diff options
Diffstat (limited to 'FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem')
11 files changed, 1293 insertions, 0 deletions
diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/README.md b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/README.md new file mode 100644 index 0000000..3aa9be2 --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/README.md @@ -0,0 +1,14 @@ + +**file1_surface1** +![file1_surface1](gifs/file1_surface1.gif) + +**file2_surface2** +![file2_surface2](gifs/file2_surface2.gif) + +**file3_iteration_methods** +![file3_iteration_methods](gifs/file3_iteration_methods.gif) + +**file4_curvy_limits** +![file4_curvy_limits](gifs/file4_curvy_region.gif) + + diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file1_surface1.py b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file1_surface1.py new file mode 100644 index 0000000..a590a53 --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file1_surface1.py @@ -0,0 +1,232 @@ +from manimlib.imports import * + +class SurfacesAnimation(ThreeDScene): + + CONFIG = { + "axes_config": { + "x_min": 0, + "x_max": 4, + "y_min": 0, + "y_max": 4, + "z_min": -4, + "z_max": 4, + "a":0 ,"b": 4, "c":0 , "d":4, + "axes_shift":IN+LEFT, + "x_axis_config": { + "tick_frequency": 1, + "include_tip": False, + }, + "y_axis_config": { + "tick_frequency": 1, + "include_tip": False, + }, + "z_axis_config": { + "tick_frequency": 1, + # "include_tip": False, + }, + "num_axis_pieces": 1, + }, + "default_graph_style": { + "stroke_width": 2, + "stroke_color": WHITE, + }, + "default_surface_config": { + "fill_opacity": 0.5, + "checkerboard_colors": [LIGHT_GREY], + "stroke_width": 0.5, + "stroke_color": WHITE, + "stroke_opacity": 0.5, + }, + "Func": lambda x,y: 5*(x**2-y**2)/((1e-4+x**2+y**2)**2) + } + + + def construct(self): + + self.setup_axes() + self.set_camera_orientation(#distance=10, + phi=80 * DEGREES, + theta=35 * DEGREES, + ) + + fn_text=TextMobject("$z=\dfrac{x^2-y^2}{(x^2+y^2)^2}$").set_color(BLUE) + fn_text.to_corner(UR,buff=1) + self.add_fixed_in_frame_mobjects(fn_text) + + R=TextMobject("R").set_color(BLACK).scale(2).rotate(180*DEGREES , OUT) + R.move_to(self.axes.input_plane,IN) + self.add(R) + + #get the surface + surface= self.get_surface( + self.axes, lambda x , y: + self.Func(x,y) + ) + surface.set_style( + fill_opacity=0.6, + fill_color=BLUE_E, + stroke_width=0.8, + stroke_color=WHITE, + ) + + + self.begin_ambient_camera_rotation(rate=0.2) + self.play(Write(surface)) + + self.get_lines() + self.wait(4) + + def get_surface(self,axes, func, **kwargs): + config = { + "u_min": axes.x_max, + "u_max": axes.x_min, + "v_min": axes.y_max, + "v_max": axes.y_min, + "resolution": (10,10), + } + + config.update(self.default_surface_config) + config.update(kwargs) + return ParametricSurface( + lambda x,y : axes.c2p( + x, y, func(x, y) + ), + **config + ) + + def get_lines(self): + axes = self.axes + labels=[axes.x_axis.n2p(axes.a), axes.x_axis.n2p(axes.b), axes.y_axis.n2p(axes.c), + axes.y_axis.n2p(axes.d)] + + + surface_corners=[] + for x,y,z in self.region_corners: + surface_corners.append([x,y,self.Func(x,y)]) + + lines=VGroup() + for start , end in zip(surface_corners, + self.region_corners): + lines.add(self.draw_lines(start,end,"YELLOW")) + + for start , end in zip(labels, + self.region_corners): + # lines.add(self.draw_lines(start,end,"BLUE")) + # print (start,end) + pass + self.play(ShowCreation(lines)) + + + def draw_lines(self,start,end,color): + start=self.axes.c2p(*start) + end=self.axes.c2p(*end) + line=DashedLine(start,end,color=color) + + return line + + def get_three_d_axes(self, include_labels=True, include_numbers=True, **kwargs): + config = dict(self.axes_config) + config.update(kwargs) + axes = ThreeDAxes(**config) + axes.set_stroke(width=2) + + if include_numbers: + self.add_axes_numbers(axes) + + if include_labels: + self.add_axes_labels(axes) + + # Adjust axis orientation + axes.x_axis.rotate( + 90 * DEGREES, LEFT, + about_point=axes.c2p(0, 0, 0), + ) + axes.y_axis.rotate( + 90 * DEGREES, UP, + about_point=axes.c2p(0, 0, 0), + ) + + # Add xy-plane + input_plane = self.get_surface( + axes, lambda x, t: 0 + ) + input_plane.set_style( + fill_opacity=0.3, + fill_color=PINK, + stroke_width=.2, + stroke_color=WHITE, + ) + + axes.input_plane = input_plane + + self.region_corners=[ + input_plane.get_corner(pos) for pos in (DL,DR,UR,UL)] + + return axes + + + def setup_axes(self): + axes = self.get_three_d_axes(include_labels=True) + axes.add(axes.input_plane) + axes.scale(1) + # axes.center() + axes.shift(axes.axes_shift) + + self.add(axes) + self.axes = axes + + def add_axes_numbers(self, axes): + x_axis = axes.x_axis + y_axis = axes.y_axis + tex_vals_x = [ + ("a", axes.a+.4), + ("b", axes.b), + ] + tex_vals_y=[ + ("c", axes.c+.4), + ("d", axes.d) + ] + x_labels = VGroup() + y_labels = VGroup() + for tex, val in tex_vals_x: + label = TexMobject(tex) + label.scale(1) + label.next_to(x_axis.n2p(val), DOWN) + label.rotate(180 * DEGREES) + x_labels.add(label) + x_axis.add(x_labels) + x_axis.numbers = x_labels + + for tex, val in tex_vals_y: + label = TexMobject(tex) + label.scale(1) + label.next_to(y_axis.n2p(val), LEFT) + label.rotate(90 * DEGREES) + y_labels.add(label) + + y_axis.add(y_labels) + y_axis.numbers = y_labels + + return axes + + def add_axes_labels(self, axes): + x_label = TexMobject("x") + x_label.next_to(axes.x_axis.get_end(), RIGHT) + axes.x_axis.label = x_label + + y_label = TextMobject("y") + y_label.rotate(90 * DEGREES, OUT) + y_label.next_to(axes.y_axis.get_end(), UP) + axes.y_axis.label = y_label + + z_label = TextMobject("z") + z_label.rotate(90 * DEGREES, LEFT) + z_label.next_to(axes.z_axis.get_zenith(), LEFT) + axes.z_axis.label = z_label + for axis in axes: + axis.add(axis.label) + return axes + +#uploaded by Somnath Pandit.FSF2020_Fubini's_Theorem + + diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file2_surface2.py b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file2_surface2.py new file mode 100644 index 0000000..3160fdb --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file2_surface2.py @@ -0,0 +1,290 @@ +from manimlib.imports import * + +class SurfacesAnimation(ThreeDScene): + + CONFIG = { + "axes_config": { + "x_min": 0, + "x_max": 4, + "y_min": 0, + "y_max": 4, + "z_min": -2, + "z_max": 4, + "a":0 ,"b": 4, "c":0 , "d":4, + "axes_shift":IN+2*LEFT+2*DOWN, + "x_axis_config": { + "tick_frequency": 1, + "include_tip": False, + }, + "y_axis_config": { + "tick_frequency": 1, + "include_tip": False, + }, + "z_axis_config": { + "tick_frequency": 1, + # "include_tip": False, + }, + "num_axis_pieces": 1, + }, + "default_graph_style": { + "stroke_width": 2, + "stroke_color": WHITE, + }, + "default_surface_config": { + "fill_opacity": 0.5, + "checkerboard_colors": [LIGHT_GREY], + "stroke_width": 0.5, + "stroke_color": WHITE, + "stroke_opacity": 0.5, + }, + "Func": lambda x,y: x*y/4 + } + + + def construct(self): + + self.setup_axes() + self.set_camera_orientation( + distance=30, + phi=75 * DEGREES, + theta=20 * DEGREES, + ) + + fn_text=TextMobject("$z=xy$").set_color(BLUE).scale(1.5) + fn_text.to_corner(UR,buff=2) + self.add_fixed_in_frame_mobjects(fn_text) + + + #get the surface + surface= self.get_surface( + self.axes, lambda x , y: + self.Func(x,y) + ) + surface.set_style( + fill_opacity=.5, + fill_color=BLUE_E, + stroke_width=0.4, + stroke_color=WHITE, + ) + #get boundary curves + c1=self.get_curve( + self.axes, lambda x: x**2/4 + ) + c1_label=TextMobject("$y=x^2$").next_to(c1,IN+OUT).shift(DOWN+RIGHT) + c1_label.rotate(PI) + c1_group=VGroup(c1,c1_label).set_color(ORANGE) + + c2=self.get_curve( + self.axes, lambda x: x + ).set_color(PINK) + c2_label=TextMobject("$y=x$").next_to(c2,IN+OUT) + c2_label.rotate(PI/2,about_point=(c2_label.get_corner(UL))) + c2_group=VGroup(c2,c2_label).set_color(YELLOW_E) + + + + self.add(c1,c2,c1_label,c2_label) + + self.begin_ambient_camera_rotation(rate=0.24) + self.get_region(self.axes,c1,c2) + self.play(Write(surface)) + self.get_lines() + self.wait(3.5) + self.stop_ambient_camera_rotation() + self.wait(.5) + self.move_camera( + distance=20, + phi=10 * DEGREES, + theta=80 * DEGREES, + run_time=3 + ) + self.wait(2) + + + + def get_curve(self,axes, func, **kwargs): + config = { + "t_min": axes.x_min, + "t_max": axes.x_max, + } + config.update(kwargs) + return ParametricFunction( + lambda x : axes.c2p( + x, func(x),0 + ), + **config + ) + + def get_region(self,axes,curve1,curve2,**kwargs): + x_vals=np.arange(axes.x_min,axes.x_max,.1) + c1_points=[curve1.get_point_from_function(x) for x in x_vals] + c2_points=[curve2.get_point_from_function(x) for x in x_vals] + c2_points.reverse() + points=c1_points+c2_points + region=Polygon(*points, + stroke_width=0, + fill_color=PINK, + fill_opacity=.5 + ) + R=TextMobject("R").set_color(PINK).scale(2).rotate(180*DEGREES , OUT) + R.move_to(region,IN+RIGHT) + + self.play(ShowCreation(region)) + self.add(R) + + def get_surface(self,axes, func, **kwargs): + config = { + "u_min": axes.x_max, + "u_max": axes.x_min, + "v_min": axes.y_max, + "v_max": axes.y_min, + "resolution": (10,10), + } + + config.update(self.default_surface_config) + config.update(kwargs) + return ParametricSurface( + lambda x,y : axes.c2p( + x, y, func(x, y) + ), + **config + ) + + def get_lines(self): + axes = self.axes + labels=[axes.x_axis.n2p(axes.a), axes.x_axis.n2p(axes.b), axes.y_axis.n2p(axes.c), + axes.y_axis.n2p(axes.d)] + + + surface_corners=[] + for x,y,z in self.region_corners: + surface_corners.append([x,y,self.Func(x,y)]) + + lines=VGroup() + for start , end in zip(surface_corners, + self.region_corners): + lines.add(self.draw_lines(start,end,"YELLOW")) + + for start , end in zip(labels, + self.region_corners): + # lines.add(self.draw_lines(start,end,"BLUE")) + # print (start,end) + pass + self.play(ShowCreation(lines)) + + + def draw_lines(self,start,end,color): + start=self.axes.c2p(*start) + end=self.axes.c2p(*end) + line=DashedLine(start,end,color=color) + + return line + + #customize 3D axes + def get_three_d_axes(self, include_labels=True, include_numbers=True, **kwargs): + config = dict(self.axes_config) + config.update(kwargs) + axes = ThreeDAxes(**config) + axes.set_stroke(width=2) + + if include_numbers: + self.add_axes_numbers(axes) + + if include_labels: + self.add_axes_labels(axes) + + # Adjust axis orientation + axes.x_axis.rotate( + 90 * DEGREES, LEFT, + about_point=axes.c2p(0, 0, 0), + ) + axes.y_axis.rotate( + 90 * DEGREES, UP, + about_point=axes.c2p(0, 0, 0), + ) + + # Add xy-plane + input_plane = self.get_surface( + axes, lambda x, t: 0 + ) + input_plane.set_style( + fill_opacity=0.3, + fill_color=PINK, + stroke_width=.2, + stroke_color=WHITE, + ) + + axes.input_plane = input_plane + + self.region_corners=[ + input_plane.get_corner(pos) for pos in (DL,DR,UR,UL)] + + return axes + + + def setup_axes(self): + axes = self.get_three_d_axes(include_labels=True) + # axes.add(axes.input_plane) + axes.scale(1) + # axes.center() + axes.shift(axes.axes_shift) + + self.add(axes) + self.axes = axes + + def add_axes_numbers(self, axes): + x_axis = axes.x_axis + y_axis = axes.y_axis + tex_vals_x = [ + ("1", axes.b), + ] + tex_vals_y=[ + ("1", axes.d) + ] + x_labels = VGroup() + y_labels = VGroup() + for tex, val in tex_vals_x: + label = TexMobject(tex) + label.scale(1) + label.next_to(x_axis.n2p(val), DOWN) + label.rotate(180 * DEGREES) + x_labels.add(label) + x_axis.add(x_labels) + x_axis.numbers = x_labels + + for tex, val in tex_vals_y: + label = TexMobject(tex) + label.scale(1) + label.next_to(y_axis.n2p(val), LEFT) + label.rotate(90 * DEGREES) + y_labels.add(label) + + y_axis.add(y_labels) + y_axis.numbers = y_labels + + return axes + + def add_axes_labels(self, axes): + x_label = TexMobject("x") + x_label.next_to(axes.x_axis.get_end(), RIGHT) + axes.x_axis.label = x_label + + y_label = TextMobject("y") + y_label.rotate(90 * DEGREES, OUT) + y_label.next_to(axes.y_axis.get_end(), UP) + axes.y_axis.label = y_label + + z_label = TextMobject("z") + z_label.rotate(90 * DEGREES, LEFT) + z_label.next_to(axes.z_axis.get_zenith(), LEFT) + axes.z_axis.label = z_label + for axis in axes: + axis.add(axis.label) + return axes + + #uploaded by Somnath Pandit.FSF2020_Fubini's_Theorem + + + + + diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file3.o_iteration_methods_checkpoint.py b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file3.o_iteration_methods_checkpoint.py new file mode 100644 index 0000000..55f91d3 --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file3.o_iteration_methods_checkpoint.py @@ -0,0 +1,226 @@ +from manimlib.imports import * + +class IterationMethods(GraphScene): + CONFIG = { + "x_min" : 0, + "x_max" : 1, + "y_min" : 0, + "y_max" : 1, + "x_tick_frequency" : 1, + "y_tick_frequency" : 1, + "x_labeled_nums": list(np.arange(0,2)), + "y_labeled_nums": list(np.arange(0 ,2)), + "x_axis_width": 6, + "y_axis_height": 6, + "graph_origin": ORIGIN+4*LEFT+3*DOWN, + "area_color": PINK , + "area_opacity": .6, + } + + def construct(self): + X = RIGHT*self.x_axis_width/(self.x_max- self.x_min) + Y = UP*self.y_axis_height/(self.y_max- self.y_min) + + # self.intro_scene() + self.setup_axes(animate=True) + + + curve1= self.get_graph( + lambda x : x**2 , + x_min = 0, + x_max = 1, + color = ORANGE) + c1_eqn=self.get_graph_label( + curve1, + label="y=x^2", + x_val=.5, + direction=RIGHT, + buff=MED_LARGE_BUFF, + color=ORANGE, + ) + + curve2= self.get_graph( + lambda x : x , + x_min = 0, + x_max = 1, + color = YELLOW) + c2_eqn=self.get_graph_label( + curve2, + label="y=x", + x_val=.5, + direction=LEFT, + buff=MED_LARGE_BUFF, + color=YELLOW, + ) + self.curve1=curve1 + self.curve2=curve2 + + caption_y_int=TextMobject(r"Observe the limits\\ of integration").to_corner(UR) + int_lim=TextMobject( + "$$\\int_0^1$$" + ).next_to( + caption_y_int,DOWN,buff=.5 + ).align_to( + caption_y_int,LEFT + ) + + self.play(ShowCreation(VGroup(curve1,curve2)),Write(VGroup(c2_eqn,c1_eqn))) + rects=self.get_rects() + + self.play(Write(caption_y_int)) + self.show_integral_values_at_different_x() + self.wait(1) + self.add(int_lim) + self.play(FadeOut(self.brace_group)) + self.play(ApplyMethod( + self.y_int.next_to, + int_lim,RIGHT,buff=0)) + + self.play(ApplyMethod( + self.dx_label.next_to, + self.y_int,RIGHT)) + + self.show_area() + + self.wait(2) + + ################### + def intro_scene(self): + text=TextMobject(r"How different orders of \textbf{iterated integral}\\ works over the same region ?" ) + self.play(Write(text),run_time=4) + self.wait(2) + self.play(FadeOut(text)) + + + def show_area(self): + area = self.bounded_riemann_rectangles( + self.curve1, + self.curve2, + x_min = 0, + x_max = 1, + dx =.001, + start_color = self.area_color, + end_color = self.area_color, + fill_opacity = 1, + stroke_width = 0, + ) + self.play(ShowCreation(area)) + # self.transform_between_riemann_rects(self.rects,area) + self.area = area + + def get_rects(self): + rects = self.bounded_riemann_rectangles( + self.curve1, + self.curve2, + x_min = 0, + x_max = 1, + dx =.01, + start_color = self.area_color, + end_color = self.area_color, + fill_opacity =self.area_opacity, + stroke_width = 0, + ) + # self.transform_between_riemann_rects(self.area,rects) + self.rects=rects + return rects + + def show_integral_values_at_different_x(self): + rects=self.rects + rect = rects[len(rects)*1//10] + dx_brace = Brace(rect, DOWN, buff = 0) + dx_label = dx_brace.get_text("$dx$", buff = SMALL_BUFF) + dx_brace_group = VGroup(dx_brace,dx_label) + rp=int(len(rects)/10) + rects_subset = self.rects[4*rp:5*rp] + + last_rect = None + for rect in rects_subset: + brace = Brace(rect, LEFT, buff =.1) + y_int = TexMobject("\\int_{x^2}^{x}dy")#.rotate(PI/2) + y_int.next_to(brace, LEFT, MED_SMALL_BUFF) + anims = [ + rect.set_fill, self.area_color, 1, + dx_brace_group.next_to, rect, DOWN, SMALL_BUFF + ] + if last_rect is not None: + anims += [ + last_rect.set_fill, None, 0, + # last_rect.set_fill, self.area_color, self.area_opacity, + ReplacementTransform(last_brace, brace), + ReplacementTransform(last_y_int, y_int), + ] + else: + anims += [ + GrowFromCenter(brace), + Write(y_int) + ] + self.play(*anims) + # self.wait(.2) + + last_rect = rect + last_brace = brace + last_y_int = y_int + + y_int = last_y_int + y_brace = last_brace + self.brace_group=VGroup(y_brace,dx_brace,rect) + self.y_int=y_int + self.dx_label=dx_label + + + def bounded_riemann_rectangles( + self, + graph1, + graph2, + x_min=None, + x_max=None, + dx=0.01, + input_sample_type="center", + stroke_width=1, + stroke_color=BLACK, + fill_opacity=1, + start_color=None, + end_color=None, + show_signed_area=True, + width_scale_factor=1.001 + ): + x_min = x_min if x_min is not None else self.x_min + x_max = x_max if x_max is not None else self.x_max + if start_color is None: + start_color = self.default_riemann_start_color + if end_color is None: + end_color = self.default_riemann_end_color + rectangles = VGroup() + x_range = np.arange(x_min, x_max, dx) + colors = color_gradient([start_color, end_color], len(x_range)) + for x, color in zip(x_range, colors): + if input_sample_type == "left": + sample_input = x + elif input_sample_type == "right": + sample_input = x + dx + elif input_sample_type == "center": + sample_input = x + 0.5 * dx + else: + raise Exception("Invalid input sample type") + graph1_point = self.input_to_graph_point(sample_input, graph1) + graph1_point_dx= self.input_to_graph_point(sample_input + width_scale_factor * dx, graph1) + graph2_point = self.input_to_graph_point(sample_input, graph2) + + points = VGroup(*list(map(VectorizedPoint, [ + graph1_point, + graph1_point_dx, + graph2_point + ]))) + + rect = Rectangle() + rect.replace(points, stretch=True) + if graph1_point[1] < self.graph_origin[1] and show_signed_area: + fill_color = invert_color(color) + else: + fill_color = color + rect.set_fill(fill_color, opacity=fill_opacity) + rect.set_stroke(stroke_color, width=stroke_width) + rectangles.add(rect) + return rectangles + +#uploaded by Somnath Pandit.FSF2020_Fubini's_Theorem diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file3_iteration_methods.py b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file3_iteration_methods.py new file mode 100644 index 0000000..ad78a0b --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file3_iteration_methods.py @@ -0,0 +1,429 @@ +from manimlib.imports import * + +class IterationMethods(GraphScene): + CONFIG = { + "x_min" : 0, + "x_max" : 1, + "y_min" : 0, + "y_max" : 1, + "x_tick_frequency" : 1, + "y_tick_frequency" : 1, + "x_labeled_nums": list(np.arange(0,2)), + "y_labeled_nums": list(np.arange(0 ,2)), + "x_axis_width": 6, + "y_axis_height": 6, + "graph_origin": ORIGIN+4.5*LEFT+3*DOWN, + "area_color": PINK , + "area_opacity": .6, + } + + def construct(self): + X = RIGHT*self.x_axis_width/(self.x_max- self.x_min) + Y = UP*self.y_axis_height/(self.y_max- self.y_min) + + self.intro_scene() + self.setup_axes(animate=True) + + + curve1= self.get_graph( + lambda x : x**2 , + x_min = 0, + x_max = 1, + color = ORANGE) + c1_eqn=self.get_graph_label( + curve1, + label="y=x^2", + x_val=.5, + direction=RIGHT, + buff=MED_LARGE_BUFF, + color=ORANGE, + ) + + curve2= self.get_graph( + lambda x : x , + x_min = 0, + x_max = 1, + color = YELLOW) + c2_eqn=self.get_graph_label( + curve2, + label="y=x", + x_val=.7, + direction=LEFT, + buff=MED_LARGE_BUFF, + color=YELLOW, + ) + self.curve1=curve1 + self.curve2=curve2 + + caption_limit=TextMobject(r"Observe the limits\\ of integration").to_corner(UR) + int_lim=TextMobject( + "$$\\int_0^1$$" + ).next_to( + caption_limit,DOWN,buff=.5 + ).align_to( + caption_limit,LEFT + ) + self.int_lim=int_lim + self.play(ShowCreation(VGroup(curve1,curve2)),Write(VGroup(c2_eqn,c1_eqn))) + + self.play(Write(caption_limit)) + self.get_rects() + self.show_integral_values_at_different_x() + self.wait(1) + self.integral_setup(int_lim,first_y=True) + + + self.another_method_scene() + self.remove(self.area) + self.wait() + + c1_eqn_y=self.get_graph_label( + curve1, + label="x=\sqrt y", + x_val=.6, + direction=RIGHT, + buff=MED_LARGE_BUFF, + color=ORANGE, + ) + c2_eqn_y=self.get_graph_label( + curve2, + label="x=y", + x_val=.7, + direction=LEFT, + buff=MED_LARGE_BUFF, + color=YELLOW, + ) + self.play( + ReplacementTransform(c1_eqn,c1_eqn_y), + ReplacementTransform(c2_eqn,c2_eqn_y) + ) + self.get_rects(base_y=True) + self.show_integral_values_at_different_y() + self.wait(1) + + int_lim_y=int_lim.copy() + int_lim_y.next_to(int_lim,DOWN) + self.int_lim_y=int_lim_y + equal=TextMobject("$$=$$").next_to(int_lim_y,LEFT) + self.add(equal) + + self.integral_setup(int_lim_y,first_y=False) + + self.wait(2) + + ################### + def intro_scene(self): + text=TextMobject(r"How different orders of \textbf{iterated integral}\\ works over the same region ?" ) + self.play(Write(text),run_time=4) + self.wait(2) + self.play(FadeOut(text)) + + def another_method_scene(self): + text=TextMobject(r"The other method\\ of iteration") + text.next_to(self.curve1,UP,buff=-1) + self.play(GrowFromCenter(text)) + self.wait(2) + self.play(LaggedStart(FadeOut(text),lag_ratio=2)) + + def integral_setup(self,ref_object,first_y=True): + if first_y: + area=self.get_area() + self.area=area + self.play(FadeOut(self.brace_group)) + self.play(ApplyMethod( + self.y_int.next_to, + ref_object,RIGHT,buff=0) + ) + + self.play(ApplyMethod( + self.dx_label.next_to, + self.y_int,RIGHT), + ShowCreation(area), + Write(self.int_lim),run_time=4 + ) + else: + area=self.get_area(base_y=True) + self.area=area + self.play( + FadeOut(self.y_brace_group), + Rotate(self.x_int,PI/2) + ) + self.play(ApplyMethod( + self.x_int.next_to, + ref_object,RIGHT,buff=0) + ) + self.play(ApplyMethod( + self.dy_label.next_to, + self.x_int,RIGHT), + ShowCreation(area), + Write(self.int_lim_y),run_time=4 + ) + + def get_area(self,base_y=False): + if base_y: + area = self.bounded_riemann_rectangles_y( + lambda x: x, + lambda x: np.sqrt(x), + y_min = 0, + y_max = 1, + dy =.001, + start_color = self.area_color, + end_color = self.area_color, + fill_opacity =self.area_opacity, + stroke_width = 0, + ) + self.y_area = area + else: + area = self.bounded_riemann_rectangles( + self.curve1, + self.curve2, + x_min = 0, + x_max = 1, + dx =.001, + start_color = self.area_color, + end_color = self.area_color, + fill_opacity =self.area_opacity, + stroke_width = 0, + ) + self.area = area + + # self.transform_between_riemann_rects(self.rects,area) + return area + + def get_rects(self,base_y=False): + if base_y: + rects = self.bounded_riemann_rectangles_y( + lambda x: x, + lambda x: np.sqrt(x), + y_min = 0, + y_max = 1, + dy =.01, + start_color = self.area_color, + end_color = self.area_color, + fill_opacity =self.area_opacity, + stroke_width = 0, + ) + self.y_rects=rects + else: + rects = self.bounded_riemann_rectangles( + self.curve1, + self.curve2, + x_min = 0, + x_max = 1, + dx =.01, + start_color = self.area_color, + end_color = self.area_color, + fill_opacity =self.area_opacity, + stroke_width = 0, + ) + self.rects=rects + # self.transform_between_riemann_rects(self.area,rects) + + return rects + + def show_integral_values_at_different_x(self): + rects=self.rects + rect = rects[len(rects)*1//10] + dx_brace = Brace(rect, DOWN, buff = 0) + dx_label = dx_brace.get_text("$dx$", buff = SMALL_BUFF) + dx_brace_group = VGroup(dx_brace,dx_label) + rp=int(len(rects)/20) + rects_subset = rects[6*rp:7*rp] + + last_rect = None + for rect in rects_subset: + brace = Brace(rect, LEFT, buff =.1) + y_int = TexMobject("\\int_{x^2}^{x}dy")#.rotate(PI/2) + y_int.next_to(brace, LEFT, MED_SMALL_BUFF) + anims = [ + rect.set_fill, self.area_color, 1, + dx_brace_group.next_to, rect, DOWN, SMALL_BUFF + ] + if last_rect is not None: + anims += [ + last_rect.set_fill, None, 0, + # last_rect.set_fill, self.area_color, self.area_opacity, + ReplacementTransform(last_brace, brace), + ReplacementTransform(last_y_int, y_int), + ] + else: + anims += [ + GrowFromCenter(brace), + Write(y_int) + ] + self.play(*anims) + # self.wait(.2) + + last_rect = rect + last_brace = brace + last_y_int = y_int + + y_int = last_y_int + y_brace = last_brace + self.brace_group=VGroup(y_brace,dx_brace,rect) + self.y_int=y_int + self.dx_label=dx_label + + def show_integral_values_at_different_y(self): + rects=self.y_rects + rect = rects[len(rects)*1//10] + dy_brace = Brace(rect, LEFT, buff = 0) + dy_label = dy_brace.get_text("$dy$", buff = SMALL_BUFF) + dy_brace_group = VGroup(dy_brace,dy_label) + rp=int(len(rects)/20) + rects_subset = rects[5*rp:6*rp] + + last_rect = None + for rect in rects_subset: + brace = Brace(rect, DOWN, buff =.1) + x_int = TexMobject("\\int_{y}^{\sqrt y}dx").rotate(-PI/2) + x_int.next_to(brace, DOWN, SMALL_BUFF) + anims = [ + rect.set_fill, self.area_color, 1, + dy_brace_group.next_to, rect, LEFT, SMALL_BUFF + ] + if last_rect is not None: + anims += [ + last_rect.set_fill, None, 0, + # last_rect.set_fill, self.area_color, self.area_opacity, + ReplacementTransform(last_brace, brace), + ReplacementTransform(last_x_int, x_int), + ] + else: + anims += [ + GrowFromCenter(brace), + Write(x_int) + ] + self.play(*anims) + # self.wait(.2) + + last_rect = rect + last_brace = brace + last_x_int = x_int + + x_int = last_x_int + y_brace = last_brace + self.y_brace_group=VGroup(y_brace,dy_brace,rect) + self.x_int=x_int + self.dy_label=dy_label + + + def bounded_riemann_rectangles( + self, + graph1, + graph2, + x_min=None, + x_max=None, + dx=0.01, + input_sample_type="center", + stroke_width=1, + stroke_color=BLACK, + fill_opacity=1, + start_color=None, + end_color=None, + show_signed_area=True, + width_scale_factor=1.001 + ): + x_min = x_min if x_min is not None else self.x_min + x_max = x_max if x_max is not None else self.x_max + if start_color is None: + start_color = self.default_riemann_start_color + if end_color is None: + end_color = self.default_riemann_end_color + rectangles = VGroup() + x_range = np.arange(x_min, x_max, dx) + colors = color_gradient([start_color, end_color], len(x_range)) + for x, color in zip(x_range, colors): + if input_sample_type == "left": + sample_input = x + elif input_sample_type == "right": + sample_input = x + dx + elif input_sample_type == "center": + sample_input = x + 0.5 * dx + else: + raise Exception("Invalid input sample type") + graph1_point = self.input_to_graph_point(sample_input, graph1) + graph1_point_dx= self.input_to_graph_point(sample_input + width_scale_factor * dx, graph1) + graph2_point = self.input_to_graph_point(sample_input, graph2) + + points = VGroup(*list(map(VectorizedPoint, [ + graph1_point, + graph1_point_dx, + graph2_point + ]))) + + rect = Rectangle() + rect.replace(points, stretch=True) + if graph1_point[1] < self.graph_origin[1] and show_signed_area: + fill_color = invert_color(color) + else: + fill_color = color + rect.set_fill(fill_color, opacity=fill_opacity) + rect.set_stroke(stroke_color, width=stroke_width) + rectangles.add(rect) + return rectangles + + def bounded_riemann_rectangles_y( + self, + graph1, + graph2, + y_min=None, + y_max=None, + dy=0.01, + input_sample_type="center", + stroke_width=1, + stroke_color=BLACK, + fill_opacity=1, + start_color=None, + end_color=None, + show_signed_area=True, + width_scale_factor=1.001 + ): + y_min = y_min if y_min is not None else self.y_min + y_max = y_max if y_max is not None else self.y_max + if start_color is None: + start_color = self.default_riemann_start_color + if end_color is None: + end_color = self.default_riemann_end_color + rectangles = VGroup() + y_range = np.arange(y_min, y_max, dy) + colors = color_gradient([start_color, end_color], len(y_range)) + for y, color in zip(y_range, colors): + if input_sample_type == "left": + sample_input = y + elif input_sample_type == "right": + sample_input = y + dy + elif input_sample_type == "center": + sample_input = y + 0.5 * dy + else: + raise Exception("Invalid input sample type") + graph1_point = self.coords_to_point( + graph1(sample_input),sample_input + ) + dy_input=sample_input + width_scale_factor * dy + graph1_point_dy= self.coords_to_point( + graph1(dy_input),dy_input + ) + graph2_point = self.coords_to_point( + graph2(sample_input),sample_input + ) + + points = VGroup(*list(map(VectorizedPoint, [ + graph1_point, + graph1_point_dy, + graph2_point + ]))) + + rect = Rectangle() + rect.replace(points, stretch=True) + if graph1_point[1] < self.graph_origin[1] and show_signed_area: + fill_color = invert_color(color) + else: + fill_color = color + rect.set_fill(fill_color, opacity=fill_opacity) + rect.set_stroke(stroke_color, width=stroke_width) + rectangles.add(rect) + return rectangles + + +#uploaded by Somnath Pandit.FSF2020_Fubini's_Theorem diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file4_curvy_region.py b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file4_curvy_region.py new file mode 100644 index 0000000..46134a7 --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/file4_curvy_region.py @@ -0,0 +1,102 @@ +from manimlib.imports import * + +class CurvyRegion(GraphScene): + CONFIG = { + "x_min": 0, + "x_max": 8, + "y_min": 0, + "y_max": 6, + "graph_origin": ORIGIN+4.5*LEFT+3*DOWN, + "x_labeled_nums": np.arange(0, 9,2), + "y_labeled_nums": np.arange(0, 7,2), + "x_axis_width": 6, + "y_axis_height": 6, + } + + def construct(self): + XD = self.x_axis_width/(self.x_max- self.x_min) + YD = self.y_axis_height/(self.y_max- self.y_min) + self.X=XD*RIGHT ;self.Y=YD*UP + + sin_curve_points=[self.graph_origin+(2+.5*np.sin(2*y),y,0) + for y in np.arange(1,5,.005)] + + cos_curve_points=[self.graph_origin+( + 5+.5*np.cos(2*y),y,0) + for y in np.arange(1,5,.005)] + cos_curve_points.reverse() + + region=Polygon( + *sin_curve_points+cos_curve_points, + color=YELLOW, + stroke_width=1, + fill_color=BLUE_E, + fill_opacity=.75 + ) + + line=Line((1,0,0),(1,6,0),color=RED) + line.move_to(self.graph_origin+2.5*self.X,DOWN) + self.line=line + self.setup_axes(animate = False) + + self.add(region) + self.wait() + self.first_y_int_scene() + self.try_x_first_scene() + + + def first_y_int_scene(self): + talk=TextMobject(r"For doing the $y$ integration\\ first we need to set\\ proper $y$ limts").to_corner(UR,buff=LARGE_BUFF) + problem=TextMobject(r"But here we get\\ more than two $y$ values\\ for a single $x$ value" ).to_corner(UR,buff=LARGE_BUFF) + int_y=TextMobject("$$\\int_?^? dy$$").next_to(problem,DOWN,buff=.5) + + self.play(Write(talk)) + self.play(FadeIn(self.line)) + self.wait(2) + self.play(ReplacementTransform(talk,problem)) + self.play( + ApplyMethod(self.line.shift,3.7*self.X), + run_time=4 + ) + self.wait() + self.play(Write(int_y)) + self.wait(3) + self.play(FadeOut(VGroup(problem,int_y,self.line))) + + def try_x_first_scene(self): + try_text=TextMobject(r"But if we try to integrate\\ along $x$ first ...." ).to_corner(UR,buff=LARGE_BUFF) + good_limits=TextMobject(r"For one $y$ value we get\\ only \textbf{two} $x$ values $\dots$").to_corner(UR,buff=LARGE_BUFF) + limit_values= TextMobject(r"one Lower limit\\ one Upper limit ").next_to(good_limits,DOWN,buff=.5) + int_x=TextMobject("$$\\int_{f(y)}^{g(y)} dx$$").next_to(limit_values,DOWN) + + self.setup_line() + self.play(Write(try_text)) + self.play(FadeIn(self.line)) + self.wait() + self.play(ReplacementTransform(try_text,good_limits)) + self.wait() + self.play( + ApplyMethod(self.line.shift,3*self.Y), + run_time=4 + ) + self.play(Write(limit_values)) + self.wait() + self.show_functions() + self.play(Write(int_x)) + self.wait(3) + + def setup_line(self): + line=self.line.rotate(PI/2) + line.move_to(self.graph_origin+.5*self.X+1.5*self.Y,LEFT) + self.line=line + + def show_functions(self): + fy=TextMobject("$$f(y)$$") + gy=TextMobject("$$g(y)$$") + fy.move_to(self.graph_origin+2*self.X+3.3*self.Y) + gy.move_to(self.graph_origin+7*self.X+2*self.Y) + self.play(FadeIn(VGroup(fy,gy))) + + + #uploaded by Somnath Pandit.FSF2020_Fubini's_Theorem + diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/gifs/file1_surface1.gif b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/gifs/file1_surface1.gif Binary files differnew file mode 100644 index 0000000..8c9fa0a --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/gifs/file1_surface1.gif diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/gifs/file2_surface2.gif b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/gifs/file2_surface2.gif Binary files differnew file mode 100644 index 0000000..37c4b1d --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/gifs/file2_surface2.gif diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/gifs/file3.o_iteration_methods_checkpoint.gif b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/gifs/file3.o_iteration_methods_checkpoint.gif Binary files differnew file mode 100644 index 0000000..2e507f9 --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/gifs/file3.o_iteration_methods_checkpoint.gif diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/gifs/file3_iteration_methods.gif b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/gifs/file3_iteration_methods.gif Binary files differnew file mode 100644 index 0000000..4e1611b --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/gifs/file3_iteration_methods.gif diff --git a/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/gifs/file4_curvy_region.gif b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/gifs/file4_curvy_region.gif Binary files differnew file mode 100644 index 0000000..b0620e5 --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/integrals-of-multivariable-functions/fubini's-theorem/gifs/file4_curvy_region.gif |