*UP) + arrow_1.scale(1.35) + arrow_2.scale(1.35) + text = TextMobject("This is a set of linearly independent vectors") + text.scale(0.75) + text.move_to(3*UP+3*LEFT) + text.set_color(PURPLE_E) + arrow_1.set_color(PURPLE_E) + arrow_2.set_color(PURPLE_E) + self.play(Write(text)) + self.play(ShowCreation(arrow_1), ShowCreation(arrow_2)) + self.wait(2) + text1 = TextMobject("After we apply Gram-Schmidt Orthogonalization Process to set of linearly independent vectors") + text1.scale(0.6) + text1.move_to(3*UP+2*LEFT) + text1.set_color(GREEN) + arrow_a = Arrow(start = Centre+ORIGIN,end = Centre+0.707*(UP+RIGHT)) + arrow_a.set_color(GREEN) + arrow_a.scale(2) + self.play(Transform(text,text1)) + self.wait(2) + self.play(Transform(arrow_1,arrow_a)) + arrow_b = Arrow(start = Centre+ORIGIN,end = Centre+0.707*(UP+LEFT)) + arrow_b.set_color(GREEN) + arrow_b.scale(2) + self.play(Transform(arrow_2,arrow_b)) + self.wait(2)
\ No newline at end of file diff --git a/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file2_projections.py b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file2_projections.py new file mode 100755 index 0000000..dd4b8d4 --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file2_projections.py @@ -0,0 +1,79 @@ +from manimlib.imports import * + +class Projections(GraphScene): + CONFIG = { + "x_min": -6, + "x_max": 6, + "y_min": -4, + "y_max": 4, + "graph_origin" : ORIGIN , + } + def construct(self): + + self.setup_axes(animate=True) + + XTD = self.x_axis_width/(self.x_max-self.x_min) + YTD = self.y_axis_height/(self.y_max-self.y_min) + + arrow_a = Arrow(start = ORIGIN, end = 4*XTD*RIGHT) + arrow_a.scale(1.2) + arrow_a.set_color(DARK_BLUE) + arrow_b = Arrow(start = ORIGIN, end = 2*YTD*UP+2*XTD*RIGHT) + arrow_b.scale(1.3) + arrow_b.set_color(DARK_BLUE) + self.play(ShowCreation(arrow_a), ShowCreation(arrow_b)) + + text = TextMobject(r"Consider 2 linearly independent vectors $a$ and $b$") + text.set_color(DARK_BLUE) + text.scale(0.6) + text.move_to(3*YTD*UP+5*XTD*LEFT) + text_a = TextMobject("a") + text_a.move_to(0.4*YTD*DOWN+3*XTD*RIGHT) + text_a.set_color(DARK_BLUE) + text_b = TextMobject("b") + text_b.move_to(1.5*YTD*UP+RIGHT*XTD) + text_b.set_color(DARK_BLUE) + + self.play(Write(text),Write(text_a), Write(text_b)) + self.wait() + + arrow_b_copy = Arrow(start = ORIGIN, end = 2*YTD*UP+2*XTD*RIGHT) + arrow_b_copy.scale(1.25) + + arrow_p = Arrow(start = ORIGIN, end = 2*XTD*RIGHT) + arrow_p.scale(1.5) + arrow_p.set_color(GOLD_E) + + text_p = TextMobject("p") + text_p.move_to(0.25*DOWN+RIGHT) + text_p.set_color(GOLD_E) + + self.play(FadeOut(text), Transform(arrow_b_copy,arrow_p), FadeOut(text_a), FadeOut(text_b)) + text = TextMobject(r"$p$ is the projection of $b$ on $a$") + text.set_color(GOLD_E) + text.move_to(3*UP+4*LEFT) + text.scale(0.8) + self.play(Write(text),Write(text_p)) + self.wait() + + self.play(FadeIn(text_a), FadeIn(text_b)) + + arrow_o = Arrow(start = 2*XTD*RIGHT, end = 2*YTD*UP+2*XTD*RIGHT) + arrow_o.scale(1.5) + arrow_o.set_color(GREEN_E) + + text_o = TextMobject("b-p") + text_o.move_to(UP*YTD+2.7*XTD*RIGHT) + text_o.set_color(GREEN_E) + + self.play(ShowCreation(arrow_o)) + self.play(FadeOut(text),Write(text_o)) + + text = TextMobject(r"Observe, ($b-p$) is orthogonal to $a$") + text.set_color(GREEN_E) + text.move_to(2*DOWN+4*LEFT) + text.scale(0.8) + self.play(Write(text)) + self.wait(2) + + self.play(FadeOut(self.axes), FadeOut(arrow_a), FadeOut(arrow_b), FadeOut(arrow_b_copy), FadeOut(arrow_o), FadeOut(text_a), FadeOut(text_b), FadeOut(text_o), FadeOut(text_p), FadeOut(text))
\ No newline at end of file diff --git a/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file3_orthonormal.py b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file3_orthonormal.py new file mode 100644 index 0000000..a74b641 --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file3_orthonormal.py @@ -0,0 +1,335 @@ +from manimlib.imports import * + +class Algo(ThreeDScene): + def construct(self): + + axes = ThreeDAxes(x_min = -5,x_max=5,y_min=-3,y_max=3,z_min=-4,z_max=4) + self.play(ShowCreation(axes)) + + text = TextMobject(r"This is the vector $\beta_1 =\left[\begin{array}{c} 4\\0\\0 \end{array}\right]$") + text.set_color(GREEN) + text.scale(0.6) + text.move_to(3*UP+5*LEFT) + self.play(Write(text)) + + arrow_a = Arrow(start = ORIGIN, end = 4*RIGHT) + arrow_a.set_color(GREEN) + arrow_a.scale(1.15) + self.play(ShowCreation(arrow_a)) + + text_a = TextMobject(r"$\beta_1$") + text_a.move_to(0.4*DOWN+3*RIGHT) + text_a.set_color(GREEN) + text_a.scale(0.75) + self.play(Write(text_a)) + self.wait() + self.play(FadeOut(text)) + + text = TextMobject(r"Normalize $\beta_1$ to get $\alpha_1$") + text.set_color(DARK_BLUE) + text.scale(0.75) + text.move_to(3*UP+5*LEFT) + self.play(Write(text)) + + alpha_1 = Arrow(start = ORIGIN,end = RIGHT) + alpha_1.scale(1.9) + alpha_1.set_color(DARK_BLUE) + text_alpha_1 = TextMobject(r"$\alpha_1$") + text_alpha_1.move_to(0.4*DOWN+RIGHT) + text_alpha_1.set_color(DARK_BLUE) + text_alpha_1.scale(0.75) + self.play(Transform(text_a,text_alpha_1), Transform(arrow_a,alpha_1)) + self.wait() + self.play(FadeOut(text)) + + text = TextMobject(r"Consider another vector $\beta_2=\left[\begin{array}{c} 2\\2\\0 \end{array}\right]$") + text1 = TextMobject(r"which is linearly independent to $\beta_1$") + text.set_color(GREEN) + text1.set_color(GREEN) + text.scale(0.6) + text1.scale(0.6) + text.move_to(3*UP+4*LEFT) + text1.move_to(2*UP+4*LEFT) + self.play(Write(text)) + self.play(Write(text1)) + + arrow_b = Arrow(start = ORIGIN, end = 2*UP+2*RIGHT) + arrow_b.scale(1.2) + arrow_b.set_color(GREEN) + text_b = TextMobject(r"$\beta_2$") + text_b.move_to(1.5*UP+RIGHT) + text_b.set_color(GREEN) + text_b.scale(0.75) + + self.play(ShowCreation(arrow_b), Write(text_b)) + self.wait() + + arrow_b_copy = Arrow(start = ORIGIN, end = 2*UP+2*RIGHT) + arrow_b_copy.scale(1.2) + + arrow_p = Arrow(start = ORIGIN, end = 2*RIGHT) + arrow_p.scale(1.35) + arrow_p.set_color(GOLD_E) + + text_p = TextMobject("p") + text_p.move_to(0.25*DOWN+RIGHT) + text_p.set_color(GOLD_E) + + self.play(FadeOut(text), FadeOut(text1), Transform(arrow_b_copy,arrow_p), FadeOut(text_a), FadeOut(text_b)) + text = TextMobject(r"$p$ is the projection of $\beta_2$ on $\alpha_1$") + text.set_color(GOLD_E) + text.move_to(3*UP+4*LEFT) + text.scale(0.8) + self.play(Write(text),Write(text_p)) + self.wait() + + self.play(FadeIn(text_b)) + + arrow_o = Arrow(start = 2*RIGHT, end = 2*UP+2*RIGHT) + arrow_o.scale(1.35) + arrow_o.set_color(PURPLE_E) + + text_o = TextMobject(r"$\beta_2-p$") + text_o.move_to(UP+2.7*RIGHT) + text_o.scale(0.75) + text_o.set_color(PURPLE_E) + + self.play(ShowCreation(arrow_o)) + self.play(FadeOut(text),Write(text_o)) + + text = TextMobject(r"$\beta_2-p$ is orthogonal to p") + text1 = TextMobject(r"(and hence orthogonal to $\alpha_1$ also)") + text.set_color(PURPLE_E) + text1.set_color(PURPLE_E) + text.scale(0.7) + text1.scale(0.7) + text.move_to(3*UP+4*LEFT) + text1.move_to(2.5*UP+4*LEFT) + self.play(Write(text)) + self.play(Write(text1)) + self.wait(2) + + self.play(FadeOut(text_p), FadeIn(arrow_a), FadeOut(text), FadeOut(text1), FadeOut(arrow_b_copy), FadeOut(arrow_p), FadeOut(text_b), FadeOut(arrow_b)) + self.play(ApplyMethod(arrow_o.move_to,UP), ApplyMethod(text_o.move_to,RIGHT+UP)) + + text = TextMobject(r"Now, Normalize $\beta_2-p$") + text.set_color(DARK_BLUE) + text.scale(0.6) + text.move_to(3*UP+4*LEFT) + self.play(Write(text)) + + alpha_2 = Arrow(start = ORIGIN,end = UP) + alpha_2.scale(1.9) + alpha_2.set_color(DARK_BLUE) + text_alpha_2 = TextMobject(r"$\alpha_2$") + text_alpha_2.move_to(0.4*LEFT+UP) + text_alpha_2.set_color(DARK_BLUE) + text_alpha_2.scale(0.75) + self.play(Transform(text_o,text_alpha_2), Transform(arrow_o,alpha_2), FadeIn(text_a)) + self.wait() + self.play(FadeOut(text),FadeOut(text_a),FadeOut(text_o)) + + self.add(axes) + ############################################################################# + axis = TextMobject(r"$\alpha_1$",r"$\alpha_2$",r"$\alpha_3$",r"$\beta_3$",r"$\alpha_3$",r"$\alpha_3$",r"$\alpha_3$",r"$\alpha_3$") + axis.scale(0.5) + axis[0].move_to(0.5*RIGHT+[0,0,-0.5]) + axis[1].move_to(0.5*UP+[0,0,-0.5]) + axis[2].move_to(np.array([0,0,0.5])) + axis[3].move_to(np.array([1,1,1.5])) + self.add_fixed_orientation_mobjects(axis[0]) + self.add_fixed_orientation_mobjects(axis[1]) + ############################################################################# + + self.move_camera(phi=70*DEGREES,theta=30*DEGREES,run_time=3) + xy_plane = Polygon(5*RIGHT+3*UP,-5*RIGHT+3*UP,-5*RIGHT-3*UP,5*RIGHT-3*UP) + xy_plane.set_color("#333333") + xy_plane.set_fill("#333333") + xy_plane.set_opacity(1) + xy_plane.fade(0.7) + self.play(ShowCreation(xy_plane)) + + #self.begin_ambient_camera_rotation(rate=0.1) + + line1 = Line(start = ORIGIN,end = 1*RIGHT) + line1.set_color(DARK_BLUE) + tip1 = Polygon(RIGHT,0.8*RIGHT-0.2*DOWN,0.8*RIGHT-0.2*UP) + tip1.set_opacity(1) + tip1.set_fill(DARK_BLUE) + tip1.set_color(DARK_BLUE) + + arrow2 = Line(start = ORIGIN,end = 1*UP) + arrow2.set_color(DARK_BLUE) + tip2 = Polygon(UP,0.8*UP-0.2*RIGHT,0.8*UP-0.2*LEFT) + tip2.set_opacity(1) + tip2.set_fill(DARK_BLUE) + tip2.set_color(DARK_BLUE) + arrow2.set_color(DARK_BLUE) + + self.play(ShowCreation(line1), ShowCreation(tip1), ShowCreation(arrow2), ShowCreation(tip2), FadeOut(arrow_a), FadeOut(arrow_o)) + self.wait() + + a_line = Line(start = ORIGIN,end = 2*UP+2*RIGHT+[0,0,2]) + a_line.set_color(GOLD_E) + a_tip = Polygon(2*UP+2*RIGHT+[0,0,2],2*UP+1.6*RIGHT+[0,0,1.8],1.6*UP+2*RIGHT+[0,0,1.8]) + a_tip.set_opacity(1) + a_tip.set_fill(GOLD_E) + a_tip.set_color(GOLD_E) + + a_line_c1 = Line(start = ORIGIN,end = 2*UP+2*RIGHT+[0,0,2]) + a_line_c1.set_color(GOLD_E) + a_tip_c1 = Polygon(2*UP+2*RIGHT+[0,0,2],2*UP+1.6*RIGHT+[0,0,1.8],1.6*UP+2*RIGHT+[0,0,1.8]) + a_tip_c1.set_opacity(1) + a_tip_c1.set_fill(GOLD_E) + a_tip_c1.set_color(GOLD_E) + + self.play(ShowCreation(a_line), ShowCreation(a_tip), ShowCreation(a_line_c1), ShowCreation(a_tip_c1)) + + text = TextMobject(r"Now, we have a vector $\beta_3=\left[\begin{array}{c} 2\\2\\2 \end{array}\right]$") + text.set_color(GOLD_E) + text.scale(0.7) + self.add_fixed_in_frame_mobjects(text) + self.add_fixed_orientation_mobjects(axis[3]) + text.move_to(3*(DOWN+RIGHT)) + self.play(Write(text)) + self.wait() + self.play(FadeOut(text)) + + p_line1 = Line(start = ORIGIN,end = 2*RIGHT) + p_line1.set_color(GOLD_E) + p_tip1 = Polygon(2*RIGHT,1.8*RIGHT+0.2*DOWN,1.8*RIGHT+0.2*UP) + + p_tip1.set_opacity(1) + p_tip1.set_fill(GOLD_E) + p_tip1.set_color(GOLD_E) + + self.play(Transform(a_line_c1,p_line1),Transform(a_tip_c1,p_tip1)) + + text = TextMobject(r"Take projection of $\beta_3$ on $\alpha_1$") + text.scale(0.6) + text.set_color(GOLD_E) + self.add_fixed_in_frame_mobjects(text) + text.move_to(3*(DOWN+RIGHT)) + self.play(Write(text)) + self.begin_ambient_camera_rotation(rate=0.05) + self.wait() + self.play(FadeOut(text)) + + o_line1 = Line(start = 2*RIGHT,end = 2*UP+2*RIGHT+[0,0,2]) + o_line1.set_color(GREEN_E) + o_tip1 = Polygon(2*UP+2*RIGHT+[0,0,2],1.8*UP+2*RIGHT+[0,0,1.8]+0.2*RIGHT,1.8*UP+2*RIGHT+[0,0,1.8]-0.2*RIGHT) + o_tip1.set_opacity(1) + o_tip1.set_fill(GREEN_E) + o_tip1.set_color(GREEN_E) + + a_line1 = Line(start = ORIGIN,end = 2*UP+[0,0,2]) + a_line1.set_color(GREEN_E) + a_tip1 = Polygon(2*UP+[0,0,2],1.8*UP+[0,0,1.8]+0.2*RIGHT,1.8*UP+[0,0,1.8]-0.2*RIGHT) + a_tip1.set_opacity(1) + a_tip1.set_fill(GREEN_E) + a_tip1.set_color(GREEN_E) + + a_line1_c1 = Line(start = ORIGIN,end = 2*UP+[0,0,2]) + a_line1_c1.set_color(GREEN_E) + a_tip1_c1 = Polygon(2*UP+[0,0,2],1.8*UP+[0,0,1.8]+0.2*RIGHT,1.8*UP+[0,0,1.8]-0.2*RIGHT) + a_tip1_c1.set_opacity(1) + a_tip1_c1.set_fill(GREEN_E) + a_tip1_c1.set_color(GREEN_E) + + text = TextMobject(r"$\beta_3$-(projection of $\beta_3$ on $\alpha_1$)") + text.set_color(GREEN_E) + text.scale(0.6) + self.add_fixed_in_frame_mobjects(text) + text.move_to(3*(DOWN+RIGHT)) + self.play(Write(text)) + + self.play(ShowCreation(o_line1), ShowCreation(o_tip1)) + self.wait(2) + self.play(FadeOut(a_line_c1), FadeOut(a_tip_c1), + FadeOut(a_line), FadeOut(a_tip), FadeOut(axis[3]), + Transform(o_line1,a_line1), Transform(o_tip1,a_tip1)) + + self.wait() + self.play(FadeOut(text)) + + p_arrow2 = Line(start = ORIGIN,end = 2*UP) + p_arrow2.set_color(GOLD_E) + p_tip2 = Polygon(2*UP,1.8*UP+0.2*RIGHT,1.8*UP+0.2*LEFT) + p_tip2.set_opacity(1) + p_tip2.set_fill(GOLD_E) + p_tip2.set_color(GOLD_E) + p_arrow2.set_color(GOLD_E) + + last_a = Line(start = 2*UP,end = [0,2,2]) + last_a.set_color(PURPLE_E) + last_a_tip = Polygon([0,0,2],[0,0,1.8]+0.2*RIGHT,[0,0,1.8]+0.2*LEFT) + last_a_tip.move_to([0,2,2]) + last_a_tip.set_opacity(1) + last_a_tip.set_fill(PURPLE_E) + last_a_tip.set_color(PURPLE_E) + + self.wait(5) + text = TextMobject(r"Take projection on $\alpha_2$") + text.scale(0.6) + text.set_color(GOLD_E) + self.add_fixed_in_frame_mobjects(text) + text.move_to(3*(DOWN+RIGHT)) + self.play(Write(text)) + self.play(Transform(a_line1_c1,p_arrow2),Transform(a_tip1_c1,p_tip2)) + self.wait() + self.play(FadeOut(text)) + + text = TextMobject(r"$\beta_3$-(projection of $\beta_3$ on $\alpha_1$ + projection of $\beta_3$ on $\alpha_2$)") + text.set_color(PURPLE_E) + text.scale(0.6) + self.add_fixed_in_frame_mobjects(text) + text.move_to(3*DOWN+3.5*RIGHT) + self.play(Write(text)) + #self.play(ShowCreation(o_line1), ShowCreation(o_tip1)) + self.wait(2) + self.play(ShowCreation(last_a_tip), ShowCreation(last_a)) + self.wait() + self.play(FadeOut(text)) + + larrow3 = Line(start = ORIGIN,end = [0,0,2]) + larrow3.set_color(PURPLE_E) + ltip3 = Polygon([0,0,2],[0,0,1.8]+0.2*RIGHT,[0,0,1.8]+0.2*LEFT) + ltip3.set_opacity(1) + ltip3.set_fill(PURPLE_E) + ltip3.set_color(PURPLE_E) + self.wait() + self.play(FadeOut(o_line1), FadeOut(o_tip1), FadeOut(a_line1_c1), FadeOut(a_tip1_c1), Transform(last_a,larrow3), Transform(last_a_tip,ltip3)) + + text = TextMobject(r"Normalize, the vector") + text1 = TextMobject(r"$\beta_3$-(projection of $\beta_3$ on $\alpha_1$ + projection of $\beta_3$ on $\alpha_2)$") + text.set_color(PURPLE_E) + text1.set_color(PURPLE_E) + text.scale(0.55) + text1.scale(0.55) + self.add_fixed_in_frame_mobjects(text) + text.move_to(3*DOWN+3*RIGHT) + text1.move_to(3.5*DOWN+3.25*RIGHT) + self.play(Write(text)) + self.add_fixed_in_frame_mobjects(text1) + self.play(Write(text1)) + + arrow3 = Line(start = ORIGIN,end = [0,0,1]) + arrow3.set_color(DARK_BLUE) + tip3 = Polygon([0,0,1],[0,0,0.8]-0.2*RIGHT,[0,0,0.8]-0.2*LEFT) + tip3.set_opacity(1) + tip3.set_fill(DARK_BLUE) + tip3.set_color(DARK_BLUE) + self.play(Transform(last_a,arrow3), Transform(last_a_tip,tip3)) + self.add_fixed_orientation_mobjects(axis[2]) + + self.wait() + self.play(FadeOut(text),FadeOut(text1)) + + text = TextMobject(r"These are the three orthonormal vectors $\alpha_1, \alpha_2, \alpha_3$") + text.set_color(DARK_BLUE) + self.add_fixed_in_frame_mobjects(text) + text.scale(0.6) + text.move_to(3*DOWN+3.5*RIGHT) + self.play(Write(text)) + + self.wait(8) diff --git a/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file4_Non_Standard_Basis.py b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file4_Non_Standard_Basis.py new file mode 100644 index 0000000..1d23aa2 --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file4_Non_Standard_Basis.py @@ -0,0 +1,69 @@ +from manimlib.imports import * + +class NSB(ThreeDScene): + def construct(self): + + line1 = Line(start = ORIGIN,end = 1*RIGHT) + line1.set_color(DARK_BLUE) + tip1 = Polygon(RIGHT,0.9*RIGHT-0.1*DOWN,0.9*RIGHT-0.1*UP) + tip1.set_opacity(1) + tip1.set_fill(DARK_BLUE) + tip1.set_color(DARK_BLUE) + + arrow2 = Line(start = ORIGIN,end = 1*UP) + arrow2.set_color(DARK_BLUE) + tip2 = Polygon(UP,0.9*UP-0.1*RIGHT,0.9*UP-0.1*LEFT) + tip2.set_opacity(1) + tip2.set_fill(DARK_BLUE) + tip2.set_color(DARK_BLUE) + arrow2.set_color(DARK_BLUE) + + arrow3 = Line(start = ORIGIN,end = [0,0,1]) + arrow3.set_color(DARK_BLUE) + tip3 = Polygon([0,0,1],[0,0,0.9]-0.1*RIGHT,[0,0,0.9]-0.1*LEFT) + tip3.set_opacity(1) + tip3.set_fill(DARK_BLUE) + tip3.set_color(DARK_BLUE) + + axes = ThreeDAxes(x_min = -3,x_max=3,y_min=-3,y_max=3,z_min=-3,z_max=3) + self.play(ShowCreation(axes)) + self.move_camera(phi=70*DEGREES,theta=0*DEGREES,run_time=3) + self.begin_ambient_camera_rotation(rate=0.2) + + #matrix = [[1,0,0],[0,1,0],[0,0,1]] + matrix = [[0.70710678118,-0.57735026919,-0.57735026919],[0.70710678118,0.57735026919,0.57735026919],[0,-0.57735026919,0.57735026919]] + matrix1 = [[0.70710678118,0,0],[0.70710678118,1,0],[0,0,1]] + + matrix1 = [[0.70710678118,-0.70710678118,0],[0.70710678118,0.70710678118,0],[0,0,1]] + matrix2 = [[1,0,0],[0,0.70710678118,0.70710678118],[0,-0.70710678118,0.70710678118]] + + + line1.apply_matrix(matrix1) + tip1.apply_matrix(matrix1) + arrow2.apply_matrix(matrix1) + tip2.apply_matrix(matrix1) + arrow3.apply_matrix(matrix1) + tip3.apply_matrix(matrix1) + + line1.apply_matrix(matrix2) + tip1.apply_matrix(matrix2) + arrow2.apply_matrix(matrix2) + tip2.apply_matrix(matrix2) + arrow3.apply_matrix(matrix2) + tip3.apply_matrix(matrix2) + + self.play(ShowCreation(line1), + ShowCreation(tip1), + ShowCreation(arrow2), + ShowCreation(tip2), + ShowCreation(arrow3), + ShowCreation(tip3)) + + text = TextMobject(r"This is also a set of Orthonormal Vectors") + text.set_color(DARK_BLUE) + self.add_fixed_in_frame_mobjects(text) + text.scale(0.6) + text.move_to(3*DOWN+3.5*RIGHT) + self.play(Write(text)) + + self.wait(22) diff --git a/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file5.gif b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file5.gif Binary files differnew file mode 100644 index 0000000..cdc0f2d --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file5.gif diff --git a/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file6.gif b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file6.gif Binary files differnew file mode 100644 index 0000000..e03f265 --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file6.gif diff --git a/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file7.gif b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file7.gif Binary files differnew file mode 100644 index 0000000..19a13dd --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file7.gif diff --git a/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file8.gif b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file8.gif Binary files differnew file mode 100644 index 0000000..0ef4551 --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file8.gif diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/README.md b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/README.md new file mode 100644 index 0000000..2a46424 --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/README.md @@ -0,0 +1,30 @@ +# Contributer: Archit Sangal +My Github Account : <a href="https://github.com/architsangal">architsangal</a> (https://github.com/architsangal) +<br/></br> + +## Sub-Topics Covered: ++ Linear Transformations (Linear Maps) + +#### Video 1: Visually understanding linear transformation(using grid) +![GIF1](file12.gif) + +#### Video 2: Linear Transformation when form 1 is given +![GIF2](file11.gif) + +#### Video 3: Matrix Representation Of Linear Transformation +![GIF3](file9.gif) + +#### Video 4: Understand Linear Transformations visually +![GIF4](file13.gif) + +#### Video 5: Uniform Scaling +![GIF5](file14.gif) + +#### Fig.1 Horizontal Shear +![GIF6](file6_Horizontal_Shear_gif.gif) + +#### Fig.2 Vertical Shear +![GIF7](file7_Vertical_Shear_gif.gif) + +#### Video 6: Rotation by an angle of in anticlockwise direction +![GIF8](file10.gif)
\ No newline at end of file diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file10.gif b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file10.gif Binary files differnew file mode 100644 index 0000000..d996130 --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file10.gif diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file11.gif b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file11.gif Binary files differnew file mode 100644 index 0000000..d8c64b7 --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file11.gif diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file12.gif b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file12.gif Binary files differnew file mode 100644 index 0000000..92bdff6 --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file12.gif diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file13.gif b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file13.gif Binary files differnew file mode 100644 index 0000000..ba6c156 --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file13.gif diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file14.gif b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file14.gif Binary files differnew file mode 100644 index 0000000..fd9bc7b --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file14.gif diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file1_transformations.py b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file1_transformations.py new file mode 100644 index 0000000..0182bd9 --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file1_transformations.py @@ -0,0 +1,73 @@ +from manimlib.imports import * + +class text(Scene): + def construct(self): + text1 = TextMobject("For a grid, undergoing a linear transformation, all its straight lines") + text1.scale(0.9) + text2 = TextMobject("must either remain straight lines or sends to a point in the grid formed") + text2.scale(0.9) + text3 = TextMobject("Origin must remain where it was before transformation.") + text3.scale(0.9) + text1.move_to(ORIGIN+UP) + text2.move_to(ORIGIN) + text3.move_to(ORIGIN+DOWN) + self.play(Write(text1)) + self.play(Write(text2)) + self.play(Write(text3)) + self.wait() + self.play(FadeOut(text1),FadeOut(text2),FadeOut(text3)) + +class LinearTransformation(LinearTransformationScene): + CONFIG = { + "basis_vector_stroke_width": 3, + "leave_ghost_vectors": True, + } + + def construct(self): + self.setup() + matrix = [[0.866,-0.5],[0.5,0.866]] + self.apply_matrix(matrix) + text = TextMobject("This is a Linear","Trasformation") + text[0].move_to(DOWN+4*LEFT) + text[1].move_to(1.5*DOWN+4*LEFT) + text.add_background_rectangle() + self.play(Write(text)) + self.wait() + +class NonLinearTransformation(Scene): + def construct(self): + grid = NumberPlane() + self.play(ShowCreation(grid),run_time =2) + # I have taken reference from purusharth's code + NonLinearTrans = lambda coordinates : coordinates + np.array([np.sin(coordinates[1]),np.sin(coordinates[0]),0,]) + grid.prepare_for_nonlinear_transform() + self.play(grid.apply_function,NonLinearTrans) + text = TextMobject("While, this is not a","Linear Trasformation") + text[0].move_to(DOWN+4*LEFT) + text[1].move_to(1.5*DOWN+4*LEFT) + text.add_background_rectangle() + self.play(Write(text)) + self.wait() + +class MoveOrigin(LinearTransformationScene): + + CONFIG = { + "show_basis_vectors": False, + } + def construct(self): + self.wait() + + dot = Dot(ORIGIN, color = YELLOW) + self.add_transformable_mobject(dot) + self.apply_nonlinear_transformation(self.func) + text = TextMobject("This is also not a linear transformation as the origin moves from its original position") + text.move_to(2*DOWN) + text.scale(0.5) + text.set_color(YELLOW) + text.add_background_rectangle() + self.play(Write(text)) + self.wait() + + def func(self, point): + matrix_transform = self.get_matrix_transformation([[1, -1], [1, 1]]) + return matrix_transform(point) + UP+ RIGHT diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file2_before_matrix.py b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file2_before_matrix.py new file mode 100755 index 0000000..1f6badd --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file2_before_matrix.py @@ -0,0 +1,233 @@ +from manimlib.imports import * + +class Linear(GraphScene): + + CONFIG = { + "x_min": -5, + "x_max": 5, + "y_min": -5, + "y_max": 5, + "graph_origin": ORIGIN, + "x_labeled_nums": list(range(-5, 6)), + "y_labeled_nums": list(range(-5, 6)), + "x_axis_width": 7, + "y_axis_height": 7, + } + + def construct(self): + + XTD = self.x_axis_width/(self.x_max- self.x_min) + YTD = self.y_axis_height/(self.y_max- self.y_min) + + self.setup_axes(animate = True) + heading = TextMobject(r"$T(x,y) = T(x+2y,x-y)$") + heading.move_to(UP*3+LEFT*4) + heading.scale(0.7) + self.play(Write(heading)) + self.wait() + + before = TextMobject("Before Linear Transformation") + before.set_color(ORANGE) + before.move_to(3*UP+4*RIGHT) + before.scale(0.75) + dot1 = Dot().shift(self.graph_origin+1*XTD*RIGHT+1*YTD*UP) + dot2 = Dot().shift(self.graph_origin+2*XTD*RIGHT+1*YTD*UP) + dot1.set_color(ORANGE) + dot2.set_color(ORANGE) + p1 = TextMobject(r"$P_1$") + p1.scale(0.75) + p1.set_color(ORANGE) + p1.move_to(self.graph_origin+1*XTD*RIGHT+1.5*YTD*UP) + p2 = TextMobject(r"$P_2$") + p2.set_color(ORANGE) + p2.scale(0.75) + p2.move_to(self.graph_origin+2*XTD*RIGHT+1.5*YTD*UP) + + after = TextMobject("After applying Linear Transformation") + after.set_color(YELLOW) + after.move_to(3*UP+4.5*RIGHT) + after.scale(0.5) + dot3 = Dot().shift(self.graph_origin+3*XTD*RIGHT+0*YTD*UP) + dot4 = Dot().shift(self.graph_origin+4*XTD*RIGHT+1*YTD*UP) + dot3.set_color(YELLOW) + dot4.set_color(YELLOW) + p3 = TextMobject(r"$T(P_1)$") + p3.scale(0.7) + p3.set_color(YELLOW) + p3.move_to(self.graph_origin+3*XTD*RIGHT-1.1*YTD*UP) + p4 = TextMobject(r"$T(P_2)$") + p4.scale(0.7) + p4.set_color(YELLOW) + p4.move_to(self.graph_origin+4*XTD*RIGHT+1.5*YTD*UP) + + self.play(Write(before), ShowCreation(dot1), ShowCreation(dot2),Write(p1), Write(p2)) + self.wait(3) + self.play(Transform(before,after), Transform(dot1,dot3), Transform(dot2,dot4), Transform(p2,p4), Transform(p1,p3)) + self.wait(3) + + +class withgrid(LinearTransformationScene): + def construct(self): + + heading = TextMobject(r"Now, imagine this happening for all the points") + heading.scale(0.5) + heading.move_to(UP*2.5+LEFT*4) + self.play(Write(heading)) + self.wait() + + before = TextMobject("Before Linear Transformation") + before.set_color(ORANGE) + before.move_to(3.5*UP+4*RIGHT) + before.scale(0.75) + dot1 = Dot().shift(1*RIGHT+1*UP) + dot2 = Dot().shift(2*RIGHT+1*UP) + dot1.set_color(ORANGE) + dot2.set_color(ORANGE) + + dot1_c = Dot(radius = 0.05).shift(1*RIGHT+1*UP) + dot2_c = Dot(radius = 0.05).shift(2*RIGHT+1*UP) + dot1_c.set_color(YELLOW) + dot2_c.set_color(YELLOW) + self.add_transformable_mobject(dot1_c) + self.add_transformable_mobject(dot2_c) + + p1 = TextMobject(r"$P_1$") + p1.scale(0.75) + p1.set_color(ORANGE) + p1.move_to(1*RIGHT+1.5*UP) + p2 = TextMobject(r"$P_2$") + p2.scale(0.75) + p2.set_color(ORANGE) + p2.move_to(2*RIGHT+1.5*UP) + + after = TextMobject("After applying Linear Transformation") + after.set_color(YELLOW) + after.move_to(3.5*UP+3.5*RIGHT) + after.scale(0.75) + dot3 = Dot().shift(3*RIGHT+0*UP) + dot4 = Dot().shift(4*RIGHT+1*UP) + dot3.set_color(YELLOW) + dot4.set_color(YELLOW) + p3 = TextMobject(r"$T(P_1)$") + p3.scale(0.75) + p3.set_color(YELLOW) + p3.move_to(3*RIGHT-0.6*UP) + p4 = TextMobject(r"$T(P_2)$") + p4.scale(0.75) + p4.set_color(YELLOW) + p4.move_to(4*RIGHT+1.5*UP) + + self.play(Write(before), ShowCreation(dot1), ShowCreation(dot2),Write(p1), Write(p2)) + self.wait(3) + matrix = [[1,2],[1,-1]] + dot1.set_color(GREY) + dot2.set_color(GREY) + self.play(FadeIn(dot1),FadeIn(dot2)) + self.apply_matrix(matrix) + self.play(Transform(before,after), Transform(p2,p4), Transform(p1,p3)) + self.play(Transform(before,after)) + self.wait(3) + + ending = TextMobject(r"$T(\left[\begin{array}{c}x \\ y\end{array}\right]) = \left[\begin{array}{c} x+2y \\ x-y\end{array}\right]$") + ending.move_to(UP*2+LEFT*4) + self.play(Transform(heading,ending)) + self.wait() + +from manimlib.imports import * +class ThreeDExplanation(ThreeDScene): + + def construct(self): + + text = TextMobject(r"$T(x,y) = (x+y,x-y,x+2y)$") + text.scale(0.75) + text.move_to(UP*2.5+LEFT*4) + text.move_to(-UP*3+LEFT*4) + self.add_fixed_in_frame_mobjects(text) + self.play(Write(text)) + self.wait() + + before = TextMobject("Before Linear Transformation") + self.add_fixed_in_frame_mobjects(before) + before.set_color(ORANGE) + before.move_to(3.5*UP+4*RIGHT) + before.scale(0.75) + + p1 = TextMobject(r"$P_1$") + p2 = TextMobject(r"$P_2$") + p3 = TextMobject(r"$P_3$") + p1.scale(0.75) + p2.scale(0.75) + p3.scale(0.75) + dot1 = Dot().shift(1*RIGHT+1*UP) + dot2 = Dot().shift(2*RIGHT+1*UP) + dot3 = Dot().shift(1*RIGHT+1*DOWN) + dot1.set_color(ORANGE) + dot2.set_color(ORANGE) + dot3.set_color(ORANGE) + self.play(ShowCreation(before)) + + p1.move_to(1*RIGHT+1*UP+[0,0,0.5]) + p2.move_to(2*RIGHT+1*UP+[0,0,0.5]) + p3.move_to(1*RIGHT-1*UP+[0,0,0.5]) + + dot1_c = Dot(radius = 0.05).shift(1*RIGHT+1*UP) + dot2_c = Dot(radius = 0.05).shift(0*RIGHT+2*UP) + dot3_c = Dot(radius = 0.05).shift(1*RIGHT-1*UP) + dot1_c.set_color(YELLOW) + dot2_c.set_color(YELLOW) + dot3_c.set_color(YELLOW) + + axes = ThreeDAxes(x_min = -7,x_max=7,y_min=-4,y_max=4,z_min=-4,z_max=4) + self.play(ShowCreation(axes)) + self.move_camera(distance = 100, phi=30*DEGREES,theta=45*DEGREES,run_time=3) + + self.begin_ambient_camera_rotation(rate=0.3) + self.wait(1) + self.stop_ambient_camera_rotation() + + plane = NumberPlane() + self.add_fixed_orientation_mobjects(p1) + self.add_fixed_orientation_mobjects(p2) + self.add_fixed_orientation_mobjects(p3) + self.play(ShowCreation(dot1),ShowCreation(dot3),ShowCreation(dot2),ShowCreation(plane)) + + self.play(FadeOut(before)) + after = TextMobject("After applying Linear Transformation") + self.add_fixed_in_frame_mobjects(after) + after.set_color(YELLOW) + after.move_to(3.5*UP+3.5*RIGHT) + after.scale(0.75) + + self.play(FadeOut(p1),FadeOut(p2),FadeOut(p3)) + matrix = [[1,1],[1,-1],[2,1]] + self.play(FadeOut(dot1),FadeOut(dot2),FadeOut(dot3),ApplyMethod(plane.apply_matrix,matrix),ApplyMethod(dot1_c.apply_matrix,matrix),ApplyMethod(dot3_c.apply_matrix,matrix),ApplyMethod(dot2_c.apply_matrix,matrix)) + + p4 = TextMobject(r"$T(P_1)$") + p5 = TextMobject(r"$T(P_2)$") + p6 = TextMobject(r"$T(P_3)$") + p4.scale(0.75) + p5.scale(0.75) + p6.scale(0.75) + p4.move_to(2*RIGHT+0*UP+[0,0,3.5]) + p5.move_to(2*RIGHT-2*UP+[0,0,2.5]) + p6.move_to(0*RIGHT+2*UP+[0,0,1.5]) + self.add_fixed_orientation_mobjects(p5) + self.add_fixed_orientation_mobjects(p4) + self.add_fixed_orientation_mobjects(p6) + + self.begin_ambient_camera_rotation(rate=0.3) + self.wait(3) + self.stop_ambient_camera_rotation() + + ending = TextMobject(r"$T(\left[\begin{array}{c}x \\ y\end{array}\right])$ = ",r"$\left[\begin{array}{c} x+y \\ x-y\\ x+2y \end{array}\right]$") #\begin{array}{c} x+y \\ x-y -- \\ x+2y -- \end{array}\right]$") + ending.scale(0.75) + ending.move_to(-UP*3+LEFT*4) + self.add_fixed_in_frame_mobjects(ending) + self.play(FadeOut(text),Write(ending)) + + self.play(FadeOut(plane)) + self.wait(2) + + self.begin_ambient_camera_rotation(rate=0.3) + self.wait(8) + self.stop_ambient_camera_rotation() diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file3_square.py b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file3_square.py new file mode 100644 index 0000000..e828de4 --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file3_square.py @@ -0,0 +1,246 @@ +from manimlib.imports import * + +class Linear(GraphScene): + CONFIG = { + "x_min": -5, + "x_max": 5, + "y_min": -5, + "y_max": 5, + "graph_origin": ORIGIN, + "x_labeled_nums": list(range(-5, 6)), + "y_labeled_nums": list(range(-5, 6)), + "x_axis_width": 7, + "y_axis_height": 7, + } + def construct(self): + + text = TextMobject("T(x,y) = T(x+y,y)") + text.scale(0.75) + text.set_color(PURPLE) + text.move_to(3*UP+5*LEFT) + self.play(Write(text)) + + XTD = self.x_axis_width/(self.x_max- self.x_min) + YTD = self.y_axis_height/(self.y_max- self.y_min) + + self.setup_axes(animate = True) + + text1 = TextMobject("Before Linear Transformation") + text1.scale(0.6) + text1.move_to(UP*3+3*RIGHT) + + a = TextMobject("(1,1)") + b = TextMobject("(3,1)") + c = TextMobject("(3,2)") + d = TextMobject("(1,2)") + a.scale(0.5) + b.scale(0.5) + c.scale(0.5) + d.scale(0.5) + a.move_to(self.graph_origin+0.6*UP+0.6*RIGHT) + b.move_to(self.graph_origin+0.6*UP+3.4*RIGHT) + c.move_to(self.graph_origin+2.4*UP+3.4*RIGHT) + d.move_to(self.graph_origin+2.6*UP+0.6*RIGHT) + + square = Polygon(self.graph_origin+UP+RIGHT,self.graph_origin+UP+3*RIGHT,self.graph_origin+2*UP+3*RIGHT,self.graph_origin+2*UP+RIGHT) + + self.play(Write(text1), Write(a), Write(b), Write(c), Write(d), ShowCreation(square)) + self.wait(2) + self.play(FadeOut(text1), FadeOut(a), FadeOut(b), FadeOut(c), FadeOut(d), ApplyMethod(square.apply_matrix,[[1,1],[0,1]])) + + a = TextMobject("(2,1)") + b = TextMobject("(4,1)") + c = TextMobject("(3,2)") + d = TextMobject("(5,2)") + a.scale(0.5) + b.scale(0.5) + c.scale(0.5) + d.scale(0.5) + a.move_to(self.graph_origin+0.6*UP+1.6*RIGHT) + b.move_to(self.graph_origin+0.6*UP+4.4*RIGHT) + d.move_to(self.graph_origin+2.4*UP+5.4*RIGHT) + c.move_to(self.graph_origin+2.4*UP+2.6*RIGHT) + + text1 = TextMobject("After Linear Transformation") + text1.scale(0.6) + text1.move_to(UP*3+3*RIGHT) + + self.play(Write(text1), Write(a), Write(b), Write(c), Write(d)) + + self.wait(2) + +class grid(LinearTransformationScene): + def construct(self): + + text = TextMobject("Now, consider all the vectors.") + text.scale(0.75) + text.set_color(PURPLE) + text.move_to(2.5*UP+3*LEFT) + self.play(Write(text)) + + text1 = TextMobject("Before Linear Transformation") + text1.scale(0.6) + text1.move_to(UP*3.5+3.5*RIGHT) + + square = Polygon(UP+RIGHT,UP+3*RIGHT,2*UP+3*RIGHT,2*UP+RIGHT) + square.set_color(YELLOW) + + self.play(Write(text1), ShowCreation(square)) + self.wait(2) + self.play(FadeOut(text1)) + self.add_transformable_mobject(square) + + text1 = TextMobject("After Linear Transformation") + text1.scale(0.6) + text1.move_to(UP*3.5+3.5*RIGHT) + + matrix = [[1,1],[0,1]] + + self.apply_matrix(matrix) + self.play(Write(text1)) + + self.wait() + +class grid2(LinearTransformationScene): + CONFIG = { + "include_background_plane": True, + "include_foreground_plane": False, + "show_coordinates": True, + "show_basis_vectors": True, + "basis_vector_stroke_width": 3, + "i_hat_color": X_COLOR, + "j_hat_color": Y_COLOR, + "leave_ghost_vectors": True, + } + + def construct(self): + + text = TextMobject("Now, let us focus only on the standard basis") + text.scale(0.7) + text.set_color(PURPLE) + text.move_to(2.5*UP+3.5*LEFT) + self.play(Write(text)) + + text1 = TextMobject("Before Linear Transformation") + text1.scale(0.6) + text1.move_to(UP*3.5+3.5*RIGHT) + + square = Polygon(UP+RIGHT,UP+3*RIGHT,2*UP+3*RIGHT,2*UP+RIGHT) + square.set_color(YELLOW) + + self.play(Write(text1), ShowCreation(square)) + self.wait(2) + self.play(FadeOut(text1)) + self.add_transformable_mobject(square) + + text1 = TextMobject("After Linear Transformation") + text1.scale(0.6) + text1.move_to(UP*3.5+3.5*RIGHT) + + matrix = [[1,1],[0,1]] + + self.apply_matrix(matrix) + self.play(Write(text1)) + + self.play(FadeOut(square), FadeOut(text1)) + + cor_x = TextMobject("(1,0)") + cor_y = TextMobject("(1,1)") + cor_x.scale(0.65) + cor_y.scale(0.65) + cor_y.move_to(1.25*RIGHT+1.5*UP) + cor_x.move_to(0.75*RIGHT-0.5*UP) + cor_x.set_color(GREEN) + cor_y.set_color(RED) + + x_cor = TextMobject(r"$\left[\begin{array}{c} 1\\0\end{array}\right]$") + x_cor.set_color(GREEN) + x_cor.scale(0.5) + y_cor = TextMobject(r"$\left[\begin{array}{c} 1\\1\end{array}\right]$") + x_cor.move_to(0.75*RIGHT-0.5*UP) + y_cor.move_to(1.25*RIGHT+1.5*UP) + y_cor.set_color(RED) + y_cor.scale(0.5) + + text1 = TextMobject(r"$T(\left[\begin{array}{c} x\\y \end{array}\right]) = $",r"$\left[\begin{array}{c} x+y\\y \end{array}\right]$") + text1.scale(0.7) + text1.set_color(PURPLE) + text1.move_to(1.5*UP+3*LEFT) + + text = TextMobject(r"$T(x,y) = (x+y,y)$") + text.scale(0.6) + text.set_color(PURPLE) + text.move_to(1.5*UP+3*LEFT) + + self.play(FadeIn(text),FadeIn(cor_x), FadeIn(cor_y)) + self.wait() + + self.play(Transform(text,text1), Transform(cor_x,x_cor), Transform(cor_y,y_cor)) + + text3 = TextMobject(r"$\left[\begin{array}{c} x+y\\y \end{array}\right]$") + text3.scale(0.7) + text3.set_color(PURPLE) + text3.move_to(1.5*DOWN+5*LEFT) + + equal = TextMobject("=") + equal.move_to(1.5*DOWN+3.5*LEFT) + + text3 = TextMobject("[") + text4 = TextMobject(r"$\begin{array}{c} (1)x\\(0)x \end{array}$") + text5 = TextMobject(r"$\begin{array}{c} + \\ + \end{array}$") + text6 = TextMobject(r"$\begin{array}{c} (1)y\\(1)y \end{array}$") + text7 = TextMobject("]") + text3.scale(2) + text4.scale(0.7) + text5.scale(0.7) + text6.scale(0.7) + text7.scale(2) + text4.set_color(GREEN) + text5.set_color(PURPLE) + text6.set_color(RED) + text3.move_to(1.5*DOWN+3*LEFT) + text4.move_to(1.5*DOWN+2.5*LEFT) + text5.move_to(1.5*DOWN+2*LEFT) + text6.move_to(1.5*DOWN+1.5*LEFT) + text7.move_to(1.5*DOWN+1*LEFT) + + text1[1].scale(1.2) + self.play(FadeOut(text1[0]), ApplyMethod(text1[1].move_to,1.5*DOWN+5*LEFT), FadeIn(text3), FadeIn(equal), FadeIn(text4), FadeIn(text5), FadeIn(text6), FadeIn(text7)) + + self.wait() + self.play(FadeOut(text1[1])) + + self.play(ApplyMethod(text3.move_to,1.5*DOWN+6*LEFT), + ApplyMethod(text4.move_to,1.5*DOWN+5.5*LEFT), + ApplyMethod(text5.move_to,1.5*DOWN+5*LEFT), + ApplyMethod(text6.move_to,1.5*DOWN+4.5*LEFT), + ApplyMethod(text7.move_to,1.5*DOWN+4*LEFT)) + + text10 = TextMobject("[") + text11 = TextMobject(r"$\begin{array}{c} 1\\0 \end{array}$") + text13 = TextMobject(r"$\begin{array}{c} 1\\1 \end{array}$") + text14 = TextMobject("]") + text10.scale(2) + text11.scale(0.7) + text13.scale(0.7) + text14.scale(2) + text11.set_color(GREEN) + text13.set_color(RED) + text10.move_to(1.5*DOWN+3*LEFT) + text11.move_to(1.5*DOWN+2.75*LEFT) + text13.move_to(1.5*DOWN+2.25*LEFT) + text14.move_to(1.5*DOWN+2*LEFT) + + self.play(FadeIn(text10), Transform(x_cor,text11), Transform(y_cor,text13), FadeIn(text14)) + + text15 = TextMobject(r"$\left[\begin{array}{c} x\\y \end{array}\right]$") + text15.scale(0.7) + text15.set_color(PURPLE) + text15.move_to(1.5*DOWN+1.5*LEFT) + + self.play(FadeIn(text15)) + self.play(FadeOut(text3), FadeOut(text4), FadeOut(text5), FadeOut(text7), FadeOut(text6)) + + text1[0].scale(1.2) + self.play(ApplyMethod(text1[0].move_to,1.5*DOWN+4.5*LEFT), FadeOut(equal)) + self.wait(2)
\ No newline at end of file diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear Transformations (Linear Maps)/file1_Understand_Linear_Transformations_visually.py b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file4_Understand_Linear_Transformations_visually.py index 577032d..577032d 100644 --- a/FSF-2020/linear-algebra/linear-transformations/Linear Transformations (Linear Maps)/file1_Understand_Linear_Transformations_visually.py +++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file4_Understand_Linear_Transformations_visually.py diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear Transformations (Linear Maps)/file2_Uniform_Scaling.py b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file5_Uniform_Scaling.py index a7856a5..a7856a5 100644 --- a/FSF-2020/linear-algebra/linear-transformations/Linear Transformations (Linear Maps)/file2_Uniform_Scaling.py +++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file5_Uniform_Scaling.py diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear Transformations (Linear Maps)/file3_Horizontal_Shear.py b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file6_Horizontal_Shear.py index 91f098e..91f098e 100644 --- a/FSF-2020/linear-algebra/linear-transformations/Linear Transformations (Linear Maps)/file3_Horizontal_Shear.py +++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file6_Horizontal_Shear.py diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear Transformations (Linear Maps)/file3_Horizontal_Shear_gif.gif b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file6_Horizontal_Shear_gif.gif Binary files differindex 9bef1b6..9bef1b6 100644 --- a/FSF-2020/linear-algebra/linear-transformations/Linear Transformations (Linear Maps)/file3_Horizontal_Shear_gif.gif +++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file6_Horizontal_Shear_gif.gif diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear Transformations (Linear Maps)/file4_Vertical_Shear.py b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file7_Vertical_Shear.py index 718e4e0..718e4e0 100644 --- a/FSF-2020/linear-algebra/linear-transformations/Linear Transformations (Linear Maps)/file4_Vertical_Shear.py +++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file7_Vertical_Shear.py diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear Transformations (Linear Maps)/file4_Vertical_Shear_gif.gif b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file7_Vertical_Shear_gif.gif Binary files differindex 7ca323f..7ca323f 100644 --- a/FSF-2020/linear-algebra/linear-transformations/Linear Transformations (Linear Maps)/file4_Vertical_Shear_gif.gif +++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file7_Vertical_Shear_gif.gif diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file8_linear_transformation.py b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file8_linear_transformation.py new file mode 100755 index 0000000..01a0cef --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file8_linear_transformation.py @@ -0,0 +1,27 @@ +from manimlib.imports import *
+class LinearTrans(LinearTransformationScene,MovingCameraScene):
+ CONFIG = {
+ "basis_vector_stroke_width": 1,
+ "leave_ghost_vectors": True,
+ }
+
+ def setup(self):
+ LinearTransformationScene.setup(self)
+ MovingCameraScene.setup(self)
+
+ def construct(self):
+ self.setup()
+ self.camera_frame.save_state()
+ self.play(self.camera_frame.set_width, 7)
+ matrix = [[0.866,-0.5],[0.5,0.866]]
+ self.apply_matrix(matrix)
+ arc1 = Arc(radius = 0.25,angle=TAU/12)
+ arc2 = Arc(radius = 0.25,angle=TAU/12,start_angle=TAU/4)
+ text1 = TextMobject(r"$\theta$")
+ text1.scale(0.5)
+ text1.move_to(0.5*UP+0.125*LEFT)
+ text2 = TextMobject(r"$\theta$")
+ text2.scale(0.5)
+ text2.move_to(0.5*RIGHT+0.125*UP)
+ self.play(ShowCreation(arc1),ShowCreation(arc2),Write(text1),Write(text2),run_time=1)
+ self.wait()
diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file9.gif b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file9.gif Binary files differnew file mode 100644 index 0000000..017e0c7 --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file9.gif diff --git a/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/README.md b/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/README.md new file mode 100644 index 0000000..e287fa1 --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/README.md @@ -0,0 +1,15 @@ +# Contributer: Archit Sangal +My Github Account : <a href="https://github.com/architsangal">architsangal</a> (https://github.com/architsangal) +<br/></br> + +## Sub-Topics Covered: ++ Orthonormal Bases + +#### Video 1: Example of Orthonormal bases +![GIF1](file4.gif) + +#### Video 2: Adding the projections of a vector on orthonormal basis will produce the same vector +![GIF2](file5.gif) + +#### Video 3: Relating the example and the property +![GIF3](file6.gif)
\ No newline at end of file diff --git a/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file1_orthogonal.py b/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file1_orthogonal.py new file mode 100755 index 0000000..a5d96f5 --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file1_orthogonal.py @@ -0,0 +1,40 @@ +from manimlib.imports import *
+
+class Orthogonal(ThreeDScene):
+ def construct(self):
+ axes = ThreeDAxes()
+ self.play(ShowCreation(axes))
+ self.move_camera(phi=60*DEGREES,theta=45*DEGREES,run_time=3)
+
+ text = TextMobject(r"$\hat{i}$",r"$\hat{j}$",r"$\hat{k}$")
+ text[0].move_to(0.7*DOWN+0.8*LEFT)
+ text[1].move_to(0.75*DOWN+0.7*RIGHT)
+ text[2].move_to(0.75*UP+0.4*RIGHT)
+ self.add_fixed_in_frame_mobjects(text)
+ self.play(Write(text))
+
+ line1 = Line(start = ORIGIN,end = RIGHT)
+ line1.set_color(DARK_BLUE)
+ tip1 = Polygon(-0.95*LEFT,-0.8*LEFT-0.1*DOWN,-0.8*LEFT-0.1*UP)
+ tip1.set_opacity(1)
+ tip1.set_fill(DARK_BLUE)
+ tip1.set_color(DARK_BLUE)
+
+ arrow2 = Line(start = ORIGIN,end = UP)
+ arrow2.set_color(DARK_BLUE)
+ tip2 = Polygon(0.95*UP,0.8*UP-0.1*RIGHT,0.8*UP-0.1*LEFT)
+ tip2.set_opacity(1)
+ tip2.set_fill(DARK_BLUE)
+ tip2.set_color(DARK_BLUE)
+ arrow2.set_color(DARK_BLUE)
+
+ arrow3 = Line(start = ORIGIN,end = [0,0,1])
+ arrow3.set_color(DARK_BLUE)
+ tip3 = Polygon([0,0,0.95],[0,0,0.8]-0.1*RIGHT,[0,0,0.8]-0.1*LEFT)
+ tip3.set_opacity(1)
+ tip3.set_fill(DARK_BLUE)
+ tip3.set_color(DARK_BLUE)
+
+ self.play(ShowCreation(line1), ShowCreation(tip1), ShowCreation(arrow2), ShowCreation(tip2), ShowCreation(arrow3), ShowCreation(tip3))
+
+ self.wait()
diff --git a/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file2_sum_of_projections_part1.py b/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file2_sum_of_projections_part1.py new file mode 100755 index 0000000..141e99b --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file2_sum_of_projections_part1.py @@ -0,0 +1,133 @@ +from manimlib.imports import *
+class LinearTrans(LinearTransformationScene):
+ CONFIG = {
+ "show_basis_vectors": True,
+ "basis_vector_stroke_width": 1,
+ "leave_ghost_vectors": False,
+ "show_coordinates": True,
+ }
+
+ def construct(self):
+
+ self.setup()
+
+ matrix = [[0.6,-0.8],[0.8,0.6]]
+ self.apply_matrix(matrix)
+
+ self.wait(2)
+ orthonormal = TextMobject(r"These are 2 orthonormal vectors($v_1$ and $v_2$)")
+ orthonormal.scale(0.7)
+ orthonormal.move_to(DOWN+LEFT*3.5)
+ orthonormal.add_background_rectangle()
+ v1 = TextMobject(r"$v_1$")
+ v1.scale(0.75)
+ v1.set_color(X_COLOR)
+ v1.move_to(0.75*UP+RIGHT)
+ v1.add_background_rectangle()
+ v2 = TextMobject(r"$v_2$")
+ v2.scale(0.75)
+ v2.set_color(Y_COLOR)
+ v2.move_to(0.75*UP+LEFT*1.25)
+ v2.add_background_rectangle()
+ self.play(Write(orthonormal))
+ self.play(Write(v1),Write(v2))
+ self.wait()
+ self.play(FadeOut(orthonormal), FadeOut(v1), FadeOut(v2))
+
+ arrow = Arrow(start = ORIGIN,end = 3*RIGHT+UP)
+ arrow.scale(1.2)
+ arrow.set_color(BLUE)
+ arrow.apply_matrix(matrix)
+ text3 = TextMobject("v")
+ text3.move_to(3.2*UP+1.2*RIGHT)
+ text3.add_background_rectangle()
+ self.play(ShowCreation(arrow),Write(text3))
+ self.wait()
+ v_cor = TextMobject("(1 , 3)")
+ v_cor.move_to(3.2*UP+1.3*RIGHT)
+ v_cor.set_color(BLUE)
+ v_cor.scale(0.75)
+ v_cor.add_background_rectangle()
+ self.play(Transform(text3,v_cor))
+
+ line1 = DashedLine(start = 1*UP+3*RIGHT, end = 3*RIGHT)
+ line2 = DashedLine(start = 1*UP+3*RIGHT, end = UP)
+ line1.apply_matrix(matrix)
+ line2.apply_matrix(matrix)
+ self.play(ShowCreation(line1),ShowCreation(line2),run_time = 2)
+
+ v1 = Arrow(start = ORIGIN,end = 3*RIGHT+UP)
+ v1.scale(1.2)
+ v1.set_color(BLUE)
+ v1.apply_matrix(matrix)
+ arrow1 = Arrow(start = ORIGIN,end = 3*RIGHT)
+ arrow1.scale(1.2)
+ arrow1.set_color("#6B8E23")
+ arrow1.apply_matrix(matrix)
+ self.play(Transform(v1,arrow1))
+ v1_cor = TextMobject(r"$<v,v_1> v_1$")
+ v1_cor.move_to(2.5*UP+3*RIGHT)
+ v1_cor.scale(0.75)
+ v1_cor.add_background_rectangle()
+ self.play(Write(v1_cor))
+ self.wait(0.5)
+ text1 = TextMobject("(1.8 , 2.4)")
+ text1.move_to(2.1*UP+2.5*RIGHT)
+ text1.scale(0.75)
+ text1.set_color("#6B8E23")
+ text1.add_background_rectangle()
+ self.play(Transform(v1_cor,text1))
+
+ v2 = Arrow(start = ORIGIN,end = 3*RIGHT+UP)
+ v2.scale(1.2)
+ v2.set_color("#8b0000")
+ v2.apply_matrix(matrix)
+ arrow2 = Arrow(start = ORIGIN,end = UP)
+ arrow2.scale(2.1)
+ arrow2.set_color("#8b0000")
+ arrow2.apply_matrix(matrix)
+ self.wait(0.5)
+ self.play(Transform(v2,arrow2))
+ self.wait(0.5)
+ v2_cor = TextMobject(r"$<v,v_2> v_2$")
+ v2_cor.move_to(0.75*UP+2.5*LEFT)
+ v2_cor.scale(0.75)
+ v2_cor.add_background_rectangle()
+ self.play(Write(v2_cor))
+ self.wait(0.5)
+ text2 = TextMobject("(-0.8 , 0.6)")
+ text2.move_to(0.75*UP+1.75*LEFT)
+ text2.scale(0.75)
+ text2.set_color("#8b0000")
+ text2.add_background_rectangle()
+ self.play(Transform(v2_cor,text2))
+
+ self.wait()
+
+ self.play(ApplyMethod(v2.move_to,1.4*RIGHT+2.7*UP),FadeOut(v1_cor),FadeOut(v2_cor),FadeOut(v_cor))
+
+ self.wait()
+
+ ending = TextMobject(r"$v = <v,v_1> v_1 + <v,v_2> v_2$")
+ ending.scale(0.7)
+ ending.move_to(DOWN)
+ ending.add_background_rectangle()
+ self.play(Write(ending))
+ self.wait()
+ self.play(FadeOut(ending))
+
+ ending = TextMobject(r"$\left[ \begin{array} {c} 1\\ 3 \end{array}\right] = \left[ \begin{array} {c}1.8 \\ 2.4 \end{array}\right] + \left[ \begin{array} {c} -0.8\\ 0.6 \end{array}\right]$")
+ ending.scale(0.7)
+ ending.move_to(DOWN)
+ ending.add_background_rectangle()
+ self.play(Write(ending))
+ self.wait()
+ self.play(FadeOut(ending))
+
+ ending = TextMobject(r"$v$ is the sum of projections on the orthonormal vectors")
+ ending.scale(0.7)
+ ending.move_to(DOWN)
+ ending.add_background_rectangle()
+ self.play(Write(ending))
+ self.wait()
+ self.play(FadeOut(ending))
\ No newline at end of file diff --git a/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file3_sum_of_projections_part2.py b/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file3_sum_of_projections_part2.py new file mode 100644 index 0000000..2899286 --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file3_sum_of_projections_part2.py @@ -0,0 +1,181 @@ +from manimlib.imports import * +class ThreeDExplanation(ThreeDScene): + + def construct(self): + + basis = TextMobject(r"Set of Orthonormal Basis - $\left(\begin{array}{c}\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\\0\end{array}\right),\left(\begin{array}{c}\frac{-1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\\0\end{array}\right),\left(\begin{array}{c}0\\0\\1\end{array}\right)$") + basis.scale(0.75) + basis.move_to(UP*1.5) + self.play(Write(basis)) + v = TextMobject(r"$v_1$",r"$v_2$",r"$v_3$") + v[0].move_to(UP*0.5+RIGHT*0.75) + v[1].move_to(UP*0.5+RIGHT*2.5) + v[2].move_to(UP*0.5+RIGHT*4) + eq = TextMobject(r"$v = \left(\begin{array}{c}3\\4\\5\end{array}\right)$") + eq1 = TextMobject(r"$<v,v_1> = \frac{3}{\sqrt{2}} + \frac{4}{\sqrt{2}}Â + 0 = \frac{7}{\sqrt{2}}$") + eq2 = TextMobject(r"$<v,v_2> = \frac{-3}{\sqrt{2}} + \frac{4}{\sqrt{2}}Â + 0 =\frac{1}{\sqrt{2}}$") + eq3 = TextMobject(r"$<v,v_3> =Â 0 + 0Â + 5Â =5$") + eq.move_to(4*LEFT+DOWN) + eq1.move_to(0.5*DOWN+2*RIGHT) + eq2.move_to(1.5*DOWN+2*RIGHT) + eq3.move_to(2.5*DOWN+2*RIGHT) + self.play(Write(v)) + self.play(Write(eq)) + self.play(Write(eq1)) + self.play(Write(eq2)) + self.play(Write(eq3)) + self.wait() + self.play(FadeOut(basis), FadeOut(eq), FadeOut(v), FadeOut(eq1), FadeOut(eq2), FadeOut(eq3)) + self.wait() + + text = TextMobject("These are the 3 mutually orthonormal basis of the set(", r"$v_1$, ", r"$v_2$, ", r"$v_3$",")") + text[1].set_color(DARK_BLUE) + text[2].set_color(RED) + text[3].set_color(YELLOW) + text.scale(0.75) + self.add_fixed_in_frame_mobjects(text) + text.move_to(3*DOWN) + self.play(Write(text)) + self.wait() + + axes = ThreeDAxes(x_min = -6,x_max=6,y_min=-6,y_max=6,z_min=-6,z_max=6) + self.play(ShowCreation(axes)) + self.move_camera(distance = 100, phi=45*DEGREES,theta=45*DEGREES,run_time=5) + self.begin_ambient_camera_rotation(rate=0.1) + + xy_plane = Polygon(6*RIGHT+6*UP,-6*RIGHT+6*UP,-6*RIGHT-6*UP,6*RIGHT-6*UP) + xy_plane.set_color("#333333") + xy_plane.set_fill("#333333") + xy_plane.set_opacity(1) + xy_plane.fade(0.7) + self.play(ShowCreation(xy_plane)) + + dashedline1 = DashedLine(start = -6*(UP+RIGHT), end = 6*(UP+RIGHT)) + dashedline2 = DashedLine(start = -6*(UP+LEFT), end = 6*(UP+LEFT)) + dashedline3 = DashedLine(start = 4*UP+3*RIGHT+[0,0,5], end = 3.5*UP+3.5*RIGHT) + dashedline4 = DashedLine(start = 4*UP+3*RIGHT+[0,0,5], end = 0.5*UP+0.5*LEFT) + dashedline5 = DashedLine(start = 4*UP+3*RIGHT+[0,0,5], end = [0,0,5]) + + self.play(ShowCreation(dashedline1), ShowCreation(dashedline2)) + + line1 = Line(start = ORIGIN,end = 0.707*RIGHT + 0.707*UP) + line1.set_color(DARK_BLUE) + tip1 = Polygon(0.707*RIGHT + 0.707*UP, 0.707*RIGHT + 0.607*UP, 0.607*RIGHT + 0.707*UP) + tip1.set_opacity(1) + tip1.set_fill(DARK_BLUE) + tip1.set_color(DARK_BLUE) + self.play(ShowCreation(line1), ShowCreation(tip1)) + + line2 = Line(start = ORIGIN,end = 0.707*LEFT + 0.707*UP) + line2.set_color(RED) + tip2 = Polygon(0.707*LEFT + 0.707*UP, 0.707*LEFT + 0.607*UP, 0.607*LEFT + 0.707*UP) + tip2.set_opacity(1) + tip2.set_fill(RED) + tip2.set_color(RED) + + self.play(ShowCreation(line2), ShowCreation(tip2)) + + line3 = Line(start = ORIGIN,end = [0,0,1]) + line3.set_color(YELLOW) + tip3 = Polygon([0,0,1],[0,0,0.8]-0.2*RIGHT,[0,0,0.8]-0.2*LEFT) + tip3.set_opacity(1) + tip3.set_fill(YELLOW) + tip3.set_color(YELLOW) + self.play(ShowCreation(line3), ShowCreation(tip3)) + self.wait() + + self.play(FadeOut(text)) + + text = TextMobject("Take the projection of ", r"$v$", " on the mutually orthonormal vectors") + text[1].set_color(GOLD_E) + text.scale(0.75) + self.add_fixed_in_frame_mobjects(text) + text.move_to(3*DOWN) + self.play(Write(text)) + self.wait(2) + + a_line = Line(start = ORIGIN,end = 4*UP+3*RIGHT+[0,0,5]) + a_line.set_color(GOLD_E) + a_tip = Polygon(3.92*UP+2.94*RIGHT+[0,0,4.9],3.6*UP+2.7*RIGHT+[0,0,4.5]+0.1*UP+0.1*LEFT,3.6*UP+2.7*RIGHT+[0,0,4.5]+0.1*DOWN+0.1*RIGHT) + a_tip.set_opacity(1) + a_tip.set_fill(GOLD_E) + a_tip.set_color(GOLD_E) + + self.play(ShowCreation(a_line), ShowCreation(a_tip)) + self.stop_ambient_camera_rotation() + self.move_camera(distance = 100, phi=45*DEGREES,theta=135*DEGREES,run_time=5) + + self.play(ShowCreation(dashedline3),ShowCreation(dashedline4),ShowCreation(dashedline5)) + self.wait() + + pv1 = Line(start = ORIGIN,end = 4*UP+3*RIGHT+[0,0,5]) + pv1.set_color(GOLD_E) + pv1tip = Polygon(4*UP+3*RIGHT+[0,0,5],3.6*UP+2.7*RIGHT+[0,0,4.5]+0.1*UP+0.1*LEFT,3.6*UP+2.7*RIGHT+[0,0,4.5]+0.1*DOWN+0.1*RIGHT) + pv1tip.set_opacity(1) + pv1tip.set_fill(GOLD_E) + pv1tip.set_color(GOLD_E) + + v1_p = Line(start = ORIGIN,end = 3.5*RIGHT + 3.5*UP) + v1_p.set_color(BLUE_E) + v1_p_tip = Polygon(3.5*RIGHT + 3.5*UP, 3.5*RIGHT + 3.4*UP, 3.4*RIGHT + 3.5*UP) + v1_p_tip.set_opacity(1) + v1_p_tip.set_fill(BLUE_E) + v1_p_tip.set_color(BLUE_E) + + pv2 = Line(start = ORIGIN,end = 4*UP+3*RIGHT+[0,0,5]) + pv2.set_color(GOLD_E) + pv2tip = Polygon(4*UP+3*RIGHT+[0,0,5],3.6*UP+2.7*RIGHT+[0,0,4.5]+0.1*UP+0.1*LEFT,3.6*UP+2.7*RIGHT+[0,0,4.5]+0.1*DOWN+0.1*RIGHT) + pv2tip.set_opacity(1) + pv2tip.set_fill(GOLD_E) + pv2tip.set_color(GOLD_E) + + v2_p = Line(start = ORIGIN,end = 0.5*LEFT + 0.5*UP) + v2_p.set_color(RED_E) + v2_p_tip = Polygon(0.5*LEFT + 0.5*UP, 0.5*LEFT + 0.4*UP, 0.4*LEFT + 0.5*UP) + v2_p_tip.set_opacity(1) + v2_p_tip.set_fill(RED_E) + v2_p_tip.set_color(RED_E) + + pv3 = Line(start = ORIGIN,end = 4*UP+3*RIGHT+[0,0,5]) + pv3.set_color(GOLD_E) + pv3tip = Polygon(4*UP+3*RIGHT+[0,0,5],3.6*UP+2.7*RIGHT+[0,0,4.5]+0.1*UP+0.1*LEFT,3.6*UP+2.7*RIGHT+[0,0,4.5]+0.1*DOWN+0.1*RIGHT) + pv3tip.set_opacity(1) + pv3tip.set_fill(GOLD_E) + pv3tip.set_color(GOLD_E) + + v3_p = Line(start = ORIGIN,end = [0,0,5]) + v3_p.set_color(YELLOW_E) + v3_p_tip = Polygon([0,0,5.15],[0,0,4.8]+0.2*RIGHT,[0,0,4.8]+0.2*LEFT) + v3_p_tip.set_opacity(1) + v3_p_tip.set_fill(YELLOW_E) + v3_p_tip.set_color(YELLOW_E) + + #self.stop_ambient_camera_rotation() + self.play(Transform(pv1,v1_p), + Transform(pv1tip,v1_p_tip), + Transform(pv2,v2_p), + Transform(pv2tip,v2_p_tip), + Transform(pv3,v3_p), + Transform(pv3tip,v3_p_tip)) + self.play(FadeOut(dashedline1), + FadeOut(dashedline2), + FadeOut(dashedline3), + FadeOut(dashedline4), + FadeOut(dashedline5), + FadeOut(line1), + FadeOut(tip1), + FadeOut(line2), + FadeOut(tip2), + FadeOut(line3), + FadeOut(tip3), + FadeOut(text)) + + text = TextMobject(r"$v$ is the sum of projections on the orthonormal vectors") + text.set_color(GOLD_E) + text.scale(0.75) + self.add_fixed_in_frame_mobjects(text) + text.move_to(3*DOWN) + self.play(Write(text), ApplyMethod(pv2.move_to,(3.5*RIGHT + 3.5*UP+3*RIGHT+4*UP)/2), ApplyMethod(pv2tip.move_to,(3.1*RIGHT + 3.9*UP))) + self.play(ApplyMethod(pv3.move_to,3*RIGHT + 4*UP + [0,0,2.5]), ApplyMethod(pv3tip.move_to,(3*RIGHT + 4*UP + [0,0,4.8]))) + + self.wait(3)
\ No newline at end of file diff --git a/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file4.gif b/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file4.gif Binary files differnew file mode 100644 index 0000000..4891350 --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file4.gif diff --git a/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file5.gif b/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file5.gif Binary files differnew file mode 100644 index 0000000..d7eb0bc --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file5.gif diff --git a/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file6.gif b/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file6.gif Binary files differnew file mode 100644 index 0000000..1df6413 --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file6.gif diff --git a/FSF-2020/linear-algebra/linear-transformations/README.md b/FSF-2020/linear-algebra/linear-transformations/README.md index 692201e..067755e 100644 --- a/FSF-2020/linear-algebra/linear-transformations/README.md +++ b/FSF-2020/linear-algebra/linear-transformations/README.md @@ -1,9 +1,10 @@ # Contributer: Archit Sangal
-My Github Account : <a href="https://github.com/architsangal">architsangal</a>
+My Github Account : <a href="https://github.com/architsangal">architsangal</a> (https://github.com/architsangal). These code were written during the course of FOSSEE Summer Fellowship 2020 under the FLOSS: Mathematics using Python.
<br/></br>
+
## Sub-Topics Covered:
-+ Vector Space Homomorphisms (Linear Maps)
++ Linear Transformations (Linear Maps)
+ The Four Fundamental Subspaces
+ Rank-Nullity Theorem
+ Orthonormal basis
-+ Gramm-Schmidt Orthogonalization Process
++ Gramm-Schmidt Orthogonalization Process
\ No newline at end of file diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/README.md b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/README.md new file mode 100644 index 0000000..6c90bf4 --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/README.md @@ -0,0 +1,30 @@ +# Contributer: Archit Sangal +My Github Account : <a href="https://github.com/architsangal">architsangal</a> (https://github.com/architsangal) +<br/></br> + +## Sub-Topics Covered: ++ The Four Fundamental Subspaces + +#### Video 1: Writing System of linear equations in form of Ax=b +![GIF1](file11.gif) + +#### Video 2: Column Space is same as the image of Linear Transformation +![GIF2](file14.gif) + +#### Video 3: Existance of Solution w.r.t. vector b +![GIF3](file17.gif) + +#### Video 4: Null Space (Visually) +![GIF4](file12.gif) + +#### Video 5: Definition 1 is equivalent to Definition 2 +![GIF5](file13.gif) + +#### Video 6: Relation between Row Space and Null Space +![GIF6](file16.gif) + +#### Fig. 1 Naming of the left null space +![GIF7](file10_Left_Null_Space_pSv8iio_d5Sy9qS.gif) + +#### Video 7: Left Null Space(Visually) +![GIF8](file15.gif)
\ No newline at end of file diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file10_Left_Null_Space_pSv8iio_d5Sy9qS.gif b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file10_Left_Null_Space_pSv8iio_d5Sy9qS.gif Binary files differnew file mode 100644 index 0000000..3f50635 --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file10_Left_Null_Space_pSv8iio_d5Sy9qS.gif diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file11.gif b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file11.gif Binary files differnew file mode 100644 index 0000000..8f74202 --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file11.gif diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file12.gif b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file12.gif Binary files differnew file mode 100644 index 0000000..aa7403b --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file12.gif diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file13.gif b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file13.gif Binary files differnew file mode 100644 index 0000000..34b54c7 --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file13.gif diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file14.gif b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file14.gif Binary files differnew file mode 100644 index 0000000..b77791b --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file14.gif diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file15.gif b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file15.gif Binary files differnew file mode 100644 index 0000000..8bb24bf --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file15.gif diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file16.gif b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file16.gif Binary files differnew file mode 100644 index 0000000..87e0026 --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file16.gif diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file17.gif b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file17.gif Binary files differnew file mode 100644 index 0000000..eec819a --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file17.gif diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file18_NOT_in_lecture_note_Column_Space.py b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file18_NOT_in_lecture_note_Column_Space.py new file mode 100644 index 0000000..afe4f9a --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file18_NOT_in_lecture_note_Column_Space.py @@ -0,0 +1,30 @@ +from manimlib.imports import * + +class Column_Space(Scene): + def construct(self): + + A = TextMobject(r"$A = $",r"$\left( \begin{array}{c c c} 1 & 2 & 1 \\ 1 & 3 & 1 \\ 2 & 1 & 4 \\ 3 & 2 & 3 \end{array} \right)$") + A.move_to(2*UP) + A[1].set_color(color = DARK_BLUE) + A.scale(0.75) + + self.play(Write(A),run_time = 1) + + CS_A = TextMobject(r"Column Space of $A = x_{1}$",r"$\left( \begin{array}{c} 1 \\ 1 \\ 2 \\ 3 \end{array} \right)$",r"$+x_{2}$",r"$ \left( \begin{array}{c} 2 \\ 3 \\ 1 \\ 2 \end{array} \right)$",r"$ + x_{3}$",r"$\left( \begin{array}{c} 1 \\ 1 \\ 4 \\ 3 \end{array} \right)$") + CS_A.move_to(1.5*LEFT+1*DOWN) + CS_A[1].set_color(color = DARK_BLUE) + CS_A[3].set_color(color = DARK_BLUE) + CS_A[5].set_color(color = DARK_BLUE) + CS_A.scale(0.75) + + self.play(Write(CS_A),run_time = 2) + + arrow1 = Arrow(start = 1.25*UP,end = 0.25*DOWN+1.75*LEFT) + arrow2 = Arrow(start = 1.35*UP+0.5*RIGHT,end = 0.25*DOWN+0.5*RIGHT) + arrow3 = Arrow(start = 1.25*UP+0.75*RIGHT,end = 0.25*DOWN+2.9*RIGHT) + + Defn = TextMobject("Linear Combination of Columns of Matrix") + Defn.move_to(3*DOWN) + + self.play(Write(Defn), ShowCreation(arrow1), ShowCreation(arrow2), ShowCreation(arrow3),run_time = 1) + self.wait(1)
\ No newline at end of file diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file1_Axb.py b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file1_Axb.py new file mode 100755 index 0000000..95d1021 --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file1_Axb.py @@ -0,0 +1,77 @@ +from manimlib.imports import *
+
+class Axb(Scene):
+
+ def construct(self):
+
+ text0 = TextMobject("Linear System Of Equations")
+ text1 = TextMobject(r"$x_{1}+x_{2}+x_{3} =b_{1}$")
+ text2 = TextMobject(r"$x_{1}+2x_{2}+x_{3} =b_{2}$")
+ text3 = TextMobject(r"$x_{1}+x_{2}+3x_{3} =b_{3}$")
+ text0.move_to(UP*2+LEFT*2)
+ text0.set_color(DARK_BLUE)
+ text1.move_to(UP)
+ text2.move_to(ORIGIN)
+ text3.move_to(DOWN)
+
+ text0.scale(0.75)
+ text1.scale(0.75)
+ text2.scale(0.75)
+ text3.scale(0.75)
+ self.play(Write(text0))
+ self.play(Write(text1))
+ self.play(Write(text2))
+ self.play(Write(text3))
+ self.play(ApplyMethod(text0.move_to,3*UP+LEFT*2), ApplyMethod(text1.move_to,2.5*UP), ApplyMethod(text2.move_to,2*UP), ApplyMethod(text3.move_to,1.5*UP))
+
+ A = TextMobject(r"$\left(Â \begin{array}{c c c} 1 & 1Â & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 3 \end{array}\right) \left[ \begin{array} {c} x_{1} \\ x_{2} \\ x_{3} \end{array}\right] =$", r"$\left[ \begin{array}{c} x_{1}+x_{2}+x_{3} \\ x_{1}+2x_{2}+x_{3} \\ x_{1}+x_{2}+3x_{3} \end{array}\right]$")
+ A.scale(0.75)
+ self.play(FadeIn(A))
+
+ textA = TextMobject("A")
+ textx = TextMobject("x")
+ textb = TextMobject("Ax")
+
+ textA.move_to(DOWN+3*LEFT)
+ textx.move_to(1.1*DOWN+0.5*LEFT)
+ textb.move_to(DOWN-2*LEFT)
+
+ self.play(Write(textA), Write(textx), Write(textb))
+
+ circle1 = Circle(radius = 0.24)
+ circle2 = Circle(radius = 0.24)
+ square = Square(side_length = 0.6)
+
+ circle1.move_to(UP*0.5+LEFT*3.05)
+ circle2.move_to(UP*0.4+LEFT*0.5)
+ square.move_to(UP*0.4+RIGHT*1.3)
+
+ self.play(FadeIn(circle1), FadeIn(circle2),FadeIn(square))
+
+ self.play(ApplyMethod(circle1.move_to,UP*0.5+LEFT*2.45), ApplyMethod(circle2.move_to,LEFT*0.5), ApplyMethod(square.move_to,UP*0.4+RIGHT*2.2))
+ self.play(ApplyMethod(circle1.move_to,UP*0.5+LEFT*1.85), ApplyMethod(circle2.move_to,DOWN*0.5+LEFT*0.5), ApplyMethod(square.move_to,UP*0.4+RIGHT*3.1))
+
+ self.play(ApplyMethod(circle1.move_to,LEFT*3.05), ApplyMethod(circle2.move_to,UP*0.4+LEFT*0.5), ApplyMethod(square.move_to,RIGHT*1.3))
+ self.play(ApplyMethod(circle1.move_to,LEFT*2.45), ApplyMethod(circle2.move_to,LEFT*0.5), ApplyMethod(square.move_to,RIGHT*2.2))
+ self.play(ApplyMethod(circle1.move_to,LEFT*1.85), ApplyMethod(circle2.move_to,DOWN*0.5+LEFT*0.5), ApplyMethod(square.move_to,RIGHT*3.1))
+
+ self.play(ApplyMethod(circle1.move_to,0.4*DOWN+LEFT*3.05), ApplyMethod(circle2.move_to,UP*0.4+LEFT*0.5), ApplyMethod(square.move_to,0.4*DOWN+RIGHT*1.3))
+ self.play(ApplyMethod(circle1.move_to,0.4*DOWN+LEFT*2.45), ApplyMethod(circle2.move_to,LEFT*0.5), ApplyMethod(square.move_to,0.4*DOWN+RIGHT*2.2))
+ self.play(ApplyMethod(circle1.move_to,0.4*DOWN+LEFT*1.85), ApplyMethod(circle2.move_to,DOWN*0.5+LEFT*0.5), ApplyMethod(square.move_to,0.4*DOWN+RIGHT*3.1))
+
+ self.play(FadeOut(circle1), FadeOut(circle2), FadeOut(square))
+ self.play(FadeOut(A[0]), ApplyMethod(A[1].move_to,2*LEFT),ApplyMethod(textb.move_to,DOWN+1.7*LEFT), FadeOut(textx), FadeOut(textA))
+ b = TextMobject(r"$=\left[ \begin{array}{c} b_{1} \\ b_{2} \\ b_{3} \end{array}\right]$")
+ b.move_to(RIGHT)
+ textB = TextMobject("b")
+ textB.move_to(1.2*DOWN+1.1*RIGHT)
+ self.play(FadeIn(b),FadeIn(textB))
+
+ self.wait()
+
+ self.play(FadeOut(text0), FadeOut(text1), FadeOut(text2), FadeOut(text3))
+
+ axb = TextMobject("Ax = b")
+ self.play(FadeIn(axb), FadeOut(textb), FadeOut(textB), FadeOut(b), FadeOut(A[1]))
+
+ self.wait()
\ No newline at end of file diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file2_CSasImage.py b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file2_CSasImage.py new file mode 100644 index 0000000..70547cb --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file2_CSasImage.py @@ -0,0 +1,169 @@ +from manimlib.imports import * + +class Column_Space(Scene): + def construct(self): + + A = TextMobject(r"$A = $",r"$\left( \begin{array}{c c} 1 & 2 \\ 3 & 4 \end{array} \right)$") + A.move_to(2*UP) + A[1].set_color(color = DARK_BLUE) + A.scale(0.75) + + self.play(Write(A),run_time = 1) + + CS_A = TextMobject(r"Column Space of $A = x_{1}$",r"$\left( \begin{array}{c} 1 \\ 3 \end{array} \right)$",r"$+x_{2}$",r"$ \left( \begin{array}{c} 2 \\ 4\end{array} \right)$") + CS_A.move_to(1.5*LEFT+1*DOWN) + CS_A[1].set_color(color = DARK_BLUE) + CS_A[3].set_color(color = DARK_BLUE) + CS_A.scale(0.75) + + self.play(Write(CS_A),run_time = 2) + + arrow1 = Arrow(start = 1.25*UP,end = (0.25*DOWN+1.75*LEFT+0.25*DOWN+1.2*RIGHT)/2) + arrow3 = Arrow(start = 1.25*UP+0.75*RIGHT,end = (0.25*DOWN+2.9*RIGHT+0.25*DOWN)/2) + + arrow1.scale(1.5) + arrow3.scale(1.5) + + Defn = TextMobject("Linear Combination of Columns of Matrix") + Defn.move_to(3*DOWN) + + self.play(Write(Defn), ShowCreation(arrow1), ShowCreation(arrow3),run_time = 1) + self.wait(1) + +class solution(LinearTransformationScene): + def construct(self): + + self.setup() + self.wait() + + o = TextMobject(r"Consider the vector space $R^2$") + o.move_to(2*DOWN) + o.scale(0.75) + o.add_background_rectangle() + self.play(Write(o)) + self.wait() + self.play(FadeOut(o)) + + A = TextMobject(r"Let $A$ be ",r"$\left[\begin{array}{c c} 1 & -1 \\ 1 & -1 \end{array}\right]$",r". $A$ denotes the matrix the of this linear transformation.") + A.move_to(2*DOWN) + A.scale(0.75) + A.add_background_rectangle() + self.play(Write(A)) + matrix = [[1,-1],[1,-1]] + self.apply_matrix(matrix) + self.wait() + self.play(FadeOut(A)) + + o = TextMobject(r"This is the transformed vector space") + o.move_to(2*DOWN) + o.scale(0.75) + o.add_background_rectangle() + self.play(Write(o)) + self.wait() + self.play(FadeOut(o)) + + texti = TextMobject(r"$\left[\begin{array}{c}1\\1\end{array}\right]$") + textj = TextMobject(r"$\left[\begin{array}{c}-1\\-1\end{array}\right]$") + texti.set_color(GREEN) + textj.set_color(RED) + texti.scale(0.7) + textj.scale(0.7) + texti.move_to(1.35*RIGHT+0.5*UP) + textj.move_to(-(1.5*RIGHT+0.5*UP)) + + text1 = TextMobject("[") + text2 = TextMobject(r"$\begin{array}{c} 1 \\ 1 \end{array}$") + text3 = TextMobject(r"$\begin{array}{c} -1 \\ -1 \end{array}$") + text4 = TextMobject("]") + + text2.set_color(GREEN) + text3.set_color(RED) + + text1.scale(2) + text4.scale(2) + text2.scale(0.7) + text3.scale(0.7) + + text1.move_to(2.5*UP+6*LEFT) + text2.move_to(2.5*UP+5.75*LEFT) + text3.move_to(2.5*UP+5.25*LEFT) + text4.move_to(2.5*UP+5*LEFT) + + self.play(Write(texti), Write(textj)) + self.wait() + self.play(FadeIn(text1), Transform(texti,text2), Transform(textj,text3), FadeIn(text4)) + self.wait() + + o = TextMobject(r"Now, you can observe the Image of Linear Transformation") + o1 = TextMobject(r"and Column Space(i.e. span of columns of matrix $A$) are same") + o.move_to(2.5*DOWN) + o1.move_to(3*DOWN) + o.scale(0.75) + o1.scale(0.75) + o.add_background_rectangle() + o1.add_background_rectangle() + self.play(Write(o)) + self.play(Write(o1)) + self.wait() + self.play(FadeOut(o),FadeOut(o1)) + +class solution2nd(LinearTransformationScene): + def construct(self): + + self.setup() + self.wait() + + arrow1 = Arrow(start = ORIGIN,end = 2*DOWN+RIGHT) + arrow2 = Arrow(start = ORIGIN,end = UP+LEFT) + arrow3 = Arrow(start = ORIGIN,end = 3*UP+4*RIGHT) + arrow1.set_color(YELLOW) + arrow2.set_color(ORANGE) + arrow3.set_color(PURPLE) + arrow1.scale(1.3) + arrow2.scale(1.5) + arrow3.scale(1.1) + + self.play(ShowCreation(arrow1), ShowCreation(arrow2), ShowCreation(arrow3)) + + self.add_transformable_mobject(arrow1) + self.add_transformable_mobject(arrow2) + self.add_transformable_mobject(arrow3) + o = TextMobject(r"Consider any vector in the original vector space $R^2$") + o.move_to(2.5*DOWN) + o.scale(0.75) + o.add_background_rectangle() + self.play(Write(o)) + self.wait() + self.play(FadeOut(o)) + + A = TextMobject(r"Let the matrix the of this linear transformation be $A$ =",r"$\left[\begin{array}{c c} 1 & -1 \\ 1 & -1 \end{array}\right]$",r" again.") + A.move_to(2*DOWN) + A.scale(0.75) + A.add_background_rectangle() + self.play(Write(A)) + matrix = [[1,-1],[1,-1]] + self.apply_matrix(matrix) + self.wait() + self.play(FadeOut(A)) + + o = TextMobject(r"This is the transformed vector space") + o.move_to(2*DOWN) + o.scale(0.75) + o.add_background_rectangle() + self.play(Write(o)) + self.wait() + self.play(FadeOut(o)) + + o = TextMobject(r"Each and every vector of original vector space $R^2$ will transform") + o1 = TextMobject(r"to this new vector space which is spanned by $\mathbf{CS}(A)$") + o.move_to(2.5*DOWN) + o1.move_to(3*DOWN) + o.scale(0.75) + o1.scale(0.75) + o.add_background_rectangle() + o1.add_background_rectangle() + self.play(Write(o)) + self.play(Write(o1)) + self.wait() + self.play(FadeOut(o)) + self.play(FadeOut(o1))
\ No newline at end of file diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file3_solution.py b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file3_solution.py new file mode 100644 index 0000000..eb310f3 --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file3_solution.py @@ -0,0 +1,77 @@ +from manimlib.imports import * +class solution(LinearTransformationScene): + def construct(self): + + self.setup() + self.wait() + + o = TextMobject(r"This is the original vector space $R^2$ (before Linear Transformation)") + o.move_to(3*DOWN) + o.scale(0.75) + o.add_background_rectangle() + self.play(Write(o)) + self.wait() + self.play(FadeOut(o)) + + A = TextMobject(r"Consider the matrix the of this linear transformation $A$ = $\left[\begin{array}{c c} 1 & -1 \\ 1 & -1 \end{array}\right]$") + A.move_to(3*DOWN) + A.scale(0.75) + A.add_background_rectangle() + self.play(Write(A)) + matrix = [[1,-1],[1,-1]] + self.apply_matrix(matrix) + self.wait() + self.play(FadeOut(A)) + + o = TextMobject(r"This is the transformed vector space") + o.move_to(3*DOWN) + o.scale(0.75) + o.add_background_rectangle() + self.play(Write(o)) + self.wait() + self.play(FadeOut(o)) + + arrow2 = Arrow(start = ORIGIN, end = 2*DOWN+2*LEFT) + arrow2.set_color(PURPLE) + arrow2.scale(1.2) + self.play(ShowCreation(arrow2)) + self.wait() + + o1 = TextMobject("If the ","vector b"," lies in the transformed vector space") + o2 = TextMobject("(the line) then the solution exist") + o1.move_to(2.5*DOWN+2*RIGHT) + o1[1].set_color(PURPLE) + o2.move_to(3*DOWN+2.5*RIGHT) + o1.scale(0.75) + o2.scale(0.75) + o1.add_background_rectangle() + o2.add_background_rectangle() + self.play(Write(o1)) + self.play(Write(o2)) + self.wait() + self.play(FadeOut(o1), FadeOut(o2)) + + self.play(FadeOut(arrow2)) + + arrow1 = Arrow(start = ORIGIN, end = 2*UP+RIGHT) + arrow1.set_color(ORANGE) + arrow1.scale(1.3) + self.play(ShowCreation(arrow1)) + self.wait() + + o1 = TextMobject("If the ","vector b"," does lies in the transformed") + o2 = TextMobject("vector space then the does not solution exist") + o1.move_to(2.5*DOWN+2*RIGHT) + o1[1].set_color(ORANGE) + o2.move_to(3*DOWN+2.5*RIGHT) + o1.scale(0.75) + o2.scale(0.75) + o1.add_background_rectangle() + o2.add_background_rectangle() + self.play(Write(o1)) + self.play(Write(o2)) + self.wait() + self.play(FadeOut(o1), FadeOut(o2)) + + self.play(FadeOut(arrow1)) +
\ No newline at end of file diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file4_null_space.py b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file4_null_space.py new file mode 100644 index 0000000..3c52677 --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file4_null_space.py @@ -0,0 +1,91 @@ +from manimlib.imports import * +class null_space(LinearTransformationScene): + def construct(self): + + self.setup() + self.wait() + + o = TextMobject(r"This is the original vector space $R^2$(before Linear Transformation)") + o.move_to(3*DOWN) + o.scale(0.75) + o.add_background_rectangle() + self.play(Write(o)) + self.wait() + self.play(FadeOut(o)) + + o1 = TextMobject("Consider a set of vectors which are linear") + o2 = TextMobject(r"span of a particular vector $\left(\begin{array}{c} 1 \\ 1 \end{array}\right)$") + o1.move_to(2*DOWN+3*RIGHT) + o2.move_to(2.75*DOWN+3*RIGHT) + o1.scale(0.7) + o2.scale(0.7) + o1.add_background_rectangle() + o2.add_background_rectangle() + self.play(Write(o1)) + self.play(Write(o2)) + + arrow = Arrow(start = ORIGIN, end = UP+RIGHT) + arrow1 = Arrow(start = ORIGIN, end = 2*(UP+RIGHT)) + arrow2 = Arrow(start = ORIGIN, end = 3*(UP+RIGHT)) + arrow3 = Arrow(start = ORIGIN, end = 4*(UP+RIGHT)) + arrow4 = Arrow(start = ORIGIN, end = DOWN+LEFT) + arrow5 = Arrow(start = ORIGIN, end = 2*(DOWN+LEFT)) + arrow6 = Arrow(start = ORIGIN, end = 3*(DOWN+LEFT)) + arrow7 = Arrow(start = ORIGIN, end = 4*(DOWN+LEFT)) + + arrow.scale(1.5) + arrow1.scale(1.2) + arrow2.scale(1.15) + arrow3.scale(1.1) + arrow4.scale(1.5) + arrow5.scale(1.2) + arrow6.scale(1.15) + arrow7.scale(1.1) + + self.play(ShowCreation(arrow), + ShowCreation(arrow1), + ShowCreation(arrow2), + ShowCreation(arrow3), + ShowCreation(arrow4), + ShowCreation(arrow5), + ShowCreation(arrow6), + ShowCreation(arrow7), + ) + + self.wait(2) + self.play(FadeOut(o1), FadeOut(o2)) + + self.add_transformable_mobject(arrow) + self.add_transformable_mobject(arrow1) + self.add_transformable_mobject(arrow2) + self.add_transformable_mobject(arrow3) + self.add_transformable_mobject(arrow4) + self.add_transformable_mobject(arrow5) + self.add_transformable_mobject(arrow6) + self.add_transformable_mobject(arrow7) + + o1 = TextMobject("Notice, entire set of vectors which belongs to the vector") + o2 = TextMobject(r"subspace(Linear Span of $\left(\begin{array}{c} 1 \\ 1 \end{array}\right)$) transforms to zero") + o1.move_to(2*DOWN+2.5*RIGHT) + o2.move_to(2.75*DOWN+2.5*RIGHT) + o1.scale(0.7) + o2.scale(0.7) + o1.add_background_rectangle() + o2.add_background_rectangle() + self.play(Write(o1)) + self.play(Write(o2)) + self.wait() + + matrix = [[1,-1],[1,-1]] + self.apply_matrix(matrix) + self.wait() + + self.play(FadeOut(o1), FadeOut(o2)) + + o = TextMobject(r"Hence, the vector space formed by linear span of $\left(\begin{array}{c} 1 \\ 1 \end{array}\right)$ is the null space of $A$") + o.move_to(3*DOWN) + o.scale(0.75) + o.add_background_rectangle() + self.play(Write(o)) + self.wait(2) + self.play(FadeOut(o), FadeOut(arrow), FadeOut(arrow1), FadeOut(arrow2), FadeOut(arrow3), FadeOut(arrow4), FadeOut(arrow5), FadeOut(arrow6), FadeOut(arrow7)) diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file5_Row_Space_part_1.py b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file5_Row_Space_part_1.py new file mode 100644 index 0000000..5259eb4 --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file5_Row_Space_part_1.py @@ -0,0 +1,68 @@ +from manimlib.imports import * +class LS(Scene): + def construct(self): + text1 = TextMobject(r"Consider a matrix $A =$") + text2 = TextMobject(r"[") + text3 = TextMobject(r"$\begin{array}{c c} 1 & -2\end{array}$") + text4 = TextMobject(r"$\begin{array}{c c} 1 & -1\end{array}$") + text5 = TextMobject(r"]") + + text2.scale(2) + text5.scale(2) + + text1.set_color(DARK_BLUE) + text2.set_color(DARK_BLUE) + text3.set_color(PURPLE) + text4.set_color(YELLOW) + text5.set_color(DARK_BLUE) + + text1.move_to(3.5*LEFT+3*UP+2*RIGHT) + text2.move_to(0.75*LEFT+3*UP+2*RIGHT) + text3.move_to(3.25*UP+2*RIGHT) + text4.move_to(2.75*UP+2*RIGHT) + text5.move_to(0.75*RIGHT+3*UP+2*RIGHT) + + self.play(FadeIn(text1), FadeIn(text2), FadeIn(text3), FadeIn(text4), FadeIn(text5)) + self.wait() + + ttext1 = TextMobject(r"$A^T =$") + ttext2 = TextMobject(r"[") + ttext3 = TextMobject(r"$\begin{array}{c} 1 \\ -2\end{array}$") + ttext4 = TextMobject(r"$\begin{array}{c} 1 \\ -1\end{array}$") + ttext5 = TextMobject(r"]") + + ttext2.scale(2) + ttext5.scale(2) + + ttext1.set_color(DARK_BLUE) + ttext2.set_color(DARK_BLUE) + ttext3.set_color(PURPLE) + ttext4.set_color(YELLOW) + ttext5.set_color(DARK_BLUE) + + ttext1.move_to(2*LEFT+1.5*UP+2*RIGHT) + ttext2.move_to(1*LEFT+1.5*UP+2*RIGHT) + ttext3.move_to(0.5*LEFT+1.5*UP+2*RIGHT) + ttext4.move_to(0.5*RIGHT+1.5*UP+2*RIGHT) + ttext5.move_to(1*RIGHT+1.5*UP+2*RIGHT) + + self.play(FadeIn(ttext1), FadeIn(ttext2), FadeIn(ttext3), FadeIn(ttext4), FadeIn(ttext5)) + + rtext = TextMobject(r"Row Space of $A$ = Column Space of $A^T = a_1$",r"$\left[\begin{array}{c} 1 \\ -2\end{array}\right]$",r"$+a_2$",r"$\left[\begin{array}{c} 1 \\ -1\end{array}\right]$") + rtext[1].set_color(PURPLE) + rtext[3].set_color(YELLOW) + rtext.move_to(2*DOWN+1.5*LEFT) + rtext.scale(0.75) + + self.play(Write(rtext)) + self.wait() + + arrow1 = Arrow(start = 1.5*RIGHT+UP, end = 1.25*(DOWN+RIGHT)) + arrow2 = Arrow(start = 2.5*RIGHT+UP, end = 1.25*DOWN+3.25*RIGHT) + arrow1.scale(1.25) + arrow2.scale(1.25) + arrow1.set_color(PURPLE) + arrow2.set_color(YELLOW) + + self.play(ShowCreation(arrow1), ShowCreation(arrow2)) + self.wait(2) diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file6_Row_Space_part_2.py b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file6_Row_Space_part_2.py new file mode 100644 index 0000000..b16a32a --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file6_Row_Space_part_2.py @@ -0,0 +1,145 @@ +from manimlib.imports import * + +class Row_Space(Scene): + def construct(self): + + Heading = TextMobject("Row Space") + defn1 = TextMobject("Definition 1: Row Space of a matrix is the linear combination of the rows of that matrix.") + defn2 = TextMobject("Definition 2: It is a vector space generated by a linear combination of the columns of $A^{T}$.") + equivalent = TextMobject(r"Definition 1 $\equiv$ Definition 2") + + Heading.move_to(2*UP) + Heading.set_color(color = DARK_BLUE) + + defn1.move_to(UP) + defn1.scale(0.75) + + defn2.scale(0.75) + + equivalent.move_to(DOWN) + + self.play(Write(Heading)) + self.play(Write(defn1)) + self.play(Write(defn2)) + self.play(Write(equivalent)) + + self.wait(2) + self.play(FadeOut(Heading),FadeOut(defn1),FadeOut(defn2),ApplyMethod(equivalent.move_to,2*UP)) + + how = TextMobject("Let us see, How?") + how.move_to(UP) + self.play(Write(how)) + self.play(FadeOut(equivalent),FadeOut(how)) + + A = TextMobject(r"$A = $",r"$\left( \begin{array}{c c c} 1 & 2 & 1 \\ 1 & 3 & 1 \\ 2 & 1 & 4 \\ 3 & 2 & 3 \end{array} \right)$") + A.move_to(2*UP+3*LEFT) + A[1].set_color(color = DARK_BLUE) + A.scale(0.80) + + self.play(Write(A)) + + rows = TextMobject(r"Rows of A $\rightarrow$", + r"$\left( \begin{array}{c c c} 1 & 2 & 1 \end{array} \right)$,", + r"$ \left( \begin{array}{c c c} 1 & 3 & 1 \end{array} \right)$,", + r"$\left( \begin{array}{c c c} 2 & 1 & 4 \end{array} \right)$,", + r"$ \left( \begin{array}{c c c} 3 & 2 & 3 \end{array} \right)$") + rows.scale(0.75) + rows[1:5].set_color(DARK_BLUE) + self.play(Write(rows)) + + ac_defn1 = TextMobject("According to Definition 1 : ") + ac_defn1.move_to(DOWN) + + RS_A = TextMobject(r"Row Space of $A = x_{1}$", + r"$\left( \begin{array}{c c c} 1 & 2 & 1 \end{array} \right)$", + r"$+x_{2}$", + r"$ \left( \begin{array}{c c c} 1 & 3 & 1 \end{array} \right)$", + r"$ + x_{3}$", + r"$\left( \begin{array}{c c c} 2 & 1 & 4 \end{array} \right)$", + r"$+x_{4}$", + r"$ \left( \begin{array}{c c c} 3 & 2 & 3 \end{array} \right)$") + RS_A.move_to(DOWN+DOWN) + RS_A[6].move_to(2*DOWN+DOWN) + RS_A[7].move_to(2*DOWN+2*RIGHT+DOWN) + RS_A[1].set_color(color = DARK_BLUE) + RS_A[3].set_color(color = DARK_BLUE) + RS_A[5].set_color(color = DARK_BLUE) + RS_A[7].set_color(color = DARK_BLUE) + RS_A.scale(0.75) + + self.play(FadeOut(rows[0]),Transform(rows[1],RS_A[1]),Transform(rows[2],RS_A[3]),Transform(rows[3],RS_A[5]),Transform(rows[4],RS_A[7])) + self.play(FadeIn(ac_defn1), Write(RS_A)) + self.wait(1) + + self.play(FadeOut(rows[1]), FadeOut(rows[2]), FadeOut(rows[3]), FadeOut(rows[4]), FadeOut(RS_A), FadeOut(ac_defn1)) + + A_T = TextMobject(r"$A^{T} = $",r"$\left( \begin{array}{c c c c} 1 & 1 & 2 & 3 \\ 2 & 3 & 1 & 2 \\ 1 & 1 & 4 & 3 \end{array} \right)$") + A_T.move_to(2*UP+3*RIGHT) + A_T[1].set_color(color = DARK_BLUE) + A_T.scale(0.80) + + self.play(Write(A_T)) + + change1 = TextMobject(r"Rows of $A\equiv$ Columns of $A^{T}$") + change2 = TextMobject(r"Columns of $A\equiv$ Rows of $A^{T}$") + change2.move_to(DOWN) + + change3 = TextMobject(r"Row Space of $A$ = Linear Combination of",r"Rows","of",r"A") + change3.move_to(2*DOWN) + change3[1].set_color(DARK_BLUE) + change3[3].set_color(DARK_BLUE) + + self.play(Write(change1)) + self.play(Write(change2)) + self.play(Write(change3)) + + columns = TextMobject("Columns") + columns.scale(0.6) + columns.set_color(DARK_BLUE) + columns.move_to(2*DOWN+4.1*RIGHT) + + a = TextMobject(r"$A^{T}$") + a.set_color(DARK_BLUE) + a.move_to(1.95*DOWN+5.6*RIGHT) + + self.wait(0.5) + + self.play(Transform(change3[1],columns), Transform(change3[3],a)) + + equal = TextMobject(r"= Column Space($A^{T}$)") + equal.move_to(3*DOWN+0.5*RIGHT) + + self.play(Write(equal)) + + self.play(FadeOut(A_T), FadeOut(change1), FadeOut(change2), FadeOut(change3), FadeOut(A), FadeOut(equal)) + + ac_defn1.move_to(3*UP) + RS_A.move_to(1.5*UP) + RS_A[6].move_to(UP) + RS_A[7].move_to(UP+1.5*RIGHT) + + self.play(Write(RS_A),FadeIn(ac_defn1)) + + CS_AT = TextMobject(r"Row Space of $A = x_{1}$", + r"$\left( \begin{array}{c} 1 \\ 2 \\ 1 \end{array} \right)$", + r"$+x_{2}$", + r"$ \left( \begin{array}{c} 1 \\ 3 \\ 1 \end{array} \right)$", + r"$ + x_{3}$", + r"$\left( \begin{array}{c} 2 \\ 1 \\ 4 \end{array} \right)$", + r"$+x_{4}$", + r"$ \left( \begin{array}{c} 3 \\ 2 \\ 3 \end{array} \right)$") + CS_AT.move_to(1.5*DOWN) + CS_AT[1].set_color(color = DARK_BLUE) + CS_AT[3].set_color(color = DARK_BLUE) + CS_AT[5].set_color(color = DARK_BLUE) + CS_AT[7].set_color(color = DARK_BLUE) + CS_AT.scale(0.75) + + ac_defn2 = TextMobject("According to Definition 2 : ") + equivalent = TextMobject(r"Hence, Definition 1 $\equiv$ Definition 2") + equivalent.move_to(3*DOWN) + + self.play(Write(CS_AT),FadeIn(ac_defn2)) + self.play(Write(equivalent)) + + self.wait() diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file7_Row_space_Orthogonal_Complements.py b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file7_Row_space_Orthogonal_Complements.py new file mode 100644 index 0000000..c81d370 --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file7_Row_space_Orthogonal_Complements.py @@ -0,0 +1,150 @@ +from manimlib.imports import * +class row_space(LinearTransformationScene): + def construct(self): + + self.setup() + self.wait() + + o = TextMobject(r"This is the original vector space $R^2$(before Linear Transformation)") + o.move_to(DOWN) + o.scale(0.75) + o.add_background_rectangle() + self.play(Write(o)) + self.wait() + self.play(FadeOut(o)) + + o1 = TextMobject("Consider a set of vectors which are linear") + o2 = TextMobject(r"span of a $\left(\begin{array}{c} 1 \\ 1 \end{array}\right)$i.e. the null space.") + o1.move_to(2*DOWN+3*RIGHT) + o2.move_to(2.75*DOWN+3*RIGHT) + o1.scale(0.7) + o2.scale(0.7) + o1.add_background_rectangle() + o2.add_background_rectangle() + self.play(Write(o1)) + self.play(Write(o2)) + + arrow = Arrow(start = ORIGIN, end = UP+RIGHT) + arrow.set_color(YELLOW) + arrow1 = Arrow(start = ORIGIN, end = 2*(UP+RIGHT)) + arrow1.set_color(YELLOW) + arrow2 = Arrow(start = ORIGIN, end = 3*(UP+RIGHT)) + arrow2.set_color(YELLOW) + arrow3 = Arrow(start = ORIGIN, end = 4*(UP+RIGHT)) + arrow3.set_color(YELLOW) + arrow4 = Arrow(start = ORIGIN, end = DOWN+LEFT) + arrow4.set_color(YELLOW) + arrow5 = Arrow(start = ORIGIN, end = 2*(DOWN+LEFT)) + arrow5.set_color(YELLOW) + arrow6 = Arrow(start = ORIGIN, end = 3*(DOWN+LEFT)) + arrow6.set_color(YELLOW) + arrow7 = Arrow(start = ORIGIN, end = 4*(DOWN+LEFT)) + arrow7.set_color(YELLOW) + + arrow.scale(1.5) + arrow1.scale(1.2) + arrow2.scale(1.15) + arrow3.scale(1.1) + arrow4.scale(1.5) + arrow5.scale(1.2) + arrow6.scale(1.15) + arrow7.scale(1.1) + + self.play(ShowCreation(arrow), + ShowCreation(arrow1), + ShowCreation(arrow2), + ShowCreation(arrow3), + ShowCreation(arrow4), + ShowCreation(arrow5), + ShowCreation(arrow6), + ShowCreation(arrow7), + ) + + self.wait(2) + self.play(FadeOut(o1), FadeOut(o2)) + + o1 = TextMobject("Consider a set of vectors which are linear") + o2 = TextMobject(r"span of a $\left(\begin{array}{c} 1 \\ -1 \end{array}\right)$i.e. the row space.") + o1.move_to(2*DOWN+3*RIGHT) + o2.move_to(2.75*DOWN+3*RIGHT) + o1.scale(0.7) + o2.scale(0.7) + o1.add_background_rectangle() + o2.add_background_rectangle() + self.play(Write(o1)) + self.play(Write(o2)) + + rarrow = Arrow(start = ORIGIN, end = -UP+RIGHT) + rarrow.set_color(PURPLE) + rarrow1 = Arrow(start = ORIGIN, end = 2*(-UP+RIGHT)) + rarrow1.set_color(PURPLE) + rarrow2 = Arrow(start = ORIGIN, end = 3*(-UP+RIGHT)) + rarrow2.set_color(PURPLE) + rarrow3 = Arrow(start = ORIGIN, end = 4*(-UP+RIGHT)) + rarrow3.set_color(PURPLE) + rarrow4 = Arrow(start = ORIGIN, end = -DOWN+LEFT) + rarrow4.set_color(PURPLE) + rarrow5 = Arrow(start = ORIGIN, end = 2*(-DOWN+LEFT)) + rarrow5.set_color(PURPLE) + rarrow6 = Arrow(start = ORIGIN, end = 3*(-DOWN+LEFT)) + rarrow6.set_color(PURPLE) + rarrow7 = Arrow(start = ORIGIN, end = 4*(-DOWN+LEFT)) + rarrow7.set_color(PURPLE) + + rarrow.scale(1.5) + rarrow1.scale(1.2) + rarrow2.scale(1.15) + rarrow3.scale(1.1) + rarrow4.scale(1.5) + rarrow5.scale(1.2) + rarrow6.scale(1.15) + rarrow7.scale(1.1) + + self.play(ShowCreation(rarrow), + ShowCreation(rarrow1), + ShowCreation(rarrow2), + ShowCreation(rarrow3), + ShowCreation(rarrow4), + ShowCreation(rarrow5), + ShowCreation(rarrow6), + ShowCreation(rarrow7), + ) + + self.wait(2) + self.play(FadeOut(o1), FadeOut(o2)) + + self.add_transformable_mobject(arrow) + self.add_transformable_mobject(arrow1) + self.add_transformable_mobject(arrow2) + self.add_transformable_mobject(arrow3) + self.add_transformable_mobject(arrow4) + self.add_transformable_mobject(arrow5) + self.add_transformable_mobject(arrow6) + self.add_transformable_mobject(arrow7) + + self.add_transformable_mobject(rarrow) + self.add_transformable_mobject(rarrow1) + self.add_transformable_mobject(rarrow2) + self.add_transformable_mobject(rarrow3) + self.add_transformable_mobject(rarrow4) + self.add_transformable_mobject(rarrow5) + self.add_transformable_mobject(rarrow6) + self.add_transformable_mobject(rarrow7) + + o1 = TextMobject("Notice, entire set of vectors which belong to the null space of $A$ transforms to zero") + o2 = TextMobject(r"and entire set of vectors which belong to the row space of $A$ transforms to column space of $A$.") + o1.move_to(2.5*DOWN) + o2.move_to(3.5*DOWN) + o1.scale(0.7) + o2.scale(0.7) + o1.add_background_rectangle() + o2.add_background_rectangle() + self.play(Write(o1)) + self.play(Write(o2)) + self.wait() + + matrix = [[1,-1],[1,-1]] + self.apply_matrix(matrix) + self.wait(3) + + self.play(FadeOut(o1), FadeOut(o2))
\ No newline at end of file diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file8_Left_Null_Space.py b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file8_Left_Null_Space.py new file mode 100755 index 0000000..fd05e75 --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file8_Left_Null_Space.py @@ -0,0 +1,26 @@ +from manimlib.imports import * + +class Left_Null_Space(Scene): + def construct(self): + + A = TextMobject(r"Left Null Space of A") + A.move_to(3*UP) + defn = TextMobject(r"It is a vector space that consists of all the solution $x$ to the equation $A^{T}x=0$") + defn.move_to(2*UP) + defn.scale(0.75) + eqn1 = TextMobject(r"$A^{T}x=0 \cdots (i)$") + eqn1.move_to(UP) + self.play(Write(A), Write(defn), Write(eqn1),run_time=1) + statement = TextMobject(r"Taking transpose of eqn $(i)$") + eqn = TextMobject(r"$(A^{T}x)^{T}=0$") + eqn.move_to(DOWN) + eqn2 = TextMobject(r"$x^{T}(A^{T})^{T}=0$") + eqn2.move_to(DOWN) + eqn3 = TextMobject(r"$x^{T}A=0$") + eqn3.move_to(DOWN) + self.play(Write(statement),Write(eqn),run_time=1) + self.wait(0.5) + self.play(Transform(eqn,eqn2),run_time=1) + self.wait(0.5) + self.play(Transform(eqn,eqn3),run_time=1) + self.wait(0.5)
\ No newline at end of file diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file9_left_null_space.py b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file9_left_null_space.py new file mode 100644 index 0000000..61285be --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file9_left_null_space.py @@ -0,0 +1,186 @@ +from manimlib.imports import * +class row_space(LinearTransformationScene): + def construct(self): + + self.setup() + self.wait() + + o = TextMobject(r"This is the original vector space $R^2$(before Linear Transformation)") + o.move_to(DOWN) + o.scale(0.75) + o.add_background_rectangle() + self.play(Write(o)) + self.wait() + self.play(FadeOut(o)) + + o1 = TextMobject("Consider a set of vectors which are linear") + o2 = TextMobject(r"span of a $\left(\begin{array}{c} 1 \\ 1 \end{array}\right)$i.e. the null space.") + o1.move_to(2*DOWN+3*RIGHT) + o2.move_to(2.75*DOWN+3*RIGHT) + o1.scale(0.7) + o2.scale(0.7) + o1.add_background_rectangle() + o2.add_background_rectangle() + self.play(Write(o1)) + self.play(Write(o2)) + + arrow = Arrow(start = ORIGIN, end = UP+RIGHT) + arrow.set_color(YELLOW) + arrow1 = Arrow(start = ORIGIN, end = 2*(UP+RIGHT)) + arrow1.set_color(YELLOW) + arrow2 = Arrow(start = ORIGIN, end = 3*(UP+RIGHT)) + arrow2.set_color(YELLOW) + arrow3 = Arrow(start = ORIGIN, end = 4*(UP+RIGHT)) + arrow3.set_color(YELLOW) + arrow4 = Arrow(start = ORIGIN, end = DOWN+LEFT) + arrow4.set_color(YELLOW) + arrow5 = Arrow(start = ORIGIN, end = 2*(DOWN+LEFT)) + arrow5.set_color(YELLOW) + arrow6 = Arrow(start = ORIGIN, end = 3*(DOWN+LEFT)) + arrow6.set_color(YELLOW) + arrow7 = Arrow(start = ORIGIN, end = 4*(DOWN+LEFT)) + arrow7.set_color(YELLOW) + + arrow.scale(1.5) + arrow1.scale(1.2) + arrow2.scale(1.15) + arrow3.scale(1.1) + arrow4.scale(1.5) + arrow5.scale(1.2) + arrow6.scale(1.15) + arrow7.scale(1.1) + + self.play(ShowCreation(arrow), + ShowCreation(arrow1), + ShowCreation(arrow2), + ShowCreation(arrow3), + ShowCreation(arrow4), + ShowCreation(arrow5), + ShowCreation(arrow6), + ShowCreation(arrow7), + ) + + self.wait(2) + self.play(FadeOut(o1), FadeOut(o2)) + + o1 = TextMobject("Consider a set of vectors which are linear") + o2 = TextMobject(r"span of a vector $\left(\begin{array}{c} 1 \\ -1 \end{array}\right)$i.e. the row space.") + o1.move_to(2*DOWN+3*RIGHT) + o2.move_to(2.75*DOWN+3*RIGHT) + o1.scale(0.7) + o2.scale(0.7) + o1.add_background_rectangle() + o2.add_background_rectangle() + self.play(Write(o1)) + self.play(Write(o2)) + + rarrow = Arrow(start = ORIGIN, end = -UP+RIGHT) + rarrow.set_color(PURPLE) + rarrow1 = Arrow(start = ORIGIN, end = 2*(-UP+RIGHT)) + rarrow1.set_color(PURPLE) + rarrow2 = Arrow(start = ORIGIN, end = 3*(-UP+RIGHT)) + rarrow2.set_color(PURPLE) + rarrow3 = Arrow(start = ORIGIN, end = 4*(-UP+RIGHT)) + rarrow3.set_color(PURPLE) + rarrow4 = Arrow(start = ORIGIN, end = -DOWN+LEFT) + rarrow4.set_color(PURPLE) + rarrow5 = Arrow(start = ORIGIN, end = 2*(-DOWN+LEFT)) + rarrow5.set_color(PURPLE) + rarrow6 = Arrow(start = ORIGIN, end = 3*(-DOWN+LEFT)) + rarrow6.set_color(PURPLE) + rarrow7 = Arrow(start = ORIGIN, end = 4*(-DOWN+LEFT)) + rarrow7.set_color(PURPLE) + + rarrow.scale(1.5) + rarrow1.scale(1.2) + rarrow2.scale(1.15) + rarrow3.scale(1.1) + rarrow4.scale(1.5) + rarrow5.scale(1.2) + rarrow6.scale(1.15) + rarrow7.scale(1.1) + + self.play(ShowCreation(rarrow), + ShowCreation(rarrow1), + ShowCreation(rarrow2), + ShowCreation(rarrow3), + ShowCreation(rarrow4), + ShowCreation(rarrow5), + ShowCreation(rarrow6), + ShowCreation(rarrow7), + ) + + self.wait(2) + self.play(FadeOut(o1), FadeOut(o2)) + + self.add_transformable_mobject(arrow) + self.add_transformable_mobject(arrow1) + self.add_transformable_mobject(arrow2) + self.add_transformable_mobject(arrow3) + self.add_transformable_mobject(arrow4) + self.add_transformable_mobject(arrow5) + self.add_transformable_mobject(arrow6) + self.add_transformable_mobject(arrow7) + + self.add_transformable_mobject(rarrow) + self.add_transformable_mobject(rarrow1) + self.add_transformable_mobject(rarrow2) + self.add_transformable_mobject(rarrow3) + self.add_transformable_mobject(rarrow4) + self.add_transformable_mobject(rarrow5) + self.add_transformable_mobject(rarrow6) + self.add_transformable_mobject(rarrow7) + + matrix = [[1,-1],[1,-1]] + self.apply_matrix(matrix) + self.wait(3) + + o1 = TextMobject("Consider a set of vectors which are linear span of a vector") + o2 = TextMobject(r"$\left(\begin{array}{c} 1 \\ -1 \end{array}\right)$ which is orthogonal to column space i.e. Left Null Space") + o1.move_to(2*DOWN) + o2.move_to(2.75*DOWN) + o1.scale(0.7) + o2.scale(0.7) + o1.add_background_rectangle() + o2.add_background_rectangle() + self.play(Write(o1)) + self.play(Write(o2)) + + rarrow = Arrow(start = ORIGIN, end = -UP+RIGHT) + rarrow.set_color(YELLOW) + rarrow1 = Arrow(start = ORIGIN, end = 2*(-UP+RIGHT)) + rarrow1.set_color(YELLOW) + rarrow2 = Arrow(start = ORIGIN, end = 3*(-UP+RIGHT)) + rarrow2.set_color(YELLOW) + rarrow3 = Arrow(start = ORIGIN, end = 4*(-UP+RIGHT)) + rarrow3.set_color(YELLOW) + rarrow4 = Arrow(start = ORIGIN, end = -DOWN+LEFT) + rarrow4.set_color(YELLOW) + rarrow5 = Arrow(start = ORIGIN, end = 2*(-DOWN+LEFT)) + rarrow5.set_color(YELLOW) + rarrow6 = Arrow(start = ORIGIN, end = 3*(-DOWN+LEFT)) + rarrow6.set_color(YELLOW) + rarrow7 = Arrow(start = ORIGIN, end = 4*(-DOWN+LEFT)) + rarrow7.set_color(YELLOW) + + rarrow.scale(1.5) + rarrow1.scale(1.2) + rarrow2.scale(1.15) + rarrow3.scale(1.1) + rarrow4.scale(1.5) + rarrow5.scale(1.2) + rarrow6.scale(1.15) + rarrow7.scale(1.1) + + self.play(ShowCreation(rarrow), + ShowCreation(rarrow1), + ShowCreation(rarrow2), + ShowCreation(rarrow3), + ShowCreation(rarrow4), + ShowCreation(rarrow5), + ShowCreation(rarrow6), + ShowCreation(rarrow7), + ) + + self.wait(2) + self.play(FadeOut(o1), FadeOut(o2)) diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Rank-Nullity-Theorem/README.md b/FSF-2020/linear-algebra/linear-transformations/The-Rank-Nullity-Theorem/README.md new file mode 100644 index 0000000..9d49b4f --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/The-Rank-Nullity-Theorem/README.md @@ -0,0 +1,9 @@ +# Contributer: Archit Sangal +My Github Account : <a href="https://github.com/architsangal">architsangal</a> (https://github.com/architsangal) +<br/></br> + +## Sub-Topics Covered: ++ The Rank-Nullity Theorem + +#### Video 1: Visually understanding linear transformation(using grid) +![GIF1](file2.gif)
\ No newline at end of file diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Rank-Nullity-Theorem/file.txt b/FSF-2020/linear-algebra/linear-transformations/The-Rank-Nullity-Theorem/file.txt new file mode 100644 index 0000000..5c48a13 --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/The-Rank-Nullity-Theorem/file.txt @@ -0,0 +1,3 @@ +file 'RN_Line.mp4' +file 'RN_Point.mp4' +file 'RN_SameDim.mp4' diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Rank-Nullity-Theorem/file1_RN_Theorem.py b/FSF-2020/linear-algebra/linear-transformations/The-Rank-Nullity-Theorem/file1_RN_Theorem.py new file mode 100755 index 0000000..e54276c --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/The-Rank-Nullity-Theorem/file1_RN_Theorem.py @@ -0,0 +1,97 @@ +from manimlib.imports import *
+class RN_Line(LinearTransformationScene):
+ def construct(self):
+
+ self.setup()
+ self.wait()
+
+ predim = TextMobject("Dimension of this vector space is 2")
+ predim.move_to(DOWN+4*LEFT)
+ predim.scale(0.75)
+ predim.add_background_rectangle()
+ self.play(Write(predim))
+ self.wait()
+ self.play(FadeOut(predim))
+
+ afterlt = TextMobject("After Linear transformation")
+ afterlt.move_to(DOWN+4*LEFT)
+ afterlt.scale(0.75)
+ afterlt.add_background_rectangle()
+
+ afterlt2 = TextMobject("Dimension of the vector space","changes to 1")
+ afterlt2[0].move_to(1.5*DOWN+4*LEFT)
+ afterlt2[1].move_to(2*DOWN+4*LEFT)
+ afterlt2.scale(0.75)
+ afterlt2.add_background_rectangle()
+ matrix = [[1,1],[1,1]]
+ self.apply_matrix(matrix)
+ self.play(Write(afterlt))
+ self.play(Write(afterlt2))
+ self.wait()
+ nullity = TextMobject("Hence, nullity = 1")
+ nullity.move_to(DOWN+4*LEFT)
+ self.play(FadeOut(afterlt),FadeOut(afterlt2),Write(nullity))
+ self.wait(1)
+ self.play(FadeOut(nullity))
+
+class RN_Point(LinearTransformationScene):
+ def construct(self):
+ self.setup()
+ self.wait()
+ predim = TextMobject("Another One")
+ predim.move_to(DOWN+4*LEFT)
+ predim.scale(0.75)
+ predim.add_background_rectangle()
+ self.play(Write(predim))
+ self.wait()
+ self.play(FadeOut(predim))
+ afterlt = TextMobject("After Linear transformation")
+ afterlt.move_to(DOWN+4*LEFT)
+ afterlt.scale(0.75)
+ afterlt.add_background_rectangle()
+ afterlt2 = TextMobject("Dimension of the vector space","changes to 0")
+ afterlt2[0].move_to(1.5*DOWN+4*LEFT)
+ afterlt2[1].move_to(2*DOWN+4*LEFT)
+ afterlt2.scale(0.75)
+ afterlt2.add_background_rectangle()
+ matrix = [[0,0],[0,0]]
+ self.apply_matrix(matrix)
+ self.play(Write(afterlt))
+ self.play(Write(afterlt2))
+ self.wait()
+ nullity = TextMobject("Hence, nullity = 2")
+ nullity.move_to(DOWN+4*LEFT)
+ self.play(FadeOut(afterlt),FadeOut(afterlt2),Write(nullity))
+ self.wait(1)
+ self.play(FadeOut(nullity))
+
+class RN_SameDim(LinearTransformationScene):
+ def construct(self):
+ self.setup()
+ self.wait()
+ predim = TextMobject("Let us look at another example")
+ predim.add_background_rectangle()
+ predim.move_to(DOWN+4*LEFT)
+ predim.scale(0.75)
+ self.play(Write(predim))
+ self.wait()
+ self.play(FadeOut(predim))
+ afterlt = TextMobject("After Linear transformation")
+ afterlt.move_to(DOWN+4*LEFT)
+ afterlt.scale(0.75)
+ afterlt.add_background_rectangle()
+ afterlt2 = TextMobject("Dimension of the vector space","remains to be 2")
+ afterlt2[0].move_to(1.5*DOWN+4*LEFT)
+ afterlt2[1].move_to(2*DOWN+4*LEFT)
+ afterlt2.scale(0.75)
+ afterlt2.add_background_rectangle()
+ matrix = [[1,1],[0,1]]
+ self.apply_matrix(matrix)
+ self.play(Write(afterlt))
+ self.play(Write(afterlt2))
+ self.wait()
+ nullity = TextMobject("Hence, nullity = 0")
+ nullity.move_to(DOWN+4*LEFT)
+ self.play(FadeOut(afterlt),FadeOut(afterlt2),Write(nullity))
+ self.wait(1)
+ self.play(FadeOut(nullity))
\ No newline at end of file diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Rank-Nullity-Theorem/file2.gif b/FSF-2020/linear-algebra/linear-transformations/The-Rank-Nullity-Theorem/file2.gif Binary files differnew file mode 100644 index 0000000..46efc66 --- /dev/null +++ b/FSF-2020/linear-algebra/linear-transformations/The-Rank-Nullity-Theorem/file2.gif |