summaryrefslogtreecommitdiff
path: root/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process
diff options
context:
space:
mode:
Diffstat (limited to 'FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process')
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/README.md18
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file1_introduction.py33
-rwxr-xr-xFSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file2_projections.py79
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file3_orthonormal.py333
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file4_Non_Standard_Basis.py51
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file5.gifbin0 -> 26037424 bytes
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file6.gifbin0 -> 5378916 bytes
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file7.gifbin0 -> 603223 bytes
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file8.gifbin0 -> 1027000 bytes
9 files changed, 514 insertions, 0 deletions
diff --git a/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/README.md b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/README.md
new file mode 100644
index 0000000..0305ba7
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/README.md
@@ -0,0 +1,18 @@
+# Contributer: Archit Sangal
+My Github Account : <a href="https://github.com/architsangal">architsangal</a>
+<br/></br>
+
+## Sub-Topics Covered:
++ Gramm-Schmidt Orthogonalization Process
+
+#### Video 1: Introduction to Gram-Schmidt Orthogonalization Process
+![GIF1](file7.gif)
+
+#### Video 2: Obtaining orthogonal vectors using projections
+![GIF2](file8.gif)
+
+#### Video 3: Visual Explanation of how Gram-Schmidt Orthogonalization Process give mutually orthonormal vectors
+![GIF3](file5.gif)
+
+#### Video 4: Example of Orthonormal Vectors which are different from standard basis
+![GIF4](file6.gif) \ No newline at end of file
diff --git a/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file1_introduction.py b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file1_introduction.py
new file mode 100644
index 0000000..ccd23c9
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file1_introduction.py
@@ -0,0 +1,33 @@
+from manimlib.imports import *
+
+class Orthonormal(Scene):
+ def construct(self):
+ Centre = DOWN
+ arrow_1 = Arrow(start = Centre+ORIGIN,end = Centre+1.414*(UP+RIGHT))
+ arrow_2 = Arrow(start = Centre+ORIGIN,end = Centre+2*UP)
+ arrow_1.scale(1.35)
+ arrow_2.scale(1.35)
+ text = TextMobject("This is a set of linearly independent vectors")
+ text.scale(0.75)
+ text.move_to(3*UP+3*LEFT)
+ text.set_color(PURPLE_E)
+ arrow_1.set_color(PURPLE_E)
+ arrow_2.set_color(PURPLE_E)
+ self.play(Write(text))
+ self.play(ShowCreation(arrow_1), ShowCreation(arrow_2))
+ self.wait(2)
+ text1 = TextMobject("After we apply Gram-Schmidt Orthogonalization Process to set of linearly independent vectors")
+ text1.scale(0.6)
+ text1.move_to(3*UP+2*LEFT)
+ text1.set_color(GREEN)
+ arrow_a = Arrow(start = Centre+ORIGIN,end = Centre+0.707*(UP+RIGHT))
+ arrow_a.set_color(GREEN)
+ arrow_a.scale(2)
+ self.play(Transform(text,text1))
+ self.wait(2)
+ self.play(Transform(arrow_1,arrow_a))
+ arrow_b = Arrow(start = Centre+ORIGIN,end = Centre+0.707*(UP+LEFT))
+ arrow_b.set_color(GREEN)
+ arrow_b.scale(2)
+ self.play(Transform(arrow_2,arrow_b))
+ self.wait(2) \ No newline at end of file
diff --git a/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file2_projections.py b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file2_projections.py
new file mode 100755
index 0000000..dd4b8d4
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file2_projections.py
@@ -0,0 +1,79 @@
+from manimlib.imports import *
+
+class Projections(GraphScene):
+ CONFIG = {
+ "x_min": -6,
+ "x_max": 6,
+ "y_min": -4,
+ "y_max": 4,
+ "graph_origin" : ORIGIN ,
+ }
+ def construct(self):
+
+ self.setup_axes(animate=True)
+
+ XTD = self.x_axis_width/(self.x_max-self.x_min)
+ YTD = self.y_axis_height/(self.y_max-self.y_min)
+
+ arrow_a = Arrow(start = ORIGIN, end = 4*XTD*RIGHT)
+ arrow_a.scale(1.2)
+ arrow_a.set_color(DARK_BLUE)
+ arrow_b = Arrow(start = ORIGIN, end = 2*YTD*UP+2*XTD*RIGHT)
+ arrow_b.scale(1.3)
+ arrow_b.set_color(DARK_BLUE)
+ self.play(ShowCreation(arrow_a), ShowCreation(arrow_b))
+
+ text = TextMobject(r"Consider 2 linearly independent vectors $a$ and $b$")
+ text.set_color(DARK_BLUE)
+ text.scale(0.6)
+ text.move_to(3*YTD*UP+5*XTD*LEFT)
+ text_a = TextMobject("a")
+ text_a.move_to(0.4*YTD*DOWN+3*XTD*RIGHT)
+ text_a.set_color(DARK_BLUE)
+ text_b = TextMobject("b")
+ text_b.move_to(1.5*YTD*UP+RIGHT*XTD)
+ text_b.set_color(DARK_BLUE)
+
+ self.play(Write(text),Write(text_a), Write(text_b))
+ self.wait()
+
+ arrow_b_copy = Arrow(start = ORIGIN, end = 2*YTD*UP+2*XTD*RIGHT)
+ arrow_b_copy.scale(1.25)
+
+ arrow_p = Arrow(start = ORIGIN, end = 2*XTD*RIGHT)
+ arrow_p.scale(1.5)
+ arrow_p.set_color(GOLD_E)
+
+ text_p = TextMobject("p")
+ text_p.move_to(0.25*DOWN+RIGHT)
+ text_p.set_color(GOLD_E)
+
+ self.play(FadeOut(text), Transform(arrow_b_copy,arrow_p), FadeOut(text_a), FadeOut(text_b))
+ text = TextMobject(r"$p$ is the projection of $b$ on $a$")
+ text.set_color(GOLD_E)
+ text.move_to(3*UP+4*LEFT)
+ text.scale(0.8)
+ self.play(Write(text),Write(text_p))
+ self.wait()
+
+ self.play(FadeIn(text_a), FadeIn(text_b))
+
+ arrow_o = Arrow(start = 2*XTD*RIGHT, end = 2*YTD*UP+2*XTD*RIGHT)
+ arrow_o.scale(1.5)
+ arrow_o.set_color(GREEN_E)
+
+ text_o = TextMobject("b-p")
+ text_o.move_to(UP*YTD+2.7*XTD*RIGHT)
+ text_o.set_color(GREEN_E)
+
+ self.play(ShowCreation(arrow_o))
+ self.play(FadeOut(text),Write(text_o))
+
+ text = TextMobject(r"Observe, ($b-p$) is orthogonal to $a$")
+ text.set_color(GREEN_E)
+ text.move_to(2*DOWN+4*LEFT)
+ text.scale(0.8)
+ self.play(Write(text))
+ self.wait(2)
+
+ self.play(FadeOut(self.axes), FadeOut(arrow_a), FadeOut(arrow_b), FadeOut(arrow_b_copy), FadeOut(arrow_o), FadeOut(text_a), FadeOut(text_b), FadeOut(text_o), FadeOut(text_p), FadeOut(text)) \ No newline at end of file
diff --git a/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file3_orthonormal.py b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file3_orthonormal.py
new file mode 100644
index 0000000..af51fc6
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file3_orthonormal.py
@@ -0,0 +1,333 @@
+from manimlib.imports import *
+
+class Algo(ThreeDScene):
+ def construct(self):
+
+ axes = ThreeDAxes(x_min = -5,x_max=5,y_min=-3,y_max=3,z_min=-4,z_max=4)
+ self.play(ShowCreation(axes))
+
+ text = TextMobject(r"This is the vector $\beta_1(=\left[\begin{array}{c} 4\\0\\0 \end{array}\right])$")
+ text.set_color(GREEN)
+ text.scale(0.6)
+ text.move_to(3*UP+5*LEFT)
+ self.play(Write(text))
+
+ arrow_a = Arrow(start = ORIGIN, end = 4*RIGHT)
+ arrow_a.set_color(GREEN)
+ arrow_a.scale(1.15)
+ self.play(ShowCreation(arrow_a))
+
+ text_a = TextMobject(r"$\beta_1$")
+ text_a.move_to(0.4*DOWN+3*RIGHT)
+ text_a.set_color(GREEN)
+ text_a.scale(0.75)
+ self.play(Write(text_a))
+ self.wait()
+ self.play(FadeOut(text))
+
+ text = TextMobject(r"Normalize $\beta_1$ to get $\alpha_1$")
+ text.set_color(DARK_BLUE)
+ text.scale(0.75)
+ text.move_to(3*UP+5*LEFT)
+ self.play(Write(text))
+
+ alpha_1 = Arrow(start = ORIGIN,end = RIGHT)
+ alpha_1.scale(1.9)
+ alpha_1.set_color(DARK_BLUE)
+ text_alpha_1 = TextMobject(r"$\alpha_1$")
+ text_alpha_1.move_to(0.4*DOWN+RIGHT)
+ text_alpha_1.set_color(DARK_BLUE)
+ text_alpha_1.scale(0.75)
+ self.play(Transform(text_a,text_alpha_1), Transform(arrow_a,alpha_1))
+ self.wait()
+ self.play(FadeOut(text))
+
+ text = TextMobject(r"Consider another vector $\beta_2(=\left[\begin{array}{c} 2\\2\\0 \end{array}\right])$")
+ text1 = TextMobject(r"which is linearly independent to $\beta_1$")
+ text.set_color(GREEN)
+ text1.set_color(GREEN)
+ text.scale(0.6)
+ text1.scale(0.6)
+ text.move_to(3*UP+4*LEFT)
+ text1.move_to(2*UP+4*LEFT)
+ self.play(Write(text))
+ self.play(Write(text1))
+
+ arrow_b = Arrow(start = ORIGIN, end = 2*UP+2*RIGHT)
+ arrow_b.scale(1.2)
+ arrow_b.set_color(GREEN)
+ text_b = TextMobject(r"$\beta_2$")
+ text_b.move_to(1.5*UP+RIGHT)
+ text_b.set_color(GREEN)
+ text_b.scale(0.75)
+
+ self.play(ShowCreation(arrow_b), Write(text_b))
+ self.wait()
+
+ arrow_b_copy = Arrow(start = ORIGIN, end = 2*UP+2*RIGHT)
+ arrow_b_copy.scale(1.2)
+
+ arrow_p = Arrow(start = ORIGIN, end = 2*RIGHT)
+ arrow_p.scale(1.35)
+ arrow_p.set_color(GOLD_E)
+
+ text_p = TextMobject("p")
+ text_p.move_to(0.25*DOWN+RIGHT)
+ text_p.set_color(GOLD_E)
+
+ self.play(FadeOut(text), FadeOut(text1), Transform(arrow_b_copy,arrow_p), FadeOut(text_a), FadeOut(text_b))
+ text = TextMobject(r"$p$ is the projection of $\beta_2$ on $\alpha_1$")
+ text.set_color(GOLD_E)
+ text.move_to(3*UP+4*LEFT)
+ text.scale(0.8)
+ self.play(Write(text),Write(text_p))
+ self.wait()
+
+ self.play(FadeIn(text_b))
+
+ arrow_o = Arrow(start = 2*RIGHT, end = 2*UP+2*RIGHT)
+ arrow_o.scale(1.35)
+ arrow_o.set_color(PURPLE_E)
+
+ text_o = TextMobject(r"$\beta_2-p$")
+ text_o.move_to(UP+2.7*RIGHT)
+ text_o.scale(0.75)
+ text_o.set_color(PURPLE_E)
+
+ self.play(ShowCreation(arrow_o))
+ self.play(FadeOut(text),Write(text_o))
+
+ text = TextMobject(r"$\beta_2-p$ is orthogonal to p")
+ text1 = TextMobject(r"(and hence orthogonal to $\alpha_1$ also)")
+ text.set_color(PURPLE_E)
+ text1.set_color(PURPLE_E)
+ text.scale(0.7)
+ text1.scale(0.7)
+ text.move_to(3*UP+4*LEFT)
+ text1.move_to(2.5*UP+4*LEFT)
+ self.play(Write(text))
+ self.play(Write(text1))
+ self.wait(2)
+
+ self.play(FadeOut(text_p), FadeIn(arrow_a), FadeOut(text), FadeOut(text1), FadeOut(arrow_b_copy), FadeOut(arrow_p), FadeOut(text_b), FadeOut(arrow_b))
+ self.play(ApplyMethod(arrow_o.move_to,UP), ApplyMethod(text_o.move_to,RIGHT+UP))
+
+ text = TextMobject(r"Now, Normalize $\beta_2-p$")
+ text.set_color(DARK_BLUE)
+ text.scale(0.6)
+ text.move_to(3*UP+4*LEFT)
+ self.play(Write(text))
+
+ alpha_2 = Arrow(start = ORIGIN,end = UP)
+ alpha_2.scale(1.9)
+ alpha_2.set_color(DARK_BLUE)
+ text_alpha_2 = TextMobject(r"$\alpha_2$")
+ text_alpha_2.move_to(0.4*LEFT+UP)
+ text_alpha_2.set_color(DARK_BLUE)
+ text_alpha_2.scale(0.75)
+ self.play(Transform(text_o,text_alpha_2), Transform(arrow_o,alpha_2), FadeIn(text_a))
+ self.wait()
+ self.play(FadeOut(text),FadeOut(text_a),FadeOut(text_o))
+
+ self.add(axes)
+ #############################################################################
+ axis = TextMobject(r"$\alpha_1$",r"$\alpha_2$",r"$\alpha_3$",r"$\beta_3$",r"$\alpha_3$",r"$\alpha_3$",r"$\alpha_3$",r"$\alpha_3$")
+ axis.scale(0.5)
+ axis[0].move_to(0.5*RIGHT+[0,0,-0.5])
+ axis[1].move_to(0.5*UP+[0,0,-0.5])
+ axis[2].move_to(np.array([0,0,0.5]))
+ axis[3].move_to(np.array([1,1,1.5]))
+ self.add_fixed_orientation_mobjects(axis[0])
+ self.add_fixed_orientation_mobjects(axis[1])
+ #############################################################################
+
+ text = TextMobject(r"These are the same two orthonormal vectors $\alpha_{1}$ and $\alpha_{2}$")
+ text.scale(0.6)
+ text.set_color(DARK_BLUE)
+ self.add_fixed_in_frame_mobjects(text)
+ text.move_to(3*(DOWN+RIGHT))
+ self.play(Write(text))
+
+ self.move_camera(phi=60*DEGREES,theta=45*DEGREES,run_time=3)
+ self.begin_ambient_camera_rotation(rate=0.3)
+
+ line1 = Line(start = ORIGIN,end = 1*RIGHT)
+ line1.set_color(DARK_BLUE)
+ tip1 = Polygon(RIGHT,0.8*RIGHT-0.2*DOWN,0.8*RIGHT-0.2*UP)
+ tip1.set_opacity(1)
+ tip1.set_fill(DARK_BLUE)
+ tip1.set_color(DARK_BLUE)
+
+ arrow2 = Line(start = ORIGIN,end = 1*UP)
+ arrow2.set_color(DARK_BLUE)
+ tip2 = Polygon(UP,0.8*UP-0.2*RIGHT,0.8*UP-0.2*LEFT)
+ tip2.set_opacity(1)
+ tip2.set_fill(DARK_BLUE)
+ tip2.set_color(DARK_BLUE)
+ arrow2.set_color(DARK_BLUE)
+
+ self.play(ShowCreation(line1), ShowCreation(tip1), ShowCreation(arrow2), ShowCreation(tip2), FadeOut(arrow_a), FadeOut(arrow_o))
+ self.wait()
+
+ a_line = Line(start = ORIGIN,end = 2*UP+2*RIGHT+[0,0,2])
+ a_line.set_color(GOLD_E)
+ a_tip = Polygon(2*UP+2*RIGHT+[0,0,2],2*UP+1.6*RIGHT+[0,0,1.8],1.6*UP+2*RIGHT+[0,0,1.8])
+ a_tip.set_opacity(1)
+ a_tip.set_fill(GOLD_E)
+ a_tip.set_color(GOLD_E)
+
+ a_line_c1 = Line(start = ORIGIN,end = 2*UP+2*RIGHT+[0,0,2])
+ a_line_c1.set_color(GOLD_E)
+ a_tip_c1 = Polygon(2*UP+2*RIGHT+[0,0,2],2*UP+1.6*RIGHT+[0,0,1.8],1.6*UP+2*RIGHT+[0,0,1.8])
+ a_tip_c1.set_opacity(1)
+ a_tip_c1.set_fill(GOLD_E)
+ a_tip_c1.set_color(GOLD_E)
+
+ self.play(FadeOut(text), ShowCreation(a_line), ShowCreation(a_tip), ShowCreation(a_line_c1), ShowCreation(a_tip_c1))
+
+ text = TextMobject(r"Now, we have a vector $\beta_3(=\left[\begin{array}{c} 2\\2\\2 \end{array}\right])$")
+ text.set_color(GOLD_E)
+ text.scale(0.7)
+ self.add_fixed_in_frame_mobjects(text)
+ self.add_fixed_orientation_mobjects(axis[3])
+ text.move_to(3*(DOWN+RIGHT))
+ self.play(Write(text))
+ self.wait()
+ self.play(FadeOut(text))
+
+ p_line1 = Line(start = ORIGIN,end = 2*RIGHT)
+ p_line1.set_color(GOLD_E)
+ p_tip1 = Polygon(RIGHT,0.8*RIGHT+0.2*DOWN,0.8*RIGHT+0.2*UP)
+ p_tip1.move_to(2*RIGHT)
+ p_tip1.set_opacity(1)
+ p_tip1.set_fill(GOLD_E)
+ p_tip1.set_color(GOLD_E)
+
+ self.play(Transform(a_line_c1,p_line1),Transform(a_tip_c1,p_tip1))
+
+ text = TextMobject(r"Take projection of $\beta_3$ on $\alpha_1$")
+ text.scale(0.6)
+ text.set_color(GOLD_E)
+ self.add_fixed_in_frame_mobjects(text)
+ text.move_to(3*(DOWN+RIGHT))
+ self.play(Write(text))
+ self.wait()
+ self.play(FadeOut(text))
+
+ o_line1 = Line(start = 2*RIGHT,end = 2*UP+2*RIGHT+[0,0,2])
+ o_line1.set_color(GREEN_E)
+ o_tip1 = Polygon(2*UP+2*RIGHT+[0,0,2],1.8*UP+2*RIGHT+[0,0,1.8]+0.2*RIGHT,1.8*UP+2*RIGHT+[0,0,1.8]-0.2*RIGHT)
+ o_tip1.set_opacity(1)
+ o_tip1.set_fill(GREEN_E)
+ o_tip1.set_color(GREEN_E)
+
+ a_line1 = Line(start = ORIGIN,end = 2*UP+[0,0,2])
+ a_line1.set_color(GREEN_E)
+ a_tip1 = Polygon(2*UP+[0,0,2],1.8*UP+[0,0,1.8]+0.2*RIGHT,1.8*UP+[0,0,1.8]-0.2*RIGHT)
+ a_tip1.set_opacity(1)
+ a_tip1.set_fill(GREEN_E)
+ a_tip1.set_color(GREEN_E)
+
+ a_line1_c1 = Line(start = ORIGIN,end = 2*UP+[0,0,2])
+ a_line1_c1.set_color(GREEN_E)
+ a_tip1_c1 = Polygon(2*UP+[0,0,2],1.8*UP+[0,0,1.8]+0.2*RIGHT,1.8*UP+[0,0,1.8]-0.2*RIGHT)
+ a_tip1_c1.set_opacity(1)
+ a_tip1_c1.set_fill(GREEN_E)
+ a_tip1_c1.set_color(GREEN_E)
+
+ text = TextMobject(r"$\beta_3$-(projection of $\beta_3$ on $\alpha_1$)")
+ text.set_color(GREEN_E)
+ text.scale(0.6)
+ self.add_fixed_in_frame_mobjects(text)
+ text.move_to(3*(DOWN+RIGHT))
+ self.play(Write(text))
+ self.play(ShowCreation(o_line1), ShowCreation(o_tip1))
+ self.wait(2)
+ self.play(FadeOut(a_line_c1), FadeOut(a_tip_c1),
+ FadeOut(a_line), FadeOut(a_tip), FadeOut(axis[3]),
+ Transform(o_line1,a_line1), Transform(o_tip1,a_tip1))
+
+ self.wait()
+ self.play(FadeOut(text))
+
+ p_arrow2 = Line(start = ORIGIN,end = 2*UP)
+ p_arrow2.set_color(GOLD_E)
+ p_tip2 = Polygon(2*UP,1.8*UP+0.2*RIGHT,1.8*UP+0.2*LEFT)
+ p_tip2.set_opacity(1)
+ p_tip2.set_fill(GOLD_E)
+ p_tip2.set_color(GOLD_E)
+ p_arrow2.set_color(GOLD_E)
+
+ last_a = Line(start = 2*UP,end = [0,2,2])
+ last_a.set_color(PURPLE_E)
+ last_a_tip = Polygon([0,0,2],[0,0,1.8]+0.2*RIGHT,[0,0,1.8]+0.2*LEFT)
+ last_a_tip.move_to([0,2,2])
+ last_a_tip.set_opacity(1)
+ last_a_tip.set_fill(PURPLE_E)
+ last_a_tip.set_color(PURPLE_E)
+
+ self.wait()
+ text = TextMobject(r"Take projection on $\alpha_2$")
+ text.scale(0.6)
+ text.set_color(GOLD_E)
+ self.add_fixed_in_frame_mobjects(text)
+ text.move_to(3*(DOWN+RIGHT))
+ self.play(Write(text))
+ self.play(Transform(a_line1_c1,p_arrow2),Transform(a_tip1_c1,p_tip2))
+ self.wait()
+ self.play(FadeOut(text))
+
+ text = TextMobject(r"$\beta_3$-(projection of $\beta_3$ on $\alpha_1$ + projection of $\beta_3$ on $\alpha_2$)")
+ text.set_color(PURPLE_E)
+ text.scale(0.6)
+ self.add_fixed_in_frame_mobjects(text)
+ text.move_to(3*DOWN+3.5*RIGHT)
+ self.play(Write(text))
+ self.play(ShowCreation(o_line1), ShowCreation(o_tip1))
+ self.wait(2)
+ self.play(ShowCreation(last_a_tip), ShowCreation(last_a))
+ self.wait()
+ self.play(FadeOut(text))
+
+ larrow3 = Line(start = ORIGIN,end = [0,0,2])
+ larrow3.set_color(PURPLE_E)
+ ltip3 = Polygon([0,0,2],[0,0,1.8]+0.2*RIGHT,[0,0,1.8]+0.2*LEFT)
+ ltip3.set_opacity(1)
+ ltip3.set_fill(PURPLE_E)
+ ltip3.set_color(PURPLE_E)
+ self.wait()
+ self.play(FadeOut(o_line1), FadeOut(o_tip1), FadeOut(a_line1_c1), FadeOut(a_tip1_c1), Transform(last_a,larrow3), Transform(last_a_tip,ltip3))
+
+ text = TextMobject(r"Normalize, the vector")
+ text1 = TextMobject(r"$\beta_3$-(projection of $\beta_3$ on $\alpha_1$ + projection of $\beta_3$ on $\alpha_2$")
+ text.set_color(PURPLE_E)
+ text1.set_color(PURPLE_E)
+ text.scale(0.6)
+ text1.scale(0.6)
+ self.add_fixed_in_frame_mobjects(text)
+ self.add_fixed_in_frame_mobjects(text1)
+ text.move_to(3*DOWN+3*RIGHT)
+ text1.move_to(3.5*DOWN+3*RIGHT)
+ self.play(Write(text))
+ self.play(Write(text1))
+
+ arrow3 = Line(start = ORIGIN,end = [0,0,1])
+ arrow3.set_color(DARK_BLUE)
+ tip3 = Polygon([0,0,1],[0,0,0.8]-0.2*RIGHT,[0,0,0.8]-0.2*LEFT)
+ tip3.set_opacity(1)
+ tip3.set_fill(DARK_BLUE)
+ tip3.set_color(DARK_BLUE)
+ self.play(Transform(last_a,arrow3), Transform(last_a_tip,tip3))
+ self.add_fixed_orientation_mobjects(axis[2])
+
+ self.wait()
+ self.play(FadeOut(text),FadeOut(text1))
+
+ text = TextMobject(r"These are the three orthonormal vectors $\alpha_1, \alpha_2, \alpha_3$")
+ text.set_color(DARK_BLUE)
+ self.add_fixed_in_frame_mobjects(text)
+ text.scale(0.6)
+ text.move_to(3*DOWN+3.5*RIGHT)
+ self.play(Write(text))
+
+ self.wait(3) \ No newline at end of file
diff --git a/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file4_Non_Standard_Basis.py b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file4_Non_Standard_Basis.py
new file mode 100644
index 0000000..6410a2c
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file4_Non_Standard_Basis.py
@@ -0,0 +1,51 @@
+from manimlib.imports import *
+
+class NSB(ThreeDScene):
+ def construct(self):
+
+ axes = ThreeDAxes(x_min = -4,x_max=4,y_min=-4,y_max=4,z_min=-4,z_max=4)
+ self.play(ShowCreation(axes))
+ self.move_camera(phi=60*DEGREES,theta=45*DEGREES,run_time=3)
+ self.begin_ambient_camera_rotation(rate=0.5)
+
+ matrix = [[0.577,0.577,0.577],[-0.577,0.577,0.577],[0.577,-0.577,0.577]]
+
+ line1 = Line(start = ORIGIN,end = 1*RIGHT)
+ line1.set_color(DARK_BLUE)
+ tip1 = Polygon(RIGHT,0.9*RIGHT-0.1*DOWN,0.9*RIGHT-0.1*UP)
+ tip1.set_opacity(1)
+ tip1.set_fill(DARK_BLUE)
+ tip1.set_color(DARK_BLUE)
+
+ arrow2 = Line(start = ORIGIN,end = 1*UP)
+ arrow2.set_color(DARK_BLUE)
+ tip2 = Polygon(UP,0.9*UP-0.1*RIGHT,0.9*UP-0.1*LEFT)
+ tip2.set_opacity(1)
+ tip2.set_fill(DARK_BLUE)
+ tip2.set_color(DARK_BLUE)
+ arrow2.set_color(DARK_BLUE)
+
+ arrow3 = Line(start = ORIGIN,end = [0,0,1])
+ arrow3.set_color(DARK_BLUE)
+ tip3 = Polygon([0,0,1],[0,0,0.9]-0.1*RIGHT,[0,0,0.9]-0.1*LEFT)
+ tip3.set_opacity(1)
+ tip3.set_fill(DARK_BLUE)
+ tip3.set_color(DARK_BLUE)
+
+ line1.apply_matrix(matrix)
+ tip1.apply_matrix(matrix)
+ arrow2.apply_matrix(matrix)
+ tip2.apply_matrix(matrix)
+ arrow3.apply_matrix(matrix)
+ tip3.apply_matrix(matrix)
+
+ self.play(ShowCreation(line1), ShowCreation(tip1), ShowCreation(arrow2), ShowCreation(tip2), ShowCreation(arrow3), ShowCreation(tip3))
+
+ text = TextMobject(r"This is also a set of Orthonormal Vectors")
+ text.set_color(DARK_BLUE)
+ self.add_fixed_in_frame_mobjects(text)
+ text.scale(0.6)
+ text.move_to(3*DOWN+3.5*RIGHT)
+ self.play(Write(text))
+
+ self.wait(7) \ No newline at end of file
diff --git a/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file5.gif b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file5.gif
new file mode 100644
index 0000000..2ce3577
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file5.gif
Binary files differ
diff --git a/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file6.gif b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file6.gif
new file mode 100644
index 0000000..7cd7b3d
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file6.gif
Binary files differ
diff --git a/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file7.gif b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file7.gif
new file mode 100644
index 0000000..19a13dd
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file7.gif
Binary files differ
diff --git a/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file8.gif b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file8.gif
new file mode 100644
index 0000000..0ef4551
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file8.gif
Binary files differ