summaryrefslogtreecommitdiff
path: root/FSF-2020/calculus/series-and-transformations/Taylor Series
diff options
context:
space:
mode:
Diffstat (limited to 'FSF-2020/calculus/series-and-transformations/Taylor Series')
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/README.md11
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdfbin0 -> 125254 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file1_Example_TaylorExpansion.gifbin0 -> 446111 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file2_TaylorExpansionGeneralForm.gifbin0 -> 308980 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file3_radiusOfConvergence.gifbin0 -> 391510 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file4_DivergentRemainder.gifbin0 -> 160149 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py198
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py195
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/video3_radiusOfConvergence.py111
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/video4_DivergentRemainder.py82
10 files changed, 597 insertions, 0 deletions
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/README.md b/FSF-2020/calculus/series-and-transformations/Taylor Series/README.md
new file mode 100644
index 0000000..ce3b088
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/README.md
@@ -0,0 +1,11 @@
+#### Example of Taylors expansion
+![GIF1](gifs/file1_Example_TaylorExpansion.gif)
+
+#### Taylor Series GeneralForm
+![GIF2](gifs/file2_TaylorExpansionGeneralForm.gif)
+
+#### Radius Of Convergence
+![GIF3](gifs/file3_radiusOfConvergence.gif)
+
+#### Divergence of a Remainder
+![GIF4](gifs/file4_DivergentRemainder.gif)
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf b/FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf
new file mode 100644
index 0000000..46d46e1
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/TaylorSeriesQuestions.pdf
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file1_Example_TaylorExpansion.gif b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file1_Example_TaylorExpansion.gif
new file mode 100644
index 0000000..ecd3272
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file1_Example_TaylorExpansion.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file2_TaylorExpansionGeneralForm.gif b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file2_TaylorExpansionGeneralForm.gif
new file mode 100644
index 0000000..e6d9171
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file2_TaylorExpansionGeneralForm.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file3_radiusOfConvergence.gif b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file3_radiusOfConvergence.gif
new file mode 100644
index 0000000..6b22d8d
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file3_radiusOfConvergence.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file4_DivergentRemainder.gif b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file4_DivergentRemainder.gif
new file mode 100644
index 0000000..2bb5185
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file4_DivergentRemainder.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py
new file mode 100644
index 0000000..e83eff8
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py
@@ -0,0 +1,198 @@
+from manimlib.imports import*
+import math
+
+def formFormula(coeff_list,variable_list):
+ coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ variable_list=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
+ coeff_list[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ coeff_list[i].set_color(GOLD_A)
+ variable_list[i].next_to(coeff_list[i],buff=0.1)
+ if i!=2:
+ coeff_list[i+1].next_to(variable_list[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variable_list[2])
+ expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots)
+ #expansion.scale(0.7)
+ return expansion,coeff_list
+
+class intro(Scene):
+ def construct(self):
+ equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$")
+ equation.scale(2)
+ equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED})
+ text=TextMobject("let $a=0$")
+ text.scale(0.7)
+ text.shift(DOWN)
+
+ self.play(Write(equation))
+ self.wait(0.5)
+ self.play(FadeIn(text))
+ self.wait(0.7)
+ self.play(FadeOut(equation),FadeOut(text))
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -8,
+ "y_max": 8,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-8, 8, 1),
+ }
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ generalized_eq_coeff=[]
+ variables_eq=[]
+ eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq)
+ trText1=TextMobject("let $T_{ n }(x)$:=")
+ eq.next_to(trText1)
+ trTextGrup=VGroup(trText1,eq)
+ trTextGrup.scale(0.5)
+ trTextGrup.to_corner(UP+RIGHT)
+ self.play(Write(trTextGrup))
+ self.setup_axes(animate=True)
+
+ fx=TextMobject("${ e }^{ -x^{ 2 } }$")
+ fx.scale(0.5)
+ fx.shift(ORIGIN+x_each_unit*7.5*RIGHT+y_each_unit*0.5*UP)
+ mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8)
+ self.play(ShowCreation(mainfunction))
+ self.play(FadeIn(fx))
+ self.wait(1.4)
+
+ coeff=[TextMobject("$1$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")]
+ coeff[0].shift(3.39*UP+4.88*RIGHT)
+ coeff[0].scale(0.5)
+ coeff[1].shift(3.39*UP+5.3*RIGHT)
+ coeff[1].scale(0.275)
+ coeff[2].shift(3.39*UP+5.98*RIGHT)
+ coeff[2].scale(0.28)
+
+ for obj in coeff:
+ obj.set_color(GOLD_A)
+
+ firstApprox=[self.get_graph(lambda x:1,color=BLUE)]
+ secondApprox=[self.get_graph(lambda x:1,color=BLUE),
+ self.get_graph(lambda x:x+1,color=BLUE),
+ self.get_graph(lambda x:-x+1,color=BLUE)]
+ thirdApprox=[self.get_graph(lambda x:1-2*math.pow(x,2),color=BLUE),
+ self.get_graph(lambda x:1-0.1*math.pow(x,2),color=BLUE),
+ self.get_graph(lambda x:1,color=BLUE),
+ self.get_graph(lambda x:1+0.1*math.pow(x,2),color=BLUE),
+ self.get_graph(lambda x:1+math.pow(x,2),color=BLUE)]
+
+ firstGraph=self.get_graph(lambda x:1,color=BLUE)
+ secondGraph=self.get_graph(lambda x:1-math.pow(x,2),color=BLUE)
+
+ bottomText1=TextMobject("The polynomial should","satisfy","the function at $x=0$")
+ bottomText2=TextMobject("This gives","$a_{ 0 }=1$")
+ bottomText3=TextMobject("Now it could be of","any slope!")
+ #show graphs of second approx
+ bottomText4=TextMobject("Hence the","slopes","should","even match")
+ #final graph
+ bottomText5=TextMobject("This gives","$a_{ 1 }=0$")
+ bottomText6=TextMobject("Since the rate of change of this slope","could vary")
+ #show third approx graphs
+ bottomText7=TextMobject("Hence the","rate of change of these slopes","should also be","same!")
+ #final graph
+ bottomText8=TextMobject("This gives","$a_{ 2 }=-1$")
+
+ bottomText1.set_color_by_tex_to_color_map({"satisfy":YELLOW})
+ bottomText2.set_color_by_tex_to_color_map({"$a_{ 0 }=1$":BLUE})
+ bottomText3.set_color_by_tex_to_color_map({"any slope!":YELLOW})
+ bottomText4.set_color_by_tex_to_color_map({"slopes":BLUE,"even match":YELLOW})
+ bottomText5.set_color_by_tex_to_color_map({"$a_{ 1 }=0$":BLUE})
+ bottomText6.set_color_by_tex_to_color_map({"could vary":YELLOW})
+ bottomText7.set_color_by_tex_to_color_map({"rate of change of these slopes":BLUE,"same!":YELLOW})
+ bottomText8.set_color_by_tex_to_color_map({"$a_{ 2 }=-1$":BLUE})
+
+ bottomText1.scale(0.4)
+ bottomText2.scale(0.5)
+ bottomText3.scale(0.4)
+ bottomText4.scale(0.4)
+ bottomText5.scale(0.5)
+ bottomText6.scale(0.4)
+ bottomText7.scale(0.4)
+ bottomText8.scale(0.5)
+
+ bottomText1.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText2.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText3.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText4.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText5.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText6.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText7.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText8.shift(4.5*RIGHT+2.5*DOWN)
+
+ self.play(Write(bottomText1))
+ self.wait(1)
+ self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2))
+ #change coeff in tn(x)
+ self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText2,bottomText3))
+ self.wait(0.5)
+ self.play(ReplacementTransform(firstApprox[0],secondApprox[1]))
+ self.wait(0.5)
+ self.play(ReplacementTransform(secondApprox[1],secondApprox[0]))
+ self.wait(0.5)
+ self.play(ReplacementTransform(secondApprox[0],secondApprox[2]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText3,bottomText4),FadeOut(secondApprox[2]))
+ self.wait(1)
+ self.play(Write(firstGraph),ReplacementTransform(bottomText4,bottomText5))
+ #change a1 coeff
+ self.play(ReplacementTransform(generalized_eq_coeff[1],coeff[1]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText5,bottomText6))
+ self.play(ReplacementTransform(firstGraph,thirdApprox[0]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[0],thirdApprox[1]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[1],thirdApprox[2]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[2],thirdApprox[3]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[3],thirdApprox[4]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText6,bottomText7))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText7,bottomText8),ReplacementTransform(thirdApprox[4],secondGraph))
+ self.play(ReplacementTransform(generalized_eq_coeff[2],coeff[2]))
+ self.wait(2)
+
+ textFinal=TextMobject("And so on..!")
+ textFinal.scale(0.7)
+ textFinal.shift(4.5*RIGHT+2.5*DOWN)
+ self.play(ReplacementTransform(bottomText8,textFinal))
+ self.wait(2.5)
+
+ finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$")
+ finalFormula.scale(0.8)
+ finalFormula.set_color_by_tex_to_color_map({"$T_{ n }(x)$":GREEN,"$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$":RED})
+
+ self.play(FadeOut(self.axes),FadeOut(textFinal),FadeOut(secondGraph),FadeOut(trTextGrup),FadeOut(mainfunction),FadeOut(fx),FadeOut(coeff[0]),FadeOut(coeff[1]),FadeOut(coeff[2]))
+ self.play(Write(finalFormula))
+ self.wait(2)
+ # self.play(ReplacementTransform(secondApprox[2],secondApprox[3]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[3],secondApprox[4]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[4],secondApprox[5]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[0],secondApprox[0]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[0],secondApprox[0]))
+ # self.wait(0.5)
+
+
+
+
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py
new file mode 100644
index 0000000..f84cfe9
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py
@@ -0,0 +1,195 @@
+from manimlib.imports import*
+import math
+
+
+class intro(Scene):
+ def construct(self):
+ equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$")
+ equation.scale(2)
+ equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED})
+ text=TextMobject("at $a=1$")
+ text.scale(0.7)
+ text.shift(DOWN)
+
+ shiftText=TextMobject("(Here we shift the origin to the point $x=1$)")
+ shiftText.scale(0.6)
+ shiftText.shift(2.4*DOWN)
+
+
+ self.play(Write(equation))
+ self.wait(0.5)
+ self.play(FadeIn(text))
+ self.wait(0.7)
+ self.play(Write(shiftText))
+ self.wait(0.7)
+ self.play(FadeOut(equation),FadeOut(text),FadeOut(shiftText))
+
+
+def formFormula(coeff_list,variable_list):
+ coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
+ variable_list=[TextMobject("+"),TextMobject("${ (x-1) }$+"),TextMobject("${ (x-1) }^{ 2 }$")]
+ coeff_list[0].shift(2.2*UP+1.6*LEFT)
+ for i in range(0,3):
+ coeff_list[i].set_color(GOLD_A)
+ variable_list[i].next_to(coeff_list[i],buff=0.1)
+ if i!=2:
+ coeff_list[i+1].next_to(variable_list[i],buff=0.1)
+ dots=TextMobject("...")
+ dots.next_to(variable_list[2])
+ expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots)
+ #expansion.scale(0.7)
+ return expansion,coeff_list
+
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -8,
+ "y_max": 8,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-8, 8, 1),
+ }
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ generalized_eq_coeff=[]
+ variables_eq=[]
+ eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq)
+ trText1=TextMobject("let $T_{ n }(x)$:=")
+ eq.next_to(trText1)
+ trTextGrup=VGroup(trText1,eq)
+ trTextGrup.scale(0.5)
+ trTextGrup.to_corner(UP+RIGHT)
+ self.play(Write(trTextGrup))
+ self.setup_axes(animate=True)
+
+ fx=TextMobject("${ e }^{ -x^{ 2 } }$")
+ fx.scale(0.5)
+ fx.shift(ORIGIN+x_each_unit*7.5*RIGHT+y_each_unit*0.5*UP)
+ mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8)
+ self.play(ShowCreation(mainfunction))
+ self.play(FadeIn(fx))
+ self.wait(1.4)
+
+ coeff=[TextMobject("$e^{-1}$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")]
+ coeff[0].shift(3.33*UP+3.65*RIGHT)
+ coeff[0].scale(0.45)
+ coeff[1].shift(3.33*UP+4.13*RIGHT)
+ coeff[1].scale(0.275)
+ coeff[2].shift(3.33*UP+5.36*RIGHT)
+ coeff[2].scale(0.28)
+
+ for obj in coeff:
+ obj.set_color(GOLD_A)
+
+ firstApprox=[self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)]
+ secondApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5),
+ self.get_graph(lambda x:math.exp(-1)+3*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5),
+ self.get_graph(lambda x:math.exp(-1)-4*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)]
+ thirdApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
+ self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-0.1*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
+ self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_max=5.5,x_min=-5.5),
+ self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+0.5*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
+ self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5)]
+
+ firstGraph=self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)
+ secondGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)
+ thirdGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5)
+
+ bottomText1=TextMobject("Apply","$f(1)=T_{n}(1)$")
+ bottomText2=TextMobject("This gives","$a_{ 0 }=e^{-1}$")
+ bottomText3=TextMobject("Now it could be of","any slope!")
+ #show graphs of second approx
+ bottomText4=TextMobject("Hence","apply","$f'(1)=T_{n}'(1)$")
+ #final graph
+ bottomText5=TextMobject("This gives","$a_{ 1 }=-2e^{-1}$")
+ bottomText6=TextMobject("Since the rate of change of this slope","could vary")
+ #show third approx graphs
+ bottomText7=TextMobject("Hence also","apply","$f''(1)=T_{ n }''(1)$")
+ #final graph
+ bottomText8=TextMobject("This gives","$a_{ 2 }=e^{-1}$")
+
+ bottomText1.set_color_by_tex_to_color_map({"Apply":YELLOW})
+ bottomText2.set_color_by_tex_to_color_map({"$a_{ 0 }=e^{-1}$":BLUE})
+ bottomText3.set_color_by_tex_to_color_map({"any slope!":YELLOW})
+ bottomText4.set_color_by_tex_to_color_map({"apply":YELLOW})
+ bottomText5.set_color_by_tex_to_color_map({"$a_{ 1 }=-2e^{-1}$":BLUE})
+ bottomText6.set_color_by_tex_to_color_map({"could vary":YELLOW})
+ bottomText7.set_color_by_tex_to_color_map({"apply":YELLOW})
+ bottomText8.set_color_by_tex_to_color_map({"$a_{ 2 }=e^{-1}$":BLUE})
+
+ bottomText1.scale(0.4)
+ bottomText2.scale(0.5)
+ bottomText3.scale(0.4)
+ bottomText4.scale(0.4)
+ bottomText5.scale(0.5)
+ bottomText6.scale(0.4)
+ bottomText7.scale(0.4)
+ bottomText8.scale(0.5)
+
+ bottomText1.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText2.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText3.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText4.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText5.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText6.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText7.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText8.shift(4.5*RIGHT+2.5*DOWN)
+
+ self.play(Write(bottomText1))
+ self.wait(1)
+ self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2))
+ #change coeff in tn(x)
+ self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText2,bottomText3))
+ self.wait(0.5)
+ self.play(ReplacementTransform(firstApprox[0],secondApprox[1]))
+ self.wait(0.5)
+ self.play(ReplacementTransform(secondApprox[1],secondApprox[2]))
+ # self.wait(0.5)
+ # self.play(ReplacementTransform(secondApprox[2],secondApprox[0]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText3,bottomText4),FadeOut(secondApprox[2]))
+ self.wait(1)
+ self.play(Write(secondGraph),ReplacementTransform(bottomText4,bottomText5))
+ #change a1 coeff
+ self.play(ReplacementTransform(generalized_eq_coeff[1],coeff[1]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText5,bottomText6))
+ self.play(ReplacementTransform(secondGraph,thirdApprox[0]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[0],thirdApprox[1]))
+ # self.wait(0.6)
+ # self.play(ReplacementTransform(thirdApprox[1],thirdApprox[2]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[1],thirdApprox[3]))
+ self.wait(0.6)
+ self.play(ReplacementTransform(thirdApprox[3],thirdApprox[4]))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText6,bottomText7))
+ self.wait(1.5)
+ self.play(ReplacementTransform(bottomText7,bottomText8),ReplacementTransform(thirdApprox[4],thirdGraph))
+ self.play(ReplacementTransform(generalized_eq_coeff[2],coeff[2]))
+ self.wait(2)
+
+ textFinal=TextMobject("And so on..!")
+ textFinal.scale(0.7)
+ textFinal.shift(4.5*RIGHT+2.5*DOWN)
+ self.play(ReplacementTransform(bottomText8,textFinal))
+ self.wait(2.5)
+
+ finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(1)+f'(1)(x-1)+\\frac { f''(1) }{ 2! }(x-1)^2+..+\\frac { { f }^{ n }(1) }{ n! } { (x-1) }^{ n }$")
+ finalFormula.scale(0.8)
+ finalFormula.set_color_by_tex_to_color_map({"$T_{ n }(x)$":GREEN,"$f(1)+f'(1)(x-1)+\\frac { f''(1) }{ 2! }(x-1)^2+..+\\frac { { f }^{ n }(1) }{ n! } { (x-1) }^{ n }$":RED})
+
+ self.play(FadeOut(self.axes),FadeOut(textFinal),FadeOut(thirdGraph),FadeOut(trTextGrup),FadeOut(mainfunction),FadeOut(fx),FadeOut(coeff[0]),FadeOut(coeff[1]),FadeOut(coeff[2]))
+ self.play(Write(finalFormula))
+ self.wait(2)
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/video3_radiusOfConvergence.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/video3_radiusOfConvergence.py
new file mode 100644
index 0000000..a68afb6
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/video3_radiusOfConvergence.py
@@ -0,0 +1,111 @@
+from manimlib.imports import*
+import math
+
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -8,
+ "y_max": 8,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-8, 8, 1),
+ }
+ def construct(self):
+
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ self.setup_axes(animate=True)
+
+ lnx=self.get_graph(lambda x:math.log2(x),color=RED,x_min=0.01,x_max=8)
+
+ bottomText1=TextMobject("Apply $f(x)=T_{n}(x)$")
+ bottomText2=TextMobject("Then apply $f'(x)=T_{n}'(x)$")
+ bottomText3=TextMobject("Then apply $f''(x)=T_{n}''(x)$")
+ bottomText4=TextMobject("and so on..")
+
+ bottomText1.scale(0.5)
+ bottomText2.scale(0.5)
+ bottomText3.scale(0.5)
+ bottomText4.scale(0.5)
+
+ bottomText1.shift(3*RIGHT+2*DOWN)
+ bottomText2.shift(3*RIGHT+2*DOWN)
+ bottomText3.shift(3*RIGHT+2*DOWN)
+ bottomText4.shift(3*RIGHT+2*DOWN)
+
+ equations=[self.get_graph(lambda x:math.log2(2),color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2,color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8,color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24,color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64,color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160,color=BLUE),
+ self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160-((x-2)**6)/384,color=BLUE)]
+
+ terms=[TextMobject("$T_{n}:=$"),TextMobject("$ln(2)$"),TextMobject("$+\\frac { x-2 }{ 2 } $"),TextMobject("$-\\frac { (x-2)^{2} }{ 8 }$"),TextMobject("+..")]
+ for obj in terms:
+ obj.scale(0.5)
+
+ terms[0].shift(3*UP+3*RIGHT)
+ terms[1].next_to(terms[0],buff=0.1)
+ terms[2].next_to(terms[1],buff=0.1)
+ terms[3].next_to(terms[2],buff=0.1)
+ terms[4].next_to(terms[3],buff=0.1)
+
+ self.play(ShowCreation(lnx))
+ self.wait(1)
+ self.play(Write(bottomText1))
+ self.wait(0.5)
+ self.play(ShowCreation(equations[0]),Write(terms[0]),Write(terms[1]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText1,bottomText2))
+ self.wait(0.5)
+ self.play(ReplacementTransform(equations[0],equations[1]),Write(terms[2]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText2,bottomText3))
+ self.wait(0.5)
+ self.play(ReplacementTransform(equations[1],equations[2]),Write(terms[3]))
+ self.wait(1)
+ self.play(ReplacementTransform(bottomText3,bottomText4),Write(terms[4]))
+ self.wait(1.5)
+
+ self.play(FadeOut(terms[0]),FadeOut(terms[1]),FadeOut(terms[2]),FadeOut(terms[3]),FadeOut(terms[4]),FadeOut(bottomText4))
+
+ dline=DashedLine(start=ORIGIN+8*y_each_unit*UP,end=ORIGIN+8*y_each_unit*DOWN)
+ dline.shift(ORIGIN+x_each_unit*4*RIGHT)
+
+ bottomText5=TextMobject("Here","after $x=4$",", the graph","continuously diverges away","from $ln(x)$")
+ bottomText5.scale(0.3)
+ bottomText5.shift(4.5*RIGHT+2*DOWN)
+ bottomText5.set_color_by_tex_to_color_map({"after $x=4$":YELLOW,"continuously diverges away":BLUE})
+
+ self.play(Write(bottomText5),Write(dline))
+ self.wait(1)
+ self.play(ReplacementTransform(equations[2],equations[3]))
+ self.wait(0.3)
+ self.play(ReplacementTransform(equations[3],equations[4]))
+ self.wait(0.3)
+ self.play(ReplacementTransform(equations[4],equations[5]))
+ self.wait(0.3)
+ self.play(ReplacementTransform(equations[5],equations[6]),FadeOut(bottomText5))
+ self.wait(1)
+
+ circle=Circle(radius=ORIGIN+x_each_unit*2,color=PURPLE_E)
+ circle.shift(ORIGIN+RIGHT*x_each_unit*2)
+ radiusLine=Line(start=ORIGIN+x_each_unit*RIGHT*2,end=ORIGIN+x_each_unit*4*RIGHT,color=PURPLE_E)
+ radius=TextMobject("$R$")
+ radius.set_color(RED)
+ radius.scale(0.5)
+ radius.shift(ORIGIN+RIGHT*x_each_unit*2.45+DOWN*y_each_unit*0.6)
+
+ self.play(FadeOut(equations[6]),Write(circle))
+ self.wait(0.6)
+ self.play(Write(radiusLine))
+ self.play(FadeIn(radius))
+ self.wait(2)
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/video4_DivergentRemainder.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/video4_DivergentRemainder.py
new file mode 100644
index 0000000..5389039
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/video4_DivergentRemainder.py
@@ -0,0 +1,82 @@
+from manimlib.imports import*
+import math
+
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -8,
+ "y_max": 8,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": GREEN,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-8, 8, 1),
+ }
+ def construct(self):
+
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ self.setup_axes(animate=True)
+ lnx=self.get_graph(lambda x:math.log2(x),color=RED,x_min=0.01,x_max=8)
+ equation=self.get_graph(lambda x:math.log2(2)+(x-2)/2-((x-2)**2)/8+((x-2)**3)/24-((x-2)**4)/64+((x-2)**5)/160-((x-2)**6)/384,color=BLUE)
+
+ terms=[TextMobject("$T_{n}:=$"),TextMobject("$ln(2)$"),TextMobject("$+\\frac { x-2 }{ 2 } $"),TextMobject("$-\\frac { (x-2)^{2} }{ 8 }$"),TextMobject("+..")]
+ for obj in terms:
+ obj.scale(0.5)
+
+ terms[0].shift(3*UP+3*RIGHT)
+ terms[1].next_to(terms[0],buff=0.1)
+ terms[2].next_to(terms[1],buff=0.1)
+ terms[3].next_to(terms[2],buff=0.1)
+ terms[4].next_to(terms[3],buff=0.1)
+
+ self.play(ShowCreation(lnx))
+ self.wait(1)
+ self.play(FadeIn(equation),FadeIn(terms[0]),FadeIn(terms[1]),FadeIn(terms[2]),FadeIn(terms[3]),FadeIn(terms[4]))
+ self.wait(1)
+
+ bottomText1=TextMobject("$R_{n}(x)=\\frac { d }{ dx } ($","area bounded","$)$")
+
+ bottomText1.set_color_by_tex_to_color_map({"area bounded":ORANGE})
+ #bottomText2.set_color_by_tex_to_color_map({"area bounded":BLUE})
+ arrow=TextMobject("$\downarrow$")
+ arrow.scale(2.5)
+ arrow.shift(ORIGIN+x_each_unit*RIGHT*9.5+UP*y_each_unit)
+ increasingText=TextMobject("Increases!")
+ increasingText.set_color(GREEN)
+ followupText=TextMobject("as n increase!")
+ followupText.scale(0.3)
+ followupText.shift(ORIGIN+x_each_unit*11*RIGHT+UP*y_each_unit*1.1)
+ increasingText.shift(ORIGIN+x_each_unit*11*RIGHT+UP*y_each_unit*1.6)
+ increasingText.scale(0.4)
+
+ bottomText1.scale(0.5)
+ #bottomText2.scale(0.5)
+ #bottomText3.scale(0.5)
+
+ bottomText1.shift(3.5*LEFT+2*DOWN)
+ #bottomText2.shift(3.5*LEFT+2.4*DOWN)
+ #bottomText3.shift(3.5*LEFT+2.8*DOWN)
+
+ dline=DashedLine(start=ORIGIN+8*y_each_unit*UP,end=ORIGIN+8*y_each_unit*DOWN)
+ dline.shift(ORIGIN+x_each_unit*4*RIGHT)
+
+ area1=self.get_riemann_rectangles(lnx,x_max=8,x_min=4,dx=0.01,start_color=BLUE,end_color=RED,stroke_width=0,fill_opacity=0.8)
+ area2=self.get_riemann_rectangles(equation,x_max=5.2,x_min=4,dx=0.025,start_color=BLACK,end_color=BLACK,stroke_width=0,fill_opacity=1)
+
+ self.play(Write(dline))
+ self.wait(0.5)
+ self.play(ShowCreation(area1),ShowCreation(area2),Write(bottomText1))
+ # self.play(Write(bottomText2))
+ # self.play(FadeIn(bottomText3))
+ self.play(Write(arrow))
+ self.wait(0.7)
+ self.play(Write(increasingText))
+ self.play(FadeIn(followupText))
+ self.wait(2)
+