diff options
Diffstat (limited to 'FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file1_arc_length.py')
-rw-r--r-- | FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file1_arc_length.py | 325 |
1 files changed, 325 insertions, 0 deletions
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file1_arc_length.py b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file1_arc_length.py new file mode 100644 index 0000000..75c19aa --- /dev/null +++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file1_arc_length.py @@ -0,0 +1,325 @@ +# Contribution creidts: Somnath Pandit + +from manimlib.imports import * + + +class LineIntegrationAsSum(GraphScene): + CONFIG = { + "x_min" : 0, + "x_max" : 10, + "y_min" : 0, + "y_max" : 6, + "graph_origin": ORIGIN+5*LEFT+3*DOWN, + "x_axis_width": 10, + "y_axis_height": 6 , + "x_tick_frequency": 2, + "y_tick_frequency": 2, + "Func":lambda x : 1+x**1.3*np.exp(-.12*(x-2)**2)*np.sin(x/4), + "a": 1 ,"b": 9, "n": 15, + } + + def construct(self): + X = RIGHT*self.x_axis_width/(self.x_max- self.x_min) + Y = UP*self.y_axis_height/(self.y_max- self.y_min) + self.X=X ;self.Y=Y + + self.setup_axes(animate=False) + + + curve=self.get_graph( + self.Func, + x_min=self.a, + x_max=self.b, + ) + curve.set_color([BLACK,BLUE,BLUE,BLUE,BLACK]) + curve_label= self.get_graph_label( + curve, + label="\\text{Curve for integration:}", + x_val=4, + direction=UR, + buff=.6, + color=BLUE + ) + self.curve=curve + self.curve_label=curve_label + + self.get_vector_field() + + + self.play(ShowCreation(VGroup(curve,curve_label))) + self.wait(.6) + self.break_in_arcs() + self.show_the_sum() + + self.wait(2) + + + def get_vector_field(self): + func = lambda v: np.array([ + v[0], # x + -v[1], # y + 0 # z + ]) + vector_field= VectorField( + func, + delta_x=1, + delta_y=1, + colors=[GREEN_A,GREEN_C], + length_func= lambda norm: .8*sigmoid(norm), + vector_config={ + "stroke_width": 2 + } + ) + + self.vector_field= vector_field + + + def break_in_arcs(self): + + self.write_about_breaking() + + dl=0.8 + self.get_breakers(dl) + self.wait(2) + self.play(FadeOut(self.upto_break_text)) + self.dl=dl + + def write_about_breaking(self): + breaking_text=TextMobject("\\texttt{is broken}"," into small ", "subarcs") + breaking_text.set_color_by_tex_to_color_map({ + "broken":RED,"subarcs": BLUE + }) + breaking_text.next_to(self.curve_label,DOWN) + breaking_text.align_to(self.curve_label,LEFT) + self.play( + Write(breaking_text) + ) + + self.upto_break_text=VGroup( + self.curve_label, + breaking_text, + ) + + def get_breakers(self,dl): + point=self.a + points=[] + while point<(self.b-dl) : + start=point + end=point+dl + points += [end] + breaker=Line( + self.input_to_graph_point(start,self.curve), + self.input_to_graph_point(end,self.curve), + stroke_width=2, + color=RED, + ) + breaker.rotate(PI/2).scale(.5) + + point=end + self.play(FadeIn(breaker),run_time=.2) + # self.add(breaker) + + del points[-1] + self.points=points + + + def show_the_sum(self): + at_any_points_text=TextMobject("At an arbitrary ","point", " in each ", "subarc") + at_any_points_text.set_color_by_tex_to_color_map({ + "point":YELLOW , "subarc": BLUE + }) + at_any_points_text.to_edge(TOP,buff=SMALL_BUFF) + + evaluate_text=TextMobject("$\\vec F(x,y)$ ", "is evaluated").next_to(at_any_points_text,DOWN) + evaluate_text.set_color_by_tex("$\\vec F(x,y)$",ORANGE) + + multiply_text=TextMobject("...is multiplied with ","$\\Delta s_i$") + multiply_text.set_color_by_tex("\\Delta s_i", BLUE) + multiply_text.next_to(at_any_points_text,DOWN) + + + + self.at_any_points_text=at_any_points_text + self.evaluate_text=evaluate_text + self.multiply_text=multiply_text + + dots=[] + for point in self.points: + + dot=Dot( + point=self.input_to_graph_point(point,self.curve), + radius= .7*DEFAULT_DOT_RADIUS, + stroke_width= 0, + fill_opacity= 1.0, + color= YELLOW, + ) + dots+=[dot] + + self.play( + Write(at_any_points_text), + FadeIn(VGroup(*dots)),run_time=1.5 + ) + self.dots=dots + + self.wait() + self.show_the_dot_product() + self.multiply_with_ds() + self.construct_equation() + + + def show_the_dot_product(self): + index=-(len(self.points)//3) + self.index=index + + dot=self.dots[index] + + + dot_prod_text=TextMobject("Dot product of ", "$\\vec F(x_i,y_i)$", " and ","$\\vec T(x_i,y_i)$") + dot_prod_text.set_color_by_tex_to_color_map({ + "\\vec F(x_i,y_i)":ORANGE , + "\\vec T(x_i,y_i)": "#DC75CD" , + }) + dot_prod_text.to_edge(TOP,buff=SMALL_BUFF) + + + point_coord=TextMobject("$(x_i,y_i)$",color=YELLOW) + point_coord.next_to(dot,DL,buff=.01).scale(.8) + + func_val=TextMobject("$\\vec F(x_i,y_i)$",color=ORANGE) + func_val.next_to(dot,UR).scale(.8) + + self.dot_prod_text=dot_prod_text + self.func_val=func_val + + dot.set_color(ORANGE).scale(1.2) + + + self.play(FadeIn(VGroup(point_coord,dot))) + self.play(Write(self.evaluate_text)) + self.wait(1) + self.play(FadeOut(self.vector_field)) + self.get_vector_and_tangent() + self.dot_product() + + + self.wait(2) + self.remove(point_coord) + + + def get_vector_and_tangent(self): + dot=self.dots[self.index] + self.show_specific_vectors(dot) + self.play(Write(self.func_val)) + self.wait(1) + self.show_tangent(dot) + self.play(FadeIn(VGroup(*[ + dot.set_color(ORANGE).scale(1.4) + for dot in self.dots ] + ))) + + + def show_specific_vectors(self,dots): + for dot in dots: + vector=self.vector_field.get_vector(dot.get_center()) + vector.set_color(ORANGE) + + self.play(Write(vector),run_time=.2) + + + def show_tangent(self,dot): + tangent_sym=TextMobject("$\\vec T(x_i,y_i)$",color="#DC75CD").scale(.8) + x=dot.get_center() + angle=self.angle_of_tangent( + self.point_to_coords(x)[0], + self.curve, + dx=0.01 + ) + vect = Vector().rotate(angle,about_point=x) + vect.set_color("#DC75CD") + tangent=vect.next_to(x,DR,buff=0) + tangent_sym.next_to(tangent,DOWN,buff=.1) + self.play(Write(VGroup(tangent,tangent_sym))) + + self.tangent_sym=tangent_sym + + def dot_product(self): + + dot_sym=Dot().next_to(self.func_val,RIGHT) + + self.play(FadeOut(VGroup( + self.at_any_points_text, + self.evaluate_text + ))) + self.play(Write(self.dot_prod_text)) + self.play( + FadeIn(dot_sym), + ApplyMethod( + self.tangent_sym.next_to, + dot_sym, RIGHT + )) + + self.dot_sym=dot_sym + + def multiply_with_ds(self): + self.get_ds() + + self.play(GrowFromCenter(self.ds_brace_group)) + self.wait(2) + self.play(Write(self.multiply_text)) + self.play(ApplyMethod( + self.ds_brace_label.next_to, + self.tangent_sym, RIGHT,buff=.15 + )) + + + + def get_ds(self): + p1= self.dots[self.index] + p2= self.dots[self.index+1] + ds_brace=Brace(VGroup(p1,p2),DL) + ds_brace.move_to(p1,UR) + ds_brace_label=ds_brace.get_text("$\Delta s_i$", buff = .05) + ds_brace_label.set_color(BLUE) + self.ds_brace=ds_brace + self.ds_brace_label=ds_brace_label + self.ds_brace_group=VGroup(ds_brace,ds_brace_label) + + + def construct_equation(self): + sum_up_text=TextMobject("and"," summed ", "for all `i's") + sum_up_text.set_color_by_tex("summed",PURPLE_A) + sum_up_text.next_to(self.multiply_text,DOWN,buff=MED_SMALL_BUFF) + sum_up_text.shift(LEFT) + + sum_eqn=TextMobject("$$\\sum_i^{ } $$").set_color(PURPLE_A) + sum_eqn.move_to(self.graph_origin+6.5*self.X+4*self.Y) + + line_integral_text=TextMobject("The"," line ","integral's value is: ").to_edge(TOP,buff=MED_SMALL_BUFF) + line_integral_text.set_color_by_tex("line",BLUE_C) + approx=TextMobject("$\\approx$",color=RED).next_to(sum_eqn,LEFT) + multipled=VGroup( + self.func_val, + self.dot_sym, + self.tangent_sym, + self.ds_brace_label + ) + + + self.play(Write(sum_up_text)) + self.show_specific_vectors(self.dots) + self.play(FadeIn(sum_eqn)) + self.play(ApplyMethod( + multipled.next_to,sum_eqn,RIGHT + )) + self.wait() + self.play(FadeOut(VGroup( + self.dot_prod_text, + self.multiply_text, + sum_up_text + ))) + self.play(Write(line_integral_text)) + self.play(FadeIn(approx)) + + + +#uploaded by Somnath Pandit.FSF2020_Line Integrals |