diff options
Diffstat (limited to 'FSF-2020/calculus-of-several-variables')
25 files changed, 1077 insertions, 0 deletions
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Limits and Continuity of Multivariable Functions/gifs/limit_approach_point.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Limits and Continuity of Multivariable Functions/gifs/limit_approach_point.gif Binary files differnew file mode 100644 index 0000000..830b6f1 --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Limits and Continuity of Multivariable Functions/gifs/limit_approach_point.gif diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Limits and Continuity of Multivariable Functions/limit_approach_point.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Limits and Continuity of Multivariable Functions/limit_approach_point.py new file mode 100644 index 0000000..57d1d45 --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Limits and Continuity of Multivariable Functions/limit_approach_point.py @@ -0,0 +1,66 @@ +from manimlib.imports import *
+
+class Limit(GraphScene):
+ CONFIG = {
+ "x_min": 0,
+ "x_max": 4,
+ "y_min": 0,
+ "y_max": 4,
+ "graph_origin": ORIGIN + 3* DOWN+4*LEFT,
+ "x_labeled_nums": list(range(0, 4)),
+ "y_labeled_nums": list(range(0, 5)),
+ }
+ def construct(self):
+ topic = TextMobject("Different paths of approach to limit point")
+ topic.scale(1.5)
+ topic.set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
+ self.play(Write(topic))
+ self.wait(1)
+ self.play(FadeOut(topic))
+
+
+
+ XTD = self.x_axis_width/(self.x_max- self.x_min)
+ YTD = self.y_axis_height/(self.y_max- self.y_min)
+
+ self.setup_axes(animate = True)
+
+ y_x = self.get_graph(lambda x : x, x_min = -1, x_max = 4)
+ y_x_lab = self.get_graph_label(y_x, label = r"y = x")
+
+ y_xsquare = self.get_graph(lambda x : x*x, x_min = -1, x_max = 4)
+ y_xsquare_lab = self.get_graph_label(y_xsquare, label = r"y = x^2")
+
+ y_1 = self.get_graph(lambda x : 1, x_min = -1, x_max = 4)
+ y_1_lab = self.get_graph_label(y_1, label = r"y = 1")
+
+ y_2minusx = self.get_graph(lambda x : 2 - x, x_min = -1, x_max = 4, color = RED)
+ y_2minusx_lab = self.get_graph_label(y_2minusx, label = r"y = 2 - x")
+
+ limit_point = Dot().shift(self.graph_origin+1*XTD*RIGHT+1*YTD*UP)
+ limit_point_lab = TextMobject(r"(1,1)")
+ limit_point_lab.next_to(limit_point, DOWN)
+
+ self.play(ShowCreation(limit_point))
+ self.play(Write(limit_point_lab))
+ self.wait(1)
+
+ self.play(ShowCreation(y_x))
+ self.play(Write(y_x_lab))
+ self.wait(1)
+
+ self.play(ShowCreation(y_xsquare))
+ self.play(Write(y_xsquare_lab))
+ self.wait(1)
+
+ self.play(ShowCreation(y_1))
+ self.play(Write(y_1_lab))
+ self.wait(1)
+
+ self.play(ShowCreation(y_2minusx))
+ self.play(Write(y_2minusx_lab))
+ self.wait(1)
+
+
+
+
\ No newline at end of file diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/Multivariable_Functions_Quiz.pdf b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/Multivariable_Functions_Quiz.pdf Binary files differnew file mode 100644 index 0000000..7895843 --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/Multivariable_Functions_Quiz.pdf diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_derivative_vectorvf.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_derivative_vectorvf.gif Binary files differnew file mode 100644 index 0000000..a94de90 --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_derivative_vectorvf.gif diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_examples.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_examples.gif Binary files differnew file mode 100644 index 0000000..11f66f1 --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_examples.gif diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_plot_sphere.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_plot_sphere.gif Binary files differnew file mode 100644 index 0000000..ad7582c --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_plot_sphere.gif diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_respresntation.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_respresntation.gif Binary files differnew file mode 100644 index 0000000..a173bda --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_respresntation.gif diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_vectorvf_sine.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_vectorvf_sine.gif Binary files differnew file mode 100644 index 0000000..4f6b931 --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_vectorvf_sine.gif diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_derivative_vectorvf.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_derivative_vectorvf.py new file mode 100644 index 0000000..466e389 --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_derivative_vectorvf.py @@ -0,0 +1,247 @@ +from manimlib.imports import *
+
+class Derivative(GraphScene):
+ CONFIG = {
+ "x_min": 0,
+ "x_max": 3,
+ "y_min": 0,
+ "y_max": 5,
+ "graph_origin": ORIGIN+6*LEFT+3*DOWN,
+ "x_axis_width": 6,
+ "x_labeled_nums": list(range(0, 4)),
+ "y_labeled_nums": list(range(0, 6)),
+ }
+ def construct(self):
+
+ XTD = self.x_axis_width/(self.x_max - self.x_min)
+ YTD = self.y_axis_height/(self.y_max - self.y_min)
+
+ self.setup_axes(animate = True)
+
+ graph = self.get_graph(lambda x : x*x, x_min = 0.5, x_max = 2, color = GREEN)
+
+ point1 = Dot().shift(self.graph_origin+0.25*YTD*UP + 0.5*XTD*RIGHT)
+ point1_lab = TextMobject(r"$t = a$")
+ point1_lab.scale(0.7)
+ point1_lab.next_to(point1, RIGHT)
+
+ point2 = Dot().shift(self.graph_origin+2*XTD*RIGHT+4*YTD*UP)
+ point2_lab = TextMobject(r"$t = b$")
+ point2_lab.scale(0.7)
+ point2_lab.next_to(point2, RIGHT)
+
+
+ vector1 = Arrow(self.graph_origin, self.graph_origin+1*YTD*UP + 1*XTD*RIGHT, buff=0.02, color = RED)
+ vector1_lab = TextMobject(r"$\vec r(t)$", color = RED)
+ vector1_lab.move_to(self.graph_origin+1.2*XTD*RIGHT+ 0.75*YTD*UP)
+ vector1_lab.scale(0.8)
+
+ vector2 = Arrow(self.graph_origin, self.graph_origin+2.25*YTD*UP + 1.5*XTD*RIGHT, buff=0.02, color = YELLOW_C)
+ vector2_lab = TextMobject(r"$\vec r(t + h)$", color = YELLOW_C)
+ vector2_lab.move_to(self.graph_origin+0.5*XTD*RIGHT+ 2*YTD*UP)
+ vector2_lab.scale(0.8)
+
+ vector3 = Arrow(self.graph_origin+1*YTD*UP + 1*XTD*RIGHT, self.graph_origin+2.25*YTD*UP + 1.5*XTD*RIGHT, buff=0.02, color = PINK)
+ vector3_lab = TextMobject(r"$\vec r(t + h) - \vec r(t)$", color = PINK)
+ vector3_lab.move_to(self.graph_origin+2*XTD*RIGHT+ 1.5*YTD*UP)
+ vector3_lab.scale(0.8)
+
+
+ self.play(ShowCreation(graph))
+ self.play(ShowCreation(point1), Write(point1_lab))
+ self.play(ShowCreation(point2), Write(point2_lab))
+
+ self.play(GrowArrow(vector1),Write(vector1_lab))
+ self.play(GrowArrow(vector2),Write(vector2_lab))
+ self.play(GrowArrow(vector3),Write(vector3_lab))
+ self.wait(1)
+
+ self.display_text()
+
+ self.play(ApplyMethod(vector3_lab.move_to,(self.graph_origin+2.3*XTD*RIGHT+ 2.2*YTD*UP)))
+
+ vector4 = Arrow(self.graph_origin+1*YTD*UP + 1*XTD*RIGHT, self.graph_origin+1*YTD*UP + 1.5*XTD*RIGHT, buff=0.02, color = PURPLE)
+ vector4_lab = TextMobject(r"$dx$", color = PURPLE)
+ vector4_lab.move_to(self.graph_origin+1.7*XTD*RIGHT+ 0.8*YTD*UP)
+ vector4_lab.scale(0.7)
+
+ vector5 = Arrow(self.graph_origin+1*YTD*UP + 1.5*XTD*RIGHT, self.graph_origin+2.25*YTD*UP + 1.5*XTD*RIGHT, buff=0.02, color = ORANGE)
+ vector5_lab = TextMobject(r"$dy$", color = ORANGE)
+ vector5_lab.move_to(self.graph_origin+1.7*XTD*RIGHT+ 1.4*YTD*UP)
+ vector5_lab.scale(0.7)
+
+ self.play(GrowArrow(vector4),Write(vector4_lab))
+ self.play(GrowArrow(vector5),Write(vector5_lab))
+ self.wait(2)
+
+
+
+ def display_text(self):
+ text1 = TextMobject(r"$\vec r(t)$",r"+", r"$\vec r(t + h) - \vec r(t)$")
+ text1[0].set_color(RED)
+ text1[2].set_color(PINK)
+ text1.scale(0.7)
+
+ text2 = TextMobject(r"$\vec r(t + h)$", color = YELLOW_C)
+ text2.scale(0.7)
+
+ text3 = TextMobject(r"$ \vec r(t + h) - \vec r(t)$", color = PINK)
+ text3.scale(0.7)
+
+ text4 = TextMobject(r"[", r"$x(t+h)$", r"$\vec i$", r"+", r"$y(t+h)$", r"$\vec j$", r"$] - [$", r"$x(t)$", r"$\vec i$", r"+", r"y(t)", r"$\vec j$", r"]")
+ text4.set_color_by_tex(r"\vec i", BLUE)
+ text4.set_color_by_tex(r"\vec j", GREEN)
+ text4[1].set_color(YELLOW_C)
+ text4[4].set_color(YELLOW_C)
+ text4[-6].set_color(RED)
+ text4[-3].set_color(RED)
+ text4.scale(0.7)
+
+ text5 = TextMobject(r"$[x(t+h) - x(t)]$", r"$\vec i$", r"+", r"$[y(t+h) + y(t)]$", r"$\vec j$")
+ text5.set_color_by_tex(r"\vec i", BLUE)
+ text5.set_color_by_tex(r"\vec j", GREEN)
+ text5[0].set_color(PURPLE)
+ text5[3].set_color(ORANGE)
+ text5.scale(0.7)
+
+ text6 = TextMobject(r"$\frac{[\vec r(t + h) - \vec r(t)]}{h}$", r"=", r"$\frac{[x(t+h) - x(t)]}{h}$", r"$\vec i$", r"+", r"$\frac{[y(t+h) + y(t)]}{h}$", r"$\vec j$")
+ text6.set_color_by_tex(r"\vec i", BLUE)
+ text6.set_color_by_tex(r"\vec j", GREEN)
+ text6[0].set_color(PINK)
+ text6[2].set_color(PURPLE)
+ text6[-2].set_color(ORANGE)
+ text6.scale(0.8)
+
+ text7 = TextMobject(r"$\lim_{h \rightarrow 0}$", r"$\frac{[\vec r(t + h) - \vec r(t)]}{h}$", r"=", r"$\lim_{h \rightarrow 0}$", r"$\frac{[x(t+h) - x(t)]}{h}$", r"$\vec i$", r"+", r"$\lim_{h \rightarrow 0}$", r"$\frac{[y(t+h) + y(t)]}{h}$", r"$\vec j$")
+ text7.set_color_by_tex(r"\vec i", BLUE)
+ text7.set_color_by_tex(r"\vec j", GREEN)
+ text7[1].set_color(PINK)
+ text7[4].set_color(PURPLE)
+ text7[-2].set_color(ORANGE)
+ text7.scale(0.6)
+
+ text8 = TextMobject(r"$\vec r'(t)$", r"=",r"$\vec x'(t)$", r"$\vec i$", r"+", r"$\vec y'(t)$", r"$\vec j$")
+ text8.set_color_by_tex(r"\vec i", BLUE)
+ text8.set_color_by_tex(r"\vec j", GREEN)
+ text8[0].set_color(PINK)
+ text8[2].set_color(PURPLE)
+ text8[5].set_color(ORANGE)
+ text8.scale(0.7)
+
+ text9 = TextMobject(r"$\frac{d \vec r}{dt}$", r"=", r"$\frac{d \vec x}{dt}$", r"$\vec i$", r"+", r"$\frac{d \vec y}{dt}$", r"$\vec j$")
+ text9.set_color_by_tex(r"\vec i", BLUE)
+ text9.set_color_by_tex(r"\vec j", GREEN)
+ text9[0].set_color(PINK)
+ text9[2].set_color(PURPLE)
+ text9[5].set_color(ORANGE)
+ text9.scale(0.7)
+
+
+ text10 = TextMobject(r"$d \vec r$", r"=", r"$\frac{d \vec x}{dt}dt$", r"$\vec i$", r"+", r"$\frac{d \vec y}{dt}dt$", r"$\vec j$")
+ text10.set_color_by_tex(r"\vec i", BLUE)
+ text10.set_color_by_tex(r"\vec j", GREEN)
+ text10[0].set_color(PINK)
+ text10[2].set_color(PURPLE)
+ text10[5].set_color(ORANGE)
+ text10.scale(0.7)
+
+ text11 = TextMobject(r"$d \vec r$", r"=", r"$x'(t)dt$", r"$\vec i$", r"+", r"$y'(t)dt$", r"$\vec j$")
+ text11.set_color_by_tex(r"\vec i", BLUE)
+ text11.set_color_by_tex(r"\vec j", GREEN)
+ text11[0].set_color(PINK)
+ text11[2].set_color(PURPLE)
+ text11[5].set_color(ORANGE)
+ text11.scale(0.7)
+
+ text12 = TextMobject(r"$d \vec r$", r"=", r"$dx$", r"$\vec i$", r"+", r"$dy$", r"$\vec j$")
+ text12.set_color_by_tex(r"\vec i", BLUE)
+ text12.set_color_by_tex(r"\vec j", GREEN)
+ text12[0].set_color(PINK)
+ text12[2].set_color(PURPLE)
+ text12[5].set_color(ORANGE)
+ text12.scale(0.7)
+
+
+ text1.move_to(1*UP+2.7*RIGHT)
+ text2.move_to(1*UP+2.7*RIGHT)
+ text3.move_to(1*UP+2.7*RIGHT)
+ text4.move_to(1*UP+2.7*RIGHT)
+ text5.move_to(1*UP+2.7*RIGHT)
+ text6.move_to(1*UP+2.7*RIGHT)
+ text7.move_to(1*UP+2.5*RIGHT)
+ text8.move_to(1*UP+2.7*RIGHT)
+ text9.move_to(1*UP+2.7*RIGHT)
+ text10.move_to(1*UP+2.7*RIGHT)
+ text11.move_to(1*UP+2.7*RIGHT)
+ text12.move_to(1*UP+2.7*RIGHT)
+
+ brace1 = Brace(text7[0:2], DOWN, buff = SMALL_BUFF)
+ brace2 = Brace(text7[3:6], UP, buff = SMALL_BUFF)
+ brace3 = Brace(text7[7:], DOWN, buff = SMALL_BUFF)
+ t1 = brace1.get_text(r"$\vec r'(t)$")
+ t1.set_color(PINK)
+
+ t2 = brace2.get_text(r"$\vec x'(t)$")
+ t2.set_color(PURPLE)
+
+ t3 = brace3.get_text(r"$\vec y'(t)$")
+ t3.set_color(ORANGE)
+
+
+ self.play(Write(text1))
+ self.play(Transform(text1, text2))
+ self.wait(1)
+
+ self.play(Transform(text1, text3))
+ self.wait(1)
+
+ self.play(Transform(text1, text4))
+ self.wait(1)
+
+ self.play(Transform(text1, text5))
+ self.wait(1)
+
+ self.play(Transform(text1, text6))
+ self.wait(1)
+
+ self.play(Transform(text1, text7))
+ self.wait(1)
+
+ self.play(
+ GrowFromCenter(brace1),
+ FadeIn(t1),
+ )
+ self.wait()
+ self.play(
+ ReplacementTransform(brace1.copy(),brace2),
+ ReplacementTransform(t1.copy(),t2)
+ )
+ self.wait()
+ self.play(
+ ReplacementTransform(brace2.copy(),brace3),
+ ReplacementTransform(t2.copy(),t3)
+ )
+ self.wait()
+
+ self.play(FadeOut(brace1), FadeOut(t1), FadeOut(brace2), FadeOut(t2), FadeOut(brace3), FadeOut(t3),)
+ self.wait()
+
+ self.play(Transform(text1, text8))
+ self.wait(1)
+
+ self.play(Transform(text1, text9))
+ self.wait(1)
+
+ self.play(Transform(text1, text10))
+ self.wait(1)
+
+ self.play(Transform(text1, text11))
+ self.wait(1)
+
+ self.play(Transform(text1, text12))
+ self.wait(1)
+
+
+
+
+
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_examples.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_examples.py new file mode 100644 index 0000000..7322e47 --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_examples.py @@ -0,0 +1,69 @@ +from manimlib.imports import *
+
+class Examples(GraphScene):
+ def construct(self):
+
+ rectangle = Rectangle(height = 3, width = 4, color = GREEN)
+ square = Square(side_length = 5, color = PURPLE)
+ circle = Circle(radius = 2, color = PINK)
+ radius = Line(ORIGIN,2*RIGHT)
+
+ radius.set_color(RED)
+
+ rectangle_area_func = TextMobject(r"$Area = f(Length, Breadth)$")
+ rectangle_area_func.scale(0.6)
+ square_area_func = TextMobject(r"$Area = f(Length)$")
+ circle_area_func = TextMobject(r"$Area = f(r)$")
+
+
+ rectangle_area = TextMobject(r"$Area = Length \times Breadth$")
+ rectangle_area.scale(0.6)
+ square_area = TextMobject(r"$Area = Length^2$")
+ circle_area = TextMobject(r"$Area = \pi r^2$")
+
+ braces_rect1 = Brace(rectangle, LEFT)
+ eq_text1 = braces_rect1.get_text("Length")
+ braces_rect2 = Brace(rectangle, UP)
+ eq_text2 = braces_rect2.get_text("Breadth")
+
+ braces_square = Brace(square, LEFT)
+ braces_square_text = braces_square.get_text("Length")
+
+ radius_text = TextMobject("r")
+ radius_text.next_to(radius,UP)
+
+
+
+ self.play(ShowCreation(rectangle))
+ self.wait(1)
+ self.play(GrowFromCenter(braces_rect1),Write(eq_text1),GrowFromCenter(braces_rect2),Write(eq_text2))
+ self.wait(1)
+ self.play(Write(rectangle_area_func))
+ self.wait(1)
+ self.play(Transform(rectangle_area_func, rectangle_area))
+ self.wait(1)
+ self.play(FadeOut(braces_rect1),FadeOut(eq_text1),FadeOut(braces_rect2),FadeOut(eq_text2),FadeOut(rectangle_area_func))
+
+
+ self.play(Transform(rectangle, square))
+ self.wait(1)
+ self.play(GrowFromCenter(braces_square),Write(braces_square_text))
+ self.wait(1)
+ self.play(Write(square_area_func))
+ self.wait(1)
+ self.play(Transform(square_area_func, square_area))
+ self.wait(1)
+ self.play(FadeOut(braces_square),FadeOut(braces_square_text),FadeOut(square_area_func))
+
+
+ self.play(Transform(rectangle, circle))
+ self.wait(1)
+ self.play(ShowCreation(radius),Write(radius_text))
+ self.wait(1)
+ self.play(FadeOut(radius_text),FadeOut(radius))
+ self.wait(1)
+ self.play(Write(circle_area_func))
+ self.wait(1)
+ self.play(Transform(circle_area_func, circle_area))
+ self.wait(1)
+ self.play(FadeOut(circle_area_func))
\ No newline at end of file diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_plot_sphere.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_plot_sphere.py new file mode 100644 index 0000000..baf08b1 --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_plot_sphere.py @@ -0,0 +1,42 @@ +from manimlib.imports import *
+
+class Sphere(ThreeDScene):
+ def construct(self):
+ axes = ThreeDAxes() # creates a 3D Axis
+
+ sphere = ParametricSurface(
+ lambda u, v: np.array([
+ np.sin(u)*np.cos(v),
+ np.sin(u)*np.sin(v),
+ np.cos(u)
+ ]),u_min=0,u_max=PI,v_min=0,v_max=2*PI,checkerboard_colors=[RED_D, RED_E],
+ resolution=(15, 32)).scale(2)
+
+
+
+ #self.set_camera_orientation(phi=0 * DEGREES,theta=270*DEGREES)
+
+ text3d = TextMobject(r"$f(x,y) \rightarrow Point(x,y,z)$")
+ text3d1 = TextMobject(r"$f(x,y) \rightarrow Point(x,y, 1 - x^2 - y^2)$")
+ self.add_fixed_in_frame_mobjects(text3d)
+ text3d.scale(0.7)
+ text3d1.scale(0.7)
+ text3d.to_corner(UL)
+ text3d1.to_corner(UL)
+ text3d.set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
+ text3d1.set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
+ self.play(Write(text3d))
+ self.wait(1)
+
+ self.play(Transform(text3d,text3d1))
+ self.add_fixed_in_frame_mobjects(text3d1)
+ self.play(FadeOut(text3d))
+
+
+ self.set_camera_orientation(phi=75 * DEGREES)
+ self.begin_ambient_camera_rotation(rate=0.3)
+
+
+ self.add(axes)
+ self.play(Write(sphere))
+ self.wait(5)
\ No newline at end of file diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_respresntation.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_respresntation.py new file mode 100644 index 0000000..4bfcf21 --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_respresntation.py @@ -0,0 +1,80 @@ +from manimlib.imports import *
+
+class MultivariableFunc(Scene):
+ def construct(self):
+
+ topic = TextMobject("Multivariable Functions")
+ topic.set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
+ topic.scale(2)
+
+ self.play(Write(topic))
+ self.wait(1)
+ self.play(FadeOut(topic))
+
+
+ circle = Circle()
+ circle.scale(3)
+
+ eqn1 = TextMobject(r"f(x,y) = $x^2y$")
+ eqn1.set_color(YELLOW)
+
+
+
+ number1 = TextMobject("(2,1)")
+ number1.move_to(3*UP+ 3*LEFT)
+ number1.scale(1.2)
+ number1.set_color(GREEN)
+
+ output1 = TextMobject("4")
+ output1.scale(1.5)
+ output1.set_color(BLUE)
+
+ eqn1_1 = TextMobject(r"f(2,1) = $2^2(1)$")
+ eqn1_1.set_color(YELLOW)
+
+
+ self.play(ShowCreation(circle),Write(eqn1))
+ self.wait(1)
+ self.play(ApplyMethod(number1.move_to, 0.6*LEFT))
+ self.play(FadeOut(number1))
+ self.play(Transform(eqn1, eqn1_1))
+ self.wait(1)
+ self.play(ApplyMethod(output1.move_to, 3*DOWN+4*RIGHT))
+ self.wait(1)
+ self.play(FadeOut(output1))
+
+
+ eqn2 = TextMobject(r"f(x,y,z) = $x^2y+2yz$")
+ eqn2.set_color(YELLOW)
+
+ number2 = TextMobject("(2,1,3)")
+ number2.move_to(3*UP+ 3*LEFT)
+ number2.scale(1.2)
+ number2.set_color(GREEN)
+
+ output2 = TextMobject("8")
+ output2.scale(1.5)
+ output2.set_color(BLUE)
+
+ eqn2_1 = TextMobject(r"f(2,1,3) = $2^2(1) + 2(1)(3)$")
+ eqn2_1.set_color(YELLOW)
+
+ eqn2_2 = TextMobject(r"f(2,1,3) = $2 + 6$")
+ eqn2_2.set_color(YELLOW)
+
+
+
+ self.play(FadeOut(eqn1))
+ self.play(Write(eqn2))
+
+ self.wait(1)
+ self.play(ApplyMethod(number2.move_to, 1.2*LEFT))
+ self.play(FadeOut(number2))
+ self.play(Transform(eqn2, eqn2_1))
+ self.wait(1)
+ self.play(Transform(eqn2, eqn2_2))
+ self.wait(1)
+ self.play(ApplyMethod(output2.move_to, 3*DOWN+4*RIGHT))
+ self.wait(1)
+ self.play(FadeOut(output2),FadeOut(eqn2),FadeOut(circle))
+ self.wait(2)
\ No newline at end of file diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_vectorvf_sine.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_vectorvf_sine.py new file mode 100644 index 0000000..06e225e --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_vectorvf_sine.py @@ -0,0 +1,91 @@ +from manimlib.imports import *
+
+class SineVectors(GraphScene):
+ CONFIG = {
+ "x_min": 0,
+ "x_max": 10,
+ "y_min": -1,
+ "y_max": 1,
+ "graph_origin": ORIGIN+4*LEFT,
+ #"x_labeled_nums": list(range(-5, 6)),
+ #"y_labeled_nums": list(range(0, 5)),
+ }
+ def construct(self):
+
+
+
+
+
+ XTD = self.x_axis_width/(self.x_max - self.x_min)
+ YTD = self.y_axis_height/(self.y_max - self.y_min)
+
+ self.setup_axes(animate = True)
+
+
+ sine1 = self.get_graph(lambda x : np.sin(x), x_min = 0, x_max = 1.575, color = GREEN)
+
+ point1 = Dot().shift(self.graph_origin+1*YTD*UP + 1.575*XTD*RIGHT)
+ point1_lab = TextMobject(r"$t = (\frac{\pi}{2})$")
+ point1_lab.scale(0.7)
+ point1_lab.next_to(point1, UP)
+
+ vector1 = Arrow(self.graph_origin, self.graph_origin+1*YTD*UP + 1.575*XTD*RIGHT, buff=0.1, color = RED)
+ vector1_lab = TextMobject(r"$r(\frac{\pi}{2})$", color = RED)
+ vector1_lab.move_to(self.graph_origin+1.5*XTD*RIGHT+ 0.5*YTD*UP)
+
+ self.play(GrowArrow(vector1),Write(vector1_lab))
+ self.play(ShowCreation(point1), Write(point1_lab))
+ self.play(ShowCreation(sine1))
+ self.wait(1)
+
+
+ sine2 = self.get_graph(lambda x : np.sin(x), x_min = 1.575, x_max = 3.15, color = GREEN)
+
+ point2 = Dot().shift(self.graph_origin+3.15*XTD*RIGHT)
+ point2_lab = TextMobject(r"$t = (\pi)$")
+ point2_lab.scale(0.7)
+ point2_lab.next_to(point2, UP+RIGHT)
+
+ vector2 = Arrow(self.graph_origin, self.graph_origin+3.15*XTD*RIGHT, buff=0.1, color = BLUE)
+ vector2_lab = TextMobject(r"$r(\pi)$", color = BLUE)
+ vector2_lab.move_to(self.graph_origin+1.5*XTD*RIGHT+ 0.15*YTD*UP)
+
+ self.play(GrowArrow(vector2),Write(vector2_lab))
+ self.play(ShowCreation(point2), Write(point2_lab))
+ self.play(ShowCreation(sine2))
+ self.wait(1)
+
+
+ sine3 = self.get_graph(lambda x : np.sin(x), x_min = 3.15, x_max = 4.725, color = GREEN)
+
+ point3 = Dot().shift(self.graph_origin+1*YTD*DOWN + 4.725*XTD*RIGHT)
+ point3_lab = TextMobject(r"$t = (\frac{3\pi}{2})$")
+ point3_lab.scale(0.7)
+ point3_lab.next_to(point3, DOWN)
+
+ vector3 = Arrow(self.graph_origin, self.graph_origin+1*YTD*DOWN + 4.725*XTD*RIGHT, buff=0.1, color = YELLOW_C)
+ vector3_lab = TextMobject(r"$r(\frac{3\pi}{2})$", color = YELLOW_C)
+ vector3_lab.move_to(self.graph_origin+2*XTD*RIGHT+ 0.7*YTD*DOWN)
+
+ self.play(GrowArrow(vector3),Write(vector3_lab))
+ self.play(ShowCreation(point3), Write(point3_lab))
+ self.play(ShowCreation(sine3))
+ self.wait(1)
+
+
+ sine4 = self.get_graph(lambda x : np.sin(x), x_min = 4.725, x_max = 6.3, color = GREEN)
+
+ point4 = Dot().shift(self.graph_origin+6.3*XTD*RIGHT)
+ point4_lab = TextMobject(r"$t = (2\pi)$")
+ point4_lab.scale(0.7)
+ point4_lab.next_to(point4, UP+RIGHT)
+
+ vector4 = Arrow(self.graph_origin, self.graph_origin+6.3*XTD*RIGHT, buff=0.1, color = PURPLE)
+ vector4_lab = TextMobject(r"$r(2\pi)$", color = PURPLE)
+ vector4_lab.move_to(self.graph_origin+4.5*XTD*RIGHT+ 0.15*YTD*DOWN)
+
+ self.play(GrowArrow(vector4),Write(vector4_lab))
+ self.play(ShowCreation(point4), Write(point4_lab))
+ self.play(ShowCreation(sine4))
+ self.wait(3)
+
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/README.md b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/README.md index e69de29..b50200d 100644 --- a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/README.md +++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/README.md @@ -0,0 +1,9 @@ +# Contributer: Nishan Poojary
+Github Account : <a href="https://github.com/nishanpoojary">nishanpoojary</a>
+<br/></br>
+## Sub-Topics Covered:
++ Scalar Functions
++ Multivariable Functions
++ Limits and continuity of Multivariable Function
++ Partial Derivatives
++ Directonal Derivatives
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/Scalar_Function_Quiz.pdf b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/Scalar_Function_Quiz.pdf Binary files differnew file mode 100644 index 0000000..6d94a2c --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/Scalar_Function_Quiz.pdf diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/domain_range.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/domain_range.gif Binary files differnew file mode 100644 index 0000000..d0351e5 --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/domain_range.gif diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_application.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_application.gif Binary files differnew file mode 100644 index 0000000..831ec8e --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_application.gif diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_level_curves.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_level_curves.gif Binary files differnew file mode 100644 index 0000000..2df2fde --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_level_curves.gif diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_level_curves2.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_level_curves2.gif Binary files differnew file mode 100644 index 0000000..724c27d --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_level_curves2.gif diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_neural_nets.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_neural_nets.gif Binary files differnew file mode 100644 index 0000000..9d24688 --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_neural_nets.gif diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_parabola_example.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_parabola_example.gif Binary files differnew file mode 100644 index 0000000..3fdecf4 --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_parabola_example.gif diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/scalar_function_application.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/scalar_function_application.py new file mode 100644 index 0000000..56b3e53 --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/scalar_function_application.py @@ -0,0 +1,129 @@ +from manimlib.imports import *
+
+class ScalarApplication(ThreeDScene):
+ def construct(self):
+ axes = ThreeDAxes() # creates a 3D Axis
+
+ cube = Cube()
+ cube.set_fill(YELLOW_E, opacity = 0.1)
+ cube.scale(2)
+ self.set_camera_orientation(phi=0 * DEGREES,theta=270*DEGREES)
+ self.play(ShowCreation(cube),ShowCreation(axes))
+
+ dot = Sphere()
+ dot.scale(0.1)
+ dot.move_to(np.array([1,0.5,1]))
+ dot.set_fill(RED)
+
+ #dot = Dot(np.array([1,0.5,1]), color = RED)
+ temp_func = TextMobject("T(x,y,z)")
+ temp_func.next_to(dot,RIGHT)
+ temp_func.set_color(RED)
+ temp_func_trans = TextMobject("T(1,0.5,1)")
+ temp_func_trans.next_to(dot,RIGHT)
+ temp_func_trans.set_color(RED)
+ temp = TextMobject(r"$36 ^\circ$")
+ temp.next_to(dot,RIGHT)
+ temp.set_color(RED_E)
+
+
+ self.play(ShowCreation(dot))
+ self.play(ShowCreation(temp_func))
+ self.play(Transform(temp_func, temp_func_trans))
+ self.wait(1)
+ self.play(Transform(temp_func, temp))
+
+
+
+
+ dot1 = Sphere()
+ dot1.scale(0.1)
+ dot1.move_to(np.array([-1,-0.8,-1.5]))
+ dot1.set_fill(BLUE_E)
+ #dot1 = Dot(np.array([-1,-0.8,-1.5]), color = BLUE)
+ temp_func1 = TextMobject("T(x,y,z)")
+ temp_func1.next_to(dot1,LEFT)
+ temp_func1.set_color(BLUE)
+ temp_func_trans1 = TextMobject("T(-1,-0.8,-1.5)")
+ temp_func_trans1.next_to(dot1,LEFT)
+ temp_func_trans1.set_color(BLUE)
+ temp1 = TextMobject(r"$24 ^\circ$")
+ temp1.next_to(dot1,LEFT)
+ temp1.set_color(BLUE)
+
+ self.play(ShowCreation(dot1))
+ self.play(ShowCreation(temp_func1))
+ self.play(Transform(temp_func1, temp_func_trans1))
+ self.wait(1)
+ self.play(Transform(temp_func1, temp1))
+
+ self.play(FadeOut(temp_func))
+ self.play(FadeOut(temp_func1))
+
+
+ self.move_camera(phi=80* DEGREES,theta=45*DEGREES,run_time=3)
+
+ self.begin_ambient_camera_rotation(rate=0.2)
+ self.wait(4)
+ self.stop_ambient_camera_rotation()
+ self.wait(2)
+
+
+
+
+class AddTempScale(Scene):
+ def construct(self):
+ temp_scale = ImageMobject("tempscale.png")
+ temp_scale.scale(4)
+ temp_scale.move_to(2*RIGHT)
+ self.play(ShowCreation(temp_scale))
+
+
+ temp_func = TextMobject("T(x,y,z)")
+ temp_func.move_to(3*UP +2*LEFT)
+ temp_func.set_color(RED)
+ temp_func_trans = TextMobject("T(1,0.5,1)")
+ temp_func_trans.move_to(3*UP +2*LEFT)
+ temp_func_trans.set_color(RED)
+ temp = TextMobject(r"$36 ^\circ$")
+ temp.set_color(RED)
+ temp.move_to(3*UP +2*LEFT)
+ temp.scale(0.7)
+
+ self.play(ShowCreation(temp_func))
+ self.play(Transform(temp_func, temp_func_trans))
+ self.wait(1)
+ self.play(Transform(temp_func, temp))
+ self.play(ApplyMethod(temp_func.move_to, 1.8*UP +1.8*RIGHT))
+
+
+ temp_func1 = TextMobject("T(x,y,z)")
+ temp_func1.move_to(2*UP +2*LEFT)
+ temp_func1.set_color(BLUE)
+ temp_func_trans1 = TextMobject("T(-1,-0.8,-1.5)")
+ temp_func_trans1.move_to(2*UP +2*LEFT)
+ temp_func_trans1.set_color(BLUE)
+ temp1 = TextMobject(r"$24 ^\circ$")
+ temp1.set_color(BLUE)
+ temp1.move_to(2*UP +2*LEFT)
+ temp1.scale(0.7)
+
+ self.play(ShowCreation(temp_func1))
+ self.play(Transform(temp_func1, temp_func_trans1))
+ self.wait(1)
+ self.play(Transform(temp_func1, temp1))
+ self.play(ApplyMethod(temp_func1.move_to, 0.6*UP +1.8*RIGHT))
+
+
+
+ transtext = TextMobject("Scalar Function Transform:")
+ transtext.set_color(GREEN)
+ transtext1 = TextMobject(r"$\mathbb{R}^3 \rightarrow \mathbb{R}$")
+ transtext1.set_color(YELLOW_E)
+ transtext.move_to(3*UP +3*LEFT)
+ transtext1.next_to(transtext,DOWN)
+ self.play(Write(transtext))
+ self.play(Write(transtext1))
+ self.wait(2)
+
+
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/scalar_function_domain_range.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/scalar_function_domain_range.py new file mode 100644 index 0000000..9b1ca7b --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/scalar_function_domain_range.py @@ -0,0 +1,132 @@ +# Plotting Graphs
+from manimlib.imports import *
+
+class PlotGraphs(GraphScene):
+ CONFIG = {
+ "x_min": -5,
+ "x_max": 5,
+ "y_min": 0,
+ "y_max": 4,
+ "graph_origin": ORIGIN + 2.5* DOWN,
+ "x_labeled_nums": list(range(-5, 6)),
+ "y_labeled_nums": list(range(0, 5)),
+ }
+ def construct(self):
+
+ topic = TextMobject("Domain and Range")
+ topic.scale(2)
+ topic.set_color(YELLOW)
+ self.play(Write(topic))
+ self.play(FadeOut(topic))
+ self.wait(1)
+
+
+ XTD = self.x_axis_width/(self.x_max- self.x_min)
+ YTD = self.y_axis_height/(self.y_max- self.y_min)
+
+ self.setup_axes(animate = True)
+
+ graphobj = self.get_graph(lambda x : np.sqrt(x + 4), x_min = -4, x_max = 5)
+ graph_lab = self.get_graph_label(graphobj, label = r"\sqrt{x + 4}")
+
+
+ rangeline1 = Arrow(self.graph_origin+2.2*YTD*UP+5*XTD*LEFT, self.graph_origin+4.1*YTD*UP+5*XTD*LEFT)
+ rangeline2 = Arrow(self.graph_origin+1.7*YTD*UP+5*XTD*LEFT, self.graph_origin+5*XTD*LEFT)
+ rangeline1.set_color(RED)
+ rangeline2.set_color(RED)
+
+ rangeMsg = TextMobject(r"Range: $y \geq 0$")
+ rangeMsg.move_to(self.graph_origin+2*YTD*UP+5*XTD*LEFT)
+ rangeMsg.scale(0.5)
+ rangeMsg.set_color(YELLOW)
+
+ domainline1 = Line(self.graph_origin+0.6*YTD*DOWN+1.2*XTD*LEFT, self.graph_origin+0.6*YTD*DOWN + 4*XTD*LEFT)
+ domainline2 = Arrow(self.graph_origin+0.6*YTD*DOWN+1.1*XTD*RIGHT, self.graph_origin+0.6*YTD*DOWN + 5.3*XTD*RIGHT)
+ domainline1.set_color(PINK)
+ domainline2.set_color(PINK)
+
+ domainMsg = TextMobject(r"Domain: $x \geq -4$")
+ domainMsg.move_to(self.graph_origin+0.6*YTD*DOWN)
+ domainMsg.scale(0.5)
+ domainMsg.set_color(GREEN)
+
+
+
+
+ self.play(ShowCreation(graphobj))
+ self.play(ShowCreation(graph_lab))
+ self.wait(1)
+ self.play(GrowArrow(rangeline1))
+ self.play(GrowArrow(rangeline2))
+ self.play(Write(rangeMsg))
+ self.wait(1)
+ self.play(GrowArrow(domainline1))
+ self.play(GrowArrow(domainline2))
+ self.play(Write(domainMsg))
+ self.wait(3)
+
+ self.wait(2)
+
+
+
+
+class PlotSineGraphs(GraphScene):
+ CONFIG = {
+ "x_min": -8,
+ "x_max": 8,
+ "y_min": -1,
+ "y_max": 1,
+ "graph_origin": ORIGIN,
+ "x_labeled_nums": list(range(-8, 9)),
+ "y_labeled_nums": list(range(-1, 2)),
+ }
+ def construct(self):
+
+
+
+ XTD = self.x_axis_width/(self.x_max- self.x_min)
+ YTD = self.y_axis_height/(self.y_max- self.y_min)
+
+ self.setup_axes(animate = True)
+
+ sineobj = self.get_graph(lambda x : np.sin(x), x_min = -7, x_max = 8)
+ sine_lab = self.get_graph_label(sineobj, label = "\\sin(x)")
+
+
+ rangeline1 = Line(8*XTD*LEFT,1*YTD*UP+8*XTD*LEFT)
+ rangeline2 = Line(8*XTD*LEFT,1*YTD*DOWN+8*XTD*LEFT)
+ rangeline1.set_color(RED)
+ rangeline2.set_color(RED)
+
+ rangeMsg = TextMobject(r"Range: $-1 \leq y \leq 1$")
+ rangeMsg.move_to(1.1*YTD*UP+8.5*XTD*LEFT)
+ rangeMsg.scale(0.5)
+ rangeMsg.set_color(YELLOW)
+
+
+ domainline1 = Arrow(1.1*YTD*DOWN+2*XTD*LEFT, 1.1*YTD*DOWN + 8.5*XTD*LEFT)
+ domainline2 = Arrow(1.1*YTD*DOWN+2*XTD*RIGHT, 1.1*YTD*DOWN + 8.5*XTD*RIGHT)
+ domainline1.set_color(PINK)
+ domainline2.set_color(PINK)
+
+ domainMsg = TextMobject(r"Domain: $[-\infty, \infty]$")
+ domainMsg.move_to(1.1*YTD*DOWN)
+ domainMsg.scale(0.5)
+ domainMsg.set_color(GREEN)
+
+
+
+ self.play(ShowCreation(sineobj))
+ self.play(ShowCreation(sine_lab))
+ self.wait(1)
+ self.play(GrowArrow(rangeline1))
+ self.play(GrowArrow(rangeline2))
+ self.play(Write(rangeMsg))
+ self.wait(1)
+ self.play(GrowArrow(domainline1))
+ self.play(GrowArrow(domainline2))
+ self.play(Write(domainMsg))
+ self.wait(3)
+
+
+
\ No newline at end of file diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/scalar_function_neural_nets.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/scalar_function_neural_nets.py new file mode 100644 index 0000000..eb6bf45 --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/scalar_function_neural_nets.py @@ -0,0 +1,177 @@ +from manimlib.imports import *
+
+class SigmoidFunc(GraphScene):
+ CONFIG = {
+ "x_min": -4,
+ "x_max": 4,
+ "y_min": -1,
+ "y_max": 1,
+ "graph_origin": ORIGIN + 0.8*DOWN,
+ "x_labeled_nums": list(range(-4, 5)),
+ "y_labeled_nums": list(range(-1, 2)),
+ "y_axis_height": 4.5,
+ }
+ def construct(self):
+ XTD = self.x_axis_width/(self.x_max- self.x_min)
+ YTD = self.y_axis_height/(self.y_max- self.y_min)
+
+ topic = TextMobject("Sigmoid Function")
+ topic.move_to(3.2*UP)
+ topic.set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
+
+ self.setup_axes(animate = True)
+ sigmoid_func = self.get_graph(lambda x : (1/(1 + np.exp(-x))), x_min = -4, x_max = 4)
+ sigmoid_lab = self.get_graph_label(sigmoid_func, label = r"\frac{1}{1 + e^{-z}}")
+
+
+
+
+ self.play(ShowCreation(sigmoid_func),Write(sigmoid_lab))
+ self.play(Write(topic))
+ self.wait(2)
+ self.play(FadeOut(sigmoid_func), FadeOut(sigmoid_lab))
+ self.wait(1)
+
+
+
+class NeuralNet(GraphScene):
+ def construct(self):
+
+ sigmoid_exp = TextMobject(r"g(z) = g($\theta^T$ X) = $\frac{1}{1 + e^{-z}}$")
+ sigmoid_exp.move_to(3*UP + 4*LEFT)
+ sigmoid_exp.scale(0.8)
+ sigmoid_exp.set_color(BLUE)
+ sigmoid_exp1 = TextMobject(r"Predict: 'y = 1'",r"When g(z) $\geq$ 0.5, z $\geq$ 0, $\theta^T$ X $\geq$ 0")
+ sigmoid_exp2 = TextMobject(r"Predict: 'y = 0'", r"When g(z) $\leq$ 0.5, z $\leq$ 0, $\theta^T$ X $\leq$ 0")
+ sigmoid_exp1.scale(0.5)
+ sigmoid_exp2.scale(0.5)
+ sigmoid_exp1.set_color(PURPLE)
+ sigmoid_exp2.set_color(PURPLE)
+
+ sigmoid_exp1[0].next_to(sigmoid_exp, 1.5*DOWN)
+ sigmoid_exp1[1].next_to(sigmoid_exp1[0], DOWN)
+ sigmoid_exp2[0].next_to(sigmoid_exp1[1], 1.5*DOWN)
+ sigmoid_exp2[1].next_to(sigmoid_exp2[0], DOWN)
+
+
+ self.play(Write(sigmoid_exp))
+ self.play(Write(sigmoid_exp1[0]), Write(sigmoid_exp1[1]))
+ self.play(Write(sigmoid_exp2[0]), Write(sigmoid_exp2[1]))
+ self.wait(2)
+
+
+ neuron1 = Circle()
+ neuron1.set_fill(YELLOW_A, opacity = 0.5)
+
+ neuron2 = Circle()
+ neuron2.set_fill(ORANGE, opacity = 0.5)
+
+ neuron3 = Circle()
+ neuron3.set_fill(GREEN_E, opacity = 0.5)
+
+ neuron1.move_to(2*UP+RIGHT)
+ neuron2.move_to(2*DOWN+RIGHT)
+ neuron3.move_to(4*RIGHT)
+
+ arrow1 = Arrow(neuron1.get_right(),neuron3.get_left(),buff=0.1)
+ arrow1.set_color(RED)
+ arrow2 = Arrow(neuron2.get_right(),neuron3.get_left(),buff=0.1)
+ arrow2.set_color(RED)
+
+ arrow3 = Arrow(neuron3.get_right(),7*RIGHT,buff=0.1)
+ arrow3.set_color(RED)
+
+
+ sign1 = TextMobject("+1")
+ sign1.move_to(2*UP+RIGHT)
+ sign1.scale(2)
+ sign2 = TextMobject(r"$x_1$")
+ sign2.move_to(2*DOWN+RIGHT)
+ sign2.scale(2)
+ sign3 = TextMobject(r"$h_{\theta}(x)$")
+ sign3.move_to(6*RIGHT+0.4*DOWN)
+ sign3.scale(0.7)
+ sign4 = TextMobject(r"$= g(10 - 20x_1)$")
+ sign4.next_to(sign3,DOWN)
+ sign4.scale(0.5)
+ sign5 = TextMobject(r"$= g(10 - 20x_1)$")
+ sign5.next_to(sign3,DOWN)
+ sign5.scale(0.5)
+ sign6 = TextMobject(r"$= g(10 - 20x_1)$")
+ sign6.next_to(sign3,DOWN)
+ sign6.scale(0.5)
+
+
+ weight1 = TextMobject("10")
+ weight1.next_to(arrow1,UP)
+ weight2 = TextMobject("-20")
+ weight2.next_to(arrow2,DOWN)
+
+ gate = TextMobject("NOT GATE")
+ gate.set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
+ gate.scale(1.5)
+ gate.move_to(3*RIGHT+3.5*UP)
+
+
+
+ truth_table = TextMobject(r"\begin{displaymath}\begin{array}{|c|c|} x & y\\ \hline 1 & 0 \\0 & 1 \\\end{array}\end{displaymath}")
+ truth_table.next_to(sigmoid_exp2[1], 3*DOWN)
+
+ values = TextMobject("1", "0")
+ values.scale(2)
+
+ sign4_trans1 = TextMobject(r"$= g(10 - 20(1))$")
+ sign4_trans2 = TextMobject(r"$= g(10 - 20(0))$")
+ sign4_trans1.next_to(sign3,DOWN)
+ sign4_trans2.next_to(sign3,DOWN)
+ sign4_trans1.scale(0.5)
+ sign4_trans2.scale(0.5)
+
+
+
+ output1 = TextMobject("y = 0")
+ output2 = TextMobject("y = 1")
+ output1.next_to(sign4,DOWN)
+ output2.next_to(sign4,DOWN)
+ output1.scale(1.5)
+ output2.scale(1.5)
+
+
+
+ self.play(ShowCreation(neuron1),ShowCreation(neuron2))
+ self.play(ShowCreation(neuron3))
+ self.play(ShowCreation(sign1),ShowCreation(sign2))
+ self.wait(1)
+
+ self.play(GrowArrow(arrow1))
+ self.play(GrowArrow(arrow2))
+ self.play(ShowCreation(weight1),ShowCreation(weight2))
+
+
+
+ self.play(GrowArrow(arrow3))
+ self.play(Write(sign3),Write(sign4))
+
+ self.play(Write(gate))
+ self.play(ShowCreation(truth_table))
+
+ self.play(ApplyMethod(values[0].move_to, 2*DOWN+RIGHT))
+ self.play(FadeOut(values[0]))
+ self.play(Transform(sign4,sign4_trans1))
+ self.play(Write(output1))
+ self.wait(1)
+ self.play(FadeOut(output1))
+ self.play(Transform(sign4, sign5))
+
+
+ self.play(ApplyMethod(values[1].move_to, 2*DOWN+RIGHT))
+ self.play(FadeOut(values[1]))
+ self.play(Transform(sign4,sign4_trans2))
+ self.play(Write(output2))
+ self.wait(1)
+ self.play(FadeOut(output2))
+ self.play(Transform(sign4, sign6))
+
+ self.wait(2)
+
+
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/scalar_function_parabola_example.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/scalar_function_parabola_example.py new file mode 100644 index 0000000..74dc063 --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/scalar_function_parabola_example.py @@ -0,0 +1,35 @@ +from manimlib.imports import *
+
+class Parabola(ThreeDScene):
+ def construct(self):
+ axes = ThreeDAxes() # creates a 3D Axis
+
+ paraboloid = ParametricSurface(
+ lambda u, v: np.array([
+ 2*np.cosh(u)*np.cos(v),
+ 2*np.cosh(u)*np.sin(v),
+ 2*np.sinh(u)
+ ]),v_min=0,v_max=TAU,u_min=0,u_max=2,checkerboard_colors=[YELLOW_D, YELLOW_E],
+ resolution=(15, 32))
+
+ text3d = TextMobject(r"Plot of $f: \mathbb{R}^2 \rightarrow \mathbb{R}$", "z = f(x,y)")
+ self.add_fixed_in_frame_mobjects(text3d)
+ text3d[0].move_to(4*LEFT+2*DOWN)
+ text3d[1].next_to(text3d[0], DOWN)
+ text3d[0].set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
+ text3d[1].set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE)
+
+ #self.set_camera_orientation(phi=0 * DEGREES,theta=270*DEGREES)
+ self.move_camera(phi=110* DEGREES,theta=45*DEGREES)
+ self.add(axes)
+ self.play(ShowCreation(paraboloid))
+ self.play(Write(text3d[0]))
+ self.play(Write(text3d[1]))
+ self.begin_ambient_camera_rotation(rate=0.2)
+ self.wait(3)
+ self.move_camera(phi=0 * DEGREES,theta=180*DEGREES,run_time=3)
+ self.wait(3)
+ self.move_camera(phi=110* DEGREES,theta=90*DEGREES,run_time=3)
+ self.wait(3)
+
+
\ No newline at end of file |