summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--FSF-2020/approximations-and-optimizations/Critical Points/example.py32
-rw-r--r--FSF-2020/approximations-and-optimizations/Critical Points/motivation.py30
-rw-r--r--FSF-2020/approximations-and-optimizations/Critical Points/theorem.py55
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/README.md38
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.gifbin0 -> 8077401 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.py77
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file2_Traces_and_Tangent.gifbin0 -> 2552938 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file2_Traces_and_Tangent.py88
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file3_Tangent_plane_at_extrema_of_a_function.gifbin0 -> 2198637 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file3_Tangent_plane_at_extrema_of_a_function.py73
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file4_Relative_Maximum_and_Relative_Minimum.gifbin0 -> 1587319 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file4_Relative_Maximum_and_Relative_Minimum.py51
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file5_Saddle_Point.gifbin0 -> 7136893 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file5_Saddle_Point.py71
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file6_f(x,y)=(y-x)(1-2x-3y).gifbin0 -> 1522415 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file6_f(x,y)=(y-x)(1-2x-3y).py29
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Lagrange-Multipliers/README.md20
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Lagrange-Multipliers/file1_Extrema_over_g(x,y)=k.gifbin0 -> 456997 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Lagrange-Multipliers/file1_Extrema_over_g(x,y)=k.py45
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Lagrange-Multipliers/file2_Geometric_Proof.gifbin0 -> 286190 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Lagrange-Multipliers/file2_Geometric_Proof.py89
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Lagrange-Multipliers/file3_Constraints_g_and_h.gifbin0 -> 1740442 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Lagrange-Multipliers/file3_Constraints_g_and_h.py41
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/MCQ-Questions/Critical_Points_mcq_questions.pdf (renamed from FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical_Points_mcq_questions.pdf)bin414750 -> 414750 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/MCQ-Questions/Lagrange_Multipliers_mcq_questions.pdfbin0 -> 422605 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/MCQ-Questions/Tangent_Plane_Approximations_mcq_questions.pdfbin0 -> 424626 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/MCQ-Questions/The_Second_Derivative_Test_mcq_questions.pdf (renamed from FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The_Second_Derivative_Test_MCQ.pdf)bin646880 -> 646880 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/MCQ-Questions/Total_Differential_mcq_questions.pdfbin0 -> 426164 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/README.md26
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file1_Tangent_Plane.gifbin0 -> 827096 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file1_Tangent_Plane.py50
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file2_Tangent_plane_approximation_visualization.gifbin0 -> 979487 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file2_Tangent_plane_approximation_visualization.py85
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file3_Non_Differentiable_Function.gifbin0 -> 708466 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file3_Non_Differentiable_Function.py47
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file4_Tangent_plane_at_extrema_and_saddle_point.gifbin0 -> 1424279 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file4_Tangent_plane_at_extrema_and_saddle_point.py (renamed from FSF-2020/approximations-and-optimizations/Critical Points/types_of_cp.py)50
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/README.md27
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file1_Second_order_partial_derivatives.gifbin0 -> 3166332 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file1_Second_order_partial_derivatives.py78
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file2_Nondegenerate_Hessian_Matrix.gifbin0 -> 2047897 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file2_Nondegenerate_Hessian_Matrix.py158
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file3_Degenerate_Hessian_Matrix.gifbin0 -> 407350 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file3_Degenerate_Hessian_Matrix.py45
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file4_Contour_Diagram.gifbin0 -> 1140109 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file4_Contour_Diagram.py120
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/README.md34
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file1_Visualization_of_dz.gifbin0 -> 565199 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file1_Visualization_of_dz.py59
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file2_Differentials.gifbin0 -> 729982 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file2_Differentials.py77
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file3_Total_differential_of_z.gifbin0 -> 1444924 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file3_Total_differential_of_z.py100
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file4_total_differential_change.gifbin0 -> 300675 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file4_total_differential_change.py54
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file5_Total_differential_approximation.gifbin0 -> 423246 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file5_Total_differential_approximation.py52
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/README.md11
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file1_simple_visualization.gifbin0 -> 675451 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file1_simple_visualization.py12
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file2_circle_curvature.gifbin0 -> 346667 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file3_curvature_interpretation.gifbin0 -> 700862 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file3_curvature_interpretation.py42
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file3_curvature_intuition.gifbin271189 -> 0 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file4_different_curvature_single_curve.gifbin0 -> 243868 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file4_different_curvature_single_curve.py30
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/equations-of-planes-and-lines/README.md14
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/equations-of-planes-and-lines/__pycache__/file1_line_eqn.cpython-38.pycbin1541 -> 0 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/equations-of-planes-and-lines/__pycache__/file4_point_normal_form_plane.cpython-38.pycbin2225 -> 0 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/equations-of-planes-and-lines/file1_line_eqn.gifbin0 -> 4694940 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/equations-of-planes-and-lines/file2_point_normal_form_plane.gifbin0 -> 430431 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/equations-of-planes-and-lines/file5_vector_form_line.gifbin0 -> 536607 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/README.md11
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/__pycache__/file1_parametric_circle.cpython-38.pycbin3089 -> 0 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/__pycache__/file4_helix_visualization.cpython-38.pycbin1506 -> 0 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/file1_parametric_circle.gifbin0 -> 327132 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/file1_parametric_circle.py13
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/file2_cycloid.gifbin13674 -> 0 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/file4_helix_visualization.gifbin0 -> 3596680 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/README.md11
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/__pycache__/file1_parametric_ellipse.cpython-38.pycbin3102 -> 0 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/__pycache__/file2_parametric_helix.cpython-38.pycbin3575 -> 0 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/__pycache__/file3_circletosphere.cpython-38.pycbin1843 -> 0 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/__pycache__/file3_cone.cpython-38.pycbin1499 -> 0 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/file1_parametric_ellipse.gifbin0 -> 340180 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/file2_parametric_helix.gifbin0 -> 389637 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/file3_circletosphere.gifbin0 -> 1811911 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/file4_cone.gifbin0 -> 987693 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/README.md15
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file1_prescribed_plane.gifbin163202 -> 0 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file1_tnb_creation.gifbin0 -> 1708693 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file1_tnb_creation.py66
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file2_TNB_frame.gifbin150050 -> 0 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file2_tnb_basic.gifbin0 -> 2002004 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file2_tnb_basic.py36
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file3_tnb_frame_manim.gifbin0 -> 886891 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file3_tnb_frame_manim.py126
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file4_fs1.gifbin0 -> 551048 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file4_fs1.py23
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file5_fs2.gifbin0 -> 629437 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file5_fs2.py28
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/velocity-and-differentiability/README.md2
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/velocity-and-differentiability/__pycache__/file2_tangent_spaceCurve.cpython-38.pycbin1429 -> 0 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/velocity-and-differentiability/file2_tangent_space_curve.gifbin0 -> 1317248 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Limits and Continuity of Multivariable Functions/gifs/limit_approach_point.gifbin47411 -> 0 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_derivative_vectorvf.gifbin117597 -> 0 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_examples.gifbin57945 -> 0 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_plot_sphere.gifbin198324 -> 0 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_respresntation.gifbin73055 -> 0 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_vectorvf_sine.gifbin29814 -> 0 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_examples.py69
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_plot_sphere.py42
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_respresntation.py80
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/README.md2
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/domain_range.gifbin74879 -> 0 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_application.gifbin225144 -> 0 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_level_curves.gifbin245384 -> 0 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_level_curves2.gifbin893426 -> 0 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_neural_nets.gifbin95828 -> 0 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_parabola_example.gifbin905534 -> 0 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/directional-derivatives/README.md8
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/directional-derivatives/file1_directional_deriv.py85
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/directional-derivatives/file2_gradient.py103
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/directional-derivatives/file3_gradient_level_curves.py107
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/directional-derivatives/gifs/file1_directional_deriv.gifbin0 -> 1421988 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/directional-derivatives/gifs/file2_gradient.gifbin0 -> 1946515 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/directional-derivatives/gifs/file3_gradient_level_curves.gifbin0 -> 6070951 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/Multivariable_Functions_Quiz.pdf (renamed from FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/Multivariable_Functions_Quiz.pdf)bin109631 -> 109631 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/README.md17
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/file1_multivar_func_examples.py167
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/file2_multivariable_func_respresentation.py98
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/file3_sphere.py177
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/file4_vectorvf_sine.py (renamed from FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_vectorvf_sine.py)0
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/file5_vectorvf_helix.py92
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/file6_derivative_vectorvf.py (renamed from FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_derivative_vectorvf.py)0
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/gifs/file1_multivar_func_examples.gifbin0 -> 1440511 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/gifs/file2_multivariable_func_respresentation.gifbin0 -> 1828325 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/gifs/file3_sphere.gifbin0 -> 5971004 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/gifs/file4_vectorvf_sine.gifbin0 -> 283795 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/gifs/file5_vectorvf_helix.gifbin0 -> 654632 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/gifs/file6_derivative_vectorvf.gifbin0 -> 1370273 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/Limits_and_Continuity_of_Multivariable_Function_Quiz.pdfbin0 -> 101435 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/README.md14
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/file1_epsilon_delta_defn.py179
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/file2_limit_approach_point.py (renamed from FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Limits and Continuity of Multivariable Functions/limit_approach_point.py)0
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/file3_limit_approach_point_3d.py152
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/file4_limit_different_point.py115
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/file5_continuity_func.py115
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/gifs/file1_epsilon_delta_defn.gifbin0 -> 1788321 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/gifs/file2_limit_approach_point.gifbin0 -> 433985 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/gifs/file3_limit_approach_point_3d.gifbin0 -> 5401504 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/gifs/file4_limit_different_point.gifbin0 -> 3044265 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/gifs/file5_continuity_func.gifbin0 -> 5035077 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/README.md23
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file1_partial_deriv_gas_law.py88
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file2_partial_deriv_hill.py122
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file3_partial_deriv_defn.py218
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file4_partial_deriv_example.py246
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file5_partial_deriv_func_2maximas.py227
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file6_clariant_rule.py64
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file7_partial_deriv_clariant_rule.py108
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file8_chain_rule.py60
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file1_partial_deriv_gas_law.gifbin0 -> 2051994 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file2_partial_deriv_hill.gifbin0 -> 1238872 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file3_partial_deriv_defn.gifbin0 -> 5251558 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file4_partial_deriv_example.gifbin0 -> 4953394 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file5_partial_deriv_func_2maximas.gifbin0 -> 11846180 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file6_clariant_rule.gifbin0 -> 2032309 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file7_partial_deriv_clariant_rule.gifbin0 -> 1583937 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file8_chain_rule.gifbin0 -> 1612033 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/README.md20
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/Scalar_Function_Quiz.pdf (renamed from FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/Scalar_Function_Quiz.pdf)bin87455 -> 87455 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/file1_scalar_functions.py50
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/file2_domain_range.py (renamed from FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/scalar_function_domain_range.py)62
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/file3_parabola_example.py (renamed from FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/scalar_function_parabola_example.py)18
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/file4_level_curves.py118
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/file5_level_surface.py78
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/file6_scalar_function_application.py (renamed from FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/scalar_function_application.py)15
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/file7_neural_nets.py (renamed from FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/scalar_function_neural_nets.py)0
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file1_scalar_functions.gifbin0 -> 1408290 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file2_domain_range.gifbin0 -> 6625947 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file3_parabola_example.gifbin0 -> 13732426 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file4_level_curves.gifbin0 -> 4096583 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file5_level_surface.gifbin0 -> 3796274 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file6_scalar_function_application.gifbin0 -> 2236609 bytes
-rw-r--r--FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file7_neural_nets.gifbin0 -> 952963 bytes
-rw-r--r--FSF-2020/calculus/intro-to-calculus/README.md8
-rw-r--r--FSF-2020/calculus/intro-to-calculus/introderivative/derivative1.py55
-rw-r--r--FSF-2020/calculus/intro-to-calculus/limit/limit1.py105
-rw-r--r--FSF-2020/calculus/intro-to-calculus/limit/limit3.py95
-rw-r--r--FSF-2020/calculus/intro-to-calculus/riemannintegrals/README.md18
-rw-r--r--FSF-2020/calculus/intro-to-calculus/riemannintegrals/rierect1.py31
-rw-r--r--FSF-2020/calculus/series-and-transformations/Fourier Transform/README.md20
-rw-r--r--FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file1.gifbin0 -> 828501 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file2a.gifbin0 -> 622617 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file2b.gifbin0 -> 635274 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file3.gifbin0 -> 955375 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file4.gifbin0 -> 660267 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file5.gifbin0 -> 177766 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file6.gifbin0 -> 955375 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file7.gifbin0 -> 793582 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Fourier Transform/video1_DividingAToneIntoItsConstituents.py90
-rw-r--r--FSF-2020/calculus/series-and-transformations/Fourier Transform/video2_ColorsAnalogyForFourierSeries.py165
-rw-r--r--FSF-2020/calculus/series-and-transformations/Fourier Transform/video3_seriesVSTransform.py146
-rw-r--r--FSF-2020/calculus/series-and-transformations/Fourier Transform/video4_FourierSeriesOfSquarePulse.py97
-rw-r--r--FSF-2020/calculus/series-and-transformations/Fourier Transform/video5_CoinsAnalogy.py225
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/README.md12
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/gifs/file1_convergence_Intuition.gifbin0 -> 254804 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/gifs/file1_pieChart.gifbin347111 -> 0 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/gifs/file1a_convergence_Intuition.gifbin0 -> 123534 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/gifs/file2_convergence_Intuition.gifbin98910 -> 0 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/gifs/file2_convergence_of_a_function.gifbin0 -> 503569 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/gifs/file3_convergence_of_a_function.gifbin415313 -> 0 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/gifs/file3_radius_and_intervalOfConvergence.gifbin0 -> 441251 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/gifs/file4_UniformConvergence.gifbin0 -> 261713 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/gifs/file4_radius_and_intervalOfConvergence.gifbin213252 -> 0 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/gifs/file4a_UniformConvergence.gifbin0 -> 476231 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/gifs/file5_UniformConvergence.gifbin276475 -> 0 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/video1_convergence_Intuition.py (renamed from FSF-2020/calculus/series-and-transformations/Power Series/video2_convergence_Intuition.py)37
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/video1_pieChart.py128
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/video2_convergence_of_a_function.py (renamed from FSF-2020/calculus/series-and-transformations/Power Series/video3_convergence_of_a_function.py)12
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/video3_radius_and_intervalOfConvergence.py (renamed from FSF-2020/calculus/series-and-transformations/Power Series/video4_radius_and_intervalOfConvergence.py)25
-rw-r--r--FSF-2020/calculus/series-and-transformations/Power Series/video4_UniformConvergence.py (renamed from FSF-2020/calculus/series-and-transformations/Power Series/video5_UniformConvergence.py)59
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/README.md2
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file1_Example_TaylorExpansion.gifbin446111 -> 667237 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file2_TaylorExpansionGeneralForm.gifbin308980 -> 640160 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file2a_TaylorExpansionGeneralForm.gifbin0 -> 640160 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file3_radiusOfConvergence.gifbin391510 -> 609653 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file4_DivergentRemainder.gifbin160149 -> 400593 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py80
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py110
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/video3_radiusOfConvergence.py22
-rw-r--r--FSF-2020/calculus/series-and-transformations/Taylor Series/video4_DivergentRemainder.py2
-rw-r--r--FSF-2020/calculus/series-and-transformations/Z-Transform/README.md9
-rw-r--r--FSF-2020/calculus/series-and-transformations/Z-Transform/gifs/file1.gifbin0 -> 408025 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Z-Transform/gifs/file2.gifbin0 -> 643692 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Z-Transform/gifs/file3.gifbin0 -> 585127 bytes
-rw-r--r--FSF-2020/calculus/series-and-transformations/Z-Transform/video1_Sampling.py81
-rw-r--r--FSF-2020/calculus/series-and-transformations/Z-Transform/video2_ZTransformOfDelta.py121
-rw-r--r--FSF-2020/calculus/series-and-transformations/Z-Transform/video3_RegionOfConvergence.py144
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/README.md18
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file1_introduction.py33
-rwxr-xr-xFSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file2_projections.py79
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file3_orthonormal.py333
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file4_Non_Standard_Basis.py51
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file5.gifbin0 -> 26037424 bytes
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file6.gifbin0 -> 5378916 bytes
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file7.gifbin0 -> 603223 bytes
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file8.gifbin0 -> 1027000 bytes
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/README.md30
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file.txt3
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file10.gifbin0 -> 9471592 bytes
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file11.gifbin0 -> 50836502 bytes
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file12.gifbin0 -> 19348496 bytes
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file13.gifbin0 -> 3303032 bytes
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file14.gifbin0 -> 1389092 bytes
-rwxr-xr-xFSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file2_before_matrix.py232
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file3_square.py246
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file4_Understand_Linear_Transformations_visually.py (renamed from FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file2_Understand_Linear_Transformations_visually.py)0
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file5_Uniform_Scaling.py (renamed from FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file3_Uniform_Scaling.py)0
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file6_Horizontal_Shear.py (renamed from FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file4_Horizontal_Shear.py)0
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file6_Horizontal_Shear_gif.gif (renamed from FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file4_Horizontal_Shear_gif.gif)bin1566999 -> 1566999 bytes
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file7_Vertical_Shear.py (renamed from FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file5_Vertical_Shear.py)0
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file7_Vertical_Shear_gif.gif (renamed from FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file5_Vertical_Shear_gif.gif)bin1347079 -> 1347079 bytes
-rwxr-xr-xFSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file8_linear_transformation.py (renamed from FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file6_linear_transformation.py)0
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file9.gifbin0 -> 14973890 bytes
-rwxr-xr-xFSF-2020/linear-algebra/linear-transformations/Orthonormal Basis/file1_orthogonal.py34
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Orthonormal Basis/file2_OrthonormalBasis.py82
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/README.md15
-rwxr-xr-xFSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file1_orthogonal.py40
-rwxr-xr-xFSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file2_sum_of_projections_part1.py133
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file3_sum_of_projections_part2.py173
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file4.gifbin0 -> 1733367 bytes
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file5.gifbin0 -> 43092116 bytes
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file6.gifbin0 -> 37493895 bytes
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/README.md5
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/README.md30
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file10_Left_Null_Space_pSv8iio_d5Sy9qS.gifbin0 -> 1744023 bytes
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file11.gifbin0 -> 2669469 bytes
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file12.gifbin0 -> 14917563 bytes
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file13.gifbin0 -> 4257387 bytes
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file14.gifbin0 -> 28796385 bytes
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file15.gifbin0 -> 16130920 bytes
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file16.gifbin0 -> 15623398 bytes
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file17.gifbin0 -> 15546537 bytes
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file18_NOT_in_lecture_note_Column_Space.py (renamed from FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file1_Column_Space.py)0
-rwxr-xr-xFSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file1_Axb.py77
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file1_Column_Space.gifbin1182328 -> 0 bytes
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file2_CSasImage.py169
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file3_solution.py77
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file4_null_space.py91
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file5_Row_Space_part_1.py68
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file6_Row_Space_part_2.py (renamed from FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file2_Row_Space.py)0
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file7_Row_space_Orthogonal_Complements.py150
-rwxr-xr-xFSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file8_Left_Null_Space.py26
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file9_left_null_space.py186
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/The-Rank-Nullity-Theorem/README.md9
-rw-r--r--FSF-2020/linear-algebra/linear-transformations/The-Rank-Nullity-Theorem/file2.gifbin0 -> 34430418 bytes
298 files changed, 8948 insertions, 721 deletions
diff --git a/FSF-2020/approximations-and-optimizations/Critical Points/example.py b/FSF-2020/approximations-and-optimizations/Critical Points/example.py
deleted file mode 100644
index 3a41be7..0000000
--- a/FSF-2020/approximations-and-optimizations/Critical Points/example.py
+++ /dev/null
@@ -1,32 +0,0 @@
-from manimlib.imports import*
-
-class ExampleAnimation(ThreeDScene):
- def construct(self):
- axes = ThreeDAxes()
-
- f_text = TextMobject("$f(x,y) = (y-x)(1-2x-3y)$").to_corner(UL)
- d = Dot(np.array([0,0,0]), color = '#800000') #---- Critical Point
- d_text = TextMobject("$(0.2,0.2)$",color = '#DC143C').scale(0.5).shift(0.2*UP) #----x = 0.2, y = 0.2
- r_text=TextMobject("Critical Point",color = '#00FFFF').shift(0.3*DOWN).scale(0.6)
-
- #----f(x,y) = (y-x)(1-2x-3y)
- f = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- (v-u)*(1-2*u-3*v)
- ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [PURPLE_D, PURPLE_E],
- resolution=(20, 20)).scale(1)
-
- self.set_camera_orientation(phi = 75 * DEGREES)
- self.begin_ambient_camera_rotation(rate=0.5)
-
- self.add_fixed_in_frame_mobjects(f_text)
- self.wait(1)
- self.add(axes)
- self.play(Write(f),Write(d))
- self.wait(1)
- self.add_fixed_in_frame_mobjects(d_text)
- self.wait(1)
- self.add_fixed_in_frame_mobjects(r_text)
- self.wait(3)
diff --git a/FSF-2020/approximations-and-optimizations/Critical Points/motivation.py b/FSF-2020/approximations-and-optimizations/Critical Points/motivation.py
deleted file mode 100644
index 27354ef..0000000
--- a/FSF-2020/approximations-and-optimizations/Critical Points/motivation.py
+++ /dev/null
@@ -1,30 +0,0 @@
-from manimlib.imports import*
-
-class MotivationAnimation(Scene):
- def construct(self):
-
- r = Rectangle(height = 7,breadth = 2,color = BLUE, fill_opacity = 0.3).scale(0.6) #----metal strip
- b = Brace(r,UP)
- r_text = TextMobject("$x$ metres",color = YELLOW).shift(3*UP)
- m_text = TextMobject("Metal Strip").shift(3*DOWN)
- a = Arc(radius=2).rotate(1).shift(LEFT+0.5*UP)
- a2 = Arc(radius=2).rotate(5).shift(0.7*LEFT+0.9*UP).scale(0.2)
- START = [1,0,0]
- END = [0,3,0]
- l = Line(START,END,color = RED).shift(0.9*DOWN)
- a2_text = TextMobject("$\\theta$",color = PINK).shift(1.6*UP+0.4*RIGHT)
-
- group1 = VGroup(r_text,b,a,l,a2,a2_text)
- f_text = TextMobject("$A = f(x,\\theta)$").shift(2*DOWN)
-
- ring = Annulus(inner_radius = 0.7, outer_radius = 1, color = BLUE) #--bent metal strip
-
- self.play(Write(r))
- self.wait(1)
- self.play(ShowCreation(m_text))
- self.wait(1)
- self.play(Write(group1))
- self.wait(2)
- self.play(FadeOut(group1))
- self.wait(1)
- self.play(ReplacementTransform(r,ring),ShowCreation(f_text))
diff --git a/FSF-2020/approximations-and-optimizations/Critical Points/theorem.py b/FSF-2020/approximations-and-optimizations/Critical Points/theorem.py
deleted file mode 100644
index 7c82aa9..0000000
--- a/FSF-2020/approximations-and-optimizations/Critical Points/theorem.py
+++ /dev/null
@@ -1,55 +0,0 @@
-from manimlib.imports import*
-
-class TheoremAnimation(ThreeDScene):
- def construct(self):
-
- axes = ThreeDAxes()
-
- #----parabola: x**2+y**2
- parabola1 = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- u**2+v**2
- ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [TEAL_E],
- resolution = (20, 20)).scale(1)
-
- #----parabola: -x**2-y**2
- parabola2 = ParametricSurface(
- lambda u, v: np.array([
- u,
- v,
- -u**2-v**2
- ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [PURPLE_E,PURPLE_E],
- resolution = (20, 20)).scale(1)
-
- self.set_camera_orientation(phi = 75 * DEGREES)
- self.begin_ambient_camera_rotation(rate = 0.4)
-
- d = Dot(np.array([0,0,0]), color = '#800000') #---- critical point
- r = Rectangle(fill_color = '#C0C0C0',fill_opacity = 0.3).move_to(ORIGIN) #----tangent plane
-
- parabola1_text = TextMobject("Maximum with horizontal tangent plane").scale(0.7).to_corner(UL)
-
- parabola2_text = TextMobject("Minimum with horizontal tangent plane").scale(0.7).to_corner(UL)
-
- self.add(axes)
- self.add_fixed_in_frame_mobjects(parabola2_text)
- self.wait(1)
- self.play(Write(parabola1))
- self.wait(1)
- self.play(ShowCreation(d))
- self.wait(1)
- self.play(ShowCreation(r))
- self.wait(2)
- self.play(FadeOut(parabola2_text),FadeOut(parabola1),FadeOut(r),FadeOut(d))
-
- self.wait(1)
- self.add_fixed_in_frame_mobjects(parabola1_text)
- self.wait(1)
- self.play(Write(parabola2))
- self.wait(1)
- self.play(ShowCreation(d))
- self.wait(1)
- self.play(ShowCreation(r))
- self.wait(2)
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/README.md b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/README.md
new file mode 100644
index 0000000..857d298
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/README.md
@@ -0,0 +1,38 @@
+<h1><div align=”center”><b>SubTopic: Critical Points</b></h1></div>
+<br/></br>
+
+<tab>file1_Critical_Point_of_a_function
+
+![file1_Critical_Point_of_a_function](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.gif?raw=true)
+<br/></br>
+<br/></br>
+
+<tab>file2_Traces_and_Tangent
+
+![file2_Traces_and_Tangent](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file2_Traces_and_Tangent.gif?raw=true)
+<br/></br>
+<br/></br>
+
+<tab>file3_Tangent_plane_at_extrema_of_a_function
+
+![file3_Tangent_plane_at_extrema_of_a_function](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file3_Tangent_plane_at_extrema_of_a_function.gif?raw=true)
+<br/></br>
+<br/></br>
+
+<tab>file4_Relative_Maximum_and_Relative_Minimum
+
+![file4_Relative_Maxima_and_Relative_Minima](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file4_Relative_Maximum_and_Relative_Minimum.gif?raw=true)
+<br/></br>
+<br/></br>
+
+<tab>file5_Saddle_Point
+
+![file5_Saddle_Point](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file5_Saddle_Point.gif?raw=true)
+<br/></br>
+<br/></br>
+
+<tab>file6_f(x,y)=(y-x)(1-2x-3y)
+
+![file6_f(x,y)=(y-x)(1-2x-3y)](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file6_f(x%2Cy)%3D(y-x)(1-2x-3y).gif?raw=true)
+<br/></br>
+<br/></br>
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.gif b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.gif
new file mode 100644
index 0000000..ca3989c
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.py
new file mode 100644
index 0000000..e8cb08d
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file1_Critical_Point_of_a_function.py
@@ -0,0 +1,77 @@
+from manimlib.imports import*
+import math as m
+
+#---- case 1: parial derivatives exist at critical point of the function
+class firstScene(ThreeDScene):
+ def construct(self):
+
+ axes = ThreeDAxes()
+ label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis
+ label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis
+
+ #---- f(x,y) = e^(-10x^2-10y^2)
+ surface = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ m.exp(-10*u**2-10*v**2)
+ ]),u_min = -1, u_max = 1, v_min = -1, v_max = 1, checkerboard_colors = [TEAL_E,TEAL_D,TEAL_C,TEAL_B]).fade(0.6).scale(3.5).shift([0,0,1.5])
+
+ l1 = Line([0,0,3.75],[0,0,0],color = '#800000')
+
+ d = Dot([0,0,3.75],color = '#800000') #---- critical point
+
+ d_text = TextMobject("$\\frac{\\partial f}{\\partial x}=\\frac{\\partial f}{\\partial y} = 0$").scale(0.8).to_corner(UL)
+
+ f_text = TextMobject("Critical Point ",color = YELLOW).shift(3.4*UP).scale(0.5)
+
+ self.set_camera_orientation(phi = 45*DEGREES, theta = 40*DEGREES)
+ self.add(axes)
+ self.add(label_x)
+ self.add(label_y)
+ self.add_fixed_in_frame_mobjects(d_text)
+ self.begin_ambient_camera_rotation(rate = 0.2)
+ self.play(Write(surface))
+ self.wait(1)
+ self.play(Write(l1))
+ self.play(Write(d))
+ self.wait(1)
+ self.add_fixed_in_frame_mobjects(f_text)
+ self.wait(3)
+ self.play(FadeOut(f_text),FadeOut(surface),FadeOut(axes),FadeOut(d_text),FadeOut(d),FadeOut(l1),FadeOut(label_x),FadeOut(label_y))
+
+
+#---- case 2: parial derivatives do not exist at critical point of the function
+class secondScene(ThreeDScene):
+ def construct(self):
+ axes = ThreeDAxes()
+ label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis
+ label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis
+
+ #---- g(x,y)= |x|+|y|
+ surface = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ abs(u)+abs(v)
+ ]),u_min = -1.5, u_max = 1.5, v_min = -1.5, v_max = 1.5, checkerboard_colors = [TEAL_E,TEAL_D,TEAL_C,TEAL_B])
+
+ d2 = Dot([0,0,0],color = '#800000') #---- critical point
+
+ d2_text = TextMobject("$\\frac{\\partial f}{\\partial x}$ and/or $\\frac{\\partial f}{\\partial y}$ does not exist").scale(0.7).to_corner(UL)
+
+ g_text = TextMobject("Critical Point",color = YELLOW).shift(1.2*RIGHT).scale(0.6)
+
+ self.set_camera_orientation(phi = 60*DEGREES, theta = 40*DEGREES)
+ self.add(axes)
+ self.add(label_x)
+ self.add(label_y)
+ self.add_fixed_in_frame_mobjects(d2_text)
+ self.begin_ambient_camera_rotation(rate = 0.2)
+ self.wait(1)
+ self.play(Write(surface2))
+ self.wait(1)
+ self.play(Write(d2))
+ self.wait(1)
+ self.add_fixed_in_frame_mobjects(g_text)
+ self.wait(2)
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file2_Traces_and_Tangent.gif b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file2_Traces_and_Tangent.gif
new file mode 100644
index 0000000..84acf2e
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file2_Traces_and_Tangent.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file2_Traces_and_Tangent.py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file2_Traces_and_Tangent.py
new file mode 100644
index 0000000..4b020e1
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file2_Traces_and_Tangent.py
@@ -0,0 +1,88 @@
+from manimlib.imports import*
+import math as m
+
+#---- tangent to the trace with x constant
+class firstScene(ThreeDScene):
+ def construct(self):
+
+ axes = ThreeDAxes().scale(1)
+ label_x = TextMobject("$x$").shift([5.8,-0.5,0])
+ label_y = TextMobject("$y$").shift([-0.5,-5.6,0]).rotate(-4.5)
+
+ #---- graph of f(x,y) = -x^2-y^2
+ surface = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ -u**2-v**2
+ ]),u_min=-1,u_max=1, v_min=-1,v_max=1,checkerboard_colors=[PURPLE_C,PURPLE_D,PURPLE_E,PURPLE_B]).scale(1.5).shift([0,0,2]).rotate(0.2)
+
+ #---- curve(trace) along y axis
+ curve = ParametricSurface(
+ lambda u, v: np.array([
+ u*0.4,
+ v,
+ -v**2
+ ]),v_min =-1 , v_max =1 , u_min = -0.1, u_max = 0.1).scale(1.6).shift([0.02,0.1,2.3]).set_color("#800000").rotate(0.1)
+
+ d = Dot(color =YELLOW).shift([-0.05,-0.2,2.3]) #---- critical point
+
+ x_text = TextMobject("Tangent to the trace with $x$ constant at critical point").shift(3*RIGHT+2*UP).scale(0.5).to_corner(UL)
+
+ tangent_line = Line([-0.05,-1.5,2.3],[-0.05,1.5,2.3],color = '#228B22')
+
+ self.add(axes)
+ self.set_camera_orientation(phi = 40 * DEGREES, theta = 55 * DEGREES)
+ self.begin_ambient_camera_rotation(rate = 0.1)
+ self.add(label_x)
+ self.add(label_y)
+ self.play(Write(surface))
+ self.add_fixed_in_frame_mobjects(x_text)
+ self.add(curve)
+ self.wait(1)
+ self.play(Write(tangent_line),Write(d))
+ self.wait(1)
+
+
+
+#---- tangent to the trace with y constant
+class secondScene(ThreeDScene):
+ def construct(self):
+
+ axes = ThreeDAxes().scale(1)
+ label_x = TextMobject("$x$").shift([5.8,-0.5,0])
+ label_y = TextMobject("$y$").shift([-0.5,-5.6,0]).rotate(-4.5)
+
+ #---- graph of f(x,y) = -x^2-y^2
+ surface = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ -u**2-v**2
+ ]),u_min = -1, u_max = 1, v_min = -1, v_max = 1, checkerboard_colors = [PURPLE_B,PURPLE_C,PURPLE_D,PURPLE_E]).scale(1.5).shift([0,0,2]).rotate(0.2)
+
+ #---- curve(trace) along x axis
+ curve = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v*0.4,
+ -u**2
+ ]),v_min = -0.1, v_max = 0.1, u_min = -1, u_max = 1).scale(1.6).shift([0.07,0.1,2.3]).set_color("#800000")
+
+ d = Dot(color = YELLOW).shift([0,-0.2,2.3]) #---- critical point
+
+ tangent_line = Line(color = '#228B22').scale(1).shift([0,-0.2,2.3]).rotate(m.radians(190),LEFT)
+
+ y_text = TextMobject("Tangent to the trace with $y$ constant at critical point").shift(3*RIGHT+2*UP).scale(0.5).to_corner(UL)
+
+ self.add(axes)
+ self.set_camera_orientation(phi = 40 * DEGREES, theta = 55 * DEGREES)
+ self.add(label_x)
+ self.add(label_y)
+ self.begin_ambient_camera_rotation(rate = 0.1)
+ self.play(Write(surface))
+ self.add_fixed_in_frame_mobjects(y_text)
+ self.add(curve)
+ self.wait(1.5)
+ self.play(Write(tangent_line),Write(d))
+ self.wait(0.5)
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file3_Tangent_plane_at_extrema_of_a_function.gif b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file3_Tangent_plane_at_extrema_of_a_function.gif
new file mode 100644
index 0000000..14fb318
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file3_Tangent_plane_at_extrema_of_a_function.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file3_Tangent_plane_at_extrema_of_a_function.py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file3_Tangent_plane_at_extrema_of_a_function.py
new file mode 100644
index 0000000..e674113
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file3_Tangent_plane_at_extrema_of_a_function.py
@@ -0,0 +1,73 @@
+from manimlib.imports import*
+
+#---- tangent plane to minima of the function
+class firstScene(ThreeDScene):
+ def construct(self):
+
+ axes = ThreeDAxes()
+ label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis
+ label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis
+
+ #---- parabola: f(x,y) = x**2 + y**2
+ parabola = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ u**2+v**2
+ ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [GREEN_E,GREEN_D,GREEN_C,GREEN_B], resolution = (20, 20)).scale(1)
+
+ d = Dot(np.array([0,0,0]), color = '#800000') # ---- critical point
+
+ tangent_plane = Rectangle(fill_color = '#C0C0C0', fill_opacity = 0.3).move_to(ORIGIN).fade(0.7) # ----tangent plane
+
+ parabola_text = TextMobject("Minimum with horizontal tangent plane").scale(0.7).to_corner(UL)
+
+ self.set_camera_orientation(phi = 75 * DEGREES, theta = 45 * DEGREES)
+ self.begin_ambient_camera_rotation(rate = 0.2)
+ self.add(axes)
+ self.add(label_x)
+ self.add(label_y)
+ self.add_fixed_in_frame_mobjects(parabola_text)
+ self.wait(1)
+ self.play(Write(parabola))
+ self.play(ShowCreation(d))
+ self.wait(1)
+ self.play(ShowCreation(tangent_plane))
+ self.wait(2)
+ self.play(FadeOut(parabola_text),FadeOut(parabola),FadeOut(tangent_plane),FadeOut(d),FadeOut(label_x),FadeOut(label_y),FadeOut(axes))
+
+
+#---- tangent plane to maxima of the function
+class secondScene(ThreeDScene):
+ def construct(self):
+
+ axes = ThreeDAxes()
+ label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis
+ label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis
+
+ #----parabola: g(x,y) = -x**2-y**2
+ parabola = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ -u**2-v**2
+ ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [BLUE_E,BLUE_D,BLUE_C,BLUE_B], resolution = (20, 20)).scale(1)
+
+ d = Dot(np.array([0,0,0]), color = '#800000') #---- critical point
+
+ tangent_plane = Rectangle(fill_color = '#C0C0C0',fill_opacity = 0.3).move_to(ORIGIN).fade(0.7) #---- tangent plane
+
+ parabola_text = TextMobject("Maximum with horizontal tangent plane").scale(0.7).to_corner(UL)
+
+ self.set_camera_orientation(phi = 75 * DEGREES, theta = 45 * DEGREES)
+ self.begin_ambient_camera_rotation(rate = 0.2)
+ self.add(axes)
+ self.add(label_x)
+ self.add(label_y)
+ self.add_fixed_in_frame_mobjects(parabola_text)
+ self.wait(1)
+ self.play(Write(parabola))
+ self.play(ShowCreation(d))
+ self.wait(1)
+ self.play(ShowCreation(tangent_plane))
+ self.wait(2)
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file4_Relative_Maximum_and_Relative_Minimum.gif b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file4_Relative_Maximum_and_Relative_Minimum.gif
new file mode 100644
index 0000000..6b93359
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file4_Relative_Maximum_and_Relative_Minimum.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file4_Relative_Maximum_and_Relative_Minimum.py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file4_Relative_Maximum_and_Relative_Minimum.py
new file mode 100644
index 0000000..3bd810d
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file4_Relative_Maximum_and_Relative_Minimum.py
@@ -0,0 +1,51 @@
+from manimlib.imports import*
+import math as m
+
+#---- locating extrema of a funtion using critical points
+class Extrema(ThreeDScene):
+ def construct(self):
+
+ h_text = TextMobject("Relative Maximum and Relative Minimum",color = GREEN)
+
+ axes = ThreeDAxes()
+ label_x = TextMobject("$x$").shift([5.5,-0.3,0]) #---- x axis
+ label_y = TextMobject("$y$").shift([-0.3,5.5,0]).rotate(-4.5) #---- y axis
+
+ #---- f(x,y) = 5(x+y)e^(-x^2-y^2)
+ surface = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ 5*(u+v)*m.exp(-u**2-v**2)
+ ]),u_min = -PI, u_max = PI, v_min = -PI, v_max = PI).set_color(TEAL).shift([0,0,0]).fade(0.4)
+
+ d1 = Dot(color = YELLOW).shift([0.5,0.5,3.02]) #---- critical point for maxima
+ l1 = Line([0.5,0.5,0.1],[0.5,0.5,3],color = YELLOW)
+
+ d2 = Dot(color = YELLOW).shift([-1.15,0,-2.98]) #---- critical point for minima
+ l2 = Line([-1.15,0,0],[-1.15,0,-2.98],color = YELLOW)
+
+ max_text = TextMobject("Relative Maximum").shift(3.1*UP+1.5*RIGHT).scale(0.5)
+ min_text = TextMobject("Relative Minimum").shift(3.1*DOWN+1.5*LEFT).scale(0.5)
+
+ self.add_fixed_in_frame_mobjects(h_text)
+ self.wait(1)
+ self.wait(1)
+ self.play(FadeOut(h_text))
+ self.wait(1)
+ self.set_camera_orientation(phi = 100*DEGREES, theta = -40*DEGREES)
+ self.add(axes)
+ self.add(label_x)
+ self.add(label_y)
+ self.play(Write(surface))
+ self.wait(1)
+ self.play(Write(l1),Write(d1))
+ self.add_fixed_in_frame_mobjects(max_text)
+ self.wait(1)
+ self.play(Write(l2),Write(d2))
+ self.add_fixed_in_frame_mobjects(min_text)
+ self.wait(1)
+ self.wait(1)
+ self.play(FadeOut(l1),FadeOut(d1),FadeOut(l2),FadeOut(d2),FadeOut(max_text),FadeOut(min_text))
+ self.begin_ambient_camera_rotation(rate = 0.3)
+ self.wait(3)
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file5_Saddle_Point.gif b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file5_Saddle_Point.gif
new file mode 100644
index 0000000..7300f3a
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file5_Saddle_Point.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file5_Saddle_Point.py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file5_Saddle_Point.py
new file mode 100644
index 0000000..67dbb18
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file5_Saddle_Point.py
@@ -0,0 +1,71 @@
+from manimlib.imports import*
+import math as m
+
+#---- saddle point of a function
+class SaddlePoint(ThreeDScene):
+ def construct(self):
+
+ h_text = TextMobject("Saddle Point",color = GREEN)
+
+ axes = ThreeDAxes()
+ label_x = TextMobject("$x$").shift([5.5,-0.3,0]) #---- x axis
+ label_y = TextMobject("$y$").shift([-0.3,5.5,0]).rotate(-4.5) #---- y axis
+
+ #---- f(x,y) = -x^2-y^2
+ surface = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ u**2-v**2
+ ]),u_min = -1, u_max = 1, v_min = -1, v_max = 1,checkerboard_colors = [BLUE_B,BLUE_C,BLUE_D,BLUE_E]).shift([0,0,0]).scale(3)
+
+ #---- curve(trace) along y axis
+ curve_x = ParametricSurface(
+ lambda u, v: np.array([
+ u*0.1,
+ v,
+ v**2
+ ]),v_min = -1, v_max = 1, u_min = -0.2, u_max = 0.2).shift([0,0,-2]).scale(3.1).set_color("#800000").rotate(m.radians(180),UP)
+
+ x_text = TextMobject("A dip at critical point along x axis").scale(0.5).to_corner(UL)
+
+ #---- curve(trace) along x axis
+ curve_y = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v*0.1,
+ -u**2
+ ]),v_min = -0.2, v_max = 0.2, u_min = -1, u_max = 1).scale(3).shift([0.1,0,2.2]).set_color("#800000").rotate(m.radians(182),DOWN)
+
+ y_text = TextMobject("A peak at critical point along y axis").scale(0.5).to_corner(UL)
+
+ d = Dot(color = YELLOW).shift([0,-0.22,0]) #---- critical point(saddle point)
+
+ self.add_fixed_in_frame_mobjects(h_text)
+ self.wait(1)
+ self.play(FadeOut(h_text))
+ self.wait(1)
+ self.set_camera_orientation(phi = 75*DEGREES, theta = 40*DEGREES)
+ self.add(axes)
+ self.add(label_x)
+ self.add(label_y)
+ self.play(Write(surface))
+ self.wait(1)
+ self.move_camera(phi = 45*DEGREES, theta = 70*DEGREES)
+ self.add(curve_y)
+ self.play(Write(d))
+ self.wait(1)
+ self.add_fixed_in_frame_mobjects(x_text)
+ self.wait(1)
+ self.wait(1)
+ self.play(FadeOut(curve_y),FadeOut(d),FadeOut(x_text))
+ self.wait(1)
+ self.move_camera(phi = 40*DEGREES, theta = 30*DEGREES)
+ self.add(curve_x)
+ self.play(Write(d))
+ self.wait(1)
+ self.add_fixed_in_frame_mobjects(y_text)
+ self.begin_ambient_camera_rotation(rate = 0.3)
+ self.wait(3)
+ self.play(FadeOut(curve_x),FadeOut(d),FadeOut(y_text))
+ self.wait(1)
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file6_f(x,y)=(y-x)(1-2x-3y).gif b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file6_f(x,y)=(y-x)(1-2x-3y).gif
new file mode 100644
index 0000000..4bc92f8
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file6_f(x,y)=(y-x)(1-2x-3y).gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file6_f(x,y)=(y-x)(1-2x-3y).py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file6_f(x,y)=(y-x)(1-2x-3y).py
new file mode 100644
index 0000000..41c3b61
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical-Points/file6_f(x,y)=(y-x)(1-2x-3y).py
@@ -0,0 +1,29 @@
+from manimlib.imports import*
+
+#---- visualization of the function
+class ExampleAnimation(ThreeDScene):
+ def construct(self):
+ axes = ThreeDAxes()
+ label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis
+ label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis
+
+ #---- f(x,y) = (y-x)(1-2x-3y)
+ surface = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ (v-u)*(1-2*u-3*v)
+ ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [PURPLE_B,PURPLE_C,PURPLE_D, PURPLE_E]).scale(1).fade(0.2).shift([0.2,0.2,0])
+
+ f_text = TextMobject("$f(x,y) = (y-x)(1-2x-3y)$").to_corner(UL)
+
+ self.set_camera_orientation(phi = 60 * DEGREES, theta = 75 * DEGREES)
+ self.begin_ambient_camera_rotation(rate=0.1)
+ self.add_fixed_in_frame_mobjects(f_text)
+ self.wait(1)
+ self.add(axes)
+ self.add(label_x)
+ self.add(label_y)
+ self.wait(1)
+ self.play(Write(f))
+ self.wait(4)
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Lagrange-Multipliers/README.md b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Lagrange-Multipliers/README.md
new file mode 100644
index 0000000..05ff51d
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Lagrange-Multipliers/README.md
@@ -0,0 +1,20 @@
+<h1><div align=”center”><b>SubTopic: Lagrange Multipliers</b></h1></div>
+<br/></br>
+
+<tab>file1_Extrema_over_g(x,y)=k
+
+![file1_Extrema_over_g(x,y)=k](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Lagrange-Multipliers/file1_Extrema_over_g(x%2Cy)%3Dk.gif?raw=true)
+<br/></br>
+<br/></br>
+
+<tab>file2_Geometric_Proof
+
+![file2_Geometric_Proof](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Lagrange-Multipliers/file2_Geometric_Proof.gif?raw=true)
+<br/></br>
+<br/></br>
+
+<tab>file3_Constraints_g_and_h
+
+![file3_Constraints_g_and_h](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Lagrange-Multipliers/file3_Constraints_g_and_h.gif?raw=true)
+<br/></br>
+<br/></br>
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Lagrange-Multipliers/file1_Extrema_over_g(x,y)=k.gif b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Lagrange-Multipliers/file1_Extrema_over_g(x,y)=k.gif
new file mode 100644
index 0000000..d423943
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Lagrange-Multipliers/file1_Extrema_over_g(x,y)=k.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Lagrange-Multipliers/file1_Extrema_over_g(x,y)=k.py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Lagrange-Multipliers/file1_Extrema_over_g(x,y)=k.py
new file mode 100644
index 0000000..a01efb0
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Lagrange-Multipliers/file1_Extrema_over_g(x,y)=k.py
@@ -0,0 +1,45 @@
+from manimlib.imports import*
+import math as m
+
+#---- optimizing funtion f(x,y) w.r.t to g(x,y)
+class ConstrainedExtrema(ThreeDScene):
+ def construct(self):
+ axes = ThreeDAxes().fade(0.4)
+ label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis
+ label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis
+
+ surface = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ u**2+v**2+u**3-v**3
+ ]),u_min=-0.5,u_max=0.5, v_min=-0.5,v_max=0.5).scale(5).shift([0,1,2.5]).set_color(TEAL).fade(0.2)
+
+ c = Circle(color='#FF00FF',fill_opacity=0.3).shift([-0.4,0,1.5]).rotate(1.9,UP).scale(0.7)
+
+ minima = Dot(color = '#4169E1').shift([-0.5,0.5,1]).rotate(1.571,UP)
+ maxima = Dot(color = '#4169E1').shift([0.1,0,2.2]).rotate(1.571,UP)
+
+ max_text = TextMobject("maximum over $g(x,y)=k$",color = '#FFA074').scale(0.6).shift(2.3*UP+2*LEFT)
+ min_text = TextMobject("minimum over $g(x,y)=k$",color = '#FFA074').shift([2.5,0.5,1]).scale(0.6).shift(0.5*UP)
+ label_f = TextMobject("$z=f(x,y)$",color=TEAL).scale(0.8).shift(3*UP+3*RIGHT)
+ label_g = TextMobject("g(x,y)=k",color = PURPLE).scale(0.5).shift(1.5*UP+0.8*LEFT)
+
+
+ self.add(axes)
+ self.add(label_x)
+ self.add(label_y)
+ self.set_camera_orientation(phi=75*DEGREES,theta=45*DEGREES)
+ self.play(Write(surface))
+ self.add_fixed_in_frame_mobjects(label_f)
+ self.wait(2)
+ self.play(Write(c))
+ self.wait(1)
+ self.add_fixed_in_frame_mobjects(label_g)
+ self.wait(1)
+ self.play(Write(maxima))
+ self.add_fixed_in_frame_mobjects(max_text)
+ self.wait(1)
+ self.play(Write(minima))
+ self.add_fixed_in_frame_mobjects(min_text)
+ self.wait(1)
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Lagrange-Multipliers/file2_Geometric_Proof.gif b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Lagrange-Multipliers/file2_Geometric_Proof.gif
new file mode 100644
index 0000000..e028a81
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Lagrange-Multipliers/file2_Geometric_Proof.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Lagrange-Multipliers/file2_Geometric_Proof.py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Lagrange-Multipliers/file2_Geometric_Proof.py
new file mode 100644
index 0000000..2c1d668
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Lagrange-Multipliers/file2_Geometric_Proof.py
@@ -0,0 +1,89 @@
+from manimlib.imports import*
+
+#---- visualization of geometric proof of Lagrange multiplier
+class firstScene(ThreeDScene):
+ def construct(self):
+ axes = ThreeDAxes().scale(0.7).rotate(math.radians(180))
+ label_x = TextMobject("$x$").shift(4*RIGHT).fade(0.4) #---- x axis
+ label_y = TextMobject("$y$").shift(3.2*DOWN+0.2*RIGHT).rotate(math.radians(180)).fade(0.4) #---- y axis
+
+ surface = ParametricSurface(
+ lambda u, v: np.array([
+ 1*np.sin(u)*np.cos(v),
+ 1*np.sin(u)*np.sin(v),
+ -1*np.sin(u)*np.sin(u)+2
+ ]),u_min=0,u_max=PI/2,v_min=0,v_max=2*PI).set_color(GREEN).scale(1).shift([-1.5,-1.5,0])
+
+ d = Dot([-2,-2.55,0],color = '#800000')
+ a_df = Arrow(color = '#00FFFF').rotate(-2).shift(3.2*DOWN+2.3*LEFT) #---- f parallel to g
+ a_dg = Arrow(color = '#FF00FF').scale(0.8).shift(3.2*DOWN+2.3*LEFT).rotate(-2) #---- f parallel to g
+
+ b_dg = Arrow(color = '#00FFFF').rotate(1.1).shift(0.82*LEFT+0.15*UP) #---- f parallel to g
+ b_df = Arrow(color = '#FF00FF').scale(0.6).rotate(-2).shift(1.43*LEFT+1.1*DOWN) #---- f parallel to g
+
+
+ qd = Dot(color = '#800000').shift(1.2*LEFT+0.6*DOWN)
+
+ l1 = Line([-1,-3.1,0],[-4,-3.1,0],color = PINK).rotate(-0.3).fade(0.6)
+ l2 = Line([-0.9,-2.9,0],[-4,-2.9,0],color = PINK).rotate(-0.3).fade(0.6)
+ l3= Line([-0.8,-2.7,0],[-4,-2.7,0],color = PINK).rotate(-0.3).fade(0.6)
+ l4= Line([-0.7,-2.45,0],[-4,-2.45,0],color = PINK).rotate(-0.3).fade(0.6)
+ l5= Line([-0.6,-2.2,0],[-4,-2.25,0],color = PINK).rotate(-0.3).fade(0.6)
+ l6 = Line([-0.5,-2,0],[-4,-2,0],color = PINK).rotate(-0.3).fade(0.6)
+ l7 = Line([-0.4,-1.8,0],[-4,-1.8,0],color = PINK).rotate(-0.3).fade(0.6)
+ l8 = Line([-0.3,-1.6,0],[-4,-1.6,0],color = PINK).rotate(-0.3).fade(0.6)
+ l9= Line([-0.2,-1.4,0],[-4,-1.4,0],color = PINK).rotate(-0.3).fade(0.6)
+ l10= Line([-0.1,-1.2,0],[-4,-1.2,0],color = PINK).rotate(-0.3).fade(0.6)
+ l11 = Line([-0,-1,0],[-4,-1,0],color = PINK).rotate(-0.3).fade(0.6)
+ l12 = Line([-0,-0.8,0],[-4,-0.8,0],color = PINK).rotate(-0.3).fade(0.6)
+ l13= Line([-0,-0.55,0],[-4,-0.55,0],color = PINK).rotate(-0.3).fade(0.6)
+ l14= Line([-0,-0.35,0],[-4,-0.35,0],color = PINK).rotate(-0.3).fade(0.6)
+ l15= Line([-0.,-0.15,0],[-4,-0.15,0],color = PINK).rotate(-0.3).fade(0.6)
+
+ rel_text = TextMobject("$\\nabla f = \\lambda \\nabla g$",color = TEAL).shift([3,3.2,0]).scale(0.5)
+
+ f_text = TextMobject("$\\nabla f$",color = '#800000').shift([1,1,0]).scale(0.5)
+ g_text = TextMobject("$\\nabla g$").shift([1.2,-0.8,0]).scale(0.5)
+
+ p_text= TextMobject("$P$").shift([1.8,2.6,0]).scale(0.5)
+
+ l1_text = TextMobject("$w=$ 17").rotate(math.radians(180)).scale(0.4).shift(2.7*DOWN+4.36*LEFT)
+ l2_text = TextMobject("$w=$ 16").rotate(math.radians(180)).scale(0.4).shift(2.46*DOWN+4.36*LEFT)
+ l3_text = TextMobject("$w=$ 15").rotate(math.radians(180)).scale(0.4).shift(2.2*DOWN+4.36*LEFT)
+ l4_text = TextMobject("$w=$ 14").rotate(math.radians(180)).scale(0.4).shift(1.97*DOWN+4.36*LEFT)
+ l5_text = TextMobject("$w=$ 13").rotate(math.radians(180)).scale(0.4).shift(1.74*DOWN+4.36*LEFT)
+ l6_text = TextMobject("$w=$ 12").rotate(math.radians(180)).scale(0.4).shift(1.5*DOWN+4.36*LEFT)
+ l7_text = TextMobject("$w=$ 11").rotate(math.radians(180)).scale(0.4).shift(1.26*DOWN+4.36*LEFT)
+ l8_text = TextMobject("$w=$ 10").rotate(math.radians(180)).scale(0.4).shift(1.05*DOWN+4.36*LEFT)
+ l9_text = TextMobject("$w=$ 9").rotate(math.radians(180)).scale(0.4).shift(0.8*DOWN+4.32*LEFT)
+ l10_text = TextMobject("$w=$ 8").rotate(math.radians(180)).scale(0.4).shift(0.6*DOWN+4.32*LEFT)
+ l11_text = TextMobject("$w=$ 7").rotate(math.radians(180)).scale(0.4).shift(0.4*DOWN+4.32*LEFT)
+ l12_text = TextMobject("$w=$ 6").rotate(math.radians(180)).scale(0.4).shift(0.2*DOWN+4.32*LEFT)
+ l13_text = TextMobject("$w=$ 5").rotate(math.radians(180)).scale(0.4).shift(-0.02*DOWN+4.32*LEFT)
+ l14_text = TextMobject("$w=$ 4").rotate(math.radians(180)).scale(0.4).shift(-0.23*DOWN+4.32*LEFT)
+ l15_text = TextMobject("$w=$ 3").rotate(math.radians(180)).scale(0.4).shift(-0.44*DOWN+4.32*LEFT)
+
+ level_Curve = VGroup(l1,l1_text,l2,l2_text,l3,l3_text,l4,l4_text,l5,l5_text,l6,l6_text,l7,l7_text,l8,l8_text,l9,l9_text,l10,l10_text,l11,l11_text,l12,l12_text,l13,l13_text,l14,l14_text,l15,l15_text)
+
+ self.set_camera_orientation(phi=0 * DEGREES, theta = 90*DEGREES)
+ self.add(axes)
+ self.add(label_x)
+ self.add(label_y)
+ self.wait(1)
+ self.add(surface)
+ self.wait(1)
+ self.play(ShowCreation(level_Curve))
+ self.wait(1)
+ self.play(ShowCreation(a_df),ShowCreation(a_dg),Write(d))
+ self.wait(1)
+ self.add_fixed_in_frame_mobjects(rel_text)
+ self.add_fixed_in_frame_mobjects(p_text)
+ self.wait(1)
+ self.play(Write(qd))
+ self.wait(1)
+ self.play(ShowCreation(b_df))
+ self.add_fixed_in_frame_mobjects(f_text)
+ self.wait(1)
+ self.play(ShowCreation(b_dg))
+ self.add_fixed_in_frame_mobjects(g_text)
+ self.wait(1)
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Lagrange-Multipliers/file3_Constraints_g_and_h.gif b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Lagrange-Multipliers/file3_Constraints_g_and_h.gif
new file mode 100644
index 0000000..0da30ad
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Lagrange-Multipliers/file3_Constraints_g_and_h.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Lagrange-Multipliers/file3_Constraints_g_and_h.py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Lagrange-Multipliers/file3_Constraints_g_and_h.py
new file mode 100644
index 0000000..742d6b5
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Lagrange-Multipliers/file3_Constraints_g_and_h.py
@@ -0,0 +1,41 @@
+from manimlib.imports import*
+import math as m
+
+class firstScene(ThreeDScene):
+ def construct(self):
+ axes = ThreeDAxes()
+ label_x = TextMobject("$x$").shift([5.5,-0.5,0]).fade(0.4) #---- x axis
+ label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5).fade(0.4) #---- y axis
+
+ #---- constraint g(x,y)
+ cylinder = ParametricSurface(
+ lambda u, v: np.array([
+ np.cos(TAU * u),
+ np.sin(TAU * u),
+ 2 * (v)
+ ]),checkerboard_colors=[YELLOW_C,YELLOW_D,YELLOW_E]).rotate(m.radians(-40),RIGHT).shift([0.5,0.5,0]).scale(0.8)
+
+ #---- constraint h(x,y)
+ plane = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ u+v
+ ]),checkerboard_colors=[TEAL_C,TEAL_D,TEAL_E]).shift([0,0,0]).rotate(m.radians(-40),RIGHT).scale(2).fade(0.3)
+
+ figure = VGroup(cylinder,plane).rotate(m.radians(-45),DOWN).scale(1.5)
+
+ self.set_camera_orientation(phi=65*DEGREES,theta=45*DEGREES)
+ self.add(axes)
+ self.add(label_x)
+ self.add(label_y)
+ self.wait(1)
+ self.play(Write(cylinder))
+ self.play(Write(plane))
+ self.wait(1)
+ self.begin_ambient_camera_rotation(rate=0.4)
+ self.wait(1)
+ self.wait(1)
+ self.play(FadeOut(label_x),FadeOut(label_y))
+ self.wait(1)
+ self.wait(1)
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical_Points_mcq_questions.pdf b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/MCQ-Questions/Critical_Points_mcq_questions.pdf
index 25c4e4d..25c4e4d 100644
--- a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Critical_Points_mcq_questions.pdf
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/MCQ-Questions/Critical_Points_mcq_questions.pdf
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/MCQ-Questions/Lagrange_Multipliers_mcq_questions.pdf b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/MCQ-Questions/Lagrange_Multipliers_mcq_questions.pdf
new file mode 100644
index 0000000..3ba7d1c
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/MCQ-Questions/Lagrange_Multipliers_mcq_questions.pdf
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/MCQ-Questions/Tangent_Plane_Approximations_mcq_questions.pdf b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/MCQ-Questions/Tangent_Plane_Approximations_mcq_questions.pdf
new file mode 100644
index 0000000..2a77b15
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/MCQ-Questions/Tangent_Plane_Approximations_mcq_questions.pdf
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The_Second_Derivative_Test_MCQ.pdf b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/MCQ-Questions/The_Second_Derivative_Test_mcq_questions.pdf
index ca60cbf..ca60cbf 100644
--- a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The_Second_Derivative_Test_MCQ.pdf
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/MCQ-Questions/The_Second_Derivative_Test_mcq_questions.pdf
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/MCQ-Questions/Total_Differential_mcq_questions.pdf b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/MCQ-Questions/Total_Differential_mcq_questions.pdf
new file mode 100644
index 0000000..b1a679d
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/MCQ-Questions/Total_Differential_mcq_questions.pdf
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/README.md b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/README.md
new file mode 100644
index 0000000..2a274d0
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/README.md
@@ -0,0 +1,26 @@
+<h1><div align=”center”><b>SubTopic: Tangent Plane Approximations</b></h1></div>
+<br/></br>
+
+<tab>file1_Tangent_Plane
+
+![file1_Tangent_Plane](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file1_Tangent_Plane.gif?raw=true)
+<br/></br>
+<br/></br>
+
+<tab>file2_Tangent_plane_approximation_visualization
+
+![file2_Tangent_plane_approximation_visualization](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file2_Tangent_plane_approximation_visualization.gif?raw=true)
+<br/></br>
+<br/></br>
+
+<tab>file3_Non_Differentiable_Function
+
+![file3_Non_Differentiable_Function](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file3_Non_Differentiable_Function.gif?raw=true)
+<br/></br>
+<br/></br>
+
+<tab>file4_Tangent_plane_at_extrema_and_saddle_point
+
+![file4_Tangent_plane_at_extrema_and_saddle_point](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file4_Tangent_plane_at_extrema_and_saddle_point.gif?raw=true)
+<br/></br>
+<br/></br>
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file1_Tangent_Plane.gif b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file1_Tangent_Plane.gif
new file mode 100644
index 0000000..2b8bf5f
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file1_Tangent_Plane.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file1_Tangent_Plane.py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file1_Tangent_Plane.py
new file mode 100644
index 0000000..8efdbd2
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file1_Tangent_Plane.py
@@ -0,0 +1,50 @@
+from manimlib.imports import*
+
+#---- tangent plane is parallel to the surface of the funtion at a point
+class tangentplane(ThreeDScene):
+ def construct(self):
+
+ s1_text=TextMobject("Suppose, the point $(x,y)$ lies on the surface of the function.").scale(0.5).shift(2*UP)
+ s2_text=TextMobject("When zooming on that point, the surface would appear more and more like a plane.").scale(0.5).shift(1*UP)
+ s3_text=TextMobject("This plane is called the tangent plane.").scale(0.5)
+
+ #---- graph of function f(x,y) = -x^2-y^2
+
+ f = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ -u**2-v**2
+ ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [YELLOW_B,YELLOW_C,YELLOW_D, YELLOW_E]).shift([0,0,0]).scale(1)
+
+
+ d = Dot([0,0,0],color = '#800000') #---- critical point
+
+ r = Rectangle(color = PURPLE,fill_opacity=0.2).shift([0.1,0,0]).scale(0.3) #---- tangent plane
+
+ s = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ -u**2-v**2
+ ]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [YELLOW_B,YELLOW_C,YELLOW_D, YELLOW_E]).shift([0,0,0]).scale(3.5)
+
+ d2 = Dot([0,0,2.5],color = '#800000') #---- changing position of critical point
+
+ r2 = Rectangle(color = PURPLE,fill_opacity=0.5).shift([0.1,0,2.5]).scale(0.3) #---- changing position of tangent plane
+
+ self.set_camera_orientation(phi = 50 * DEGREES, theta = 45 * DEGREES)
+ self.add_fixed_in_frame_mobjects(s1_text)
+ self.add_fixed_in_frame_mobjects(s2_text)
+ self.add_fixed_in_frame_mobjects(s3_text)
+ self.wait(2)
+ self.play(FadeOut(s1_text))
+ self.play(FadeOut(s2_text))
+ self.play(FadeOut(s3_text))
+ self.wait(1)
+ self.play(Write(f))
+ self.play(Write(d))
+ self.play(Write(r))
+ self.wait(2)
+ self.play(ReplacementTransform(f,s),ReplacementTransform(d,d2),ReplacementTransform(r,r2))
+ self.wait(2)
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file2_Tangent_plane_approximation_visualization.gif b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file2_Tangent_plane_approximation_visualization.gif
new file mode 100644
index 0000000..6d5a67a
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file2_Tangent_plane_approximation_visualization.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file2_Tangent_plane_approximation_visualization.py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file2_Tangent_plane_approximation_visualization.py
new file mode 100644
index 0000000..02576d9
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file2_Tangent_plane_approximation_visualization.py
@@ -0,0 +1,85 @@
+from manimlib.imports import*
+import math as m
+
+#---- tangent plane approximation visualization
+class ApproximationScene(ThreeDScene):
+ def construct(self):
+
+ axes = ThreeDAxes().scale(1.2).fade(0.7)
+ label_x= TextMobject("$x$").shift([5.4,-0.5,0]).fade(0.7) #---- x axis
+ label_y= TextMobject("$y$").shift([-0.5,5.2,0]).rotate(-4.5).fade(0.7) #---- y axis
+
+ #---- graph of the function
+ s = ParametricSurface(
+ lambda u, v: np.array([
+ 1.5*np.cos(u)*np.cos(v),
+ 1.5*np.cos(u)*np.sin(v),
+ 1.5*np.sin(u)
+ ]),u_min=0,u_max=PI,v_min=PI,v_max=2*PI,checkerboard_colors=[BLUE_B,BLUE_C,BLUE_D,BLUE_E]).shift([0,1,2.4]).scale(1.3)
+
+ d1 = Dot([0.2,2.01,2.24],color = '#800000').rotate(1.1,LEFT) #---- point(x_0,y_0)
+ d1_copy = Dot([0.2,2.01,0],color = '#800000') #---- projection of point(x_0,y_0) on x-y plane
+
+ d1_text = TextMobject("$f(x_0,y_0)$",color=ORANGE).scale(0.5).shift([0.2,2.01,2.3])
+ d1_copy_text = TextMobject("$(x_0,y_0)$",color=ORANGE).scale(0.5).shift([0.2,2.01,0],4.1*DOWN)
+
+ d2 = Dot([2,2.6,3.5],color = '#800000').rotate(1,LEFT) #---- point(x,y)
+ d2_copy = Dot([2,2.6,0],color = '#800000') #---- projection of point(x,y) on x-y plane
+
+ d2_text = TextMobject("$f(x,y)$",color=ORANGE).scale(0.5).shift([0.8,1.4,1.5])
+ d2_copy_text = TextMobject("$(x,y)$",color=ORANGE).scale(0.5).shift([0.8,1.4,0],2.4*DOWN)
+
+ l1 = Line([0.2,2.01,2.21],[0.2,2.01,0],color= YELLOW).fade(0.2)
+ l2 = Line([2,2.6,3.4],[2,2.6,0],color= YELLOW).fade(0.2)
+
+ t_plane = Rectangle(color = PURPLE, fill_opacity=0.3).scale(0.6).rotate(m.radians(45),LEFT).shift([1.1,2.5,3.1]) #---- tangent plane
+ t_text= TextMobject("Tangent Plane",color = PINK).scale(0.5).shift(0.3*RIGHT+2.6*UP).rotate(math.radians(5),LEFT)
+
+ a1 = Line([0.2,2.01,0],[2,2.6,0],color ="#00FF7F")
+ a_x = Line([0.2,2.01,0],[2,2.01,0],color ="#9400D3")
+ a_y = Line([0.2,2.01,0],[0.2,2.6,0],color ="#8B4513")
+ a2 = Line([2,2.01,0],[2,2.6,0])
+ a3 = Line([0.2,2.6,0],[2,2.6,0])
+
+ ax_text = TextMobject("$f_x (x_0 , y_0 )(x – x_0 ) $").scale(0.5).shift(DOWN+0.8*LEFT).rotate(0.4)
+ ay_text = TextMobject("$ f_y (x_0 , y_0 )(y – y_0 ) $").scale(0.5).shift(0.8*DOWN+2.7*RIGHT).rotate(-0.6)
+ a1_text = TextMobject("$f_x (x_0 , y_0 )(x – x_0 ) + f_y (x_0 , y_0 )(y – y_0 )$ ").scale(0.4).rotate(0.7).shift(1.7*DOWN+0.6*RIGHT)
+
+ lines = VGroup(a1,a_y,a_x,a2,a3,d1_copy,d2_copy)
+
+
+ self.set_camera_orientation(phi = 60 * DEGREES, theta = 55 * DEGREES)
+ self.wait(1)
+ self.add(axes)
+ self.add(label_x)
+ self.add(label_y)
+ self.play(Write(s))
+ self.wait(1)
+ self.play(Write(d2))
+ self.add_fixed_in_frame_mobjects(d1_text)
+ self.wait(1)
+ self.play(Write(t_plane))
+ self.add_fixed_in_frame_mobjects(t_text)
+ self.wait(1)
+ self.play(Write(d1))
+ self.add_fixed_in_frame_mobjects(d2_text)
+ self.wait(1)
+ self.play(Write(l1),Write(d1_copy))
+ self.add_fixed_in_frame_mobjects(d2_copy_text)
+ self.wait(1)
+ self.play(Write(l2),Write(d2_copy))
+ self.add_fixed_in_frame_mobjects(d1_copy_text)
+ self.wait(2)
+ self.play(FadeOut(d1_text),FadeOut(d1_copy_text),FadeOut(d2_text),FadeOut(d2_copy_text),FadeOut(t_text))
+ self.wait(1)
+ self.play(Write(a1),Write(a_x),Write(a_y),Write(a2),Write(a3))
+ self.wait(1)
+ self.play(FadeOut(s),FadeOut(d1),FadeOut(d2),FadeOut(l1),FadeOut(l2),FadeOut(t_plane),FadeOut(label_x),FadeOut(label_y))
+ self.wait(1)
+ lines.scale(2)
+ axes.scale(1.5)
+ self.wait(1)
+ self.add_fixed_in_frame_mobjects(ax_text)
+ self.add_fixed_in_frame_mobjects(ay_text)
+ self.add_fixed_in_frame_mobjects(a1_text)
+ self.wait(1)
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file3_Non_Differentiable_Function.gif b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file3_Non_Differentiable_Function.gif
new file mode 100644
index 0000000..7581a33
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file3_Non_Differentiable_Function.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file3_Non_Differentiable_Function.py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file3_Non_Differentiable_Function.py
new file mode 100644
index 0000000..79d0948
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file3_Non_Differentiable_Function.py
@@ -0,0 +1,47 @@
+from manimlib.imports import*
+import math
+
+#---- tangent plane does not exists for f(x,y): sqrt(x**2+y**2) at origin
+
+class TangenttoSurface(ThreeDScene):
+ def construct(self):
+ axes = ThreeDAxes().rotate(2.3)
+ axes2 = ThreeDAxes().scale(2).rotate(2.3).shift([0,0,1.3])
+
+ #----f(x,y): sqrt(x**2+y**2)
+ p = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ -math.sqrt(u**2+v**2)
+ ]),v_min = -1,v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [RED_C,TEAL_D],
+ resolution = (20, 20)).scale(1)
+
+ #----size increased of f(x,y): sqrt(x**2+y**2)
+ p2 = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ -math.sqrt(u**2+v**2)
+ ]),v_min = -1,v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [RED_C,TEAL_D],
+ resolution = (20, 20)).scale(3).shift([0,0,0])
+
+ self.set_camera_orientation(phi = 75 * DEGREES,theta = 40*DEGREES)
+
+ d = Dot([0,0,0],color = '#800000') #---- critical point
+ d2 = Dot([0,0,1.5],color = '#800000').scale(2) #---- size increased of critical point
+
+ f_text = TextMobject("$f$ is not differentiable at origin,because the surface").scale(0.5).to_corner(UL)
+ f2_text = TextMobject("is not flat when zoomed in at the origin.").scale(0.5).to_corner(UL).shift(0.5*DOWN)
+
+ self.add(axes)
+ self.wait(1)
+ self.play(Write(p),Write(d))
+ self.wait(1)
+ self.move_camera(phi = 50 * DEGREES,theta = 40*DEGREES)
+ self.wait(1)
+ self.play(ReplacementTransform(axes,axes2),ReplacementTransform(p,p2),ReplacementTransform(d,d2))
+ self.wait(1)
+ self.add_fixed_in_frame_mobjects(f_text)
+ self.add_fixed_in_frame_mobjects(f2_text)
+ self.wait(2)
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file4_Tangent_plane_at_extrema_and_saddle_point.gif b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file4_Tangent_plane_at_extrema_and_saddle_point.gif
new file mode 100644
index 0000000..3fe7992
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file4_Tangent_plane_at_extrema_and_saddle_point.gif
Binary files differ
diff --git a/FSF-2020/approximations-and-optimizations/Critical Points/types_of_cp.py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file4_Tangent_plane_at_extrema_and_saddle_point.py
index f9055e6..d129213 100644
--- a/FSF-2020/approximations-and-optimizations/Critical Points/types_of_cp.py
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Tangent-Plane-Approximations/file4_Tangent_plane_at_extrema_and_saddle_point.py
@@ -1,12 +1,9 @@
-from manimlib.imports import *
+from manimlib.imports import*
-class TypescpAnimation(ThreeDScene):
+class TangenttoSurface(ThreeDScene):
def construct(self):
- axes = ThreeDAxes()
+ axes = ThreeDAxes()
- r_text = TextMobject("Relative Maximum at ORIGIN",color ='#87CEFA')
- f_text = TextMobject("$f(x,y) = -x^2-y^2$").to_corner(UL)
-
#----graph of first function f(x,y) = -x**2-y**2
f = ParametricSurface(
lambda u, v: np.array([
@@ -15,9 +12,7 @@ class TypescpAnimation(ThreeDScene):
-u**2-v**2
]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [YELLOW_D, YELLOW_E],
resolution = (20, 20)).scale(1)
-
- r2_text = TextMobject("Saddle Point at ORIGIN",color ='#87CEFA')
- f2_text = TextMobject("$f(x,y) = -x^2+y^2$").to_corner(UL)
+ f_text = TextMobject("Tangent plane at relative maxima").to_corner(UL).scale(0.5)
#----graph of second function f(x,y) = -x**2+y**2
f2 = ParametricSurface(
@@ -27,9 +22,7 @@ class TypescpAnimation(ThreeDScene):
-u**2+v**2
]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [RED_D, RED_E],
resolution = (20, 20)).scale(1)
-
- r3_text = TextMobject("Relative Minimum at ORIGIN",color ='#87CEFA')
- f3_text = TextMobject("$f(x,y) = x^2+y^2$").to_corner(UL)
+ f2_text = TextMobject("Tangent plane at saddle point").to_corner(UL).scale(0.5)
#----graph of third function f(x,y) = x**2+y**2
f3 = ParametricSurface(
@@ -39,32 +32,31 @@ class TypescpAnimation(ThreeDScene):
u**2+v**2
]),v_min = -1, v_max = 1, u_min = -1, u_max = 1, checkerboard_colors = [GREEN_D, GREEN_E],
resolution = (20, 20)).scale(1)
+ f3_text = TextMobject("Tangent plane at relative minima").to_corner(UL).scale(0.5)
self.set_camera_orientation(phi = 75 * DEGREES, theta = -45 * DEGREES )
- d = Dot(np.array([0,0,0]), color = '#800000') #---- critical point
+ d = Dot(np.array([0,0,0]), color = '#800000') #---- critical point
- self.add_fixed_in_frame_mobjects(r_text)
- self.wait(1)
- self.play(FadeOut(r_text))
+ r = Rectangle(height = 2,breadth = 1,color = PURPLE).scale(0.5)
+
+ self.begin_ambient_camera_rotation(rate = 0.3)
self.add(axes)
self.play(Write(f),Write(d))
+ self.wait(1)
self.add_fixed_in_frame_mobjects(f_text)
- self.wait(2)
- self.play(FadeOut(axes),FadeOut(f),FadeOut(f_text),FadeOut(d))
-
- self.add_fixed_in_frame_mobjects(r2_text)
+ self.play(ShowCreation(r))
+ self.wait(1)
+ self.play(FadeOut(r),FadeOut(f),FadeOut(d),FadeOut(f_text))
self.wait(1)
- self.play(FadeOut(r2_text))
- self.add(axes)
self.play(Write(f2),Write(d))
+ self.wait(1)
self.add_fixed_in_frame_mobjects(f2_text)
- self.wait(2)
- self.play(FadeOut(axes),FadeOut(f2),FadeOut(f2_text),FadeOut(d))
-
- self.add_fixed_in_frame_mobjects(r3_text)
+ self.play(ShowCreation(r))
+ self.wait(1)
+ self.play(FadeOut(r),FadeOut(f2),FadeOut(d),FadeOut(f2_text))
self.wait(1)
- self.play(FadeOut(r3_text))
- self.add(axes)
self.play(Write(f3),Write(d))
+ self.wait(1)
self.add_fixed_in_frame_mobjects(f3_text)
- self.wait(2)
+ self.play(ShowCreation(r))
+ self.wait(1)
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/README.md b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/README.md
new file mode 100644
index 0000000..96b32bf
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/README.md
@@ -0,0 +1,27 @@
+<h1><div align=”center”><b>SubTopic: The Second Derivative Test</b></h1></div>
+<br/></br>
+
+<tab>file1_Second_order_partial_derivatives
+
+![file1_Second_order_partial_derivatives](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file1_Second_order_partial_derivatives.gif?raw=true)
+<br/></br>
+<br/></br>
+
+<tab>file2_Nondegenerate_Hessian_Matrix
+
+![file2_Nondegenerate_Hessian_Matrix](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file2_Nondegenerate_Hessian_Matrix.gif?raw=true)
+<br/></br>
+<br/></br>
+
+<tab>file3_Degenerate_Hessian_Matrix
+
+![file3_Degenerate_Hessian_Matrix](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file3_Degenerate_Hessian_Matrix.gif?raw=true)
+<br/></br>
+<br/></br>
+
+<tab>file4_Contour_Diagram
+
+![file4_Contour_Diagram](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file4_Contour_Diagram.gif?raw=true)
+<br/></br>
+<br/></br>
+
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file1_Second_order_partial_derivatives.gif b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file1_Second_order_partial_derivatives.gif
new file mode 100644
index 0000000..3471e4d
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file1_Second_order_partial_derivatives.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file1_Second_order_partial_derivatives.py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file1_Second_order_partial_derivatives.py
new file mode 100644
index 0000000..84052cc
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file1_Second_order_partial_derivatives.py
@@ -0,0 +1,78 @@
+from manimlib.imports import*
+
+#---- graphs of second-order partial derivatives of a function
+class SurfacesAnimation(ThreeDScene):
+ def construct(self):
+
+ axes = ThreeDAxes()
+ x_label = TextMobject('$x$').shift([5,0.5,0]) #---- x axis
+ y_label = TextMobject('$y$').shift([0.5,4,0]).rotate(-4.5) #---- y axis
+
+ #---- surface of function: f(x,y) = (x^2+y^2)^2
+ surface_f = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ ((u**2)+(v**2))**2
+ ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[GREEN_D, GREEN_E]).scale(1)
+
+ #---- surface of second-order partial derivative f_xx
+ surface_fxx = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ (3*u**2)+(v**2)
+ ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[YELLOW_D, YELLOW_E]).shift([0,0,0]).scale(0.6)
+
+ #---- surface of second-order partial derivative f_yy
+ surface_fyy = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ (u**2)+(3*v**2)
+ ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[PURPLE_D, PURPLE_E]).scale(0.6).shift([0,0,0])
+
+ #---- surface of second-order partial derivative f_xy = f_yx
+ surface_fxy = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ 8*u*v
+ ]),v_min=-1,v_max=1,u_min=-1,u_max=1,checkerboard_colors=[TEAL_D, TEAL_E]).scale(0.6)
+
+ f_text= TextMobject("$f(x,y) = (x^2+y^2)^2$",color = GREEN).scale(0.7).to_corner(UL)
+
+ fxx_text= TextMobject("$f_{xx} = 12x^2+4y^2$ (Concavity along x axis)",color = YELLOW).scale(0.5).to_corner(UL)
+
+ fyy_text= TextMobject("$f_{yy} = 4x^2+12y^2$(Concavity along y axis)",color = PURPLE).scale(0.5).to_corner(UL)
+
+ fxy_text= TextMobject("$f_{xy} = f_{yx} = 8xy$ (Twisting of the function)",color = TEAL).scale(0.5).to_corner(UL)
+
+
+ self.set_camera_orientation(phi = 40 * DEGREES, theta = 45 * DEGREES)
+ self.begin_ambient_camera_rotation(rate = 0.1)
+ self.add_fixed_in_frame_mobjects(f_text)
+ self.add(axes)
+ self.add(x_label)
+ self.add(y_label)
+ self.wait(1)
+ self.play(Write(surface_f))
+ self.wait(2)
+ self.play(FadeOut(f_text))
+
+
+ self.play(ReplacementTransform(surface_f,surface_fxx))
+
+ self.add_fixed_in_frame_mobjects(fxx_text)
+ self.wait(2)
+ self.play(FadeOut(fxx_text))
+
+ self.play(ReplacementTransform(surface_fxx,surface_fyy))
+ self.add_fixed_in_frame_mobjects(fyy_text)
+ self.wait(2)
+ self.play(FadeOut(fyy_text))
+
+ self.play(ReplacementTransform(surface_fyy,surface_fxy))
+ self.move_camera(phi = 35 * DEGREES, theta = 80 * DEGREES)
+ self.add_fixed_in_frame_mobjects(fxy_text)
+ self.wait(2)
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file2_Nondegenerate_Hessian_Matrix.gif b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file2_Nondegenerate_Hessian_Matrix.gif
new file mode 100644
index 0000000..0d58b4f
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file2_Nondegenerate_Hessian_Matrix.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file2_Nondegenerate_Hessian_Matrix.py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file2_Nondegenerate_Hessian_Matrix.py
new file mode 100644
index 0000000..32c1559
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file2_Nondegenerate_Hessian_Matrix.py
@@ -0,0 +1,158 @@
+from manimlib.imports import*
+import math as m
+
+class Minima(ThreeDScene):
+ def construct(self):
+
+ heading = TextMobject("Nondegenerate Hessian Matrix",color = BLUE)
+
+ axes = ThreeDAxes()
+ label_x = TextMobject("$x$").shift([5.5,-0.3,0]) #---- x axis
+ label_y = TextMobject("$y$").shift([-0.3,5.5,0]).rotate(-4.5) #---- y axis
+
+ h_text = TextMobject("Case 1: $\\frac{\\partial^2 f}{\\partial x^2}>0$ and $\\frac{\\partial^2 f}{\\partial y^2}>0$").scale(1)
+
+ #---- determiniant of Hessian Matrix
+ hessian_surface = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ -0.5*m.exp(-u**2-v**2)
+ ]),u_min = -PI, u_max = PI, v_min = -PI, v_max =PI).set_color(TEAL).shift([0,0,0]).scale(1).fade(0.2)
+
+ det_text= TextMobject("$det \\hspace{1mm} H = (\\frac{\\partial^2 f}{\\partial x^2})(\\frac{\\partial^2 f}{\\partial y^2})-(\\frac{\\partial^2 f}{\\partial x \\partial y})^2 $").to_corner(UL).scale(0.7)
+
+ #---- function f(x,y)
+ f_surface = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ u**2+v**2
+ ]),u_min = -1.3, u_max = 1.3, v_min = -1.3, v_max = 1.3).set_color(TEAL).shift([0,0,-0.5])
+
+ f_text= TextMobject("surface of the function").to_corner(UL).scale(0.8)
+
+ d = Dot(color = "#800000").shift([0,0,-0.52]) #---- critical point
+
+ self.set_camera_orientation(phi = 75*DEGREES, theta = 40*DEGREES)
+ self.add_fixed_in_frame_mobjects(heading)
+ self.wait(1)
+ self.play(FadeOut(heading))
+ self.wait(1)
+ self.add_fixed_in_frame_mobjects(h_text)
+ self.wait(1)
+ self.play(FadeOut(h_text))
+ self.wait(1)
+ self.add(axes)
+ self.add(label_x)
+ self.add(label_y)
+ self.play(Write(hessian_surface))
+ self.wait(1)
+ self.add_fixed_in_frame_mobjects(det_text)
+ self.move_camera(phi = 90*DEGREES, theta= 60*DEGREES)
+ self.play(Write(d))
+ self.wait(1)
+ self.play(FadeOut(det_text),ReplacementTransform(hessian_surface,f_surface))
+ self.wait(1)
+ self.add_fixed_in_frame_mobjects(f_text)
+ self.wait(1)
+ self.play(FadeOut(f_text),FadeOut(f_surface),FadeOut(axes),FadeOut(label_x),FadeOut(label_y),FadeOut(d))
+
+class Maxima(ThreeDScene):
+ def construct(self):
+
+ axes = ThreeDAxes()
+ label_x = TextMobject("$x$").shift([5.5,-0.3,0]) #---- x axis
+ label_y = TextMobject("$y$").shift([-0.3,5.5,0]).rotate(-4.5) #---- y axis
+
+ h_text = TextMobject("Case 2: $\\frac{\\partial^2 f}{\\partial x^2}<0$ and $\\frac{\\partial^2 f}{\\partial y^2}<0$").scale(1)
+
+ #---- determiniant of Hessian Matrix
+ hessian_surface = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ 0.5*m.exp(-u**2-v**2)
+ ]),u_min = -PI, u_max = PI, v_min = -PI, v_max =PI).set_color(TEAL).shift([0,0,0]).scale(1).fade(0.2)
+
+ det_text= TextMobject("$det \\hspace{1mm} H = (\\frac{\\partial^2 f}{\\partial x^2})(\\frac{\\partial^2 f}{\\partial y^2})-(\\frac{\\partial^2 f}{\\partial x \\partial y})^2 $").to_corner(UL).scale(0.7)
+
+ #---- function g(x,y)
+ g_surface = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ -u**2-v**2
+ ]),u_min = -1.3, u_max = 1.3, v_min = -1.3, v_max = 1.3).set_color(TEAL).shift([0,0,0.5])
+
+ g_text= TextMobject("surface of the function").to_corner(UL).scale(0.8)
+
+ d = Dot(color = "#800000").shift([0,0,0.5]) #---- critical point
+
+ self.set_camera_orientation(phi = 75*DEGREES, theta = 40*DEGREES)
+ self.add_fixed_in_frame_mobjects(h_text)
+ self.wait(1)
+ self.play(FadeOut(h_text))
+ self.wait(1)
+ self.add(axes)
+ self.add(label_x)
+ self.add(label_y)
+ self.play(Write(hessian_surface))
+ self.wait(1)
+ self.add_fixed_in_frame_mobjects(det_text)
+ self.play(Write(d))
+ self.wait(1)
+ self.play(FadeOut(det_text),ReplacementTransform(hessian_surface,g_surface))
+ self.wait(1)
+ self.add_fixed_in_frame_mobjects(g_text)
+ self.wait(1)
+ self.play(FadeOut(g_text),FadeOut(g_surface),FadeOut(axes),FadeOut(label_x),FadeOut(label_y),FadeOut(d))
+
+class SaddlePoint(ThreeDScene):
+ def construct(self):
+
+ axes = ThreeDAxes()
+ label_x = TextMobject("$x$").shift([5.5,-0.3,0]) #---- x axis
+ label_y = TextMobject("$y$").shift([-0.3,5.5,0]).rotate(-4.5) #---- y axis
+
+ h_text = TextMobject("Case 3: $\\frac{\\partial^2 f}{\\partial x^2}$ and $\\frac{\\partial^2 f}{\\partial y^2}$ have opposite signs").scale(1)
+
+ #---- determiniant of Hessian Matrix
+ hessian_surface = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ m.exp(0.5*u**2-0.5*v**2)
+ ]),u_min = -1.2, u_max = 1.2, v_min = -2.5, v_max = 2.5).set_color(TEAL).shift([0,0,-1]).scale(1).fade(0.2)
+
+ det_text= TextMobject("$det \\hspace{1mm} H = (\\frac{\\partial^2 f}{\\partial x^2})(\\frac{\\partial^2 f}{\\partial y^2})-(\\frac{\\partial^2 f}{\\partial x \\partial y})^2 $").to_corner(UL).scale(0.7)
+
+ #---- function p(x,y)
+ p_surface = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ u**2-v**2
+ ]),u_min = -1, u_max = 1, v_min = -1, v_max =1).set_color(TEAL).shift([0,0,0]).scale(2)
+
+ p_text= TextMobject("surface of the function").to_corner(UL).scale(0.8)
+
+ d = Dot(color = "#800000").shift([0,0,0]) #---- critical point
+
+ self.set_camera_orientation(phi = 80*DEGREES, theta = 60*DEGREES)
+ self.add_fixed_in_frame_mobjects(h_text)
+ self.wait(1)
+ self.play(FadeOut(h_text))
+ self.wait(1)
+ self.add(axes)
+ self.add(label_x)
+ self.add(label_y)
+ self.wait(1)
+ self.play(Write(hessian_surface))
+ self.play(Write(d))
+ self.wait(1)
+ self.add_fixed_in_frame_mobjects(det_text)
+ self.wait(2)
+ self.play(FadeOut(det_text),ReplacementTransform(hessian_surface,p_surface))
+ self.add_fixed_in_frame_mobjects(p_text)
+ self.wait(2)
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file3_Degenerate_Hessian_Matrix.gif b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file3_Degenerate_Hessian_Matrix.gif
new file mode 100644
index 0000000..5aae300
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file3_Degenerate_Hessian_Matrix.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file3_Degenerate_Hessian_Matrix.py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file3_Degenerate_Hessian_Matrix.py
new file mode 100644
index 0000000..9310553
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file3_Degenerate_Hessian_Matrix.py
@@ -0,0 +1,45 @@
+from manimlib.imports import*
+import math as m
+
+class DegenerateHessian(ThreeDScene):
+ def construct(self):
+
+ heading = TextMobject("Degenerate Hessian Matrix",color = BLUE)
+
+ h_text = TextMobject("For $det \\hspace{1mm} H = 0$, the surface of the function at the critical point would be flat.").scale(0.7)
+
+ axes = ThreeDAxes()
+ label_x = TextMobject("$x$").shift([5.5,-0.3,0]) #---- x axis
+ label_y = TextMobject("$y$").shift([-0.3,5.5,0]).rotate(-4.5) #---- y axis
+
+ #---- function f(x,y)
+ f_surface = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ -u**4-v**4
+ ]),u_min = -0.8, u_max = 0.8, v_min = -0.8, v_max = 0.8).set_color(TEAL).shift([0,0,-0.5]).scale(2)
+
+ f_text= TextMobject("surface of the function").to_corner(UL).scale(0.5)
+
+ d = Dot(color = "#800000").shift([0,0,-0.5]) #---- critical point
+ plane = Square(color = YELLOW,fill_opacity= 0.2).shift([0,0,-0.5]).scale(1.3)
+
+ self.set_camera_orientation(phi = 70*DEGREES, theta = 45*DEGREES)
+ self.add_fixed_in_frame_mobjects(heading)
+ self.wait(1)
+ self.play(FadeOut(heading))
+ self.add_fixed_in_frame_mobjects(h_text)
+ self.wait(2)
+ self.play(FadeOut(h_text))
+ self.wait(1)
+ self.add(axes)
+ self.add(label_x)
+ self.add(label_y)
+ self.play(Write(f_surface))
+ self.add_fixed_in_frame_mobjects(f_text)
+ self.wait(1)
+ self.play(Write(d))
+ self.wait(1)
+ self.play(Write(plane))
+ self.wait(1)
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file4_Contour_Diagram.gif b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file4_Contour_Diagram.gif
new file mode 100644
index 0000000..41068e2
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file4_Contour_Diagram.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file4_Contour_Diagram.py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file4_Contour_Diagram.py
new file mode 100644
index 0000000..d3084e2
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/The-Second-Derivative-Test/file4_Contour_Diagram.py
@@ -0,0 +1,120 @@
+from manimlib.imports import*
+
+#---- contour diagram animation
+class ContourDiagram(ThreeDScene):
+ def construct(self):
+
+ heading = TextMobject("CONTOUR DIAGRAM", color = YELLOW).scale(1)
+
+ axes = ThreeDAxes()
+ label_x = TextMobject("$x$").shift([5.5,-0.5,0]) #---- x axis
+ label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5) #---- y axis
+
+ #---- surface of a paraboloid
+ surface = ParametricSurface(
+ lambda u, v: np.array([
+ np.cos(v)*u,
+ np.sin(v)*u,
+ u**2
+ ]),v_min = -2, v_max = 2, u_min = -2, u_max = 2, checkerboard_colors = [GREEN_B,GREEN_C,GREEN_D,GREEN_E]).shift([0,0,0]).scale(0.5)
+
+ #---- first contour projection
+ contour1 = ParametricSurface(
+ lambda u, v: np.array([
+ np.cos(TAU * v),
+ np.sin(TAU * v),
+ 2*(1 - 2.5*u)
+ ])).fade(0.5).scale(0.21).shift([0,0,1.01])
+
+ #---- first contour line
+ c_1 = Circle(color = BLUE).scale(0.21).shift([0,0,0]).rotate(0.1,DOWN)
+
+ #-------------------------------------------------
+
+ #---- second contour projection
+ contour2 = ParametricSurface(
+ lambda u, v: np.array([
+ np.cos(TAU * v),
+ np.sin(TAU * v),
+ 2*(1 - 1.6*u)
+ ])).fade(0.5).scale(0.41).shift([0,0,0.3]).set_color(RED)
+
+ #---- second contour line
+ c_2 = Circle(color = RED).scale(0.41).shift([0,0,0]).rotate(0.1,DOWN)
+
+ #-------------------------------------------------
+
+ #---- third contour projection
+ contour3 = ParametricSurface(
+ lambda u, v: np.array([
+ np.cos(TAU * v),
+ np.sin(TAU * v),
+ 2*(1 - 1.5*u)
+ ])).fade(0.5).scale(0.61).shift([0,0,0.4]).set_color(YELLOW)
+
+ #---- third contour line
+ c_3 = Circle(color = YELLOW).scale(0.61).shift([0,0,0])
+
+ #-------------------------------------------------
+
+ #---- fourth contour projection
+ contour4 = ParametricSurface(
+ lambda u, v: np.array([
+ np.cos(TAU * v),
+ np.sin(TAU * v),
+ 2*(1 - 1.5*u)
+ ])).fade(0.7).scale(0.81).shift([0,0,0.7]).set_color(PINK)
+
+ #---- fourth contour line
+ c_4 = Circle(color = PINK).scale(0.81).shift([0,0,0])
+
+ #-------------------------------------------------
+
+ #---- fifth contour projection
+ contour5 = ParametricSurface(
+ lambda u, v: np.array([
+ np.cos(TAU * v),
+ np.sin(TAU * v),
+ 2*(1 - 1.5*u)
+ ])).fade(0.7).scale(1.01).shift([0,0,1]).set_color(PURPLE)
+
+ #---- fifth contour line
+ c_5 = Circle(color = PURPLE).scale(1.01).shift([0,0,0])
+
+ c_text= TextMobject("Contour Lines").scale(0.5).shift(2*DOWN)
+ s = Square().scale(1.3)
+
+ self.set_camera_orientation(phi = 75 * DEGREES, theta = 10 * DEGREES)
+ self.add_fixed_in_frame_mobjects(heading)
+ self.wait(1)
+ self.play(FadeOut(heading))
+ self.wait(1)
+ self.add(axes)
+ self.add(label_x)
+ self.add(label_y)
+ self.play(Write(surface))
+ self.wait(1)
+ self.add(contour1)
+ self.wait(1)
+ self.play(Write(c_1))
+ self.play(ReplacementTransform(contour1,contour2))
+ self.wait(1)
+ self.play(Write(c_2))
+ self.play(ReplacementTransform(contour2,contour3))
+ self.wait(1)
+ self.play(Write(c_3))
+ self.play(ReplacementTransform(contour3,contour4))
+ self.wait(1)
+ self.play(Write(c_4))
+ self.play(ReplacementTransform(contour4,contour5))
+ self.wait(1)
+ self.play(Write(c_5))
+ self.wait(1)
+ self.play(FadeOut(contour5),FadeOut(axes),FadeOut(label_x),FadeOut(label_y),FadeOut(surface),FadeOut(contour5),FadeOut(contour4),FadeOut(contour3),FadeOut(contour2),FadeOut(contour1))
+ self.wait(1)
+ self.move_camera(phi=0 * DEGREES,theta= 90*DEGREES)
+ self.wait(1)
+ self.add_fixed_in_frame_mobjects(c_text)
+ self.wait(1)
+ self.play(ShowCreation(s),FadeOut(c_text))
+ self.wait(1)
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/README.md b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/README.md
new file mode 100644
index 0000000..ce4da11
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/README.md
@@ -0,0 +1,34 @@
+<h1><div align=”center”><b>SubTopic: Total Differential</b></h1></div>
+<br/></br>
+
+<tab>file1_Visualization_of_dz
+
+![file1_Visualization_of_dz](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file1_Visualization_of_dz.gif?raw=true)
+<br/></br>
+<br/></br>
+
+<tab>file2_Differentials
+
+![file2_Differentials](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file2_Differentials.gif?raw=true)
+
+<br/></br>
+<br/></br>
+
+<tab>file3_Total_differential_of_z
+
+![file3_Total_differential_of_z](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file3_Total_differential_of_z.gif?raw=true)
+<br/></br>
+<br/></br>
+
+<tab>file4_total_differential_change
+
+![file4_total_differential_change](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file4_total_differential_change.gif?raw=true)
+<br/></br>
+<br/></br>
+
+<tab>file5_Total_differential_approximation
+
+ ![file5_Total_differential_approximation](https://github.com/vnb09/FSF-mathematics-python-code-archive/blob/fsf_tasks/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file5_Total_differential_approximation.gif?raw=true)
+
+<br/></br>
+<br/></br>
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file1_Visualization_of_dz.gif b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file1_Visualization_of_dz.gif
new file mode 100644
index 0000000..2e148af
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file1_Visualization_of_dz.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file1_Visualization_of_dz.py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file1_Visualization_of_dz.py
new file mode 100644
index 0000000..1fdd0b9
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file1_Visualization_of_dz.py
@@ -0,0 +1,59 @@
+from manimlib.imports import*
+
+#---- visualization of total differential dz between two points lying on the surface of the function
+class differentialdz(ThreeDScene):
+
+ def construct(self):
+
+ axes = ThreeDAxes()
+ label_x = TextMobject("$x$").shift([5.5,-0.5,0]).fade(0.4) #---- x axis
+ label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5).fade(0.4) #---- y axis
+
+ #---- surface of the funtion f(x,y)
+ surface = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ u**2+v**2
+ ]),u_min=-1,u_max=1, v_min=-1,v_max=1).set_color("#FF69B4").fade(0.6).scale(2).shift(3*UP+1*LEFT)
+
+ d = Dot([1.4,1.75,1],color = '#00FFFF').rotate(1.571,UP) #---- point on the surface
+ d2 = Dot([2,2,1],color = '#00FFFF').rotate(1.571,UP) #---- point on the surface
+
+ p1 = TextMobject("$P_1$",color ='#ADFF2F').scale(0.6).shift(2*RIGHT+1*UP)
+ p2 = TextMobject("$P_2$",color = '#ADFF2F').scale(0.6).shift(2.6*RIGHT+0.9*UP)
+
+ l = DashedLine(color = '#800000').rotate(1.571,UP).scale(1).shift(1.7*UP+1.6*RIGHT)
+ l2 = DashedLine(color = '#800000').rotate(1.571,UP).scale(0.8).shift(2.26*UP+1.2*RIGHT)
+
+ l_text = TextMobject("$(x_1,y_1)$",color = '#ADFF2F').scale(0.6).shift(2*RIGHT+1.6*DOWN)
+ l2_text = TextMobject("$(x_2,y_2)$",color = '#ADFF2F').scale(0.6).shift(2.7*RIGHT+1.2*DOWN)
+
+ a = Arrow(color = '#FFFACD').scale(0.7).rotate(1.38,RIGHT).shift(2.5*LEFT+3.1*UP)
+
+ a_text = TextMobject("$dz$",color='#800000').scale(0.5).shift(2.3*RIGHT+0.5*UP)
+
+ plane = Rectangle(color = '#E6E6FA',fill_opacity = 1).scale(3).shift(1*RIGHT+3*UP).fade(0.9)
+
+ label = TextMobject("$z = f(x,y)$").scale(0.6).shift(3.5*RIGHT+1.8*UP)
+
+ self.set_camera_orientation(phi=75*DEGREES,theta=-10*DEGREES)
+ self.add(axes)
+ self.add(label_x)
+ self.add(label_y)
+ self.wait(1)
+ self.play(Write(plane))
+ self.play(Write(surface))
+ self.add_fixed_in_frame_mobjects(label)
+ self.wait(1)
+ self.play(ShowCreation(l),ShowCreation(l2),Write(d),Write(d2))
+ self.wait(1)
+ self.add_fixed_in_frame_mobjects(p1)
+ self.add_fixed_in_frame_mobjects(p2)
+ self.wait(1)
+ self.add_fixed_in_frame_mobjects(l_text)
+ self.add_fixed_in_frame_mobjects(l2_text)
+ self.play(ShowCreation(a))
+ self.wait(1)
+ self.add_fixed_in_frame_mobjects(a_text)
+ self.wait(2)
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file2_Differentials.gif b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file2_Differentials.gif
new file mode 100644
index 0000000..6baf271
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file2_Differentials.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file2_Differentials.py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file2_Differentials.py
new file mode 100644
index 0000000..1025210
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file2_Differentials.py
@@ -0,0 +1,77 @@
+from manimlib.imports import*
+
+#---- visualization of the differentials along the axes
+class differentials(ThreeDScene):
+ def construct(self):
+
+ axes = ThreeDAxes()
+ label_x = TextMobject("$x$").shift([5.5,-0.3,0]).fade(0.4) #---- x axis
+ label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5).fade(0.4) #---- y axis
+
+ surface = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ u**2+v**2
+ ]),u_min=-1,u_max=1, v_min=-1,v_max=1).set_color("#FF69B4").shift([0,2.5,0.3]).scale(1.2) #----surface z = f(x,y)
+
+
+
+ plane = Rectangle(color = '#E6E6FA',fill_opacity = 1).scale(3).shift(-1*RIGHT+3*UP).fade(0.9)
+
+ d = Dot([1,2,1],color = '#9400D3').rotate(1.571,UP)
+ d2 = Dot([2,2.9,1],color = '#9400D3').rotate(1.571,UP)
+
+ p1 = TextMobject("$P_1$",color ='#ADFF2F').scale(0.6).shift(2*RIGHT+1*UP)
+ p2 = TextMobject("$P_2$",color = '#ADFF2F').scale(0.6).shift(2.6*RIGHT+0.4*UP)
+
+
+ l1 = DashedLine(color = '#00BFFF').scale(1.6).shift(3.5*UP+3.25*LEFT).rotate(1.571)
+ l2 = DashedLine(color = '#00BFFF').scale(1).shift(4*UP+2*LEFT).rotate(1.571)
+
+ label_dz= TextMobject("$dz$").scale(0.4).shift(5.3*RIGHT+0.4*UP)
+
+
+ l3 = Line(color = '#FFDAB9').scale(0.8).shift(1.95*UP+0.7*RIGHT).rotate(1.571,DOWN).fade(0.2)
+ l4 = Line(color = '#FFDAB9').scale(0.6).shift(2.86*UP+0.9*RIGHT).rotate(1.571,DOWN).fade(0.2)
+
+ line_y1 = DashedLine(color = '#00BFFF').scale(1.3).shift(0.82*UP+3.25*RIGHT).rotate(1.571)
+ line_y2 = DashedLine(color = '#00BFFF').scale(1.7).shift(1.2*UP+2.8*RIGHT).rotate(1.571)
+
+ label_dy= TextMobject("$dy$").scale(0.6).shift(3*RIGHT+0.8*DOWN).rotate(math.radians(90))
+
+ line_x1 = DashedLine(color = '#00BFFF').scale(1.5).shift(2.2*UP+1.6*RIGHT).rotate(1.571,RIGHT)
+ line_x2 = DashedLine(color = '#00BFFF').scale(1.2).shift(2.9*UP+1.6*RIGHT).rotate(1.571,RIGHT)
+
+ label_dx= TextMobject("$dx$").scale(0.4).shift(-0.4*UP+2.5*RIGHT)
+
+ label = TextMobject("$f(x,y)$").scale(0.6).shift(4*RIGHT+3*UP)
+
+
+ self.set_camera_orientation(phi=75*DEGREES,theta=10*DEGREES)
+ self.add(axes)
+ self.add(label_x)
+ self.add(label_y)
+ self.play(Write(plane))
+ self.play(Write(surface))
+ self.add_fixed_in_frame_mobjects(label)
+ self.wait(1)
+ self.play(Write(d),Write(d2))
+ self.add_fixed_in_frame_mobjects(p1)
+ self.add_fixed_in_frame_mobjects(p2)
+ self.wait(1)
+ self.play(Write(l1))
+ self.play(Write(l2))
+ self.add_fixed_in_frame_mobjects(label_dz)
+ self.wait(1)
+ self.play(Write(l3))
+ self.play(Write(l4))
+ self.wait(1)
+ self.play(Write(line_y1))
+ self.play(Write(line_y2))
+ self.play(ShowCreation(label_dy))
+ self.wait(1)
+ self.play(Write(line_x1))
+ self.play(Write(line_x2))
+ self.add_fixed_in_frame_mobjects(label_dx)
+ self.wait(1)
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file3_Total_differential_of_z.gif b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file3_Total_differential_of_z.gif
new file mode 100644
index 0000000..a54d2da
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file3_Total_differential_of_z.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file3_Total_differential_of_z.py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file3_Total_differential_of_z.py
new file mode 100644
index 0000000..b8d6f96
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file3_Total_differential_of_z.py
@@ -0,0 +1,100 @@
+from manimlib.imports import*
+
+#---- visualization of total differential definition
+class totaldifferential(ThreeDScene):
+ def construct(self):
+ axes = ThreeDAxes().fade(0.5)
+ surface = ParametricSurface(
+ lambda u, v: np.array([
+ u,
+ v,
+ u**2+v**2
+ ]),u_min=-1,u_max=1, v_min=-1,v_max=1).set_color("#FF69B4").fade(0.6).shift([1,0.8,1.5]).scale(2)
+
+ plane = Rectangle(color = '#E6E6FA',fill_opacity = 1).scale(3).shift(-1*RIGHT+3*UP).fade(0.9)
+ label_x = TextMobject("$x$").shift(5*RIGHT+0.4*DOWN).rotate(1.571)
+ label_y = TextMobject("$y$").shift(0.3*DOWN+5.6*RIGHT).scale(0.5)
+ label_z = TextMobject("$z$").shift(3.5*UP+0.2*LEFT).scale(0.5)
+
+ s1 = Square(color = '#00FF00',fill_opacity=0.4).shift([1,1,0])
+ s2 = Square(color = '#00FF00',fill_opacity=0.4).shift([1,1,3]).scale(0.95)
+
+ l1 = Line([2,0,3],[2,0,0],color = '#FFFACD')
+ l2 = Line([0,2,3],[0,2,0],color = '#FFFACD')
+ l3 = Line([2,1.95,3],[2,2,0],color = '#FFFACD')
+
+ d1 = Dot([2,0,1.5],color = '#FFD700').rotate(1.571,UP)
+ d1_text = TextMobject("$P1$").scale(0.4).shift(1.2*LEFT+1.1*UP)
+
+ d2 = Dot([0,2,3],color = '#FFD700').rotate(1.571,UP)
+ d2_text = TextMobject("$P2$").scale(0.4).shift(2.3*RIGHT+3.1*UP)
+
+ d3 = Dot([2,2,2],color = '#FFD700').rotate(1.571,UP)
+ d3_text = TextMobject("$Q$").scale(0.4).shift([1.6,-1,0]+2.5*UP)
+
+ s3 = Square().shift([1,1,1.5]).scale(0.95)
+ s4 = Square().shift([1,1,2]).scale(0.95)
+
+ m1_line = DashedLine([2,0,1.5],[2,2,2],color = '#87CEEB')
+ m2_line = DashedLine([2,2,2],[0,2,3],color = '#87CEEB')
+
+ dx_line = Line([2,2,0],[4,2,0],color = '#00FF7F')
+ dy_line = Line([2,2,0],[2,4,0],color = '#00FF7F')
+
+ dx = DashedLine([3.5,0,0],[3.5,2,0],color = '#87CEEB')
+ dy = DashedLine([0,3.5,0],[2,3.5,0],color = '#87CEEB')
+
+ dx_text = TextMobject("$dx$").scale(0.8).shift([4,1,0]).rotate(1.571)
+ dy_text = TextMobject("$dy$").scale(0.8).shift([1,3.8,0]).rotate(math.radians(180))
+
+ parx_line = Line([0,2,1.5],[0,5,1.5],color = '#00FF7F')
+ parm_line = Line([0,2,2],[0,5,2],color = '#00FF7F')
+ pary_line = Line([0,2.1,3],[0,5,3],color = '#00FF7F')
+
+ delx = DashedLine([0,4,2],[0,4,1.5],color = '#F0F8FF')
+ dely = DashedLine([0,4,3],[0,4,2],color = '#FAEBD7')
+
+ dely_text = TextMobject("$\\frac{\\partial z}{\\partial y}dy$").shift(4.6*RIGHT+2.3*UP).scale(0.4)
+ delx_text = TextMobject("$\\frac{\\partial z}{\\partial x}dx$").shift(4.6*RIGHT+1.4*UP).scale(0.4)
+
+
+ self.set_camera_orientation(phi=75*DEGREES,theta=20*DEGREES)
+ self.add(axes)
+ self.play(Write(plane))
+ self.play(ShowCreation(label_x))
+ self.add_fixed_in_frame_mobjects(label_y)
+ self.add_fixed_in_frame_mobjects(label_z)
+ self.wait(1)
+ self.play(Write(surface))
+ self.play(ShowCreation(d1))
+ self.add_fixed_in_frame_mobjects(d1_text)
+ self.play(ShowCreation(d2))
+ self.add_fixed_in_frame_mobjects(d2_text)
+ self.wait(1)
+ self.play(Write(s2))
+ self.wait(1)
+ self.play(Write(l1),Write(l2),Write(l3))
+ self.wait(1)
+ self.play(Write(s1))
+ self.wait(1)
+ self.play(FadeOut(surface))
+ self.play(ShowCreation(d3))
+ self.add_fixed_in_frame_mobjects(d3_text)
+ self.play(ShowCreation(m1_line))
+ self.play(ShowCreation(m2_line))
+ self.wait(1)
+ self.play(ShowCreation(dx_line),ShowCreation(dx),ShowCreation(dx_text))
+ self.wait(1)
+ self.play(ShowCreation(dy_line),ShowCreation(dy),ShowCreation(dy_text))
+ self.wait(2)
+ self.play(Write(s3))
+ self.play(Write(s4))
+ self.wait(1)
+ self.play(ShowCreation(parx_line),ShowCreation(parm_line),ShowCreation(pary_line))
+ self.wait(1)
+ self.play(ShowCreation(dely))
+ self.add_fixed_in_frame_mobjects(dely_text)
+ self.wait(1)
+ self.play(ShowCreation(delx))
+ self.add_fixed_in_frame_mobjects(delx_text)
+ self.wait(1)
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file4_total_differential_change.gif b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file4_total_differential_change.gif
new file mode 100644
index 0000000..f2227a8
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file4_total_differential_change.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file4_total_differential_change.py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file4_total_differential_change.py
new file mode 100644
index 0000000..78e41a2
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file4_total_differential_change.py
@@ -0,0 +1,54 @@
+from manimlib.imports import*
+
+
+class firstScene(ThreeDScene):
+
+ def construct(self):
+
+ axes = ThreeDAxes()
+
+ s = Rectangle(color = '#F08080',fill_opacity=1).fade(0.7).shift(1.9*UP+5*LEFT).scale(0.9)#----surface z = f(x,y)
+
+ s2= Rectangle(color = '#F08080',fill_opacity=1).fade(0.7).shift(2.4*UP+3.1*RIGHT).scale(0.6) #----reflection of the surface on the x-y plane
+
+ l1 = DashedLine(color = '#AFEEEE').rotate(1.571,UP).scale(1).shift(1.53*UP+1.5*RIGHT)
+ l2 = DashedLine(color = '#AFEEEE').rotate(1.571,UP).scale(1).shift(2.9*UP+1.4*RIGHT)
+ l3 = DashedLine(color = '#AFEEEE').rotate(1.571,UP).scale(1).shift(1.5*UP-1.6*RIGHT)
+ l4 = DashedLine(color = '#AFEEEE').rotate(1.571,UP).scale(1).shift(2.9*UP-1.75*RIGHT)
+
+
+ l1_text = TextMobject("$(x+\\triangle x,y)$").shift(RIGHT+1.7*DOWN).scale(0.4)
+ l2_text = TextMobject("$(x+\\triangle x,y+\\triangle y)$").shift(3*RIGHT+1.8*DOWN).scale(0.4)
+ l3_text = TextMobject("$f(x,y)$").shift(1.6*RIGHT+1.5*UP).scale(0.4)
+ l4_text = TextMobject("$(x,y+\\triangle y)$").shift(3.5*RIGHT+0.7*DOWN).scale(0.4)
+
+ label_x = TextMobject("$x$").shift(5*RIGHT+0.4*DOWN)
+ label_y = TextMobject("$y$").shift(5*UP-0.6*RIGHT)
+
+ self.add(axes)
+ self.set_camera_orientation(phi=75*DEGREES,theta=10*DEGREES)
+ self.wait(1)
+ self.play(ShowCreation(label_x),ShowCreation(label_y))
+ self.play(Write(s))
+ self.wait(1)
+ self.add_fixed_in_frame_mobjects(l3_text)
+ self.wait(1)
+ self.play(Write(l3))
+ self.wait(1)
+ self.play(Write(l1))
+ self.add_fixed_in_frame_mobjects(l1_text)
+ self.wait(1)
+ self.play(Write(l2))
+ self.add_fixed_in_frame_mobjects(l2_text)
+ self.wait(1)
+ self.play(Write(l4))
+ self.add_fixed_in_frame_mobjects(l4_text)
+ self.wait(1)
+ self.play(Write(s2))
+ self.wait(1)
+
+
+
+
+
+
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file5_Total_differential_approximation.gif b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file5_Total_differential_approximation.gif
new file mode 100644
index 0000000..ebbf240
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file5_Total_differential_approximation.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file5_Total_differential_approximation.py b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file5_Total_differential_approximation.py
new file mode 100644
index 0000000..e7b39bb
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/approximations-and-optimizations/Total-Differential/file5_Total_differential_approximation.py
@@ -0,0 +1,52 @@
+from manimlib.imports import*
+
+#---- approximation value of function between two points using total differentials
+class approximation(ThreeDScene):
+
+ def construct(self):
+
+ axes = ThreeDAxes()
+ label_x = TextMobject("$x$").shift([5.5,-0.3,0]).fade(0.4) #---- x axis
+ label_y = TextMobject("$y$").shift([-0.5,5.5,0]).rotate(-4.5).fade(0.4) #---- y axis
+
+ surface = ParametricSurface(
+ lambda u, v: np.array([
+ np.sin(u),
+ v,
+ -u**2-v
+ ]),u_min=-1,u_max=1, v_min=-1,v_max=1).set_color("#00008B").scale(2).shift(3.8*UP+2*LEFT)
+
+ d = Dot([1.4,1.75,1],color = '#00FFFF').rotate(1.571,UP)
+ d2 = Dot([2,2,1],color = '#00FFFF').rotate(1.571,UP)
+
+ l = DashedLine(color = '#800000').rotate(1.571,UP).scale(1).shift(1.7*UP+1.6*RIGHT)
+ l2 = DashedLine(color = '#800000').rotate(1.571,UP).scale(0.8).shift(2.26*UP+1.2*RIGHT)
+
+ l_text = TextMobject("$(x_1,y_1)$",color = '#ADFF2F').scale(0.6).shift(2*RIGHT+1.6*DOWN)
+ l2_text = TextMobject("$(x_2,y_2)$",color = '#ADFF2F').scale(0.6).shift(2.7*RIGHT+1.2*DOWN)
+
+ plane = Rectangle(color = '#E6E6FA',fill_opacity = 1).scale(3).shift(1*RIGHT+3*UP).fade(0.9)
+
+ tangentplane = Rectangle(color = '#E6E6FA',fill_opacity = 1).scale(1.1).shift(2*LEFT+3.4*UP).fade(0.5).rotate(0.8,RIGHT)
+ tangentplane_text = TextMobject("Tangent Plane").scale(0.4).shift(3*RIGHT+1*UP)
+
+ label = TextMobject("$z = f(x,y)$").scale(0.6).shift(4*RIGHT+3*UP)
+
+ self.set_camera_orientation(phi=75*DEGREES,theta=-10*DEGREES)
+ self.add(axes)
+ self.add(label_x)
+ self.add(label_y)
+ self.wait(1)
+ self.play(Write(plane))
+ self.wait(1)
+ self.play(Write(surface))
+ self.add_fixed_in_frame_mobjects(label)
+ self.wait(1.5)
+ self.play(ShowCreation(l),ShowCreation(l2),Write(d),Write(d2))
+ self.wait(1)
+ self.add_fixed_in_frame_mobjects(l_text)
+ self.add_fixed_in_frame_mobjects(l2_text)
+ self.wait(1)
+ self.play(Write(tangentplane))
+ self.add_fixed_in_frame_mobjects(tangentplane_text)
+ self.wait(2)
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/README.md b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/README.md
new file mode 100644
index 0000000..10786d6
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/README.md
@@ -0,0 +1,11 @@
+**file1_simple_visualization.py** <br>
+![file1_simple_visualization.py](https://raw.githubusercontent.com/saarthdeshpande/FSF-mathematics-python-code-archive/master/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file1_simple_visualization.gif)
+
+**file2_circle_curvature.py** <br>
+![file2_circle_curvature.py](https://raw.githubusercontent.com/saarthdeshpande/FSF-mathematics-python-code-archive/master/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file2_circle_curvature.gif)
+
+**file3_curvature_interpretation.py** <br>
+![file3_curvature_interpretation.py](https://github.com/saarthdeshpande/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file3_curvature_interpretation.gif)
+
+**file4_different_curvature_single_curve.py** <br>
+![file4_different_curvature_single_curve.py](https://raw.githubusercontent.com/saarthdeshpande/FSF-mathematics-python-code-archive/master/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file4_different_curvature_single_curve.gif)
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file1_simple_visualization.gif b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file1_simple_visualization.gif
new file mode 100644
index 0000000..3f7ecd1
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file1_simple_visualization.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file1_simple_visualization.py b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file1_simple_visualization.py
index 7ab8908..45058d7 100644
--- a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file1_simple_visualization.py
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file1_simple_visualization.py
@@ -32,6 +32,8 @@ class randomcurve(GraphScene):
dot6 = Dot(tgt6.get_start(), color = RED)
dot7 = Dot(tgt7.get_start(), color = RED)
+ arc = ArcBetweenPoints(dot1.get_center(), dot2.get_center(), color = GREEN_SCREEN, angle = 10*DEGREES).rotate(180*DEGREES)
+
dots = VGroup(*[dot1, dot2, dot3, dot4, dot5, dot6, dot7])
ds = CurvedArrow((-4, 2, 0), (tgt1.get_start() + tgt2.get_start()) / 2, color = YELLOW)
@@ -43,15 +45,13 @@ class randomcurve(GraphScene):
self.wait(2)
self.play(FadeOut(intro))
self.setup_axes(hideaxes=False)
- self.play(ShowCreation(graphobj), FadeIn(dots), FadeIn(ds), FadeIn(ds_text))
+ self.play(ShowCreation(graphobj), FadeIn(dots), FadeIn(ds), FadeIn(ds_text), FadeIn(arc))
self.wait(1)
- self.play(FadeOut(self.axes), FadeOut(graphobj),FadeIn(mid), FadeOut(dots), FadeOut(ds), FadeOut(ds_text))
- self.wait(2)
+ self.play(FadeOut(self.axes), FadeOut(arc), FadeOut(graphobj),FadeIn(mid), FadeOut(dots), FadeOut(ds), FadeOut(ds_text))
+ self.wait(3)
self.play(FadeOut(mid))
self.play(FadeIn(self.axes), FadeIn(graphobj), FadeIn(dots))
-
-
tangents = [tgt1, tgt2, tgt3, tgt4, tgt5, tgt6, tgt7]
for tangent in tangents:
self.play(ShowCreation(tangent), run_time = 0.2)
@@ -60,7 +60,7 @@ class randomcurve(GraphScene):
self.play(FadeOut(self.axes), FadeOut(graphobj), FadeOut(tangents), FadeOut(dots))
self.wait(1)
self.play(FadeIn(outro))
- self.wait(2)
+ self.wait(3)
self.play(FadeOut(outro))
self.wait(1)
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file2_circle_curvature.gif b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file2_circle_curvature.gif
new file mode 100644
index 0000000..989a3b7
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file2_circle_curvature.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file3_curvature_interpretation.gif b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file3_curvature_interpretation.gif
new file mode 100644
index 0000000..22a450a
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file3_curvature_interpretation.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file3_curvature_interpretation.py b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file3_curvature_interpretation.py
new file mode 100644
index 0000000..d8dd0a4
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file3_curvature_interpretation.py
@@ -0,0 +1,42 @@
+from manimlib.imports import *
+
+class interpretation(Scene):
+ def construct(self):
+ tgt = Vector((1, 2, 0), color = YELLOW)
+ tgtText = TextMobject(r'$r\prime (t)$').next_to(tgt, UP, buff = 0).scale(0.7)
+ tgt2 = DashedLine((0,0,0),(1, 2, 0), color = GRAY).shift(DOWN + 2*RIGHT)
+
+ nm = Vector((2, -1, 0), color = BLUE)
+ nmText = TextMobject(r'$r\prime\prime (t)$').next_to(nm, DOWN+RIGHT, buff = 0).scale(0.7)
+ nm2 = DashedLine((0,0,0),(2, -1, 0), color = GRAY).shift(2*UP + RIGHT)
+ square = Square(fill_color = WHITE, fill_opacity = 0.2).rotate(63*DEGREES).shift(0.5*UP +1.5*RIGHT).scale(1.1)
+ square.set_stroke(width = 0.1)
+ arrow = CurvedArrow(square.get_center() + np.array([2,1,0]), square.get_center() + np.array([0.5,0,0]))
+ arrowText = TextMobject(r'$r\prime (t)\times r\prime\prime (t)$').next_to(arrow.get_start(), DOWN+1*RIGHT, buff = 0).scale(0.7)
+
+ text1 = TextMobject(r'$\left|\frac{dT}{ds}\right| = \frac{\left|\frac{dT}{dt}\right|}{\left|\frac{ds}{dt}\right|}$').shift(UP+3*LEFT)
+ text2 = TextMobject(r'$\left|\frac{dT}{ds}\right| = \frac{\frac{r\prime\prime (t)}{\left| r\prime (t)\right|}\times\frac{r\prime (t)}{\left| r\prime (t)\right|}}{\left|r\prime (t)\right|}$').next_to(text1, DOWN, buff = 0.1)
+ unit = VGroup(*[tgt, tgt2, nm, nm2])
+
+ # self.play(FadeIn(VGroup(*[tgt, tgt2, nm, nm2, nmText, tgtText, square, arrow, arrowText])))
+ tgt2text = TextMobject(r'$\frac{r\prime (t)}{\left| r\prime (t)\right|}$').shift(1.1*UP).scale(0.7).rotate(63*DEGREES )
+ nm2text = TextMobject(r'$\frac{r\prime\prime (t)}{\left| r\prime (t)\right|}$').scale(0.7).shift(0.7*RIGHT+0.8*DOWN).rotate(-25*DEGREES)
+ unit2 = unit.copy().scale(0.5).shift(0.75*LEFT+0.25*DOWN)
+
+ self.play(FadeIn(VGroup(*[tgt, tgtText])))
+ self.wait(1)
+ self.play(FadeIn(VGroup(*[nm, nmText])))
+ self.wait(1)
+ self.play(FadeIn(VGroup(*[tgt2, nm2])))
+ self.wait(1)
+ self.play(FadeIn(VGroup(*[square, arrow, arrowText])))
+ self.wait(1)
+ self.play(FadeIn(unit2))
+ self.wait(1)
+ self.play(FadeIn(VGroup(*[tgt2text, nm2text])))
+ self.wait(1)
+ self.play(FadeIn(text1))
+ self.wait(1)
+ self.play(FadeIn(text2))
+ self.wait(2)
+ self.play(FadeOut(VGroup(*[tgt2text, nm2text, text1, text2, tgt, tgtText,nm, nmText,tgt2, nm2,square, arrow, arrowText,unit2])))
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file3_curvature_intuition.gif b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file3_curvature_intuition.gif
deleted file mode 100644
index 0d6fdcf..0000000
--- a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file3_curvature_intuition.gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file4_different_curvature_single_curve.gif b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file4_different_curvature_single_curve.gif
new file mode 100644
index 0000000..3b78b5f
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file4_different_curvature_single_curve.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file4_different_curvature_single_curve.py b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file4_different_curvature_single_curve.py
index d71adda..56b7fbb 100644
--- a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file4_different_curvature_single_curve.py
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/arc-length-and-curvature/file4_different_curvature_single_curve.py
@@ -8,7 +8,9 @@ class GR(GraphScene):
"x_max": 6,
"y_min": -6,
"y_max": 10,
- "graph_origin": ORIGIN
+ "graph_origin": ORIGIN,
+ 'x_tick_frequency': 20,
+ 'y_tick_frequency': 20
}
def construct(self):
@@ -21,7 +23,7 @@ class GR(GraphScene):
tracker = ValueTracker(-3)
- text = TextMobject(r'The curvature at point $P_{1}$ is \\ lesser than that at point $P_{2}$: \\ as $\kappa = \frac{1}{R}$').shift(3.2*RIGHT+3*UP).scale(0.6)
+ text = TextMobject(r'$\because R_{1} > R_{2}$, the curvature at \\ point $P_{1}$ is less than that \\ at point $P_{2}$ as $\kappa = \frac{1}{R}$').shift(3.2*RIGHT+3*UP).scale(0.6)
dot1 = Dot((0,3,0), color = YELLOW)
dot1label = TextMobject(r'$P_{1}$').next_to(dot1, UP+RIGHT, buff = 0.1)
@@ -47,10 +49,30 @@ class GR(GraphScene):
line.move_to(p0)
return line
+ circle1 = Circle(radius = 0.8, color = GREY, opacity = 0.2).shift(2.2*UP)
+ tgt1 = Line((-2,3,0), (2,3,0), color = GREY, opacity = 0.2).scale(0.4)
+
+ r1 = Line(circle1.get_center(), circle1.get_center() + np.array([0,0.8,0]), color=GREEN_SCREEN)
+ r1label = TextMobject(r'$R_{1}$',color=WHITE).next_to(r1, RIGHT, buff = 0.1).scale(0.6)
+
+ curvature1 = VGroup(*[circle1, tgt1, r1, r1label])
+
+ circle2 = Circle(radius = 0.6, color = GREY, opacity = 0.2).shift(0.4*DOWN + 4*RIGHT)
+ tgt2 = Line((4,-2,0), (6, -2, 0), color = GREY, opacity = 0.2).scale(0.5).shift(LEFT + UP)
+
+ r2 = Line(circle2.get_center(), circle2.get_center() + np.array([0,-0.6,0]), color=GREEN_SCREEN)
+ r2label = TextMobject(r'$R_{2}$', color=WHITE).next_to(r2, 0.9*RIGHT, buff = 0).scale(0.6)
+
+ curvature2 = VGroup(*[circle2, tgt2, r2, r2label])
+
line = always_redraw(get_tangent_line)
self.add(graph,line, dots, text)
self.wait(1.2)
- self.play(tracker.set_value, 6, rate_func=smooth, run_time=13)
- self.play(FadeOut(VGroup(*[graph, self.axes, line, dots, text])))
+ self.play(tracker.set_value, 0, rate_func=smooth, run_time=5)
+ self.play(FadeIn(curvature1))
+ self.play(tracker.set_value, 4, rate_func=smooth, run_time=5)
+ self.play(FadeIn(curvature2))
+ self.play(tracker.set_value, 6, rate_func=smooth, run_time=3)
+ self.play(FadeOut(VGroup(*[curvature1, curvature2, graph, self.axes, line, dots, text])))
self.wait()
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/equations-of-planes-and-lines/README.md b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/equations-of-planes-and-lines/README.md
new file mode 100644
index 0000000..29d2f6a
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/equations-of-planes-and-lines/README.md
@@ -0,0 +1,14 @@
+**file1_line_eqn.py**<br>
+![file1_line_eqn.py](https://raw.githubusercontent.com/saarthdeshpande/FSF-mathematics-python-code-archive/master/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/equations-of-planes-and-lines/file1_line_eqn.gif)
+
+**file2_point_normal_form_plane.py**<br>
+![file2_point_normal_form_plane.py](https://raw.githubusercontent.com/saarthdeshpande/FSF-mathematics-python-code-archive/master/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/equations-of-planes-and-lines/file2_point_normal_form_plane.gif)
+
+**file3_intercept_form_plane.py**<br>
+![file3_intercept_form_plane.py](https://raw.githubusercontent.com/saarthdeshpande/FSF-mathematics-python-code-archive/master/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/equations-of-planes-and-lines/file3_intercept_form_plane.gif)
+
+**file4_3d_plane.py**<br>
+![file4_3d_plane.py](https://raw.githubusercontent.com/saarthdeshpande/FSF-mathematics-python-code-archive/master/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/equations-of-planes-and-lines/file4_3d_plane.gif)
+
+**file5_vector_form_line.py**<br>
+![file5_vector_form_line.py](https://raw.githubusercontent.com/saarthdeshpande/FSF-mathematics-python-code-archive/master/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/equations-of-planes-and-lines/file5_vector_form_line.gif)
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/equations-of-planes-and-lines/__pycache__/file1_line_eqn.cpython-38.pyc b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/equations-of-planes-and-lines/__pycache__/file1_line_eqn.cpython-38.pyc
deleted file mode 100644
index e129d1d..0000000
--- a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/equations-of-planes-and-lines/__pycache__/file1_line_eqn.cpython-38.pyc
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/equations-of-planes-and-lines/__pycache__/file4_point_normal_form_plane.cpython-38.pyc b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/equations-of-planes-and-lines/__pycache__/file4_point_normal_form_plane.cpython-38.pyc
deleted file mode 100644
index 88377bb..0000000
--- a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/equations-of-planes-and-lines/__pycache__/file4_point_normal_form_plane.cpython-38.pyc
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/equations-of-planes-and-lines/file1_line_eqn.gif b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/equations-of-planes-and-lines/file1_line_eqn.gif
new file mode 100644
index 0000000..a8a301a
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/equations-of-planes-and-lines/file1_line_eqn.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/equations-of-planes-and-lines/file2_point_normal_form_plane.gif b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/equations-of-planes-and-lines/file2_point_normal_form_plane.gif
new file mode 100644
index 0000000..e651be0
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/equations-of-planes-and-lines/file2_point_normal_form_plane.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/equations-of-planes-and-lines/file5_vector_form_line.gif b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/equations-of-planes-and-lines/file5_vector_form_line.gif
new file mode 100644
index 0000000..b6fdb51
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/equations-of-planes-and-lines/file5_vector_form_line.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/README.md b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/README.md
new file mode 100644
index 0000000..8a47a0e
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/README.md
@@ -0,0 +1,11 @@
+**file1_parametric_circle..py** <br>
+![file1_parametric_circle.py](https://raw.githubusercontent.com/saarthdeshpande/FSF-mathematics-python-code-archive/master/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/file1_parametric_circle.gif)
+
+**file2_cycloid_manim.py** <br>
+![file2_cycloid_manim.py](https://raw.githubusercontent.com/saarthdeshpande/FSF-mathematics-python-code-archive/master/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/file2_cycloid_manim.gif)
+
+**file3_brachistochrone.py** <br>
+![file3_brachistochrone.py](https://raw.githubusercontent.com/saarthdeshpande/FSF-mathematics-python-code-archive/master/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/file3_brachistochrone.gif)
+
+**file4_helix_visualization.py** <br>
+![file4_helix_visualization.py](https://raw.githubusercontent.com/saarthdeshpande/FSF-mathematics-python-code-archive/master/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/file4_helix_visualization.gif)
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/__pycache__/file1_parametric_circle.cpython-38.pyc b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/__pycache__/file1_parametric_circle.cpython-38.pyc
deleted file mode 100644
index ad30b2a..0000000
--- a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/__pycache__/file1_parametric_circle.cpython-38.pyc
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/__pycache__/file4_helix_visualization.cpython-38.pyc b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/__pycache__/file4_helix_visualization.cpython-38.pyc
deleted file mode 100644
index 144d78d..0000000
--- a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/__pycache__/file4_helix_visualization.cpython-38.pyc
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/file1_parametric_circle.gif b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/file1_parametric_circle.gif
new file mode 100644
index 0000000..732b6bb
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/file1_parametric_circle.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/file1_parametric_circle.py b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/file1_parametric_circle.py
index 40b5150..37d079e 100644
--- a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/file1_parametric_circle.py
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/file1_parametric_circle.py
@@ -11,12 +11,15 @@ class parametricCircle(ThreeDScene, GraphScene):
self.y_axis_label = ""
self.x_axis_width = 10
self.y_axis_height = 10
+ self.y_tick_frequency = 1.9
+ self.x_tick_frequency = 1.4
axes = []
- self.setup_axes()
- self.axes.scale(0.5).shift(3*LEFT)
- axes.append(self.axes)
+ # self.setup_axes()
+ ax = Axes(y_tick_frequency = 1, x_axis_width = 10, y_axis_height = 10, y_min = -5, x_max = 5, y_max = 5, x_tick_frequency = 1, x_axis_label = "", y_axis_label = "", x_min = -5, )
+ ax.scale(0.5).shift(3*LEFT)
+ axes.append(ax)
self.setup_axes()
self.axes.scale(0.3).shift(3*RIGHT + 2*UP)
axes.append(self.axes)
@@ -38,7 +41,7 @@ class parametricCircle(ThreeDScene, GraphScene):
asint = ParametricFunction(
lambda t: np.array([
t,
- np.sin(t),
+ 2*np.sin(t),
0
]), t_min = -np.pi, t_max = np.pi, color = GREEN_E
).shift(3*RIGHT + 2*UP).scale(0.4)
@@ -50,7 +53,7 @@ class parametricCircle(ThreeDScene, GraphScene):
acost = ParametricFunction(
lambda t: np.array([
t,
- np.cos(t),
+ 2*np.cos(t),
0
]), t_min = -np.pi, t_max = np.pi, color = BLUE
).shift(3*RIGHT + 2*DOWN).scale(0.4)
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/file2_cycloid.gif b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/file2_cycloid.gif
deleted file mode 100644
index 39656de..0000000
--- a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/file2_cycloid.gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/file4_helix_visualization.gif b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/file4_helix_visualization.gif
new file mode 100644
index 0000000..16d2509
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/general-parametric-curves/file4_helix_visualization.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/README.md b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/README.md
new file mode 100644
index 0000000..42f5df1
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/README.md
@@ -0,0 +1,11 @@
+**file1_parametric_ellipse.py** <br>
+![file1_parametric_ellipse.py](https://raw.githubusercontent.com/saarthdeshpande/FSF-mathematics-python-code-archive/master/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/file1_parametric_ellipse.gif)
+
+**file2_parametric_helix.py** <br>
+![file2_parametric_helix.py](https://raw.githubusercontent.com/saarthdeshpande/FSF-mathematics-python-code-archive/master/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/file2_parametric_helix.gif)
+
+**file3_circletosphere.py** <br>
+![file3_circletosphere.py](https://raw.githubusercontent.com/saarthdeshpande/FSF-mathematics-python-code-archive/master/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/file3_circletosphere.gif)
+
+**file4_cone.py** <br>
+![file4_cone.py](https://raw.githubusercontent.com/saarthdeshpande/FSF-mathematics-python-code-archive/master/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/file4_cone.gif)
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/__pycache__/file1_parametric_ellipse.cpython-38.pyc b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/__pycache__/file1_parametric_ellipse.cpython-38.pyc
deleted file mode 100644
index a732643..0000000
--- a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/__pycache__/file1_parametric_ellipse.cpython-38.pyc
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/__pycache__/file2_parametric_helix.cpython-38.pyc b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/__pycache__/file2_parametric_helix.cpython-38.pyc
deleted file mode 100644
index c8e3e2a..0000000
--- a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/__pycache__/file2_parametric_helix.cpython-38.pyc
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/__pycache__/file3_circletosphere.cpython-38.pyc b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/__pycache__/file3_circletosphere.cpython-38.pyc
deleted file mode 100644
index bca0d91..0000000
--- a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/__pycache__/file3_circletosphere.cpython-38.pyc
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/__pycache__/file3_cone.cpython-38.pyc b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/__pycache__/file3_cone.cpython-38.pyc
deleted file mode 100644
index ae954c3..0000000
--- a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/__pycache__/file3_cone.cpython-38.pyc
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/file1_parametric_ellipse.gif b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/file1_parametric_ellipse.gif
new file mode 100644
index 0000000..90c0349
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/file1_parametric_ellipse.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/file2_parametric_helix.gif b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/file2_parametric_helix.gif
new file mode 100644
index 0000000..4f349b1
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/file2_parametric_helix.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/file3_circletosphere.gif b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/file3_circletosphere.gif
new file mode 100644
index 0000000..d6a8afc
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/file3_circletosphere.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/file4_cone.gif b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/file4_cone.gif
new file mode 100644
index 0000000..b126d20
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/space-curves/file4_cone.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/README.md b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/README.md
new file mode 100644
index 0000000..7874f43
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/README.md
@@ -0,0 +1,15 @@
+**file1_tnb_creation.py**<br>
+![file1_tnb_creation.py](https://github.com/saarthdeshpande/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file1_tnb_creation.gif)
+
+
+**file2_tnb_basic.py** <br>
+![file2_tnb_basic.py](https://github.com/saarthdeshpande/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file2_tnb_basic.gif)
+
+**file3_tnb_frame_manim.py** <br>
+![file3_tnb_frame_manim.py](https://github.com/saarthdeshpande/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file3_tnb_frame_manim.gif)
+
+**file4_fs1.py** <br>
+![file4_fs1.py](https://github.com/saarthdeshpande/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file4_fs1.gif)
+
+**file5_fs2.py** <br>
+![file5_fs2.py](https://github.com/saarthdeshpande/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file5_fs2.gif)
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file1_prescribed_plane.gif b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file1_prescribed_plane.gif
deleted file mode 100644
index c8668e3..0000000
--- a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file1_prescribed_plane.gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file1_tnb_creation.gif b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file1_tnb_creation.gif
new file mode 100644
index 0000000..eae8686
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file1_tnb_creation.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file1_tnb_creation.py b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file1_tnb_creation.py
new file mode 100644
index 0000000..80372ee
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file1_tnb_creation.py
@@ -0,0 +1,66 @@
+from manimlib.imports import *
+
+class tnb(ThreeDScene):
+ def construct(self):
+ self.set_camera_orientation(phi = 75*DEGREES, theta=45*DEGREES)
+
+ helix1 = ParametricFunction(
+ lambda t: np.array([
+ np.cos(TAU*t),
+ np.sin(TAU*t),
+ 0.4*t
+ ]), t_min = -2*np.pi/3, t_max = -1.638*np.pi/3, color = WHITE
+ )
+
+ helix2 = ParametricFunction(
+ lambda t: np.array([
+ np.cos(TAU*t),
+ np.sin(TAU*t),
+ 0.4*t
+ ]), t_min = -1.638*np.pi/3, t_max = -1.33*np.pi/3, color = WHITE
+ )
+
+ pointText = TextMobject(r'Consider an arbitrary point \\ on the given curve.').scale(0.8).shift(1.5*UP)
+ tgtText = TextMobject(r'Unit', ' tangent ', r'vector at \\ this point is given as:').scale(0.8).shift(1.5*UP)
+ tgtText.set_color_by_tex_to_color_map({
+ "tangent": YELLOW
+ })
+ normalText = TextMobject(r'Unit', ' normal ', r'vector at \\ this point is given as:').scale(0.8).shift(1.5*UP)
+ normalText.set_color_by_tex_to_color_map({
+ "normal": BLUE
+ })
+ planeText = TextMobject(r'$\overrightarrow{T}$ and $\overrightarrow{N}$ \\ prescribe a plane.').scale(0.8).shift(1.5*UP)
+ bnmText = TextMobject(r'The vector normal to this plane \\ is called the', ' binormal ', 'vector.').scale(0.8).shift(1.5*UP)
+ bnmText.set_color_by_tex_to_color_map({
+ "binormal": GREEN_E
+ })
+
+ dot1 = Dot(np.array([np.cos(-np.pi/3), np.sin(-np.pi/3), -0.4*np.pi/3]) + np.array([0,0.2,0]), radius = 0.16, color=RED)
+ tgt1 = Arrow((0,0,0), (-2,-0.55,0), color = YELLOW).shift(dot1.get_center() + np.array([0.18,0.04,0]))
+ nm1 = Arrow((0,0,0), (0.4,-2,0), color = BLUE).shift(dot1.get_center() + np.array([0,0.26,0]))
+ bnm1 = Arrow((0,0,0), (0,2,0), color=GREEN_E).shift(2.1*RIGHT+2*DOWN)
+ plane1 = Square(color = DARK_BROWN, fill_color = WHITE, fill_opacity=0.3).shift(dot1.get_center() + np.array([-0.4, -0.6, 0])).rotate(13*DEGREES).scale(1.2)
+ point1 = VGroup(*[dot1, tgt1, nm1, plane1]).scale(0.8).shift(np.array([1,4.86,0])).rotate(-15*DEGREES)
+
+
+
+ helix = VGroup(*[helix1, helix2])
+ self.play(FadeIn(helix))
+ self.play(ApplyMethod(helix.scale, 4))
+ self.add_fixed_in_frame_mobjects(pointText)
+ self.play(FadeIn(dot1), FadeIn(pointText))
+ self.wait(2)
+ self.add_fixed_in_frame_mobjects(tgtText)
+ self.play(Write(tgt1), ReplacementTransform(pointText, tgtText))
+ self.wait(2)
+ self.add_fixed_in_frame_mobjects(normalText)
+ self.play(Write(nm1), ReplacementTransform(tgtText, normalText))
+ self.wait(2)
+ self.add_fixed_in_frame_mobjects(planeText)
+ self.play(FadeIn(plane1), ReplacementTransform(normalText, planeText))
+ self.wait(2)
+ self.add_fixed_in_frame_mobjects(bnmText)
+ self.add_fixed_in_frame_mobjects(bnm1)
+ self.play(ReplacementTransform(planeText, bnmText), Write(bnm1))
+ self.wait(2)
+ self.play(FadeOut(VGroup(*[helix, bnm1, bnmText, dot1, tgt1, nm1, plane1])))
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file2_TNB_frame.gif b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file2_TNB_frame.gif
deleted file mode 100644
index 097652f..0000000
--- a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file2_TNB_frame.gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file2_tnb_basic.gif b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file2_tnb_basic.gif
new file mode 100644
index 0000000..67aaea2
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file2_tnb_basic.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file2_tnb_basic.py b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file2_tnb_basic.py
new file mode 100644
index 0000000..c870210
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file2_tnb_basic.py
@@ -0,0 +1,36 @@
+from manimlib.imports import *
+
+class tnb(ThreeDScene):
+ def construct(self):
+ t = TextMobject(r'T', color = YELLOW)
+ n = TextMobject(r'N', color = BLUE).next_to(t, RIGHT, buff=0)
+ b = TextMobject(r'B', color = GREEN_E).next_to(n, RIGHT, buff=0)
+ frame = TextMobject(r'Frame').next_to(b, RIGHT, buff=0.2)
+ f1 = TextMobject(r'$\overrightarrow{B}$ ', color = GREEN_E)
+ f2 = TextMobject(r' = $\overrightarrow{T}$', color = YELLOW).next_to(f1, RIGHT, buff=0.2)
+ f3 = TextMobject(r'$\times\overrightarrow{N}$', color = BLUE).next_to(f2, RIGHT, buff=0.1)
+ formula = VGroup(*[f1, f2, f3]).move_to(ORIGIN).shift(3*UP)
+
+ # text = VGroup(*[t,n,b,frame]).move_to(ORIGIN).shift(3*UP)
+ curve = ParametricFunction(
+ lambda t: np.array([
+ np.sin(TAU*t),
+ np.cos(TAU*t),
+ 0
+ ])
+ ).scale(2.5)
+ dot = Dot(color = RED).scale(1.5).shift(1.05*LEFT)
+ tgt = Arrow(dot.get_center(), (-2, 2, 0), color = YELLOW).shift(0.3*DOWN + 0.09*RIGHT)
+ normal = Arrow(tgt.get_start(), (1, 1, 0), color = BLUE).shift(0.2*LEFT + 0.05*DOWN)
+ binormal = Arrow(dot.get_center() - np.array([0,0,0.3]), (tgt.get_start()[0], tgt.get_start()[1],2), color = GREEN)
+ square = Square(color = DARK_BROWN, fill_color = WHITE, fill_opacity=0.3).move_to(tgt.get_start()).rotate(27*DEGREES).shift(UP+0.4*RIGHT).scale(1.2)
+ group = VGroup(*[dot, tgt, normal, square, binormal]).shift(np.array([-1.24,-1,0]))
+
+ self.add_fixed_in_frame_mobjects(formula)
+ self.add(curve, group)
+ self.wait(1)
+ self.move_camera(phi = 75*DEGREES, theta=45*DEGREES, run_time = 2)
+ self.add_fixed_in_frame_mobjects(formula)
+ self.begin_ambient_camera_rotation(rate = 0.5)
+ self.wait(5)
+ self.play(FadeOut(VGroup(*[formula, curve, dot, tgt, normal, square, binormal])))
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file3_tnb_frame_manim.gif b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file3_tnb_frame_manim.gif
new file mode 100644
index 0000000..78e3aa3
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file3_tnb_frame_manim.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file3_tnb_frame_manim.py b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file3_tnb_frame_manim.py
new file mode 100644
index 0000000..176cac5
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file3_tnb_frame_manim.py
@@ -0,0 +1,126 @@
+from manimlib.imports import *
+
+class tnb(ThreeDScene):
+ def construct(self):
+ self.set_camera_orientation(phi = 75*DEGREES, theta=45*DEGREES)
+
+ t = TextMobject(r'T', color = YELLOW)
+ n = TextMobject(r'N', color = BLUE).next_to(t, RIGHT, buff=0)
+ b = TextMobject(r'B', color = GREEN_E).next_to(n, RIGHT, buff=0)
+ frame = TextMobject(r'Frame').next_to(b, RIGHT, buff=0.2)
+
+ text = VGroup(*[t,n,b,frame]).move_to(ORIGIN).shift(3*UP)
+
+ helix1 = ParametricFunction(
+ lambda t: np.array([
+ np.cos(TAU*t),
+ np.sin(TAU*t),
+ 0.4*t
+ ]), t_min = -2*np.pi/3, t_max = -1.638*np.pi/3, color = WHITE
+ )
+
+ helix2 = ParametricFunction(
+ lambda t: np.array([
+ np.cos(TAU*t),
+ np.sin(TAU*t),
+ 0.4*t
+ ]), t_min = -1.638*np.pi/3, t_max = -1.33*np.pi/3, color = WHITE
+ )
+
+ helix3 = ParametricFunction(
+ lambda t: np.array([
+ np.cos(TAU*t),
+ np.sin(TAU*t),
+ 0.4*t
+ ]), t_min = -1.33*np.pi/3, t_max = -np.pi/3, color = WHITE
+ )
+
+ helix4 = ParametricFunction(
+ lambda t: np.array([
+ np.cos(TAU*t),
+ np.sin(TAU*t),
+ 0.4*t
+ ]), t_min = -np.pi/3, t_max = -1.3*np.pi/6, color = WHITE
+ )
+
+ helix5 = ParametricFunction(
+ lambda t: np.array([
+ np.cos(TAU*t),
+ np.sin(TAU*t),
+ 0.4*t
+ ]), t_min = -1.3*np.pi/6, t_max = 0, color = WHITE
+ )
+
+ helix_dot = Dot(radius = 0.16, color = RED)
+
+ dot0 = Dot(np.array([np.cos(-2*np.pi/3), np.sin(-2*np.pi/3), -0.8*np.pi/3]), radius = 0.16, color=RED).shift(np.array([4.65,0,-0.8]))
+ tgt0 = Arrow((0,0,0), (1,2,0), color = YELLOW).shift(dot0.get_center() - np.array([0.04,0.2,0]))
+ nm0 = Arrow((0,0,0), (-2,1,0), color = BLUE).shift(dot0.get_center() + np.array([0.3,0,0]))
+ bnm0 = Arrow((0,0,0), (0,2,0), color = GREEN_E).shift(6.1*LEFT + 3*DOWN)
+ plane0 = Square(color = DARK_BROWN, fill_color = WHITE, fill_opacity=0.3).shift(dot0.get_center() + np.array([-0.35, 0.85, 0])).scale(1.2).rotate(65*DEGREES)
+ point0 = VGroup(*[dot0, tgt0, nm0, bnm0, plane0]).scale(0.8).shift(np.array([1,0,0]))
+
+ dot1 = Dot(np.array([np.cos(-np.pi/3), np.sin(-np.pi/3), -0.4*np.pi/3]) + np.array([0,0.2,0]), radius = 0.16, color=RED)
+ tgt1 = Arrow((0,0,0), (-2,-0.55,0), color = YELLOW).shift(dot1.get_center() + np.array([0.18,0.04,0]))
+ nm1 = Arrow((0,0,0), (0.4,-2,0), color = BLUE).shift(dot1.get_center() + np.array([0,0.26,0]))
+ bnm1 = Arrow((0,0,0), (0,2,0), color=GREEN_E).shift(3.68*RIGHT+2.48*DOWN)
+ plane1 = Square(color = DARK_BROWN, fill_color = WHITE, fill_opacity=0.3).shift(dot1.get_center() + np.array([-0.4, -0.6, 0])).rotate(13*DEGREES).scale(1.2)
+ point1 = VGroup(*[dot1, tgt1, nm1, plane1]).scale(0.8).shift(np.array([1,6.25,0]))
+
+ dot2 = Dot(np.array([np.cos(-np.pi/6), np.sin(-np.pi/6), -0.2*np.pi/3]) - np.array([1.9,0,0]), radius=0.16,color=RED)
+ tgt2 = Arrow((0,0,0), (1,-2,0), color = YELLOW).shift(dot2.get_center() + np.array([-0.2,0.2,0]))
+ nm2 = Arrow((0,0,0), (2,1,0), color = BLUE).shift(dot2.get_center() + np.array([-0.2,-0.06,0]))
+ bnm2 = Arrow((0,0,0), (0,2,0), color=GREEN_E).shift(0.4*RIGHT + 0.16*DOWN)
+ plane2 = Square(color = DARK_BROWN, fill_color = WHITE, fill_opacity=0.3).shift(dot2.get_center() + np.array([0.92, -0.5, 0])).rotate(23*DEGREES).scale(1.2)
+ point2 = VGroup(*[dot2, tgt2, nm2, bnm2, plane2])
+
+ helix = VGroup(*[helix1, helix2, helix3, helix4, helix5])
+ self.add_fixed_in_frame_mobjects(text)
+ self.play(FadeIn(helix), FadeIn(text))
+ self.play(ApplyMethod(helix.scale, 4))
+ self.add_fixed_in_frame_mobjects(bnm0)
+ self.play(FadeIn(point0))
+ self.play(ApplyMethod(point0.set_color, GRAY, opacity = 0.1), MoveAlongPath(helix_dot, helix1, run_time=5))
+
+ self.add_fixed_in_frame_mobjects(bnm1)
+ self.play(FadeIn(point1))
+ self.play(ApplyMethod(point1.set_color, GRAY, opacity = 0.1), ApplyMethod(bnm1.set_color, GRAY, opacity = 0.1), MoveAlongPath(helix_dot, helix2, run_time = 5))
+
+ self.add_fixed_in_frame_mobjects(bnm2)
+ self.play(FadeIn(point2))
+ self.play(ApplyMethod(point2.set_color, GRAY, opacity = 0.1), MoveAlongPath(helix_dot, helix3, run_time=5))
+
+ dot3 = Dot(np.array([np.cos(-np.pi/3), np.sin(-np.pi/3), -0.4*np.pi/3]) + np.array([3.3,-0.25,0]), radius = 0.16, color=RED)
+ tgt3 = Arrow((0,0,0), (0,2,0), color = YELLOW).shift(helix_dot.get_center() - np.array([-0.05,0.2,0]))
+ nm3 = Arrow((0,0,0), (-2,0,0), color = BLUE).shift(helix_dot.get_center() + np.array([0.25,0,0]))
+ bnm3 = Arrow((0,0,0), (0,2,0), color = GREEN_E).shift(3.87*LEFT + 1.24*DOWN)
+ plane3 = Square(color = DARK_BROWN, fill_color = WHITE, fill_opacity=0.3).shift(helix_dot.get_center() + np.array([-0.5, 0.62, 0]))
+ point3 = VGroup(*[dot3, tgt3, nm3, bnm3, plane3]).shift(np.array([0,0,0]))
+
+ dot4 = Dot(np.array([np.cos(-np.pi/12), np.sin(-np.pi/12), -0.1*np.pi/3]) + np.array([-3.4,3.4,0]), radius = 0.16, color=RED)
+ tgt4 = Arrow((0,0,0), (-2,-0.85,0), color = YELLOW).shift(dot4.get_center() - np.array([-0.05,0,0]))
+ nm4 = Arrow((0,0,0), (0.8,-2,0), color = BLUE).shift(dot4.get_center() + np.array([-0.1,0.25,0]))
+ bnm4 = Arrow((0,0,0), (0,2,0), color = GREEN_E).shift(4.03*RIGHT + 0.5*DOWN)
+ plane4 = Square(color = DARK_BROWN, fill_color = WHITE, fill_opacity=0.3).shift(dot4.get_center() + np.array([-0.4,-1,0])).rotate(22*DEGREES).scale(1.2)
+ point4 = VGroup(*[dot4, tgt4, nm4, bnm4, plane4])
+
+ dot5 = Dot((1,0,0) + np.array([2.3,-1,1]))
+ tgt5 = Arrow((0,0,0), (0,2,0), color = YELLOW).shift(dot5.get_center() - np.array([-0.05,0.2,0]))
+ nm5 = Arrow((0,0,0), (-2,0,0), color = BLUE).shift(dot5.get_center() + np.array([0.25,0,0]))
+ bnm5 = Arrow((0,0,0), (0,2,0), color = GREEN_E).shift(3.34*LEFT+0.3*UP)
+ plane5 = Square(color = DARK_BROWN, fill_color = WHITE, fill_opacity=0.3).shift(dot5.get_center() + np.array([-0.5,0.5,0]))
+ point5 = VGroup(*[tgt5, nm5, bnm5, plane5])
+
+ self.add_fixed_in_frame_mobjects(bnm3)
+ self.play(FadeIn(point3))
+ self.play(ApplyMethod(point3.set_color, GRAY, opacity = 0.1), MoveAlongPath(helix_dot, helix4, run_time=5))
+
+ self.add_fixed_in_frame_mobjects(bnm4)
+ self.play(FadeIn(point4))
+ self.play(ApplyMethod(point4.set_color, GRAY, opacity = 0.1), MoveAlongPath(helix_dot, helix5, run_time=5))
+
+ self.add_fixed_in_frame_mobjects(bnm5)
+ self.play(FadeIn(point5))
+ self.wait(2)
+
+ self.play(FadeOut(VGroup(*[text, helix, bnm1, point0, point1, point2, point3, point4, point5, helix_dot])))
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file4_fs1.gif b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file4_fs1.gif
new file mode 100644
index 0000000..6b4b438
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file4_fs1.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file4_fs1.py b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file4_fs1.py
new file mode 100644
index 0000000..c719a1d
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file4_fs1.py
@@ -0,0 +1,23 @@
+from manimlib.imports import *
+
+class fs1(ThreeDScene):
+ def construct(self):
+
+
+ self.set_camera_orientation(phi = 75*DEGREES, theta=45*DEGREES)
+ dot1 = Dot(np.array([np.cos(-np.pi/3), np.sin(-np.pi/3), -0.4*np.pi/3]) + np.array([0,0.2,0]), radius = 0.16, color=RED)
+ tgt1 = Arrow((0,0,0), (-2,-0.55,0), color = YELLOW).shift(dot1.get_center() + np.array([0.18,0.04,0]))
+ nm1 = Arrow((0,0,0), (0.4,-2,0), color = BLUE).shift(dot1.get_center() + np.array([0,0.26,0])).shift(np.array([0.8,4.76,0])).rotate(-15*DEGREES).scale(0.8)
+ bnm1 = Arrow((0,0,0), (0,2,0), color=GREEN_E).shift(2.1*RIGHT+2*DOWN)
+ plane1 = Square(color = DARK_BROWN, fill_color = WHITE, fill_opacity=0.3).shift(dot1.get_center() + np.array([-0.4, -0.6, 0])).rotate(13*DEGREES).scale(1.2)
+ point1 = VGroup(*[dot1, tgt1, plane1]).scale(0.8).shift(np.array([1,4.86,0])).rotate(-15*DEGREES)
+ t = TextMobject(r'$T$', color = YELLOW).move_to(ORIGIN).shift(3.2*RIGHT + DOWN)
+ n = TextMobject(r'$N$', color = BLUE).shift(DOWN + RIGHT)
+ b = TextMobject(r'$B$', color = GREEN_E).next_to(bnm1, UP, buff = 0.1)
+ text = VGroup(*[t, n, b])
+ self.add_fixed_in_frame_mobjects(bnm1, text)
+ self.play(FadeIn(point1), FadeIn(bnm1), FadeIn(text))
+ self.wait()
+ self.play(TransformFromCopy(tgt1, nm1, run_time = 2))
+ self.wait(2)
+ self.play(FadeOut(VGroup(*[bnm1, text, point1, nm1])))
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file5_fs2.gif b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file5_fs2.gif
new file mode 100644
index 0000000..ce367b6
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file5_fs2.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file5_fs2.py b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file5_fs2.py
new file mode 100644
index 0000000..0261fed
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/tnb-frame-and-serret-frenet-formulae/file5_fs2.py
@@ -0,0 +1,28 @@
+from manimlib.imports import *
+
+class fs1(ThreeDScene):
+ def construct(self):
+
+
+ self.set_camera_orientation(phi = 75*DEGREES, theta=45*DEGREES)
+ dot1 = Dot(np.array([np.cos(-np.pi/3), np.sin(-np.pi/3), -0.4*np.pi/3]) + np.array([0,0.2,0]), radius = 0.16, color=RED)
+ tgt1 = Arrow((0,0,0), (-2,-0.55,0), color = YELLOW).shift(dot1.get_center() + np.array([0.18,0.04,0]))
+ nm1 = Arrow((0,0,0), (0.4,-2,0), color = BLUE).shift(dot1.get_center() + np.array([0,0.26,0])).shift(np.array([0.8,4.76,0])).rotate(-15*DEGREES).scale(0.8)
+ bnm1 = Arrow((0,0,0), (0,2,0), color=GREEN_E).shift(2.1*RIGHT+2*DOWN)
+
+ bnms = Line((0,0,0), (0,0,1.6), color = GREEN_E).shift(np.array([3.1,5.2,0])).scale(0.6)
+ bnmsa = ArrowTip(color = GREEN_E).next_to(bnms, np.array([0,0,1]), buff = 0).rotate(45*DEGREES)
+ bns = VGroup(*[bnms, bnmsa])
+
+ plane1 = Square(color = DARK_BROWN, fill_color = WHITE, fill_opacity=0.3).shift(dot1.get_center() + np.array([-0.4, -0.6, 0])).rotate(13*DEGREES).scale(1.2)
+ point1 = VGroup(*[dot1, tgt1, plane1]).scale(0.8).shift(np.array([1,4.86,0])).rotate(-15*DEGREES)
+ t = TextMobject(r'$T$', color = YELLOW).move_to(ORIGIN).shift(3.2*RIGHT + DOWN)
+ n = TextMobject(r'$N$', color = BLUE).shift(DOWN + RIGHT)
+ b = TextMobject(r'$B$', color = GREEN_E).next_to(bnm1, UP, buff = 0.1)
+ text = VGroup(*[t, n, b])
+ self.add_fixed_in_frame_mobjects(bnm1, text)
+ self.play(FadeIn(point1), FadeIn(text), FadeIn(bnm1))
+ self.wait()
+ self.play(TransformFromCopy(bnms, nm1, run_time = 3))
+ self.wait(2)
+ self.play(FadeOut(VGroup(*[bnms, text, point1, nm1, bnm1])))
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/velocity-and-differentiability/README.md b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/velocity-and-differentiability/README.md
new file mode 100644
index 0000000..bc571c6
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/velocity-and-differentiability/README.md
@@ -0,0 +1,2 @@
+**file2_tangent_space_curve.py** <br>
+![file2_tangent_space_curve.py](https://raw.githubusercontent.com/saarthdeshpande/FSF-mathematics-python-code-archive/master/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/velocity-and-differentiability/file2_tangent_space_curve.gif)
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/velocity-and-differentiability/__pycache__/file2_tangent_spaceCurve.cpython-38.pyc b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/velocity-and-differentiability/__pycache__/file2_tangent_spaceCurve.cpython-38.pyc
deleted file mode 100644
index 8967b87..0000000
--- a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/velocity-and-differentiability/__pycache__/file2_tangent_spaceCurve.cpython-38.pyc
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/velocity-and-differentiability/file2_tangent_space_curve.gif b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/velocity-and-differentiability/file2_tangent_space_curve.gif
new file mode 100644
index 0000000..06ed70f
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/geometry-of-planes-and-curves/velocity-and-differentiability/file2_tangent_space_curve.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Limits and Continuity of Multivariable Functions/gifs/limit_approach_point.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Limits and Continuity of Multivariable Functions/gifs/limit_approach_point.gif
deleted file mode 100644
index 830b6f1..0000000
--- a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Limits and Continuity of Multivariable Functions/gifs/limit_approach_point.gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_derivative_vectorvf.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_derivative_vectorvf.gif
deleted file mode 100644
index a94de90..0000000
--- a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_derivative_vectorvf.gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_examples.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_examples.gif
deleted file mode 100644
index 11f66f1..0000000
--- a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_examples.gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_plot_sphere.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_plot_sphere.gif
deleted file mode 100644
index ad7582c..0000000
--- a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_plot_sphere.gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_respresntation.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_respresntation.gif
deleted file mode 100644
index a173bda..0000000
--- a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_respresntation.gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_vectorvf_sine.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_vectorvf_sine.gif
deleted file mode 100644
index 4f6b931..0000000
--- a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/gifs/multivariable_func_vectorvf_sine.gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_examples.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_examples.py
deleted file mode 100644
index 7322e47..0000000
--- a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_examples.py
+++ /dev/null
@@ -1,69 +0,0 @@
-from manimlib.imports import *
-
-class Examples(GraphScene):
- def construct(self):
-
- rectangle = Rectangle(height = 3, width = 4, color = GREEN)
- square = Square(side_length = 5, color = PURPLE)
- circle = Circle(radius = 2, color = PINK)
- radius = Line(ORIGIN,2*RIGHT)
-
- radius.set_color(RED)
-
- rectangle_area_func = TextMobject(r"$Area = f(Length, Breadth)$")
- rectangle_area_func.scale(0.6)
- square_area_func = TextMobject(r"$Area = f(Length)$")
- circle_area_func = TextMobject(r"$Area = f(r)$")
-
-
- rectangle_area = TextMobject(r"$Area = Length \times Breadth$")
- rectangle_area.scale(0.6)
- square_area = TextMobject(r"$Area = Length^2$")
- circle_area = TextMobject(r"$Area = \pi r^2$")
-
- braces_rect1 = Brace(rectangle, LEFT)
- eq_text1 = braces_rect1.get_text("Length")
- braces_rect2 = Brace(rectangle, UP)
- eq_text2 = braces_rect2.get_text("Breadth")
-
- braces_square = Brace(square, LEFT)
- braces_square_text = braces_square.get_text("Length")
-
- radius_text = TextMobject("r")
- radius_text.next_to(radius,UP)
-
-
-
- self.play(ShowCreation(rectangle))
- self.wait(1)
- self.play(GrowFromCenter(braces_rect1),Write(eq_text1),GrowFromCenter(braces_rect2),Write(eq_text2))
- self.wait(1)
- self.play(Write(rectangle_area_func))
- self.wait(1)
- self.play(Transform(rectangle_area_func, rectangle_area))
- self.wait(1)
- self.play(FadeOut(braces_rect1),FadeOut(eq_text1),FadeOut(braces_rect2),FadeOut(eq_text2),FadeOut(rectangle_area_func))
-
-
- self.play(Transform(rectangle, square))
- self.wait(1)
- self.play(GrowFromCenter(braces_square),Write(braces_square_text))
- self.wait(1)
- self.play(Write(square_area_func))
- self.wait(1)
- self.play(Transform(square_area_func, square_area))
- self.wait(1)
- self.play(FadeOut(braces_square),FadeOut(braces_square_text),FadeOut(square_area_func))
-
-
- self.play(Transform(rectangle, circle))
- self.wait(1)
- self.play(ShowCreation(radius),Write(radius_text))
- self.wait(1)
- self.play(FadeOut(radius_text),FadeOut(radius))
- self.wait(1)
- self.play(Write(circle_area_func))
- self.wait(1)
- self.play(Transform(circle_area_func, circle_area))
- self.wait(1)
- self.play(FadeOut(circle_area_func)) \ No newline at end of file
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_plot_sphere.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_plot_sphere.py
deleted file mode 100644
index baf08b1..0000000
--- a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_plot_sphere.py
+++ /dev/null
@@ -1,42 +0,0 @@
-from manimlib.imports import *
-
-class Sphere(ThreeDScene):
- def construct(self):
- axes = ThreeDAxes() # creates a 3D Axis
-
- sphere = ParametricSurface(
- lambda u, v: np.array([
- np.sin(u)*np.cos(v),
- np.sin(u)*np.sin(v),
- np.cos(u)
- ]),u_min=0,u_max=PI,v_min=0,v_max=2*PI,checkerboard_colors=[RED_D, RED_E],
- resolution=(15, 32)).scale(2)
-
-
-
- #self.set_camera_orientation(phi=0 * DEGREES,theta=270*DEGREES)
-
- text3d = TextMobject(r"$f(x,y) \rightarrow Point(x,y,z)$")
- text3d1 = TextMobject(r"$f(x,y) \rightarrow Point(x,y, 1 - x^2 - y^2)$")
- self.add_fixed_in_frame_mobjects(text3d)
- text3d.scale(0.7)
- text3d1.scale(0.7)
- text3d.to_corner(UL)
- text3d1.to_corner(UL)
- text3d.set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
- text3d1.set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
- self.play(Write(text3d))
- self.wait(1)
-
- self.play(Transform(text3d,text3d1))
- self.add_fixed_in_frame_mobjects(text3d1)
- self.play(FadeOut(text3d))
-
-
- self.set_camera_orientation(phi=75 * DEGREES)
- self.begin_ambient_camera_rotation(rate=0.3)
-
-
- self.add(axes)
- self.play(Write(sphere))
- self.wait(5) \ No newline at end of file
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_respresntation.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_respresntation.py
deleted file mode 100644
index 4bfcf21..0000000
--- a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_respresntation.py
+++ /dev/null
@@ -1,80 +0,0 @@
-from manimlib.imports import *
-
-class MultivariableFunc(Scene):
- def construct(self):
-
- topic = TextMobject("Multivariable Functions")
- topic.set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
- topic.scale(2)
-
- self.play(Write(topic))
- self.wait(1)
- self.play(FadeOut(topic))
-
-
- circle = Circle()
- circle.scale(3)
-
- eqn1 = TextMobject(r"f(x,y) = $x^2y$")
- eqn1.set_color(YELLOW)
-
-
-
- number1 = TextMobject("(2,1)")
- number1.move_to(3*UP+ 3*LEFT)
- number1.scale(1.2)
- number1.set_color(GREEN)
-
- output1 = TextMobject("4")
- output1.scale(1.5)
- output1.set_color(BLUE)
-
- eqn1_1 = TextMobject(r"f(2,1) = $2^2(1)$")
- eqn1_1.set_color(YELLOW)
-
-
- self.play(ShowCreation(circle),Write(eqn1))
- self.wait(1)
- self.play(ApplyMethod(number1.move_to, 0.6*LEFT))
- self.play(FadeOut(number1))
- self.play(Transform(eqn1, eqn1_1))
- self.wait(1)
- self.play(ApplyMethod(output1.move_to, 3*DOWN+4*RIGHT))
- self.wait(1)
- self.play(FadeOut(output1))
-
-
- eqn2 = TextMobject(r"f(x,y,z) = $x^2y+2yz$")
- eqn2.set_color(YELLOW)
-
- number2 = TextMobject("(2,1,3)")
- number2.move_to(3*UP+ 3*LEFT)
- number2.scale(1.2)
- number2.set_color(GREEN)
-
- output2 = TextMobject("8")
- output2.scale(1.5)
- output2.set_color(BLUE)
-
- eqn2_1 = TextMobject(r"f(2,1,3) = $2^2(1) + 2(1)(3)$")
- eqn2_1.set_color(YELLOW)
-
- eqn2_2 = TextMobject(r"f(2,1,3) = $2 + 6$")
- eqn2_2.set_color(YELLOW)
-
-
-
- self.play(FadeOut(eqn1))
- self.play(Write(eqn2))
-
- self.wait(1)
- self.play(ApplyMethod(number2.move_to, 1.2*LEFT))
- self.play(FadeOut(number2))
- self.play(Transform(eqn2, eqn2_1))
- self.wait(1)
- self.play(Transform(eqn2, eqn2_2))
- self.wait(1)
- self.play(ApplyMethod(output2.move_to, 3*DOWN+4*RIGHT))
- self.wait(1)
- self.play(FadeOut(output2),FadeOut(eqn2),FadeOut(circle))
- self.wait(2) \ No newline at end of file
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/README.md b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/README.md
index b50200d..97a0fb7 100644
--- a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/README.md
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/README.md
@@ -4,6 +4,6 @@ Github Account : <a href="https://github.com/nishanpoojary">nishanpoojary</a>
## Sub-Topics Covered:
+ Scalar Functions
+ Multivariable Functions
-+ Limits and continuity of Multivariable Function
++ Multivariable Limits and Continuity
+ Partial Derivatives
+ Directonal Derivatives
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/domain_range.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/domain_range.gif
deleted file mode 100644
index d0351e5..0000000
--- a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/domain_range.gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_application.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_application.gif
deleted file mode 100644
index 831ec8e..0000000
--- a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_application.gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_level_curves.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_level_curves.gif
deleted file mode 100644
index 2df2fde..0000000
--- a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_level_curves.gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_level_curves2.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_level_curves2.gif
deleted file mode 100644
index 724c27d..0000000
--- a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_level_curves2.gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_neural_nets.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_neural_nets.gif
deleted file mode 100644
index 9d24688..0000000
--- a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_neural_nets.gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_parabola_example.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_parabola_example.gif
deleted file mode 100644
index 3fdecf4..0000000
--- a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/gifs/scalar_function_parabola_example.gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/directional-derivatives/README.md b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/directional-derivatives/README.md
new file mode 100644
index 0000000..a62369d
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/directional-derivatives/README.md
@@ -0,0 +1,8 @@
+**file1_directional_deriv**
+![file1_directional_deriv](https://github.com/nishanpoojary/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/directional-derivatives/gifs/file1_directional_deriv.gif)
+
+**file2_gradient**
+![file2_gradient](https://github.com/nishanpoojary/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/directional-derivatives/gifs/file2_gradient.gif)
+
+**file3_gradient_level_curves**
+![file3_gradient_level_curves](https://github.com/nishanpoojary/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/directional-derivatives/gifs/file3_gradient_level_curves.gif)
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/directional-derivatives/file1_directional_deriv.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/directional-derivatives/file1_directional_deriv.py
new file mode 100644
index 0000000..677d821
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/directional-derivatives/file1_directional_deriv.py
@@ -0,0 +1,85 @@
+from manimlib.imports import *
+
+class GeomRepresen(ThreeDScene):
+ def construct(self):
+ axes = ThreeDAxes()
+
+ paraboloid = ParametricSurface(
+ lambda u, v: np.array([
+ 3*np.sin(u)*np.cos(v),
+ 3*np.sin(u)*np.sin(v),
+ -0.25*3*3*np.sin(u)*np.sin(u)+2
+ ]),u_min=0,u_max=PI/4,v_min=0,v_max=2*PI, color = BLUE_C, fill_color = BLUE_C, fill_opacity = 0.7,
+ resolution=(15, 32)).scale(1)
+
+ parabola_curve = ParametricFunction(
+ lambda u : np.array([
+ u,
+ -u,
+ -0.5*(u*u)+2
+ ]),color=PINK,t_min=-1.5,t_max=1.5,
+ )
+
+ circle = Circle(radius = 2.22 , color = BLACK, fill_color = BLUE_C, fill_opacity= 0.3, stroke_width=0.1)
+
+ plane = Polygon(np.array([2.5,-2.5,0]),np.array([-2.5,2.5,0]),np.array([-2.5,2.5,2.5]),np.array([2.5,-2.5,2.5]),np.array([2.5,-2.5,0]), color = BLACK, fill_color = PINK, fill_opacity= 0.2, stroke_width=0.1)
+
+ line = DashedLine(np.array([1,-1,0]), np.array([1,-1,1.5]), color = YELLOW_C)
+
+ tangent_line = Line(np.array([1.5,-1.5,1]), np.array([0.5,-0.5,2]), color = RED_C)
+
+ vector = Arrow(np.array([1,-1,0]), np.array([0.5,-0.5,0]), buff=0.01, color = GREEN_C)
+
+ dot1 =Sphere(radius=0.08).move_to(np.array([1,-1,0])).set_fill(YELLOW_C)
+ dot2 =Sphere(radius=0.08).move_to(np.array([1,-1,1.5])).set_fill(YELLOW_C)
+
+ dot1_lab = TextMobject(r"$P_0$").scale(0.6).move_to(np.array([1,-1,1.8])).set_color(RED_C)
+ dot2_lab = TextMobject(r"$(x_0,y_0)$").scale(0.6).move_to(np.array([1.6,-1,0])).set_color(PURPLE)
+ vector_lab = TextMobject(r"$\hat{u}$").scale(0.8).move_to(np.array([1.2,-0.5,0])).set_color(GREEN_C)
+ domain_lab = TextMobject(r"$D$").scale(0.6).move_to(np.array([1,1,0])).set_color(GREEN_C)
+ func_lab = TextMobject(r"$z = f(x,y)$").scale(0.6).move_to(1*UP + 2.8*RIGHT).set_color(BLUE_C)
+ directional_deriv_lab = TextMobject(r"Slope = $D_{\hat{u}}f(x_0,y_0)$").scale(0.6).move_to(2.2*UP + 1.5*RIGHT).set_color(YELLOW_C)
+
+ self.add(axes)
+
+ axis = TextMobject(r"X",r"Y",r"Z")
+ axis[0].move_to(6*RIGHT)
+ axis[1].move_to(6*UP)
+ axis[2].move_to(np.array([0,0,3.7]))
+
+ self.add_fixed_orientation_mobjects(axis[2])
+ self.add_fixed_orientation_mobjects(axis[0])
+ self.add_fixed_orientation_mobjects(axis[1])
+
+ self.set_camera_orientation(phi=65 * DEGREES, theta = 20*DEGREES)
+
+ self.play(ShowCreation(paraboloid))
+ self.add_fixed_in_frame_mobjects(func_lab)
+ self.wait()
+
+ #self.play(ShowCreation(circle))
+ self.bring_to_front(circle)
+ self.wait()
+ self.add_fixed_orientation_mobjects(domain_lab)
+ self.wait()
+
+ self.play(ShowCreation(plane), ShowCreation(parabola_curve))
+ self.play(ShowCreation(dot1), GrowArrow(line), ShowCreation(dot2))
+ self.add_fixed_orientation_mobjects(dot1_lab)
+ self.wait()
+ self.add_fixed_orientation_mobjects(dot2_lab)
+ self.wait()
+
+ self.play(ShowCreation(tangent_line))
+ self.add_fixed_in_frame_mobjects(directional_deriv_lab)
+ self.wait()
+
+ self.play(GrowArrow(vector))
+ self.add_fixed_orientation_mobjects(vector_lab)
+ self.wait()
+
+
+ self.begin_ambient_camera_rotation(rate=0.1)
+ self.wait(3)
+
+
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/directional-derivatives/file2_gradient.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/directional-derivatives/file2_gradient.py
new file mode 100644
index 0000000..e9fef50
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/directional-derivatives/file2_gradient.py
@@ -0,0 +1,103 @@
+from manimlib.imports import *
+
+class Gradient(ThreeDScene):
+ def construct(self):
+ axes = ThreeDAxes() # creates a 3D Axis
+
+
+ quadrant = ParametricSurface(
+ lambda u, v: np.array([
+ 2*np.sin(u)*np.cos(v),
+ 2*np.sin(u)*np.sin(v),
+ 2*np.cos(u)
+ ]),u_min=0,u_max=PI/3,v_min=0,v_max=PI/2,checkerboard_colors=[GREEN_C, GREEN_E],
+ resolution=(15, 32)).scale(1)
+
+ quadrant_curve = ParametricSurface(
+ lambda u, v: np.array([
+ 2*np.sin(u)*np.cos(v),
+ 2*np.sin(u)*np.sin(v),
+ 2*np.cos(u)
+ ]),u_min=34*DEGREES,u_max=38*DEGREES,v_min=0,v_max=PI/2,checkerboard_colors=[YELLOW_C, YELLOW_E],
+ resolution=(15, 32)).scale(1)
+
+
+
+ dot1 =Sphere(radius=0.05).move_to(np.array([1,1,0])).set_fill(YELLOW_C)
+ dot2 =Sphere(radius=0.05).move_to(np.array([1,1,1.732])).set_fill(YELLOW_C)
+
+ dot1_line = DashedLine(np.array([1,1,1.732]), np.array([0,2,2]), color = WHITE)
+ dot1_lab = TextMobject(r"$P_0(x_0,y_0,z_0)$").move_to(np.array([0,2.1,2.2])).set_color(YELLOW_C).scale(0.6)
+ #dot2_line = Line(np.array([0.8,0.8,0]), np.array([1,0.6,0]), color = PINK)
+
+ positive_vector = Arrow(np.array([1,1,0]), np.array([0.5,0.5,0]), buff=0.001, color = BLUE_C)
+ positive_gradient = Arrow(np.array([1,1,1.732]), np.array([0.5,0.5,1.9362]), buff=0.001, color = BLUE_C)
+ positive_gradient_lab = TextMobject(r"$\nabla f$").move_to(np.array([0.5,0.3,0])).set_color(BLUE_C).scale(0.5)
+
+ negative_vector = Arrow(np.array([1,1,0]), np.array([1.5,1.5,0]), buff=0.001, color = RED_C)
+ negative_gradient = Arrow(np.array([1,1,1.732]), np.array([1.5,1.5,1.322]), buff=0.001, color = RED_C)
+ negative_gradient_lab = TextMobject(r"$-\nabla f$").move_to(np.array([1.6,1.6,0])).set_color(RED_C).scale(0.5)
+
+ positive_vector_line = DashedLine(np.array([0.8,0.8,0]), np.array([1,-2,0]), color = WHITE)
+ positive_vector_lab = TextMobject(r"Most Rapid increase in $f$").move_to(np.array([1.6,-3.6,0])).set_color(BLUE_C).scale(0.6)
+ negative_vector_line = DashedLine(np.array([1.2,1.2,0]), np.array([3,-1.5,0]), color = WHITE)
+ negative_vector_lab = TextMobject(r"Most Rapid decrease in $f$").move_to(np.array([3.6,-3,0])).set_color(RED_C).scale(0.6)
+
+
+
+ line1 = DashedLine(np.array([0.5,0.5,0]), np.array([0.5,0.5,1.9362]), color = BLUE_C)
+ line2 = DashedLine(np.array([1,1,0]), np.array([1,1,1.732]), color = YELLOW_C)
+ line3 = DashedLine(np.array([1.5,1.5,0]), np.array([1.5,1.5,1.322]), color = RED_C)
+
+ curve_vector1 = Arrow(np.array([1,1,0]), np.array([1.5,0.5,0]), buff=0.001, color = YELLOW_C)
+ curve_vector2 = Arrow(np.array([1,1,0]), np.array([0.5,1.5,0]), buff=0.001, color = YELLOW_C)
+
+ curve_vector1_line = DashedLine(np.array([1.2,0.8,0]), np.array([1,2.5,0]), color = WHITE)
+ curve_vector2_line = DashedLine(np.array([0.8,1.2,0]), np.array([1,2.5,0]), color = WHITE)
+ curve_vector_lab = TextMobject(r"Zero Change in $f$").move_to(np.array([0.7,3.6,0])).set_color(PINK).scale(0.6)
+
+ #square = Square(side_length = 0.5).rotate(45*DEGREES).move_to(np.array([1.025,0.975,0]))
+ line_x = Line(np.array([0.8,0.8,0]), np.array([1,0.6,0]), color = PINK)
+ line_y = Line(np.array([1.2,0.8,0]), np.array([1,0.6,0]), color = PINK)
+
+ ninety_degree = VGroup(line_x, line_y)
+
+ self.set_camera_orientation(phi=60* DEGREES, theta = 20*DEGREES)
+
+ self.add(axes)
+
+ axis = TextMobject(r"X",r"Y",r"Z")
+ axis[0].move_to(6*RIGHT)
+ axis[1].move_to(6*UP)
+ axis[2].move_to(np.array([0,0,3.7]))
+
+ self.add_fixed_orientation_mobjects(axis[2])
+ self.add_fixed_orientation_mobjects(axis[0])
+ self.add_fixed_orientation_mobjects(axis[1])
+
+ self.play(ShowCreation(quadrant))
+ self.wait()
+ self.play(ShowCreation(dot1), ShowCreation(dot2))
+ self.wait()
+ self.play(GrowArrow(positive_vector), GrowArrow(positive_gradient))
+ self.wait()
+ self.play(GrowArrow(negative_vector), GrowArrow(negative_gradient))
+ self.wait()
+ self.play(GrowArrow(line1), GrowArrow(line2), GrowArrow(line3))
+ self.wait()
+ self.play(ShowCreation(quadrant_curve))
+ self.wait()
+ self.play(GrowArrow(curve_vector1), GrowArrow(curve_vector2), ShowCreation(ninety_degree))
+ self.wait()
+ self.play(GrowArrow(dot1_line))
+ self.add_fixed_orientation_mobjects(dot1_lab)
+ self.wait()
+ self.play(GrowArrow(curve_vector1_line), GrowArrow(curve_vector2_line))
+ self.add_fixed_orientation_mobjects(curve_vector_lab)
+ self.wait()
+ self.add_fixed_orientation_mobjects(positive_gradient_lab, negative_gradient_lab)
+ self.wait()
+ self.play(GrowArrow(positive_vector_line), GrowArrow(negative_vector_line))
+ self.add_fixed_orientation_mobjects(positive_vector_lab, negative_vector_lab)
+ self.begin_ambient_camera_rotation(rate=0.1)
+ self.wait(3) \ No newline at end of file
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/directional-derivatives/file3_gradient_level_curves.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/directional-derivatives/file3_gradient_level_curves.py
new file mode 100644
index 0000000..a3b88e5
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/directional-derivatives/file3_gradient_level_curves.py
@@ -0,0 +1,107 @@
+from manimlib.imports import *
+
+class GradientLevelCurves(ThreeDScene):
+ def construct(self):
+ axes = ThreeDAxes()
+
+ paraboloid = ParametricSurface(
+ lambda u, v: np.array([
+ u*np.cos(v),
+ u*np.sin(v),
+ -u*u+2
+ ]),u_min=-1.414,u_max=1.414,v_min=0,v_max=2*PI, color = BLUE_C, fill_color = BLUE_C, fill_opacity = 0.1,
+ resolution=(15, 32)).scale(1)
+
+ plane_0 = Polygon(np.array([2,-2,0]),np.array([2,2,0]),np.array([-2,2,0]),np.array([-2,-2,0]),np.array([2,-2,0]), color = BLUE_E, fill_color = BLUE_E, fill_opacity = 0.3)
+ plane_0_lab = TextMobject("C = 0").move_to(0.4*UP+3.2*RIGHT).set_color(BLUE_E).scale(0.6)
+ circle_0 = Circle(radius = 1.414 , color = BLUE_E)
+ circle_0_lab = TextMobject("0").move_to(1.1*DOWN+1.1*RIGHT).set_color(BLUE_E).scale(0.6)
+
+ plane_0_5 = Polygon(np.array([2,-2,0.5]),np.array([2,2,0.5]),np.array([-2,2,0.5]),np.array([-2,-2,0.5]),np.array([2,-2,0.5]), color = GREEN_C, fill_color = GREEN_C, fill_opacity = 0.3)
+ plane_0_5_lab = TextMobject("C = 0.5").move_to(0.8*UP+3.4*RIGHT).set_color(GREEN_C).scale(0.6)
+ circle_0_5 = Circle(radius = 1.224 , color = GREEN_C)
+ circle_0_5_lab = TextMobject("0.5").move_to(0.9*DOWN+0.9*RIGHT).set_color(GREEN_C).scale(0.6)
+ circle_0_5_copy = circle_0_5.copy().move_to(np.array([0,0,0.5]))
+
+ plane_1 = Polygon(np.array([2,-2,1]),np.array([2,2,1]),np.array([-2,2,1]),np.array([-2,-2,1]),np.array([2,-2,1]), color = YELLOW_C, fill_color = YELLOW_C, fill_opacity = 0.3)
+ plane_1_lab = TextMobject("C = 1").move_to(1.2*UP+3.3*RIGHT).set_color(YELLOW_C).scale(0.6)
+ circle_1 = Circle(radius = 1 , color = YELLOW_C)
+ circle_1_lab = TextMobject("1").move_to(0.7*DOWN+0.7*RIGHT).set_color(YELLOW_C).scale(0.6)
+ circle_1_copy = circle_1.copy().move_to(np.array([0,0,1]))
+
+ plane_1_5 = Polygon(np.array([2,-2,1.5]),np.array([2,2,1.5]),np.array([-2,2,1.5]),np.array([-2,-2,1.5]),np.array([2,-2,1.5]), color = ORANGE, fill_color = ORANGE, fill_opacity = 0.3)
+ plane_1_5_lab = TextMobject("C = 1.5").move_to(1.7*UP+3.4*RIGHT).set_color(ORANGE).scale(0.6)
+ circle_1_5 = Circle(radius = 0.707 , color = ORANGE)
+ circle_1_5_lab = TextMobject("1.5").move_to(0.5*DOWN+0.5*RIGHT).set_color(ORANGE).scale(0.6)
+ circle_1_5_copy = circle_1_5.copy().move_to(np.array([0,0,1.5]))
+
+ plane_2 = Polygon(np.array([2,-2,2]),np.array([2,2,2]),np.array([-2,2,2]),np.array([-2,-2,2]),np.array([2,-2,2]), color = RED_C, fill_color = RED_C, fill_opacity = 0.3)
+ plane_2_lab = TextMobject("C = 2").move_to(2.1*UP+3.3*RIGHT).set_color(RED_C).scale(0.6)
+ dot_2 = Dot().set_fill(RED_C)
+ circle_2_lab = TextMobject("2").move_to(0.2*DOWN+0.2*RIGHT).set_color(RED_C).scale(0.6)
+ dot_2_copy = dot_2.copy().move_to(np.array([0,0,2]))
+
+ vector1 = Arrow(np.array([0.99,-0.99,0]), np.array([0.865,-0.865,0.5]), buff=0.01, color = RED_C).set_stroke(width=3)
+ gradient1 = Arrow(np.array([0.99,-0.99,0]), np.array([0.865,-0.865,0]), buff=0.01, color = RED_C).set_stroke(width=3)
+
+ vector2 = Arrow(np.array([0.865,-0.865,0.5]), np.array([0.707,-0.707,1]), buff=0.01, color = RED_C).set_stroke(width=3)
+ gradient2 = Arrow(np.array([0.865,-0.865,0]), np.array([0.707,-0.707,0]), buff=0.01, color = RED_C).set_stroke(width=3)
+
+ vector3 = Arrow(np.array([0.707,-0.707,1]), np.array([0.499,-0.499,1.5]), buff=0.01, color = RED_C).set_stroke(width=3)
+ gradient3 = Arrow(np.array([0.707,-0.707,0]), np.array([0.499,-0.499,0]), buff=0.01, color = RED_C).set_stroke(width=3)
+
+ vector4 = Arrow(np.array([0.499,-0.499,1.5]), np.array([0,0,2]), buff=0.01, color = RED_C).set_stroke(width=3)
+ gradient4 = Arrow(np.array([0.499,-0.499,0]), np.array([0,0,0]), buff=0.01, color = RED_C).set_stroke(width=3)
+
+
+ self.set_camera_orientation(phi=80 * DEGREES, theta = 0*DEGREES)
+ #self.set_camera_orientation(phi=45 * DEGREES, theta = -20*DEGREES)
+
+ self.add(axes)
+
+ axis = TextMobject(r"X",r"Y",r"Z")
+ axis[0].move_to(6*RIGHT)
+ axis[1].move_to(6*UP)
+ axis[2].move_to(np.array([0,0,3.7]))
+
+ self.add_fixed_orientation_mobjects(axis[2])
+ self.add_fixed_orientation_mobjects(axis[0])
+ self.add_fixed_orientation_mobjects(axis[1])
+
+ self.play(Write(paraboloid))
+ self.wait()
+ self.play(ShowCreation(plane_0), ShowCreation(circle_0))
+ self.add_fixed_in_frame_mobjects(plane_0_lab)
+ self.wait()
+ self.play(ShowCreation(plane_0_5), ShowCreation(circle_0_5_copy), ShowCreation(circle_0_5))
+ self.add_fixed_in_frame_mobjects(plane_0_5_lab)
+ self.wait()
+ self.play(ShowCreation(plane_1), ShowCreation(circle_1_copy), ShowCreation(circle_1))
+ self.add_fixed_in_frame_mobjects(plane_1_lab)
+ self.wait()
+ self.play(ShowCreation(plane_1_5), ShowCreation(circle_1_5_copy), ShowCreation(circle_1_5))
+ self.add_fixed_in_frame_mobjects(plane_1_5_lab)
+ self.wait()
+ self.play(ShowCreation(plane_2), ShowCreation(dot_2_copy), ShowCreation(dot_2))
+ self.add_fixed_in_frame_mobjects(plane_2_lab)
+ self.wait()
+ self.move_camera(phi=60 * DEGREES, theta = 30*DEGREES,run_time=3)
+ self.play(FadeOut(plane_0), FadeOut(plane_0_lab), FadeOut(plane_0_5), FadeOut(plane_0_5_lab), FadeOut(plane_1), FadeOut(plane_1_lab), FadeOut(plane_1_5), FadeOut(plane_1_5_lab), FadeOut(plane_2), FadeOut(plane_2_lab))
+ self.play(FadeOut(circle_0_5_copy), FadeOut(circle_1_copy), FadeOut(circle_1_5_copy), FadeOut(dot_2_copy))
+
+ self.move_camera(phi=45 * DEGREES, theta = -20*DEGREES,run_time=3)
+ self.play(Write(vector1), Write(gradient1))
+ self.wait()
+ self.play(Write(vector2), Write(gradient2))
+ self.wait()
+ self.play(Write(vector3), Write(gradient3))
+ self.wait()
+ self.play(Write(vector4), Write(gradient4))
+ self.wait()
+ self.move_camera(phi=0 * DEGREES, theta = 0*DEGREES,run_time=3)
+ self.play(FadeOut(paraboloid))
+ self.play(FadeOut(vector1), FadeOut(vector2), FadeOut(vector3), FadeOut(vector4))
+ self.wait()
+ self.add_fixed_in_frame_mobjects(circle_0_lab, circle_0_5_lab, circle_1_lab, circle_1_5_lab,circle_2_lab)
+ self.wait(4)
+ \ No newline at end of file
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/directional-derivatives/gifs/file1_directional_deriv.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/directional-derivatives/gifs/file1_directional_deriv.gif
new file mode 100644
index 0000000..39305d5
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/directional-derivatives/gifs/file1_directional_deriv.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/directional-derivatives/gifs/file2_gradient.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/directional-derivatives/gifs/file2_gradient.gif
new file mode 100644
index 0000000..d96f330
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/directional-derivatives/gifs/file2_gradient.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/directional-derivatives/gifs/file3_gradient_level_curves.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/directional-derivatives/gifs/file3_gradient_level_curves.gif
new file mode 100644
index 0000000..f1bf06a
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/directional-derivatives/gifs/file3_gradient_level_curves.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/Multivariable_Functions_Quiz.pdf b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/Multivariable_Functions_Quiz.pdf
index 7895843..7895843 100644
--- a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/Multivariable_Functions_Quiz.pdf
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/Multivariable_Functions_Quiz.pdf
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/README.md b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/README.md
new file mode 100644
index 0000000..0e6e8d3
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/README.md
@@ -0,0 +1,17 @@
+**file1_multivar_func_examples**
+![file1_multivar_func_examples](https://github.com/nishanpoojary/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/gifs/file1_multivar_func_examples.gif)
+
+**file2_multivariable_func_respresentation**
+![file2_multivariable_func_respresentation](https://github.com/nishanpoojary/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/gifs/file2_multivariable_func_respresentation.gif)
+
+**file3_sphere**
+![file3_sphere](https://github.com/nishanpoojary/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/gifs/file3_sphere.gif)
+
+**file4_vectorvf_sine**
+![file4_vectorvf_sine](https://github.com/nishanpoojary/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/gifs/file4_vectorvf_sine.gif)
+
+**file5_vectorvf_helix**
+![file5_vectorvf_helix](https://github.com/nishanpoojary/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/gifs/file5_vectorvf_helix.gif)
+
+**file6_derivative_vectorvf**
+![file6_derivative_vectorvf](https://github.com/nishanpoojary/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/gifs/file6_derivative_vectorvf.gif)
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/file1_multivar_func_examples.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/file1_multivar_func_examples.py
new file mode 100644
index 0000000..55b2b7e
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/file1_multivar_func_examples.py
@@ -0,0 +1,167 @@
+from manimlib.imports import *
+
+class Examples1(GraphScene):
+ def construct(self):
+
+ rectangle = Rectangle(height = 3, width = 4, color = GREEN)
+ rectangle_area_func = TexMobject("Area", "=", "f(", "Length", ",", "Breadth", ")").scale(0.6)
+ rectangle_area_func[0].set_color(RED_C)
+ rectangle_area_func[2].set_color(ORANGE)
+ rectangle_area_func[3].set_color(YELLOW_C)
+ rectangle_area_func[5].set_color(BLUE_C)
+ rectangle_area_func[6].set_color(ORANGE)
+
+
+ rectangle_area = TexMobject("Area", "=", "Length", "\\times", "Breadth").scale(0.6)
+ rectangle_area[0].set_color(RED_C)
+ rectangle_area[2].set_color(YELLOW_C)
+ rectangle_area[4].set_color(BLUE_C)
+
+
+ square = Square(side_length = 5, color = PURPLE)
+ square_area_func = TexMobject("Area", "=", "f(", "Length", ")")
+ square_area_func[0].set_color(GREEN_C)
+ square_area_func[2].set_color(ORANGE)
+ square_area_func[3].set_color(BLUE_C)
+ square_area_func[4].set_color(ORANGE)
+
+ square_area = TexMobject("Area", "=", "Length^2")
+ square_area[0].set_color(GREEN_C)
+ square_area[2].set_color(BLUE_C)
+
+
+ circle = Circle(radius = 2, color = PINK)
+ circle_area_func = TexMobject("Area", "=", "f(", "r", ")")
+ circle_area_func[0].set_color(YELLOW_C)
+ circle_area_func[2].set_color(ORANGE)
+ circle_area_func[3].set_color(GREEN_C)
+ circle_area_func[4].set_color(ORANGE)
+
+ circle_area = TexMobject("Area", "=", "\\pi", "r^2")
+ circle_area[0].set_color(YELLOW_C)
+ circle_area[2].set_color(BLUE_C)
+ circle_area[3].set_color(GREEN_C)
+
+ radius = Line(ORIGIN,2*RIGHT, color = RED_C)
+
+
+
+ braces_rect1 = Brace(rectangle, LEFT)
+ eq_text1 = braces_rect1.get_text("Length").set_color(YELLOW_C)
+ braces_rect2 = Brace(rectangle, UP)
+ eq_text2 = braces_rect2.get_text("Breadth").set_color(BLUE_C)
+
+ braces_square = Brace(square, LEFT)
+ braces_square_text = braces_square.get_text("Length").set_color(BLUE_C)
+
+ radius_text = TexMobject("r", color = GREEN_C).next_to(radius,UP)
+
+
+
+ self.play(ShowCreation(rectangle))
+ self.wait(1)
+ self.play(GrowFromCenter(braces_rect1),Write(eq_text1),GrowFromCenter(braces_rect2),Write(eq_text2))
+ self.wait(1)
+ self.play(Write(rectangle_area_func))
+ self.wait(1)
+ self.play(Transform(rectangle_area_func, rectangle_area))
+ self.wait(1)
+ self.play(FadeOut(braces_rect1),FadeOut(eq_text1),FadeOut(braces_rect2),FadeOut(eq_text2),FadeOut(rectangle_area_func))
+
+
+ self.play(Transform(rectangle, square))
+ self.wait(1)
+ self.play(GrowFromCenter(braces_square),Write(braces_square_text))
+ self.wait(1)
+ self.play(Write(square_area_func))
+ self.wait(1)
+ self.play(Transform(square_area_func, square_area))
+ self.wait(1)
+ self.play(FadeOut(braces_square),FadeOut(braces_square_text),FadeOut(square_area_func))
+
+
+ self.play(Transform(rectangle, circle))
+ self.wait(1)
+ self.play(ShowCreation(radius),Write(radius_text))
+ self.wait(1)
+ self.play(FadeOut(radius_text),FadeOut(radius))
+ self.wait(1)
+ self.play(Write(circle_area_func))
+ self.wait(1)
+ self.play(Transform(circle_area_func, circle_area))
+ self.wait(1)
+ self.play(FadeOut(circle_area_func))
+
+
+
+class Examples2(ThreeDScene):
+ def construct(self):
+ axes = ThreeDAxes()
+
+ rectangle_x_y_0 = Polygon(np.array([-1,-2,0]),np.array([-1,2,0]),np.array([1,2,0]),np.array([1,-2,0]),np.array([-1,-2,0]), color = RED_E, fill_color = RED_C, fill_opacity = 0.1)
+ rectangle_x_y_3 = Polygon(np.array([-1,-2,3]),np.array([-1,2,3]),np.array([1,2,3]),np.array([1,-2,3]),np.array([-1,-2,3]), color = RED_E, fill_color = RED_C, fill_opacity = 0.1)
+
+ rectangle_y_z_1 = Polygon(np.array([1,-2,3]),np.array([1,2,3]),np.array([1,2,0]),np.array([1,-2,0]),np.array([1,-2,3]), color = RED_E, fill_color = RED_C, fill_opacity = 0.1)
+ rectangle_y_z_minus_1 = Polygon(np.array([-1,-2,3]),np.array([-1,2,3]),np.array([-1,2,0]),np.array([-1,-2,0]),np.array([-1,-2,3]), color = RED_E, fill_color = RED_C, fill_opacity = 0.1)
+
+ rectangle_x_z_2 = Polygon(np.array([1,2,3]),np.array([-1,2,3]),np.array([-1,2,0]),np.array([1,2,0]),np.array([1,2,3]), color = RED_E, fill_color = RED_C, fill_opacity = 0.1)
+ rectangle_x_z_minus_2 = Polygon(np.array([1,-2,3]),np.array([-1,-2,3]),np.array([-1,-2,0]),np.array([1,-2,0]),np.array([1,-2,3]), color = RED_E, fill_color = RED_C, fill_opacity = 0.1)
+
+ box = VGroup(rectangle_x_y_0, rectangle_x_y_3, rectangle_y_z_1, rectangle_y_z_minus_1, rectangle_x_z_2, rectangle_x_z_minus_2)
+
+ braces_rectangle_x_y_0 = Line(np.array([1,2,0]), np.array([1,-2,0]), color = BLUE_C)
+ braces_rectangle_x_y_0_text = TextMobject("Length").set_color(BLUE_C).move_to(np.array([2,-1,0]))
+
+ braces_rectangle_y_z_1 = Line(np.array([1,2,0]), np.array([1,2,3]), color = YELLOW_C)
+ braces_rectangle_y_z_1_text = TextMobject("Height").set_color(YELLOW_C).move_to(np.array([2,3.8,2]))
+
+ braces_rectangle_x_z_2 = Line(np.array([1,2,3]), np.array([-1,2,3]), color = PURPLE)
+ braces_rectangle_x_z_2_text = TextMobject("Breadth").set_color(PURPLE).move_to(np.array([0,3.8,3.3]))
+
+ box_area_func = TexMobject("Area =", "f(", "Length", ",", "Breadth", ",", "Height", ")").move_to(4*LEFT+3.5*UP).scale(0.6)
+ box_area_func[0].set_color(GREEN_C)
+ box_area_func[1].set_color(ORANGE)
+ box_area_func[2].set_color(BLUE_C)
+ box_area_func[4].set_color(PURPLE)
+ box_area_func[6].set_color(YELLOW_C)
+ box_area_func[7].set_color(ORANGE)
+
+ box_area_func_2 = TexMobject("Area =", "Length", "\\times", "Breadth", "\\times", "Height").move_to(4*LEFT+3.5*UP).scale(0.6)
+ box_area_func_2[0].set_color(GREEN_C)
+ box_area_func_2[1].set_color(BLUE_C)
+ box_area_func_2[3].set_color(PURPLE)
+ box_area_func_2[5].set_color(YELLOW_C)
+
+
+ self.set_camera_orientation(phi=70 * DEGREES, theta = 45*DEGREES)
+
+ self.add(axes)
+
+ axis = TextMobject(r"X",r"Y",r"Z")
+ axis[0].move_to(6*RIGHT)
+ axis[1].move_to(6*UP)
+ axis[2].move_to(3.7*UP)
+
+ self.add_fixed_in_frame_mobjects(axis[2])
+ self.add_fixed_orientation_mobjects(axis[0])
+ self.add_fixed_orientation_mobjects(axis[1])
+
+ self.play(ShowCreation(box), ShowCreation(braces_rectangle_x_y_0))
+ self.add_fixed_orientation_mobjects(braces_rectangle_x_y_0_text)
+ self.play(ShowCreation(braces_rectangle_y_z_1))
+ self.add_fixed_orientation_mobjects(braces_rectangle_y_z_1_text)
+ self.play(ShowCreation(braces_rectangle_x_z_2))
+ self.add_fixed_orientation_mobjects(braces_rectangle_x_z_2_text)
+ self.wait(2)
+
+ self.move_camera(phi=60* DEGREES,theta=80*DEGREES)
+ self.add_fixed_in_frame_mobjects(box_area_func)
+ self.play(Write(box_area_func))
+ self.wait()
+
+
+ self.play(ReplacementTransform(box_area_func,box_area_func_2))
+ self.add_fixed_in_frame_mobjects(box_area_func_2)
+
+
+ self.wait(3) \ No newline at end of file
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/file2_multivariable_func_respresentation.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/file2_multivariable_func_respresentation.py
new file mode 100644
index 0000000..d10ff0a
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/file2_multivariable_func_respresentation.py
@@ -0,0 +1,98 @@
+from manimlib.imports import *
+
+class MultivariableFunc(Scene):
+ def construct(self):
+
+ topic = TextMobject("Multivariable Functions")
+ topic.set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
+ topic.scale(1.5)
+
+ self.play(Write(topic))
+ self.wait()
+ self.play(FadeOut(topic))
+
+
+ #circle = Circle()
+ #circle.scale(3)
+
+ scalar_function = TextMobject("Scalar Valued Function")
+ scalar_function.set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
+ scalar_function.scale(1.5)
+ scalar_function.move_to(2.5*UP)
+
+ rectangle = Rectangle(height = 2, width = 4)
+ rectangle.set_color(PURPLE)
+
+ eqn1 = TextMobject(r"f(x,y) = $x^2y$")
+ eqn1.set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE)
+
+
+
+ number1 = TextMobject("(2,1)")
+ number1.move_to(2.5*UP+ 4*LEFT)
+ number1.scale(1.2)
+ number1.set_color(ORANGE)
+
+ output1 = TextMobject("4")
+ output1.scale(1.5)
+ output1.set_color(BLUE_C)
+ output1.move_to(3*RIGHT)
+
+ eqn1_1 = TextMobject(r"f(2,1) = $2^2(1)$")
+ eqn1_1.set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE)
+
+
+ self.play(Write(eqn1),ShowCreation(rectangle))
+ self.wait()
+ self.play(ApplyMethod(number1.move_to, 3*LEFT))
+ self.play(FadeOut(number1))
+ self.play(Transform(eqn1, eqn1_1))
+ self.wait()
+ self.play(ApplyMethod(output1.move_to, 2.5*DOWN+4*RIGHT))
+ self.wait()
+ self.play(Write(scalar_function))
+ self.play(FadeOut(output1), FadeOut(scalar_function), FadeOut(eqn1))
+
+
+ vector_function = TextMobject("Vector Valued Function")
+ vector_function.set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
+ vector_function.scale(1.5)
+ vector_function.move_to(2.5*UP)
+
+
+ eqn2 = TextMobject(r"f(x,y,z) = $ \begin{bmatrix} x^2y \\ 2yz \end{bmatrix}$")
+ eqn2.set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
+
+ number2 = TextMobject("(2,1,3)")
+ number2.move_to(2.5*UP+ 4*LEFT)
+ number2.scale(1.2)
+ number2.set_color(ORANGE)
+
+ output2 = TextMobject(r"$ \begin{bmatrix} 4 \\ 6 \end{bmatrix}$")
+ #output2.scale(1.5)
+ output2.set_color(BLUE_C)
+ output2.move_to(3*RIGHT)
+
+ #eqn2_1 = TextMobject(r"f(2,1,3) = $2^2(1) + 2(1)(3)$")
+ #eqn2_1.set_color(YELLOW)
+
+ #eqn2_2 = TextMobject(r"f(2,1,3) = $2 + 6$")
+ #eqn2_2.set_color(YELLOW)
+
+
+ self.play(Write(eqn2))
+
+ self.wait()
+ self.play(ApplyMethod(number2.move_to, 3*LEFT))
+ self.play(FadeOut(number2))
+
+ #self.play(Transform(eqn2, eqn2_1))
+ #self.wait(1)
+ #self.play(Transform(eqn2, eqn2_2))
+ #self.wait(1)
+
+ self.play(ApplyMethod(output2.move_to, 2.5*DOWN+4*RIGHT))
+ self.wait()
+ self.play(Write(vector_function))
+ self.play(FadeOut(output2),FadeOut(eqn2), FadeOut(vector_function), FadeOut(rectangle))
+ self.wait() \ No newline at end of file
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/file3_sphere.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/file3_sphere.py
new file mode 100644
index 0000000..86239ae
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/file3_sphere.py
@@ -0,0 +1,177 @@
+from manimlib.imports import *
+
+class Sphere(ThreeDScene):
+ def construct(self):
+ axes = ThreeDAxes() # creates a 3D Axis
+
+ text3d = TextMobject(r"$f(x,y) \rightarrow Point(x,y,z)$")
+ text3d1 = TextMobject(r"$f(x,y) \rightarrow Point(x,y, \sqrt{r^2 - x^2 - y^2})$")
+ self.add_fixed_in_frame_mobjects(text3d)
+ text3d.scale(0.7)
+ text3d1.scale(0.7)
+ text3d.to_corner(UL)
+ text3d1.to_corner(UL)
+ text3d.set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
+ text3d1.set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
+ self.play(Write(text3d))
+ self.wait(1)
+
+ self.play(Transform(text3d,text3d1))
+ self.add_fixed_in_frame_mobjects(text3d1)
+ self.play(FadeOut(text3d))
+
+ sphere = ParametricSurface(
+ lambda u, v: np.array([
+ 2*np.sin(u)*np.cos(v),
+ 2*np.sin(u)*np.sin(v),
+ 2*np.cos(u)
+ ]),u_min=0,u_max=PI,v_min=0,v_max=2*PI,checkerboard_colors=[RED_D, RED_E],
+ resolution=(15, 32)).scale(1)
+
+
+ #Experiment with circles by changing difference value of u and v
+ '''
+ sphere_points = [np.array([2*np.sin(u*DEGREES)*np.cos(v*DEGREES), 2*np.sin(u*DEGREES)*np.sin(v*DEGREES), 2*np.cos(u*DEGREES)]) for u in range(0, 185, 5) for v in range(0, 365, 5)]
+
+ sphere_spheres = [Dot().move_to(pts) for pts in sphere_points]
+
+ sphere = VGroup(*sphere_spheres)
+ '''
+
+ self.set_camera_orientation(phi=75 * DEGREES, theta = 45*DEGREES)
+
+ self.add(axes)
+
+ axis = TextMobject(r"X",r"Y",r"Z")
+ axis[0].move_to(6*RIGHT)
+ axis[1].move_to(6*UP)
+ axis[2].move_to(np.array([0,0,3.7]))
+
+ self.add_fixed_orientation_mobjects(axis[2])
+ self.add_fixed_orientation_mobjects(axis[0])
+ self.add_fixed_orientation_mobjects(axis[1])
+
+ dot_x_y1 = Dot().scale(0.75).set_fill(RED_C).move_to(np.array([-1,1,0]))
+ dot_x_y_z1 = Dot().scale(0.75).set_fill(RED_C).move_to(np.array([-1,1,1.414]))
+ dot_x_y_z_1 = Dot().scale(0.75).set_fill(RED_C).move_to(np.array([-1,1,-1.414]))
+ line1 = DashedLine(np.array([-1,1,-1.414]), np.array([-1,1,1.414]), color = YELLOW_C)
+
+ point_x_y1 = TexMobject("(-1,1,0)").set_color(BLUE_C).move_to(np.array([-1.5,1.5,0])).scale(0.5)
+ point_x_y_z1 = TexMobject("(-1,1,\\sqrt{r^2 - x^2 - y^2})").set_color(BLUE_C).move_to(np.array([-1.5,1.5,1.414])).scale(0.5)
+ point_x_y_z1_2 = TexMobject("(-1,1,\\sqrt{4 - x^2 - y^2})").set_color(BLUE_C).move_to(np.array([-1.5,1.5,1.414])).scale(0.5)
+ point_x_y_z1_3 = TexMobject("(-1,1,\\sqrt{4 - 1 - 1})").set_color(BLUE_C).move_to(np.array([-1.5,1.5,1.414])).scale(0.5)
+ point_x_y_z1_4 = TexMobject("(-1,1,\\sqrt{2})").set_color(BLUE_C).move_to(np.array([-1.5,1.5,1.414])).scale(0.5)
+ point_x_y_z1_5 = TexMobject("(-1,1,1.414)").set_color(BLUE_C).move_to(np.array([-1.5,1.5,1.414])).scale(0.5)
+
+ point_x_y_z_1 = TexMobject("(-1,1,\\sqrt{r^2 - x^2 - y^2})").set_color(BLUE_C).move_to(np.array([-1.5,1.5,-1.414])).scale(0.5)
+ point_x_y_z_1_2 = TexMobject("(-1,1,\\sqrt{4 - x^2 - y^2})").set_color(BLUE_C).move_to(np.array([-1.5,1.5,-1.414])).scale(0.5)
+ point_x_y_z_1_3 = TexMobject("(-1,1,\\sqrt{4 - 1 - 1})").set_color(BLUE_C).move_to(np.array([-1.5,1.5,-1.414])).scale(0.5)
+ point_x_y_z_1_4 = TexMobject("(-1,1,\\sqrt{2})").set_color(BLUE_C).move_to(np.array([-1.5,1.5,-1.414])).scale(0.5)
+ point_x_y_z_1_5 = TexMobject("(-1,1,-1.414)").set_color(BLUE_C).move_to(np.array([-1.5,1.5,-1.414])).scale(0.5)
+
+
+ self.play(ShowCreation(dot_x_y1))
+ self.add_fixed_orientation_mobjects(point_x_y1)
+ self.play(ShowCreation(dot_x_y_z1), ShowCreation(dot_x_y_z_1), ShowCreation(line1))
+ self.add_fixed_orientation_mobjects(point_x_y_z1, point_x_y_z_1)
+ self.wait(0.5)
+ self.play(ReplacementTransform(point_x_y_z1,point_x_y_z1_2), ReplacementTransform(point_x_y_z_1,point_x_y_z_1_2))
+ self.add_fixed_orientation_mobjects(point_x_y_z1_2, point_x_y_z_1_2)
+
+ self.wait(0.5)
+ self.play(ReplacementTransform(point_x_y_z1_2,point_x_y_z1_3), ReplacementTransform(point_x_y_z_1_2,point_x_y_z_1_3))
+ self.add_fixed_orientation_mobjects(point_x_y_z1_3, point_x_y_z_1_3)
+ self.wait(0.5)
+ self.play(ReplacementTransform(point_x_y_z1_3,point_x_y_z1_4), ReplacementTransform(point_x_y_z_1_3,point_x_y_z_1_4))
+ self.add_fixed_orientation_mobjects(point_x_y_z1_4, point_x_y_z_1_4)
+ self.wait(0.5)
+ self.play(ReplacementTransform(point_x_y_z1_4,point_x_y_z1_5), ReplacementTransform(point_x_y_z_1_4,point_x_y_z_1_5))
+ self.add_fixed_orientation_mobjects(point_x_y_z1_5, point_x_y_z_1_5)
+
+
+
+ dot_x_y2 = Dot().scale(0.75).set_fill(RED_C).move_to(np.array([0.5,-0.5,0]))
+ dot_x_y_z2 = Dot().scale(0.75).set_fill(RED_C).move_to(np.array([0.5,-0.5,1.87]))
+ dot_x_y_z_2 = Dot().scale(0.75).set_fill(RED_C).move_to(np.array([0.5,-0.5,-1.87]))
+ line2 = DashedLine(np.array([0.5,-0.5,-1.87]), np.array([0.5,-0.5,1.87]), color = YELLOW_C)
+
+ point_x_y2 = TexMobject("(0.5,-0.5,0)").set_color(BLUE_C).move_to(np.array([1.5,-1.5,0])).scale(0.5)
+ point_x_y_z2 = TexMobject("(0.5,-0.5,\\sqrt{r^2 - x^2 - y^2})").set_color(BLUE_C).move_to(np.array([1.5,-1.5,1.87])).scale(0.5)
+ point_x_y_z2_2 = TexMobject("(0.5,-0.5,\\sqrt{4 - x^2 - y^2})").set_color(BLUE_C).move_to(np.array([1.5,-1.5,1.87])).scale(0.5)
+ point_x_y_z2_3 = TexMobject("(0.5,-0.5,\\sqrt{4 - 0.25 - 0.25})").set_color(BLUE_C).move_to(np.array([1.5,-1.5,1.87])).scale(0.5)
+ point_x_y_z2_4 = TexMobject("(0.5,-0.5,\\sqrt{3.5})").set_color(BLUE_C).move_to(np.array([1.5,-1.5,1.87])).scale(0.5)
+ point_x_y_z2_5 = TexMobject("(0.5,-0.5,1.87)").set_color(BLUE_C).move_to(np.array([1.5,-1.5,1.87])).scale(0.5)
+
+ point_x_y_z_2 = TexMobject("(0.5,-0.5,\\sqrt{r^2 - x^2 - y^2})").set_color(BLUE_C).move_to(np.array([1.5,-1.5,-1.87])).scale(0.5)
+ point_x_y_z_2_2 = TexMobject("(0.5,-0.5,\\sqrt{4 - x^2 - y^2})").set_color(BLUE_C).move_to(np.array([1.5,-1.5,-1.87])).scale(0.5)
+ point_x_y_z_2_3 = TexMobject("(0.5,-0.5,\\sqrt{4 - 0.25 - 0.25})").set_color(BLUE_C).move_to(np.array([1.5,-1.5,-1.87])).scale(0.5)
+ point_x_y_z_2_4 = TexMobject("(0.5,-0.5,\\sqrt{3.5})").set_color(BLUE_C).move_to(np.array([1.5,-1.5,-1.87])).scale(0.5)
+ point_x_y_z_2_5 = TexMobject("(0.5,-0.5,-1.87)").set_color(BLUE_C).move_to(np.array([1.5,-1.5,-1.87])).scale(0.5)
+
+
+ self.play(ShowCreation(dot_x_y2))
+ self.add_fixed_orientation_mobjects(point_x_y2)
+ self.play(ShowCreation(dot_x_y_z2), ShowCreation(dot_x_y_z_2), ShowCreation(line2))
+ self.add_fixed_orientation_mobjects(point_x_y_z2, point_x_y_z_2)
+ self.wait(0.5)
+ self.play(ReplacementTransform(point_x_y_z2,point_x_y_z2_2), ReplacementTransform(point_x_y_z_2,point_x_y_z_2_2))
+ self.add_fixed_orientation_mobjects(point_x_y_z2_2, point_x_y_z_2_2)
+
+ self.wait(0.5)
+ self.play(ReplacementTransform(point_x_y_z2_2,point_x_y_z2_3), ReplacementTransform(point_x_y_z_2_2,point_x_y_z_2_3))
+ self.add_fixed_orientation_mobjects(point_x_y_z2_3, point_x_y_z_2_3)
+ self.wait(0.5)
+ self.play(ReplacementTransform(point_x_y_z2_3,point_x_y_z2_4), ReplacementTransform(point_x_y_z_2_3,point_x_y_z_2_4))
+ self.add_fixed_orientation_mobjects(point_x_y_z2_4, point_x_y_z_2_4)
+ self.wait(0.5)
+ self.play(ReplacementTransform(point_x_y_z2_4,point_x_y_z2_5), ReplacementTransform(point_x_y_z_2_4,point_x_y_z_2_5))
+ self.add_fixed_orientation_mobjects(point_x_y_z2_5, point_x_y_z_2_5)
+
+ self.play(FadeOut(point_x_y1), FadeOut(point_x_y_z1_5), FadeOut(point_x_y_z_1_5), FadeOut(dot_x_y1), FadeOut(dot_x_y_z1), FadeOut(dot_x_y_z_1), FadeOut(line1))
+ self.play(FadeOut(point_x_y2), FadeOut(point_x_y_z2_5), FadeOut(point_x_y_z_2_5), FadeOut(dot_x_y2), FadeOut(dot_x_y_z2), FadeOut(dot_x_y_z_2), FadeOut(line2))
+
+
+
+
+ sphere_final = []
+
+ for u in range(0, 180, 15):
+ sphere_points1 = [np.array([2*np.sin(u*DEGREES)*np.cos(v*DEGREES), 2*np.sin(u*DEGREES)*np.sin(v*DEGREES), 2*np.cos(u*DEGREES)]) for v in range(0, 370, 10)]
+ sphere_dots1 = [Dot().scale(0.75).set_fill(RED_C).move_to(pts) for pts in sphere_points1]
+
+ sphere_points2 = [np.array([2*np.sin((u+5)*DEGREES)*np.cos(v*DEGREES), 2*np.sin((u+5)*DEGREES)*np.sin(v*DEGREES), 2*np.cos((u+5)*DEGREES)]) for v in range(0, 370, 10)]
+ sphere_dots2 = [Dot().scale(0.75).set_fill(RED_C).move_to(pts) for pts in sphere_points2]
+
+ sphere_points3 = [np.array([2*np.sin((u+10)*DEGREES)*np.cos(v*DEGREES), 2*np.sin((u+10)*DEGREES)*np.sin(v*DEGREES), 2*np.cos((u+10)*DEGREES)]) for v in range(0, 370, 10)]
+ sphere_dots3 = [Dot().scale(0.75).set_fill(RED_C).move_to(pts) for pts in sphere_points3]
+
+ sphere_final = sphere_final + sphere_dots1 + sphere_dots2 + sphere_dots3
+
+ sphere_dots = sphere_dots1 + sphere_dots2 + sphere_dots3
+
+ sphere_with_dots = VGroup(*sphere_dots)
+ self.play(ShowCreation(sphere_with_dots))
+
+ sphere_final_with_dots = VGroup(*sphere_final)
+
+
+ self.begin_ambient_camera_rotation(rate=0.5)
+ self.wait(3)
+ self.play(ReplacementTransform(sphere_final_with_dots, sphere))
+ self.wait(5)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_vectorvf_sine.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/file4_vectorvf_sine.py
index 06e225e..06e225e 100644
--- a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_vectorvf_sine.py
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/file4_vectorvf_sine.py
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/file5_vectorvf_helix.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/file5_vectorvf_helix.py
new file mode 100644
index 0000000..fc151ac
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/file5_vectorvf_helix.py
@@ -0,0 +1,92 @@
+from manimlib.imports import *
+
+class Helix(ThreeDScene):
+ def construct(self):
+ axes = ThreeDAxes() # creates a 3D Axis
+
+ helix1=ParametricFunction(
+ lambda u : np.array([
+ 1.5*np.cos(u),
+ 1.5*np.sin(u),
+ u/4
+ ]),color=PURPLE,t_min=-TAU,t_max=TAU,
+ )
+
+ helix2=ParametricFunction(
+ lambda u : np.array([
+ 2*np.cos(u),
+ 2*np.sin(u),
+ u/2
+ ]),color=GREEN_C,t_min=-TAU,t_max=TAU,
+ )
+
+ function = TexMobject("f(", "r", ",", "\\theta", ")", "=", "[", "r", "\\cos", "\\theta", ",", "r", "\\sin" ,"\\theta", ",", "h" ,"\\theta", "]" ).scale(0.6).to_corner(UL)
+ function.set_color_by_tex(r"\theta", BLUE_C)
+ function.set_color_by_tex(r"r", RED_C)
+ function.set_color_by_tex(r"\cos", GREEN_C)
+ function.set_color_by_tex(r"\sin", YELLOW_C)
+ function[0].set_color(ORANGE)
+ function[4].set_color(ORANGE)
+
+
+ self.add_fixed_in_frame_mobjects(function)
+
+ self.set_camera_orientation(phi=60*DEGREES, theta = 45*DEGREES)
+
+ self.add(axes)
+
+ axis = TextMobject(r"X",r"Y",r"Z")
+ axis[0].move_to(6*RIGHT)
+ axis[1].move_to(6*UP)
+ axis[2].move_to(np.array([0,0,3.7]))
+
+ self.add_fixed_orientation_mobjects(axis[2])
+ self.add_fixed_orientation_mobjects(axis[0])
+ self.add_fixed_orientation_mobjects(axis[1])
+
+
+ dot1 = Dot().rotate(PI/2).set_color(RED_C)
+ alpha1 = ValueTracker(0)
+ vector1 = self.get_vector(alpha1.get_value(),helix1)
+ dot1.add_updater(lambda m: m.move_to(vector1.get_end()))
+ self.play(
+ ShowCreation(helix1),
+ GrowFromCenter(dot1),
+ GrowArrow(vector1)
+ )
+ vector1.add_updater(
+ lambda m: m.become(
+ self.get_vector(alpha1.get_value()%1,helix1)
+ )
+ )
+ self.add(vector1,dot1)
+ self.play(alpha1.increment_value, 1, run_time=10, rate_func=linear)
+
+
+ self.play(FadeOut(vector1), FadeOut(dot1))
+ self.play(ReplacementTransform(helix1, helix2))
+
+
+ dot2 = Dot().rotate(PI/2).set_color(RED_C)
+ alpha2 = ValueTracker(0)
+ vector2 = self.get_vector(alpha2.get_value(),helix2)
+ dot2.add_updater(lambda m: m.move_to(vector2.get_end()))
+ self.play(
+ ShowCreation(helix2),
+ GrowFromCenter(dot2),
+ GrowArrow(vector2)
+ )
+ vector2.add_updater(
+ lambda m: m.become(
+ self.get_vector(alpha2.get_value()%1,helix2)
+ )
+ )
+ self.add(vector2,dot2)
+ self.play(alpha2.increment_value, 1, run_time=10, rate_func=linear)
+ self.wait()
+
+
+
+ def get_vector(self, proportion, curve):
+ vector = Line(np.array([0,0,0]), curve.point_from_proportion(proportion), color = YELLOW_C, buff=0)
+ return vector \ No newline at end of file
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_derivative_vectorvf.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/file6_derivative_vectorvf.py
index 466e389..466e389 100644
--- a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Multivariable Functions/multivariable_func_derivative_vectorvf.py
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/file6_derivative_vectorvf.py
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/gifs/file1_multivar_func_examples.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/gifs/file1_multivar_func_examples.gif
new file mode 100644
index 0000000..43c3a42
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/gifs/file1_multivar_func_examples.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/gifs/file2_multivariable_func_respresentation.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/gifs/file2_multivariable_func_respresentation.gif
new file mode 100644
index 0000000..8c4506c
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/gifs/file2_multivariable_func_respresentation.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/gifs/file3_sphere.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/gifs/file3_sphere.gif
new file mode 100644
index 0000000..3e35ec8
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/gifs/file3_sphere.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/gifs/file4_vectorvf_sine.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/gifs/file4_vectorvf_sine.gif
new file mode 100644
index 0000000..215459e
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/gifs/file4_vectorvf_sine.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/gifs/file5_vectorvf_helix.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/gifs/file5_vectorvf_helix.gif
new file mode 100644
index 0000000..c3d37f6
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/gifs/file5_vectorvf_helix.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/gifs/file6_derivative_vectorvf.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/gifs/file6_derivative_vectorvf.gif
new file mode 100644
index 0000000..9ea94e4
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-functions/gifs/file6_derivative_vectorvf.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/Limits_and_Continuity_of_Multivariable_Function_Quiz.pdf b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/Limits_and_Continuity_of_Multivariable_Function_Quiz.pdf
new file mode 100644
index 0000000..99918e5
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/Limits_and_Continuity_of_Multivariable_Function_Quiz.pdf
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/README.md b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/README.md
new file mode 100644
index 0000000..c01ddc5
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/README.md
@@ -0,0 +1,14 @@
+**file1_epsilon_delta_defn**
+![file1_epsilon_delta_defn](https://github.com/nishanpoojary/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/gifs/file1_epsilon_delta_defn.gif)
+
+**file2_limit_approach_point**
+![file2_limit_approach_point](https://github.com/nishanpoojary/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/gifs/file2_limit_approach_point.gif)
+
+**file3_limit_approach_point_3d**
+![file3_limit_approach_point_3d](https://github.com/nishanpoojary/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/gifs/file3_limit_approach_point_3d.gif)
+
+**file4_limit_different_point**
+![file4_limit_different_point](https://github.com/nishanpoojary/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/gifs/file4_limit_different_point.gif)
+
+**file5_continuity_func**
+![file5_continuity_func](https://github.com/nishanpoojary/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/gifs/file5_continuity_func.gif)
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/file1_epsilon_delta_defn.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/file1_epsilon_delta_defn.py
new file mode 100644
index 0000000..803c122
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/file1_epsilon_delta_defn.py
@@ -0,0 +1,179 @@
+from manimlib.imports import *
+
+class EpsilonDelta(ThreeDScene):
+ def construct(self):
+ axes = ThreeDAxes() # creates a 3D Axis
+
+
+ sphere = ParametricSurface(
+ lambda u, v: np.array([
+ 3*np.sin(u)*np.cos(v),
+ 3*np.sin(u)*np.sin(v),
+ 3*np.cos(u)
+ ]),u_min=0,u_max=PI/4,v_min=PI/2,v_max=PI,checkerboard_colors=[RED_D, RED_E],
+ resolution=(15, 32)).scale(1)
+
+
+ cylinder_z = ParametricSurface(
+ lambda u, v: np.array([
+ 0.25*np.cos(TAU * v),
+ 1.8* (1 - u),
+ 0.25*np.sin(TAU * v)
+
+ ]),
+ checkerboard_colors=[YELLOW_C, YELLOW_E], resolution=(6, 32)).fade(0.2).rotate(PI/4).move_to(np.array([-0.65,0.65,2.54]))
+
+
+ cylinder_x = ParametricSurface(
+ lambda u, v: np.array([
+ 0.3*np.cos(TAU * v)-1,
+ 0.3*np.sin(TAU * v)+1,
+ 2.6*(1 - u)
+ ]),
+ checkerboard_colors=[BLUE_C, BLUE_E], resolution=(6, 32)).fade(0.2)
+
+
+ delta_circle = Circle(radius= 0.3, color = BLACK).shift(1*LEFT+1*UP).set_fill(GREEN_E, opacity = 0.5)
+
+ epsilon_circle = [np.array([0.25*np.cos(i*DEGREES),0,0.25*np.sin(i*DEGREES)]) for i in range(361)]
+
+ epsilon_circle_polygon = Polygon(*epsilon_circle, color = RED_E, fill_color = RED_E, fill_opacity = 0.5).rotate(PI/4).move_to(np.array([0,0,2.54]))
+
+
+ dot_circle = Dot().move_to(np.array([-1,1,0])).set_fill("#000080")
+
+ dot_surface = Dot().rotate(-PI/4).scale(1.5).move_to(np.array([-1.2,1.2,2.7])).set_fill("#000080")
+
+ dot_L_epsilon1 = Polygon(*[np.array([0.05*np.cos(i*DEGREES),0,0.05*np.sin(i*DEGREES)]) for i in range(361)], color = "#000080", fill_color = "#000080", fill_opacity = 1).rotate(PI/4).move_to(np.array([0,0,2.3]))
+
+ dot_L_epsilon2 = Polygon(*[np.array([0.05*np.cos(i*DEGREES),0,0.05*np.sin(i*DEGREES)]) for i in range(361)], color = "#000080", fill_color = "#000080", fill_opacity = 1).rotate(PI/4).move_to(np.array([0,0,2.8]))
+
+ dot_L = Polygon(*[np.array([0.05*np.cos(i*DEGREES),0,0.05*np.sin(i*DEGREES)]) for i in range(361)], color = "#006400", fill_color = "#006400", fill_opacity = 1).rotate(PI/4).move_to(np.array([0,0,2.54]))
+
+
+
+ self.add(axes)
+
+ axis = TextMobject(r"X",r"Y",r"Z")
+ axis[0].move_to(6*RIGHT)
+ axis[1].move_to(6*UP)
+ axis[2].move_to(np.array([0,0,3.7]))
+
+ self.add_fixed_orientation_mobjects(axis[2])
+ self.add_fixed_orientation_mobjects(axis[0])
+ self.add_fixed_orientation_mobjects(axis[1])
+
+ self.set_camera_orientation(phi=75*DEGREES,theta=135*DEGREES)
+ #self.set_camera_orientation(phi=80*DEGREES,theta=45*DEGREES)
+
+
+ self.play(ShowCreation(sphere),ShowCreation(delta_circle), ShowCreation(dot_circle))
+
+ temp_circle_center = TextMobject(r"$(a,b,0)$").scale(0.6).set_color(BLUE_C).move_to(1.7*LEFT+1.1*UP)
+ self.add_fixed_orientation_mobjects(temp_circle_center)
+ self.wait()
+
+ delta_lab = TextMobject(r"$\delta$", r"$-$", "disk").scale(0.5).move_to(0.6*LEFT+1.7*UP)
+ delta_lab[0].set_color(PINK).scale(1.3)
+ delta_lab[1].set_color(ORANGE)
+ delta_lab[2].set_color(GREEN_E)
+
+ self.add_fixed_orientation_mobjects(delta_lab)
+
+ self.play(ShowCreation(dot_surface))
+
+ temp_curve_circle_center = TextMobject(r"$(a,b,L)$").scale(0.6).set_color("#006400").move_to(np.array([-2,1,2.7]))
+ self.add_fixed_orientation_mobjects(temp_curve_circle_center)
+
+
+ self.wait()
+ self.play(ShowCreation(cylinder_x), FadeOut(dot_surface))
+ self.wait()
+
+ self.move_camera(phi=0* DEGREES,theta=135*DEGREES)
+ self.wait()
+
+ self.move_camera(phi=80* DEGREES,theta=225*DEGREES)
+ self.wait()
+
+ self.play(FadeOut(delta_lab), ShowCreation(cylinder_z))
+ self.wait()
+
+ self.play(FadeOut(temp_circle_center), FadeOut(temp_curve_circle_center),ShowCreation(epsilon_circle_polygon))
+
+ self.move_camera(phi=80* DEGREES,theta=325*DEGREES)
+
+ dot_L_epsilon1_lab = TextMobject(r"$L$", r"$-$", r"$\epsilon$").scale(0.6).move_to(np.array([-0.4,-0.4,2.3]))
+ dot_L_epsilon1_lab[0].set_color("#D4108A")
+ dot_L_epsilon1_lab[1].set_color("#006400")
+ dot_L_epsilon1_lab[2].set_color("#4DC8A1").scale(1.5)
+
+ dot_L_epsilon2_lab = TextMobject(r"$L$", r"$+$", r"$\epsilon$").scale(0.6).move_to(np.array([-0.4,-0.4,2.8]))
+ dot_L_epsilon2_lab[0].set_color("#D4108A")
+ dot_L_epsilon2_lab[1].set_color("#006400")
+ dot_L_epsilon2_lab[2].set_color("#4DC8A1").scale(1.5)
+
+ dot_L_lab = TextMobject(r"$L$").scale(0.6).set_color("#D4108A").move_to(np.array([-0.4,-0.4,2.54]))
+
+
+ self.play(ShowCreation(dot_L_epsilon1), ShowCreation(dot_L), ShowCreation(dot_L_epsilon2))
+ self.add_fixed_orientation_mobjects(dot_L_epsilon1_lab, dot_L_epsilon2_lab, dot_L_lab)
+ self.wait(4)
+
+ self.move_camera(phi=80* DEGREES,theta=45*DEGREES)
+ self.wait(2)
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ '''
+
+
+
+
+
+
+
+
+
+
+
+ delta_lab = TextMobject(r"$\delta - disk$")
+ delta_lab.scale(0.5)
+ delta_lab.set_color(PINK)
+
+ self.play(ShowCreation(circle_center))
+ self.add_fixed_in_frame_mobjects(temp_circle_center)
+ temp_circle_center.move_to(1.5*RIGHT)
+ self.play(Write(temp_circle_center))
+
+ self.play(ShowCreation(curve_circle_center))
+ self.add_fixed_in_frame_mobjects(temp_curve_circle_center)
+ temp_curve_circle_center.move_to(1.9*UP+1*RIGHT)
+ self.play(Write(temp_curve_circle_center))
+
+
+ self.add_fixed_in_frame_mobjects(delta_lab)
+ delta_lab.move_to(0.4*DOWN+1.7*RIGHT)
+ self.play(Write(delta_lab))
+
+
+
+
+
+ self.begin_ambient_camera_rotation(rate=0.2)
+
+ self.play(ShowCreation(circle), ShowCreation(line1), ShowCreation(line2))
+ self.play(ShowCreation(line3), ShowCreation(line4))
+ self.wait(8)
+ ''' \ No newline at end of file
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Limits and Continuity of Multivariable Functions/limit_approach_point.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/file2_limit_approach_point.py
index 57d1d45..57d1d45 100644
--- a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Limits and Continuity of Multivariable Functions/limit_approach_point.py
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/file2_limit_approach_point.py
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/file3_limit_approach_point_3d.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/file3_limit_approach_point_3d.py
new file mode 100644
index 0000000..f1007a4
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/file3_limit_approach_point_3d.py
@@ -0,0 +1,152 @@
+from manimlib.imports import *
+
+class Limit(ThreeDScene):
+ def construct(self):
+ axes = ThreeDAxes()
+
+ text3d = TextMobject(r"$f(x,y) = \frac{x - y}{x - 1}$")
+ self.add_fixed_in_frame_mobjects(text3d)
+
+ text3d.to_corner(UL)
+
+ text3d.set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
+
+ self.play(Write(text3d))
+ self.wait(1)
+
+ limit_func = ParametricSurface(
+ lambda u, v: np.array([
+ 3*np.sin(u)*np.cos(v),
+ 3*np.sin(u)*np.sin(v),
+ (3*np.sin(u)*np.cos(v) - 3*np.sin(u)*np.sin(v))/2*(3*np.sin(u)*np.cos(v) - 1)
+ ]),u_min=0,u_max=PI,v_min=0,v_max=2*PI, color = BLUE_C, fill_color = BLUE_C, fill_opacity = 0.1,
+ resolution=(15, 32)).scale(1)
+
+ limit_y_x =ParametricFunction(
+ lambda u : np.array([
+ u,
+ u,
+ 0
+ ]),color=GREEN_D,t_min=-3,t_max=3,
+ )
+
+ limit_y_1 =ParametricFunction(
+ lambda u : np.array([
+ u,
+ 1,
+ 1/2
+ ]),color=BLUE_D,t_min=-3,t_max=3,
+ )
+
+ limit_y_x_2 =ParametricFunction(
+ lambda u : np.array([
+ u,
+ u*u,
+ (u - u*u)/2*(u - 1)
+ ]),color=RED_D,t_min=-3,t_max=3,
+ )
+
+ limit_y_2_x =ParametricFunction(
+ lambda u : np.array([
+ u,
+ 2 - u,
+ 1
+ ]),color=YELLOW_D,t_min=-3,t_max=3,
+ )
+
+ plane_y_x = Polygon(np.array([-3,-3,-3]),np.array([3,3,-3]),np.array([3,3,3]),np.array([-3,-3,3]),np.array([-3,-3,-3]), color = GREEN_C, fill_color = GREEN_C, fill_opacity = 0.1)
+ plane_y_x_text = TextMobject(r"$y = x$", color = GREEN_C).move_to(np.array([5,0,3]))
+
+ plane_y_1 = Polygon(np.array([-3,1,-3]),np.array([3,1,-3]),np.array([3,1,3]),np.array([-3,1,3]),np.array([-3,1,-3]), color = BLUE_C, fill_color = BLUE_C, fill_opacity = 0.1)
+ plane_y_1_text = TextMobject(r"$y = 1$", color = BLUE_C).move_to(np.array([5,0,2.5]))
+
+
+ #Creating plane y = x^2
+ ######
+ y_x_2 = []
+ y_x_2.append(np.array([2, 4, -3]))
+ y_x_2.append(np.array([2, 4, 3]))
+ y_x_2_1 = [np.array([i, i*i, 3]) for i in np.arange(1.9,-2.1, -0.1)]
+
+ y_x_2 = y_x_2 + y_x_2_1
+
+ y_x_2.append(np.array([-2, 4, 3]))
+ y_x_2.append(np.array([-2, 4, -3]))
+
+ y_x_2_2 = [np.array([i, i*i, -3]) for i in np.arange(-2,2.1, 0.1)]
+
+ y_x_2 = y_x_2 + y_x_2_2
+ #y_x_2.append(np.array([-3, 9, 0]))
+
+ plane_y_x_2 = Polygon(*y_x_2, color = RED_C, fill_color = RED_C, fill_opacity = 0.1)
+ plane_y_x_2_text = TextMobject(r"$y = x^2$", color = RED_C).move_to(np.array([5,0,2]))
+
+ ######
+
+ plane_y_2_x = Polygon(np.array([-3,5,-3]),np.array([3,-1,-3]),np.array([3,-1,3]),np.array([-3,5,3]),np.array([-3,5,-3]), color = YELLOW_C, fill_color = YELLOW_C, fill_opacity = 0.1)
+ plane_y_2_x_text = TextMobject(r"$y = 2 - x$", color = YELLOW_C).move_to(np.array([5,0,1.5]))
+
+ line_1_1 = Line(np.array([1,1,-3]), np.array([1,1,3]), color = PINK)
+
+ point = Polygon(*[np.array([0.05*np.cos(i*DEGREES),0,0.05*np.sin(i*DEGREES)]) for i in range(361)], color = "#000080", fill_color = "#000080", fill_opacity = 1).move_to(np.array([1,1,0]))
+ point_text = TextMobject(r"$(1,1,0)$", color = WHITE).scale(0.7).move_to(np.array([1.8,1,0]))
+
+
+
+
+ self.set_camera_orientation(phi=70 * DEGREES, theta = -95*DEGREES)
+
+
+ self.add(axes)
+
+ axis = TextMobject(r"X",r"Y",r"Z")
+ axis[0].move_to(6*RIGHT)
+ axis[1].move_to(6*UP)
+ axis[2].move_to(3.7*UP)
+
+ self.add_fixed_in_frame_mobjects(axis[2])
+ self.add_fixed_orientation_mobjects(axis[0])
+ self.add_fixed_orientation_mobjects(axis[1])
+
+ self.play(ShowCreation(limit_func))
+ self.wait(2)
+
+ self.play(ShowCreation(plane_y_x))
+ self.add_fixed_orientation_mobjects(plane_y_x_text)
+ self.play(ShowCreation(limit_y_x))
+ self.wait()
+
+ self.play(ShowCreation(plane_y_1))
+ self.add_fixed_orientation_mobjects(plane_y_1_text)
+ self.play(ShowCreation(limit_y_1))
+ self.wait()
+
+ self.play(ShowCreation(plane_y_x_2))
+ self.add_fixed_orientation_mobjects(plane_y_x_2_text)
+ self.play(ShowCreation(limit_y_x_2))
+ self.wait()
+
+ self.play(ShowCreation(plane_y_2_x))
+ self.add_fixed_orientation_mobjects(plane_y_2_x_text)
+ self.play(ShowCreation(limit_y_2_x))
+ self.wait()
+
+ self.play(ShowCreation(line_1_1))
+ self.wait()
+
+ self.play(ShowCreation(point))
+ self.add_fixed_orientation_mobjects(point_text)
+ self.wait()
+
+ self.play(FadeOut(plane_y_x_text), FadeOut(plane_y_1_text), FadeOut(plane_y_x_2_text), FadeOut(plane_y_2_x_text))
+
+ self.move_camera(phi=0* DEGREES,theta=-95*DEGREES)
+ self.wait(2)
+ self.play(FadeOut(plane_y_x), FadeOut(plane_y_1), FadeOut(plane_y_x_2), FadeOut(plane_y_2_x))
+ self.wait(3)
+
+ self.move_camera(phi=75* DEGREES,theta=-95*DEGREES)
+ self.wait(3)
+
+
+ \ No newline at end of file
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/file4_limit_different_point.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/file4_limit_different_point.py
new file mode 100644
index 0000000..0a43def
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/file4_limit_different_point.py
@@ -0,0 +1,115 @@
+from manimlib.imports import *
+
+class DifferentPoint(ThreeDScene):
+ def construct(self):
+ axes = ThreeDAxes()
+
+ text3d = TextMobject(r"$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$")
+ self.add_fixed_in_frame_mobjects(text3d)
+
+ text3d.to_corner(UL)
+
+ text3d.set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
+
+ self.play(Write(text3d))
+ self.wait(1)
+
+ limit_func = ParametricSurface(
+ lambda u, v: np.array([
+ 3*np.sin(u)*np.cos(v),
+ 3*np.sin(u)*np.sin(v),
+ (np.cos(v)*np.cos(v) - np.sin(v)*np.sin(v))
+ ]),u_min=0,u_max=PI,v_min=0,v_max=2*PI,checkerboard_colors=[YELLOW_C, YELLOW_E],
+ resolution=(15, 32)).scale(1)
+
+ limit_func_copy1 = limit_func.copy()
+ limit_func_copy2 = limit_func.copy()
+
+ limit_func_x = ParametricSurface(
+ lambda u, v: np.array([
+ 3*np.sin(u)*np.cos(v),
+ 3*np.sin(u)*np.sin(v),
+ (np.cos(v)*np.cos(v) - np.sin(v)*np.sin(v))
+ ]),u_min=0,u_max=PI,v_min=PI,v_max=2*PI,checkerboard_colors=[YELLOW_C, YELLOW_E],
+ resolution=(15, 32)).scale(1)
+
+ limit_func_y = ParametricSurface(
+ lambda u, v: np.array([
+ 3*np.sin(u)*np.cos(v),
+ 3*np.sin(u)*np.sin(v),
+ (np.cos(v)*np.cos(v) - np.sin(v)*np.sin(v))
+ ]),u_min=0,u_max=PI,v_min=PI/2,v_max=3*PI/2,checkerboard_colors=[YELLOW_C, YELLOW_E],
+ resolution=(15, 32)).scale(1)
+
+ limit_x =ParametricFunction(
+ lambda u : np.array([
+ u,
+ 0,
+ 1
+ ]),color="#006400",t_min=-3,t_max=3,
+ )
+
+ limit_y =ParametricFunction(
+ lambda u : np.array([
+ 0,
+ u,
+ -1
+ ]),color="#000080",t_min=-3,t_max=3,
+ )
+
+ plane_x = Polygon(np.array([-3,0,-2]),np.array([3,0,-2]),np.array([3,0,2]),np.array([-3,0,2]),np.array([-3,0,-2]), color = GREEN, fill_color = GREEN, fill_opacity = 0.2)
+ plane_x_text = TextMobject(r"$y = 0$", color = GREEN_C).move_to(1.7*UP + 3.8*RIGHT)
+
+ plane_y = Polygon(np.array([0,-3,-2]),np.array([0,3,-2]),np.array([0,3,2]),np.array([0,-3,2]),np.array([0,-3,-2]), color = BLUE, fill_color = BLUE, fill_opacity = 0.2)
+ plane_y_text = TextMobject(r"$x = 0$", color = BLUE_C).move_to(1.7*UP + 3.8*RIGHT)
+
+ origin_x = Polygon(*[np.array([0.05*np.cos(i*DEGREES),0,0.05*np.sin(i*DEGREES)]) for i in range(361)], color = "#000080", fill_color = "#000080", fill_opacity = 1).move_to(np.array([0,0,0]))
+ origin_x_text = TextMobject(r"$(0,0,0)$", color = RED_C).scale(0.7).move_to(np.array([-0.6,0,-0.5]))
+
+ origin_y = Polygon(*[np.array([0,0.05*np.cos(i*DEGREES),0.05*np.sin(i*DEGREES)]) for i in range(361)], color = "#000080", fill_color = "#000080", fill_opacity = 1).move_to(np.array([0,0,0]))
+ origin_y_text = TextMobject(r"$(0,0,0)$", color = RED_C).scale(0.7).move_to(np.array([0,-0.6,-0.5]))
+
+ self.set_camera_orientation(phi=80 * DEGREES, theta = 0*DEGREES)
+
+
+ self.add(axes)
+
+ axis = TextMobject(r"X",r"Y",r"Z")
+ axis[0].move_to(6*RIGHT)
+ axis[1].move_to(6*UP)
+ axis[2].move_to(3.7*UP)
+
+ self.add_fixed_in_frame_mobjects(axis[2])
+ self.add_fixed_orientation_mobjects(axis[0])
+ self.add_fixed_orientation_mobjects(axis[1])
+
+ self.play(ShowCreation(limit_func))
+
+ self.move_camera(phi=80* DEGREES,theta=105*DEGREES)
+
+ self.play(ShowCreation(plane_x))
+ self.add_fixed_in_frame_mobjects(plane_x_text)
+ self.wait()
+ self.play(ReplacementTransform(limit_func, limit_func_x))
+ self.play(FadeOut(plane_x), FadeOut(plane_x_text), ShowCreation(origin_x))
+ self.add_fixed_orientation_mobjects(origin_x_text)
+ self.play(ShowCreation(limit_x))
+
+ self.move_camera(phi=80* DEGREES,theta=15*DEGREES)
+ self.wait(3)
+
+ self.play(FadeOut(origin_x), FadeOut(origin_x_text), FadeOut(limit_x), ReplacementTransform(limit_func_x, limit_func_copy1))
+ self.play(ShowCreation(plane_y))
+ self.add_fixed_in_frame_mobjects(plane_y_text)
+ self.wait()
+ self.play(ReplacementTransform(limit_func_copy1, limit_func_y))
+ self.play(FadeOut(plane_y), FadeOut(plane_y_text), ShowCreation(origin_y))
+ self.add_fixed_orientation_mobjects(origin_y_text)
+ self.play(ShowCreation(limit_y))
+
+ self.move_camera(phi=80* DEGREES,theta=75*DEGREES)
+ self.wait(3)
+
+ self.play(FadeOut(origin_y), FadeOut(origin_y_text), FadeOut(limit_y), ReplacementTransform(limit_func_y, limit_func_copy2))
+ self.wait(2)
+ \ No newline at end of file
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/file5_continuity_func.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/file5_continuity_func.py
new file mode 100644
index 0000000..99159a4
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/file5_continuity_func.py
@@ -0,0 +1,115 @@
+from manimlib.imports import *
+
+class Continuity(ThreeDScene):
+ def construct(self):
+ axes = ThreeDAxes()
+
+ text3d = TextMobject(r"$f(x,y) = \frac{3x^2y}{x^2 + y^2}$")
+ self.add_fixed_in_frame_mobjects(text3d)
+
+ text3d.to_corner(UL)
+
+ text3d.set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
+
+ self.play(Write(text3d))
+ self.wait(1)
+
+
+ continuity_func = ParametricSurface(
+ lambda u, v: np.array([
+ 3*np.sin(u)*np.cos(v),
+ 3*np.sin(u)*np.sin(v),
+ 9*np.sin(u)*np.cos(v)*np.cos(v)*np.sin(v)
+ ]),u_min=0,u_max=PI,v_min=0,v_max=2*PI,checkerboard_colors=[YELLOW_C, YELLOW_E],
+ resolution=(15, 32)).scale(1)
+
+ continuity_func_copy1 = continuity_func.copy()
+ continuity_func_copy2 = continuity_func.copy()
+
+ continuity_func_x = ParametricSurface(
+ lambda u, v: np.array([
+ 3*np.sin(u)*np.cos(v),
+ 3*np.sin(u)*np.sin(v),
+ 9*np.sin(u)*np.cos(v)*np.cos(v)*np.sin(v)
+ ]),u_min=0,u_max=PI,v_min=PI,v_max=2*PI,checkerboard_colors=[YELLOW_C, YELLOW_E],
+ resolution=(15, 32)).scale(1)
+
+ continuity_func_y = ParametricSurface(
+ lambda u, v: np.array([
+ 3*np.sin(u)*np.cos(v),
+ 3*np.sin(u)*np.sin(v),
+ 9*np.sin(u)*np.cos(v)*np.cos(v)*np.sin(v)
+ ]),u_min=0,u_max=PI,v_min=PI/2,v_max=3*PI/2,checkerboard_colors=[YELLOW_C, YELLOW_E],
+ resolution=(15, 32)).scale(1)
+
+ continuity_x =ParametricFunction(
+ lambda u : np.array([
+ u,
+ 0,
+ 0
+ ]),color="#006400",t_min=-3,t_max=3,
+ )
+
+ continuity_y =ParametricFunction(
+ lambda u : np.array([
+ 0,
+ u,
+ 0
+ ]),color="#000080",t_min=-3,t_max=3,
+ )
+
+ plane_x = Polygon(np.array([-3,0,-3]),np.array([3,0,-3]),np.array([3,0,3]),np.array([-3,0,3]),np.array([-3,0,-3]), color = GREEN, fill_color = GREEN, fill_opacity = 0.2)
+ plane_x_text = TextMobject(r"$y = 0$", color = GREEN_C).move_to(1.7*UP + 3.8*RIGHT)
+
+ plane_y = Polygon(np.array([0,-3,-3]),np.array([0,3,-3]),np.array([0,3,3]),np.array([0,-3,3]),np.array([0,-3,-3]), color = BLUE, fill_color = BLUE, fill_opacity = 0.2)
+ plane_y_text = TextMobject(r"$x = 0$", color = BLUE_C).move_to(1.7*UP + 3.8*RIGHT)
+
+ origin_x = Polygon(*[np.array([0.05*np.cos(i*DEGREES),0,0.05*np.sin(i*DEGREES)]) for i in range(361)], color = "#000080", fill_color = "#000080", fill_opacity = 1).move_to(np.array([0,0,0]))
+ origin_x_text = TextMobject(r"$(0,0,0)$", color = RED_C).scale(0.7).move_to(np.array([-0.6,0,-0.5]))
+
+ origin_y = Polygon(*[np.array([0,0.05*np.cos(i*DEGREES),0.05*np.sin(i*DEGREES)]) for i in range(361)], color = "#006400", fill_color = "#006400", fill_opacity = 1).move_to(np.array([0,0,0]))
+ origin_y_text = TextMobject(r"$(0,0,0)$", color = RED_C).scale(0.7).move_to(np.array([0,-0.6,-0.5]))
+
+ self.set_camera_orientation(phi=80 * DEGREES, theta = 0*DEGREES)
+
+
+ self.add(axes)
+
+ axis = TextMobject(r"X",r"Y",r"Z")
+ axis[0].move_to(6*RIGHT)
+ axis[1].move_to(6*UP)
+ axis[2].move_to(3.7*UP)
+
+ self.add_fixed_in_frame_mobjects(axis[2])
+ self.add_fixed_orientation_mobjects(axis[0])
+ self.add_fixed_orientation_mobjects(axis[1])
+
+ self.play(ShowCreation(continuity_func))
+
+ self.move_camera(phi=80* DEGREES,theta=105*DEGREES)
+
+ self.play(ShowCreation(plane_x))
+ self.add_fixed_in_frame_mobjects(plane_x_text)
+ self.wait()
+ self.play(ReplacementTransform(continuity_func, continuity_func_x))
+ self.play(FadeOut(plane_x), FadeOut(plane_x_text))
+ self.play(ShowCreation(continuity_x), ShowCreation(origin_x))
+ self.add_fixed_orientation_mobjects(origin_x_text)
+
+ self.move_camera(phi=80* DEGREES,theta=15*DEGREES)
+ self.wait(3)
+
+ self.play(FadeOut(origin_x), FadeOut(origin_x_text), FadeOut(continuity_x), ReplacementTransform(continuity_func_x, continuity_func_copy1))
+ self.play(ShowCreation(plane_y))
+ self.add_fixed_in_frame_mobjects(plane_y_text)
+ self.wait()
+ self.play(ReplacementTransform(continuity_func_copy1, continuity_func_y))
+ self.play(FadeOut(plane_y), FadeOut(plane_y_text))
+ self.play(ShowCreation(continuity_y), ShowCreation(origin_y))
+ self.add_fixed_orientation_mobjects(origin_y_text)
+
+ self.move_camera(phi=80* DEGREES,theta=75*DEGREES)
+ self.wait(3)
+
+ self.play(FadeOut(origin_y), FadeOut(origin_y_text), FadeOut(continuity_y), ReplacementTransform(continuity_func_y, continuity_func_copy2))
+ self.wait(2) \ No newline at end of file
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/gifs/file1_epsilon_delta_defn.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/gifs/file1_epsilon_delta_defn.gif
new file mode 100644
index 0000000..2378bcf
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/gifs/file1_epsilon_delta_defn.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/gifs/file2_limit_approach_point.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/gifs/file2_limit_approach_point.gif
new file mode 100644
index 0000000..3abd596
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/gifs/file2_limit_approach_point.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/gifs/file3_limit_approach_point_3d.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/gifs/file3_limit_approach_point_3d.gif
new file mode 100644
index 0000000..3e87cdd
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/gifs/file3_limit_approach_point_3d.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/gifs/file4_limit_different_point.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/gifs/file4_limit_different_point.gif
new file mode 100644
index 0000000..9a831e4
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/gifs/file4_limit_different_point.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/gifs/file5_continuity_func.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/gifs/file5_continuity_func.gif
new file mode 100644
index 0000000..2a0a61f
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/multivariable-limits-and-continuity/gifs/file5_continuity_func.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/README.md b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/README.md
new file mode 100644
index 0000000..c62dd51
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/README.md
@@ -0,0 +1,23 @@
+**file1_partial_deriv_gas_law**
+![file1_partial_deriv_gas_law](https://github.com/nishanpoojary/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file1_partial_deriv_gas_law.gif)
+
+**file2_partial_deriv_hill**
+![file2_partial_deriv_hill](https://github.com/nishanpoojary/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file2_partial_deriv_hill.gif)
+
+**file3_partial_deriv_defn**
+![file3_partial_deriv_defn](https://github.com/nishanpoojary/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file3_partial_deriv_defn.gif)
+
+**file4_partial_deriv_example**
+![file4_partial_deriv_example](https://github.com/nishanpoojary/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file4_partial_deriv_example.gif)
+
+**file5_partial_deriv_func_2maximas**
+![file5_partial_deriv_func_2maximas](https://github.com/nishanpoojary/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file5_partial_deriv_func_2maximas.gif)
+
+**file6_clariant_rule**
+![file6_clariant_rule](https://github.com/nishanpoojary/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file6_clariant_rule.gif)
+
+**file7_partial_deriv_clariant_rule**
+![file7_partial_deriv_clariant_rule](https://github.com/nishanpoojary/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file7_partial_deriv_clariant_rule.gif)
+
+**file8_chain_rule**
+![file8_chain_rule](https://github.com/nishanpoojary/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file8_chain_rule.gif)
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file1_partial_deriv_gas_law.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file1_partial_deriv_gas_law.py
new file mode 100644
index 0000000..3d35c97
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file1_partial_deriv_gas_law.py
@@ -0,0 +1,88 @@
+from manimlib.imports import *
+
+class GasLaw(Scene):
+ def construct(self):
+ gas_law = TextMobject(r"$P$", r"$V$", r"=", r"$n$", r"$R$", r"$T$").scale(1.5)
+ gas_law[0].set_color(BLUE_C)
+ gas_law[1].set_color(GREEN_C)
+ gas_law[3].set_color(RED_C)
+ gas_law[4].set_color(ORANGE)
+ gas_law[5].set_color(YELLOW_C)
+
+ gas_law_trans = TexMobject("V", "=", "{n", "R", "T", "\\over", "P}").scale(1.5)
+ gas_law_trans[0].set_color(GREEN_C)
+ gas_law_trans[2].set_color(RED_C)
+ gas_law_trans[3].set_color(ORANGE)
+ gas_law_trans[4].set_color(YELLOW_C)
+ gas_law_trans[6].set_color(BLUE_C)
+
+ gas_law_func = TexMobject("V", "=", "f(", "n", ",", "T", ",", "P", ")").scale(1.5)
+ gas_law_func[0].set_color(GREEN_C)
+ gas_law_func[2].set_color(ORANGE)
+ gas_law_func[3].set_color(RED_C)
+ gas_law_func[5].set_color(YELLOW_C)
+ gas_law_func[7].set_color(BLUE_C)
+ gas_law_func[8].set_color(ORANGE)
+
+ partial_gas_law_func = TexMobject("{\\partial", "V","\\over", "\\partial", "P}", r"=", "{\\partial", "\\over", "\\partial", "P}", "f(", r"n", ",", r"T", ",", r"P", r")").scale(1.5)
+ partial_gas_law_func.set_color_by_tex("\\partial", PINK)
+ partial_gas_law_func.set_color_by_tex("P}", BLUE_C)
+
+ partial_gas_law_func[1].set_color(GREEN_C)
+ partial_gas_law_func[10].set_color(ORANGE)
+ partial_gas_law_func[11].set_color(RED_C)
+ partial_gas_law_func[13].set_color(YELLOW_C)
+ partial_gas_law_func[15].set_color(BLUE_C)
+ partial_gas_law_func[16].set_color(ORANGE)
+
+ partial_gas_law_trans = TexMobject("{\\partial", "V","\\over", "\\partial", "P}", r"=", "{\\partial", "\\over", "\\partial", "P}", "{n", "R", "T", "\\over", "P}").scale(1.5)
+ partial_gas_law_trans.set_color_by_tex("\\partial", PINK)
+ partial_gas_law_trans.set_color_by_tex("P}", BLUE_C)
+
+ partial_gas_law_trans[1].set_color(GREEN_C)
+ partial_gas_law_trans[10].set_color(RED_C)
+ partial_gas_law_trans[11].set_color(ORANGE)
+ partial_gas_law_trans[12].set_color(YELLOW_C)
+
+ partial_gas_law_trans2 = TexMobject("{\\partial", "V","\\over", "\\partial", "P}", r"=", "n", "R", "T", "{\\partial", "\\over", "\\partial", "P}", "P^{-1}",).scale(1.5)
+ partial_gas_law_trans2.set_color_by_tex("\\partial", PINK)
+ partial_gas_law_trans2.set_color_by_tex("P}", BLUE_C)
+
+ partial_gas_law_trans2[1].set_color(GREEN_C)
+ partial_gas_law_trans2[6].set_color(RED_C)
+ partial_gas_law_trans2[7].set_color(ORANGE)
+ partial_gas_law_trans2[8].set_color(YELLOW_C)
+ partial_gas_law_trans2[-1].set_color(BLUE_C)
+
+ partial_gas_law_trans3 = TexMobject("{\\partial", "V","\\over", "\\partial", "P}", r"=", "n", "R", "T", "P^{-2}",).scale(1.5)
+ partial_gas_law_trans3.set_color_by_tex("\\partial", PINK)
+ partial_gas_law_trans3.set_color_by_tex("P}", BLUE_C)
+
+ partial_gas_law_trans3[1].set_color(GREEN_C)
+ partial_gas_law_trans3[6].set_color(RED_C)
+ partial_gas_law_trans3[7].set_color(ORANGE)
+ partial_gas_law_trans3[8].set_color(YELLOW_C)
+ partial_gas_law_trans3[9].set_color(BLUE_C)
+
+ framebox = SurroundingRectangle(partial_gas_law_trans3, color = PURPLE, buff = 0.3)
+
+
+
+ self.play(Write(gas_law))
+ self.wait()
+ self.play(Transform(gas_law, gas_law_trans))
+ self.wait()
+ self.play(Transform(gas_law, gas_law_func))
+ self.wait()
+ self.play(Transform(gas_law, gas_law_trans))
+ self.wait()
+ self.play(Transform(gas_law, partial_gas_law_func))
+ self.wait()
+ self.play(Transform(gas_law, partial_gas_law_trans))
+ self.wait()
+ self.play(Transform(gas_law, partial_gas_law_trans2))
+ self.wait()
+ self.play(Transform(gas_law, partial_gas_law_trans3))
+ self.wait()
+ self.play(ShowCreation(framebox))
+ self.wait() \ No newline at end of file
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file2_partial_deriv_hill.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file2_partial_deriv_hill.py
new file mode 100644
index 0000000..bfb7687
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file2_partial_deriv_hill.py
@@ -0,0 +1,122 @@
+from manimlib.imports import *
+
+class Hill(ThreeDScene):
+ def construct(self):
+ axes = ThreeDAxes()
+
+ function = ParametricSurface(
+ lambda u, v: np.array([
+ 1.2*np.sin(u)*np.cos(v),
+ 1.2*np.sin(u)*np.sin(v),
+ -1.2*1.2*np.sin(u)*np.sin(u)*(1+0.5*np.sin(v)*np.sin(v))+2
+ ]),u_min=0,u_max=PI/2,v_min=0,v_max=2*PI,checkerboard_colors=[GREEN_C, GREEN_E],
+ resolution=(15, 32)).scale(1)
+
+ func_x =ParametricFunction(
+ lambda u : np.array([
+ u,
+ 0,
+ 2 - u*u
+ ]),color=RED_E,t_min=-1.2,t_max=1.2,
+ )
+
+ func_y =ParametricFunction(
+ lambda u : np.array([
+ 0,
+ u,
+ 2 - 1.5*u*u
+ ]),color=PINK,t_min=-1.2,t_max=1.2,
+ )
+
+ self.set_camera_orientation(phi=60 * DEGREES, theta = 0*DEGREES)
+ #self.set_camera_orientation(phi=45 * DEGREES, theta = -20*DEGREES)
+
+ self.add(axes)
+ axis = TextMobject(r"X",r"Y",r"Z")
+ axis[0].move_to(6*RIGHT)
+ axis[1].move_to(6*UP)
+ axis[2].move_to(np.array([0,0,3.7]))
+
+ self.add_fixed_orientation_mobjects(axis[2])
+ self.add_fixed_orientation_mobjects(axis[0])
+ self.add_fixed_orientation_mobjects(axis[1])
+
+ self.play(ShowCreation(function))
+ self.wait()
+
+ self.move_camera(phi=60 * DEGREES, theta = 45*DEGREES)
+ #self.play(ShowCreation(func_x))
+
+ text_x = TextMobject("Slope of the hill along", r"$x$", "axis", color = YELLOW_C).scale(0.6).move_to(2.7*UP + 3.5*RIGHT)
+ text_x[1].set_color(PINK)
+
+
+ slope_text_x = TexMobject("Slope =", "{\\partial", "f", "\\over", "\\partial", "x}").scale(0.6).move_to(2*UP + 3.5*RIGHT)
+ slope_text_x[0].set_color(BLUE_E)
+ slope_text_x.set_color_by_tex("\\partial",YELLOW_C)
+ slope_text_x.set_color_by_tex("f",RED_E)
+ slope_text_x[5].set_color(PINK)
+
+ self.add_fixed_in_frame_mobjects(text_x, slope_text_x)
+
+ dot_x = Dot().rotate(PI/2).set_color(YELLOW_E)
+ alpha_x = ValueTracker(0)
+ vector_x = self.get_tangent_vector(alpha_x.get_value(),func_x,scale=1.5)
+ dot_x.add_updater(lambda m: m.move_to(vector_x.get_center()))
+ self.play(
+ ShowCreation(func_x),
+ GrowFromCenter(dot_x),
+ GrowArrow(vector_x)
+ )
+ vector_x.add_updater(
+ lambda m: m.become(
+ self.get_tangent_vector(alpha_x.get_value()%1,func_x,scale=1.5)
+ )
+ )
+
+ self.add(vector_x,dot_x)
+
+ self.play(alpha_x.increment_value, 1, run_time=10, rate_func=linear)
+
+ #self.move_camera(phi=60 * DEGREES, theta = 0*DEGREES)
+ self.play(FadeOut(vector_x), FadeOut(dot_x), FadeOut(func_x), FadeOut(text_x), FadeOut(slope_text_x))
+
+ text_y = TextMobject("Slope of the hill along", r"$y$", "axis", color = YELLOW_C).scale(0.6).move_to(2.7*UP + 3.5*RIGHT)
+ text_y[1].set_color(RED_C)
+
+
+ slope_text_y = TexMobject("Slope =", "{\\partial", "f", "\\over", "\\partial", "x}").scale(0.6).move_to(2*UP + 3.5*RIGHT)
+ slope_text_y[0].set_color(BLUE_E)
+ slope_text_y.set_color_by_tex("\\partial",YELLOW_C)
+ slope_text_y.set_color_by_tex("f",PINK)
+ slope_text_y[5].set_color(RED_C)
+
+ self.add_fixed_in_frame_mobjects(text_y, slope_text_y)
+
+ dot_y = Dot().rotate(PI/2).set_color(BLUE_E)
+ alpha_y = ValueTracker(0)
+ vector_y = self.get_tangent_vector(alpha_y.get_value(),func_y,scale=1.5)
+ dot_y.add_updater(lambda m: m.move_to(vector_y.get_center()))
+ self.play(
+ ShowCreation(func_y),
+ GrowFromCenter(dot_y),
+ GrowArrow(vector_y)
+ )
+ vector_y.add_updater(
+ lambda m: m.become(
+ self.get_tangent_vector(alpha_y.get_value()%1,func_y,scale=1.5)
+ )
+ )
+
+ self.add(vector_y,dot_y)
+ self.play(alpha_y.increment_value, 1, run_time=10, rate_func=linear)
+ self.play(FadeOut(vector_y), FadeOut(dot_y), FadeOut(func_y), FadeOut(text_y), FadeOut(slope_text_y))
+ self.wait(2)
+
+ def get_tangent_vector(self, proportion, curve, dx=0.001, scale=1):
+ coord_i = curve.point_from_proportion(proportion)
+ coord_f = curve.point_from_proportion(proportion + dx)
+ reference_line = Line(coord_i,coord_f)
+ unit_vector = reference_line.get_unit_vector() * scale
+ vector = Line(coord_i - unit_vector, coord_i + unit_vector, color = ORANGE, buff=0)
+ return vector \ No newline at end of file
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file3_partial_deriv_defn.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file3_partial_deriv_defn.py
new file mode 100644
index 0000000..a25ca56
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file3_partial_deriv_defn.py
@@ -0,0 +1,218 @@
+from manimlib.imports import *
+
+class PartialDeriv(ThreeDScene):
+ def construct(self):
+ axes = ThreeDAxes()
+
+ paraboloid = ParametricSurface(
+ lambda u, v: np.array([
+ 2*np.sin(u)*np.cos(v),
+ 2*np.sin(u)*np.sin(v),
+ -2*2*np.sin(u)*np.sin(u)+2
+ ]),u_min=0,u_max=PI/2,v_min=0,v_max=2*PI,checkerboard_colors=[PINK, PURPLE],
+ resolution=(15, 32)).scale(1)
+
+ paraboloid_copy1 = paraboloid.copy()
+ paraboloid_copy2 = paraboloid.copy()
+
+ paraboloid_x = ParametricSurface(
+ lambda u, v: np.array([
+ 2*np.sin(u)*np.cos(v),
+ 2*np.sin(u)*np.sin(v),
+ -2*2*np.sin(u)*np.sin(u)+2
+ ]),u_min=0,u_max=PI/2,v_min=PI,v_max=2*PI,checkerboard_colors=[PINK, PURPLE],
+ resolution=(15, 32)).scale(1)
+
+ paraboloid_x_copy = paraboloid_x.copy()
+
+ paraboloid_y = ParametricSurface(
+ lambda u, v: np.array([
+ 2*np.sin(u)*np.cos(v),
+ 2*np.sin(u)*np.sin(v),
+ -2*2*np.sin(u)*np.sin(u)+2
+ ]),u_min=0,u_max=PI/2,v_min=PI/2,v_max=3*PI/2,checkerboard_colors=[PINK, PURPLE],
+ resolution=(15, 32)).scale(1)
+
+ parabola1 =ParametricFunction(
+ lambda u : np.array([
+ u,
+ 0,
+ -(u*u) + 2
+ ]),color="#006400",t_min=-2,t_max=2,
+ )
+ parabola2 =ParametricFunction(
+ lambda u : np.array([
+ 0,
+ u,
+ -(u*u) + 2
+ ]),color=BLUE_C,t_min=-2,t_max=2,
+ )
+
+ plane1 = Polygon(np.array([-2.2,0,-2.5]),np.array([2.2,0,-2.5]),np.array([2.2,0,2.5]),np.array([-2.2,0,2.5]),np.array([-2.2,0,-2.5]), color = GREEN, fill_color = GREEN, fill_opacity = 0.2)
+ plane1_text = TextMobject(r"$y = 0$", color = GREEN_C).move_to(2*UP + 3.3*RIGHT)
+
+ plane2 = Polygon(np.array([0,-2.2,-2.5]),np.array([0,2.2,-2.5]),np.array([0,2.2,2.5]),np.array([0,-2.2,2.5]),np.array([0,-2.2,-2.5]), color = BLUE, fill_color = BLUE, fill_opacity = 0.2)
+ plane2_text = TextMobject(r"$x = 0$", color = BLUE_C).move_to(2*UP + 3.2*RIGHT)
+
+ surface_eqn = TextMobject("Surface", r"$z = 2- x^2 -y^2$", color = YELLOW_C).scale(0.6).move_to(np.array([3*LEFT +3*UP]))
+ surface_eqn[0].set_color(PINK)
+
+ dot1 =Sphere(radius=0.08).move_to(np.array([-1,0,1]))
+ dot1.set_fill(RED)
+ line1 = Line(np.array([-1.55, 0,0]), np.array([-0.4, 0,2.2]), color = RED)
+ lab_x = TextMobject(r"$f(x_0,y_0)$", color = RED).scale(0.7)
+ para_lab_x = TextMobject(r"$f(x,y_0)$", color = "#006400").scale(0.7)
+ tangent_line_x = TextMobject("Tangent Line", color = RED_C, buff = 0.4).scale(0.6).move_to(np.array([1.7*RIGHT +1.8*UP]))
+
+
+ text1 = TextMobject(r"$\frac{\partial f}{\partial x}\vert_{(x_0,y_0)} = \frac{d}{dx}$", r"$f(x,y_0)$", r"$\vert_{x=x_0}$").scale(0.6)
+ brace1 = Brace(text1[1], DOWN, buff = SMALL_BUFF, color = GREEN)
+ t1 = brace1.get_text("Just depends on x")
+ t1.scale(0.6)
+ t1.set_color(GREEN)
+
+
+ dot2 =Sphere(radius=0.08).move_to(np.array([0,1,1]))
+ dot2.set_fill(RED)
+ line2 = Line(np.array([0, 1.55,0]), np.array([0, 0.4,2.2]), color = RED)
+ lab_y = TextMobject(r"$f(x_0,y_0)$", color = RED).scale(0.7)
+ para_lab_y = TextMobject(r"$f(x_0,y)$", color = BLUE_C).scale(0.7)
+ tangent_line_y = TextMobject("Tangent Line", color = RED_C, buff = 0.4).scale(0.6).move_to(np.array([1.7*RIGHT +1.8*UP]))
+
+ text2 = TextMobject(r"$\frac{\partial f}{\partial y}\vert_{(x_0,y_0)} = \frac{d}{dy}$", r"$f(x_0,y)$", r"$\vert_{y=y_0}$").scale(0.6)
+ brace2 = Brace(text2[1], DOWN, buff = SMALL_BUFF, color = GREEN)
+ t2 = brace2.get_text("Just depends on y")
+ t2.scale(0.6)
+ t2.set_color(GREEN)
+
+ text3 = TextMobject(r"$= \lim_{h \to 0} \frac{f(x_0+h,y_0) - f(x_0,y_0)}{h}$").scale(0.6)
+
+ dot3 =Sphere(radius=0.08).move_to(np.array([-1.22,0,0.5]))
+ dot3.set_fill(YELLOW_C)
+ line3 = Line(np.array([-1.44,0,0]), np.array([-0.6,0,2.2]), color = YELLOW_C)
+ lab_line3 = TextMobject(r"$f(x_0+h,y_0)$", color = YELLOW_C).scale(0.7)
+
+
+ self.set_camera_orientation(phi=80 * DEGREES, theta = 0*DEGREES)
+ #self.set_camera_orientation(phi=80 * DEGREES, theta = 20*DEGREES)
+ #self.begin_ambient_camera_rotation(rate=0.3)
+
+
+ self.add(axes)
+
+ axis = TextMobject(r"X",r"Y",r"Z")
+ axis[0].move_to(6*RIGHT)
+ axis[1].move_to(6*UP)
+ axis[2].move_to(3.7*UP)
+
+ self.add_fixed_in_frame_mobjects(axis[2])
+ #self.add_fixed_orientation_mobjects(axis[2])
+
+ self.play(Write(paraboloid))
+
+ self.add_fixed_in_frame_mobjects(surface_eqn)
+ #self.move_camera(phi=80* DEGREES,theta=110*DEGREES)
+ self.move_camera(phi=80* DEGREES,theta=45*DEGREES)
+
+ self.add_fixed_orientation_mobjects(axis[0])
+ self.add_fixed_orientation_mobjects(axis[1])
+ self.play(ShowCreation(plane1))
+ self.add_fixed_in_frame_mobjects(plane1_text)
+ self.wait()
+ self.play(ReplacementTransform(paraboloid, paraboloid_x))
+
+ lab_x.move_to(np.array([1.8*RIGHT +1.15*UP]))
+ para_lab_x.move_to(np.array([1.3*LEFT +1.6*UP]))
+ self.wait()
+ self.play(FadeOut(plane1), FadeOut(plane1_text))
+ self.play(ShowCreation(parabola1))
+ self.add_fixed_in_frame_mobjects(para_lab_x)
+ self.play(ShowCreation(dot1))
+ self.add_fixed_in_frame_mobjects(lab_x)
+ #self.play(ShowCreation(dot1))
+ self.wait()
+ self.play(ShowCreation(line1))
+ self.add_fixed_in_frame_mobjects(tangent_line_x)
+ self.wait()
+
+ self.add_fixed_in_frame_mobjects(text1, brace1, t1)
+ grp1 = VGroup(text1, brace1, t1)
+ grp1.move_to(3*UP+3*RIGHT)
+ self.play(Write(text1),GrowFromCenter(brace1), FadeIn(t1))
+ self.wait()
+ self.play(FadeOut(parabola1), FadeOut(line1), FadeOut(lab_x), FadeOut(para_lab_x), FadeOut(dot1), FadeOut(tangent_line_x),FadeOut(grp1))
+
+
+
+
+ #self.move_camera(phi=80* DEGREES,theta=20*DEGREES)
+
+ self.play(ReplacementTransform(paraboloid_x, paraboloid_copy1))
+ self.wait()
+ self.play(ShowCreation(plane2))
+ self.add_fixed_in_frame_mobjects(plane2_text)
+ self.wait()
+ self.play(ReplacementTransform(paraboloid_copy1, paraboloid_y))
+
+ lab_y.move_to(np.array([1.8*RIGHT +1.15*UP]))
+ para_lab_y.move_to(np.array([1.3*LEFT +1.6*UP]))
+ self.wait()
+ self.play(FadeOut(plane2), FadeOut(plane2_text))
+ self.play(ShowCreation(parabola2))
+ self.add_fixed_in_frame_mobjects(para_lab_y)
+ self.play(ShowCreation(dot2))
+ self.add_fixed_in_frame_mobjects(lab_y)
+ self.wait()
+ self.play(ShowCreation(line2))
+ self.add_fixed_in_frame_mobjects(tangent_line_y)
+ self.wait()
+
+ self.add_fixed_in_frame_mobjects(text2, brace2, t2)
+ grp2 = VGroup(text2, brace2, t2)
+ grp2.move_to(3*UP+3*RIGHT)
+ self.play(Write(text2),GrowFromCenter(brace2), FadeIn(t2))
+ self.wait()
+ self.play(FadeOut(parabola2), FadeOut(line2), FadeOut(lab_y), FadeOut(para_lab_y), FadeOut(dot2), FadeOut(tangent_line_y), FadeOut(grp2))
+ self.wait()
+
+
+ #self.move_camera(phi=80* DEGREES,theta=105*DEGREES)
+ self.play(ReplacementTransform(paraboloid_y, paraboloid_copy2))
+ self.wait()
+
+
+ self.play(ShowCreation(plane1))
+ self.add_fixed_in_frame_mobjects(plane1_text)
+ self.wait()
+ self.play(ReplacementTransform(paraboloid_copy2, paraboloid_x_copy))
+
+ lab_x.move_to(np.array([1.8*RIGHT +1.15*UP]))
+ para_lab_x.move_to(np.array([1.3*LEFT +1.6*UP]))
+ lab_line3.move_to(np.array([2.4*RIGHT +0.5*UP]))
+ self.wait()
+ self.play(FadeOut(plane1), FadeOut(plane1_text))
+ self.play(ShowCreation(parabola1))
+ self.add_fixed_in_frame_mobjects(para_lab_x)
+ self.play(ShowCreation(dot1))
+ self.add_fixed_in_frame_mobjects(lab_x)
+ self.play(ShowCreation(dot3))
+ self.add_fixed_in_frame_mobjects(lab_line3)
+ self.wait()
+ self.play(ShowCreation(line1))
+ self.add_fixed_in_frame_mobjects(tangent_line_x)
+ self.play(ShowCreation(line3))
+ self.wait()
+
+
+ self.add_fixed_in_frame_mobjects(text1,text3)
+ text1.move_to(3*UP+3*RIGHT)
+ text3.next_to(text1, DOWN)
+ self.play(Write(text1),Write(text3))
+ self.wait()
+ self.play(FadeOut(parabola1), FadeOut(line1), FadeOut(lab_x), FadeOut(line3), FadeOut(lab_line3), FadeOut(para_lab_x), FadeOut(dot1), FadeOut(dot3), FadeOut(tangent_line_x), FadeOut(text1), FadeOut(text3))
+ self.wait()
+
+
+
+
+
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file4_partial_deriv_example.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file4_partial_deriv_example.py
new file mode 100644
index 0000000..5712a62
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file4_partial_deriv_example.py
@@ -0,0 +1,246 @@
+from manimlib.imports import *
+
+class PartialDerivX(ThreeDScene):
+ def construct(self):
+ axes = ThreeDAxes()
+
+ paraboloid = ParametricSurface(
+ lambda u, v: np.array([
+ 2*np.sin(u)*np.cos(v),
+ 2*np.sin(u)*np.sin(v),
+ -2*2*np.sin(u)*np.sin(u)+2
+ ]),u_min=0,u_max=PI/2,v_min=0,v_max=2*PI,checkerboard_colors=[PINK, PURPLE],
+ resolution=(15, 32)).scale(1)
+
+ paraboloid_copy = paraboloid.copy()
+
+
+ paraboloid_x = ParametricSurface(
+ lambda u, v: np.array([
+ 2*np.sin(u)*np.cos(v),
+ 2*np.sin(u)*np.sin(v),
+ -2*2*np.sin(u)*np.sin(u)+2
+ ]),u_min=0,u_max=PI/2,v_min=PI,v_max=2*PI,checkerboard_colors=[PINK, PURPLE],
+ resolution=(15, 32)).scale(1)
+
+
+ parabola =ParametricFunction(
+ lambda u : np.array([
+ u,
+ 0,
+ -(u*u) + 2
+ ]),color="#006400",t_min=-2,t_max=2,
+ )
+
+ plane = Polygon(np.array([-2.2,0,-2.5]),np.array([2.2,0,-2.5]),np.array([2.2,0,2.5]),np.array([-2.2,0,2.5]),np.array([-2.2,0,-2.5]), color = GREEN, fill_color = GREEN, fill_opacity = 0.2)
+ plane_text = TextMobject(r"$y = 0$", color = GREEN_C).move_to(2*UP + 3*RIGHT)
+
+ surface_eqn = TextMobject("Surface", r"$z = 2- x^2 -y^2$", color = PINK).scale(0.6).move_to(np.array([3*LEFT +3*UP]))
+ surface_eqn[0].set_color(BLUE_C)
+
+ line = Line(np.array([-2,0,0]), np.array([2,0,0]), color = RED_C)
+
+
+ self.add(axes)
+
+ axis = TextMobject(r"X",r"Y",r"Z")
+ axis[0].move_to(6*RIGHT)
+ axis[1].move_to(6*UP)
+ axis[2].move_to(3.7*UP)
+
+ self.add_fixed_in_frame_mobjects(axis[2])
+ self.add_fixed_orientation_mobjects(axis[0])
+ self.add_fixed_orientation_mobjects(axis[1])
+
+
+ self.set_camera_orientation(phi=80 * DEGREES, theta = 0*DEGREES)
+
+ self.play(Write(paraboloid))
+
+ self.add_fixed_in_frame_mobjects(surface_eqn)
+ #self.move_camera(phi=80* DEGREES,theta=95*DEGREES)
+ self.move_camera(phi=80* DEGREES,theta=45*DEGREES)
+ self.play(ShowCreation(plane))
+ self.add_fixed_in_frame_mobjects(plane_text)
+ self.wait()
+ self.play(ReplacementTransform(paraboloid, paraboloid_x))
+ self.play(FadeOut(plane), FadeOut(plane_text))
+ self.play(ShowCreation(parabola), ShowCreation(line))
+
+ text1 = TextMobject("Moving small", r"$dx$", r"steps").scale(0.6).move_to(3*UP + 3.5*RIGHT).set_color_by_gradient(RED, ORANGE, YELLOW, BLUE, PURPLE)
+
+ text2 = TextMobject("Observing change in function, keeping", r"$y$", r"constant").scale(0.6).move_to(2.6*UP + 3.5*RIGHT).set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
+
+ slope_text = TexMobject("Slope =", "{\\partial", "f", "\\over", "\\partial", "x}").scale(0.6).move_to(2*UP + 3.5*RIGHT)
+ slope_text[0].set_color(BLUE_E)
+ slope_text.set_color_by_tex("\\partial",PINK)
+ slope_text.set_color_by_tex("f","#006400")
+ slope_text[5].set_color(RED_C)
+
+ self.add_fixed_in_frame_mobjects(text1, text2)
+ self.wait()
+ self.add_fixed_in_frame_mobjects(slope_text)
+ #add_fixed_orientation_mobjects
+
+
+ dot = Dot().rotate(PI/2).set_color(RED_C)
+ alpha = ValueTracker(0)
+ vector = self.get_tangent_vector(alpha.get_value(),parabola,scale=1.5)
+ dot.add_updater(lambda m: m.move_to(vector.get_center()))
+ self.play(
+ ShowCreation(parabola),
+ GrowFromCenter(dot),
+ GrowArrow(vector)
+ )
+ vector.add_updater(
+ lambda m: m.become(
+ self.get_tangent_vector(alpha.get_value()%1,parabola,scale=1.5)
+ )
+ )
+ self.add(vector,dot)
+ self.play(alpha.increment_value, 1, run_time=10, rate_func=linear)
+ self.wait()
+
+
+ '''
+ for i in np.arange(-2,2,0.2):
+ self.play(ReplacementTransform(Line(np.array([i,0,0]), np.array([i,0,-i*i + 2]), color = GREEN_C), Line(np.array([i+0.2,0,0]), np.array([i+0.2,0,-(i+0.2)**2 + 2]), color = GREEN_C)))
+ #self.wait()
+ '''
+
+ self.wait()
+ self.play(FadeOut(parabola), FadeOut(line), FadeOut(vector), FadeOut(dot), FadeOut(text1), FadeOut(text2), FadeOut(slope_text),FadeOut(surface_eqn))
+
+ #self.move_camera(phi=80* DEGREES,theta= 0*DEGREES)
+ self.play(ReplacementTransform(paraboloid_x, paraboloid_copy))
+ self.wait()
+
+
+ def get_tangent_vector(self, proportion, curve, dx=0.001, scale=1):
+ coord_i = curve.point_from_proportion(proportion)
+ coord_f = curve.point_from_proportion(proportion + dx)
+ reference_line = Line(coord_i,coord_f)
+ unit_vector = reference_line.get_unit_vector() * scale
+ vector = Line(coord_i - unit_vector, coord_i + unit_vector, color = BLUE_E, buff=0)
+ return vector
+
+
+class PartialDerivY(ThreeDScene):
+ def construct(self):
+ axes = ThreeDAxes()
+
+ paraboloid = ParametricSurface(
+ lambda u, v: np.array([
+ 2*np.sin(u)*np.cos(v),
+ 2*np.sin(u)*np.sin(v),
+ -2*2*np.sin(u)*np.sin(u)+2
+ ]),u_min=0,u_max=PI/2,v_min=0,v_max=2*PI,checkerboard_colors=[PINK, PURPLE],
+ resolution=(15, 32)).scale(1)
+
+ paraboloid_copy = paraboloid.copy()
+
+
+ paraboloid_y = ParametricSurface(
+ lambda u, v: np.array([
+ 2*np.sin(u)*np.cos(v),
+ 2*np.sin(u)*np.sin(v),
+ -2*2*np.sin(u)*np.sin(u)+2
+ ]),u_min=0,u_max=PI/2,v_min=PI/2,v_max=3*PI/2,checkerboard_colors=[PINK, PURPLE],
+ resolution=(15, 32)).scale(1)
+
+
+ parabola =ParametricFunction(
+ lambda u : np.array([
+ 0,
+ u,
+ -(u*u) + 2
+ ]),color=YELLOW_C,t_min=-2,t_max=2,
+ )
+
+ plane = Polygon(np.array([0,-2.2,-2.5]),np.array([0,2.2,-2.5]),np.array([0,2.2,2.5]),np.array([0,-2.2,2.5]),np.array([0,-2.2,-2.5]), color = BLUE, fill_color = BLUE, fill_opacity = 0.2)
+ plane_text = TextMobject(r"$x = 0$", color = BLUE_C).move_to(2*UP + 3*RIGHT)
+
+ surface_eqn = TextMobject("Surface", r"$z = 2- x^2 -y^2$", color = PINK).scale(0.6).move_to(np.array([3*LEFT +3*UP]))
+ surface_eqn[0].set_color(BLUE_C)
+
+ line = Line(np.array([0,-2,0]), np.array([0,2,0]), color = RED_C)
+
+ self.add(axes)
+
+ axis = TextMobject(r"X",r"Y",r"Z")
+ axis[0].move_to(6*RIGHT)
+ axis[1].move_to(6*UP)
+ axis[2].move_to(3.7*UP)
+
+ self.add_fixed_in_frame_mobjects(axis[2])
+ self.add_fixed_orientation_mobjects(axis[0])
+ self.add_fixed_orientation_mobjects(axis[1])
+
+ self.set_camera_orientation(phi=80 * DEGREES, theta = 45*DEGREES)
+
+ self.play(Write(paraboloid))
+
+ self.add_fixed_in_frame_mobjects(surface_eqn)
+ #self.move_camera(phi=80* DEGREES,theta=5*DEGREES)
+ self.play(ShowCreation(plane))
+ self.add_fixed_in_frame_mobjects(plane_text)
+ self.wait()
+ self.play(ReplacementTransform(paraboloid, paraboloid_y))
+ self.play(FadeOut(plane), FadeOut(plane_text))
+ self.play(ShowCreation(parabola), ShowCreation(line))
+
+ text1 = TextMobject("Moving small", r"$dy$", r"steps").scale(0.6).move_to(3*UP + 3.5*RIGHT).set_color_by_gradient(RED, ORANGE, YELLOW, BLUE, PURPLE)
+
+ text2 = TextMobject("Observing change in function, keeping", r"$x$", r"constant").scale(0.6).move_to(2.6*UP + 3.5*RIGHT).set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
+
+ slope_text = TexMobject("Slope =", "{\\partial", "f", "\\over", "\\partial", "y}").scale(0.6).move_to(2*UP + 3.5*RIGHT)
+ slope_text[0].set_color("#006400")
+ slope_text.set_color_by_tex("\\partial",PINK)
+ slope_text.set_color_by_tex("f",YELLOW_C)
+ slope_text[5].set_color(RED_C)
+
+ self.add_fixed_in_frame_mobjects(text1, text2)
+ self.wait()
+ self.add_fixed_in_frame_mobjects(slope_text)
+
+ dot = Dot().rotate(PI/2).set_color(RED_C)
+ alpha = ValueTracker(0)
+ vector = self.get_tangent_vector(alpha.get_value(),parabola,scale=1.5)
+ dot.add_updater(lambda m: m.move_to(vector.get_center()))
+ self.play(
+ ShowCreation(parabola),
+ GrowFromCenter(dot),
+ GrowArrow(vector)
+ )
+ vector.add_updater(
+ lambda m: m.become(
+ self.get_tangent_vector(alpha.get_value()%1,parabola,scale=1.5)
+ )
+ )
+ self.add(vector,dot)
+ self.play(alpha.increment_value, 1, run_time=10, rate_func=linear)
+ self.wait()
+
+ '''
+ for i in np.arange(-2,2,0.2):
+ self.play(ReplacementTransform(Line(np.array([0,i,0]), np.array([0,i,-i*i + 2]), color = BLUE_C), Line(np.array([0,i+0.2,0]), np.array([0,i+0.2,-(i+0.2)**2 + 2]), color = BLUE_C)))
+ #self.wait()
+ '''
+
+
+ self.wait()
+ self.play(FadeOut(parabola), FadeOut(line), FadeOut(vector), FadeOut(dot), FadeOut(text1), FadeOut(text2), FadeOut(slope_text),FadeOut(surface_eqn))
+
+ #self.move_camera(phi=80* DEGREES,theta= 90*DEGREES)
+ self.play(ReplacementTransform(paraboloid_y, paraboloid_copy))
+ self.wait()
+
+ def get_tangent_vector(self, proportion, curve, dx=0.001, scale=1):
+ coord_i = curve.point_from_proportion(proportion)
+ coord_f = curve.point_from_proportion(proportion + dx)
+ reference_line = Line(coord_i,coord_f)
+ unit_vector = reference_line.get_unit_vector() * scale
+ vector = Line(coord_i - unit_vector, coord_i + unit_vector, color = "#006400", buff=0)
+ return vector
+
+ \ No newline at end of file
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file5_partial_deriv_func_2maximas.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file5_partial_deriv_func_2maximas.py
new file mode 100644
index 0000000..7bbb9a7
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file5_partial_deriv_func_2maximas.py
@@ -0,0 +1,227 @@
+from manimlib.imports import *
+
+class MaximaMinima(ThreeDScene):
+ def construct(self):
+ axes = ThreeDAxes()
+
+ paraboloid = ParametricSurface(
+ lambda u, v: np.array([
+ 3.5*np.sin(u)*np.cos(v),
+ 3.5*np.sin(u)*np.sin(v),
+ 3.5*3.5*np.sin(u)*np.sin(u)*(1+2*np.sin(v)*np.sin(v))*np.exp(1 - 3.5*3.5*np.sin(u)*np.sin(u) )
+ ]),u_min=0,u_max=PI,v_min=0,v_max=2*PI, color = BLUE_C, fill_color = BLUE_C, fill_opacity = 0.1,
+ resolution=(15, 32)).scale(1)
+
+ paraboloid_copy1 = paraboloid.copy()
+ paraboloid_copy2 = paraboloid.copy()
+
+ paraboloid_x = ParametricSurface(
+ lambda u, v: np.array([
+ 3.5*np.sin(u)*np.cos(v),
+ 3.5*np.sin(u)*np.sin(v),
+ 3.5*3.5*np.sin(u)*np.sin(u)*(1+2*np.sin(v)*np.sin(v))*np.exp(1 - 3.5*3.5*np.sin(u)*np.sin(u) )
+ ]),u_min=0,u_max=PI,v_min=PI,v_max=2*PI, color = BLUE_C, fill_color = BLUE_C, fill_opacity = 0.1,
+ resolution=(15, 32)).scale(1)
+
+ paraboloid_y = ParametricSurface(
+ lambda u, v: np.array([
+ 3.5*np.sin(u)*np.cos(v),
+ 3.5*np.sin(u)*np.sin(v),
+ 3.5*3.5*np.sin(u)*np.sin(u)*(1+2*np.sin(v)*np.sin(v))*np.exp(1 - 3.5*3.5*np.sin(u)*np.sin(u) )
+ ]),u_min=0,u_max=PI,v_min=PI/2,v_max=3*PI/2, color = BLUE_C, fill_color = BLUE_C, fill_opacity = 0.1,
+ resolution=(15, 32)).scale(1)
+
+ parabola_x_out =ParametricFunction(
+ lambda u : np.array([
+ u,
+ 0,
+ (u*u )*np.exp(1-u*u)
+ ]),color=RED_E,t_min=-3.5,t_max=3.5,
+ )
+
+ parabola_y_out =ParametricFunction(
+ lambda u : np.array([
+ 0,
+ u,
+ (3*u*u)*np.exp(1-u*u)
+ ]),color=PINK,t_min=-3.5,t_max=3.5,
+ )
+
+ plane1 = Polygon(np.array([-3.5,0,-3]),np.array([3.5,0,-3]),np.array([3.5,0,3]),np.array([-3.5,0,3]),np.array([-3.5,0,-3]), color = RED_C, fill_color = RED_C, fill_opacity = 0.2)
+ plane_text_x = TextMobject(r"$y = 0$", color = RED_C).move_to(2*UP + 4.5*RIGHT)
+
+ plane2 = Polygon(np.array([0,-3.5,-3]),np.array([0,3.5,-3]),np.array([0,3.5,3]),np.array([0,-3.5,3]),np.array([0,-3.5,-3]), color = PINK, fill_color = PINK, fill_opacity = 0.2)
+ plane_text_y = TextMobject(r"$x = 0$", color = PINK).move_to(2*UP + 4.5*RIGHT)
+
+ surface_eqn = TextMobject("Surface", r"$z = (x^2 + 3y^2)e^{(1 - x^2 - y^2)}$", color = YELLOW_C).scale(0.6).move_to(np.array([3.5*LEFT +3.5*UP]))
+ surface_eqn[0].set_color(BLUE_C)
+
+ self.set_camera_orientation(phi=60 * DEGREES, theta = 45*DEGREES)
+
+ self.add(axes)
+ axis = TextMobject(r"X",r"Y",r"Z")
+ axis[0].move_to(6*RIGHT)
+ axis[1].move_to(6*UP)
+ axis[2].move_to(np.array([0,0,3.7]))
+
+ self.add_fixed_orientation_mobjects(axis[2])
+ self.add_fixed_orientation_mobjects(axis[0])
+ self.add_fixed_orientation_mobjects(axis[1])
+
+ self.play(ShowCreation(paraboloid))
+
+
+ #self.move_camera(phi=60 * DEGREES, theta = 45*DEGREES,run_time=3)
+
+
+ plane_x = Polygon(np.array([-3.5,2,-3]),np.array([3.5,2,-3]),np.array([3.5,2,3]),np.array([-3.5,2,3]),np.array([-3.5,2,-3]), color = YELLOW_C, fill_color = YELLOW_A, fill_opacity = 0.2)
+
+ plane_y = Polygon(np.array([2,-3.5,-3]),np.array([2,3.5,-3]),np.array([2,3.5,3]),np.array([2,-3.5,3]),np.array([2,-3.5,-3]), color = GREEN_C, fill_color = GREEN_A, fill_opacity = 0.2)
+
+ text_x = TextMobject(r"$x$", "is fixed on this" ,"plane").scale(0.7).to_corner(UL)
+ text_y = TextMobject(r"$y$", "is fixed on this" ,"plane").scale(0.7).to_corner(UR)
+
+ text_x[0].set_color(RED_C)
+ text_y[0].set_color(PINK)
+ text_x[1].set_color(BLUE_C)
+ text_y[1].set_color(BLUE_C)
+ text_x[2].set_color(GREEN_C)
+ text_y[2].set_color(YELLOW_C)
+
+ self.add_fixed_in_frame_mobjects(text_x, text_y)
+
+ for i in range(2,-4,-1):
+
+ parabola_x =ParametricFunction(lambda u : np.array([u,i,(u*u + 3*i*i)*np.exp(1- u*u - i*i)]),color=RED_C,t_min=-3.5,t_max=3.5,)
+
+ parabola_y =ParametricFunction(lambda u : np.array([i,u,(i*i + 3*u*u)*np.exp(1- u*u - i*i)]),color=PINK,t_min=-3.5,t_max=3.5,)
+
+ if(i==2):
+ self.play(ShowCreation(plane_x), ShowCreation(plane_y))
+ parabola_copy_x = parabola_x.copy()
+ parabola_copy_y = parabola_y.copy()
+
+
+ self.play(ShowCreation(parabola_copy_x), ShowCreation(parabola_copy_y))
+ self.wait()
+ self.play(FadeOut(parabola_copy_x), FadeOut(parabola_copy_y))
+
+ else:
+ self.play(ApplyMethod(plane_x.move_to, np.array([0,i,0])),ReplacementTransform(parabola_copy_x, parabola_x),ApplyMethod(plane_y.move_to, np.array([i,0,0])),ReplacementTransform(parabola_copy_y, parabola_y))
+ self.play(FadeOut(parabola_x), FadeOut(parabola_y))
+ self.wait()
+
+ parabola_copy_x = parabola_x.copy()
+ parabola_copy_y = parabola_y.copy()
+
+ self.play(FadeOut(plane_x), FadeOut(plane_y), FadeOut(text_x), FadeOut(text_y))
+
+
+ self.add_fixed_in_frame_mobjects(surface_eqn)
+
+ self.move_camera(phi=80 * DEGREES, theta = 95*DEGREES)
+
+ self.play(ShowCreation(plane1))
+ self.add_fixed_in_frame_mobjects(plane_text_x)
+ self.wait()
+ self.play(ReplacementTransform(paraboloid, paraboloid_x))
+ self.play(FadeOut(plane1), FadeOut(plane_text_x))
+
+ line_x = Line(np.array([-3.5,0,0]), np.array([3.5,0,0]), color = YELLOW_E)
+
+ self.play(ShowCreation(parabola_x_out), ShowCreation(line_x))
+
+ slope_text_x = TexMobject("Slope =", "{\\partial", "f", "\\over", "\\partial", "x}").scale(0.6).move_to(2*UP + 3.5*RIGHT)
+ slope_text_x[0].set_color(ORANGE)
+ slope_text_x.set_color_by_tex("\\partial",GREEN_E)
+ slope_text_x.set_color_by_tex("f",RED_E)
+ slope_text_x[5].set_color(YELLOW_E)
+
+ self.add_fixed_in_frame_mobjects(slope_text_x)
+
+
+ dot_x = Dot().rotate(PI/2).set_color(YELLOW_E)
+ alpha_x = ValueTracker(0)
+ vector_x = self.get_tangent_vector(alpha_x.get_value(),parabola_x_out,scale=1.5)
+ dot_x.add_updater(lambda m: m.move_to(vector_x.get_center()))
+ self.play(
+ ShowCreation(parabola_x_out),
+ GrowFromCenter(dot_x),
+ GrowArrow(vector_x)
+ )
+ vector_x.add_updater(
+ lambda m: m.become(
+ self.get_tangent_vector(alpha_x.get_value()%1,parabola_x_out,scale=1.5)
+ )
+ )
+ self.add(vector_x,dot_x)
+ self.play(alpha_x.increment_value, 1, run_time=10, rate_func=linear)
+
+ self.wait(2)
+ self.play(FadeOut(parabola_x_out), FadeOut(line_x), FadeOut(vector_x), FadeOut(dot_x), FadeOut(slope_text_x))
+
+ self.move_camera(phi=80* DEGREES,theta= 5*DEGREES)
+ self.play(ReplacementTransform(paraboloid_x, paraboloid_copy1))
+ self.wait()
+
+
+
+ self.play(ShowCreation(plane2))
+ self.add_fixed_in_frame_mobjects(plane_text_y)
+ self.wait()
+ self.play(ReplacementTransform(paraboloid_copy1, paraboloid_y))
+ self.play(FadeOut(plane2), FadeOut(plane_text_y))
+
+ line_y = Line(np.array([0,-3.5,0]), np.array([0,3.5,0]), color = GREEN_E)
+
+ self.play(ShowCreation(parabola_y_out), ShowCreation(line_y))
+
+ slope_text_y = TexMobject("Slope =", "{\\partial", "f", "\\over", "\\partial", "y}").scale(0.6).move_to(2*UP + 3.5*RIGHT)
+ slope_text_y[0].set_color(ORANGE)
+ slope_text_y.set_color_by_tex("\\partial",YELLOW_E)
+ slope_text_y.set_color_by_tex("f",PINK)
+ slope_text_y[5].set_color(GREEN_E)
+
+ self.add_fixed_in_frame_mobjects(slope_text_y)
+
+
+ dot_y = Dot().rotate(PI/2).set_color(GREEN_E)
+ alpha_y = ValueTracker(0)
+ vector_y = self.get_tangent_vector(alpha_y.get_value(),parabola_y_out,scale=1.5)
+ dot_y.add_updater(lambda m: m.move_to(vector_y.get_center()))
+ self.play(
+ ShowCreation(parabola_y_out),
+ GrowFromCenter(dot_y),
+ GrowArrow(vector_y)
+ )
+ vector_y.add_updater(
+ lambda m: m.become(
+ self.get_tangent_vector(alpha_y.get_value()%1,parabola_y_out,scale=1.5)
+ )
+ )
+ self.add(vector_y,dot_y)
+ self.play(alpha_y.increment_value, 1, run_time=10, rate_func=linear)
+
+ self.wait(2)
+ self.play(FadeOut(parabola_y_out), FadeOut(line_y), FadeOut(vector_y), FadeOut(dot_y), FadeOut(slope_text_y))
+
+ self.move_camera(phi=60* DEGREES,theta= 45*DEGREES)
+ self.play(ReplacementTransform(paraboloid_y, paraboloid_copy2))
+ self.wait()
+
+
+
+
+
+
+
+
+
+ def get_tangent_vector(self, proportion, curve, dx=0.001, scale=1):
+ coord_i = curve.point_from_proportion(proportion)
+ coord_f = curve.point_from_proportion(proportion + dx)
+ reference_line = Line(coord_i,coord_f)
+ unit_vector = reference_line.get_unit_vector() * scale
+ vector = Line(coord_i - unit_vector , coord_i + unit_vector, color = ORANGE, buff=0)
+ return vector
+
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file6_clariant_rule.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file6_clariant_rule.py
new file mode 100644
index 0000000..b79f77c
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file6_clariant_rule.py
@@ -0,0 +1,64 @@
+from manimlib.imports import *
+
+class ClariantRule(Scene):
+ def construct(self):
+ derivatives = TextMobject(r"$cos(x)y^3$",r"$-sin(x)y^3$", r"$3cos(x)y^2$", r"$-cos(x)y^3$", r"$-3sin(x)y^2$", r"$-3sin(x)y^2$", r"$6cos(x)y$")
+
+ partial_derivatives = TextMobject(r"$\frac{\partial}{\partial x}$", r"$\frac{\partial}{\partial y}$")
+
+
+ derivatives[0].move_to(2*UP).set_color(PURPLE)
+ derivatives[1].move_to(3*LEFT).set_color(YELLOW_C)
+ derivatives[2].move_to(3*RIGHT).set_color(BLUE_C)
+
+ arrrow_1 = Arrow(derivatives[0].get_bottom(), derivatives[1].get_top())
+ arrrow_1_lab = partial_derivatives[0].copy().scale(0.7)
+ arrrow_1_lab.move_to(2.5*LEFT+ 1.3*UP)
+
+ arrrow_2 = Arrow(derivatives[0].get_bottom(), derivatives[2].get_top())
+ arrrow_2_lab = partial_derivatives[1].copy().scale(0.7)
+ arrrow_2_lab.move_to(2.5*RIGHT+ 1.3*UP)
+
+ self.play(Write(derivatives[0]))
+ self.play(GrowArrow(arrrow_1), GrowArrow(arrrow_2), Write(arrrow_1_lab), Write(arrrow_2_lab))
+
+ self.play(Write(derivatives[1]))
+ self.play(Write(derivatives[2]))
+
+ derivatives[3].move_to(2*DOWN + 4.5*LEFT).set_color(GREEN_C)
+ derivatives[4].move_to(2*DOWN + 1.5*LEFT).set_color(PINK)
+ derivatives[5].move_to(2*DOWN + 1.5*RIGHT).set_color(PINK)
+ derivatives[6].move_to(2*DOWN + 4.5*RIGHT).set_color(ORANGE)
+
+ arrrow_3 = Arrow(derivatives[1].get_bottom(), derivatives[3].get_top())
+ arrrow_3_lab = partial_derivatives[0].copy().scale(0.7)
+ arrrow_3_lab.move_to(4.3*LEFT+ 0.8*DOWN)
+
+ arrrow_4 = Arrow(derivatives[1].get_bottom(), derivatives[4].get_top())
+ arrrow_4_lab = partial_derivatives[1].copy().scale(0.7)
+ arrrow_4_lab.move_to(1.6*LEFT+ 0.8*DOWN)
+
+ arrrow_5 = Arrow(derivatives[2].get_bottom(), derivatives[5].get_top())
+ arrrow_5_lab = partial_derivatives[0].copy().scale(0.7)
+ arrrow_5_lab.move_to(1.6*RIGHT+ 0.8*DOWN)
+
+ arrrow_6 = Arrow(derivatives[2].get_bottom(), derivatives[6].get_top())
+ arrrow_6_lab = partial_derivatives[1].copy().scale(0.7)
+ arrrow_6_lab.move_to(4.3*RIGHT+ 0.8*DOWN)
+
+ self.play(GrowArrow(arrrow_3), GrowArrow(arrrow_4), Write(arrrow_3_lab), Write(arrrow_4_lab))
+ self.play(Write(derivatives[3]), Write(derivatives[4]))
+
+ self.play(GrowArrow(arrrow_5), GrowArrow(arrrow_6), Write(arrrow_5_lab), Write(arrrow_6_lab))
+ self.play(Write(derivatives[5]), Write(derivatives[6]))
+
+ brace1 = Brace(derivatives[4:6], DOWN, buff = SMALL_BUFF, color = RED_C)
+ brace_t1 = brace1.get_text("Mixed partial derivatives are the same!")
+ brace_t1.set_color(RED_C)
+
+ self.play(GrowFromCenter(brace1), FadeIn(brace_t1))
+
+ self.wait()
+
+
+
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file7_partial_deriv_clariant_rule.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file7_partial_deriv_clariant_rule.py
new file mode 100644
index 0000000..313c6cd
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file7_partial_deriv_clariant_rule.py
@@ -0,0 +1,108 @@
+from manimlib.imports import *
+
+class ClariantRule(ThreeDScene):
+ def construct(self):
+ axes = ThreeDAxes()
+
+ function = ParametricSurface(
+ lambda u, v: np.array([
+ 3.5*np.sin(u)*np.cos(v),
+ 3.5*np.sin(u)*np.sin(v),
+ 3.5*3.5*np.sin(u)*np.sin(u)*(1+2*np.sin(v)*np.sin(v))*np.exp(1 - 3.5*3.5*np.sin(u)*np.sin(u) )
+ ]),u_min=0,u_max=PI,v_min=0,v_max=2*PI, color = BLUE_C, fill_color = BLUE_C, fill_opacity = 0.1,
+ resolution=(15, 32)).scale(1)
+
+
+ function_copy1 = function.copy()
+ function_copy2 = function.copy()
+
+ func_x =ParametricFunction(
+ lambda u : np.array([
+ u,
+ -1,
+ (u*u )*np.exp(1-u*u)
+ ]),color=RED_E,t_min=-3.5,t_max=3.5,
+ )
+
+ func_y =ParametricFunction(
+ lambda u : np.array([
+ 0,
+ u,
+ (3*u*u)*np.exp(1-u*u)
+ ]),color=PINK,t_min=-3.5,t_max=3.5,
+ )
+
+ plane_x = Polygon(np.array([-3.5,-1,-3]),np.array([3.5,-1,-3]),np.array([3.5,-1,3]),np.array([-3.5,-1,3]),np.array([-3.5,-1,-3]), color = YELLOW_E, fill_color = YELLOW_B, fill_opacity = 0.1)
+ plane_text_x = TextMobject(r"$y = -1$", color = YELLOW_C).move_to(np.array([5,0,2.7])).scale(0.7)
+
+ plane_y = Polygon(np.array([0,-3.5,-3]),np.array([0,3.5,-3]),np.array([0,3.5,3]),np.array([0,-3.5,3]),np.array([0,-3.5,-3]), color = GREEN_E, fill_color = GREEN_B, fill_opacity = 0.1)
+ plane_text_y = TextMobject(r"$x = 0$", color = GREEN_C).move_to(np.array([0,4,2.7])).scale(0.7)
+
+ surface_eqn = TextMobject("Surface", r"$z = (x^2 + 3y^2)e^{(1 - x^2 - y^2)}$", color = YELLOW_C).scale(0.6).move_to(np.array([4.6*LEFT+3.5*UP]))
+ surface_eqn[0].set_color(BLUE_C)
+
+ self.set_camera_orientation(phi=60 * DEGREES, theta = 45*DEGREES)
+
+ self.add(axes)
+ axis = TextMobject(r"X",r"Y",r"Z")
+ axis[0].move_to(6*RIGHT)
+ axis[1].move_to(6*UP)
+ axis[2].move_to(np.array([0,0,3.7]))
+
+ self.add_fixed_orientation_mobjects(axis[2])
+ self.add_fixed_orientation_mobjects(axis[0])
+ self.add_fixed_orientation_mobjects(axis[1])
+
+ self.play(ShowCreation(function))
+
+ self.add_fixed_in_frame_mobjects(surface_eqn)
+
+ self.play(ShowCreation(plane_x), ShowCreation(plane_y))
+ self.add_fixed_orientation_mobjects(plane_text_x, plane_text_y)
+
+ self.play(ShowCreation(func_x), ShowCreation(func_y))
+
+ dot_x = Dot().rotate(PI/2).set_color(YELLOW_E)
+ alpha_x = ValueTracker(0)
+ vector_x = self.get_tangent_vector(alpha_x.get_value(),func_x,scale=1.5)
+ dot_x.add_updater(lambda m: m.move_to(vector_x.get_center()))
+ self.play(
+ ShowCreation(func_x),
+ GrowFromCenter(dot_x),
+ GrowArrow(vector_x)
+ )
+ vector_x.add_updater(
+ lambda m: m.become(
+ self.get_tangent_vector(alpha_x.get_value()%1,func_x,scale=1.5)
+ )
+ )
+ dot_y = Dot().rotate(PI/2).set_color(GREEN_E)
+ alpha_y = ValueTracker(0)
+ vector_y = self.get_tangent_vector(alpha_y.get_value(),func_y,scale=1.5)
+ dot_y.add_updater(lambda m: m.move_to(vector_y.get_center()))
+ self.play(
+ ShowCreation(func_y),
+ GrowFromCenter(dot_y),
+ GrowArrow(vector_y)
+ )
+ vector_y.add_updater(
+ lambda m: m.become(
+ self.get_tangent_vector(alpha_y.get_value()%1,func_y,scale=1.5)
+ )
+ )
+ self.add(vector_x,dot_x)
+
+ self.play(alpha_x.increment_value, 1, run_time=10, rate_func=linear)
+
+ self.add(vector_y,dot_y)
+ self.play(alpha_y.increment_value, 1, run_time=10, rate_func=linear)
+
+ self.wait(2)
+
+
+
+
+
+
+
+
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file8_chain_rule.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file8_chain_rule.py
new file mode 100644
index 0000000..f50d2d1
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/file8_chain_rule.py
@@ -0,0 +1,60 @@
+from manimlib.imports import *
+
+class ChainRule(Scene):
+ def construct(self):
+
+ chain_rule = TextMobject(r"$\frac{dw}{dt}$", r"=", r"$\frac{\partial w}{\partial x}$", r"$\frac{dx}{dt}$", r"+", r"$\frac{\partial w}{\partial y}$", r"$\frac{dy}{dt}$").move_to(4*RIGHT).scale(0.8)
+
+ chain_rule[0].set_color(ORANGE)
+ chain_rule[2].set_color(GREEN_C)
+ chain_rule[3].set_color(RED_C)
+ chain_rule[5].set_color(YELLOW_C)
+ chain_rule[6].set_color(BLUE_C)
+
+ functions = TextMobject(r"$w =f(x,y)$",r"$x$", r"$y$", r"$t$")
+
+ functions[0].move_to(3.3*UP+1*LEFT).set_color(ORANGE)
+ functions[1].move_to(3.3*LEFT).set_color(PURPLE)
+ functions[2].move_to(1.3*RIGHT).set_color(PURPLE)
+ functions[3].move_to(3.3*DOWN+1*LEFT).set_color(WHITE)
+
+ partial_derivatives = TextMobject(r"$\frac{\partial w}{\partial x}$", r"$\frac{\partial w}{\partial y}$")
+
+ partial_derivatives[0].move_to(1.5*UP+3*LEFT).set_color(GREEN_C)
+ partial_derivatives[1].move_to(1.5*UP+1*RIGHT).set_color(YELLOW_C)
+
+ derivatives = TextMobject(r"$\frac{dx}{dt}$", r"$\frac{dy}{dt}$")
+
+ derivatives[0].move_to(1.5*DOWN+3*LEFT).set_color(RED_C)
+ derivatives[1].move_to(1.5*DOWN+1*RIGHT).set_color(BLUE_C)
+
+ line_f_x = Line(np.array([-1,3,0]), np.array([-3,0,0]), color = BLUE_C)
+ line_f_y = Line(np.array([-1,3,0]), np.array([1,0,0]), color = BLUE_C)
+ line_x_t = Line(np.array([-3,0,0]), np.array([-1,-3,0]), color = BLUE_C)
+ line_y_t = Line(np.array([1,0,0]), np.array([-1,-3,0]), color = BLUE_C)
+
+ dot_f = Dot().shift(np.array([-1,3,0])).set_color(BLUE_C)
+ dot_x = Dot().shift(np.array([-3,0,0])).set_color(BLUE_C)
+ dot_y = Dot().shift(np.array([1,0,0])).set_color(BLUE_C)
+ dot_t = Dot().shift(np.array([-1,-3,0])).set_color(BLUE_C)
+
+ variables = TextMobject("Dependent Variable","Intermediate Variables", "Dependent Variable").set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE).scale(0.7)
+ variables[0].move_to(3.3*UP+3.5*RIGHT)
+ variables[1].move_to(3.5*RIGHT)
+ variables[2].move_to(3.3*DOWN+3.5*RIGHT)
+
+ self.play(ShowCreation(dot_f), Write(functions[0]))
+ self.play(ShowCreation(dot_x), ShowCreation(line_f_x), Write(functions[1]), ShowCreation(dot_y), ShowCreation(line_f_y), Write(functions[2]))
+ self.play(Write(partial_derivatives[0]), Write(partial_derivatives[1]))
+ self.wait()
+
+ self.play(ShowCreation(dot_t), ShowCreation(line_x_t), ShowCreation(line_y_t), Write(functions[3]))
+ self.play(Write(derivatives[0]), Write(derivatives[1]))
+ self.wait()
+
+ self.play(Write(variables[0]), Write(variables[1]), Write(variables[2]))
+
+ self.play(FadeOut(variables))
+ self.play(Write(chain_rule))
+ self.wait()
+ \ No newline at end of file
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file1_partial_deriv_gas_law.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file1_partial_deriv_gas_law.gif
new file mode 100644
index 0000000..8fdb80f
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file1_partial_deriv_gas_law.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file2_partial_deriv_hill.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file2_partial_deriv_hill.gif
new file mode 100644
index 0000000..3c758ff
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file2_partial_deriv_hill.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file3_partial_deriv_defn.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file3_partial_deriv_defn.gif
new file mode 100644
index 0000000..c66b3fa
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file3_partial_deriv_defn.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file4_partial_deriv_example.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file4_partial_deriv_example.gif
new file mode 100644
index 0000000..d2bf541
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file4_partial_deriv_example.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file5_partial_deriv_func_2maximas.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file5_partial_deriv_func_2maximas.gif
new file mode 100644
index 0000000..db7f4f8
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file5_partial_deriv_func_2maximas.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file6_clariant_rule.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file6_clariant_rule.gif
new file mode 100644
index 0000000..8377827
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file6_clariant_rule.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file7_partial_deriv_clariant_rule.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file7_partial_deriv_clariant_rule.gif
new file mode 100644
index 0000000..32d5e92
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file7_partial_deriv_clariant_rule.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file8_chain_rule.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file8_chain_rule.gif
new file mode 100644
index 0000000..596b08d
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/partial-derivatives/gifs/file8_chain_rule.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/README.md b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/README.md
new file mode 100644
index 0000000..4339c30
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/README.md
@@ -0,0 +1,20 @@
+**file1_scalar_function**
+![file1_scalar_function](https://github.com/nishanpoojary/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file1_scalar_functions.gif)
+
+**file2_domain_range**
+![file2_domain_range](https://github.com/nishanpoojary/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file2_domain_range.gif)
+
+**file3_parabola_example**
+![file3_parabola_example](https://github.com/nishanpoojary/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file3_parabola_example.gif)
+
+**file4_level_curves**
+![file4_non_rect_region](https://github.com/nishanpoojary/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file4_level_curves.gif)
+
+**file5_level_surface**
+![file5_level_surface](https://github.com/nishanpoojary/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file5_level_surface.gif)
+
+**file6_scalar_function_application**
+![file6_scalar_function_application](https://github.com/nishanpoojary/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file6_scalar_function_application.gif)
+
+**file7_neural_nets**
+![file7_neural_nets](https://github.com/nishanpoojary/FSF-mathematics-python-code-archive/blob/master/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file7_neural_nets.gif)
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/Scalar_Function_Quiz.pdf b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/Scalar_Function_Quiz.pdf
index 6d94a2c..6d94a2c 100644
--- a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/Scalar_Function_Quiz.pdf
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/Scalar_Function_Quiz.pdf
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/file1_scalar_functions.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/file1_scalar_functions.py
new file mode 100644
index 0000000..1a6f4ed
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/file1_scalar_functions.py
@@ -0,0 +1,50 @@
+from manimlib.imports import *
+
+class ScalarFunction(Scene):
+ def construct(self):
+ circle = Circle(radius = 1.5, color = BLUE_E, fill_color = BLUE_C, fill_opacity = 0.1).move_to(2*LEFT)
+ dot_circle = Dot().shift(np.array([-1.5,0,0])).set_color(BLUE_E)
+ dot_circle_lab = TextMobject(r"$a$", color = BLUE_E).next_to(dot_circle, DOWN)
+
+ arrow = Arrow(np.array([3,-3,0]),np.array([3,3,0]))
+ line = Line(np.array([3,-1.5,0]),np.array([3,1.5,0]), color = RED_C)
+
+ dot0 = Dot().shift(np.array([3,0,0])).set_color(RED_E)
+ dot0_lab = TextMobject(r"$f(a)$", color = RED_E).scale(0.8).next_to(dot0, RIGHT)
+
+ dot1 = Dot().shift(np.array([3,-1.5,0])).set_color(RED_C)
+
+ dot2 = Dot().shift(np.array([3,1.5,0])).set_color(RED_C)
+ dot2_lab = TextMobject(r"$f(A)$", color = RED_C).scale(0.8).next_to(dot2, RIGHT)
+
+ arrow_f = Arrow(np.array([-1.5,0,0]),np.array([3,0,0]), color = YELLOW_C, buff = 0.1)
+
+ R = TextMobject(r"$\mathbb{R}$", color = WHITE).move_to(np.array([3,-3.3,0]))
+
+ A = TextMobject(r"$A$", color = BLUE_E).move_to(np.array([-2.5,-3.3,0]))
+
+ F = TextMobject(r"$f$", color = GREY).move_to(np.array([0,-2.9,0]))
+
+ F_center = TextMobject(r"$f$", color = YELLOW_C).move_to(np.array([0.8,0.5,0]))
+
+ arrow_R_A = Arrow(np.array([-2.3,-3.3,0]),np.array([2.7,-3.3,0]), color = GREY, buff = 0.1)
+
+ scalar_function = TextMobject(r"Scalar Valued Function", r"$f: A \rightarrow \mathbb{R}$", color = PURPLE).move_to(np.array([0,3.5,0]))
+ scalar_function[1].set_color(GREEN_C)
+
+
+
+ self.play(ShowCreation(circle))
+ self.play(ShowCreation(arrow))
+
+
+ self.play(ShowCreation(dot1), ShowCreation(dot2))
+ self.play(ShowCreation(dot_circle))
+ self.play(ShowCreation(dot_circle_lab), ShowCreation(dot2_lab))
+ self.play(ShowCreation(A), ShowCreation(R))
+ self.play(GrowArrow(arrow_f), ShowCreation(dot0), ShowCreation(dot0_lab), ShowCreation(F_center), GrowArrow(arrow_R_A), ShowCreation(F), Transform(circle.copy(), line.copy()))
+
+ self.play(Write(scalar_function))
+
+
+ self.wait(2) \ No newline at end of file
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/scalar_function_domain_range.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/file2_domain_range.py
index 9b1ca7b..1b54cb6 100644
--- a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/scalar_function_domain_range.py
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/file2_domain_range.py
@@ -20,6 +20,11 @@ class PlotGraphs(GraphScene):
self.play(FadeOut(topic))
self.wait(1)
+ scalar_func_R = TextMobject(r"Scalar Valued Functions in $R$").scale(1.5).set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
+ self.play(Write(scalar_func_R))
+ self.play(FadeOut(scalar_func_R))
+ self.wait(1)
+
XTD = self.x_axis_width/(self.x_max- self.x_min)
YTD = self.y_axis_height/(self.y_max- self.y_min)
@@ -40,8 +45,8 @@ class PlotGraphs(GraphScene):
rangeMsg.scale(0.5)
rangeMsg.set_color(YELLOW)
- domainline1 = Line(self.graph_origin+0.6*YTD*DOWN+1.2*XTD*LEFT, self.graph_origin+0.6*YTD*DOWN + 4*XTD*LEFT)
- domainline2 = Arrow(self.graph_origin+0.6*YTD*DOWN+1.1*XTD*RIGHT, self.graph_origin+0.6*YTD*DOWN + 5.3*XTD*RIGHT)
+ domainline1 = Arrow(self.graph_origin+0.6*YTD*DOWN+1.2*XTD*LEFT, self.graph_origin+0.6*YTD*DOWN + 4*XTD*LEFT, buff = 0.1)
+ domainline2 = Arrow(self.graph_origin+0.6*YTD*DOWN+1.1*XTD*RIGHT, self.graph_origin+0.6*YTD*DOWN + 5.3*XTD*RIGHT, buff = 0.1)
domainline1.set_color(PINK)
domainline2.set_color(PINK)
@@ -128,5 +133,58 @@ class PlotSineGraphs(GraphScene):
self.play(Write(domainMsg))
self.wait(3)
+
+
+
+class Paraboloid(ThreeDScene):
+ def construct(self):
+
+ scalar_func_R2 = TextMobject(r"Scalar Valued Functions in $R^2$").scale(1.5).set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
+ self.play(Write(scalar_func_R2))
+ self.play(FadeOut(scalar_func_R2))
+ self.wait(1)
+
+ axes = ThreeDAxes()
+
+ paraboloid = ParametricSurface(
+ lambda u, v: np.array([
+ 2*np.sin(u)*np.cos(v),
+ 2*np.sin(u)*np.sin(v),
+ 2*2*np.sin(u)*np.sin(u)
+ ]),u_min=0,u_max=PI/2,v_min=0,v_max=2*PI,checkerboard_colors=[GREEN_C, GREEN_E],
+ resolution=(15, 32)).scale(1)
+
+ domain = Polygon(np.array([-5,-5,0]),np.array([5,-5,0]),np.array([5,5,0]),np.array([-5,5,0]),np.array([-5,-5,0]), color = BLUE_C, fill_color = BLUE_C, fill_opacity = 0.2)
+ domain_lab = TextMobject(r"$Domain: R^2$", color = YELLOW_C).scale(0.7).move_to(1*DOWN + 2*LEFT)
+
+ rangef = Line(np.array([0, 0,0]), np.array([0, 0,5]), color = RED_C)
+ rangef_lab = TextMobject(r"$Range: z \geq 0$", color = RED_C).scale(0.7).move_to(2*UP + 1.5*RIGHT)
+
+ func = TextMobject(r"$z = f(x,y) = x^2+y^2$").scale(0.7).move_to(3*UP + 4*LEFT).set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
+
+ self.set_camera_orientation(phi=60 * DEGREES, theta = 0*DEGREES)
+ self.begin_ambient_camera_rotation(rate=0.3)
+
+ self.add(axes)
+
+ axis = TextMobject(r"X",r"Y",r"Z")
+ axis[0].move_to(6*RIGHT)
+ axis[1].move_to(6*UP)
+ axis[2].move_to(np.array([0,0,3.7]))
+
+ self.add_fixed_orientation_mobjects(axis[2])
+ self.add_fixed_orientation_mobjects(axis[0])
+ self.add_fixed_orientation_mobjects(axis[1])
+
+
+
+ self.add_fixed_in_frame_mobjects(func)
+ self.play(Write(paraboloid))
+ self.play(ShowCreation(domain))
+ self.add_fixed_in_frame_mobjects(domain_lab)
+ self.wait()
+ self.play(ShowCreation(rangef))
+ self.add_fixed_in_frame_mobjects(rangef_lab)
+ self.wait(5)
\ No newline at end of file
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/scalar_function_parabola_example.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/file3_parabola_example.py
index 74dc063..63c16b3 100644
--- a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/scalar_function_parabola_example.py
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/file3_parabola_example.py
@@ -9,11 +9,10 @@ class Parabola(ThreeDScene):
2*np.cosh(u)*np.cos(v),
2*np.cosh(u)*np.sin(v),
2*np.sinh(u)
- ]),v_min=0,v_max=TAU,u_min=0,u_max=2,checkerboard_colors=[YELLOW_D, YELLOW_E],
+ ]),v_min=0,v_max=TAU,u_min=0,u_max=2,checkerboard_colors=[YELLOW_D, YELLOW_E],#
resolution=(15, 32))
- text3d = TextMobject(r"Plot of $f: \mathbb{R}^2 \rightarrow \mathbb{R}$", "z = f(x,y)")
- self.add_fixed_in_frame_mobjects(text3d)
+ text3d = TextMobject(r"Plot of $f: \mathbb{R}^2 \rightarrow \mathbb{R}$", r"$z = f(x,y) = \sqrt{x^2 + y^2 - 4}$")
text3d[0].move_to(4*LEFT+2*DOWN)
text3d[1].next_to(text3d[0], DOWN)
text3d[0].set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
@@ -21,8 +20,21 @@ class Parabola(ThreeDScene):
#self.set_camera_orientation(phi=0 * DEGREES,theta=270*DEGREES)
self.move_camera(phi=110* DEGREES,theta=45*DEGREES)
+
self.add(axes)
+
+ axis = TextMobject(r"X",r"Y",r"Z")
+ axis[0].move_to(6*RIGHT)
+ axis[1].move_to(6*UP)
+ axis[2].move_to(np.array([0,0,3.7]))
+
+ self.add_fixed_orientation_mobjects(axis[2])
+ self.add_fixed_orientation_mobjects(axis[0])
+ self.add_fixed_orientation_mobjects(axis[1])
+
+
self.play(ShowCreation(paraboloid))
+ self.add_fixed_in_frame_mobjects(text3d)
self.play(Write(text3d[0]))
self.play(Write(text3d[1]))
self.begin_ambient_camera_rotation(rate=0.2)
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/file4_level_curves.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/file4_level_curves.py
new file mode 100644
index 0000000..2b6f719
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/file4_level_curves.py
@@ -0,0 +1,118 @@
+from manimlib.imports import *
+
+class LevelCurves(ThreeDScene):
+ def construct(self):
+ axes = ThreeDAxes()
+
+ paraboloid = ParametricSurface(
+ lambda u, v: np.array([
+ u*np.cos(v),
+ u*np.sin(v),
+ -u*u+2
+ ]),u_min=-1.414,u_max=1.414,v_min=0,v_max=2*PI, color = BLUE_C, fill_color = BLUE_C, fill_opacity = 0.1,
+ resolution=(15, 32)).scale(1)
+
+ plane_0 = Polygon(np.array([2,-2,0]),np.array([2,2,0]),np.array([-2,2,0]),np.array([-2,-2,0]),np.array([2,-2,0]), color = BLUE_E, fill_color = BLUE_E, fill_opacity = 0.3)
+ plane_0_lab = TextMobject("C = 0").move_to(0.4*UP+3.2*RIGHT).set_color(BLUE_E).scale(0.6)
+ circle_0 = Circle(radius = 1.414 , color = BLUE_E)
+ circle_0_lab = TextMobject("0").move_to(1.1*DOWN+1.1*RIGHT).set_color(BLUE_E).scale(0.6)
+
+ plane_0_5 = Polygon(np.array([2,-2,0.5]),np.array([2,2,0.5]),np.array([-2,2,0.5]),np.array([-2,-2,0.5]),np.array([2,-2,0.5]), color = GREEN_C, fill_color = GREEN_C, fill_opacity = 0.3)
+ plane_0_5_lab = TextMobject("C = 0.5").move_to(0.8*UP+3.4*RIGHT).set_color(GREEN_C).scale(0.6)
+ circle_0_5 = Circle(radius = 1.224 , color = GREEN_C)
+ circle_0_5_lab = TextMobject("0.5").move_to(0.9*DOWN+0.9*RIGHT).set_color(GREEN_C).scale(0.6)
+ circle_0_5_copy = circle_0_5.copy().move_to(np.array([0,0,0.5]))
+
+ plane_1 = Polygon(np.array([2,-2,1]),np.array([2,2,1]),np.array([-2,2,1]),np.array([-2,-2,1]),np.array([2,-2,1]), color = YELLOW_C, fill_color = YELLOW_C, fill_opacity = 0.3)
+ plane_1_lab = TextMobject("C = 1").move_to(1.2*UP+3.3*RIGHT).set_color(YELLOW_C).scale(0.6)
+ circle_1 = Circle(radius = 1 , color = YELLOW_C)
+ circle_1_lab = TextMobject("1").move_to(0.7*DOWN+0.7*RIGHT).set_color(YELLOW_C).scale(0.6)
+ circle_1_copy = circle_1.copy().move_to(np.array([0,0,1]))
+
+ plane_1_5 = Polygon(np.array([2,-2,1.5]),np.array([2,2,1.5]),np.array([-2,2,1.5]),np.array([-2,-2,1.5]),np.array([2,-2,1.5]), color = ORANGE, fill_color = ORANGE, fill_opacity = 0.3)
+ plane_1_5_lab = TextMobject("C = 1.5").move_to(1.7*UP+3.4*RIGHT).set_color(ORANGE).scale(0.6)
+ circle_1_5 = Circle(radius = 0.707 , color = ORANGE)
+ circle_1_5_lab = TextMobject("1.5").move_to(0.5*DOWN+0.5*RIGHT).set_color(ORANGE).scale(0.6)
+ circle_1_5_copy = circle_1_5.copy().move_to(np.array([0,0,1.5]))
+
+ plane_2 = Polygon(np.array([2,-2,2]),np.array([2,2,2]),np.array([-2,2,2]),np.array([-2,-2,2]),np.array([2,-2,2]), color = RED_C, fill_color = RED_C, fill_opacity = 0.3)
+ plane_2_lab = TextMobject("C = 2").move_to(2.1*UP+3.3*RIGHT).set_color(RED_C).scale(0.6)
+ dot_2 = Dot().set_fill(RED_C)
+ circle_2_lab = TextMobject("2").move_to(0.2*DOWN+0.2*RIGHT).set_color(RED_C).scale(0.6)
+ dot_2_copy = dot_2.copy().move_to(np.array([0,0,2]))
+
+ level_curves_line1 = DashedLine(np.array([0,-1.414,0]),np.array([0,-2,1]), color = WHITE)
+ level_curves_line2 = DashedLine(np.array([0,-1.224,0.5]),np.array([0,-2,1]), color = WHITE)
+ level_curves_line3 = DashedLine(np.array([0,-1,1]),np.array([0,-2,1]), color = WHITE)
+ level_curves_line4 = DashedLine(np.array([0,-0.707,1.5]),np.array([0,-2,1]), color = WHITE)
+ level_curves_line5 = DashedLine(np.array([0,0,2]),np.array([0,-2,1]), color = WHITE)
+
+ level_curves = TextMobject("Level Curves").move_to(1.4*UP+3*LEFT).set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE).scale(0.8)
+
+
+ contour_line1 = DashedLine(np.array([0,-1.414,0]),np.array([0,-2,1]), color = WHITE)
+ contour_line2 = DashedLine(np.array([0,-1.224,0]),np.array([0,-2,1]), color = WHITE)
+ contour_line3 = DashedLine(np.array([0,-1,0]),np.array([0,-2,1]), color = WHITE)
+ contour_line4 = DashedLine(np.array([0,-0.707,0]),np.array([0,-2,1]), color = WHITE)
+ contour_line5 = DashedLine(np.array([0,0,0]),np.array([0,-2,1]), color = WHITE)
+
+ contours = TextMobject("Contours").move_to(1.4*UP+2.7*LEFT).set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE).scale(0.8)
+
+
+ topic = TextMobject("Contour Plot").move_to(3*UP+3*LEFT).set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE).scale(0.8)
+
+ self.set_camera_orientation(phi=80 * DEGREES, theta = 0*DEGREES)
+ #self.set_camera_orientation(phi=0 * DEGREES, theta = 0*DEGREES)
+
+ self.add(axes)
+
+ axis = TextMobject(r"X",r"Y",r"Z")
+ axis[0].move_to(6*RIGHT)
+ axis[1].move_to(6*UP)
+ axis[2].move_to(np.array([0,0,3.7]))
+
+ self.add_fixed_orientation_mobjects(axis[2])
+ self.add_fixed_orientation_mobjects(axis[0])
+ self.add_fixed_orientation_mobjects(axis[1])
+
+ self.play(Write(paraboloid))
+ self.wait()
+ self.play(ShowCreation(plane_0), ShowCreation(circle_0))
+ self.add_fixed_in_frame_mobjects(plane_0_lab)
+ self.wait()
+ self.play(ShowCreation(plane_0_5), ShowCreation(circle_0_5_copy), ShowCreation(circle_0_5))
+ self.add_fixed_in_frame_mobjects(plane_0_5_lab)
+ self.wait()
+ self.play(ShowCreation(plane_1), ShowCreation(circle_1_copy), ShowCreation(circle_1))
+ self.add_fixed_in_frame_mobjects(plane_1_lab)
+ self.wait()
+ self.play(ShowCreation(plane_1_5), ShowCreation(circle_1_5_copy), ShowCreation(circle_1_5))
+ self.add_fixed_in_frame_mobjects(plane_1_5_lab)
+ self.wait()
+ self.play(ShowCreation(plane_2), ShowCreation(dot_2_copy), ShowCreation(dot_2))
+ self.add_fixed_in_frame_mobjects(plane_2_lab)
+ self.wait()
+
+ self.move_camera(phi=60 * DEGREES, theta = 30*DEGREES,run_time=3)
+ self.play(FadeOut(plane_0), FadeOut(plane_0_lab), FadeOut(plane_0_5), FadeOut(plane_0_5_lab), FadeOut(plane_1), FadeOut(plane_1_lab), FadeOut(plane_1_5), FadeOut(plane_1_5_lab), FadeOut(plane_2), FadeOut(plane_2_lab))
+
+ self.play(GrowArrow(level_curves_line1), GrowArrow(level_curves_line2), GrowArrow(level_curves_line3), GrowArrow(level_curves_line4), GrowArrow(level_curves_line5))
+ self.add_fixed_in_frame_mobjects(level_curves)
+ self.wait()
+ self.play(FadeOut(level_curves_line1), FadeOut(level_curves_line2), FadeOut(level_curves_line3), FadeOut(level_curves_line4), FadeOut(level_curves_line5), FadeOut(level_curves))
+ self.play(FadeOut(circle_0_5_copy), FadeOut(circle_1_copy), FadeOut(circle_1_5_copy), FadeOut(dot_2_copy))
+ self.wait()
+
+ self.play(GrowArrow(contour_line1), GrowArrow(contour_line2), GrowArrow(contour_line3), GrowArrow(contour_line4), GrowArrow(contour_line5))
+ self.add_fixed_in_frame_mobjects(contours)
+ self.wait()
+ self.play(FadeOut(contour_line1), FadeOut(contour_line2), FadeOut(contour_line3), FadeOut(contour_line4), FadeOut(contour_line5), FadeOut(contours))
+
+
+ self.move_camera(phi=0 * DEGREES, theta = 0*DEGREES,run_time=3)
+ self.play(FadeOut(paraboloid))
+ self.wait()
+
+ self.add_fixed_in_frame_mobjects(circle_0_lab, circle_0_5_lab, circle_1_lab, circle_1_5_lab,circle_2_lab)
+ self.add_fixed_in_frame_mobjects(topic)
+ self.wait(3) \ No newline at end of file
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/file5_level_surface.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/file5_level_surface.py
new file mode 100644
index 0000000..8052676
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/file5_level_surface.py
@@ -0,0 +1,78 @@
+from manimlib.imports import *
+
+class LevelSurface(ThreeDScene):
+ def construct(self):
+ axes = ThreeDAxes()
+
+ surface_0 = ParametricSurface(
+ lambda u, v: np.array([
+ u*np.cos(v),
+ u*np.sin(v),
+ (u*u*np.cos(v)*np.cos(v))-(u*np.sin(v)/5)+0
+ ]),u_min=-1,u_max=1,v_min=0,v_max=2*PI,checkerboard_colors=[RED_C, RED_E],
+ resolution=(15, 32)).scale(1)
+
+ k_0 = TextMobject("K = 0", color = RED_C).scale(0.7)
+
+ surface_1 = ParametricSurface(
+ lambda u, v: np.array([
+ u*np.cos(v),
+ u*np.sin(v),
+ (u*u*np.cos(v)*np.cos(v))-(u*np.sin(v)/5)+1
+ ]),u_min=-1,u_max=1,v_min=0,v_max=2*PI,checkerboard_colors=[GREEN_C, GREEN_E],
+ resolution=(15, 32)).scale(1)
+
+ k_1 = TextMobject("K = 1", color = GREEN_C).scale(0.7)
+
+ surface_2 = ParametricSurface(
+ lambda u, v: np.array([
+ u*np.cos(v),
+ u*np.sin(v),
+ (u*u*np.cos(v)*np.cos(v))-(u*np.sin(v)/5)+2
+ ]),u_min=-1,u_max=1,v_min=0,v_max=2*PI,checkerboard_colors=[YELLOW_C, YELLOW_E],
+ resolution=(15, 32)).scale(1)
+
+ k_2 = TextMobject("K = 2", color = YELLOW_C).scale(0.7)
+
+ func = TextMobject(r"$w = g(x,y,z)$", r"$= z - f(x,y)$", r"$z-x^2+y/5 = K$")
+ func.set_color_by_gradient(RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
+
+ self.set_camera_orientation(phi=90 * DEGREES, theta = 90*DEGREES)
+ self.begin_ambient_camera_rotation(rate=0.3)
+
+
+ self.add(axes)
+
+ axis = TextMobject(r"X",r"Y",r"Z")
+ axis[0].move_to(6*RIGHT)
+ axis[1].move_to(6*UP)
+ axis[2].move_to(3.7*UP)
+
+ self.add_fixed_in_frame_mobjects(axis[2])
+ self.add_fixed_orientation_mobjects(axis[0])
+ self.add_fixed_orientation_mobjects(axis[1])
+
+ self.play(Write(surface_0))
+ self.add_fixed_in_frame_mobjects(k_0)
+ k_0.move_to(np.array([1.4*RIGHT ]))
+
+ self.play(Write(surface_1))
+ self.add_fixed_in_frame_mobjects(k_1)
+ k_1.move_to(np.array([1.4*RIGHT + 1*UP]))
+
+ self.play(Write(surface_2))
+ self.add_fixed_in_frame_mobjects(k_2)
+ k_2.move_to(np.array([1.4*RIGHT + 2*UP]))
+ self.wait()
+
+ self.add_fixed_in_frame_mobjects(func)
+ func[0].move_to(np.array([4.5*LEFT + 3*UP]))
+ func[1].move_to(np.array([4.5*LEFT + 2.5*UP]))
+ func[2].move_to(np.array([4.5*LEFT + 2*UP]))
+
+ self.wait(3)
+ self.move_camera(phi=60 * DEGREES,run_time=3)
+ self.wait(2)
+
+
+ \ No newline at end of file
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/scalar_function_application.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/file6_scalar_function_application.py
index 56b3e53..3ccfad6 100644
--- a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/scalar_function_application.py
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/file6_scalar_function_application.py
@@ -3,12 +3,23 @@ from manimlib.imports import *
class ScalarApplication(ThreeDScene):
def construct(self):
axes = ThreeDAxes() # creates a 3D Axis
+
+ self.add(axes)
+
+ axis = TextMobject(r"X",r"Y",r"Z")
+ axis[0].move_to(6*RIGHT)
+ axis[1].move_to(6*UP)
+ axis[2].move_to(np.array([0,0,3.7]))
+
+ self.add_fixed_orientation_mobjects(axis[2])
+ self.add_fixed_orientation_mobjects(axis[0])
+ self.add_fixed_orientation_mobjects(axis[1])
cube = Cube()
- cube.set_fill(YELLOW_E, opacity = 0.1)
+ cube.set_fill(YELLOW_C, opacity = 0.2)
cube.scale(2)
self.set_camera_orientation(phi=0 * DEGREES,theta=270*DEGREES)
- self.play(ShowCreation(cube),ShowCreation(axes))
+ self.play(ShowCreation(cube))
dot = Sphere()
dot.scale(0.1)
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/scalar_function_neural_nets.py b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/file7_neural_nets.py
index eb6bf45..eb6bf45 100644
--- a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/Scalar Functions/scalar_function_neural_nets.py
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/file7_neural_nets.py
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file1_scalar_functions.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file1_scalar_functions.gif
new file mode 100644
index 0000000..bea9c7b
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file1_scalar_functions.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file2_domain_range.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file2_domain_range.gif
new file mode 100644
index 0000000..6801e4f
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file2_domain_range.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file3_parabola_example.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file3_parabola_example.gif
new file mode 100644
index 0000000..9576b4a
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file3_parabola_example.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file4_level_curves.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file4_level_curves.gif
new file mode 100644
index 0000000..b4ac106
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file4_level_curves.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file5_level_surface.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file5_level_surface.gif
new file mode 100644
index 0000000..e4dc80d
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file5_level_surface.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file6_scalar_function_application.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file6_scalar_function_application.gif
new file mode 100644
index 0000000..8bb176a
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file6_scalar_function_application.gif
Binary files differ
diff --git a/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file7_neural_nets.gif b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file7_neural_nets.gif
new file mode 100644
index 0000000..a22f1b8
--- /dev/null
+++ b/FSF-2020/calculus-of-several-variables/multivariable-functions-and-paritial-derivatives/scalar-functions/gifs/file7_neural_nets.gif
Binary files differ
diff --git a/FSF-2020/calculus/intro-to-calculus/README.md b/FSF-2020/calculus/intro-to-calculus/README.md
index e69de29..a417361 100644
--- a/FSF-2020/calculus/intro-to-calculus/README.md
+++ b/FSF-2020/calculus/intro-to-calculus/README.md
@@ -0,0 +1,8 @@
+Contributor: Aryan Singh
+Subtopics covered
+ - When do limits exist?
+ - How Fast am I going?-An intro to derivatives
+ - Infinte sums in a nutshell(Riemann integrals)
+ - Fundamental Theorem of calculus
+ - Volume and surface area of Gabriel's Horn
+ - Infinite sequences and series
diff --git a/FSF-2020/calculus/intro-to-calculus/introderivative/derivative1.py b/FSF-2020/calculus/intro-to-calculus/introderivative/derivative1.py
new file mode 100644
index 0000000..79a6fc6
--- /dev/null
+++ b/FSF-2020/calculus/intro-to-calculus/introderivative/derivative1.py
@@ -0,0 +1,55 @@
+from manimlib.imports import *
+class derivative1(GraphScene, Scene):
+ def setup(self):
+ GraphScene.setup(self)
+ CONFIG = {
+ "y_max" : 4,
+ "y_min" : -2,
+ "x_max" : 4,
+ "x_min" : -2,
+ "y_tick_frequency" : 1,
+ "x_tick_frequency" : 1,
+ "axes_color" : WHITE,
+ "num_graph_anchor_points": 3000, #this is the number of points that graph manim
+ "graph_origin" : ORIGIN+2*DOWN+4*LEFT,
+ "x_labeled_nums": list(range(-2,5)),
+ "y_labeled_nums": list(range(-2,5)),
+ "x_axis_label":"$x$",
+ "y_axis_label":r"$f(x)=y= 3-\frac { 3 }{ 2 } x$",
+ "x_axis_width": 5,
+ "y_axis_height": 5,
+ }
+ def construct(self):
+ #XTD = self.x_axis_width/(self.x_max - self.x_min)
+ #YTD = self.y_axis_height/(self.y_max - self.y_min)
+
+ text1 = TextMobject("")
+ text2 = TexMobject("{y}_{2}-{y}_{1}")
+ text2 = TexMobject("{x}_{2}-{x}_{1}")
+ text3 = TexMobject(r"m\quad =\frac { { y }_{ 2 }-{ y }_{ 1 } }{ { x }_{ 2 }-{ x }_{ 1 } }").move_to(np.array([3,0,0]))
+ text4 = TexMobject(r"m\quad =\frac { 3 }{ -2 }").move_to(np.array([3,0,0]))
+ text5 = TexMobject(r"m\quad =\quad -1.5").move_to(np.array([3,0,0]))
+ self.setup_axes()
+ graph_1 = self.get_graph(lambda x : 3-1.5*x, color = GREEN_SCREEN, x_min = -1, x_max = 3)
+ graph_2 = self.get_graph(lambda x : 3.1-1.5*x, color = ORANGE, x_min = 0, x_max = 2)
+ dot1 = Dot()
+ dot2 = SmallDot(self.graph_origin+1.7*RIGHT, color = PINK)
+ dot3 = SmallDot(self.graph_origin+2.5*UP, color = RED_B)
+ vec1 = Vector(2.5*DOWN, color = PINK).shift(self.graph_origin+2.5*UP)
+ vec2 = Vector(1.7*RIGHT, color = RED_B).shift(self.graph_origin)
+ brace1 = Brace(vec1, LEFT)
+ brace2 = Brace(vec2, DOWN)
+ br1text = brace1.get_text(r"${y}_{2}-{y}_{1}$").next_to(brace1, LEFT)
+ br2text = brace2.get_text(r"${x}_{2}-{x}_{1}$").next_to(brace2, DOWN)
+ self.play(ShowCreation(graph_1), ShowCreation(dot2), ShowCreation(dot3))
+ self.play(MoveAlongPath(dot1, graph_2), ShowCreation(vec1), ShowCreation(vec2), run_time = 3)
+ self.wait(1)
+ self.play(ShowCreation(brace1), ShowCreation(brace2))
+ self.play(ShowCreation(br1text), ShowCreation(br2text))
+ self.wait(2)
+ self.play(GrowFromCenter(text3))
+ self.wait(2.5)
+ self.play(ReplacementTransform(text3, text4))
+ self.wait(2)
+ self.play(ReplacementTransform(text4, text5))
+ self.wait(2)
diff --git a/FSF-2020/calculus/intro-to-calculus/limit/limit1.py b/FSF-2020/calculus/intro-to-calculus/limit/limit1.py
new file mode 100644
index 0000000..fe5cb1e
--- /dev/null
+++ b/FSF-2020/calculus/intro-to-calculus/limit/limit1.py
@@ -0,0 +1,105 @@
+from manimlib.imports import *
+class limit1(GraphScene,MovingCameraScene):
+ def setup(self):
+ GraphScene.setup(self)
+ MovingCameraScene.setup(self)
+ CONFIG = {
+ "y_max" : 1,
+ "y_min" : 0,
+ "x_max" : 1,
+ "x_min" : -1,
+ "y_tick_frequency" : 0.2,
+ "x_tick_frequency" : 0.2,
+ "axes_color" : WHITE,
+ "num_graph_anchor_points": 3000, #this is the number of points that graph manim
+ "graph_origin" : ORIGIN+3*DOWN,
+ "x_labeled_nums": list(range(-1,2)),
+ "y_labeled_nums": list(range(0,2)),
+ "x_axis_label":"$x$",
+ "y_axis_label":"$f(x)$",
+ "x_axis_width": 10,
+ "y_axis_height": 5,
+ }
+ def construct(self):
+ XTD = self.x_axis_width/(self.x_max - self.x_min)
+ YTD = self.y_axis_height/(self.y_max - self.y_min)
+
+ dot1 = SmallDot(np.array([0.025,-2.975,0]))
+ dot2 = SmallDot(np.array([-0.025,-2.975,0]))
+ sqr = Square(side_length = 15.0).move_to(np.array([0,-3,0]))
+ brline1 = DashedVMobject(Line(np.array([0.15,-3,0]), np.array([0.15,-2.85,0])))
+ brline2 = DashedVMobject(Line(np.array([0.025,-3,0]), np.array([0.025,-2.975,0])))
+ brline3 = DashedVMobject(Line(np.array([-0.15,-3,0]), np.array([-0.15,-2.85,0])))
+ brline4 = DashedVMobject(Line(np.array([-0.025,-3,0]), np.array([-0.025,-2.975,0])))
+ textdef = TextMobject("")
+ text003 = TextMobject("0.03").move_to(np.array([0.15,-3.05,0])).scale(0.1)
+ textazero1 = TexMobject(r"\approx 0").move_to(np.array([0.04,-3.05,0])).scale(0.1)
+ textazero2 = TexMobject(r"\approx 0").move_to(np.array([-0.04,-3.05,0])).scale(0.1)
+ textm003 = TextMobject("-0.03").move_to(np.array([-0.15,-3.05,0])).scale(0.1)
+ text2 = TextMobject("Let f(x) = |x|. We'll check neighbourhood of origin")
+ text3 = TextMobject("h has to be a very small number greater than 0").move_to(np.array([0,-3.3,0])).scale(0.2)
+ text4 = TextMobject("The point travels through range of neighbourhood").move_to(np.array([0,-3.3,0])).scale(0.19)
+ text5 = TextMobject("let h be equal to 0.03").move_to(np.array([0,-3.3,0])).scale(0.25)
+ text6 = TextMobject("Notice how the point never touches the origin").move_to(np.array([0,-3.3,0])).scale(0.2)
+ text7 = TextMobject("Green line shows the Right hand neighbourhood of origin").move_to(np.array([0,-3.3,0])).scale(0.17)
+ text8 = TextMobject("The point is approaching (0,0) for the values of x which are positive").move_to(np.array([0,-3.3,0])).scale(0.1)
+ text9 = TextMobject("Values of x are tending to 0 from positive side").move_to(np.array([0,-3.3,0])).scale(0.19)
+ text10 = TexMobject(r"\text {Notation for this is }",r"x\rightarrow { 0 }^{ + }").move_to(np.array([0,-3.3,0])).scale(0.25)
+ text11 = TextMobject("Similar case can be made for negative values of x").move_to(np.array([0,-3.3,0])).scale(0.19)
+ text12 = TextMobject("The point is approaching (0,0) for the values of x which are negative").move_to(np.array([0,-3.3,0])).scale(0.1)
+ text13 = TextMobject("Values of x are tending to 0 from negative side").move_to(np.array([0,-3.3,0])).scale(0.19)
+ text14 = TexMobject(r"\text {Notation for this is }",r"x\rightarrow { 0 }^{ - }").move_to(np.array([0,-3.3,0])).scale(0.25)
+
+
+ self.play(FadeIn(text2), run_time = 1.5)
+ self.wait(2.5)
+ self.setup_axes()
+ graph_1 = self.get_graph(lambda x : x, color = RED, x_min = 0, x_max = 1)
+ graph_2 = self.get_graph(lambda x : -x, color = RED, x_min = 0, x_max = -1)
+ graph_3 = self.get_graph(lambda x : x,color = RED, x_min = 0.005, x_max = 0.03)
+ graph_4 = self.get_graph(lambda x : x,color = GREEN_SCREEN, x_min = 0.03, x_max = 0.005)
+ graph_5 = self.get_graph(lambda x : -x,color = GREEN_SCREEN, x_min = -0.03, x_max = -0.005)
+ grp1 = VGroup(graph_1,graph_2)
+ grp2 = VGroup(brline2, textazero1)
+ grp3 = VGroup(textazero2, textm003, brline3, brline4)
+ self.play(ShowCreation(grp1))
+ self.add(sqr)
+ self.play(ReplacementTransform(text2, text3))
+ self.camera_frame.save_state()
+ self.play(self.camera_frame.set_width,2.25,self.camera_frame.move_to,sqr,run_time = 2)
+ self.wait(2.5)
+ self.play(ReplacementTransform(text3, text4), ShowCreation(dot1))
+ self.wait(2.5)
+ self.play(ReplacementTransform(text4, text5), ShowCreation(brline1), ShowCreation(text003))
+ self.wait(2.5)
+ for i in range(0,3):
+ self.play(MoveAlongPath(dot1,graph_3), run_time = 0.5)
+ self.play(MoveAlongPath(dot1,graph_4), run_time = 0.5)
+ self.play(ReplacementTransform(text5, text6), ShowCreation(grp2))
+ self.wait(2)
+ self.play(FadeOut(dot1))
+ self.add(graph_4)
+ self.play(ReplacementTransform(text6, text7))
+ self.wait(2.5)
+ self.play(ReplacementTransform(text7,text8))
+ for i in range(0,3):
+ self.play(MoveAlongPath(dot1,graph_4), run_time = 0.7)
+ self.play(ReplacementTransform(text8, text9))
+ self.wait(2.5)
+ self.play(ReplacementTransform(text9, text10))
+ self.wait(2.5)
+ self.play(ShowCreation(grp3), ReplacementTransform(text10, text11), FadeOut(dot1))
+ self.add(graph_5)
+ for i in range(0,3):
+ self.play(MoveAlongPath(dot2, graph_5), run_time = 0.7)
+ self.play(ReplacementTransform(text11, text12))
+ self.wait(2.5)
+ self.play(ReplacementTransform(text12, text13))
+ self.wait(2.5)
+ self.play(ReplacementTransform(text13, text14))
+ self.wait(2)
+ self.play(FadeOut(dot2), ReplacementTransform(text14, textdef))
+ self.wait(2)
+ self.play(Restore(self.camera_frame))
+
+ self.wait(2.5)
diff --git a/FSF-2020/calculus/intro-to-calculus/limit/limit3.py b/FSF-2020/calculus/intro-to-calculus/limit/limit3.py
new file mode 100644
index 0000000..a4f07d7
--- /dev/null
+++ b/FSF-2020/calculus/intro-to-calculus/limit/limit3.py
@@ -0,0 +1,95 @@
+from manimlib.imports import *
+class limit3(GraphScene, MovingCameraScene):
+ def setup(self):
+ GraphScene.setup(self)
+ MovingCameraScene.setup(self)
+ CONFIG = {
+ "y_max" : 10,
+ "y_min" : 0,
+ "x_max" : 100,
+ "x_min" : 0,
+ "y_tick_frequency" : 1,
+ "x_tick_frequency" : 10,
+ "axes_color" : WHITE,
+ "num_graph_anchor_points": 3000, #this is the number of points that graph manim
+ "graph_origin" : ORIGIN+3*DOWN+4*LEFT,
+ "x_labeled_nums": list(range(0,101))[::10],
+ "y_labeled_nums": list(range(0,11)),
+ "x_axis_label":"$x$",
+ "y_axis_label":"$f(x)$",
+ "x_axis_width": 10,
+ "y_axis_height": 5,
+ }
+ def construct(self):
+ XTD = self.x_axis_width/(self.x_max - self.x_min)
+ YTD = self.y_axis_height/(self.y_max - self.y_min)
+ sqr1 = Square(side_length = 15).move_to(np.array([1,0.5,0]))
+ sqr2 = Square(side_length = 15).move_to(np.array([-4,-3,0]))
+
+ textdef = TextMobject("")
+ text20 = TextMobject("f(x) is not defined at x=50").move_to(np.array([1,0.3,0])).scale(0.2)
+ text21 = TexMobject(r"\text {f(x) is not defined in interval }",r" (-\infty ,\quad 1]").move_to(np.array([-4,-3.2,0])).scale(0.18)
+ text22 = TextMobject("1").move_to(np.array([-3.9,-3.05,0])).scale(0.2)
+ text1 = TexMobject(r"\text {Let }" ,r"f\left( x \right) =\begin{cases} \sqrt { x-1 } ,x\in \quad (1,\infty )-50 \end{cases}")
+ text2 = TextMobject("Graph of f(x) is ")
+ text3 = TextMobject("Right hand neighbour of 50 will approximately be 50.000001").move_to(np.array([1,0.3,0])).scale(0.15)
+ text4 = TextMobject("Left hand neighbour of 50 will approximately be 49.999999").move_to(np.array([1,0.3,0])).scale(0.15)
+ text5 = TexMobject(r"\text {Hence R.H.L }", r"=\lim _{ x\rightarrow { 50 }^{ + } }{ \sqrt { 50.000001 - 1 } } \approx 7.000000071").move_to(np.array([1,0.3,0])).scale(0.13)
+ text6 = TexMobject(r"\text{Hence L.H.L }", r" = \lim _{ x\rightarrow { 50 }^{ - } }{ \sqrt { 49.999999-1 } }\approx 6.999999929").move_to(np.array([1,0.3,0])).scale(0.13)
+ text7 = TextMobject("7.000000071").move_to(np.array([1.9,0.25,0])).scale(0.1)
+ text8 = TextMobject("6.999999929").move_to(np.array([0.1,0.25,0])).scale(0.1)
+ text9 = TexMobject(r"6.999999929\quad \approx \quad 7.000000071 \quad \approx 7").move_to(np.array([1,0.25,0])).scale(0.2)
+ text10 = TexMobject(r"\text{Because LHL }" ,r"\approx" ,r"\text{ RHL, Limit exists at x=50 and equals 7").move_to(np.array([1,0.25,0])).scale(0.13)
+ text11 = TextMobject("There is no Left hand neighbour of x=1").move_to(np.array([-4,-3.2,0])).scale(0.22)
+ text12 = TexMobject(r"\therefore\quad \lim _{ x\rightarrow 0 }{ f(x) } \quad =\quad \lim _{ x\rightarrow { 0 }^{ + } }{ f(x) } ").move_to(np.array([-4,-3.2,0])).scale(0.25)
+ text13 = TexMobject(r"\text {R.H.L =}",r" \lim _{ x\rightarrow { 0 }^{ + } }{ \sqrt { 1.000000000001-1 } } \quad \approx 0").move_to(np.array([-4,-3.2,0])).scale(0.13)
+ text14 = TexMobject(r"\therefore \quad \lim _{ x\rightarrow 0 }{ f(x)\quad =\quad 0 }").move_to(np.array([-4,-3.2,0])).scale(0.13)
+ self.camera_frame.save_state()
+ self.play(ShowCreation(text1))
+ self.wait(3)
+ self.play(ReplacementTransform(text1, text2))
+ self.wait()
+ self.play(ReplacementTransform(text2, textdef))
+ self.setup_axes()
+ self.setup()
+ graph_1 = self.get_graph(lambda x : (x-1)**(1/2),color = PINK, x_min = 1, x_max = 49.9)
+ graph_2 = self.get_graph(lambda x : (x-1)**(1/2),color = PINK, x_min = 50.1, x_max = 100)
+ graph_3 = self.get_graph(lambda x : (x-1)**(1/2),color = PINK, x_min = 1.05, x_max = 1.001)
+ dot1 = SmallDot(color = PURPLE_A)
+ cir = Circle(radius = 0.01, color = GREEN_SCREEN).move_to(np.array([1,0.5,0]))
+ grp1 = VGroup(graph_1, graph_2, cir)
+ grp2 = VGroup(text7, text8)
+ self.play(ShowCreation(grp1))
+ self.wait(2)
+ self.play(self.camera_frame.set_width,2.25,self.camera_frame.move_to,sqr1,run_time = 2)
+ self.wait(1)
+ self.play(ShowCreation(text20))
+ self.wait(2)
+ self.play(ReplacementTransform(text20, text3))
+ self.wait(3)
+ self.play(ReplacementTransform(text3, text5))
+ self.wait(3)
+ self.play(ReplacementTransform(text5, text7), ShowCreation(text4))
+ self.wait(4)
+ self.play(ReplacementTransform(text4, text6))
+ self.wait(3)
+ self.play(ReplacementTransform(text6, text8))
+ self.wait(1.5)
+ self.play(ReplacementTransform(grp2, text9))
+ self.wait(1.5)
+ self.play(ReplacementTransform(text9, text10))
+ self.wait(3)
+ self.play(self.camera_frame.set_width,2.25,self.camera_frame.move_to,sqr2,run_time = 2)
+ self.play(ShowCreation(text21), ShowCreation(text22))
+ self.play(MoveAlongPath(dot1, graph_3), run_time = 3)
+ self.wait(3)
+ self.play(ReplacementTransform(text21, text11))
+ self.wait(3)
+ self.play(ReplacementTransform(text11, text12))
+ self.wait(3)
+ self.play(ReplacementTransform(text12, text13))
+ self.wait(2)
+ self.play(ReplacementTransform(text13, text14))
+ self.wait(3)
+ self.play(ReplacementTransform(text14, textdef))
+ self.wait(2)
diff --git a/FSF-2020/calculus/intro-to-calculus/riemannintegrals/README.md b/FSF-2020/calculus/intro-to-calculus/riemannintegrals/README.md
new file mode 100644
index 0000000..a9ad0bb
--- /dev/null
+++ b/FSF-2020/calculus/intro-to-calculus/riemannintegrals/README.md
@@ -0,0 +1,18 @@
+rierect1.gif
+![rierect1](https://user-images.githubusercontent.com/61246381/87141790-3ad90800-c2c1-11ea-86e4-af05cb93fa2d.gif)
+
+
+rierect2.gif
+![rierect2](https://user-images.githubusercontent.com/61246381/87141870-5ba15d80-c2c1-11ea-9307-40acc2884d77.gif)
+
+
+rierect3.gif
+![rierect3](https://user-images.githubusercontent.com/61246381/87141949-6e1b9700-c2c1-11ea-9433-4f6be752aa55.gif)
+
+
+RiemannRectanglesAnimation.
+![RiemannRectanglesAnimation](https://user-images.githubusercontent.com/61246381/87142531-4a0c8580-c2c2-11ea-8f5e-9e854eae6eec.gif)
+
+
+mimi.gif
+![mimi](https://user-images.githubusercontent.com/61246381/87142127-b3d85f80-c2c1-11ea-864e-627e41d87ea2.gif)
diff --git a/FSF-2020/calculus/intro-to-calculus/riemannintegrals/rierect1.py b/FSF-2020/calculus/intro-to-calculus/riemannintegrals/rierect1.py
new file mode 100644
index 0000000..748d766
--- /dev/null
+++ b/FSF-2020/calculus/intro-to-calculus/riemannintegrals/rierect1.py
@@ -0,0 +1,31 @@
+from manimlib.imports import *
+class rierect1(GraphScene):
+ CONFIG = {
+ "y_max" : 6,
+ "y_min" : 0,
+ "x_max" : 4,
+ "x_min" : 0,
+ "y_tick_frequency" : 1,
+ "x_tick_frequency" : 1,
+ "axes_color" : WHITE,
+ "num_graph_anchor_points": 3000, #this is the number of points that graph manim
+ "graph_origin" : ORIGIN+2*DOWN+4*LEFT,
+ "x_labeled_nums": None,#list(range(-1,2)),
+ "y_labeled_nums": None,#list(range(0,2)),
+ "x_axis_label":"$x$",
+ "y_axis_label":"$f(x)$",
+ "x_axis_width": 10,
+ "y_axis_height": 5,
+ }
+ def construct(self):
+ self.setup_axes()
+ graph1 = self.get_graph(lambda x : (0.1*(1.5*x+1)**2 +0.5), x_min = 0, x_max = 4)
+ minlim = self.get_vertical_line_to_graph(1,graph1,DashedLine, color = PINK)
+ maxlim = self.get_vertical_line_to_graph(3,graph1,DashedLine,color = PINK)
+ x1 = TexMobject(r"{x}_{1}").next_to(minlim, DOWN)
+ x2 = TexMobject(r"{x}_{2}").next_to(maxlim, DOWN)
+ rie1 = self.get_riemann_rectangles(graph1, x_min = 1, x_max = 3, dx = 0.4, input_sample_type = "left", fill_opacity = 1, start_color = YELLOW, end_color = YELLOW)
+ #rie2 = self.get_riemann_rectangles(graph1, x_min = 1, x_max = 3, dx = 0.01, input_sample_type = "right", fill_opacity = 0.5, start_color = PINK, end_color = LIGHT_PINK)
+ group = VGroup(graph1, minlim, maxlim, x1, x2, rie1)
+ self.play(ShowCreation(group))
+ self.wait(1.5)
diff --git a/FSF-2020/calculus/series-and-transformations/Fourier Transform/README.md b/FSF-2020/calculus/series-and-transformations/Fourier Transform/README.md
new file mode 100644
index 0000000..2fa4e04
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Fourier Transform/README.md
@@ -0,0 +1,20 @@
+### Dividing a tone into its constituents
+![GIF1](gifs/file1.gif)
+
+### Colors Analogy
+![GIF2](gifs/file2a.gif)
+
+### Applying the same on Graphs
+![GIF3](gifs/file2b.gif)
+
+### Fourier series for non-periodic functions-a
+![GIF4](gifs/file3.gif)
+
+### Fourier series for non-periodic functions-b
+![GIF4a](gifs/file7.gif)
+
+### Fourier Series of Square pulse
+![GIF5](gifs/file4.gif)
+
+### Coins Analogy
+![GIF6](gifs/file5.gif)
diff --git a/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file1.gif b/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file1.gif
new file mode 100644
index 0000000..d4dc9d7
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file1.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file2a.gif b/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file2a.gif
new file mode 100644
index 0000000..8f83bc4
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file2a.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file2b.gif b/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file2b.gif
new file mode 100644
index 0000000..d68c405
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file2b.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file3.gif b/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file3.gif
new file mode 100644
index 0000000..de94810
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file3.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file4.gif b/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file4.gif
new file mode 100644
index 0000000..36cd61b
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file4.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file5.gif b/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file5.gif
new file mode 100644
index 0000000..9757bd6
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file5.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file6.gif b/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file6.gif
new file mode 100644
index 0000000..de94810
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file6.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file7.gif b/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file7.gif
new file mode 100644
index 0000000..ab4eed8
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Fourier Transform/gifs/file7.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Fourier Transform/video1_DividingAToneIntoItsConstituents.py b/FSF-2020/calculus/series-and-transformations/Fourier Transform/video1_DividingAToneIntoItsConstituents.py
new file mode 100644
index 0000000..39db6d8
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Fourier Transform/video1_DividingAToneIntoItsConstituents.py
@@ -0,0 +1,90 @@
+from manimlib.imports import*
+import numpy as np
+
+# def func(t,n):
+# s=0
+# for i in range(1,n+1):
+# s+=((-2/(i*np.pi))*((-1)**i)*np.sin(2*np.pi*i*t))
+# return s
+
+
+class intro(GraphScene):
+ CONFIG = {
+ "x_min": -3,
+ "x_max": 3,
+ "x_axis_width": 6,
+ "y_min": -5,
+ "y_max": 5,
+ "graph_origin": 10.5*LEFT,
+ "axes_color": BLUE,
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-2, 3, 1),
+ }
+ def func(self,t,n1,n2):
+ s=0
+ for i in range(n1,n2+1):
+ s+=((-2/(i*np.pi))*((-1)**i)*np.sin(2*np.pi*i*t))
+ return s
+
+ def construct(self):
+ image=ImageMobject('image.png').shift(5.5*LEFT+2.5*UP).scale(1.5)
+ self.play(ShowCreation(image))
+
+ self.setup_axes(scalee=1)
+
+ mainGraphs=[
+ self.get_graph(lambda x:self.func(x,2,7),x_max=2,x_min=-2).shift(9.3*RIGHT+3*UP).set_color([ORANGE,GREEN_B,RED_E,YELLOW_E,RED_D,YELLOW_D]).scale(1.4),
+ self.get_graph(lambda x:self.func(x,3,7),x_max=2,x_min=-2).shift(10.8*RIGHT+3*UP).set_color([GREEN_B,ORANGE,RED_D,YELLOW_E,YELLOW_D]).scale(1.4),
+ self.get_graph(lambda x:self.func(x,4,7),x_max=2,x_min=-2).shift(10.8*RIGHT+3*UP).set_color([GREEN_B,YELLOW_E,ORANGE,YELLOW_D]).scale(1.4),
+ self.get_graph(lambda x:self.func(x,5,7),x_max=2,x_min=-2).shift(10.8*RIGHT+3*UP).set_color([YELLOW_E,GREEN_B,YELLOW_D]).scale(1.4),
+ self.get_graph(lambda x:self.func(x,6,7),x_max=2,x_min=-2).shift(10.8*RIGHT+3*UP).set_color([YELLOW_D,GREEN_B]).scale(1.4),
+ self.get_graph(lambda x:self.func(x,7,7),x_max=2,x_min=-2,color=GREEN_B).shift(10.8*RIGHT+3*UP).scale(1.4),
+ ]
+ self.play(ApplyMethod(mainGraphs[0].shift,1.5*RIGHT))
+
+ graph1=self.get_graph(lambda x:self.func(x,2,2),x_max=2,x_min=-2,color=RED_E).shift(10.8*RIGHT+3*UP).scale(1.5)
+ graph2=self.get_graph(lambda x:self.func(x,3,3),x_max=2,x_min=-2,color=RED_D).shift(10.8*RIGHT+3*UP).scale(1.5)
+ graph3=self.get_graph(lambda x:self.func(x,4,4),x_max=2,x_min=-2,color=ORANGE).shift(10.8*RIGHT+3*UP).scale(1.5)
+ graph4=self.get_graph(lambda x:self.func(x,5,5),x_max=2,x_min=-2,color=YELLOW_E).shift(10.8*RIGHT+3*UP).scale(1.5)
+ graph5=self.get_graph(lambda x:self.func(x,6,6),x_max=2,x_min=-2,color=YELLOW_D).shift(10.8*RIGHT+3*UP).scale(1.5)
+
+ coeff=[
+ TextMobject("$\\frac { -1 }{ \pi } sin(4\pi t)$").scale(0.5).shift(DOWN+4.6*RIGHT+3*UP).set_color(RED_E),
+ TextMobject("$\\frac { 2 }{ 3\pi } sin(6\pi t)$").scale(0.5).shift(2*DOWN+4.6*RIGHT+3*UP).set_color(RED_D),
+ TextMobject("$\\frac { -1 }{ 2\pi } sin(8\pi t)$").scale(0.5).shift(3*DOWN+4.6*RIGHT+3*UP).set_color(ORANGE),
+ TextMobject("$\\frac { 2 }{ 5\pi } sin(10\pi t)$").scale(0.5).shift(4*DOWN+4.6*RIGHT+3*UP).set_color(YELLOW_E),
+ TextMobject("$\\frac { -1 }{ 3\pi } sin(12\pi t)$").scale(0.5).shift(5*DOWN+4.6*RIGHT+3*UP).set_color(YELLOW_D),
+ TextMobject("$\\frac { 2 }{ 7\pi } sin(14\pi t)$").scale(0.5).shift(6*DOWN+4.6*RIGHT+3*UP).set_color(GREEN_B)
+ ]
+
+ self.wait(0.6)
+ self.play(ApplyMethod(graph1.shift,1*DOWN),ReplacementTransform(mainGraphs[0],mainGraphs[1]))
+ self.play(Write(coeff[0]))
+ self.play(ApplyMethod(graph2.shift,2*DOWN),ReplacementTransform(mainGraphs[1],mainGraphs[2]))
+ self.play(Write(coeff[1]))
+ self.play(ApplyMethod(graph3.shift,3*DOWN),ReplacementTransform(mainGraphs[2],mainGraphs[3]))
+ self.play(Write(coeff[2]))
+ self.play(ApplyMethod(graph4.shift,4*DOWN),ReplacementTransform(mainGraphs[3],mainGraphs[4]))
+ self.play(Write(coeff[3]))
+ self.play(ApplyMethod(graph5.shift,5*DOWN),ReplacementTransform(mainGraphs[4],mainGraphs[5]))
+ self.play(Write(coeff[4]))
+ self.play(ApplyMethod(mainGraphs[5].shift,6*DOWN))
+ self.play(Write(coeff[5]))
+
+ pluses=[TextMobject("+"),TextMobject("+"),TextMobject("+"),TextMobject("+"),TextMobject("+")]
+ for t in pluses:
+ t.scale(0.5).shift((2.2-1.5*pluses.index(t))*LEFT)
+
+ finalGraph=self.get_graph(lambda x:self.func(x,2,7),x_max=2,x_min=-2).shift(10.8*RIGHT+3*UP)
+ finalGraph.set_color([GREEN_B,YELLOW_D,YELLOW_E,ORANGE,RED_D,RED_E])
+ finalGroup=VGroup(graph1,graph2,graph3,graph4,graph5,mainGraphs[5])
+ self.play(ReplacementTransform(finalGroup,finalGraph))
+ self.play(ApplyMethod(coeff[0].scale,0.7),ApplyMethod(coeff[1].scale,0.7),ApplyMethod(coeff[2].scale,0.7),ApplyMethod(coeff[3].scale,0.7),ApplyMethod(coeff[4].scale,0.7),ApplyMethod(coeff[5].scale,0.7))
+ #self.play(ApplyMethod(coeff[0].shift,7*LEFT+1.6*DOWN),ApplyMethod(coeff[1].shift,5.5*LEFT+0.8*DOWN),ApplyMethod(coeff[2].shift,4*LEFT),ApplyMethod(coeff[3].shift,2.5*LEFT+0.8*UP),ApplyMethod(coeff[4].shift,LEFT+1.6*UP),ApplyMethod(coeff[5].shift,0.5*RIGHT+2.4*DOWN))
+ self.play(ApplyMethod(coeff[0].shift,7.6*LEFT+2*DOWN),ApplyMethod(coeff[1].shift,6.1*LEFT+DOWN),ApplyMethod(coeff[2].shift,4.6*LEFT),ApplyMethod(coeff[3].shift,3.1*LEFT+UP),ApplyMethod(coeff[4].shift,1.6*LEFT+2*UP),ApplyMethod(coeff[5].shift,0.1*LEFT+3*UP))
+ equal=TextMobject("=").scale(1.5).shift(1.5*UP)
+ self.play(Write(equal))
+ self.play(Write(pluses[0]),Write(pluses[1]),Write(pluses[2]),Write(pluses[3]),Write(pluses[4]))
+ group=VGroup(pluses[0],pluses[1],pluses[2],pluses[3],pluses[4],coeff[0],coeff[1],coeff[2],coeff[3],coeff[4],coeff[5])
+ self.play(ApplyMethod(group.scale,1.5))
+ self.wait(2)
diff --git a/FSF-2020/calculus/series-and-transformations/Fourier Transform/video2_ColorsAnalogyForFourierSeries.py b/FSF-2020/calculus/series-and-transformations/Fourier Transform/video2_ColorsAnalogyForFourierSeries.py
new file mode 100644
index 0000000..8f3706b
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Fourier Transform/video2_ColorsAnalogyForFourierSeries.py
@@ -0,0 +1,165 @@
+from manimlib.imports import*
+import numpy as np
+
+def func(t,n1,n2):
+ s=0
+ for i in range(n1,n2+1):
+ s+=((-2/(i*np.pi))*((-1)**i)*np.sin(2*np.pi*i*t))
+ return s
+
+class divideColors(GraphScene):
+ CONFIG = {
+ "x_min": -2,
+ "x_max": 2,
+ "y_min": -1,
+ "y_max": 1,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": BLUE,
+ "x_axis_label": "$t$",
+ "y_axis_label": "$y$",
+ "x_labeled_nums": range(-1, 2, 1),
+ "x_axis_width": 3,
+ "y_axis_height": 2
+ }
+ def construct(self):
+ text1a=TextMobject("Consider dividing a","mixture of colors")
+ text1b=TextMobject("into its","components")
+ text1a.scale(0.8)
+ text1b.scale(0.8)
+ text1a.shift(UP)
+ text1b.shift(0.3*UP)
+ text1a.set_color_by_tex_to_color_map({"mixture of colors":[GREEN,RED,BLUE,YELLOW]})
+ text1b.set_color_by_tex_to_color_map({"components":GREEN})
+ self.play(Write(text1a))
+ self.play(FadeIn(text1b))
+ self.wait(0.8)
+
+ self.play(FadeOut(text1a),FadeOut(text1b))
+
+ mainCircle=Circle(radius=1.4,color=BLACK,fill_color=[PURPLE_E,PURPLE_D,RED_B,ORANGE,YELLOW_B,YELLOW_D,GREEN_A,GREEN_C],fill_opacity=0.8)
+ self.play(ShowCreation(mainCircle))
+ self.wait(1)
+ mainCirclea=Circle(radius=1.4,color=BLACK,fill_color=[RED_B,ORANGE,YELLOW_B,YELLOW_D,GREEN_A,GREEN_C],fill_opacity=0.8)
+ mainCircleb=Circle(radius=1.4,color=BLACK,fill_color=[YELLOW_B,YELLOW_D,GREEN_A,GREEN_C],fill_opacity=0.8)
+ mainCirclec=Circle(radius=1.4,color=BLACK,fill_color=[GREEN_A,GREEN_C],fill_opacity=0.8)
+ mainCircled=Circle(radius=1.4,color=BLACK,fill_color=[],fill_opacity=0.8)
+
+ c1=Circle(radius=0.5,color=PURPLE_E,fill_color=PURPLE_E,fill_opacity=0.8)
+ c2=Circle(radius=0.5,color=PURPLE_D,fill_color=PURPLE_D,fill_opacity=0.8)
+ c3=Circle(radius=0.5,color=RED_D,fill_color=RED_B,fill_opacity=0.8)
+ c4=Circle(radius=0.5,color=ORANGE,fill_color=ORANGE,fill_opacity=0.8)
+ c5=Circle(radius=0.5,color=YELLOW_B,fill_color=YELLOW_B,fill_opacity=0.8)
+ c6=Circle(radius=0.5,color=YELLOW_D,fill_color=YELLOW_D,fill_opacity=0.8)
+ c7=Circle(radius=0.5,color=GREEN_A,fill_color=GREEN_A,fill_opacity=0.8)
+ c8=Circle(radius=0.5,color=GREEN_C,fill_color=GREEN_C,fill_opacity=0.8)
+
+ self.play(ApplyMethod(c1.shift,3*UP+LEFT),ApplyMethod(c2.shift,3*UP+RIGHT),ReplacementTransform(mainCircle,mainCirclea))
+ self.wait(0.8)
+
+ self.play(ApplyMethod(c3.shift,UP+3*LEFT),ApplyMethod(c4.shift,DOWN+3*LEFT),ReplacementTransform(mainCirclea,mainCircleb))
+ self.wait(0.8)
+
+ self.play(ApplyMethod(c5.shift,3*DOWN+LEFT),ApplyMethod(c6.shift,3*DOWN+RIGHT),ReplacementTransform(mainCircleb,mainCirclec))
+ self.wait(0.8)
+
+ self.play(ApplyMethod(c7.shift,3*RIGHT+UP),ApplyMethod(c8.shift,3*RIGHT+DOWN),ReplacementTransform(mainCirclec,mainCircled))
+ self.wait(1)
+
+ text2=TextMobject("Similarly,").scale(0.8).shift(UP).set_color(RED)
+
+ self.play(FadeOut(c1),FadeOut(c2),FadeOut(c3),FadeOut(c4),FadeOut(c5),FadeOut(c6),FadeOut(c7),FadeOut(c8))
+ self.play(Write(text2))
+ self.wait(0.8)
+ self.play(FadeOut(text2))
+
+
+ coeff=[
+ TextMobject("$\\frac { -2 }{ \pi } \sum _{ n=1 }^{ 24 }{ \\frac { { -1 }^{ n } }{ n } sin(2\pi nt) }$").scale(0.2).shift(RIGHT+UP),
+ TextMobject("$\\frac { 2 }{ \pi } sin(2\pi t)$").scale(0.3).shift(RIGHT+UP+4*LEFT+UP),
+ TextMobject("$\\frac { -2 }{ \pi } \sum _{ n=2 }^{ 24 }{ \\frac { { -1 }^{ n } }{ n } sin(2\pi nt) }$").scale(0.2).shift(RIGHT+UP),
+ TextMobject("$\\frac { -1 }{ \pi } sin(4\pi t)$").scale(0.3).shift(RIGHT+UP+4*RIGHT+UP),
+ TextMobject("$\\frac { -2 }{ \pi } \sum _{ n=3 }^{ 24 }{ \\frac { { -1 }^{ n } }{ n } sin(2\pi nt) }$").scale(0.2).shift(RIGHT+UP),
+ TextMobject("$\\frac { 2 }{ 3\pi } sin(6\pi t)$").scale(0.3).shift(RIGHT+UP+4*LEFT+2*DOWN),
+ TextMobject("$\\frac { -2 }{ \pi } \sum _{ n=4 }^{ 24 }{ \\frac { { -1 }^{ n } }{ n } sin(2\pi nt) }$").scale(0.2).shift(RIGHT+UP),
+ TextMobject("$\\frac { -1 }{ 2\pi } sin(8\pi t)$").scale(0.3).shift(RIGHT+UP+4*RIGHT+2*DOWN),
+ TextMobject("$\\frac { -2 }{ \pi } \sum _{ n=5 }^{ 24 }{ \\frac { { -1 }^{ n } }{ n } sin(2\pi nt) }$").scale(0.2).shift(RIGHT+UP),
+ TextMobject("$\\frac { 2 }{ 5\pi } sin(10\pi t)$").scale(0.3).shift(RIGHT+UP+2.5*UP),
+ TextMobject("$\\frac { -2 }{ \pi } \sum _{ n=6 }^{ 24 }{ \\frac { { -1 }^{ n } }{ n } sin(2\pi nt) }$").scale(0.2).shift(RIGHT+UP),
+ TextMobject("$\\frac { -1 }{ 3\pi } sin(12\pi t)$").scale(0.3).shift(RIGHT+UP+2.5*DOWN),
+ TextMobject("$\\frac { -2 }{ \pi } \sum _{ n=7 }^{ 24 }{ \\frac { { -1 }^{ n } }{ n } sin(2\pi nt) }$").scale(0.2).shift(RIGHT+UP),
+ ]
+
+ axes=[]
+ self.setup_axes(scalee=1)
+ axes.append(self.axes)
+ graphs=[self.get_graph(lambda x:func(x,1,24),x_min=-1,x_max=1).set_color([DARK_BROWN,GREEN_E,GREEN_C,GOLD_E,GOLD_C,ORANGE,RED_C]),
+ self.get_graph(lambda x:func(x,2,24),x_min=-1,x_max=1).set_color([DARK_BROWN,GREEN_C,GOLD_E,GOLD_C,ORANGE,RED_C]),
+ self.get_graph(lambda x:func(x,3,24),x_min=-1,x_max=1).set_color([DARK_BROWN,GOLD_E,GOLD_C,ORANGE,RED_C]),
+ self.get_graph(lambda x:func(x,4,24),x_min=-1,x_max=1).set_color([DARK_BROWN,GOLD_C,ORANGE,RED_C]),
+ self.get_graph(lambda x:func(x,5,24),x_min=-1,x_max=1).set_color([DARK_BROWN,ORANGE,RED_C]),
+ self.get_graph(lambda x:func(x,6,24),x_min=-1,x_max=1).set_color([DARK_BROWN,RED_C]),
+ self.get_graph(lambda x:func(x,7,24),x_min=-1,x_max=1).set_color(DARK_BROWN)
+ ]
+ #self.y_axis_label="$\\frac { 2 }{ \pi } sin(2\pi t)$"
+ self.setup_axes(scalee=1)
+ axes.append(self.axes)
+ graph1=self.get_graph(lambda x:func(x,1,1),x_min=-1,x_max=1,color=GREEN_E)
+ #self.y_axis_label="$\\frac { -1 }{ \pi } sin(4\pi t)$"
+ self.setup_axes(scalee=1)
+ axes.append(self.axes)
+ graph2=self.get_graph(lambda x:func(x,2,2),x_min=-1,x_max=1,color=GREEN_C)
+ #self.y_axis_label="$\\frac { 2 }{ 3\pi } sin(6\pi t)$"
+ self.setup_axes(scalee=1)
+ axes.append(self.axes)
+ graph3=self.get_graph(lambda x:func(x,3,3),x_min=-1,x_max=1,color=GOLD_E)
+ #self.y_axis_label="$\\frac { -1 }{ 2\pi } sin(8\pi t)$"
+ self.setup_axes(scalee=1)
+ axes.append(self.axes)
+ graph4=self.get_graph(lambda x:func(x,4,4),x_min=-1,x_max=1,color=GOLD_C)
+ #self.y_axis_label="$\\frac { 2 }{ 5\pi } sin(10\pi t)$"
+ self.setup_axes(scalee=1)
+ axes.append(self.axes)
+ graph5=self.get_graph(lambda x:func(x,5,5),x_min=-1,x_max=1,color=ORANGE)
+ #self.y_axis_label="$\\frac { -1 }{ 3\pi } sin(12\pi t)$"
+ self.setup_axes(scalee=1)
+ axes.append(self.axes)
+ graph6=self.get_graph(lambda x:func(x,6,6),x_min=-1,x_max=1,color=RED_C)
+
+ groups=[VGroup(axes[1],graph1),VGroup(axes[2],graph2),VGroup(axes[3],graph3),VGroup(axes[4],graph4),
+ VGroup(axes[5],graph5),VGroup(axes[6],graph6)]
+
+ self.play(ShowCreation(graphs[0]))
+ self.play(Write(coeff[0]))
+ self.wait(1)
+ # self.play(ApplyMethod(axes[0].scale,0.4),ApplyMethod(graphs[0].scale,0.4),ApplyMethod(axes[1].scale,0.4),
+ # ApplyMethod(axes[2].scale,0.4),ApplyMethod(axes[3].scale,0.4),
+ # ApplyMethod(axes[4].scale,0.4),ApplyMethod(axes[5].scale,0.4),ApplyMethod(axes[6].scale,0.4))
+ self.play(ReplacementTransform(graphs[0],graphs[1]),ApplyMethod(groups[0].shift,4*LEFT+UP),ReplacementTransform(coeff[0],coeff[2]),FadeIn(coeff[1]))
+ self.play(ReplacementTransform(graphs[1],graphs[2]),ApplyMethod(groups[1].shift,4*RIGHT+UP),ReplacementTransform(coeff[2],coeff[4]),FadeIn(coeff[3]))
+ self.play(ReplacementTransform(graphs[2],graphs[3]),ApplyMethod(groups[2].shift,4*LEFT+2*DOWN),ReplacementTransform(coeff[4],coeff[6]),FadeIn(coeff[5]))
+ self.play(ReplacementTransform(graphs[3],graphs[4]),ApplyMethod(groups[3].shift,4*RIGHT+2*DOWN),ReplacementTransform(coeff[6],coeff[8]),FadeIn(coeff[7]))
+ self.play(ReplacementTransform(graphs[4],graphs[5]),ApplyMethod(groups[4].shift,2.5*UP),ReplacementTransform(coeff[8],coeff[10]),FadeIn(coeff[9]))
+ self.play(ReplacementTransform(graphs[5],graphs[6]),ApplyMethod(groups[5].shift,2.5*DOWN),ReplacementTransform(coeff[10],coeff[12]),FadeIn(coeff[11]))
+
+ # self.play(ReplacementTransform(graphs[0],graphs[1]),ApplyMethod(groups[0].shift,3*LEFT))
+ # self.play(ReplacementTransform(graphs[0],graphs[1]),)
+ # self.play(ReplacementTransform(graphs[0],graphs[1]),)
+ # self.play(ReplacementTransform(graphs[0],graphs[1]),)
+ # self.play(ReplacementTransform(graphs[0],graphs[1]),)
+ # self.play(ReplacementTransform(graphs[0],graphs[1]),)
+
+
+
+ self.wait(2)
+ # self.play(ReplacementTransform(function,const))
+ # self.play(ShowCreation(sinx),ShowCreation(cosx))
+ # self.play(ShowCreation(sin2x),ShowCreation(cos2x))
+ # self.play(ShowCreation(sin3x),ShowCreation(cos3x))
+ # self.play(ShowCreation(sin4x),ShowCreation(cos4x))
+ # sintext=TextMobject("Infinite","sines").shift(5*RIGHT).set_color_by_tex_to_color_map({"Infinite":[YELLOW,RED],"sines":BLUE})
+ # costext=TextMobject("Infinite","cosines").shift(5*LEFT).set_color_by_tex_to_color_map({"Infinite":[YELLOW,RED],"cosines":BLUE})
+ # sintext.scale(0.6)
+ # costext.scale(0.6)
+ # self.play(FadeIn(sintext),FadeIn(costext))
+ # self.wait(2) \ No newline at end of file
diff --git a/FSF-2020/calculus/series-and-transformations/Fourier Transform/video3_seriesVSTransform.py b/FSF-2020/calculus/series-and-transformations/Fourier Transform/video3_seriesVSTransform.py
new file mode 100644
index 0000000..07f884a
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Fourier Transform/video3_seriesVSTransform.py
@@ -0,0 +1,146 @@
+from manimlib.imports import *
+import numpy as np
+
+class compare(GraphScene,MovingCameraScene):
+ CONFIG = {
+ "x_min": -3,
+ "x_max": 3,
+ "x_axis_width": 6,
+ "y_min": -5,
+ "y_max": 5,
+ "y_axis_label":"$\\frac { { x }^{ 2 } }{ 2 } $",
+ "graph_origin": ORIGIN,
+ "axes_color": BLUE,
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-2, 3, 1),
+ }
+ def setup(self):
+ GraphScene.setup(self)
+ MovingCameraScene.setup(self)
+ def returnPairLines(self,left,right,y_each_unit):
+ lineLeft=DashedLine(start=(0,5*y_each_unit,0),end=(0,-5*y_each_unit,0)).shift(left)
+ lineRight=DashedLine(start=(0,5*y_each_unit,0),end=(0,-5*y_each_unit,0)).shift(right)
+ return lineLeft,lineRight
+
+ def resultFunc(self,x,n,l):
+ s=(l**2)/6
+ for n in range(1,n+1):
+ s+=(2*((-1)**n))*((l**2)*np.cos(n*np.pi*x/l))*(1/((np.pi**2)*(n**2)))
+ return s
+
+ def returnPartFunction(self,left,right):
+ return self.get_graph(lambda x:(x**2)/2,x_min=left,x_max=right,color=RED)
+
+ def returnPartResult(self,l,n):
+ return self.get_graph(lambda x:self.resultFunc(x,n,l),x_min=-3,x_max=3,color=RED)
+
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+ axes=[]
+ self.setup_axes(animate=True,scalee=1)
+ axes.append(self.axes)
+ partFunction1=self.returnPartFunction(-1,1).shift(4*LEFT)
+ partFunction2=self.returnPartFunction(-2,2).shift(4*LEFT)
+ functionText=TextMobject("$\\frac { { x }^{ 2 } }{ 2 } $")
+ function=self.get_graph(lambda x:(x**2)/2,x_min=-3,x_max=3,color=GREEN)
+ text1=TextMobject("Non-Periodic function").scale(0.5).shift(3*DOWN+3*RIGHT).set_color(RED)
+ self.play(ShowCreation(function))
+ self.play(FadeIn(text1))
+ self.wait(1)
+ self.play(FadeOut(text1))
+ self.play(ApplyMethod(axes[0].shift,4*LEFT),ApplyMethod(function.shift,4*LEFT))
+ text2=TextMobject("For a","given","interval of $x$,").scale(0.5).shift(2.5*RIGHT+UP).set_color_by_tex_to_color_map({"given":YELLOW,"interval of $x$,":BLUE})
+ text3=TextMobject("We can get the","Fourier Series","of that","particular part!").scale(0.4).shift(2.5*RIGHT+0.5*UP).set_color_by_tex_to_color_map({"particular part!":YELLOW,"Fourier Series":RED})
+ self.play(Write(text2))
+ left,right=self.returnPairLines((4+x_each_unit)*LEFT,(4-x_each_unit)*LEFT,y_each_unit)
+ self.play(ShowCreation(left),ShowCreation(right))
+ self.play(Write(text3))
+ self.wait(0.5)
+ self.play(FadeOut(text2),FadeOut(text3))
+ self.graph_origin=3.5*RIGHT
+ self.y_axis_label="$\\frac { { l }^{ 2 } }{ 6 } +\sum _{ n=1 }^{ \infty }{ \\frac { 2{ (-1) }^{ n }{ l }^{ 2 }cos(\\frac { n\pi x }{ l } ) }{ { \pi }^{ 2 }{ n }^{ 2 } } }$"
+ self.setup_axes(animate=True,scalee=1)
+ axes.append(self.axes)
+ coeffResult=[
+ TextMobject("$\\frac { { 1 }^{ 2 } }{ 6 } +\sum _{ n=1 }^{ 1 }{ \\frac { 2{ (-1) }^{ n }{ 1 }^{ 2 }cos(\\frac { n\pi x }{ 1 } ) }{ { \pi }^{ 2 }{ n }^{ 2 } } } $").scale(0.3).shift(4.5*RIGHT+UP).set_color(YELLOW),
+ TextMobject("$\\frac { { 1 }^{ 2 } }{ 6 } +\sum _{ n=1 }^{ 3 }{ \\frac { 2{ (-1) }^{ n }{ 1 }^{ 2 }cos(\\frac { n\pi x }{ 1 } ) }{ { \pi }^{ 2 }{ n }^{ 2 } } } $").scale(0.3).shift(4.5*RIGHT+UP).set_color(YELLOW),
+ TextMobject("$\\frac { { 1 }^{ 2 } }{ 6 } +\sum _{ n=1 }^{ 5 }{ \\frac { 2{ (-1) }^{ n }{ 1 }^{ 2 }cos(\\frac { n\pi x }{ 1 } ) }{ { \pi }^{ 2 }{ n }^{ 2 } } } $").scale(0.3).shift(4.5*RIGHT+UP).set_color(YELLOW),
+ TextMobject("$\\frac { { 1 }^{ 2 } }{ 6 } +\sum _{ n=1 }^{ 7 }{ \\frac { 2{ (-1) }^{ n }{ 1 }^{ 2 }cos(\\frac { n\pi x }{ 1 } ) }{ { \pi }^{ 2 }{ n }^{ 2 } } } $").scale(0.3).shift(4.5*RIGHT+UP).set_color(YELLOW),
+ TextMobject("$\\frac { { 1 }^{ 2 } }{ 6 } +\sum _{ n=1 }^{ 9 }{ \\frac { 2{ (-1) }^{ n }{ 1 }^{ 2 }cos(\\frac { n\pi x }{ 1 } ) }{ { \pi }^{ 2 }{ n }^{ 2 } } } $").scale(0.3).shift(4.5*RIGHT+UP).set_color(YELLOW),
+ TextMobject("$\\frac { { 1 }^{ 2 } }{ 6 } +\sum _{ n=1 }^{ 11 }{ \\frac { 2{ (-1) }^{ n }{ 1 }^{ 2 }cos(\\frac { n\pi x }{ 1 } ) }{ { \pi }^{ 2 }{ n }^{ 2 } } }$").scale(0.3).shift(4.5*RIGHT+UP).set_color(YELLOW),
+ TextMobject("$\\frac { { 1 }^{ 2 } }{ 6 } +\sum _{ n=1 }^{ 13 }{ \\frac { 2{ (-1) }^{ n }{ 1 }^{ 2 }cos(\\frac { n\pi x }{ 1 } ) }{ { \pi }^{ 2 }{ n }^{ 2 } } }$").scale(0.3).shift(4.5*RIGHT+UP).set_color(YELLOW)
+ ]
+ result1a=self.returnPartResult(1,1)
+ result1b=self.returnPartResult(1,3)
+ result1c=self.returnPartResult(1,5)
+ result1d=self.returnPartResult(1,7)
+ result1e=self.returnPartResult(1,9)
+ result1f=self.returnPartResult(1,11)
+ result1g=self.returnPartResult(1,13)
+ self.play(ApplyMethod(partFunction1.shift,0.2*UP))
+ self.wait(0.5)
+
+ self.play(ReplacementTransform(partFunction1,result1a),Write(coeffResult[0]))
+ self.play(FadeOut(axes[0]),FadeOut(left),FadeOut(right),FadeOut(function))
+ self.camera_frame.save_state()
+ self.play(self.camera_frame.set_width, 5,self.camera_frame.move_to, 3.5*RIGHT)
+
+
+ self.play(ReplacementTransform(result1a,result1b),ReplacementTransform(coeffResult[0],coeffResult[1]))
+ self.play(ReplacementTransform(result1b,result1c),ReplacementTransform(coeffResult[1],coeffResult[2]))
+ self.play(ReplacementTransform(result1c,result1d),ReplacementTransform(coeffResult[2],coeffResult[3]))
+ self.play(ReplacementTransform(result1d,result1e),ReplacementTransform(coeffResult[3],coeffResult[4]))
+ self.play(ReplacementTransform(result1e,result1f),ReplacementTransform(coeffResult[4],coeffResult[5]))
+ self.play(ReplacementTransform(result1f,result1g),ReplacementTransform(coeffResult[5],coeffResult[6]))
+
+ self.wait(0.5)
+ self.play(self.camera_frame.set_width, 14,self.camera_frame.move_to, 0)
+
+ text4=TextMobject("Here the","obtained function","will always be","periodic","with period equal to the chosen interval").scale(0.4).shift(3.3*DOWN).set_color_by_tex_to_color_map({"obtained function":YELLOW,"periodic":RED})
+ self.play(Write(text4))
+
+ self.wait(0.8)
+
+ self.play(FadeOut(text4))
+ text5=TextMobject("As we","increase","the","interval of $x$,").scale(0.5).shift(3*DOWN).set_color_by_tex_to_color_map({"increase":RED,"interval of $x$,":YELLOW})
+ text6=TextMobject("We get","approximation","for","higher intervals!").scale(0.5).shift(3.5*DOWN).set_color_by_tex_to_color_map({"approximation":GREEN,"higher intervals!":YELLOW})
+ self.play(FadeIn(axes[0]),FadeIn(left),FadeIn(right),FadeIn(function))
+ self.play(Write(text5))
+ self.play(Write(text6))
+ result2=self.returnPartResult(1.5,20)
+ result3=self.returnPartResult(2,20)
+ result4=self.returnPartResult(2.5,20)
+ result5=self.returnPartResult(3,20)
+ finalCoeff=coeffResult[6]
+ coeffResult=[
+ TextMobject("$\\frac { { 1.5 }^{ 2 } }{ 6 } +\sum _{ n=1 }^{ 20 }{ \\frac { 2{ (-1) }^{ n }{ 1.5 }^{ 2 }cos(\\frac { n\pi x }{ 2 } ) }{ { \pi }^{ 2 }{ n }^{ 2 } } }$").scale(0.4).shift(5*RIGHT+1.5*UP).set_color(YELLOW),
+ TextMobject("$\\frac { { 2 }^{ 2 } }{ 6 } +\sum _{ n=1 }^{ 20 }{ \\frac { 2{ (-1) }^{ n }{ 2 }^{ 2 }cos(\\frac { n\pi x }{ 2 } ) }{ { \pi }^{ 2 }{ n }^{ 2 } } } $").scale(0.4).shift(5*RIGHT+1.5*UP).set_color(YELLOW),
+ TextMobject("$\\frac { { 2.5 }^{ 2 } }{ 6 } +\sum _{ n=1 }^{ 20 }{ \\frac { 2{ (-1) }^{ n }{ 2.5 }^{ 2 }cos(\\frac { n\pi x }{ 2 } ) }{ { \pi }^{ 2 }{ n }^{ 2 } } } $").scale(0.4).shift(5*RIGHT+2.2*UP).set_color(YELLOW),
+ TextMobject("$\\frac { { 3 }^{ 2 } }{ 6 } +\sum _{ n=1 }^{ 20 }{ \\frac { 2{ (-1) }^{ n }{ 3 }^{ 2 }cos(\\frac { n\pi x }{ 2 } ) }{ { \pi }^{ 2 }{ n }^{ 2 } } } $").scale(0.4).shift(5*RIGHT+2.2*UP).set_color(YELLOW),
+ ]
+ self.play(ApplyMethod(left.shift,LEFT*x_each_unit*0.5),ApplyMethod(right.shift,RIGHT*x_each_unit*0.5),ReplacementTransform(result1g,result2),ReplacementTransform(finalCoeff,coeffResult[0]))
+ self.play(ApplyMethod(left.shift,LEFT*x_each_unit*0.5),ApplyMethod(right.shift,RIGHT*x_each_unit*0.5),ReplacementTransform(result2,result3),ReplacementTransform(coeffResult[0],coeffResult[1]))
+ self.play(ApplyMethod(left.shift,LEFT*x_each_unit*0.5),ApplyMethod(right.shift,RIGHT*x_each_unit*0.5),ReplacementTransform(result3,result4),ReplacementTransform(coeffResult[1],coeffResult[2]))
+ self.play(ApplyMethod(left.shift,LEFT*x_each_unit*0.5),ApplyMethod(right.shift,RIGHT*x_each_unit*0.5),ReplacementTransform(result4,result5),ReplacementTransform(coeffResult[2],coeffResult[3]))
+
+
+ # coeffResult=[
+ # TextMobject("$\\frac { { 2 }^{ 2 } }{ 6 } +\sum _{ n=1 }^{ 1 }{ \\frac { 2{ (-1) }^{ n }{ 2 }^{ 2 }cos(\\frac { n\pi x }{ 2 } ) }{ { \pi }^{ 2 }{ n }^{ 2 } } }$").scale(0.3).shift(4.5*RIGHT+1.5*UP),
+ # TextMobject("$\\frac { { 2 }^{ 2 } }{ 6 } +\sum _{ n=1 }^{ 4 }{ \\frac { 2{ (-1) }^{ n }{ 2 }^{ 2 }cos(\\frac { n\pi x }{ 2 } ) }{ { \pi }^{ 2 }{ n }^{ 2 } } } $").scale(0.3).shift(4.5*RIGHT+1.5*UP),
+ # TextMobject("$\\frac { { 2 }^{ 2 } }{ 6 } +\sum _{ n=1 }^{ 10 }{ \\frac { 2{ (-1) }^{ n }{ 2 }^{ 2 }cos(\\frac { n\pi x }{ 2 } ) }{ { \pi }^{ 2 }{ n }^{ 2 } } } $").scale(0.3).shift(4.5*RIGHT+1.5*UP),
+ # TextMobject("$\\frac { { 2 }^{ 2 } }{ 6 } +\sum _{ n=1 }^{ 20 }{ \\frac { 2{ (-1) }^{ n }{ 2 }^{ 2 }cos(\\frac { n\pi x }{ 2 } ) }{ { \pi }^{ 2 }{ n }^{ 2 } } } $").scale(0.3).shift(4.5*RIGHT+1.5*UP),
+ # ]
+ # result2a=self.returnPartResult(2,1)
+ # result2b=self.returnPartResult(2,4)
+ # result2c=self.returnPartResult(2,10)
+ # result2d=self.returnPartResult(2,20)
+
+ # self.play(ReplacementTransform(partFunction2,result2a),ReplacementTransform(coeffResult[0],coeffResult[1]))
+ # self.play(ReplacementTransform(result2a,result2b),ReplacementTransform(coeffResult[0],coeffResult[1]))
+ # self.play(ReplacementTransform(result2b,result2c),ReplacementTransform(coeffResult[0],coeffResult[1]))
+ # self.play(ReplacementTransform(result2c,result2d),ReplacementTransform(coeffResult[0],coeffResult[1]))
+ # self.wait(0.5)
+
+
+ self.wait(2) \ No newline at end of file
diff --git a/FSF-2020/calculus/series-and-transformations/Fourier Transform/video4_FourierSeriesOfSquarePulse.py b/FSF-2020/calculus/series-and-transformations/Fourier Transform/video4_FourierSeriesOfSquarePulse.py
new file mode 100644
index 0000000..fdf4bb3
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Fourier Transform/video4_FourierSeriesOfSquarePulse.py
@@ -0,0 +1,97 @@
+from manimlib.imports import *
+import numpy as np
+
+def returnSum(k,x):
+ summ=0
+ for i in range(1,k+1,2):
+ summ+=((np.sin(2*np.pi*i*x))/i)
+ return summ
+
+def returnFunc(self,k):
+ graph=self.get_graph(lambda x:(4/np.pi)*returnSum(k,x),color=WHITE,x_max=1,x_min=-1)
+ return graph
+
+class fourierSeries(GraphScene,MovingCameraScene):
+ CONFIG = {
+ "x_min": -3,
+ "x_max": 3,
+ "x_axis_width": 13,
+ "y_min": -3,
+ "y_max": 3,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": BLUE,
+ "x_axis_label": "$x$",
+ "y_axis_label": "$y$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-2, 3, 1),
+ }
+ def setup(self):
+ GraphScene.setup(self)
+ MovingCameraScene.setup(self)
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ equation=TextMobject("$f(x)=\\frac { 4 }{ \pi } \sum _{ k=1,3,5.. }^{ \infty }{ \\frac { 1 }{ k } \sin { 2\pi kx } }$").shift(5*RIGHT+3*UP).set_color(RED).scale(0.5)
+ self.add(equation)
+ self.setup_axes(animate=True,scalee=1)
+ line1=Line(start=(-x_each_unit,y_each_unit,0),end=(-(1/2)*x_each_unit,y_each_unit,0),color=RED)
+ line2=Line(start=(-(1/2)*x_each_unit,y_each_unit,0),end=(-(1/2)*x_each_unit,-y_each_unit,0),color=RED)
+ line3=Line(start=(-(1/2)*x_each_unit,-y_each_unit,0),end=(0,-y_each_unit,0),color=RED)
+ line4=Line(start=(0,-y_each_unit,0),end=(0,y_each_unit,0),color=RED)
+ line5=Line(start=(0,y_each_unit,0),end=((1/2)*x_each_unit,y_each_unit,0),color=RED)
+ line6=Line(start=((1/2)*x_each_unit,y_each_unit,0),end=((1/2)*x_each_unit,-y_each_unit,0),color=RED)
+ line7=Line(start=((1/2)*x_each_unit,-y_each_unit,0),end=(x_each_unit,-y_each_unit,0),color=RED)
+ self.play(ShowCreation(line1))
+ self.play(ShowCreation(line2))
+ self.play(ShowCreation(line3))
+ self.play(ShowCreation(line4))
+ self.play(ShowCreation(line5))
+ self.play(ShowCreation(line6))
+ self.play(ShowCreation(line7))
+ self.wait(0.5)
+
+ labels=[
+ TextMobject("$f_{ k=1 }(x)$"),
+ TextMobject("$f_{ k=3 }(x)$"),
+ TextMobject("$f_{ k=5 }(x)$"),
+ TextMobject("$f_{ k=7 }(x)$"),
+ TextMobject("$f_{ k=9 }(x)$"),
+ TextMobject("$f_{ k=11 }(x)$"),
+ TextMobject("$f_{ k=13 }(x)$"),
+ TextMobject("$f_{ k=15 }(x)$"),
+ TextMobject("$f_{ k=17 }(x)$"),
+ TextMobject("$f_{ k=19 }(x)$"),
+ TextMobject("$f_{ k=85 }(x)$")
+ ]
+ p=0
+ for i in range(1,20,2):
+ if(i==1):
+ graphInitial=returnFunc(self,1)
+ label=labels[p].scale(0.5).shift(y_each_unit*1.5*UP+RIGHT*x_each_unit*0.3)
+ self.play(ShowCreation(graphInitial),Write(labels[0]))
+ old=graphInitial
+ oldLabel=label
+ else:
+ graph=returnFunc(self,i)
+ graphLabel=labels[p].scale(0.5).shift(y_each_unit*1.5*UP+RIGHT*x_each_unit*0.3)
+ self.play(ReplacementTransform(old,graph),ReplacementTransform(oldLabel,graphLabel))
+ old=graph
+ oldLabel=graphLabel
+ p+=1
+ graphFinal=returnFunc(self,85)
+ labelFinal=labels[10].scale(0.5).shift(y_each_unit*1.5*UP+RIGHT*x_each_unit*0.3)
+ self.play(FadeOut(old),FadeOut(oldLabel))
+ self.play(ShowCreation(graphFinal),Write(labelFinal))
+ self.wait(1)
+ self.camera_frame.save_state()
+ self.play(self.camera_frame.set_width, 2.25,self.camera_frame.move_to, y_each_unit*UP+RIGHT*x_each_unit*0.3)
+ circleMark=Circle(radius=0.1,color=GREEN).shift(x_each_unit*RIGHT*0.47+UP*y_each_unit*1.1)
+ text=TextMobject("Gibbs","phenomenon").set_color_by_tex_to_color_map({"Gibbs":BLUE,"phenomenon":YELLOW}).scale(0.1).shift(RIGHT*x_each_unit*0.65+UP*y_each_unit*1.1)
+ self.wait(0.7)
+ self.play(ShowCreation(circleMark))
+ self.play(Write(text))
+ self.wait(0.5)
+ self.play(self.camera_frame.set_width,14,self.camera_frame.move_to,0,FadeOut(circleMark),FadeOut(text))
+ self.wait(2)
diff --git a/FSF-2020/calculus/series-and-transformations/Fourier Transform/video5_CoinsAnalogy.py b/FSF-2020/calculus/series-and-transformations/Fourier Transform/video5_CoinsAnalogy.py
new file mode 100644
index 0000000..10ee889
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Fourier Transform/video5_CoinsAnalogy.py
@@ -0,0 +1,225 @@
+from manimlib.imports import*
+import math
+import numpy as np
+
+class coinsAnalogy(Scene):
+ def construct(self):
+ text1=TextMobject("Consider we have","Rs 39").shift(2*UP).scale(0.75).set_color_by_tex_to_color_map({"Rs 39":[YELLOW,PURPLE]})
+ text2=TextMobject("and we want to represent them only in terms of","Rs 2","and","Rs 5").shift(UP).scale(0.6).set_color_by_tex_to_color_map({"Rs 2":YELLOW,"Rs 5":PURPLE})
+ text3=TextMobject("How many","Rs 2 coins","and","Rs 5 coins","do","we need?").scale(0.8).set_color_by_tex_to_color_map({"Rs 2 coins":YELLOW,"Rs 5 coins":PURPLE,"we need?":RED})
+ text4=TextMobject("We","perform","the following!").scale(0.75).shift(DOWN).set_color_by_tex_to_color_map({"perform":GREEN})
+
+ self.play(FadeIn(text1))
+ self.wait(0.6)
+ self.play(Write(text2))
+ self.wait(0.5)
+ self.play(Write(text3))
+ self.wait(0.7)
+ self.play(FadeIn(text4))
+ self.wait(1)
+ self.play(FadeOut(text1),FadeOut(text2),FadeOut(text3),FadeOut(text4))
+
+ g1=self.group("Rs 39")
+ g1.shift(3*LEFT+0.75*UP)
+ l1=self.line()
+ l1.shift(4*LEFT)
+ f1=self.fiveGroup()
+ t1=self.twoGroup()
+ f1.shift(3.5*LEFT+0.7*DOWN)
+ andT=TextMobject("and").next_to(f1,buff=-0.1).scale(0.3)
+ t1.next_to(andT,buff=0.2)
+ equal1=TextMobject("$=$")
+ equal1.next_to(l1,buff=0.2)
+
+ self.play(ShowCreation(g1))
+ self.play(ShowCreation(l1))
+ self.play(ShowCreation(f1),Write(andT),ShowCreation(t1))
+ self.play(ShowCreation(equal1))
+ self.wait(0.6)
+
+ f2=self.fiveGroup().next_to(equal1,buff=0.4)
+ multiple1=TextMobject("$X7$","$\quad +$").next_to(f2,buff=0.2).set_color_by_tex_to_color_map({"$X7$":PURPLE})
+ l2=self.line().next_to(multiple1,buff=0.4)
+ g2=self.group("Rs 4").shift(2.75*RIGHT+0.75*UP)
+ t2=self.twoGroup().shift(2.75*RIGHT+0.7*DOWN)
+
+ self.play(ShowCreation(f2))
+ self.play(ShowCreation(multiple1))
+ self.play(ShowCreation(g2))
+ self.play(ShowCreation(l2))
+ self.play(ShowCreation(t2))
+ self.wait(1)
+
+ tempGrup=VGroup(g2,l2,t2)
+
+ t3=self.twoGroup().next_to(multiple1,buff=0.4)
+ multiple2=TextMobject("$X2$").next_to(t3,buff=0.2).set_color_by_tex_to_color_map({"$X2$":YELLOW})
+
+ self.play(ReplacementTransform(tempGrup,t3))
+ self.play(Write(multiple2))
+ self.wait(2)
+
+ def line(self):
+ l=Line(start=[0,0,0],end=[2,0,0])
+ return l
+
+ def twoGroup(self):
+ two=Circle(radius=0.25,color=BLACK,fill_color=YELLOW,fill_opacity=0.7)
+ twoText=TextMobject("Rs 2").scale(0.25).set_color(BLACK)
+ twoGrup=VGroup(two,twoText)
+ return twoGrup
+
+ def fiveGroup(self):
+ five=Circle(radius=0.35,color=BLACK,fill_color=PURPLE,fill_opacity=0.7)
+ fiveText=TextMobject("Rs 5").scale(0.3).set_color(BLACK)
+ fiveGrup=VGroup(five,fiveText)
+ return fiveGrup
+
+ def group(self,money):
+ coins=[
+ Circle(radius=0.35,color=GREY,fill_color=GREY,fill_opacity=0.75),
+ Circle(radius=0.35,color=GREY,fill_color=GREY,fill_opacity=0.8),
+ Circle(radius=0.35,color=GREY,fill_color=GREY,fill_opacity=0.7),
+ Circle(radius=0.35,color=GREY,fill_color=GREY,fill_opacity=0.75),
+ Circle(radius=0.35,color=GREY,fill_color=GREY,fill_opacity=0.8),
+ Circle(radius=0.35,color=GREY,fill_color=GREY,fill_opacity=0.7)
+ ]
+ coinsText=TextMobject(money).set_color(BLACK)
+ coinsText.scale(0.35)
+
+ coins[1].shift(0.2*RIGHT+0.2*UP)
+ coins[2].shift(0.2*RIGHT+0.1*DOWN)
+ coins[3].shift(0.2*DOWN)
+ coins[4].shift(0.2*UP+0.2*LEFT)
+ coins[5].shift(0.2*LEFT+0.1*LEFT)
+
+ coinsGrup=VGroup(coins[0],coins[1],coins[2],coins[3],coins[4],coins[5],coinsText)
+ return coinsGrup
+
+class divideFunction(GraphScene):
+ CONFIG = {
+ "x_min": -6,
+ "x_max": 6,
+ "y_min": -300,
+ "y_max": 300,
+ "x_tick_frequency": 2,
+ "y_tick_frequency": 300,
+ "graph_origin": 3*LEFT+1.5*UP+6*LEFT,
+ "function_color": RED,
+ "axes_color": BLUE,
+ "x_axis_label": "$t$",
+ "y_axis_label": "$y$",
+ "x_labeled_nums": [-6,0,6],
+ "y_labeled_nums": [-300,0,300],
+ "x_axis_width": 1.5,
+ "y_axis_height": 1
+ }
+ def line(self):
+ l=Line(start=[0,0,0],end=[2,0,0])
+ return l
+ def construct(self):
+ text1=TextMobject("Similarly,").scale(0.8).shift(UP).set_color(RED)
+ text2=TextMobject("To find the amount of","each frequency","present in","$f(x)$").scale(0.6).set_color_by_tex_to_color_map({"each frequency":[YELLOW,RED],"$f(x)$":RED})
+ text3=TextMobject("We","perform","the following!").scale(0.7).shift(DOWN).set_color_by_tex_to_color_map({"perform":GREEN})
+
+ self.play(FadeIn(text1))
+ self.wait(0.6)
+ self.play(Write(text2))
+ self.wait(0.7)
+ self.play(FadeIn(text3))
+
+ self.wait(1)
+ self.play(FadeOut(text1),FadeOut(text2),FadeOut(text3))
+
+ boxUP=Square(side_length=1.7,fill_color=BLUE_C,fill_opacity=0.5,color=BLACK).shift(3*LEFT+UP)
+ boxDOWN=Square(side_length=1.7,fill_color=BLUE_C,fill_opacity=0.5,color=BLACK).shift(3*LEFT+DOWN)
+
+ axes=[]
+ self.graph_origin=10*LEFT+1.5*UP
+ self.setup_axes(scalee=1)
+ axes.append(self.axes)
+ fx=self.get_graph(lambda x:math.pow(x,3)-math.pow(x,2)+x-2,x_min=-2*math.pi,x_max=2*math.pi,color=RED).shift(7*RIGHT+0.5*DOWN)
+
+ l=self.line().shift(4*LEFT)
+
+ self.graph_origin=10*LEFT+1.5*DOWN
+ self.y_min=-2
+ self.y_max=1
+ self.y_tick_frequency=1
+ self.y_labeled_nums=[-1,0,1]
+ self.setup_axes(scalee=1)
+ axes.append(self.axes)
+ sinx=self.get_graph(lambda x:np.sin(x),x_min=-2*math.pi,x_max=2*math.pi,color=PURPLE_C).shift(7*RIGHT+0.5*UP)
+
+ equal=TextMobject("$=$").next_to(l,buff=0.3)
+ result1=TextMobject("Amount of").scale(0.6).next_to(equal,buff=0.3)
+ boxRIGHT=Square(side_length=1.7,fill_color=GOLD_B,fill_opacity=0.5,color=BLACK).next_to(result1,buff=0.2)
+ self.graph_origin=10*LEFT
+ sinxResult=self.get_graph(lambda x:np.sin(x),color=PURPLE_C).next_to(result1,buff=0.3)
+ axes.append(self.axes)
+ result2=TextMobject("in","$f(x)$").scale(0.6).next_to(sinxResult,buff=0.2).set_color_by_tex_to_color_map({"$f(x)$":RED})
+
+ self.play(FadeIn(boxUP))
+ self.play(ShowCreation(fx))
+ self.play(ShowCreation(l))
+ self.play(FadeIn(boxDOWN))
+ self.play(ShowCreation(sinx))
+ self.wait(0.4)
+ self.play(Write(equal))
+ self.play(Write(result1))
+ self.play(FadeIn(boxRIGHT))
+ self.play(ShowCreation(sinxResult))
+ self.play(Write(result2))
+ aText1=TextMobject("and").scale(0.65).shift(4*RIGHT+2*DOWN).set_color(GREEN)
+ self.play(Write(aText1))
+ self.wait(0.7)
+
+ self.graph_origin=10*LEFT
+ cos4x=self.get_graph(lambda x:np.cos(4*x),color=PURPLE_A).shift(7*RIGHT+0.5*UP)
+ axes.append(self.axes)
+ self.graph_origin=10*LEFT
+ cos4xResult=self.get_graph(lambda x:np.cos(4*x),color=PURPLE_A).next_to(result1,buff=0.3)
+ axes.append(self.axes)
+ self.play(ReplacementTransform(sinx,cos4x),ReplacementTransform(sinxResult,cos4xResult))
+ self.wait(0.7)
+
+ soText=TextMobject("And so on..!").scale(0.65).shift(4*RIGHT+2*DOWN).set_color(GREEN)
+ self.play(ReplacementTransform(aText1,soText))
+
+ self.graph_origin=10*LEFT
+ cosx=self.get_graph(lambda x:np.cos(x),color=GREEN_E).shift(7*RIGHT+0.5*UP)
+ axes.append(self.axes)
+ self.graph_origin=10*LEFT
+ cosxResult=self.get_graph(lambda x:np.cos(x),color=GREEN_E).next_to(result1,buff=0.3)
+ axes.append(self.axes)
+ self.play(ReplacementTransform(cos4x,cosx),ReplacementTransform(cos4xResult,cosxResult))
+
+ self.graph_origin=10*LEFT
+ cos3x=self.get_graph(lambda x:np.cos(3*x),color=GREEN_C).shift(7*RIGHT+0.5*UP)
+ axes.append(self.axes)
+ self.graph_origin=10*LEFT
+ cos3xResult=self.get_graph(lambda x:np.cos(3*x),color=GREEN_C).next_to(result1,buff=0.3)
+ axes.append(self.axes)
+ self.play(ReplacementTransform(cosx,cos3x),ReplacementTransform(cosxResult,cos3xResult))
+
+ self.graph_origin=10*LEFT
+ const=self.get_graph(lambda x:1,color=YELLOW_B).shift(7*RIGHT+0.5*UP)
+ axes.append(self.axes)
+ self.graph_origin=10*LEFT
+ constResult=self.get_graph(lambda x:1,color=YELLOW_B).next_to(result1,buff=0.3)
+ axes.append(self.axes)
+ self.play(ReplacementTransform(cos3x,const),ReplacementTransform(cos3xResult,constResult))
+
+ self.wait(1)
+
+ self.play(FadeOut(soText),FadeOut(const),FadeOut(constResult),FadeOut(l),FadeOut(equal),FadeOut(result1),FadeOut(result2),FadeOut(fx),FadeOut(boxRIGHT),FadeOut(boxUP),FadeOut(boxDOWN))
+
+ finalFormula1=TexMobject(r"Therefore,",r"F(s)",r"=",r"\int _{ -\infty }^{ \infty }",r"{f(t)",r"\over",r"sines",r"\enspace and \enspace",r"cosines}",r"dt }").scale(0.7).set_color_by_tex_to_color_map({"F(s)":RED,"sines":BLUE,"cosines}":YELLOW,"{f(t)":GREEN})
+ finalFormula2=TexMobject(r"F(s)",r"=",r"\int _{ -\infty }^{ \infty }",r"{f(t)",r"\over",r"{ e }^",r"{ i\theta }}",r"dt }").set_color_by_tex_to_color_map({"F(s)":RED,"{f(t)":GREEN})
+ subFinalFormula=TextMobject("where","$\\theta =2\pi st$").scale(0.5).shift(DOWN+2*RIGHT).set_color_by_tex_to_color_map({"$\\theta =2\pi st$":RED})
+
+ self.play(Write(finalFormula1))
+ self.wait(1)
+ self.play(ReplacementTransform(finalFormula1,finalFormula2))
+ self.play(Write(subFinalFormula))
+ self.wait(2)
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/README.md b/FSF-2020/calculus/series-and-transformations/Power Series/README.md
index 85c6fc4..2fd400d 100644
--- a/FSF-2020/calculus/series-and-transformations/Power Series/README.md
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/README.md
@@ -1,14 +1,14 @@
-#### PieChart
-![GIF1](gifs/file1_pieChart.gif)
+#### Convergence Intuition
+![GIF1a](gifs/file1_convergence_Intuition.gif)
#### Convergence Intuition
-![GIF2](gifs/file2_convergence_Intuition.gif)
+![GIF1b](gifs/file1a_convergence_Intuition.gif)
#### Convergence of a function
-![GIF3](gifs/file3_convergence_of_a_function.gif)
+![GIF2](gifs/file2_convergence_of_a_function.gif)
#### Radius and IntervalOfConvergence
-![GIF4](gifs/file4_radius_and_intervalOfConvergence.gif)
+![GIF3](gifs/file3_radius_and_intervalOfConvergence.gif)
#### Uniform Convergence
-![GIF5](gifs/file5_UniformConvergence.gif)
+![GIF4](gifs/file4a_UniformConvergence.gif)
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file1_convergence_Intuition.gif b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file1_convergence_Intuition.gif
new file mode 100644
index 0000000..292d19d
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file1_convergence_Intuition.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file1_pieChart.gif b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file1_pieChart.gif
deleted file mode 100644
index f102f6d..0000000
--- a/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file1_pieChart.gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file1a_convergence_Intuition.gif b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file1a_convergence_Intuition.gif
new file mode 100644
index 0000000..287cbd1
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file1a_convergence_Intuition.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file2_convergence_Intuition.gif b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file2_convergence_Intuition.gif
deleted file mode 100644
index 9463ac2..0000000
--- a/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file2_convergence_Intuition.gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file2_convergence_of_a_function.gif b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file2_convergence_of_a_function.gif
new file mode 100644
index 0000000..78d6014
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file2_convergence_of_a_function.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file3_convergence_of_a_function.gif b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file3_convergence_of_a_function.gif
deleted file mode 100644
index 836e044..0000000
--- a/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file3_convergence_of_a_function.gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file3_radius_and_intervalOfConvergence.gif b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file3_radius_and_intervalOfConvergence.gif
new file mode 100644
index 0000000..a45c75e
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file3_radius_and_intervalOfConvergence.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file4_UniformConvergence.gif b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file4_UniformConvergence.gif
new file mode 100644
index 0000000..7b635d7
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file4_UniformConvergence.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file4_radius_and_intervalOfConvergence.gif b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file4_radius_and_intervalOfConvergence.gif
deleted file mode 100644
index e8dbff4..0000000
--- a/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file4_radius_and_intervalOfConvergence.gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file4a_UniformConvergence.gif b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file4a_UniformConvergence.gif
new file mode 100644
index 0000000..e284b83
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file4a_UniformConvergence.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file5_UniformConvergence.gif b/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file5_UniformConvergence.gif
deleted file mode 100644
index 44cd78b..0000000
--- a/FSF-2020/calculus/series-and-transformations/Power Series/gifs/file5_UniformConvergence.gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/video2_convergence_Intuition.py b/FSF-2020/calculus/series-and-transformations/Power Series/video1_convergence_Intuition.py
index 72356c6..66f48f9 100644
--- a/FSF-2020/calculus/series-and-transformations/Power Series/video2_convergence_Intuition.py
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/video1_convergence_Intuition.py
@@ -11,23 +11,36 @@ class convergence(Scene):
self.play(ApplyMethod(originalFormula.shift,2.7*UP))
self.wait(1)
- terms=["$a_{ 0 }$","$a_{ 1 }x$","$a_{ 2 }x^{ 2 }$","$a_{ 3 }x^{ 3 }$","$a_{ 4 }x^{ 4 }$","$a_{ 5 }x^{ 5 }$","$a_{ 6 }x^{ 6 }$","$a_{ 7 }x^{ 7 }$","$a_{ 8 }x^{ 8 }$","$a_{ 9 }x^{ 9 }$","$a_{ 10 }x^{ 10 }$","$a_{ 11 }x^{ 11 }$"]
+ colors=[PURPLE_E,PURPLE_D,MAROON_D,RED_E,RED_D,RED_C,ORANGE,YELLOW_E,YELLOW_D,YELLOW_B]
+ terms=["$a_{ 0 }$","$a_{ 1 }x$","$a_{ 2 }x^{ 2 }$","$a_{ 3 }x^{ 3 }$","$a_{ 4 }x^{ 4 }$","$a_{ 5 }x^{ 5 }$","$a_{ 6 }x^{ 6 }$","$a_{ 7 }x^{ 7 }$","$a_{ 8 }x^{ 8 }$","$a_{ 9 }x^{ 9 }$"]
termsTogetherString="+".join(terms)
- termsTogether=TextMobject(termsTogetherString+"...")
+ #termsTogether=TextMobject(termsTogetherString+"...")
+ termsTogether=TextMobject("$a_{ 0 }$","+","$a_{ 1 }x$","+","$a_{ 2 }x^{ 2 }$","+","$a_{ 3 }x^{ 3 }$","+","$a_{ 4 }x^{ 4 }$","+","$a_{ 5 }x^{ 5 }$","+","$a_{ 6 }x^{ 6 }$","+","$a_{ 7 }x^{ 7 }$","+","$a_{ 8 }x^{ 8 }$","+","$a_{ 9 }x^{ 9 }$","+..")
+ termsTogether.set_color_by_tex_to_color_map({"$a_{ 0 }$":colors[0],
+ "$a_{ 1 }x$":colors[1],
+ "$a_{ 2 }x^{ 2 }$":colors[2],
+ "$a_{ 3 }x^{ 3 }$":colors[3],
+ "$a_{ 4 }x^{ 4 }$":colors[4],
+ "$a_{ 5 }x^{ 5 }$":colors[5],
+ "$a_{ 6 }x^{ 6 }$":colors[6],
+ "$a_{ 7 }x^{ 7 }$":colors[7],
+ "$a_{ 8 }x^{ 8 }$":colors[8],
+ "$a_{ 9 }x^{ 9 }$":colors[9]})
termsTogether.scale(0.8)
termsTogether.shift(2.7*UP)
self.play(ReplacementTransform(originalFormula,termsTogether))
self.wait(1)
- termMobjectRect=[0]*12
- termMobject=TextMobject(terms[0])
+ termMobjectRect=[0]*10
+ termMobject=TextMobject(terms[0]).set_color(colors[0])
termMobject.shift(2.7*UP+6.2*LEFT)
- for i in range(1,13):
+ for i in range(1,11):
termMobjectOld=termMobject
termMobjectOld.scale(0.8)
- if(i<12):
+ if(i<10):
termMobject=TextMobject(terms[i])
- termMobject.next_to(termMobjectOld)
+ termMobject.set_color(colors[i])
+ termMobject.next_to(termMobjectOld,buff=0.5)
if(i==1):
rectDefine=TextMobject("Here","each rectangle","represents the","value of the term")
rectDefine.set_color_by_tex_to_color_map({"each rectangle":BLUE,"value of the term":YELLOW})
@@ -50,7 +63,7 @@ class convergence(Scene):
self.play(ReplacementTransform(ratio,inequality))
self.wait(1)
#self.play(ApplyMethod(termMobjectOld.move_to,(2-0.3*i)*DOWN+RIGHT*0.2*i))
- termMobjectRect[i-1]=Rectangle(height=0.1,width=(5-0.4*i))
+ termMobjectRect[i-1]=Rectangle(height=0.1,width=(4.2-0.4*i),color=colors[i-1])
termMobjectRect[i-1].move_to((2-0.2*i)*DOWN+RIGHT*0.2*i)
#rectangles[p] = termMobjectRect
#p+=1
@@ -58,8 +71,8 @@ class convergence(Scene):
uparrow=TextMobject("$\\uparrow$")
uparrow.set_color(GREEN)
- uparrow.scale(6)
- uparrow.shift(4*RIGHT+0.5*DOWN)
+ uparrow.scale(5)
+ uparrow.shift(4*RIGHT+0.7*DOWN)
self.play(ShowCreation(uparrow))
self.wait(1)
@@ -72,9 +85,9 @@ class convergence(Scene):
self.play(FadeOut(converges),FadeOut(uparrow),FadeOut(inequality))
self.wait(0.5)
- rect=VGroup(termMobjectRect[0],termMobjectRect[1],termMobjectRect[2],termMobjectRect[3],termMobjectRect[4],termMobjectRect[5],termMobjectRect[6],termMobjectRect[7],termMobjectRect[8],termMobjectRect[9],termMobjectRect[10],termMobjectRect[11])
+ rect=VGroup(termMobjectRect[0],termMobjectRect[1],termMobjectRect[2],termMobjectRect[3],termMobjectRect[4],termMobjectRect[5],termMobjectRect[6],termMobjectRect[7],termMobjectRect[8],termMobjectRect[9])
self.play(ApplyMethod(rect.scale,0.2))
- for i in range(0,12):
+ for i in range(0,10):
self.play(ApplyMethod(termMobjectRect[i].shift,i*0.04*DOWN+(11-(3-0.11*i)*i)*LEFT*0.3))
func=TextMobject("$\\approx$","$f(x)$")
func.set_color_by_tex_to_color_map({"$f(x)$":RED})
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/video1_pieChart.py b/FSF-2020/calculus/series-and-transformations/Power Series/video1_pieChart.py
deleted file mode 100644
index 28eb07c..0000000
--- a/FSF-2020/calculus/series-and-transformations/Power Series/video1_pieChart.py
+++ /dev/null
@@ -1,128 +0,0 @@
-from manimlib.imports import *
-
-
-def formFormula(coeff_list,variable_list):
- coeff_list=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
- variable_list=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
- coeff_list[0].shift(2.2*UP+1.6*LEFT)
- for i in range(0,3):
- coeff_list[i].set_color(GOLD_A)
- variable_list[i].next_to(coeff_list[i],buff=0.1)
- if i!=2:
- coeff_list[i+1].next_to(variable_list[i],buff=0.1)
- dots=TextMobject("...")
- dots.next_to(variable_list[2])
- expansion=VGroup(coeff_list[0],coeff_list[1],coeff_list[2],variable_list[0],variable_list[1],variable_list[2],dots)
- expansion.scale(0.7)
- return expansion
-
-class pieChart(Scene):
- def construct(self):
- circle1=Circle(radius=3,color=BLUE)
- powerText=TextMobject("Power Series")
- powerText.scale(0.8)
- self.play(FadeIn(powerText))
- self.play(ShowCreation(circle1))
- self.wait(1)
-
- powerGroup=VGroup(circle1,powerText)
-
- self.play(ApplyMethod(powerGroup.scale,0.5))
- self.play(ApplyMethod(powerGroup.move_to,2.2*UP))
- self.wait(0.5)
- expansion_power_coeff=[]
- variables_power=[]
- expansion_power=formFormula(expansion_power_coeff,variables_power)
- self.play(ReplacementTransform(powerText,expansion_power))
- self.wait(1)
-
- circle2=Circle(radius=1.5)
- circle2.shift(2.2*UP)
- expansion_geo_coeff=[0]*3
- variables_geo=[0]*3
- arrow1_2=Line(start=0.7*UP,end=2.5*LEFT)
- expansion_geo_coeff=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
- for i in range(0,3):
- expansion_geo_coeff[i].set_color(GOLD_A)
- variables_geo=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
- expansion_geo_coeff[0].shift(2.2*UP+1.6*LEFT)
- for i in range(0,3):
- variables_geo[i].next_to(expansion_geo_coeff[i],buff=0.1)
- if i!=2:
- expansion_geo_coeff[i+1].next_to(variables_geo[i],buff=0.1)
- dots=TextMobject("...")
- dots.next_to(variables_geo[2])
- expansion_geo=VGroup(expansion_geo_coeff[0],expansion_geo_coeff[1],expansion_geo_coeff[2],variables_geo[0],variables_geo[1],variables_geo[2],dots)
- expansion_geo.scale(0.7)
-
- self.play(ApplyMethod(circle2.shift,4*LEFT+2.5*DOWN),ApplyMethod(expansion_geo.shift,4*LEFT+2.5*DOWN))
- self.add(arrow1_2)
- self.wait(1)
-
- ones=[TextMobject("1"),TextMobject("1"),TextMobject("1")]
- for i in range(0,3):
- ones[i].set_color(GOLD_A)
- ones[0].shift(0.3*DOWN,5*LEFT)
- ones[1].next_to(ones[0],buff=0.5)
- ones[2].next_to(ones[1],buff=0.7)
- self.play(ReplacementTransform(expansion_geo_coeff[0],ones[0]),ReplacementTransform(expansion_geo_coeff[1],ones[1]),ReplacementTransform(expansion_geo_coeff[2],ones[2]))
- self.wait(1)
- expansion_geo=VGroup(ones[0],ones[1],ones[2],variables_geo[0],variables_geo[1],variables_geo[2],dots)
-
- expansion_geo_final=TextMobject("$1+x+{ x }^{ 2 }..$")
- expansion_geo_final.scale(0.8)
- expansion_geo_final.shift(0.3*DOWN+4*LEFT)
- self.play(ReplacementTransform(expansion_geo,expansion_geo_final))
- self.wait(1)
-
- circle3=Circle(radius=1.5,color=GREEN)
- circle3.shift(2.2*UP)
- expansion_taylor_coeff=[0]*3
- variables_taylor=[0]*3
- arrow1_3=Line(start=0.7*UP,end=DOWN*0.3)
- expansion_taylor_coeff=[TextMobject("${ a }_{ 0 }$"),TextMobject("${ a }_{ 1 }$"),TextMobject("${ a }_{ 2 }$")]
- for i in range(0,3):
- expansion_taylor_coeff[i].set_color(GOLD_A)
- variables_taylor=[TextMobject("+"),TextMobject("${ x }$+"),TextMobject("${ x }^{ 2 }$")]
- expansion_taylor_coeff[0].shift(2.2*UP+1.6*LEFT)
- for i in range(0,3):
- variables_taylor[i].next_to(expansion_taylor_coeff[i],buff=0.1)
- if i!=2:
- expansion_taylor_coeff[i+1].next_to(variables_taylor[i],buff=0.1)
- dots=TextMobject("...")
- dots.next_to(variables_taylor[2])
- expansion_taylor=VGroup(expansion_taylor_coeff[0],expansion_taylor_coeff[1],expansion_taylor_coeff[2],variables_taylor[0],variables_taylor[1],variables_taylor[2],dots)
- expansion_taylor.scale(0.7)
-
- self.play(ApplyMethod(circle3.shift,4*DOWN),ApplyMethod(expansion_taylor.shift,4*DOWN))
- self.add(arrow1_3)
- self.wait(1)
-
- differentials=[TextMobject("$f(0)$"),TextMobject("${ f'\left( 0 \\right) }$"),TextMobject("$\\frac { f''\left( 0 \\right) }{ 2! }$")]
- for i in range(0,3):
- differentials[i].set_color(GOLD_A)
- differentials[0].shift(1.8*DOWN+1.15*LEFT)
- differentials[1].shift(1.8*DOWN+0.45*LEFT)
- differentials[2].shift(1.8*DOWN+0.45*RIGHT)
- differentials[0].scale(0.35)
- differentials[1].scale(0.35)
- differentials[2].scale(0.35)
- self.play(ReplacementTransform(expansion_taylor_coeff[0],differentials[0]),ReplacementTransform(expansion_taylor_coeff[1],differentials[1]),ReplacementTransform(expansion_taylor_coeff[2],differentials[2]))
- self.wait(2)
- expansion_taylor_final=VGroup(differentials[0],differentials[1],differentials[2],variables_taylor[0],variables_taylor[1],variables_taylor[2],dots)
-
- self.play(FadeOut(expansion_geo_final),FadeOut(expansion_taylor_final))
- geoText=TextMobject("Geometric Series")
- geoText.scale(0.7)
- geoText.shift(4*LEFT+0.3*DOWN)
- taylorText=TextMobject("Taylor Series")
- taylorText.scale(0.7)
- taylorText.shift(1.8*DOWN)
- self.play(FadeIn(geoText),FadeIn(taylorText))
- self.wait(1)
-
- soOntext=TextMobject("So on..!")
- soOntext.shift(4*RIGHT)
- soOntext.scale(0.8)
- self.play(FadeIn(soOntext))
- self.wait(2)
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/video3_convergence_of_a_function.py b/FSF-2020/calculus/series-and-transformations/Power Series/video2_convergence_of_a_function.py
index f710f42..19b8b8b 100644
--- a/FSF-2020/calculus/series-and-transformations/Power Series/video3_convergence_of_a_function.py
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/video2_convergence_of_a_function.py
@@ -69,10 +69,10 @@ class graphScene(GraphScene):
eqText[i].scale(0.6)
eqText[i].set_color(BLUE)
eqText[i].shift(ORIGIN+UP*2*y_each_unit+RIGHT*3.3*x_each_unit)
- eqTextTerm=TextMobject("And so on..!")
- eqTextTerm.set_color(BLUE)
- eqTextTerm.scale(0.6)
- eqTextTerm.shift(ORIGIN+UP*2*y_each_unit+3*RIGHT*x_each_unit)
+ # eqTextTerm=TextMobject("And so on..!")
+ # eqTextTerm.set_color(BLUE)
+ # eqTextTerm.scale(0.6)
+ # eqTextTerm.shift(ORIGIN+UP*2*y_each_unit+3*RIGHT*x_each_unit)
equation1 = self.get_graph(lambda x : 1,color = RED,x_min = -8,x_max=8)
equation2 = self.get_graph(lambda x : 1-math.pow(x,2),color = RED,x_min = -1.7,x_max=1.7)
equation3 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4),color = RED,x_min = -1.6,x_max=1.6)
@@ -106,7 +106,7 @@ class graphScene(GraphScene):
self.play(ReplacementTransform(equation3,equation4),ReplacementTransform(eqText[2],eqText[3]))
self.wait(0.3)
self.play(FadeOut(eqText[3]))
- self.play(FadeIn(eqTextTerm))
+ #self.play(FadeIn(eqTextTerm))
self.play(Write(textBtwAnim1),Write(textBtwAnim2))
self.play(FadeIn(textBtwAnim3))
self.play(ReplacementTransform(equation4,equation5))
@@ -122,7 +122,7 @@ class graphScene(GraphScene):
self.play(ReplacementTransform(equation9,equation10))
self.wait(1)
- self.play(FadeOut(textBtwAnim1),FadeOut(textBtwAnim2),FadeOut(textBtwAnim3),FadeOut(equation10),FadeOut(eqTextTerm))
+ self.play(FadeOut(textBtwAnim1),FadeOut(textBtwAnim2),FadeOut(textBtwAnim3),FadeOut(equation10))
self.wait(1)
convergeLine=Line(start=ORIGIN+x_each_unit*LEFT,end=ORIGIN+x_each_unit*RIGHT,color=WHITE)
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/video4_radius_and_intervalOfConvergence.py b/FSF-2020/calculus/series-and-transformations/Power Series/video3_radius_and_intervalOfConvergence.py
index 412d20c..f35fea8 100644
--- a/FSF-2020/calculus/series-and-transformations/Power Series/video4_radius_and_intervalOfConvergence.py
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/video3_radius_and_intervalOfConvergence.py
@@ -3,7 +3,7 @@ import math
class intro(Scene):
def construct(self):
- introText1=TextMobject("Consider the","above","example..")
+ introText1=TextMobject("Consider the example","above",)
introText1.scale(0.8)
introText1.set_color_by_tex_to_color_map({"above":YELLOW})
self.play(Write(introText1))
@@ -24,12 +24,13 @@ class graphScene(GraphScene,MovingCameraScene):
"x_labeled_nums": range(-1, 2, 1),
"y_labeled_nums": range(0,2,1),
"y_axis_height":7,
- "x_axis_width":7
+ "x_axis_width":7,
}
def setup(self):
GraphScene.setup(self)
MovingCameraScene.setup(self)
+
def construct(self):
x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
@@ -74,15 +75,14 @@ class graphScene(GraphScene,MovingCameraScene):
radiusText=TextMobject("Radius of convergence")
radiusText.scale(0.14)
radiusText.shift(ORIGIN+RIGHT*x_each_unit*0.45+DOWN*y_each_unit*0.2)
-
+ #self.activate_zooming(animate=True)
self.play(Write(radiusText))
self.wait(0.6)
self.camera_frame.save_state()
- self.camera_frame.set_width(5.5)
- self.play(self.camera_frame.move_to, ORIGIN)
+ self.play(self.camera_frame.set_width,5.5)
self.wait(1)
- self.camera_frame.set_width(14)
+ self.play(self.camera_frame.set_width,14)
self.wait(1.3)
self.play(FadeOut(radiusText),FadeOut(circle),FadeOut(movingPoint))
@@ -101,8 +101,13 @@ class graphScene(GraphScene,MovingCameraScene):
self.wait(0.6)
self.camera_frame.save_state()
- self.camera_frame.set_width(5.5)
- self.play(self.camera_frame.move_to, ORIGIN)
+ self.play(self.camera_frame.set_width,5.5)
self.wait(1)
- self.camera_frame.set_width(14)
- self.wait(1.5)
+ self.play(self.camera_frame.set_width,14)
+ self.wait(1.3)
+ # self.camera_frame.save_state()
+ # self.camera_frame.set_width(5.5)
+ # self.play(self.camera_frame.move_to, ORIGIN)
+ # self.wait(1)
+ # self.camera_frame.set_width(14)
+ # self.wait(1.5)
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/video5_UniformConvergence.py b/FSF-2020/calculus/series-and-transformations/Power Series/video4_UniformConvergence.py
index e9681aa..1f3e26c 100644
--- a/FSF-2020/calculus/series-and-transformations/Power Series/video5_UniformConvergence.py
+++ b/FSF-2020/calculus/series-and-transformations/Power Series/video4_UniformConvergence.py
@@ -3,19 +3,19 @@ import math
class uniformlyConvergent(Scene):
def construct(self):
- introText1=TextMobject("Again consider the","above","example")
+ #introText1=TextMobject("Again consider the","above","example")
introText2=TextMobject("Let","$g(x)=\\frac { 1 }{ 1+{ x }^{ 2 } }$","and","x=0.5 $\in$(-1,1)")
introText3=TextMobject("Lets analyse..","!")
- introText1.scale(0.8)
+ #introText1.scale(0.8)
introText2.scale(0.7)
introText3.scale(0.9)
introText3.shift(DOWN)
- introText1.set_color_by_tex_to_color_map({"above":YELLOW})
+ #introText1.set_color_by_tex_to_color_map({"above":YELLOW})
introText2.set_color_by_tex_to_color_map({"$g(x)=\\frac { 1 }{ 1+{ x }^{ 2 } }$":BLUE,"x=0.5 $\in$(-1,1)":YELLOW})
introText3.set_color_by_tex_to_color_map({"!":GREEN})
- self.play(Write(introText1))
- self.wait(0.5)
- self.play(FadeOut(introText1))
+ #self.play(Write(introText1))
+ #self.wait(0.5)
+ #self.play(FadeOut(introText1))
self.play(Write(introText2))
self.play(FadeIn(introText3))
self.wait(2)
@@ -45,7 +45,7 @@ def makeLines(x,numPoints,x_each_unit,y_each_unit):
lines[i]=Line(start=ORIGIN+RIGHT*x_each_unit*i+UP*y_each_unit*y,end=ORIGIN+RIGHT*x_each_unit*(i+1)+UP*y_each_unit*y_next,color=RED)
return lines
-class graphScene(GraphScene,MovingCameraScene):
+class graphScene(GraphScene,ZoomedScene):
CONFIG = {
"x_min": -6,
"x_max": 6,
@@ -58,12 +58,15 @@ class graphScene(GraphScene,MovingCameraScene):
"y_axis_label": "$f(\\frac{1}{2})_k$",
"exclude_zero_label": True,
"x_axis_width":7,
- "y_axis_height":7
+ "y_axis_height":7,
+ "zoomed_camera_frame_starting_position": 0.5*UP+0.5*RIGHT,
+ "zoom_factor": 0.4,
}
def setup(self):
GraphScene.setup(self)
- MovingCameraScene.setup(self)
+ #MovingCameraScene.setup(self)
+ ZoomedScene.setup(self)
def construct(self):
@@ -87,6 +90,14 @@ class graphScene(GraphScene,MovingCameraScene):
makeSeries(0.5,points,x_each_unit,y_each_unit)
lines=makeLines(0.5,6,x_each_unit,y_each_unit)
+ func1=TextMobject("$g(x)=\\frac { 1 }{ 1+{ x }^{ 2 } }$")
+ func2=TextMobject("x=0.5 $\in$(-1,1)")
+ func1.scale(0.4)
+ func2.scale(0.4)
+ func1.shift(5.3*LEFT+3.3*UP)
+ func2.shift(5.3*LEFT+2.9*UP)
+ self.add(func1)
+ self.add(func2)
self.add(sequence)
self.add(formula)
@@ -95,22 +106,26 @@ class graphScene(GraphScene,MovingCameraScene):
self.add(fLineText)
for p in points:
self.add(p)
+ self.setup()
+ self.activate_zooming(animate=True)
for p in range(0,5):
self.play(Write(lines[p]))
- self.wait(0.5)
- self.camera_frame.save_state()
- self.camera_frame.set_width(0.6)
- self.play(self.camera_frame.move_to, points[0])
- self.wait(0.4)
- self.play(self.camera_frame.move_to, points[1])
- self.wait(0.4)
- self.play(self.camera_frame.move_to, points[2])
- self.wait(0.3)
- self.play(self.camera_frame.move_to, points[3])
- self.wait(1)
- self.play(self.camera_frame.move_to,ORIGIN)
- self.camera_frame.set_width(14)
+ # self.wait(0.5)
+ # self.camera_frame.save_state()
+ # self.camera_frame.set_width(0.6)
+ # self.play(self.camera_frame.move_to, points[0])
+ # self.wait(0.4)
+ # self.play(self.camera_frame.move_to, points[1])
+ # self.wait(0.4)
+ # self.play(self.camera_frame.move_to, points[2])
+ # self.wait(0.3)
+ # self.play(self.camera_frame.move_to, points[3])
+ # self.wait(1)
+ # self.play(self.camera_frame.move_to,ORIGIN)
+ # self.camera_frame.set_width(14)
+
self.wait(1)
+ self.get_zoomed_display_pop_out_animation()
explanation1=TextMobject("Since the series","converges","to")
explanation1.set_color_by_tex_to_color_map({"converges":YELLOW})
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/README.md b/FSF-2020/calculus/series-and-transformations/Taylor Series/README.md
index ce3b088..88eb772 100644
--- a/FSF-2020/calculus/series-and-transformations/Taylor Series/README.md
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/README.md
@@ -2,7 +2,7 @@
![GIF1](gifs/file1_Example_TaylorExpansion.gif)
#### Taylor Series GeneralForm
-![GIF2](gifs/file2_TaylorExpansionGeneralForm.gif)
+![GIF2](gifs/file2a_TaylorExpansionGeneralForm.gif)
#### Radius Of Convergence
![GIF3](gifs/file3_radiusOfConvergence.gif)
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file1_Example_TaylorExpansion.gif b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file1_Example_TaylorExpansion.gif
index ecd3272..4272d84 100644
--- a/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file1_Example_TaylorExpansion.gif
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file1_Example_TaylorExpansion.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file2_TaylorExpansionGeneralForm.gif b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file2_TaylorExpansionGeneralForm.gif
index e6d9171..33dfa81 100644
--- a/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file2_TaylorExpansionGeneralForm.gif
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file2_TaylorExpansionGeneralForm.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file2a_TaylorExpansionGeneralForm.gif b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file2a_TaylorExpansionGeneralForm.gif
new file mode 100644
index 0000000..33dfa81
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file2a_TaylorExpansionGeneralForm.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file3_radiusOfConvergence.gif b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file3_radiusOfConvergence.gif
index 6b22d8d..9e53cfb 100644
--- a/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file3_radiusOfConvergence.gif
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file3_radiusOfConvergence.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file4_DivergentRemainder.gif b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file4_DivergentRemainder.gif
index 2bb5185..0bc8b65 100644
--- a/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file4_DivergentRemainder.gif
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/gifs/file4_DivergentRemainder.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py
index e83eff8..b132811 100644
--- a/FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/video1_Example_TaylorExpansion.py
@@ -31,7 +31,7 @@ class intro(Scene):
self.wait(0.7)
self.play(FadeOut(equation),FadeOut(text))
-class graphScene(GraphScene):
+class graphScene(GraphScene,MovingCameraScene):
CONFIG = {
"x_min": -8,
"x_max": 8,
@@ -45,10 +45,25 @@ class graphScene(GraphScene):
"exclude_zero_label": True,
"x_labeled_nums": range(-8, 8, 1),
}
+ def setup(self):
+ GraphScene.setup(self)
+ MovingCameraScene.setup(self)
def construct(self):
x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+ equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$")
+ equation.scale(0.55)
+ equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED})
+ text=TextMobject("$a=0$")
+ text.scale(0.55)
+
+ equation.shift(3.39*UP+5*LEFT)
+ text.shift(2.9*UP+5*LEFT)
+
+ self.add(equation)
+ self.add(text)
+
generalized_eq_coeff=[]
variables_eq=[]
eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq)
@@ -58,7 +73,7 @@ class graphScene(GraphScene):
trTextGrup.scale(0.5)
trTextGrup.to_corner(UP+RIGHT)
self.play(Write(trTextGrup))
- self.setup_axes(animate=True)
+ self.setup_axes(animate=True,scalee=1)
fx=TextMobject("${ e }^{ -x^{ 2 } }$")
fx.scale(0.5)
@@ -66,18 +81,21 @@ class graphScene(GraphScene):
mainfunction=self.get_graph(lambda x:math.exp(-1*pow(x,2)),color=RED,x_min=-8,x_max=8)
self.play(ShowCreation(mainfunction))
self.play(FadeIn(fx))
- self.wait(1.4)
+ self.wait(1)
coeff=[TextMobject("$1$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")]
coeff[0].shift(3.39*UP+4.88*RIGHT)
coeff[0].scale(0.5)
- coeff[1].shift(3.39*UP+5.3*RIGHT)
+ coeff[1].shift(3.39*UP+5.4*RIGHT)
coeff[1].scale(0.275)
- coeff[2].shift(3.39*UP+5.98*RIGHT)
+ coeff[2].shift(3.39*UP+6*RIGHT)
coeff[2].scale(0.28)
for obj in coeff:
obj.set_color(GOLD_A)
+ group=VGroup(coeff[0],coeff[1],coeff[2])
+
+ #group.shift(2*LEFT+2*DOWN)
firstApprox=[self.get_graph(lambda x:1,color=BLUE)]
secondApprox=[self.get_graph(lambda x:1,color=BLUE),
@@ -124,16 +142,44 @@ class graphScene(GraphScene):
bottomText8.scale(0.5)
bottomText1.shift(4.5*RIGHT+2.5*DOWN)
- bottomText2.shift(4.5*RIGHT+2.5*DOWN)
- bottomText3.shift(4.5*RIGHT+2.5*DOWN)
- bottomText4.shift(4.5*RIGHT+2.5*DOWN)
- bottomText5.shift(4.5*RIGHT+2.5*DOWN)
- bottomText6.shift(4.5*RIGHT+2.5*DOWN)
- bottomText7.shift(4.5*RIGHT+2.5*DOWN)
- bottomText8.shift(4.5*RIGHT+2.5*DOWN)
+ # bottomText2.shift(4.5*RIGHT+2.5*DOWN)
+ # bottomText3.shift(4.5*RIGHT+2.5*DOWN)
+ # bottomText4.shift(4.5*RIGHT+2.5*DOWN)
+ # bottomText5.shift(4.5*RIGHT+2.5*DOWN)
+ # bottomText6.shift(4.5*RIGHT+2.5*DOWN)
+ # bottomText7.shift(4.5*RIGHT+2.5*DOWN)
+ # bottomText8.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText2.shift(3*RIGHT*x_each_unit+2.5*DOWN*y_each_unit)
+ bottomText3.shift(3*RIGHT*x_each_unit+2.5*DOWN*y_each_unit)
+ bottomText4.shift(3*RIGHT*x_each_unit+2.5*DOWN*y_each_unit)
+ bottomText5.shift(3*RIGHT*x_each_unit+2.5*DOWN*y_each_unit)
+ bottomText6.shift(3.7*RIGHT*x_each_unit+2.5*DOWN*y_each_unit)
+ bottomText7.shift(3.7*RIGHT*x_each_unit+2.5*DOWN*y_each_unit)
+ bottomText8.shift(3.7*RIGHT*x_each_unit+2.5*DOWN*y_each_unit)
+
+ bottomText2.scale(0.7)
+ bottomText3.scale(0.7)
+ bottomText4.scale(0.7)
+ bottomText5.scale(0.7)
+ bottomText6.scale(0.7)
+ bottomText7.scale(0.7)
+ bottomText8.scale(0.7)
self.play(Write(bottomText1))
- self.wait(1)
+ self.wait(0.8)
+ #self.activate_zooming(animate=True)
+ self.camera_frame.save_state()
+ group.move_to(4*y_each_unit*UP+4.6*RIGHT*x_each_unit).scale(0.7)
+ self.play(self.camera_frame.set_width, 8,
+ self.camera_frame.move_to, x_each_unit*UP,
+ ApplyMethod(trTextGrup.move_to,4*y_each_unit*UP+4.1*RIGHT*x_each_unit),
+ ApplyMethod(bottomText1.move_to,3.4*RIGHT*x_each_unit+2.5*DOWN*y_each_unit),
+ ApplyMethod(equation.shift,1.39*DOWN+2*RIGHT),
+ ApplyMethod(text.shift,1.39*DOWN+2*RIGHT),)
+ self.play(ApplyMethod(text.scale,0.5),ApplyMethod(equation.scale,0.5),ApplyMethod(bottomText1.scale,0.6),ApplyMethod(trTextGrup.scale,0.7))
+ self.play(ApplyMethod(text.shift,0.3*UP))
+ self.wait(0.6)
+
self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2))
#change coeff in tn(x)
self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0]))
@@ -170,10 +216,12 @@ class graphScene(GraphScene):
self.wait(2)
textFinal=TextMobject("And so on..!")
- textFinal.scale(0.7)
- textFinal.shift(4.5*RIGHT+2.5*DOWN)
+ textFinal.scale(0.35)
+ textFinal.shift(3.7*RIGHT*x_each_unit+2.5*DOWN*y_each_unit)
self.play(ReplacementTransform(bottomText8,textFinal))
- self.wait(2.5)
+ self.wait(1)
+ self.play(FadeOut(equation),FadeOut(text))
+ self.play(self.camera_frame.set_width, 15)
finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(0)+f'(0)x+\\frac { f''(0) }{ 2! }x^2+..+\\frac { { f }^{ n }(0) }{ n! } { x }^{ n }$")
finalFormula.scale(0.8)
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py
index f84cfe9..75f200d 100644
--- a/FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/video2_TaylorExpansionGeneralForm.py
@@ -7,7 +7,7 @@ class intro(Scene):
equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$")
equation.scale(2)
equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED})
- text=TextMobject("at $a=1$")
+ text=TextMobject("about $x=1$")
text.scale(0.7)
text.shift(DOWN)
@@ -41,7 +41,7 @@ def formFormula(coeff_list,variable_list):
return expansion,coeff_list
-class graphScene(GraphScene):
+class graphScene(GraphScene,MovingCameraScene):
CONFIG = {
"x_min": -8,
"x_max": 8,
@@ -55,10 +55,25 @@ class graphScene(GraphScene):
"exclude_zero_label": True,
"x_labeled_nums": range(-8, 8, 1),
}
+ def setup(self):
+ GraphScene.setup(self)
+ MovingCameraScene.setup(self)
def construct(self):
x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+ equation=TextMobject("$f(x)=$","${ e }^{ -x^{ 2 } }$")
+ equation.scale(0.55)
+ equation.set_color_by_tex_to_color_map({"${ e }^{ -x^{ 2 } }$":RED})
+ text=TextMobject("about $x=1$")
+ text.scale(0.55)
+ equation.shift(3.39*UP+5*LEFT)
+ text.shift(3*UP+5*LEFT)
+
+ self.add(equation)
+ self.add(text)
+
+
generalized_eq_coeff=[]
variables_eq=[]
eq,generalized_eq_coeff=formFormula(generalized_eq_coeff,variables_eq)
@@ -68,7 +83,7 @@ class graphScene(GraphScene):
trTextGrup.scale(0.5)
trTextGrup.to_corner(UP+RIGHT)
self.play(Write(trTextGrup))
- self.setup_axes(animate=True)
+ self.setup_axes(animate=True,scalee=1)
fx=TextMobject("${ e }^{ -x^{ 2 } }$")
fx.scale(0.5)
@@ -79,29 +94,29 @@ class graphScene(GraphScene):
self.wait(1.4)
coeff=[TextMobject("$e^{-1}$"),TextMobject("$f'(x)$"),TextMobject("$\\frac { f''(x) }{ 2! } $")]
- coeff[0].shift(3.33*UP+3.65*RIGHT)
- coeff[0].scale(0.45)
- coeff[1].shift(3.33*UP+4.13*RIGHT)
- coeff[1].scale(0.275)
- coeff[2].shift(3.33*UP+5.36*RIGHT)
- coeff[2].scale(0.28)
+ coeff[0].shift(4.1*y_each_unit*UP+5.15*RIGHT*x_each_unit)
+ coeff[0].scale(0.3)
+ coeff[1].shift(4*y_each_unit*UP+5.7*RIGHT*x_each_unit)
+ coeff[1].scale(0.2)
+ coeff[2].shift(4*y_each_unit*UP+7.3*RIGHT*x_each_unit)
+ coeff[2].scale(0.18)
for obj in coeff:
obj.set_color(GOLD_A)
- firstApprox=[self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)]
- secondApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5),
- self.get_graph(lambda x:math.exp(-1)+3*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5),
- self.get_graph(lambda x:math.exp(-1)-4*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)]
- thirdApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
- self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-0.1*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
- self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_max=5.5,x_min=-5.5),
- self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+0.5*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5),
- self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5)]
+ firstApprox=[self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-3,x_max=4)]
+ secondApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-3,x_max=4),
+ self.get_graph(lambda x:math.exp(-1)+3*(x-1)*math.exp(-1),color=BLUE,x_min=-3,x_max=4),
+ self.get_graph(lambda x:math.exp(-1)-4*(x-1)*math.exp(-1),color=BLUE,x_min=-3,x_max=4)]
+ thirdApprox=[self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=4,x_min=-3),
+ self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)-0.1*math.exp(-1)*(x-1)**2,color=BLUE,x_max=4,x_min=-3),
+ self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_max=4,x_min=-3),
+ self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+0.5*math.exp(-1)*(x-1)**2,color=BLUE,x_max=4,x_min=-3),
+ self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+2*math.exp(-1)*(x-1)**2,color=BLUE,x_max=4,x_min=-3)]
- firstGraph=self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)
- secondGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-5.5,x_max=5.5)
- thirdGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+math.exp(-1)*(x-1)**2,color=BLUE,x_max=5.5,x_min=-5.5)
+ firstGraph=self.get_graph(lambda x:math.exp(-1),color=BLUE,x_min=-3,x_max=4)
+ secondGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1),color=BLUE,x_min=-3,x_max=4)
+ thirdGraph=self.get_graph(lambda x:math.exp(-1)-2*(x-1)*math.exp(-1)+math.exp(-1)*(x-1)**2,color=BLUE,x_max=4,x_min=-3)
bottomText1=TextMobject("Apply","$f(1)=T_{n}(1)$")
bottomText2=TextMobject("This gives","$a_{ 0 }=e^{-1}$")
@@ -135,16 +150,42 @@ class graphScene(GraphScene):
bottomText8.scale(0.5)
bottomText1.shift(4.5*RIGHT+2.5*DOWN)
- bottomText2.shift(4.5*RIGHT+2.5*DOWN)
- bottomText3.shift(4.5*RIGHT+2.5*DOWN)
- bottomText4.shift(4.5*RIGHT+2.5*DOWN)
- bottomText5.shift(4.5*RIGHT+2.5*DOWN)
- bottomText6.shift(4.5*RIGHT+2.5*DOWN)
- bottomText7.shift(4.5*RIGHT+2.5*DOWN)
- bottomText8.shift(4.5*RIGHT+2.5*DOWN)
+ # bottomText2.shift(4.5*RIGHT+2.5*DOWN)
+ # bottomText3.shift(4.5*RIGHT+2.5*DOWN)
+ # bottomText4.shift(4.5*RIGHT+2.5*DOWN)
+ # bottomText5.shift(4.5*RIGHT+2.5*DOWN)
+ # bottomText6.shift(4.5*RIGHT+2.5*DOWN)
+ # bottomText7.shift(4.5*RIGHT+2.5*DOWN)
+ # bottomText8.shift(4.5*RIGHT+2.5*DOWN)
+ bottomText2.shift(5*RIGHT*x_each_unit+2.5*DOWN*y_each_unit)
+ bottomText3.shift(5*RIGHT*x_each_unit+2.5*DOWN*y_each_unit)
+ bottomText4.shift(5*RIGHT*x_each_unit+2.5*DOWN*y_each_unit)
+ bottomText5.shift(5*RIGHT*x_each_unit+2.5*DOWN*y_each_unit)
+ bottomText6.shift(5.7*RIGHT*x_each_unit+2.5*DOWN*y_each_unit)
+ bottomText7.shift(5.7*RIGHT*x_each_unit+2.5*DOWN*y_each_unit)
+ bottomText8.shift(5.7*RIGHT*x_each_unit+2.5*DOWN*y_each_unit)
+
+ bottomText2.scale(0.7)
+ bottomText3.scale(0.7)
+ bottomText4.scale(0.7)
+ bottomText5.scale(0.7)
+ bottomText6.scale(0.7)
+ bottomText7.scale(0.7)
+ bottomText8.scale(0.7)
self.play(Write(bottomText1))
- self.wait(1)
+ self.wait(0.8)
+ self.camera_frame.save_state()
+ self.play(self.camera_frame.set_width, 8,
+ self.camera_frame.move_to, x_each_unit*UP+x_each_unit*2*RIGHT,
+ ApplyMethod(trTextGrup.move_to,4*y_each_unit*UP+6.1*RIGHT*x_each_unit),
+ ApplyMethod(bottomText1.move_to,5.4*RIGHT*x_each_unit+2.5*DOWN*y_each_unit),
+ ApplyMethod(equation.shift,1.39*DOWN+2*RIGHT+RIGHT*x_each_unit*2),
+ ApplyMethod(text.shift,1.39*DOWN+2*RIGHT+RIGHT*x_each_unit*2),)
+ self.play(ApplyMethod(text.scale,0.5),ApplyMethod(equation.scale,0.5),ApplyMethod(bottomText1.scale,0.6),ApplyMethod(trTextGrup.scale,0.7))
+ self.play(ApplyMethod(text.shift,0.25*UP))
+ self.wait(0.6)
+
self.play(ShowCreation(firstApprox[0]),ReplacementTransform(bottomText1,bottomText2))
#change coeff in tn(x)
self.play(ReplacementTransform(generalized_eq_coeff[0],coeff[0]))
@@ -181,10 +222,13 @@ class graphScene(GraphScene):
self.wait(2)
textFinal=TextMobject("And so on..!")
- textFinal.scale(0.7)
- textFinal.shift(4.5*RIGHT+2.5*DOWN)
+ textFinal.scale(0.35)
+ textFinal.shift(5.7*RIGHT*x_each_unit+2.5*DOWN*y_each_unit)
self.play(ReplacementTransform(bottomText8,textFinal))
- self.wait(2.5)
+ self.wait(1)
+ self.play(FadeOut(equation),FadeOut(text))
+ self.play(self.camera_frame.set_width, 15,
+ self.camera_frame.move_to, 0)
finalFormula=TextMobject("Hence","$T_{ n }(x)$","=","$f(1)+f'(1)(x-1)+\\frac { f''(1) }{ 2! }(x-1)^2+..+\\frac { { f }^{ n }(1) }{ n! } { (x-1) }^{ n }$")
finalFormula.scale(0.8)
@@ -192,4 +236,4 @@ class graphScene(GraphScene):
self.play(FadeOut(self.axes),FadeOut(textFinal),FadeOut(thirdGraph),FadeOut(trTextGrup),FadeOut(mainfunction),FadeOut(fx),FadeOut(coeff[0]),FadeOut(coeff[1]),FadeOut(coeff[2]))
self.play(Write(finalFormula))
- self.wait(2)
+ self.wait(2) \ No newline at end of file
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/video3_radiusOfConvergence.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/video3_radiusOfConvergence.py
index a68afb6..52f07bb 100644
--- a/FSF-2020/calculus/series-and-transformations/Taylor Series/video3_radiusOfConvergence.py
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/video3_radiusOfConvergence.py
@@ -2,7 +2,7 @@ from manimlib.imports import*
import math
-class graphScene(GraphScene):
+class graphScene(GraphScene,MovingCameraScene):
CONFIG = {
"x_min": -8,
"x_max": 8,
@@ -16,12 +16,15 @@ class graphScene(GraphScene):
"exclude_zero_label": True,
"x_labeled_nums": range(-8, 8, 1),
}
+ def setup(self):
+ GraphScene.setup(self)
+ MovingCameraScene.setup(self)
def construct(self):
x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
- self.setup_axes(animate=True)
+ self.setup_axes(animate=True,scalee=1)
lnx=self.get_graph(lambda x:math.log2(x),color=RED,x_min=0.01,x_max=8)
@@ -98,14 +101,23 @@ class graphScene(GraphScene):
circle=Circle(radius=ORIGIN+x_each_unit*2,color=PURPLE_E)
circle.shift(ORIGIN+RIGHT*x_each_unit*2)
- radiusLine=Line(start=ORIGIN+x_each_unit*RIGHT*2,end=ORIGIN+x_each_unit*4*RIGHT,color=PURPLE_E)
+ radiusLine=Line(start=ORIGIN+x_each_unit*RIGHT*2,end=ORIGIN+x_each_unit*2*RIGHT+y_each_unit*3*UP,color=PURPLE_E)
radius=TextMobject("$R$")
radius.set_color(RED)
radius.scale(0.5)
- radius.shift(ORIGIN+RIGHT*x_each_unit*2.45+DOWN*y_each_unit*0.6)
+ radius.shift(ORIGIN+RIGHT*x_each_unit*2.45+UP*y_each_unit*2.2)
+ rText=TextMobject("R",":","Radius of Convergence").scale(0.3).shift(x_each_unit*RIGHT*2+UP*y_each_unit*3.3).set_color_by_tex_to_color_map({"R":RED,"Radius of Convergence":YELLOW})
self.play(FadeOut(equations[6]),Write(circle))
self.wait(0.6)
self.play(Write(radiusLine))
self.play(FadeIn(radius))
- self.wait(2)
+ self.wait(0.7)
+ self.camera_frame.save_state()
+ self.play(self.camera_frame.set_width, 8,
+ self.camera_frame.move_to, y_each_unit*UP+x_each_unit*2*RIGHT)
+ self.play(Write(rText))
+ self.wait(1)
+ self.play(self.camera_frame.set_width, 15,
+ self.camera_frame.move_to,0)
+ self.wait(2) \ No newline at end of file
diff --git a/FSF-2020/calculus/series-and-transformations/Taylor Series/video4_DivergentRemainder.py b/FSF-2020/calculus/series-and-transformations/Taylor Series/video4_DivergentRemainder.py
index 5389039..1f41c97 100644
--- a/FSF-2020/calculus/series-and-transformations/Taylor Series/video4_DivergentRemainder.py
+++ b/FSF-2020/calculus/series-and-transformations/Taylor Series/video4_DivergentRemainder.py
@@ -79,4 +79,4 @@ class graphScene(GraphScene):
self.play(Write(increasingText))
self.play(FadeIn(followupText))
self.wait(2)
-
+ \ No newline at end of file
diff --git a/FSF-2020/calculus/series-and-transformations/Z-Transform/README.md b/FSF-2020/calculus/series-and-transformations/Z-Transform/README.md
new file mode 100644
index 0000000..c626bdf
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Z-Transform/README.md
@@ -0,0 +1,9 @@
+#### Sampling
+![GIF1](gifs/file1.gif)
+
+#### Z Transform of a delta function
+![GIF2](gifs/file2.gif)
+
+#### Region of convergence
+![GIF3](gifs/file3.gif)
+
diff --git a/FSF-2020/calculus/series-and-transformations/Z-Transform/gifs/file1.gif b/FSF-2020/calculus/series-and-transformations/Z-Transform/gifs/file1.gif
new file mode 100644
index 0000000..d21aa59
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Z-Transform/gifs/file1.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Z-Transform/gifs/file2.gif b/FSF-2020/calculus/series-and-transformations/Z-Transform/gifs/file2.gif
new file mode 100644
index 0000000..203be8d
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Z-Transform/gifs/file2.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Z-Transform/gifs/file3.gif b/FSF-2020/calculus/series-and-transformations/Z-Transform/gifs/file3.gif
new file mode 100644
index 0000000..0f100f1
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Z-Transform/gifs/file3.gif
Binary files differ
diff --git a/FSF-2020/calculus/series-and-transformations/Z-Transform/video1_Sampling.py b/FSF-2020/calculus/series-and-transformations/Z-Transform/video1_Sampling.py
new file mode 100644
index 0000000..47615e3
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Z-Transform/video1_Sampling.py
@@ -0,0 +1,81 @@
+from manimlib.imports import *
+import math
+
+def func(x):
+ return math.pow(x,3)-2*math.pow(x,2)-x+3
+
+class graphScene(GraphScene):
+ CONFIG = {
+ "x_min": -3,
+ "x_max": 3,
+ "y_min": -4,
+ "y_max": 4,
+ "x_tick_frequency": 0.2,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": BLUE,
+ "x_axis_label": "$t$",
+ "y_axis_label": "$f(t)$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-3, 4, 1),
+ "y_axis_height": 5,
+ "x_axis_width": 9,
+ }
+
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ fx=TextMobject("$f(t) = { t }^{ 3 }{ -2t }^{ 2 }-t+3$").set_color(RED).to_corner(UP+RIGHT).scale(0.4)
+ self.setup_axes(animate=True,scalee=1)
+ function=self.get_graph(lambda x:math.pow(x,3)-2*math.pow(x,2)-x+3,color=RED,x_min=-1,x_max=2)
+ functionArea=self.get_riemann_rectangles(function,x_min=-1,x_max=2,dx=0.01,start_color=GREEN,end_color=YELLOW,stroke_color=GREEN,fill_opacity=0.8)
+ functionDot=Dot(point=self.graph_origin,radius=0.065,color=WHITE)
+ aboveText1=TextMobject("Continuous","Time Function").shift(4*RIGHT+2*UP).scale(0.4).set_color_by_tex_to_color_map({"Continuous":YELLOW,"Time Function":BLUE})
+ aboveText2=TextMobject("Discrete","Time Function").shift(4*RIGHT+2*UP).scale(0.4).set_color_by_tex_to_color_map({"Time Function":BLUE,"Discrete":YELLOW})
+
+ bottomText1=TextMobject("Instead of considering the","function","over the","entire $t$,").shift(4.5*RIGHT+3*DOWN).scale(0.4).set_color_by_tex_to_color_map({"entire $t$,":RED,"function":YELLOW})
+ bottomText2=TextMobject("We consider only at","certain $t$").shift(4.5*RIGHT+3*DOWN).scale(0.4).set_color_by_tex_to_color_map({"certain $t$":RED})
+
+ self.play(ShowCreation(function),Write(fx),FadeIn(aboveText1))
+ self.wait(0.7)
+ self.play(Write(bottomText1))
+ self.play(ShowCreation(functionArea),MoveAlongPath(functionDot,function))
+ self.wait(0.7)
+ self.play(FadeOut(bottomText1))
+ self.play(Write(bottomText2),FadeOut(aboveText1))
+
+ dots=[Dot(radius=0.05) for i in range(10)]
+ dotShifts=[-1,-0.7,-0.4,0,0.3,0.6,1,1.3,1.6,2]
+ lines=[]
+ for x in dotShifts:
+ lines.append(Line(start=(x*x_each_unit,func(x)*y_each_unit,0),end=(x*x_each_unit,0,0),color=GREEN))
+ for i in range(10):
+ dots[i].shift(ORIGIN+RIGHT*x_each_unit*dotShifts[i]+y_each_unit*UP*func(dotShifts[i]))
+ updatedGraph=VGroup(dots[0],
+ dots[1],
+ dots[2],
+ dots[3],
+ dots[4],
+ dots[5],
+ dots[6],
+ dots[7],
+ dots[8],
+ dots[9])
+ updatedGraph1=VGroup(
+ lines[0],
+ lines[1],
+ lines[2],
+ lines[3],
+ lines[4],
+ lines[5],
+ lines[6],
+ lines[7],
+ lines[8],
+ lines[9])
+
+ self.play(FadeOut(functionDot))
+ self.play(FadeOut(function),FadeIn(updatedGraph))
+ self.play(FadeOut(functionArea),FadeIn(updatedGraph1))
+ self.play(FadeOut(bottomText2),FadeIn(aboveText2))
+ self.wait(2) \ No newline at end of file
diff --git a/FSF-2020/calculus/series-and-transformations/Z-Transform/video2_ZTransformOfDelta.py b/FSF-2020/calculus/series-and-transformations/Z-Transform/video2_ZTransformOfDelta.py
new file mode 100644
index 0000000..3063aa6
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Z-Transform/video2_ZTransformOfDelta.py
@@ -0,0 +1,121 @@
+from manimlib.imports import *
+import numpy as np
+import math
+
+class deltaTransformation(GraphScene):
+ CONFIG = {
+ "x_min": -3,
+ "x_max": 3,
+ "y_min": -5,
+ "y_max": 5,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": BLUE,
+ "x_axis_label": "$t$",
+ "y_axis_label": "$f(t)$",
+ "x_labeled_nums": range(-3, 4, 1),
+ # "y_axis_height": 4,
+ # "x_axis_width": 6,
+ }
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+ self.setup_axes(animate=True,scalee=0.8)
+ function=TextMobject("$f(t) = 2{ \delta }_{ 0 }(t)+3{ \delta }_{ 1 }(t)+4{ \delta }_{ 2 }(t)$").scale(0.4).shift(5*RIGHT+3*UP).set_color(RED)
+ self.play(FadeIn(function))
+ twoDGraph=[
+ Line(start=(0,0,0),end=(0,2*y_each_unit,0),color=GREEN),
+ Line(start=(1*x_each_unit,0,0),end=(x_each_unit,3*y_each_unit,0),color=GREEN),
+ Line(start=(2*x_each_unit,0,0),end=(2*x_each_unit,4*y_each_unit,0),color=GREEN)
+ ]
+ groupGraph=VGroup(twoDGraph[1],twoDGraph[2],self.axes,twoDGraph[0])
+ self.play(Write(twoDGraph[0]),ShowCreation(twoDGraph[1]),ShowCreation(twoDGraph[2]))
+ self.wait(1.2)
+ self.play(ApplyMethod(groupGraph.scale,0.7))
+ self.play(ApplyMethod(groupGraph.shift,5*LEFT),ApplyMethod(function.move_to,5*LEFT+3*UP))
+ self.graph_origin=2*RIGHT+2.5*DOWN
+ self.x_axis_width=6
+ self.x_axis_label="$|z|$"
+ self.y_axis_label="$|F(t)|$"
+ self.x_min=-3
+ self.x_max=6
+ self.y_min=-1
+ self.y_max=7
+ self.x_labeled_nums=range(-3,7,1)
+ self.setup_axes(animate=True,scalee=0.6)
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+ rightSideGraphs=[
+ self.get_graph(lambda x:2,x_min=0,x_max=6,color=GREEN),
+ self.get_graph(lambda x:2+3/x,x_min=0.6,x_max=6,color=GREEN),
+ self.get_graph(lambda x:2+(3/x)+(4/x**2),x_min=1.24,x_max=6,color=GREEN)
+ ]
+ graphCoeff=[
+ TextMobject("$2$").scale(0.4).shift(self.graph_origin+x_each_unit*RIGHT*2+UP*y_each_unit*2+DOWN*y_each_unit*0.5).set_color(RED),
+ TextMobject("$2+\\frac { 3 }{ |z| }$").scale(0.4).shift(self.graph_origin+x_each_unit*RIGHT*3+UP*y_each_unit*2).set_color(RED),
+ TextMobject("$2+\\frac { 3 }{ |z| } +\\frac { 4 }{ { |z| }^{ 2 } } $").scale(0.4).shift(self.graph_origin+x_each_unit*RIGHT*3.5+UP*y_each_unit*2).set_color(RED)
+ ]
+ self.play(ReplacementTransform(twoDGraph[0],rightSideGraphs[0]),FadeIn(graphCoeff[0]))
+ self.wait(0.5)
+ self.play(FadeOut(rightSideGraphs[0]),ReplacementTransform(twoDGraph[1],rightSideGraphs[1]),ReplacementTransform(graphCoeff[0],graphCoeff[1]))
+ self.wait(0.5)
+ self.play(FadeOut(rightSideGraphs[1]),ReplacementTransform(twoDGraph[2],rightSideGraphs[2]),ReplacementTransform(graphCoeff[1],graphCoeff[2]))
+
+ self.wait(2)
+
+
+class graphCont(GraphScene,MovingCameraScene):
+ CONFIG = {
+ "x_min": -3,
+ "x_max": 6,
+ "y_min": -1,
+ "y_max": 7,
+ "graph_origin": 2*RIGHT+2.5*DOWN,
+ "function_color": RED,
+ "axes_color": BLUE,
+ "x_axis_label": "$|z|$",
+ "y_axis_label": "$|F(t)|$",
+ "exclude_zero_label": True,
+ "x_labeled_nums": range(-3, 7, 1),
+ "x_axis_width": 6,
+ }
+ def setup(self):
+ GraphScene.setup(self)
+ MovingCameraScene.setup(self)
+
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ coeff=TextMobject("$2+\\frac { 3 }{ |z| } +\\frac { 4 }{ { |z| }^{ 2 } } $").scale(0.4).shift(self.graph_origin+x_each_unit*RIGHT*3.5+UP*y_each_unit*2).set_color(RED)
+ self.setup_axes(scalee=0.6)
+ graph=self.get_graph(lambda x:2+(3/x)+(4/x**2),x_min=1.24,x_max=6,color=GREEN)
+ xAxis=self.get_graph(lambda x:0,x_min=1.24,x_max=6).shift(3*LEFT)
+ self.add(graph)
+ self.add(coeff)
+ self.play(ApplyMethod((self.axes).shift,3*LEFT),ApplyMethod(coeff.shift,3*LEFT),ApplyMethod(graph.shift,3*LEFT))
+ topText=TextMobject("Here we get","output","for","any value of $|z|$").scale(0.4).shift(3*UP+3*RIGHT).set_color_by_tex_to_color_map({"output":YELLOW,"any value of $|z|$":BLUE})
+ topText1=TextMobject("Except for $|z|=0$").scale(0.7).shift(2.5*UP+3*RIGHT).set_color(RED)
+ dot1=Dot(color=WHITE,radius=0.06)
+ dot2=Dot(color=WHITE,radius=0.06)
+ self.play(Write(topText))
+ self.play(MoveAlongPath(dot1,graph),MoveAlongPath(dot2,xAxis),run_time=2)
+ self.play(Write(topText1))
+ self.play(FadeOut(dot1),FadeOut(dot2))
+ self.wait(0.5)
+ path=self.get_graph(lambda x:2+(3/x)+(4/x**2),x_min=1.24,x_max=0.8)
+ path1=self.get_graph(lambda x:0,x_min=1.24,x_max=0.8)
+ graphUpdated=self.get_graph(lambda x:2+(3/x)+(4/x**2),x_min=0.8,x_max=6,color=GREEN)
+ self.camera_frame.save_state()
+ self.play(FadeOut(graph),Write(graphUpdated))
+ self.play(self.camera_frame.set_width, 30,
+ MoveAlongPath(dot1,path),MoveAlongPath(dot2,path1),run_time=2)
+ self.wait(1)
+
+ self.play(FadeOut(dot1),FadeOut(dot2),FadeOut(graphUpdated),FadeIn(graph),self.camera_frame.set_width,15)
+ self.wait(1)
+
+
+
+
+
diff --git a/FSF-2020/calculus/series-and-transformations/Z-Transform/video3_RegionOfConvergence.py b/FSF-2020/calculus/series-and-transformations/Z-Transform/video3_RegionOfConvergence.py
new file mode 100644
index 0000000..bdfd8b3
--- /dev/null
+++ b/FSF-2020/calculus/series-and-transformations/Z-Transform/video3_RegionOfConvergence.py
@@ -0,0 +1,144 @@
+from manimlib.imports import *
+import numpy as np
+import math
+
+class graph1(GraphScene):
+ CONFIG = {
+ "x_min": -3,
+ "x_max": 5,
+ "y_min": -1,
+ "y_max": 1,
+ "graph_origin": ORIGIN,
+ "function_color": RED,
+ "axes_color": BLUE,
+ "x_axis_label": "$n$",
+ "y_axis_label": "$x(n)$",
+ "x_labeled_nums": range(-3, 6, 1),
+ "y_axis_height": 7,
+ "y_tick_frequency": 0.1,
+ }
+ def func(self,x,n):
+ summ=0
+ for i in range(n+1):
+ summ+=(1/(math.pow(x,i)))
+ return summ
+
+ def finalFunc(self,x):
+ if(x!=0):
+ return 1/(1-(1/(2*x)))
+
+
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+ self.setup_axes(animate=True,scalee=0.8)
+ function=TextMobject("$X(t)=\sum _{ n=0 }^{ \infty }{ { (0.5) }^{ n }{ z }^{ -n } }$").scale(0.4).shift(5*RIGHT+3*UP).set_color(RED)
+ self.play(FadeIn(function))
+ twoDGraph=[]
+ for i in range(5):
+ twoDGraph.append(Line(start=(i*x_each_unit,0,0),end=(i*x_each_unit,math.pow(0.5,i)*y_each_unit,0),color=GREEN))
+
+ groupGraph=VGroup(self.axes,twoDGraph[0],twoDGraph[1],twoDGraph[2],twoDGraph[3],twoDGraph[4])
+ self.play(Write(twoDGraph[0]),ShowCreation(twoDGraph[1]),ShowCreation(twoDGraph[2]),ShowCreation(twoDGraph[3]),ShowCreation(twoDGraph[4]))
+ self.wait(1.2)
+
+ self.play(ApplyMethod(groupGraph.scale,0.7))
+ self.play(ApplyMethod(groupGraph.shift,6*LEFT),ApplyMethod(function.move_to,5*LEFT+3*UP))
+
+ someText1=TextMobject("Since it is a","summation","of","infinite terms",", it might").shift(2*RIGHT+2*UP).scale(0.5).set_color_by_tex_to_color_map({"summation":YELLOW,"infinite terms":BLUE})
+ someText2=TextMobject("Converge","or","Diverge").shift(2*RIGHT+0.5*DOWN+2*UP).scale(0.7).set_color_by_tex_to_color_map({"Converge":GREEN,"Diverge":RED})
+ someText3=TextMobject("depending upon","$|z|$").shift(2*RIGHT+UP).scale(0.5).set_color_by_tex_to_color_map({"$|z|$":YELLOW})
+ self.play(Write(someText1))
+ self.play(FadeIn(someText2))
+ self.play(Write(someText3))
+ self.wait(1)
+ self.play(FadeOut(someText1),FadeOut(someText2),FadeOut(someText3))
+
+ self.graph_origin=2*RIGHT+DOWN
+ self.x_axis_width=6
+ self.y_axis_height=5
+ self.y_tick_frequency=1
+ self.x_axis_label="$|z|$"
+ self.y_axis_label="$|X(n)|$"
+ self.x_min=-3
+ self.x_max=5
+ self.y_min=-1
+ self.y_max=5
+ self.x_labeled_nums=range(-3,6,1)
+ self.setup_axes(animate=True,scalee=0.6)
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+ rightSideGraphs=[]
+ xmins=[0,0.25,0.65,0.9,1]
+ for i in range(5):
+ rightSideGraphs.append(self.get_graph(lambda x:self.func(x,i),x_min=xmins[i],x_max=5,color=GREEN))
+ rightSideGraphs.append(self.get_graph(lambda x:1/(1-(1/(2*x))),x_min=0.63,x_max=5,color=GREEN))
+
+ graphCoeff=[
+ TextMobject("$1$").scale(0.4).shift(self.graph_origin+x_each_unit*RIGHT*2+0.65*UP*y_each_unit*2+DOWN*y_each_unit*0.5).set_color(RED),
+ TextMobject("$1+\\frac { 1 }{ 2|z| }$").scale(0.4).shift(self.graph_origin+x_each_unit*RIGHT*2+UP*y_each_unit).set_color(RED),
+ TextMobject("$1+\\frac { 1 }{ 2|z| } +\\frac { 1 }{ { 2|z| }^{ 2 } } $").scale(0.4).shift(self.graph_origin+x_each_unit*RIGHT*2+UP*y_each_unit).set_color(RED),
+ TextMobject("$1+\\frac { 1 }{ 2|z| } +\\frac { 1 }{ { (2|z|) }^{ 2 } } +\\frac { 1 }{ { (2|z|) }^{ 3 } }$").scale(0.4).shift(self.graph_origin+x_each_unit*RIGHT*2+UP*y_each_unit).set_color(RED),
+ TextMobject("$1+\\frac { 1 }{ 2|z| } +\\frac { 1 }{ { (2|z|) }^{ 2 } } +\\frac { 1 }{ { (2|z|) }^{ 3 } } +\\frac { 1 }{ (2|z|)^{ 4 } } $").scale(0.4).shift(self.graph_origin+x_each_unit*RIGHT*2+UP*y_each_unit).set_color(RED),
+ TextMobject("$\\frac { 1 }{ (1-\\frac { 1 }{ 2z } ) } $").scale(0.4).shift(self.graph_origin+x_each_unit*RIGHT*2+UP*y_each_unit).set_color(RED)
+ ]
+
+ self.play(ReplacementTransform(twoDGraph[0],rightSideGraphs[0]),FadeIn(graphCoeff[0]))
+ self.wait(0.5)
+ self.play(FadeOut(rightSideGraphs[0]),ReplacementTransform(twoDGraph[1],rightSideGraphs[1]),ReplacementTransform(graphCoeff[0],graphCoeff[1]))
+ self.wait(0.5)
+ self.play(FadeOut(rightSideGraphs[1]),ReplacementTransform(twoDGraph[2],rightSideGraphs[2]),ReplacementTransform(graphCoeff[1],graphCoeff[2]))
+ self.wait(0.5)
+ self.play(FadeOut(rightSideGraphs[2]),ReplacementTransform(twoDGraph[3],rightSideGraphs[3]),ReplacementTransform(graphCoeff[2],graphCoeff[3]))
+ self.wait(0.5)
+ self.play(FadeOut(rightSideGraphs[3]),ReplacementTransform(twoDGraph[4],rightSideGraphs[4]),ReplacementTransform(graphCoeff[3],graphCoeff[4]))
+ self.wait(0.5)
+ self.play(FadeOut(rightSideGraphs[4]),ShowCreation(rightSideGraphs[5]),ReplacementTransform(graphCoeff[4],graphCoeff[5]))
+
+ self.wait(2)
+ # #self.play(FadeOut(self.axes),FadeOut(function),FadeOut(twoDGraph[0]),FadeOut(twoDGraph[1]),FadeOut(twoDGraph[2]))
+
+
+class graphCont(GraphScene,MovingCameraScene):
+ CONFIG = {
+ "x_min": -3,
+ "x_max": 5,
+ "y_min": -1,
+ "y_max": 5,
+ "graph_origin": 2*RIGHT+DOWN,
+ "function_color": RED,
+ "axes_color": BLUE,
+ "x_axis_label": "$|z|$",
+ "y_axis_label": "$|X(n)|$",
+ "x_labeled_nums": range(-3, 6, 1),
+ "x_axis_width": 6,
+ "y_axis_height": 5
+ }
+ def setup(self):
+ GraphScene.setup(self)
+ MovingCameraScene.setup(self)
+
+ def construct(self):
+ x_each_unit = self.x_axis_width / (self.x_max - self.x_min)
+ y_each_unit = self.y_axis_height / (self.y_max - self.y_min)
+
+ coeff=TextMobject("$\\frac { 1 }{ (1-\\frac { 1 }{ 2z } ) } $").scale(0.4).shift(self.graph_origin+x_each_unit*RIGHT*2+UP*y_each_unit).set_color(RED)
+ self.setup_axes(scalee=0.6)
+ graph=self.get_graph(lambda x:1/(1-(1/(2*x))),x_min=0.63,x_max=5,color=GREEN)
+
+ self.add(graph)
+ self.add(coeff)
+
+ self.play(ApplyMethod((self.axes).shift,3*LEFT),ApplyMethod(coeff.shift,3*LEFT),ApplyMethod(graph.shift,3*LEFT))
+ self.wait(1)
+
+ dashLine=DashedLine(start=self.graph_origin+3*LEFT+0.5*x_each_unit*RIGHT,end=self.graph_origin+3*LEFT+0.5*x_each_unit*RIGHT+y_each_unit*UP*5,color=YELLOW)
+ pt=TextMobject("0.5").scale(0.3).shift(self.graph_origin+3*LEFT+0.5*x_each_unit*RIGHT+DOWN*y_each_unit*0.3)
+ self.play(Write(dashLine))
+ self.play(Write(pt))
+ self.wait(0.6)
+ rectRegion=Rectangle(height=y_each_unit*5,width=x_each_unit*5,fill_color=WHITE,fill_opacity=0.3,opacity=0.3,color=BLACK).shift(1.6*RIGHT*x_each_unit+0.5*DOWN*y_each_unit+1.5*UP)
+ self.play(ShowCreation(rectRegion))
+ text=TextMobject("Region Of Convergence!").scale(0.4).shift(4.6*RIGHT+1.5*UP).set_color(GREEN)
+ self.play(FadeIn(text))
+ self.wait(2)
diff --git a/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/README.md b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/README.md
new file mode 100644
index 0000000..0305ba7
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/README.md
@@ -0,0 +1,18 @@
+# Contributer: Archit Sangal
+My Github Account : <a href="https://github.com/architsangal">architsangal</a>
+<br/></br>
+
+## Sub-Topics Covered:
++ Gramm-Schmidt Orthogonalization Process
+
+#### Video 1: Introduction to Gram-Schmidt Orthogonalization Process
+![GIF1](file7.gif)
+
+#### Video 2: Obtaining orthogonal vectors using projections
+![GIF2](file8.gif)
+
+#### Video 3: Visual Explanation of how Gram-Schmidt Orthogonalization Process give mutually orthonormal vectors
+![GIF3](file5.gif)
+
+#### Video 4: Example of Orthonormal Vectors which are different from standard basis
+![GIF4](file6.gif) \ No newline at end of file
diff --git a/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file1_introduction.py b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file1_introduction.py
new file mode 100644
index 0000000..ccd23c9
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file1_introduction.py
@@ -0,0 +1,33 @@
+from manimlib.imports import *
+
+class Orthonormal(Scene):
+ def construct(self):
+ Centre = DOWN
+ arrow_1 = Arrow(start = Centre+ORIGIN,end = Centre+1.414*(UP+RIGHT))
+ arrow_2 = Arrow(start = Centre+ORIGIN,end = Centre+2*UP)
+ arrow_1.scale(1.35)
+ arrow_2.scale(1.35)
+ text = TextMobject("This is a set of linearly independent vectors")
+ text.scale(0.75)
+ text.move_to(3*UP+3*LEFT)
+ text.set_color(PURPLE_E)
+ arrow_1.set_color(PURPLE_E)
+ arrow_2.set_color(PURPLE_E)
+ self.play(Write(text))
+ self.play(ShowCreation(arrow_1), ShowCreation(arrow_2))
+ self.wait(2)
+ text1 = TextMobject("After we apply Gram-Schmidt Orthogonalization Process to set of linearly independent vectors")
+ text1.scale(0.6)
+ text1.move_to(3*UP+2*LEFT)
+ text1.set_color(GREEN)
+ arrow_a = Arrow(start = Centre+ORIGIN,end = Centre+0.707*(UP+RIGHT))
+ arrow_a.set_color(GREEN)
+ arrow_a.scale(2)
+ self.play(Transform(text,text1))
+ self.wait(2)
+ self.play(Transform(arrow_1,arrow_a))
+ arrow_b = Arrow(start = Centre+ORIGIN,end = Centre+0.707*(UP+LEFT))
+ arrow_b.set_color(GREEN)
+ arrow_b.scale(2)
+ self.play(Transform(arrow_2,arrow_b))
+ self.wait(2) \ No newline at end of file
diff --git a/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file2_projections.py b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file2_projections.py
new file mode 100755
index 0000000..dd4b8d4
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file2_projections.py
@@ -0,0 +1,79 @@
+from manimlib.imports import *
+
+class Projections(GraphScene):
+ CONFIG = {
+ "x_min": -6,
+ "x_max": 6,
+ "y_min": -4,
+ "y_max": 4,
+ "graph_origin" : ORIGIN ,
+ }
+ def construct(self):
+
+ self.setup_axes(animate=True)
+
+ XTD = self.x_axis_width/(self.x_max-self.x_min)
+ YTD = self.y_axis_height/(self.y_max-self.y_min)
+
+ arrow_a = Arrow(start = ORIGIN, end = 4*XTD*RIGHT)
+ arrow_a.scale(1.2)
+ arrow_a.set_color(DARK_BLUE)
+ arrow_b = Arrow(start = ORIGIN, end = 2*YTD*UP+2*XTD*RIGHT)
+ arrow_b.scale(1.3)
+ arrow_b.set_color(DARK_BLUE)
+ self.play(ShowCreation(arrow_a), ShowCreation(arrow_b))
+
+ text = TextMobject(r"Consider 2 linearly independent vectors $a$ and $b$")
+ text.set_color(DARK_BLUE)
+ text.scale(0.6)
+ text.move_to(3*YTD*UP+5*XTD*LEFT)
+ text_a = TextMobject("a")
+ text_a.move_to(0.4*YTD*DOWN+3*XTD*RIGHT)
+ text_a.set_color(DARK_BLUE)
+ text_b = TextMobject("b")
+ text_b.move_to(1.5*YTD*UP+RIGHT*XTD)
+ text_b.set_color(DARK_BLUE)
+
+ self.play(Write(text),Write(text_a), Write(text_b))
+ self.wait()
+
+ arrow_b_copy = Arrow(start = ORIGIN, end = 2*YTD*UP+2*XTD*RIGHT)
+ arrow_b_copy.scale(1.25)
+
+ arrow_p = Arrow(start = ORIGIN, end = 2*XTD*RIGHT)
+ arrow_p.scale(1.5)
+ arrow_p.set_color(GOLD_E)
+
+ text_p = TextMobject("p")
+ text_p.move_to(0.25*DOWN+RIGHT)
+ text_p.set_color(GOLD_E)
+
+ self.play(FadeOut(text), Transform(arrow_b_copy,arrow_p), FadeOut(text_a), FadeOut(text_b))
+ text = TextMobject(r"$p$ is the projection of $b$ on $a$")
+ text.set_color(GOLD_E)
+ text.move_to(3*UP+4*LEFT)
+ text.scale(0.8)
+ self.play(Write(text),Write(text_p))
+ self.wait()
+
+ self.play(FadeIn(text_a), FadeIn(text_b))
+
+ arrow_o = Arrow(start = 2*XTD*RIGHT, end = 2*YTD*UP+2*XTD*RIGHT)
+ arrow_o.scale(1.5)
+ arrow_o.set_color(GREEN_E)
+
+ text_o = TextMobject("b-p")
+ text_o.move_to(UP*YTD+2.7*XTD*RIGHT)
+ text_o.set_color(GREEN_E)
+
+ self.play(ShowCreation(arrow_o))
+ self.play(FadeOut(text),Write(text_o))
+
+ text = TextMobject(r"Observe, ($b-p$) is orthogonal to $a$")
+ text.set_color(GREEN_E)
+ text.move_to(2*DOWN+4*LEFT)
+ text.scale(0.8)
+ self.play(Write(text))
+ self.wait(2)
+
+ self.play(FadeOut(self.axes), FadeOut(arrow_a), FadeOut(arrow_b), FadeOut(arrow_b_copy), FadeOut(arrow_o), FadeOut(text_a), FadeOut(text_b), FadeOut(text_o), FadeOut(text_p), FadeOut(text)) \ No newline at end of file
diff --git a/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file3_orthonormal.py b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file3_orthonormal.py
new file mode 100644
index 0000000..af51fc6
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file3_orthonormal.py
@@ -0,0 +1,333 @@
+from manimlib.imports import *
+
+class Algo(ThreeDScene):
+ def construct(self):
+
+ axes = ThreeDAxes(x_min = -5,x_max=5,y_min=-3,y_max=3,z_min=-4,z_max=4)
+ self.play(ShowCreation(axes))
+
+ text = TextMobject(r"This is the vector $\beta_1(=\left[\begin{array}{c} 4\\0\\0 \end{array}\right])$")
+ text.set_color(GREEN)
+ text.scale(0.6)
+ text.move_to(3*UP+5*LEFT)
+ self.play(Write(text))
+
+ arrow_a = Arrow(start = ORIGIN, end = 4*RIGHT)
+ arrow_a.set_color(GREEN)
+ arrow_a.scale(1.15)
+ self.play(ShowCreation(arrow_a))
+
+ text_a = TextMobject(r"$\beta_1$")
+ text_a.move_to(0.4*DOWN+3*RIGHT)
+ text_a.set_color(GREEN)
+ text_a.scale(0.75)
+ self.play(Write(text_a))
+ self.wait()
+ self.play(FadeOut(text))
+
+ text = TextMobject(r"Normalize $\beta_1$ to get $\alpha_1$")
+ text.set_color(DARK_BLUE)
+ text.scale(0.75)
+ text.move_to(3*UP+5*LEFT)
+ self.play(Write(text))
+
+ alpha_1 = Arrow(start = ORIGIN,end = RIGHT)
+ alpha_1.scale(1.9)
+ alpha_1.set_color(DARK_BLUE)
+ text_alpha_1 = TextMobject(r"$\alpha_1$")
+ text_alpha_1.move_to(0.4*DOWN+RIGHT)
+ text_alpha_1.set_color(DARK_BLUE)
+ text_alpha_1.scale(0.75)
+ self.play(Transform(text_a,text_alpha_1), Transform(arrow_a,alpha_1))
+ self.wait()
+ self.play(FadeOut(text))
+
+ text = TextMobject(r"Consider another vector $\beta_2(=\left[\begin{array}{c} 2\\2\\0 \end{array}\right])$")
+ text1 = TextMobject(r"which is linearly independent to $\beta_1$")
+ text.set_color(GREEN)
+ text1.set_color(GREEN)
+ text.scale(0.6)
+ text1.scale(0.6)
+ text.move_to(3*UP+4*LEFT)
+ text1.move_to(2*UP+4*LEFT)
+ self.play(Write(text))
+ self.play(Write(text1))
+
+ arrow_b = Arrow(start = ORIGIN, end = 2*UP+2*RIGHT)
+ arrow_b.scale(1.2)
+ arrow_b.set_color(GREEN)
+ text_b = TextMobject(r"$\beta_2$")
+ text_b.move_to(1.5*UP+RIGHT)
+ text_b.set_color(GREEN)
+ text_b.scale(0.75)
+
+ self.play(ShowCreation(arrow_b), Write(text_b))
+ self.wait()
+
+ arrow_b_copy = Arrow(start = ORIGIN, end = 2*UP+2*RIGHT)
+ arrow_b_copy.scale(1.2)
+
+ arrow_p = Arrow(start = ORIGIN, end = 2*RIGHT)
+ arrow_p.scale(1.35)
+ arrow_p.set_color(GOLD_E)
+
+ text_p = TextMobject("p")
+ text_p.move_to(0.25*DOWN+RIGHT)
+ text_p.set_color(GOLD_E)
+
+ self.play(FadeOut(text), FadeOut(text1), Transform(arrow_b_copy,arrow_p), FadeOut(text_a), FadeOut(text_b))
+ text = TextMobject(r"$p$ is the projection of $\beta_2$ on $\alpha_1$")
+ text.set_color(GOLD_E)
+ text.move_to(3*UP+4*LEFT)
+ text.scale(0.8)
+ self.play(Write(text),Write(text_p))
+ self.wait()
+
+ self.play(FadeIn(text_b))
+
+ arrow_o = Arrow(start = 2*RIGHT, end = 2*UP+2*RIGHT)
+ arrow_o.scale(1.35)
+ arrow_o.set_color(PURPLE_E)
+
+ text_o = TextMobject(r"$\beta_2-p$")
+ text_o.move_to(UP+2.7*RIGHT)
+ text_o.scale(0.75)
+ text_o.set_color(PURPLE_E)
+
+ self.play(ShowCreation(arrow_o))
+ self.play(FadeOut(text),Write(text_o))
+
+ text = TextMobject(r"$\beta_2-p$ is orthogonal to p")
+ text1 = TextMobject(r"(and hence orthogonal to $\alpha_1$ also)")
+ text.set_color(PURPLE_E)
+ text1.set_color(PURPLE_E)
+ text.scale(0.7)
+ text1.scale(0.7)
+ text.move_to(3*UP+4*LEFT)
+ text1.move_to(2.5*UP+4*LEFT)
+ self.play(Write(text))
+ self.play(Write(text1))
+ self.wait(2)
+
+ self.play(FadeOut(text_p), FadeIn(arrow_a), FadeOut(text), FadeOut(text1), FadeOut(arrow_b_copy), FadeOut(arrow_p), FadeOut(text_b), FadeOut(arrow_b))
+ self.play(ApplyMethod(arrow_o.move_to,UP), ApplyMethod(text_o.move_to,RIGHT+UP))
+
+ text = TextMobject(r"Now, Normalize $\beta_2-p$")
+ text.set_color(DARK_BLUE)
+ text.scale(0.6)
+ text.move_to(3*UP+4*LEFT)
+ self.play(Write(text))
+
+ alpha_2 = Arrow(start = ORIGIN,end = UP)
+ alpha_2.scale(1.9)
+ alpha_2.set_color(DARK_BLUE)
+ text_alpha_2 = TextMobject(r"$\alpha_2$")
+ text_alpha_2.move_to(0.4*LEFT+UP)
+ text_alpha_2.set_color(DARK_BLUE)
+ text_alpha_2.scale(0.75)
+ self.play(Transform(text_o,text_alpha_2), Transform(arrow_o,alpha_2), FadeIn(text_a))
+ self.wait()
+ self.play(FadeOut(text),FadeOut(text_a),FadeOut(text_o))
+
+ self.add(axes)
+ #############################################################################
+ axis = TextMobject(r"$\alpha_1$",r"$\alpha_2$",r"$\alpha_3$",r"$\beta_3$",r"$\alpha_3$",r"$\alpha_3$",r"$\alpha_3$",r"$\alpha_3$")
+ axis.scale(0.5)
+ axis[0].move_to(0.5*RIGHT+[0,0,-0.5])
+ axis[1].move_to(0.5*UP+[0,0,-0.5])
+ axis[2].move_to(np.array([0,0,0.5]))
+ axis[3].move_to(np.array([1,1,1.5]))
+ self.add_fixed_orientation_mobjects(axis[0])
+ self.add_fixed_orientation_mobjects(axis[1])
+ #############################################################################
+
+ text = TextMobject(r"These are the same two orthonormal vectors $\alpha_{1}$ and $\alpha_{2}$")
+ text.scale(0.6)
+ text.set_color(DARK_BLUE)
+ self.add_fixed_in_frame_mobjects(text)
+ text.move_to(3*(DOWN+RIGHT))
+ self.play(Write(text))
+
+ self.move_camera(phi=60*DEGREES,theta=45*DEGREES,run_time=3)
+ self.begin_ambient_camera_rotation(rate=0.3)
+
+ line1 = Line(start = ORIGIN,end = 1*RIGHT)
+ line1.set_color(DARK_BLUE)
+ tip1 = Polygon(RIGHT,0.8*RIGHT-0.2*DOWN,0.8*RIGHT-0.2*UP)
+ tip1.set_opacity(1)
+ tip1.set_fill(DARK_BLUE)
+ tip1.set_color(DARK_BLUE)
+
+ arrow2 = Line(start = ORIGIN,end = 1*UP)
+ arrow2.set_color(DARK_BLUE)
+ tip2 = Polygon(UP,0.8*UP-0.2*RIGHT,0.8*UP-0.2*LEFT)
+ tip2.set_opacity(1)
+ tip2.set_fill(DARK_BLUE)
+ tip2.set_color(DARK_BLUE)
+ arrow2.set_color(DARK_BLUE)
+
+ self.play(ShowCreation(line1), ShowCreation(tip1), ShowCreation(arrow2), ShowCreation(tip2), FadeOut(arrow_a), FadeOut(arrow_o))
+ self.wait()
+
+ a_line = Line(start = ORIGIN,end = 2*UP+2*RIGHT+[0,0,2])
+ a_line.set_color(GOLD_E)
+ a_tip = Polygon(2*UP+2*RIGHT+[0,0,2],2*UP+1.6*RIGHT+[0,0,1.8],1.6*UP+2*RIGHT+[0,0,1.8])
+ a_tip.set_opacity(1)
+ a_tip.set_fill(GOLD_E)
+ a_tip.set_color(GOLD_E)
+
+ a_line_c1 = Line(start = ORIGIN,end = 2*UP+2*RIGHT+[0,0,2])
+ a_line_c1.set_color(GOLD_E)
+ a_tip_c1 = Polygon(2*UP+2*RIGHT+[0,0,2],2*UP+1.6*RIGHT+[0,0,1.8],1.6*UP+2*RIGHT+[0,0,1.8])
+ a_tip_c1.set_opacity(1)
+ a_tip_c1.set_fill(GOLD_E)
+ a_tip_c1.set_color(GOLD_E)
+
+ self.play(FadeOut(text), ShowCreation(a_line), ShowCreation(a_tip), ShowCreation(a_line_c1), ShowCreation(a_tip_c1))
+
+ text = TextMobject(r"Now, we have a vector $\beta_3(=\left[\begin{array}{c} 2\\2\\2 \end{array}\right])$")
+ text.set_color(GOLD_E)
+ text.scale(0.7)
+ self.add_fixed_in_frame_mobjects(text)
+ self.add_fixed_orientation_mobjects(axis[3])
+ text.move_to(3*(DOWN+RIGHT))
+ self.play(Write(text))
+ self.wait()
+ self.play(FadeOut(text))
+
+ p_line1 = Line(start = ORIGIN,end = 2*RIGHT)
+ p_line1.set_color(GOLD_E)
+ p_tip1 = Polygon(RIGHT,0.8*RIGHT+0.2*DOWN,0.8*RIGHT+0.2*UP)
+ p_tip1.move_to(2*RIGHT)
+ p_tip1.set_opacity(1)
+ p_tip1.set_fill(GOLD_E)
+ p_tip1.set_color(GOLD_E)
+
+ self.play(Transform(a_line_c1,p_line1),Transform(a_tip_c1,p_tip1))
+
+ text = TextMobject(r"Take projection of $\beta_3$ on $\alpha_1$")
+ text.scale(0.6)
+ text.set_color(GOLD_E)
+ self.add_fixed_in_frame_mobjects(text)
+ text.move_to(3*(DOWN+RIGHT))
+ self.play(Write(text))
+ self.wait()
+ self.play(FadeOut(text))
+
+ o_line1 = Line(start = 2*RIGHT,end = 2*UP+2*RIGHT+[0,0,2])
+ o_line1.set_color(GREEN_E)
+ o_tip1 = Polygon(2*UP+2*RIGHT+[0,0,2],1.8*UP+2*RIGHT+[0,0,1.8]+0.2*RIGHT,1.8*UP+2*RIGHT+[0,0,1.8]-0.2*RIGHT)
+ o_tip1.set_opacity(1)
+ o_tip1.set_fill(GREEN_E)
+ o_tip1.set_color(GREEN_E)
+
+ a_line1 = Line(start = ORIGIN,end = 2*UP+[0,0,2])
+ a_line1.set_color(GREEN_E)
+ a_tip1 = Polygon(2*UP+[0,0,2],1.8*UP+[0,0,1.8]+0.2*RIGHT,1.8*UP+[0,0,1.8]-0.2*RIGHT)
+ a_tip1.set_opacity(1)
+ a_tip1.set_fill(GREEN_E)
+ a_tip1.set_color(GREEN_E)
+
+ a_line1_c1 = Line(start = ORIGIN,end = 2*UP+[0,0,2])
+ a_line1_c1.set_color(GREEN_E)
+ a_tip1_c1 = Polygon(2*UP+[0,0,2],1.8*UP+[0,0,1.8]+0.2*RIGHT,1.8*UP+[0,0,1.8]-0.2*RIGHT)
+ a_tip1_c1.set_opacity(1)
+ a_tip1_c1.set_fill(GREEN_E)
+ a_tip1_c1.set_color(GREEN_E)
+
+ text = TextMobject(r"$\beta_3$-(projection of $\beta_3$ on $\alpha_1$)")
+ text.set_color(GREEN_E)
+ text.scale(0.6)
+ self.add_fixed_in_frame_mobjects(text)
+ text.move_to(3*(DOWN+RIGHT))
+ self.play(Write(text))
+ self.play(ShowCreation(o_line1), ShowCreation(o_tip1))
+ self.wait(2)
+ self.play(FadeOut(a_line_c1), FadeOut(a_tip_c1),
+ FadeOut(a_line), FadeOut(a_tip), FadeOut(axis[3]),
+ Transform(o_line1,a_line1), Transform(o_tip1,a_tip1))
+
+ self.wait()
+ self.play(FadeOut(text))
+
+ p_arrow2 = Line(start = ORIGIN,end = 2*UP)
+ p_arrow2.set_color(GOLD_E)
+ p_tip2 = Polygon(2*UP,1.8*UP+0.2*RIGHT,1.8*UP+0.2*LEFT)
+ p_tip2.set_opacity(1)
+ p_tip2.set_fill(GOLD_E)
+ p_tip2.set_color(GOLD_E)
+ p_arrow2.set_color(GOLD_E)
+
+ last_a = Line(start = 2*UP,end = [0,2,2])
+ last_a.set_color(PURPLE_E)
+ last_a_tip = Polygon([0,0,2],[0,0,1.8]+0.2*RIGHT,[0,0,1.8]+0.2*LEFT)
+ last_a_tip.move_to([0,2,2])
+ last_a_tip.set_opacity(1)
+ last_a_tip.set_fill(PURPLE_E)
+ last_a_tip.set_color(PURPLE_E)
+
+ self.wait()
+ text = TextMobject(r"Take projection on $\alpha_2$")
+ text.scale(0.6)
+ text.set_color(GOLD_E)
+ self.add_fixed_in_frame_mobjects(text)
+ text.move_to(3*(DOWN+RIGHT))
+ self.play(Write(text))
+ self.play(Transform(a_line1_c1,p_arrow2),Transform(a_tip1_c1,p_tip2))
+ self.wait()
+ self.play(FadeOut(text))
+
+ text = TextMobject(r"$\beta_3$-(projection of $\beta_3$ on $\alpha_1$ + projection of $\beta_3$ on $\alpha_2$)")
+ text.set_color(PURPLE_E)
+ text.scale(0.6)
+ self.add_fixed_in_frame_mobjects(text)
+ text.move_to(3*DOWN+3.5*RIGHT)
+ self.play(Write(text))
+ self.play(ShowCreation(o_line1), ShowCreation(o_tip1))
+ self.wait(2)
+ self.play(ShowCreation(last_a_tip), ShowCreation(last_a))
+ self.wait()
+ self.play(FadeOut(text))
+
+ larrow3 = Line(start = ORIGIN,end = [0,0,2])
+ larrow3.set_color(PURPLE_E)
+ ltip3 = Polygon([0,0,2],[0,0,1.8]+0.2*RIGHT,[0,0,1.8]+0.2*LEFT)
+ ltip3.set_opacity(1)
+ ltip3.set_fill(PURPLE_E)
+ ltip3.set_color(PURPLE_E)
+ self.wait()
+ self.play(FadeOut(o_line1), FadeOut(o_tip1), FadeOut(a_line1_c1), FadeOut(a_tip1_c1), Transform(last_a,larrow3), Transform(last_a_tip,ltip3))
+
+ text = TextMobject(r"Normalize, the vector")
+ text1 = TextMobject(r"$\beta_3$-(projection of $\beta_3$ on $\alpha_1$ + projection of $\beta_3$ on $\alpha_2$")
+ text.set_color(PURPLE_E)
+ text1.set_color(PURPLE_E)
+ text.scale(0.6)
+ text1.scale(0.6)
+ self.add_fixed_in_frame_mobjects(text)
+ self.add_fixed_in_frame_mobjects(text1)
+ text.move_to(3*DOWN+3*RIGHT)
+ text1.move_to(3.5*DOWN+3*RIGHT)
+ self.play(Write(text))
+ self.play(Write(text1))
+
+ arrow3 = Line(start = ORIGIN,end = [0,0,1])
+ arrow3.set_color(DARK_BLUE)
+ tip3 = Polygon([0,0,1],[0,0,0.8]-0.2*RIGHT,[0,0,0.8]-0.2*LEFT)
+ tip3.set_opacity(1)
+ tip3.set_fill(DARK_BLUE)
+ tip3.set_color(DARK_BLUE)
+ self.play(Transform(last_a,arrow3), Transform(last_a_tip,tip3))
+ self.add_fixed_orientation_mobjects(axis[2])
+
+ self.wait()
+ self.play(FadeOut(text),FadeOut(text1))
+
+ text = TextMobject(r"These are the three orthonormal vectors $\alpha_1, \alpha_2, \alpha_3$")
+ text.set_color(DARK_BLUE)
+ self.add_fixed_in_frame_mobjects(text)
+ text.scale(0.6)
+ text.move_to(3*DOWN+3.5*RIGHT)
+ self.play(Write(text))
+
+ self.wait(3) \ No newline at end of file
diff --git a/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file4_Non_Standard_Basis.py b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file4_Non_Standard_Basis.py
new file mode 100644
index 0000000..6410a2c
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file4_Non_Standard_Basis.py
@@ -0,0 +1,51 @@
+from manimlib.imports import *
+
+class NSB(ThreeDScene):
+ def construct(self):
+
+ axes = ThreeDAxes(x_min = -4,x_max=4,y_min=-4,y_max=4,z_min=-4,z_max=4)
+ self.play(ShowCreation(axes))
+ self.move_camera(phi=60*DEGREES,theta=45*DEGREES,run_time=3)
+ self.begin_ambient_camera_rotation(rate=0.5)
+
+ matrix = [[0.577,0.577,0.577],[-0.577,0.577,0.577],[0.577,-0.577,0.577]]
+
+ line1 = Line(start = ORIGIN,end = 1*RIGHT)
+ line1.set_color(DARK_BLUE)
+ tip1 = Polygon(RIGHT,0.9*RIGHT-0.1*DOWN,0.9*RIGHT-0.1*UP)
+ tip1.set_opacity(1)
+ tip1.set_fill(DARK_BLUE)
+ tip1.set_color(DARK_BLUE)
+
+ arrow2 = Line(start = ORIGIN,end = 1*UP)
+ arrow2.set_color(DARK_BLUE)
+ tip2 = Polygon(UP,0.9*UP-0.1*RIGHT,0.9*UP-0.1*LEFT)
+ tip2.set_opacity(1)
+ tip2.set_fill(DARK_BLUE)
+ tip2.set_color(DARK_BLUE)
+ arrow2.set_color(DARK_BLUE)
+
+ arrow3 = Line(start = ORIGIN,end = [0,0,1])
+ arrow3.set_color(DARK_BLUE)
+ tip3 = Polygon([0,0,1],[0,0,0.9]-0.1*RIGHT,[0,0,0.9]-0.1*LEFT)
+ tip3.set_opacity(1)
+ tip3.set_fill(DARK_BLUE)
+ tip3.set_color(DARK_BLUE)
+
+ line1.apply_matrix(matrix)
+ tip1.apply_matrix(matrix)
+ arrow2.apply_matrix(matrix)
+ tip2.apply_matrix(matrix)
+ arrow3.apply_matrix(matrix)
+ tip3.apply_matrix(matrix)
+
+ self.play(ShowCreation(line1), ShowCreation(tip1), ShowCreation(arrow2), ShowCreation(tip2), ShowCreation(arrow3), ShowCreation(tip3))
+
+ text = TextMobject(r"This is also a set of Orthonormal Vectors")
+ text.set_color(DARK_BLUE)
+ self.add_fixed_in_frame_mobjects(text)
+ text.scale(0.6)
+ text.move_to(3*DOWN+3.5*RIGHT)
+ self.play(Write(text))
+
+ self.wait(7) \ No newline at end of file
diff --git a/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file5.gif b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file5.gif
new file mode 100644
index 0000000..2ce3577
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file5.gif
Binary files differ
diff --git a/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file6.gif b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file6.gif
new file mode 100644
index 0000000..7cd7b3d
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file6.gif
Binary files differ
diff --git a/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file7.gif b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file7.gif
new file mode 100644
index 0000000..19a13dd
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file7.gif
Binary files differ
diff --git a/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file8.gif b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file8.gif
new file mode 100644
index 0000000..0ef4551
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Gram-Schmidt-Orthonormalization-Process/file8.gif
Binary files differ
diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/README.md b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/README.md
new file mode 100644
index 0000000..c286736
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/README.md
@@ -0,0 +1,30 @@
+# Contributer: Archit Sangal
+My Github Account : <a href="https://github.com/architsangal">architsangal</a>
+<br/></br>
+
+## Sub-Topics Covered:
++ Linear Transformations (Linear Maps)
+
+#### Video 1: Visually understanding linear transformation(using grid)
+![GIF1](file12.gif)
+
+#### Video 2: Linear Transformation when form 1 is given
+![GIF2](file11.gif)
+
+#### Video 3: Matrix Representation Of Linear Transformation
+![GIF3](file9.gif)
+
+#### Video 4: Understand Linear Transformations visually
+![GIF4](file13.gif)
+
+#### Video 5: Uniform Scaling
+![GIF5](file14.gif)
+
+#### Fig.1 Horizontal Shear
+![GIF6](file6_Horizontal_Shear_gif.gif)
+
+#### Fig.2 Vertical Shear
+![GIF7](file7_Vertical_Shear_gif.gif)
+
+#### Video 6: Rotation by an angle of in anticlockwise direction
+![GIF8](file10.gif) \ No newline at end of file
diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file.txt b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file.txt
deleted file mode 100644
index cae98ce..0000000
--- a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file.txt
+++ /dev/null
@@ -1,3 +0,0 @@
-file 'text.mp4'
-file 'LinearTransformation.mp4'
-file 'NonLinearTransformation.mp4'
diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file10.gif b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file10.gif
new file mode 100644
index 0000000..d996130
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file10.gif
Binary files differ
diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file11.gif b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file11.gif
new file mode 100644
index 0000000..e9f4b08
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file11.gif
Binary files differ
diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file12.gif b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file12.gif
new file mode 100644
index 0000000..683f586
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file12.gif
Binary files differ
diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file13.gif b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file13.gif
new file mode 100644
index 0000000..ba6c156
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file13.gif
Binary files differ
diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file14.gif b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file14.gif
new file mode 100644
index 0000000..fd9bc7b
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file14.gif
Binary files differ
diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file2_before_matrix.py b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file2_before_matrix.py
new file mode 100755
index 0000000..96e456d
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file2_before_matrix.py
@@ -0,0 +1,232 @@
+from manimlib.imports import *
+
+class Linear(GraphScene):
+
+ CONFIG = {
+ "x_min": -5,
+ "x_max": 5,
+ "y_min": -5,
+ "y_max": 5,
+ "graph_origin": ORIGIN,
+ "x_labeled_nums": list(range(-5, 6)),
+ "y_labeled_nums": list(range(-5, 6)),
+ "x_axis_width": 7,
+ "y_axis_height": 7,
+ }
+
+ def construct(self):
+
+ XTD = self.x_axis_width/(self.x_max- self.x_min)
+ YTD = self.y_axis_height/(self.y_max- self.y_min)
+
+ self.setup_axes(animate = True)
+ heading = TextMobject(r"$T(x,y) = T(x+2y,x-y)$")
+ heading.move_to(UP*3+LEFT*4)
+ heading.scale(0.7)
+ self.play(Write(heading))
+ self.wait()
+
+ before = TextMobject("Before Linear Transformation")
+ before.set_color(ORANGE)
+ before.move_to(3*UP+4*RIGHT)
+ before.scale(0.75)
+ dot1 = Dot().shift(self.graph_origin+1*XTD*RIGHT+1*YTD*UP)
+ dot2 = Dot().shift(self.graph_origin+2*XTD*RIGHT+1*YTD*UP)
+ dot1.set_color(ORANGE)
+ dot2.set_color(ORANGE)
+ p1 = TextMobject(r"$P_1$")
+ p1.scale(0.75)
+ p1.set_color(ORANGE)
+ p1.move_to(self.graph_origin+1*XTD*RIGHT+1.5*YTD*UP)
+ p2 = TextMobject(r"$P_2$")
+ p2.set_color(ORANGE)
+ p2.scale(0.75)
+ p2.move_to(self.graph_origin+2*XTD*RIGHT+1.5*YTD*UP)
+
+ after = TextMobject("After applying Linear Transformation")
+ after.set_color(YELLOW)
+ after.move_to(3*UP+4.5*RIGHT)
+ after.scale(0.5)
+ dot3 = Dot().shift(self.graph_origin+3*XTD*RIGHT+0*YTD*UP)
+ dot4 = Dot().shift(self.graph_origin+4*XTD*RIGHT+1*YTD*UP)
+ dot3.set_color(YELLOW)
+ dot4.set_color(YELLOW)
+ p3 = TextMobject(r"$T(P_1)$")
+ p3.scale(0.7)
+ p3.set_color(YELLOW)
+ p3.move_to(self.graph_origin+3*XTD*RIGHT-1.1*YTD*UP)
+ p4 = TextMobject(r"$T(P_2)$")
+ p4.scale(0.7)
+ p4.set_color(YELLOW)
+ p4.move_to(self.graph_origin+4*XTD*RIGHT+1.5*YTD*UP)
+
+ self.play(Write(before), ShowCreation(dot1), ShowCreation(dot2),Write(p1), Write(p2))
+ self.wait(3)
+ self.play(Transform(before,after), Transform(dot1,dot3), Transform(dot2,dot4), Transform(p2,p4), Transform(p1,p3))
+ self.wait(3)
+
+
+class withgrid(LinearTransformationScene):
+ def construct(self):
+
+ heading = TextMobject(r"Now, Imagine this happening for all the vectors")
+ heading.scale(0.5)
+ heading.move_to(UP*2.5+LEFT*4)
+ self.play(Write(heading))
+ self.wait()
+
+ before = TextMobject("Before Linear Transformation")
+ before.set_color(ORANGE)
+ before.move_to(3.5*UP+4*RIGHT)
+ before.scale(0.75)
+ dot1 = Dot().shift(1*RIGHT+1*UP)
+ dot2 = Dot().shift(2*RIGHT+1*UP)
+ dot1.set_color(ORANGE)
+ dot2.set_color(ORANGE)
+
+ dot1_c = Dot(radius = 0.05).shift(1*RIGHT+1*UP)
+ dot2_c = Dot(radius = 0.05).shift(2*RIGHT+1*UP)
+ dot1_c.set_color(YELLOW)
+ dot2_c.set_color(YELLOW)
+ self.add_transformable_mobject(dot1_c)
+ self.add_transformable_mobject(dot2_c)
+
+ p1 = TextMobject(r"$P_1$")
+ p1.scale(0.75)
+ p1.set_color(ORANGE)
+ p1.move_to(1*RIGHT+1.5*UP)
+ p2 = TextMobject(r"$P_2$")
+ p2.scale(0.75)
+ p2.set_color(ORANGE)
+ p2.move_to(2*RIGHT+1.5*UP)
+
+ after = TextMobject("After applying Linear Transformation")
+ after.set_color(YELLOW)
+ after.move_to(3.5*UP+3.5*RIGHT)
+ after.scale(0.75)
+ dot3 = Dot().shift(3*RIGHT+0*UP)
+ dot4 = Dot().shift(4*RIGHT+1*UP)
+ dot3.set_color(YELLOW)
+ dot4.set_color(YELLOW)
+ p3 = TextMobject(r"$T(P_1)$")
+ p3.scale(0.75)
+ p3.set_color(YELLOW)
+ p3.move_to(3*RIGHT-0.6*UP)
+ p4 = TextMobject(r"$T(P_2)$")
+ p4.scale(0.75)
+ p4.set_color(YELLOW)
+ p4.move_to(4*RIGHT+1.5*UP)
+
+ self.play(Write(before), ShowCreation(dot1), ShowCreation(dot2),Write(p1), Write(p2))
+ self.wait(3)
+ matrix = [[1,2],[1,-1]]
+ dot1.set_color(GREY)
+ dot2.set_color(GREY)
+ self.play(FadeIn(dot1),FadeIn(dot2))
+ self.apply_matrix(matrix)
+ self.play(Transform(before,after), Transform(p2,p4), Transform(p1,p3))
+ self.play(Transform(before,after))
+ self.wait(3)
+
+ ending = TextMobject(r"$T(\left[\begin{array}{c}x \\ y\end{array}\right]) = \left[\begin{array}{c} x+2y \\ x-y\end{array}\right]$")
+ ending.move_to(UP*2+LEFT*4)
+ self.play(Transform(heading,ending))
+ self.wait()
+
+from manimlib.imports import *
+class ThreeDExplanation(ThreeDScene):
+
+ def construct(self):
+
+ text = TextMobject(r"$T(x,y) = (x+y,x-y,x+2y)$")
+ text.scale(0.75)
+ text.move_to(UP*2.5+LEFT*4)
+ self.add_fixed_in_frame_mobjects(text)
+ self.play(Write(text))
+ self.wait()
+
+ before = TextMobject("Before Linear Transformation")
+ self.add_fixed_in_frame_mobjects(before)
+ before.set_color(ORANGE)
+ before.move_to(3.5*UP+4*RIGHT)
+ before.scale(0.75)
+
+ p1 = TextMobject(r"$P_1$")
+ p2 = TextMobject(r"$P_2$")
+ p3 = TextMobject(r"$P_3$")
+ p1.scale(0.75)
+ p2.scale(0.75)
+ p3.scale(0.75)
+ dot1 = Dot().shift(1*RIGHT+1*UP)
+ dot2 = Dot().shift(2*RIGHT+1*UP)
+ dot3 = Dot().shift(1*RIGHT+1*DOWN)
+ dot1.set_color(ORANGE)
+ dot2.set_color(ORANGE)
+ dot3.set_color(ORANGE)
+ self.play(ShowCreation(before))
+
+ p1.move_to(1*RIGHT+1*UP+[0,0,0.5])
+ p2.move_to(2*RIGHT+1*UP+[0,0,0.5])
+ p3.move_to(1*RIGHT-1*UP+[0,0,0.5])
+
+ dot1_c = Dot(radius = 0.05).shift(1*RIGHT+1*UP)
+ dot2_c = Dot(radius = 0.05).shift(0*RIGHT+2*UP)
+ dot3_c = Dot(radius = 0.05).shift(1*RIGHT-1*UP)
+ dot1_c.set_color(YELLOW)
+ dot2_c.set_color(YELLOW)
+ dot3_c.set_color(YELLOW)
+
+ axes = ThreeDAxes(x_min = -7,x_max=7,y_min=-4,y_max=4,z_min=-4,z_max=4)
+ self.play(ShowCreation(axes))
+ self.move_camera(distance = 100, phi=30*DEGREES,theta=45*DEGREES,run_time=3)
+
+ self.begin_ambient_camera_rotation(rate=0.3)
+ self.wait(1)
+ self.stop_ambient_camera_rotation()
+
+ plane = NumberPlane()
+ self.add_fixed_orientation_mobjects(p1)
+ self.add_fixed_orientation_mobjects(p2)
+ self.add_fixed_orientation_mobjects(p3)
+ self.play(ShowCreation(dot1),ShowCreation(dot3),ShowCreation(dot2),ShowCreation(plane))
+
+ self.play(FadeOut(before))
+ after = TextMobject("After applying Linear Transformation")
+ self.add_fixed_in_frame_mobjects(after)
+ after.set_color(YELLOW)
+ after.move_to(3.5*UP+3.5*RIGHT)
+ after.scale(0.75)
+
+ self.play(FadeOut(p1),FadeOut(p2),FadeOut(p3))
+ matrix = [[1,1],[1,-1],[2,1]]
+ self.play(FadeOut(dot1),FadeOut(dot2),FadeOut(dot3),ApplyMethod(plane.apply_matrix,matrix),ApplyMethod(dot1_c.apply_matrix,matrix),ApplyMethod(dot3_c.apply_matrix,matrix),ApplyMethod(dot2_c.apply_matrix,matrix))
+
+ p4 = TextMobject(r"$T(P_1)$")
+ p5 = TextMobject(r"$T(P_2)$")
+ p6 = TextMobject(r"$T(P_3)$")
+ p4.scale(0.75)
+ p5.scale(0.75)
+ p6.scale(0.75)
+ p4.move_to(2*RIGHT+0*UP+[0,0,3.5])
+ p5.move_to(2*RIGHT-2*UP+[0,0,2.5])
+ p6.move_to(0*RIGHT+2*UP+[0,0,1.5])
+ self.add_fixed_orientation_mobjects(p5)
+ self.add_fixed_orientation_mobjects(p4)
+ self.add_fixed_orientation_mobjects(p6)
+
+ self.begin_ambient_camera_rotation(rate=0.3)
+ self.wait(3)
+ self.stop_ambient_camera_rotation()
+
+ ending = TextMobject(r"$T(\left[\begin{array}{c}x \\ y\end{array}\right]) = \left[\begin{array}{c} x+y \\ x-y \\ x+2y \end{array}\right]$")
+ ending.scale(0.75)
+ ending.move_to(-UP*2+LEFT*4)
+ self.play(Transform(text,ending))
+ self.add_fixed_in_frame_mobjects(ending)
+
+ self.play(FadeOut(plane))
+ self.wait(3)
+
+ self.begin_ambient_camera_rotation(rate=0.5)
+ self.wait(5)
+ self.stop_ambient_camera_rotation()
diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file3_square.py b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file3_square.py
new file mode 100644
index 0000000..e828de4
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file3_square.py
@@ -0,0 +1,246 @@
+from manimlib.imports import *
+
+class Linear(GraphScene):
+ CONFIG = {
+ "x_min": -5,
+ "x_max": 5,
+ "y_min": -5,
+ "y_max": 5,
+ "graph_origin": ORIGIN,
+ "x_labeled_nums": list(range(-5, 6)),
+ "y_labeled_nums": list(range(-5, 6)),
+ "x_axis_width": 7,
+ "y_axis_height": 7,
+ }
+ def construct(self):
+
+ text = TextMobject("T(x,y) = T(x+y,y)")
+ text.scale(0.75)
+ text.set_color(PURPLE)
+ text.move_to(3*UP+5*LEFT)
+ self.play(Write(text))
+
+ XTD = self.x_axis_width/(self.x_max- self.x_min)
+ YTD = self.y_axis_height/(self.y_max- self.y_min)
+
+ self.setup_axes(animate = True)
+
+ text1 = TextMobject("Before Linear Transformation")
+ text1.scale(0.6)
+ text1.move_to(UP*3+3*RIGHT)
+
+ a = TextMobject("(1,1)")
+ b = TextMobject("(3,1)")
+ c = TextMobject("(3,2)")
+ d = TextMobject("(1,2)")
+ a.scale(0.5)
+ b.scale(0.5)
+ c.scale(0.5)
+ d.scale(0.5)
+ a.move_to(self.graph_origin+0.6*UP+0.6*RIGHT)
+ b.move_to(self.graph_origin+0.6*UP+3.4*RIGHT)
+ c.move_to(self.graph_origin+2.4*UP+3.4*RIGHT)
+ d.move_to(self.graph_origin+2.6*UP+0.6*RIGHT)
+
+ square = Polygon(self.graph_origin+UP+RIGHT,self.graph_origin+UP+3*RIGHT,self.graph_origin+2*UP+3*RIGHT,self.graph_origin+2*UP+RIGHT)
+
+ self.play(Write(text1), Write(a), Write(b), Write(c), Write(d), ShowCreation(square))
+ self.wait(2)
+ self.play(FadeOut(text1), FadeOut(a), FadeOut(b), FadeOut(c), FadeOut(d), ApplyMethod(square.apply_matrix,[[1,1],[0,1]]))
+
+ a = TextMobject("(2,1)")
+ b = TextMobject("(4,1)")
+ c = TextMobject("(3,2)")
+ d = TextMobject("(5,2)")
+ a.scale(0.5)
+ b.scale(0.5)
+ c.scale(0.5)
+ d.scale(0.5)
+ a.move_to(self.graph_origin+0.6*UP+1.6*RIGHT)
+ b.move_to(self.graph_origin+0.6*UP+4.4*RIGHT)
+ d.move_to(self.graph_origin+2.4*UP+5.4*RIGHT)
+ c.move_to(self.graph_origin+2.4*UP+2.6*RIGHT)
+
+ text1 = TextMobject("After Linear Transformation")
+ text1.scale(0.6)
+ text1.move_to(UP*3+3*RIGHT)
+
+ self.play(Write(text1), Write(a), Write(b), Write(c), Write(d))
+
+ self.wait(2)
+
+class grid(LinearTransformationScene):
+ def construct(self):
+
+ text = TextMobject("Now, consider all the vectors.")
+ text.scale(0.75)
+ text.set_color(PURPLE)
+ text.move_to(2.5*UP+3*LEFT)
+ self.play(Write(text))
+
+ text1 = TextMobject("Before Linear Transformation")
+ text1.scale(0.6)
+ text1.move_to(UP*3.5+3.5*RIGHT)
+
+ square = Polygon(UP+RIGHT,UP+3*RIGHT,2*UP+3*RIGHT,2*UP+RIGHT)
+ square.set_color(YELLOW)
+
+ self.play(Write(text1), ShowCreation(square))
+ self.wait(2)
+ self.play(FadeOut(text1))
+ self.add_transformable_mobject(square)
+
+ text1 = TextMobject("After Linear Transformation")
+ text1.scale(0.6)
+ text1.move_to(UP*3.5+3.5*RIGHT)
+
+ matrix = [[1,1],[0,1]]
+
+ self.apply_matrix(matrix)
+ self.play(Write(text1))
+
+ self.wait()
+
+class grid2(LinearTransformationScene):
+ CONFIG = {
+ "include_background_plane": True,
+ "include_foreground_plane": False,
+ "show_coordinates": True,
+ "show_basis_vectors": True,
+ "basis_vector_stroke_width": 3,
+ "i_hat_color": X_COLOR,
+ "j_hat_color": Y_COLOR,
+ "leave_ghost_vectors": True,
+ }
+
+ def construct(self):
+
+ text = TextMobject("Now, let us focus only on the standard basis")
+ text.scale(0.7)
+ text.set_color(PURPLE)
+ text.move_to(2.5*UP+3.5*LEFT)
+ self.play(Write(text))
+
+ text1 = TextMobject("Before Linear Transformation")
+ text1.scale(0.6)
+ text1.move_to(UP*3.5+3.5*RIGHT)
+
+ square = Polygon(UP+RIGHT,UP+3*RIGHT,2*UP+3*RIGHT,2*UP+RIGHT)
+ square.set_color(YELLOW)
+
+ self.play(Write(text1), ShowCreation(square))
+ self.wait(2)
+ self.play(FadeOut(text1))
+ self.add_transformable_mobject(square)
+
+ text1 = TextMobject("After Linear Transformation")
+ text1.scale(0.6)
+ text1.move_to(UP*3.5+3.5*RIGHT)
+
+ matrix = [[1,1],[0,1]]
+
+ self.apply_matrix(matrix)
+ self.play(Write(text1))
+
+ self.play(FadeOut(square), FadeOut(text1))
+
+ cor_x = TextMobject("(1,0)")
+ cor_y = TextMobject("(1,1)")
+ cor_x.scale(0.65)
+ cor_y.scale(0.65)
+ cor_y.move_to(1.25*RIGHT+1.5*UP)
+ cor_x.move_to(0.75*RIGHT-0.5*UP)
+ cor_x.set_color(GREEN)
+ cor_y.set_color(RED)
+
+ x_cor = TextMobject(r"$\left[\begin{array}{c} 1\\0\end{array}\right]$")
+ x_cor.set_color(GREEN)
+ x_cor.scale(0.5)
+ y_cor = TextMobject(r"$\left[\begin{array}{c} 1\\1\end{array}\right]$")
+ x_cor.move_to(0.75*RIGHT-0.5*UP)
+ y_cor.move_to(1.25*RIGHT+1.5*UP)
+ y_cor.set_color(RED)
+ y_cor.scale(0.5)
+
+ text1 = TextMobject(r"$T(\left[\begin{array}{c} x\\y \end{array}\right]) = $",r"$\left[\begin{array}{c} x+y\\y \end{array}\right]$")
+ text1.scale(0.7)
+ text1.set_color(PURPLE)
+ text1.move_to(1.5*UP+3*LEFT)
+
+ text = TextMobject(r"$T(x,y) = (x+y,y)$")
+ text.scale(0.6)
+ text.set_color(PURPLE)
+ text.move_to(1.5*UP+3*LEFT)
+
+ self.play(FadeIn(text),FadeIn(cor_x), FadeIn(cor_y))
+ self.wait()
+
+ self.play(Transform(text,text1), Transform(cor_x,x_cor), Transform(cor_y,y_cor))
+
+ text3 = TextMobject(r"$\left[\begin{array}{c} x+y\\y \end{array}\right]$")
+ text3.scale(0.7)
+ text3.set_color(PURPLE)
+ text3.move_to(1.5*DOWN+5*LEFT)
+
+ equal = TextMobject("=")
+ equal.move_to(1.5*DOWN+3.5*LEFT)
+
+ text3 = TextMobject("[")
+ text4 = TextMobject(r"$\begin{array}{c} (1)x\\(0)x \end{array}$")
+ text5 = TextMobject(r"$\begin{array}{c} + \\ + \end{array}$")
+ text6 = TextMobject(r"$\begin{array}{c} (1)y\\(1)y \end{array}$")
+ text7 = TextMobject("]")
+ text3.scale(2)
+ text4.scale(0.7)
+ text5.scale(0.7)
+ text6.scale(0.7)
+ text7.scale(2)
+ text4.set_color(GREEN)
+ text5.set_color(PURPLE)
+ text6.set_color(RED)
+ text3.move_to(1.5*DOWN+3*LEFT)
+ text4.move_to(1.5*DOWN+2.5*LEFT)
+ text5.move_to(1.5*DOWN+2*LEFT)
+ text6.move_to(1.5*DOWN+1.5*LEFT)
+ text7.move_to(1.5*DOWN+1*LEFT)
+
+ text1[1].scale(1.2)
+ self.play(FadeOut(text1[0]), ApplyMethod(text1[1].move_to,1.5*DOWN+5*LEFT), FadeIn(text3), FadeIn(equal), FadeIn(text4), FadeIn(text5), FadeIn(text6), FadeIn(text7))
+
+ self.wait()
+ self.play(FadeOut(text1[1]))
+
+ self.play(ApplyMethod(text3.move_to,1.5*DOWN+6*LEFT),
+ ApplyMethod(text4.move_to,1.5*DOWN+5.5*LEFT),
+ ApplyMethod(text5.move_to,1.5*DOWN+5*LEFT),
+ ApplyMethod(text6.move_to,1.5*DOWN+4.5*LEFT),
+ ApplyMethod(text7.move_to,1.5*DOWN+4*LEFT))
+
+ text10 = TextMobject("[")
+ text11 = TextMobject(r"$\begin{array}{c} 1\\0 \end{array}$")
+ text13 = TextMobject(r"$\begin{array}{c} 1\\1 \end{array}$")
+ text14 = TextMobject("]")
+ text10.scale(2)
+ text11.scale(0.7)
+ text13.scale(0.7)
+ text14.scale(2)
+ text11.set_color(GREEN)
+ text13.set_color(RED)
+ text10.move_to(1.5*DOWN+3*LEFT)
+ text11.move_to(1.5*DOWN+2.75*LEFT)
+ text13.move_to(1.5*DOWN+2.25*LEFT)
+ text14.move_to(1.5*DOWN+2*LEFT)
+
+ self.play(FadeIn(text10), Transform(x_cor,text11), Transform(y_cor,text13), FadeIn(text14))
+
+ text15 = TextMobject(r"$\left[\begin{array}{c} x\\y \end{array}\right]$")
+ text15.scale(0.7)
+ text15.set_color(PURPLE)
+ text15.move_to(1.5*DOWN+1.5*LEFT)
+
+ self.play(FadeIn(text15))
+ self.play(FadeOut(text3), FadeOut(text4), FadeOut(text5), FadeOut(text7), FadeOut(text6))
+
+ text1[0].scale(1.2)
+ self.play(ApplyMethod(text1[0].move_to,1.5*DOWN+4.5*LEFT), FadeOut(equal))
+ self.wait(2) \ No newline at end of file
diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file2_Understand_Linear_Transformations_visually.py b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file4_Understand_Linear_Transformations_visually.py
index 577032d..577032d 100644
--- a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file2_Understand_Linear_Transformations_visually.py
+++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file4_Understand_Linear_Transformations_visually.py
diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file3_Uniform_Scaling.py b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file5_Uniform_Scaling.py
index a7856a5..a7856a5 100644
--- a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file3_Uniform_Scaling.py
+++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file5_Uniform_Scaling.py
diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file4_Horizontal_Shear.py b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file6_Horizontal_Shear.py
index 91f098e..91f098e 100644
--- a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file4_Horizontal_Shear.py
+++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file6_Horizontal_Shear.py
diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file4_Horizontal_Shear_gif.gif b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file6_Horizontal_Shear_gif.gif
index 9bef1b6..9bef1b6 100644
--- a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file4_Horizontal_Shear_gif.gif
+++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file6_Horizontal_Shear_gif.gif
Binary files differ
diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file5_Vertical_Shear.py b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file7_Vertical_Shear.py
index 718e4e0..718e4e0 100644
--- a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file5_Vertical_Shear.py
+++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file7_Vertical_Shear.py
diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file5_Vertical_Shear_gif.gif b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file7_Vertical_Shear_gif.gif
index 7ca323f..7ca323f 100644
--- a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file5_Vertical_Shear_gif.gif
+++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file7_Vertical_Shear_gif.gif
Binary files differ
diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file6_linear_transformation.py b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file8_linear_transformation.py
index 01a0cef..01a0cef 100755
--- a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file6_linear_transformation.py
+++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file8_linear_transformation.py
diff --git a/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file9.gif b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file9.gif
new file mode 100644
index 0000000..017e0c7
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Linear-Transformations-(Linear-Maps)/file9.gif
Binary files differ
diff --git a/FSF-2020/linear-algebra/linear-transformations/Orthonormal Basis/file1_orthogonal.py b/FSF-2020/linear-algebra/linear-transformations/Orthonormal Basis/file1_orthogonal.py
deleted file mode 100755
index b400f93..0000000
--- a/FSF-2020/linear-algebra/linear-transformations/Orthonormal Basis/file1_orthogonal.py
+++ /dev/null
@@ -1,34 +0,0 @@
-from manimlib.imports import *
-
-class Orthogonal(ThreeDScene):
- def construct(self):
- axes = ThreeDAxes()
- self.play(ShowCreation(axes))
- self.move_camera(phi=30*DEGREES,theta=-45*DEGREES,run_time=3)
- line1 = Line(start = ORIGIN,end = -3*LEFT)
- line1.set_color(DARK_BLUE)
- tip1 = Polygon(-LEFT,-0.8*LEFT-0.2*DOWN,-0.8*LEFT-0.2*UP)
- tip1.move_to(-3*LEFT)
- tip1.set_opacity(1)
- tip1.set_fill(DARK_BLUE)
- tip1.set_color(DARK_BLUE)
-
- arrow2 = Line(start = ORIGIN,end = -3*UP)
- arrow2.set_color(DARK_BLUE)
- tip2 = Polygon(DOWN,0.8*DOWN-0.2*RIGHT,0.8*DOWN-0.2*LEFT)
- tip2.move_to(3*DOWN)
- tip2.set_opacity(1)
- tip2.set_fill(DARK_BLUE)
- tip2.set_color(DARK_BLUE)
- arrow2.set_color(DARK_BLUE)
-
- arrow3 = Line(start = ORIGIN,end = [0,0,3])
- arrow3.set_color(DARK_BLUE)
- tip3 = Polygon([0,0,3],[0,0,2.8]-0.2*RIGHT,[0,0,2.8]-0.2*LEFT)
- tip3.set_opacity(1)
- tip3.set_fill(DARK_BLUE)
- tip3.set_color(DARK_BLUE)
-
- self.play(ShowCreation(line1), ShowCreation(tip1), ShowCreation(arrow2), ShowCreation(tip2), ShowCreation(arrow3), ShowCreation(tip3))
-
- self.wait() \ No newline at end of file
diff --git a/FSF-2020/linear-algebra/linear-transformations/Orthonormal Basis/file2_OrthonormalBasis.py b/FSF-2020/linear-algebra/linear-transformations/Orthonormal Basis/file2_OrthonormalBasis.py
deleted file mode 100644
index 0a28f22..0000000
--- a/FSF-2020/linear-algebra/linear-transformations/Orthonormal Basis/file2_OrthonormalBasis.py
+++ /dev/null
@@ -1,82 +0,0 @@
-from manimlib.imports import *
-class OrthonormalBasis(GraphScene):
- CONFIG = {
- "x_min" : -6,
- "x_max" : 6,
- "y_min" : -4,
- "y_max" : 4,
- "graph_origin" : ORIGIN ,
-}
-
- def construct(self):
- self.setup_axes(animate=True)
-
- XTD = self.x_axis_width/(self.x_max-self.x_min)
- YTD = self.y_axis_height/(self.y_max-self.y_min)
-
- arrow1 = Arrow(start = ORIGIN,end = 0.707*YTD*UP+0.707*XTD*RIGHT)
- arrow1.scale(2.25)
- arrow1.set_color(DARK_BLUE)
-
- arrow2 = Arrow(start = ORIGIN,end = 0.707*YTD*UP+0.707*XTD*LEFT)
- arrow2.scale(2.25)
- arrow2.set_color(DARK_BLUE)
-
- square = Polygon(UP*0.4*YTD,0.2*(YTD*UP+XTD*RIGHT),ORIGIN,0.2*(YTD*UP+XTD*LEFT))
- square.set_color(DARK_BLUE)
- self.play(ShowCreation(arrow2), ShowCreation(arrow1), ShowCreation(square))
-
- ortho = TextMobject("Orthonormal Vectors")
- ortho.scale(0.75)
- ortho.move_to(DOWN+3*RIGHT)
- self.play(Write(ortho))
- self.wait()
- self.play(FadeOut(ortho))
-
- arrow3 = Arrow(start = ORIGIN,end = YTD*3*UP+XTD*LEFT)
- arrow3.scale(1.25)
- arrow3.set_color(GOLD_E)
- self.play(ShowCreation(arrow3))
-
- arrow4 = Arrow(start = ORIGIN,end = YTD*UP+XTD*RIGHT)
- arrow4.scale(1.8)
- arrow4.set_color(GOLD_A)
-
- arrow5 = Arrow(start = ORIGIN,end = 2*YTD*UP-2*XTD*RIGHT)
- arrow5.scale(1.3)
- arrow5.set_color(GOLD_A)
-
- self.play(ShowCreation(arrow5), ShowCreation(arrow4))
-
- self.wait()
-
- self.play(FadeOut(arrow1), FadeOut(arrow2), FadeOut(square))
-
- self.wait()
-
- text1 = TextMobject(r"$<v,v_1> v_1$")
- text1.move_to(UP+2*RIGHT)
- text1.scale(0.75)
- text2 = TextMobject(r"$<v,v_2> v_2$")
- text2.move_to(UP+3*LEFT)
- text2.scale(0.75)
-
- text3 = TextMobject("v")
- text3.move_to(YTD*3.5*UP+XTD*1.5*LEFT)
-
- self.play(Write(text1), Write(text2), Write(text3))
- self.wait()
-
- line1 = DashedLine(start = YTD*UP+XTD*RIGHT, end = YTD*3*UP+XTD*1*LEFT)
- line2 = DashedLine(start = YTD*2*UP+XTD*2*LEFT, end = YTD*3*UP+XTD*1*LEFT)
- self.play(ShowCreation(line1),ShowCreation(line2))
-
- self.wait()
-
- text = TextMobject(r"$v$ is the sum of projections","on the orthonormal vectors")
- text[0].move_to(DOWN+3.2*RIGHT)
- text[1].move_to(1.5*DOWN+3.2*RIGHT)
- self.play(Write(text))
- self.wait(2)
- self.play(FadeOut(arrow3), FadeOut(arrow4), FadeOut(arrow5), FadeOut(text1), FadeOut(text2), FadeOut(text3), FadeOut(self.axes), FadeOut(line1), FadeOut(line2))
- self.play(FadeOut(text))
diff --git a/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/README.md b/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/README.md
new file mode 100644
index 0000000..55aba66
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/README.md
@@ -0,0 +1,15 @@
+# Contributer: Archit Sangal
+My Github Account : <a href="https://github.com/architsangal">architsangal</a>
+<br/></br>
+
+## Sub-Topics Covered:
++ Orthonormal Bases
+
+#### Video 1: Example of Orthonormal bases
+![GIF1](file4.gif)
+
+#### Video 2: Adding the projections of a vector on orthonormal basis will produce the same vector
+![GIF2](file5.gif)
+
+#### Video 3: Relating the example and the property
+![GIF3](file6.gif) \ No newline at end of file
diff --git a/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file1_orthogonal.py b/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file1_orthogonal.py
new file mode 100755
index 0000000..a5d96f5
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file1_orthogonal.py
@@ -0,0 +1,40 @@
+from manimlib.imports import *
+
+class Orthogonal(ThreeDScene):
+ def construct(self):
+ axes = ThreeDAxes()
+ self.play(ShowCreation(axes))
+ self.move_camera(phi=60*DEGREES,theta=45*DEGREES,run_time=3)
+
+ text = TextMobject(r"$\hat{i}$",r"$\hat{j}$",r"$\hat{k}$")
+ text[0].move_to(0.7*DOWN+0.8*LEFT)
+ text[1].move_to(0.75*DOWN+0.7*RIGHT)
+ text[2].move_to(0.75*UP+0.4*RIGHT)
+ self.add_fixed_in_frame_mobjects(text)
+ self.play(Write(text))
+
+ line1 = Line(start = ORIGIN,end = RIGHT)
+ line1.set_color(DARK_BLUE)
+ tip1 = Polygon(-0.95*LEFT,-0.8*LEFT-0.1*DOWN,-0.8*LEFT-0.1*UP)
+ tip1.set_opacity(1)
+ tip1.set_fill(DARK_BLUE)
+ tip1.set_color(DARK_BLUE)
+
+ arrow2 = Line(start = ORIGIN,end = UP)
+ arrow2.set_color(DARK_BLUE)
+ tip2 = Polygon(0.95*UP,0.8*UP-0.1*RIGHT,0.8*UP-0.1*LEFT)
+ tip2.set_opacity(1)
+ tip2.set_fill(DARK_BLUE)
+ tip2.set_color(DARK_BLUE)
+ arrow2.set_color(DARK_BLUE)
+
+ arrow3 = Line(start = ORIGIN,end = [0,0,1])
+ arrow3.set_color(DARK_BLUE)
+ tip3 = Polygon([0,0,0.95],[0,0,0.8]-0.1*RIGHT,[0,0,0.8]-0.1*LEFT)
+ tip3.set_opacity(1)
+ tip3.set_fill(DARK_BLUE)
+ tip3.set_color(DARK_BLUE)
+
+ self.play(ShowCreation(line1), ShowCreation(tip1), ShowCreation(arrow2), ShowCreation(tip2), ShowCreation(arrow3), ShowCreation(tip3))
+
+ self.wait()
diff --git a/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file2_sum_of_projections_part1.py b/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file2_sum_of_projections_part1.py
new file mode 100755
index 0000000..81a0888
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file2_sum_of_projections_part1.py
@@ -0,0 +1,133 @@
+from manimlib.imports import *
+class LinearTrans(LinearTransformationScene):
+ CONFIG = {
+ "show_basis_vectors": True,
+ "basis_vector_stroke_width": 1,
+ "leave_ghost_vectors": False,
+ "show_coordinates": True,
+ }
+
+ def construct(self):
+
+ self.setup()
+
+ matrix = [[0.6,-0.8],[0.8,0.6]]
+ self.apply_matrix(matrix)
+
+ self.wait(2)
+ orthonormal = TextMobject(r"These are 2 orthonormal vectors($v_1$ and $v_2$)")
+ orthonormal.scale(0.7)
+ orthonormal.move_to(DOWN+LEFT*3.5)
+ orthonormal.add_background_rectangle()
+ v1 = TextMobject(r"$v_1$")
+ v1.scale(0.75)
+ v1.set_color(X_COLOR)
+ v1.move_to(0.75*UP+RIGHT)
+ v1.add_background_rectangle()
+ v2 = TextMobject(r"$v_2$")
+ v2.scale(0.75)
+ v2.set_color(Y_COLOR)
+ v2.move_to(0.75*UP+LEFT*1.25)
+ v2.add_background_rectangle()
+ self.play(Write(orthonormal))
+ self.play(Write(v1),Write(v2))
+ self.wait()
+ self.play(FadeOut(orthonormal), FadeOut(v1), FadeOut(v2))
+
+ arrow = Arrow(start = ORIGIN,end = 3*RIGHT+UP)
+ arrow.scale(1.2)
+ arrow.set_color(BLUE)
+ arrow.apply_matrix(matrix)
+ text3 = TextMobject("v")
+ text3.move_to(3.2*UP+1.2*RIGHT)
+ text3.add_background_rectangle()
+ self.play(ShowCreation(arrow),Write(text3))
+ self.wait()
+ v_cor = TextMobject("(1,3)")
+ v_cor.move_to(3.2*UP+1.3*RIGHT)
+ v_cor.set_color(BLUE)
+ v_cor.scale(0.75)
+ v_cor.add_background_rectangle()
+ self.play(Transform(text3,v_cor))
+
+ line1 = DashedLine(start = 1*UP+3*RIGHT, end = 3*RIGHT)
+ line2 = DashedLine(start = 1*UP+3*RIGHT, end = UP)
+ line1.apply_matrix(matrix)
+ line2.apply_matrix(matrix)
+ self.play(ShowCreation(line1),ShowCreation(line2),run_time = 2)
+
+ v1 = Arrow(start = ORIGIN,end = 3*RIGHT+UP)
+ v1.scale(1.2)
+ v1.set_color(BLUE)
+ v1.apply_matrix(matrix)
+ arrow1 = Arrow(start = ORIGIN,end = 3*RIGHT)
+ arrow1.scale(1.2)
+ arrow1.set_color("#6B8E23")
+ arrow1.apply_matrix(matrix)
+ self.play(Transform(v1,arrow1))
+ v1_cor = TextMobject(r"$<v,v_1> v_1$")
+ v1_cor.move_to(2.5*UP+3*RIGHT)
+ v1_cor.scale(0.75)
+ v1_cor.add_background_rectangle()
+ self.play(Write(v1_cor))
+ self.wait(0.5)
+ text1 = TextMobject(r"(1.8,2.4)")
+ text1.move_to(2.1*UP+2.5*RIGHT)
+ text1.scale(0.75)
+ text1.set_color("#6B8E23")
+ text1.add_background_rectangle()
+ self.play(Transform(v1_cor,text1))
+
+ v2 = Arrow(start = ORIGIN,end = 3*RIGHT+UP)
+ v2.scale(1.2)
+ v2.set_color("#8b0000")
+ v2.apply_matrix(matrix)
+ arrow2 = Arrow(start = ORIGIN,end = UP)
+ arrow2.scale(2.1)
+ arrow2.set_color("#8b0000")
+ arrow2.apply_matrix(matrix)
+ self.wait(0.5)
+ self.play(Transform(v2,arrow2))
+ self.wait(0.5)
+ v2_cor = TextMobject(r"$<v,v_2> v_2$")
+ v2_cor.move_to(0.75*UP+2.5*LEFT)
+ v2_cor.scale(0.75)
+ v2_cor.add_background_rectangle()
+ self.play(Write(v2_cor))
+ self.wait(0.5)
+ text2 = TextMobject(r"(-0.8,0.6)")
+ text2.move_to(0.75*UP+1.75*LEFT)
+ text2.scale(0.75)
+ text2.set_color("#8b0000")
+ text2.add_background_rectangle()
+ self.play(Transform(v2_cor,text2))
+
+ self.wait()
+
+ self.play(ApplyMethod(v2.move_to,1.4*RIGHT+2.7*UP),FadeOut(v1_cor),FadeOut(v2_cor),FadeOut(v_cor))
+
+ self.wait()
+
+ ending = TextMobject(r"$v = <v,v_1> v_1 + <v,v_2> v_2$")
+ ending.scale(0.7)
+ ending.move_to(DOWN)
+ ending.add_background_rectangle()
+ self.play(Write(ending))
+ self.wait()
+ self.play(FadeOut(ending))
+
+ ending = TextMobject(r"$\left[ \begin{array} {c} 1\\ 3 \end{array}\right] = \left[ \begin{array} {c}1.8 \\ 2.4 \end{array}\right] + \left[ \begin{array} {c} -0.8\\ 0.6 \end{array}\right]$")
+ ending.scale(0.7)
+ ending.move_to(DOWN)
+ ending.add_background_rectangle()
+ self.play(Write(ending))
+ self.wait()
+ self.play(FadeOut(ending))
+
+ ending = TextMobject(r"$v$ is the sum of projections on the orthonormal vectors")
+ ending.scale(0.7)
+ ending.move_to(DOWN)
+ ending.add_background_rectangle()
+ self.play(Write(ending))
+ self.wait()
+ self.play(FadeOut(ending)) \ No newline at end of file
diff --git a/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file3_sum_of_projections_part2.py b/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file3_sum_of_projections_part2.py
new file mode 100644
index 0000000..9d25192
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file3_sum_of_projections_part2.py
@@ -0,0 +1,173 @@
+from manimlib.imports import *
+class ThreeDExplanation(ThreeDScene):
+
+ def construct(self):
+
+ text = TextMobject("Let us consider the example discussed above again. These are the things we know:-")
+ text.scale(0.75)
+ self.add_fixed_in_frame_mobjects(text)
+ text.move_to(3*UP)
+ self.play(Write(text))
+ self.wait(2)
+ basis = TextMobject(r"Set of Orthonormal Basis - $\left(\begin{array}{c}\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\\0\end{array}\right),\left(\begin{array}{c}\frac{-1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\\0\end{array}\right),\left(\begin{array}{c}0\\0\\1\end{array}\right)$")
+ basis.scale(0.75)
+ basis.move_to(UP*1.5)
+ self.play(Write(basis))
+ v = TextMobject(r"$v_1$",r"$v_2$",r"$v_3$")
+ v[0].move_to(UP*0.5+RIGHT*0.75)
+ v[1].move_to(UP*0.5+RIGHT*2.5)
+ v[2].move_to(UP*0.5+RIGHT*4)
+ eq = TextMobject(r"$v = \left(\begin{array}{c}3\\4\\5\end{array}\right)$")
+ eq1 = TextMobject(r"$<v,v_1> = \frac{3}{\sqrt{2}} + \frac{4}{\sqrt{2}} + 0 = \frac{7}{\sqrt{2}}$")
+ eq2 = TextMobject(r"$<v,v_2> = \frac{-3}{\sqrt{2}} + \frac{4}{\sqrt{2}} + 0 =\frac{1}{\sqrt{2}}$")
+ eq3 = TextMobject(r"$<v,v_3> =  0 + 0 + 5 =5$")
+ eq.move_to(4*LEFT+DOWN)
+ eq1.move_to(0.5*DOWN+2*RIGHT)
+ eq2.move_to(1.5*DOWN+2*RIGHT)
+ eq3.move_to(2.5*DOWN+2*RIGHT)
+ self.play(Write(v))
+ self.play(Write(eq))
+ self.play(Write(eq1))
+ self.play(Write(eq2))
+ self.play(Write(eq3))
+ self.wait()
+ self.play(FadeOut(text), FadeOut(basis), FadeOut(eq), FadeOut(v), FadeOut(eq1), FadeOut(eq2), FadeOut(eq3))
+ self.wait()
+
+ text = TextMobject("These are the 3 mutually orthonormal basis of the set(", r"$v_1$, ", r"$v_2$, ", r"$v_3$",")")
+ text[1].set_color(DARK_BLUE)
+ text[2].set_color(RED)
+ text[3].set_color(YELLOW)
+ text.scale(0.75)
+ self.add_fixed_in_frame_mobjects(text)
+ text.move_to(3*DOWN)
+ self.play(Write(text))
+ self.wait()
+
+ axes = ThreeDAxes(x_min = -9,x_max=9,y_min=-9,y_max=9,z_min=-9,z_max=9)
+ self.play(ShowCreation(axes))
+ self.move_camera(distance = 100, phi=30*DEGREES,theta=45*DEGREES,run_time=3)
+ self.begin_ambient_camera_rotation(rate=0.3)
+
+ dashedline1 = DashedLine(start = -12*(UP+RIGHT), end = 12*(UP+RIGHT))
+ dashedline2 = DashedLine(start = -12*(UP+LEFT), end = 12*(UP+LEFT))
+ dashedline3 = DashedLine(start = 4*UP+3*RIGHT+[0,0,5], end = 3.5*UP+3.5*RIGHT)
+ dashedline4 = DashedLine(start = 4*UP+3*RIGHT+[0,0,5], end = 0.5*UP+0.5*LEFT)
+ dashedline5 = DashedLine(start = 4*UP+3*RIGHT+[0,0,5], end = [0,0,5])
+
+ self.play(ShowCreation(dashedline1), ShowCreation(dashedline2))
+
+ line1 = Line(start = ORIGIN,end = 0.707*RIGHT + 0.707*UP)
+ line1.set_color(DARK_BLUE)
+ tip1 = Polygon(0.707*RIGHT + 0.707*UP, 0.707*RIGHT + 0.607*UP, 0.607*RIGHT + 0.707*UP)
+ tip1.set_opacity(1)
+ tip1.set_fill(DARK_BLUE)
+ tip1.set_color(DARK_BLUE)
+ self.play(ShowCreation(line1), ShowCreation(tip1))
+
+ line2 = Line(start = ORIGIN,end = 0.707*LEFT + 0.707*UP)
+ line2.set_color(RED)
+ tip2 = Polygon(0.707*LEFT + 0.707*UP, 0.707*LEFT + 0.607*UP, 0.607*LEFT + 0.707*UP)
+ tip2.set_opacity(1)
+ tip2.set_fill(RED)
+ tip2.set_color(RED)
+
+ self.play(ShowCreation(line2), ShowCreation(tip2))
+
+ line3 = Line(start = ORIGIN,end = [0,0,1])
+ line3.set_color(YELLOW)
+ tip3 = Polygon([0,0,1],[0,0,0.8]-0.2*RIGHT,[0,0,0.8]-0.2*LEFT)
+ tip3.set_opacity(1)
+ tip3.set_fill(YELLOW)
+ tip3.set_color(YELLOW)
+ self.play(ShowCreation(line3), ShowCreation(tip3))
+ self.wait()
+
+ self.play(FadeOut(text))
+
+ text = TextMobject("Take the projection of ", r"$v$", " on the mutually orthonormal vectors")
+ text[1].set_color(GOLD_E)
+ text.scale(0.75)
+ self.add_fixed_in_frame_mobjects(text)
+ text.move_to(3*DOWN)
+ self.play(Write(text))
+ self.wait(2)
+
+ a_line = Line(start = ORIGIN,end = 4*UP+3*RIGHT+[0,0,5])
+ a_line.set_color(GOLD_E)
+ a_tip = Polygon(4*UP+3*RIGHT+[0,0,5],3.6*UP+2.7*RIGHT+[0,0,4.5]+0.1*UP+0.1*LEFT,3.6*UP+2.7*RIGHT+[0,0,4.5]+0.1*DOWN+0.1*RIGHT)
+ a_tip.set_opacity(1)
+ a_tip.set_fill(GOLD_E)
+ a_tip.set_color(GOLD_E)
+
+ self.play(ShowCreation(a_line), ShowCreation(a_tip))
+ self.wait(9)
+ self.play(ShowCreation(dashedline3),ShowCreation(dashedline4),ShowCreation(dashedline5))
+ self.wait(6)
+
+ pv1 = Line(start = ORIGIN,end = 4*UP+3*RIGHT+[0,0,5])
+ pv1.set_color(GOLD_E)
+ pv1tip = Polygon(4*UP+3*RIGHT+[0,0,5],3.6*UP+2.7*RIGHT+[0,0,4.5]+0.1*UP+0.1*LEFT,3.6*UP+2.7*RIGHT+[0,0,4.5]+0.1*DOWN+0.1*RIGHT)
+ pv1tip.set_opacity(1)
+ pv1tip.set_fill(GOLD_E)
+ pv1tip.set_color(GOLD_E)
+
+ v1_p = Line(start = ORIGIN,end = 3.5*RIGHT + 3.5*UP)
+ v1_p.set_color(BLUE_E)
+ v1_p_tip = Polygon(3.5*RIGHT + 3.5*UP, 3.5*RIGHT + 3.4*UP, 3.4*RIGHT + 3.5*UP)
+ v1_p_tip.set_opacity(1)
+ v1_p_tip.set_fill(BLUE_E)
+ v1_p_tip.set_color(BLUE_E)
+
+ pv2 = Line(start = ORIGIN,end = 4*UP+3*RIGHT+[0,0,5])
+ pv2.set_color(GOLD_E)
+ pv2tip = Polygon(4*UP+3*RIGHT+[0,0,5],3.6*UP+2.7*RIGHT+[0,0,4.5]+0.1*UP+0.1*LEFT,3.6*UP+2.7*RIGHT+[0,0,4.5]+0.1*DOWN+0.1*RIGHT)
+ pv2tip.set_opacity(1)
+ pv2tip.set_fill(GOLD_E)
+ pv2tip.set_color(GOLD_E)
+
+ v2_p = Line(start = ORIGIN,end = 0.5*LEFT + 0.5*UP)
+ v2_p.set_color(RED_E)
+ v2_p_tip = Polygon(0.5*LEFT + 0.5*UP, 0.5*LEFT + 0.4*UP, 0.4*LEFT + 0.5*UP)
+ v2_p_tip.set_opacity(1)
+ v2_p_tip.set_fill(RED_E)
+ v2_p_tip.set_color(RED_E)
+
+ pv3 = Line(start = ORIGIN,end = 4*UP+3*RIGHT+[0,0,5])
+ pv3.set_color(GOLD_E)
+ pv3tip = Polygon(4*UP+3*RIGHT+[0,0,5],3.6*UP+2.7*RIGHT+[0,0,4.5]+0.1*UP+0.1*LEFT,3.6*UP+2.7*RIGHT+[0,0,4.5]+0.1*DOWN+0.1*RIGHT)
+ pv3tip.set_opacity(1)
+ pv3tip.set_fill(GOLD_E)
+ pv3tip.set_color(GOLD_E)
+
+ v3_p = Line(start = ORIGIN,end = [0,0,5])
+ v3_p.set_color(YELLOW_E)
+ v3_p_tip = Polygon([0,0,5],[0,0,4.8]+0.2*RIGHT,[0,0,4.8]+0.2*LEFT)
+ v3_p_tip.set_opacity(1)
+ v3_p_tip.set_fill(YELLOW_E)
+ v3_p_tip.set_color(YELLOW_E)
+
+ self.stop_ambient_camera_rotation()
+ self.play(Transform(pv1,v1_p), Transform(pv1tip,v1_p_tip), Transform(pv2,v2_p), Transform(pv2tip,v2_p_tip), Transform(pv3,v3_p), Transform(pv3tip,v3_p_tip))
+ self.play(FadeOut(dashedline1),
+ FadeOut(dashedline2),
+ FadeOut(dashedline3),
+ FadeOut(dashedline4),
+ FadeOut(dashedline5),
+ FadeOut(line1),
+ FadeOut(tip1),
+ FadeOut(line2),
+ FadeOut(tip2),
+ FadeOut(line3),
+ FadeOut(tip3),
+ FadeOut(text))
+
+ text = TextMobject(r"$v$ is the sum of projections on the orthonormal vectors")
+ text.set_color(GOLD_E)
+ text.scale(0.75)
+ self.add_fixed_in_frame_mobjects(text)
+ text.move_to(3*DOWN)
+ self.play(Write(text), ApplyMethod(pv2.move_to,(3.5*RIGHT + 3.5*UP+3*RIGHT+4*UP)/2), ApplyMethod(pv2tip.move_to,(3.1*RIGHT + 3.9*UP)))
+ self.play(ApplyMethod(pv3.move_to,3*RIGHT + 4*UP + [0,0,2.5]), ApplyMethod(pv3tip.move_to,(3*RIGHT + 4*UP + [0,0,4.8])))
+
+ self.wait(3) \ No newline at end of file
diff --git a/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file4.gif b/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file4.gif
new file mode 100644
index 0000000..4891350
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file4.gif
Binary files differ
diff --git a/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file5.gif b/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file5.gif
new file mode 100644
index 0000000..47fc316
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file5.gif
Binary files differ
diff --git a/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file6.gif b/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file6.gif
new file mode 100644
index 0000000..d4ae50c
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/Orthonormal-Basis/file6.gif
Binary files differ
diff --git a/FSF-2020/linear-algebra/linear-transformations/README.md b/FSF-2020/linear-algebra/linear-transformations/README.md
index 692201e..cf81d01 100644
--- a/FSF-2020/linear-algebra/linear-transformations/README.md
+++ b/FSF-2020/linear-algebra/linear-transformations/README.md
@@ -1,9 +1,10 @@
# Contributer: Archit Sangal
My Github Account : <a href="https://github.com/architsangal">architsangal</a>
<br/></br>
+
## Sub-Topics Covered:
-+ Vector Space Homomorphisms (Linear Maps)
++ Linear Transformations (Linear Maps)
+ The Four Fundamental Subspaces
+ Rank-Nullity Theorem
+ Orthonormal basis
-+ Gramm-Schmidt Orthogonalization Process
++ Gramm-Schmidt Orthogonalization Process \ No newline at end of file
diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/README.md b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/README.md
new file mode 100644
index 0000000..d21c4dc
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/README.md
@@ -0,0 +1,30 @@
+# Contributer: Archit Sangal
+My Github Account : <a href="https://github.com/architsangal">architsangal</a>
+<br/></br>
+
+## Sub-Topics Covered:
++ The Four Fundamental Subspaces
+
+#### Video 1: Video 1: Writing System of linear equations in form of Ax=b
+![GIF1](file11.gif)
+
+#### Video 2: Column Space is same as the image of Linear Transformation
+![GIF2](file14.gif)
+
+#### Video 3: Existance of Solution w.r.t. vector b
+![GIF3](file17.gif)
+
+#### Video 4: Null Space (Visually)
+![GIF4](file12.gif)
+
+#### Video 5: Definition 1 is equivalent to Definition 2
+![GIF5](file13.gif)
+
+#### Video 6: Relation between Row Space and Null Space
+![GIF6](file16.gif)
+
+#### Fig. 1 Naming of the left null space
+![GIF7](file10_Left_Null_Space_pSv8iio_d5Sy9qS.gif)
+
+#### Video 7: Left Null Space(Visually)
+![GIF8](file15.gif) \ No newline at end of file
diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file10_Left_Null_Space_pSv8iio_d5Sy9qS.gif b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file10_Left_Null_Space_pSv8iio_d5Sy9qS.gif
new file mode 100644
index 0000000..3f50635
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file10_Left_Null_Space_pSv8iio_d5Sy9qS.gif
Binary files differ
diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file11.gif b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file11.gif
new file mode 100644
index 0000000..8f74202
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file11.gif
Binary files differ
diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file12.gif b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file12.gif
new file mode 100644
index 0000000..aa7403b
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file12.gif
Binary files differ
diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file13.gif b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file13.gif
new file mode 100644
index 0000000..34b54c7
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file13.gif
Binary files differ
diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file14.gif b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file14.gif
new file mode 100644
index 0000000..b77791b
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file14.gif
Binary files differ
diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file15.gif b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file15.gif
new file mode 100644
index 0000000..8bb24bf
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file15.gif
Binary files differ
diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file16.gif b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file16.gif
new file mode 100644
index 0000000..87e0026
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file16.gif
Binary files differ
diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file17.gif b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file17.gif
new file mode 100644
index 0000000..eec819a
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file17.gif
Binary files differ
diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file1_Column_Space.py b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file18_NOT_in_lecture_note_Column_Space.py
index afe4f9a..afe4f9a 100644
--- a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file1_Column_Space.py
+++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file18_NOT_in_lecture_note_Column_Space.py
diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file1_Axb.py b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file1_Axb.py
new file mode 100755
index 0000000..95d1021
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file1_Axb.py
@@ -0,0 +1,77 @@
+from manimlib.imports import *
+
+class Axb(Scene):
+
+ def construct(self):
+
+ text0 = TextMobject("Linear System Of Equations")
+ text1 = TextMobject(r"$x_{1}+x_{2}+x_{3} =b_{1}$")
+ text2 = TextMobject(r"$x_{1}+2x_{2}+x_{3} =b_{2}$")
+ text3 = TextMobject(r"$x_{1}+x_{2}+3x_{3} =b_{3}$")
+ text0.move_to(UP*2+LEFT*2)
+ text0.set_color(DARK_BLUE)
+ text1.move_to(UP)
+ text2.move_to(ORIGIN)
+ text3.move_to(DOWN)
+
+ text0.scale(0.75)
+ text1.scale(0.75)
+ text2.scale(0.75)
+ text3.scale(0.75)
+ self.play(Write(text0))
+ self.play(Write(text1))
+ self.play(Write(text2))
+ self.play(Write(text3))
+ self.play(ApplyMethod(text0.move_to,3*UP+LEFT*2), ApplyMethod(text1.move_to,2.5*UP), ApplyMethod(text2.move_to,2*UP), ApplyMethod(text3.move_to,1.5*UP))
+
+ A = TextMobject(r"$\left( \begin{array}{c c c} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 3 \end{array}\right) \left[ \begin{array} {c} x_{1} \\ x_{2} \\ x_{3} \end{array}\right] =$", r"$\left[ \begin{array}{c} x_{1}+x_{2}+x_{3} \\ x_{1}+2x_{2}+x_{3} \\ x_{1}+x_{2}+3x_{3} \end{array}\right]$")
+ A.scale(0.75)
+ self.play(FadeIn(A))
+
+ textA = TextMobject("A")
+ textx = TextMobject("x")
+ textb = TextMobject("Ax")
+
+ textA.move_to(DOWN+3*LEFT)
+ textx.move_to(1.1*DOWN+0.5*LEFT)
+ textb.move_to(DOWN-2*LEFT)
+
+ self.play(Write(textA), Write(textx), Write(textb))
+
+ circle1 = Circle(radius = 0.24)
+ circle2 = Circle(radius = 0.24)
+ square = Square(side_length = 0.6)
+
+ circle1.move_to(UP*0.5+LEFT*3.05)
+ circle2.move_to(UP*0.4+LEFT*0.5)
+ square.move_to(UP*0.4+RIGHT*1.3)
+
+ self.play(FadeIn(circle1), FadeIn(circle2),FadeIn(square))
+
+ self.play(ApplyMethod(circle1.move_to,UP*0.5+LEFT*2.45), ApplyMethod(circle2.move_to,LEFT*0.5), ApplyMethod(square.move_to,UP*0.4+RIGHT*2.2))
+ self.play(ApplyMethod(circle1.move_to,UP*0.5+LEFT*1.85), ApplyMethod(circle2.move_to,DOWN*0.5+LEFT*0.5), ApplyMethod(square.move_to,UP*0.4+RIGHT*3.1))
+
+ self.play(ApplyMethod(circle1.move_to,LEFT*3.05), ApplyMethod(circle2.move_to,UP*0.4+LEFT*0.5), ApplyMethod(square.move_to,RIGHT*1.3))
+ self.play(ApplyMethod(circle1.move_to,LEFT*2.45), ApplyMethod(circle2.move_to,LEFT*0.5), ApplyMethod(square.move_to,RIGHT*2.2))
+ self.play(ApplyMethod(circle1.move_to,LEFT*1.85), ApplyMethod(circle2.move_to,DOWN*0.5+LEFT*0.5), ApplyMethod(square.move_to,RIGHT*3.1))
+
+ self.play(ApplyMethod(circle1.move_to,0.4*DOWN+LEFT*3.05), ApplyMethod(circle2.move_to,UP*0.4+LEFT*0.5), ApplyMethod(square.move_to,0.4*DOWN+RIGHT*1.3))
+ self.play(ApplyMethod(circle1.move_to,0.4*DOWN+LEFT*2.45), ApplyMethod(circle2.move_to,LEFT*0.5), ApplyMethod(square.move_to,0.4*DOWN+RIGHT*2.2))
+ self.play(ApplyMethod(circle1.move_to,0.4*DOWN+LEFT*1.85), ApplyMethod(circle2.move_to,DOWN*0.5+LEFT*0.5), ApplyMethod(square.move_to,0.4*DOWN+RIGHT*3.1))
+
+ self.play(FadeOut(circle1), FadeOut(circle2), FadeOut(square))
+ self.play(FadeOut(A[0]), ApplyMethod(A[1].move_to,2*LEFT),ApplyMethod(textb.move_to,DOWN+1.7*LEFT), FadeOut(textx), FadeOut(textA))
+ b = TextMobject(r"$=\left[ \begin{array}{c} b_{1} \\ b_{2} \\ b_{3} \end{array}\right]$")
+ b.move_to(RIGHT)
+ textB = TextMobject("b")
+ textB.move_to(1.2*DOWN+1.1*RIGHT)
+ self.play(FadeIn(b),FadeIn(textB))
+
+ self.wait()
+
+ self.play(FadeOut(text0), FadeOut(text1), FadeOut(text2), FadeOut(text3))
+
+ axb = TextMobject("Ax = b")
+ self.play(FadeIn(axb), FadeOut(textb), FadeOut(textB), FadeOut(b), FadeOut(A[1]))
+
+ self.wait() \ No newline at end of file
diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file1_Column_Space.gif b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file1_Column_Space.gif
deleted file mode 100644
index 7d8d2e1..0000000
--- a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file1_Column_Space.gif
+++ /dev/null
Binary files differ
diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file2_CSasImage.py b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file2_CSasImage.py
new file mode 100644
index 0000000..70547cb
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file2_CSasImage.py
@@ -0,0 +1,169 @@
+from manimlib.imports import *
+
+class Column_Space(Scene):
+ def construct(self):
+
+ A = TextMobject(r"$A = $",r"$\left( \begin{array}{c c} 1 & 2 \\ 3 & 4 \end{array} \right)$")
+ A.move_to(2*UP)
+ A[1].set_color(color = DARK_BLUE)
+ A.scale(0.75)
+
+ self.play(Write(A),run_time = 1)
+
+ CS_A = TextMobject(r"Column Space of $A = x_{1}$",r"$\left( \begin{array}{c} 1 \\ 3 \end{array} \right)$",r"$+x_{2}$",r"$ \left( \begin{array}{c} 2 \\ 4\end{array} \right)$")
+ CS_A.move_to(1.5*LEFT+1*DOWN)
+ CS_A[1].set_color(color = DARK_BLUE)
+ CS_A[3].set_color(color = DARK_BLUE)
+ CS_A.scale(0.75)
+
+ self.play(Write(CS_A),run_time = 2)
+
+ arrow1 = Arrow(start = 1.25*UP,end = (0.25*DOWN+1.75*LEFT+0.25*DOWN+1.2*RIGHT)/2)
+ arrow3 = Arrow(start = 1.25*UP+0.75*RIGHT,end = (0.25*DOWN+2.9*RIGHT+0.25*DOWN)/2)
+
+ arrow1.scale(1.5)
+ arrow3.scale(1.5)
+
+ Defn = TextMobject("Linear Combination of Columns of Matrix")
+ Defn.move_to(3*DOWN)
+
+ self.play(Write(Defn), ShowCreation(arrow1), ShowCreation(arrow3),run_time = 1)
+ self.wait(1)
+
+class solution(LinearTransformationScene):
+ def construct(self):
+
+ self.setup()
+ self.wait()
+
+ o = TextMobject(r"Consider the vector space $R^2$")
+ o.move_to(2*DOWN)
+ o.scale(0.75)
+ o.add_background_rectangle()
+ self.play(Write(o))
+ self.wait()
+ self.play(FadeOut(o))
+
+ A = TextMobject(r"Let $A$ be ",r"$\left[\begin{array}{c c} 1 & -1 \\ 1 & -1 \end{array}\right]$",r". $A$ denotes the matrix the of this linear transformation.")
+ A.move_to(2*DOWN)
+ A.scale(0.75)
+ A.add_background_rectangle()
+ self.play(Write(A))
+ matrix = [[1,-1],[1,-1]]
+ self.apply_matrix(matrix)
+ self.wait()
+ self.play(FadeOut(A))
+
+ o = TextMobject(r"This is the transformed vector space")
+ o.move_to(2*DOWN)
+ o.scale(0.75)
+ o.add_background_rectangle()
+ self.play(Write(o))
+ self.wait()
+ self.play(FadeOut(o))
+
+ texti = TextMobject(r"$\left[\begin{array}{c}1\\1\end{array}\right]$")
+ textj = TextMobject(r"$\left[\begin{array}{c}-1\\-1\end{array}\right]$")
+ texti.set_color(GREEN)
+ textj.set_color(RED)
+ texti.scale(0.7)
+ textj.scale(0.7)
+ texti.move_to(1.35*RIGHT+0.5*UP)
+ textj.move_to(-(1.5*RIGHT+0.5*UP))
+
+ text1 = TextMobject("[")
+ text2 = TextMobject(r"$\begin{array}{c} 1 \\ 1 \end{array}$")
+ text3 = TextMobject(r"$\begin{array}{c} -1 \\ -1 \end{array}$")
+ text4 = TextMobject("]")
+
+ text2.set_color(GREEN)
+ text3.set_color(RED)
+
+ text1.scale(2)
+ text4.scale(2)
+ text2.scale(0.7)
+ text3.scale(0.7)
+
+ text1.move_to(2.5*UP+6*LEFT)
+ text2.move_to(2.5*UP+5.75*LEFT)
+ text3.move_to(2.5*UP+5.25*LEFT)
+ text4.move_to(2.5*UP+5*LEFT)
+
+ self.play(Write(texti), Write(textj))
+ self.wait()
+ self.play(FadeIn(text1), Transform(texti,text2), Transform(textj,text3), FadeIn(text4))
+ self.wait()
+
+ o = TextMobject(r"Now, you can observe the Image of Linear Transformation")
+ o1 = TextMobject(r"and Column Space(i.e. span of columns of matrix $A$) are same")
+ o.move_to(2.5*DOWN)
+ o1.move_to(3*DOWN)
+ o.scale(0.75)
+ o1.scale(0.75)
+ o.add_background_rectangle()
+ o1.add_background_rectangle()
+ self.play(Write(o))
+ self.play(Write(o1))
+ self.wait()
+ self.play(FadeOut(o),FadeOut(o1))
+
+class solution2nd(LinearTransformationScene):
+ def construct(self):
+
+ self.setup()
+ self.wait()
+
+ arrow1 = Arrow(start = ORIGIN,end = 2*DOWN+RIGHT)
+ arrow2 = Arrow(start = ORIGIN,end = UP+LEFT)
+ arrow3 = Arrow(start = ORIGIN,end = 3*UP+4*RIGHT)
+ arrow1.set_color(YELLOW)
+ arrow2.set_color(ORANGE)
+ arrow3.set_color(PURPLE)
+ arrow1.scale(1.3)
+ arrow2.scale(1.5)
+ arrow3.scale(1.1)
+
+ self.play(ShowCreation(arrow1), ShowCreation(arrow2), ShowCreation(arrow3))
+
+ self.add_transformable_mobject(arrow1)
+ self.add_transformable_mobject(arrow2)
+ self.add_transformable_mobject(arrow3)
+ o = TextMobject(r"Consider any vector in the original vector space $R^2$")
+ o.move_to(2.5*DOWN)
+ o.scale(0.75)
+ o.add_background_rectangle()
+ self.play(Write(o))
+ self.wait()
+ self.play(FadeOut(o))
+
+ A = TextMobject(r"Let the matrix the of this linear transformation be $A$ =",r"$\left[\begin{array}{c c} 1 & -1 \\ 1 & -1 \end{array}\right]$",r" again.")
+ A.move_to(2*DOWN)
+ A.scale(0.75)
+ A.add_background_rectangle()
+ self.play(Write(A))
+ matrix = [[1,-1],[1,-1]]
+ self.apply_matrix(matrix)
+ self.wait()
+ self.play(FadeOut(A))
+
+ o = TextMobject(r"This is the transformed vector space")
+ o.move_to(2*DOWN)
+ o.scale(0.75)
+ o.add_background_rectangle()
+ self.play(Write(o))
+ self.wait()
+ self.play(FadeOut(o))
+
+ o = TextMobject(r"Each and every vector of original vector space $R^2$ will transform")
+ o1 = TextMobject(r"to this new vector space which is spanned by $\mathbf{CS}(A)$")
+ o.move_to(2.5*DOWN)
+ o1.move_to(3*DOWN)
+ o.scale(0.75)
+ o1.scale(0.75)
+ o.add_background_rectangle()
+ o1.add_background_rectangle()
+ self.play(Write(o))
+ self.play(Write(o1))
+ self.wait()
+ self.play(FadeOut(o))
+ self.play(FadeOut(o1)) \ No newline at end of file
diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file3_solution.py b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file3_solution.py
new file mode 100644
index 0000000..eb310f3
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file3_solution.py
@@ -0,0 +1,77 @@
+from manimlib.imports import *
+class solution(LinearTransformationScene):
+ def construct(self):
+
+ self.setup()
+ self.wait()
+
+ o = TextMobject(r"This is the original vector space $R^2$ (before Linear Transformation)")
+ o.move_to(3*DOWN)
+ o.scale(0.75)
+ o.add_background_rectangle()
+ self.play(Write(o))
+ self.wait()
+ self.play(FadeOut(o))
+
+ A = TextMobject(r"Consider the matrix the of this linear transformation $A$ = $\left[\begin{array}{c c} 1 & -1 \\ 1 & -1 \end{array}\right]$")
+ A.move_to(3*DOWN)
+ A.scale(0.75)
+ A.add_background_rectangle()
+ self.play(Write(A))
+ matrix = [[1,-1],[1,-1]]
+ self.apply_matrix(matrix)
+ self.wait()
+ self.play(FadeOut(A))
+
+ o = TextMobject(r"This is the transformed vector space")
+ o.move_to(3*DOWN)
+ o.scale(0.75)
+ o.add_background_rectangle()
+ self.play(Write(o))
+ self.wait()
+ self.play(FadeOut(o))
+
+ arrow2 = Arrow(start = ORIGIN, end = 2*DOWN+2*LEFT)
+ arrow2.set_color(PURPLE)
+ arrow2.scale(1.2)
+ self.play(ShowCreation(arrow2))
+ self.wait()
+
+ o1 = TextMobject("If the ","vector b"," lies in the transformed vector space")
+ o2 = TextMobject("(the line) then the solution exist")
+ o1.move_to(2.5*DOWN+2*RIGHT)
+ o1[1].set_color(PURPLE)
+ o2.move_to(3*DOWN+2.5*RIGHT)
+ o1.scale(0.75)
+ o2.scale(0.75)
+ o1.add_background_rectangle()
+ o2.add_background_rectangle()
+ self.play(Write(o1))
+ self.play(Write(o2))
+ self.wait()
+ self.play(FadeOut(o1), FadeOut(o2))
+
+ self.play(FadeOut(arrow2))
+
+ arrow1 = Arrow(start = ORIGIN, end = 2*UP+RIGHT)
+ arrow1.set_color(ORANGE)
+ arrow1.scale(1.3)
+ self.play(ShowCreation(arrow1))
+ self.wait()
+
+ o1 = TextMobject("If the ","vector b"," does lies in the transformed")
+ o2 = TextMobject("vector space then the does not solution exist")
+ o1.move_to(2.5*DOWN+2*RIGHT)
+ o1[1].set_color(ORANGE)
+ o2.move_to(3*DOWN+2.5*RIGHT)
+ o1.scale(0.75)
+ o2.scale(0.75)
+ o1.add_background_rectangle()
+ o2.add_background_rectangle()
+ self.play(Write(o1))
+ self.play(Write(o2))
+ self.wait()
+ self.play(FadeOut(o1), FadeOut(o2))
+
+ self.play(FadeOut(arrow1))
+ \ No newline at end of file
diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file4_null_space.py b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file4_null_space.py
new file mode 100644
index 0000000..3c52677
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file4_null_space.py
@@ -0,0 +1,91 @@
+from manimlib.imports import *
+class null_space(LinearTransformationScene):
+ def construct(self):
+
+ self.setup()
+ self.wait()
+
+ o = TextMobject(r"This is the original vector space $R^2$(before Linear Transformation)")
+ o.move_to(3*DOWN)
+ o.scale(0.75)
+ o.add_background_rectangle()
+ self.play(Write(o))
+ self.wait()
+ self.play(FadeOut(o))
+
+ o1 = TextMobject("Consider a set of vectors which are linear")
+ o2 = TextMobject(r"span of a particular vector $\left(\begin{array}{c} 1 \\ 1 \end{array}\right)$")
+ o1.move_to(2*DOWN+3*RIGHT)
+ o2.move_to(2.75*DOWN+3*RIGHT)
+ o1.scale(0.7)
+ o2.scale(0.7)
+ o1.add_background_rectangle()
+ o2.add_background_rectangle()
+ self.play(Write(o1))
+ self.play(Write(o2))
+
+ arrow = Arrow(start = ORIGIN, end = UP+RIGHT)
+ arrow1 = Arrow(start = ORIGIN, end = 2*(UP+RIGHT))
+ arrow2 = Arrow(start = ORIGIN, end = 3*(UP+RIGHT))
+ arrow3 = Arrow(start = ORIGIN, end = 4*(UP+RIGHT))
+ arrow4 = Arrow(start = ORIGIN, end = DOWN+LEFT)
+ arrow5 = Arrow(start = ORIGIN, end = 2*(DOWN+LEFT))
+ arrow6 = Arrow(start = ORIGIN, end = 3*(DOWN+LEFT))
+ arrow7 = Arrow(start = ORIGIN, end = 4*(DOWN+LEFT))
+
+ arrow.scale(1.5)
+ arrow1.scale(1.2)
+ arrow2.scale(1.15)
+ arrow3.scale(1.1)
+ arrow4.scale(1.5)
+ arrow5.scale(1.2)
+ arrow6.scale(1.15)
+ arrow7.scale(1.1)
+
+ self.play(ShowCreation(arrow),
+ ShowCreation(arrow1),
+ ShowCreation(arrow2),
+ ShowCreation(arrow3),
+ ShowCreation(arrow4),
+ ShowCreation(arrow5),
+ ShowCreation(arrow6),
+ ShowCreation(arrow7),
+ )
+
+ self.wait(2)
+ self.play(FadeOut(o1), FadeOut(o2))
+
+ self.add_transformable_mobject(arrow)
+ self.add_transformable_mobject(arrow1)
+ self.add_transformable_mobject(arrow2)
+ self.add_transformable_mobject(arrow3)
+ self.add_transformable_mobject(arrow4)
+ self.add_transformable_mobject(arrow5)
+ self.add_transformable_mobject(arrow6)
+ self.add_transformable_mobject(arrow7)
+
+ o1 = TextMobject("Notice, entire set of vectors which belongs to the vector")
+ o2 = TextMobject(r"subspace(Linear Span of $\left(\begin{array}{c} 1 \\ 1 \end{array}\right)$) transforms to zero")
+ o1.move_to(2*DOWN+2.5*RIGHT)
+ o2.move_to(2.75*DOWN+2.5*RIGHT)
+ o1.scale(0.7)
+ o2.scale(0.7)
+ o1.add_background_rectangle()
+ o2.add_background_rectangle()
+ self.play(Write(o1))
+ self.play(Write(o2))
+ self.wait()
+
+ matrix = [[1,-1],[1,-1]]
+ self.apply_matrix(matrix)
+ self.wait()
+
+ self.play(FadeOut(o1), FadeOut(o2))
+
+ o = TextMobject(r"Hence, the vector space formed by linear span of $\left(\begin{array}{c} 1 \\ 1 \end{array}\right)$ is the null space of $A$")
+ o.move_to(3*DOWN)
+ o.scale(0.75)
+ o.add_background_rectangle()
+ self.play(Write(o))
+ self.wait(2)
+ self.play(FadeOut(o), FadeOut(arrow), FadeOut(arrow1), FadeOut(arrow2), FadeOut(arrow3), FadeOut(arrow4), FadeOut(arrow5), FadeOut(arrow6), FadeOut(arrow7))
diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file5_Row_Space_part_1.py b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file5_Row_Space_part_1.py
new file mode 100644
index 0000000..5259eb4
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file5_Row_Space_part_1.py
@@ -0,0 +1,68 @@
+from manimlib.imports import *
+class LS(Scene):
+ def construct(self):
+ text1 = TextMobject(r"Consider a matrix $A =$")
+ text2 = TextMobject(r"[")
+ text3 = TextMobject(r"$\begin{array}{c c} 1 & -2\end{array}$")
+ text4 = TextMobject(r"$\begin{array}{c c} 1 & -1\end{array}$")
+ text5 = TextMobject(r"]")
+
+ text2.scale(2)
+ text5.scale(2)
+
+ text1.set_color(DARK_BLUE)
+ text2.set_color(DARK_BLUE)
+ text3.set_color(PURPLE)
+ text4.set_color(YELLOW)
+ text5.set_color(DARK_BLUE)
+
+ text1.move_to(3.5*LEFT+3*UP+2*RIGHT)
+ text2.move_to(0.75*LEFT+3*UP+2*RIGHT)
+ text3.move_to(3.25*UP+2*RIGHT)
+ text4.move_to(2.75*UP+2*RIGHT)
+ text5.move_to(0.75*RIGHT+3*UP+2*RIGHT)
+
+ self.play(FadeIn(text1), FadeIn(text2), FadeIn(text3), FadeIn(text4), FadeIn(text5))
+ self.wait()
+
+ ttext1 = TextMobject(r"$A^T =$")
+ ttext2 = TextMobject(r"[")
+ ttext3 = TextMobject(r"$\begin{array}{c} 1 \\ -2\end{array}$")
+ ttext4 = TextMobject(r"$\begin{array}{c} 1 \\ -1\end{array}$")
+ ttext5 = TextMobject(r"]")
+
+ ttext2.scale(2)
+ ttext5.scale(2)
+
+ ttext1.set_color(DARK_BLUE)
+ ttext2.set_color(DARK_BLUE)
+ ttext3.set_color(PURPLE)
+ ttext4.set_color(YELLOW)
+ ttext5.set_color(DARK_BLUE)
+
+ ttext1.move_to(2*LEFT+1.5*UP+2*RIGHT)
+ ttext2.move_to(1*LEFT+1.5*UP+2*RIGHT)
+ ttext3.move_to(0.5*LEFT+1.5*UP+2*RIGHT)
+ ttext4.move_to(0.5*RIGHT+1.5*UP+2*RIGHT)
+ ttext5.move_to(1*RIGHT+1.5*UP+2*RIGHT)
+
+ self.play(FadeIn(ttext1), FadeIn(ttext2), FadeIn(ttext3), FadeIn(ttext4), FadeIn(ttext5))
+
+ rtext = TextMobject(r"Row Space of $A$ = Column Space of $A^T = a_1$",r"$\left[\begin{array}{c} 1 \\ -2\end{array}\right]$",r"$+a_2$",r"$\left[\begin{array}{c} 1 \\ -1\end{array}\right]$")
+ rtext[1].set_color(PURPLE)
+ rtext[3].set_color(YELLOW)
+ rtext.move_to(2*DOWN+1.5*LEFT)
+ rtext.scale(0.75)
+
+ self.play(Write(rtext))
+ self.wait()
+
+ arrow1 = Arrow(start = 1.5*RIGHT+UP, end = 1.25*(DOWN+RIGHT))
+ arrow2 = Arrow(start = 2.5*RIGHT+UP, end = 1.25*DOWN+3.25*RIGHT)
+ arrow1.scale(1.25)
+ arrow2.scale(1.25)
+ arrow1.set_color(PURPLE)
+ arrow2.set_color(YELLOW)
+
+ self.play(ShowCreation(arrow1), ShowCreation(arrow2))
+ self.wait(2)
diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file2_Row_Space.py b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file6_Row_Space_part_2.py
index b16a32a..b16a32a 100644
--- a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file2_Row_Space.py
+++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file6_Row_Space_part_2.py
diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file7_Row_space_Orthogonal_Complements.py b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file7_Row_space_Orthogonal_Complements.py
new file mode 100644
index 0000000..c81d370
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file7_Row_space_Orthogonal_Complements.py
@@ -0,0 +1,150 @@
+from manimlib.imports import *
+class row_space(LinearTransformationScene):
+ def construct(self):
+
+ self.setup()
+ self.wait()
+
+ o = TextMobject(r"This is the original vector space $R^2$(before Linear Transformation)")
+ o.move_to(DOWN)
+ o.scale(0.75)
+ o.add_background_rectangle()
+ self.play(Write(o))
+ self.wait()
+ self.play(FadeOut(o))
+
+ o1 = TextMobject("Consider a set of vectors which are linear")
+ o2 = TextMobject(r"span of a $\left(\begin{array}{c} 1 \\ 1 \end{array}\right)$i.e. the null space.")
+ o1.move_to(2*DOWN+3*RIGHT)
+ o2.move_to(2.75*DOWN+3*RIGHT)
+ o1.scale(0.7)
+ o2.scale(0.7)
+ o1.add_background_rectangle()
+ o2.add_background_rectangle()
+ self.play(Write(o1))
+ self.play(Write(o2))
+
+ arrow = Arrow(start = ORIGIN, end = UP+RIGHT)
+ arrow.set_color(YELLOW)
+ arrow1 = Arrow(start = ORIGIN, end = 2*(UP+RIGHT))
+ arrow1.set_color(YELLOW)
+ arrow2 = Arrow(start = ORIGIN, end = 3*(UP+RIGHT))
+ arrow2.set_color(YELLOW)
+ arrow3 = Arrow(start = ORIGIN, end = 4*(UP+RIGHT))
+ arrow3.set_color(YELLOW)
+ arrow4 = Arrow(start = ORIGIN, end = DOWN+LEFT)
+ arrow4.set_color(YELLOW)
+ arrow5 = Arrow(start = ORIGIN, end = 2*(DOWN+LEFT))
+ arrow5.set_color(YELLOW)
+ arrow6 = Arrow(start = ORIGIN, end = 3*(DOWN+LEFT))
+ arrow6.set_color(YELLOW)
+ arrow7 = Arrow(start = ORIGIN, end = 4*(DOWN+LEFT))
+ arrow7.set_color(YELLOW)
+
+ arrow.scale(1.5)
+ arrow1.scale(1.2)
+ arrow2.scale(1.15)
+ arrow3.scale(1.1)
+ arrow4.scale(1.5)
+ arrow5.scale(1.2)
+ arrow6.scale(1.15)
+ arrow7.scale(1.1)
+
+ self.play(ShowCreation(arrow),
+ ShowCreation(arrow1),
+ ShowCreation(arrow2),
+ ShowCreation(arrow3),
+ ShowCreation(arrow4),
+ ShowCreation(arrow5),
+ ShowCreation(arrow6),
+ ShowCreation(arrow7),
+ )
+
+ self.wait(2)
+ self.play(FadeOut(o1), FadeOut(o2))
+
+ o1 = TextMobject("Consider a set of vectors which are linear")
+ o2 = TextMobject(r"span of a $\left(\begin{array}{c} 1 \\ -1 \end{array}\right)$i.e. the row space.")
+ o1.move_to(2*DOWN+3*RIGHT)
+ o2.move_to(2.75*DOWN+3*RIGHT)
+ o1.scale(0.7)
+ o2.scale(0.7)
+ o1.add_background_rectangle()
+ o2.add_background_rectangle()
+ self.play(Write(o1))
+ self.play(Write(o2))
+
+ rarrow = Arrow(start = ORIGIN, end = -UP+RIGHT)
+ rarrow.set_color(PURPLE)
+ rarrow1 = Arrow(start = ORIGIN, end = 2*(-UP+RIGHT))
+ rarrow1.set_color(PURPLE)
+ rarrow2 = Arrow(start = ORIGIN, end = 3*(-UP+RIGHT))
+ rarrow2.set_color(PURPLE)
+ rarrow3 = Arrow(start = ORIGIN, end = 4*(-UP+RIGHT))
+ rarrow3.set_color(PURPLE)
+ rarrow4 = Arrow(start = ORIGIN, end = -DOWN+LEFT)
+ rarrow4.set_color(PURPLE)
+ rarrow5 = Arrow(start = ORIGIN, end = 2*(-DOWN+LEFT))
+ rarrow5.set_color(PURPLE)
+ rarrow6 = Arrow(start = ORIGIN, end = 3*(-DOWN+LEFT))
+ rarrow6.set_color(PURPLE)
+ rarrow7 = Arrow(start = ORIGIN, end = 4*(-DOWN+LEFT))
+ rarrow7.set_color(PURPLE)
+
+ rarrow.scale(1.5)
+ rarrow1.scale(1.2)
+ rarrow2.scale(1.15)
+ rarrow3.scale(1.1)
+ rarrow4.scale(1.5)
+ rarrow5.scale(1.2)
+ rarrow6.scale(1.15)
+ rarrow7.scale(1.1)
+
+ self.play(ShowCreation(rarrow),
+ ShowCreation(rarrow1),
+ ShowCreation(rarrow2),
+ ShowCreation(rarrow3),
+ ShowCreation(rarrow4),
+ ShowCreation(rarrow5),
+ ShowCreation(rarrow6),
+ ShowCreation(rarrow7),
+ )
+
+ self.wait(2)
+ self.play(FadeOut(o1), FadeOut(o2))
+
+ self.add_transformable_mobject(arrow)
+ self.add_transformable_mobject(arrow1)
+ self.add_transformable_mobject(arrow2)
+ self.add_transformable_mobject(arrow3)
+ self.add_transformable_mobject(arrow4)
+ self.add_transformable_mobject(arrow5)
+ self.add_transformable_mobject(arrow6)
+ self.add_transformable_mobject(arrow7)
+
+ self.add_transformable_mobject(rarrow)
+ self.add_transformable_mobject(rarrow1)
+ self.add_transformable_mobject(rarrow2)
+ self.add_transformable_mobject(rarrow3)
+ self.add_transformable_mobject(rarrow4)
+ self.add_transformable_mobject(rarrow5)
+ self.add_transformable_mobject(rarrow6)
+ self.add_transformable_mobject(rarrow7)
+
+ o1 = TextMobject("Notice, entire set of vectors which belong to the null space of $A$ transforms to zero")
+ o2 = TextMobject(r"and entire set of vectors which belong to the row space of $A$ transforms to column space of $A$.")
+ o1.move_to(2.5*DOWN)
+ o2.move_to(3.5*DOWN)
+ o1.scale(0.7)
+ o2.scale(0.7)
+ o1.add_background_rectangle()
+ o2.add_background_rectangle()
+ self.play(Write(o1))
+ self.play(Write(o2))
+ self.wait()
+
+ matrix = [[1,-1],[1,-1]]
+ self.apply_matrix(matrix)
+ self.wait(3)
+
+ self.play(FadeOut(o1), FadeOut(o2)) \ No newline at end of file
diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file8_Left_Null_Space.py b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file8_Left_Null_Space.py
new file mode 100755
index 0000000..fd05e75
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file8_Left_Null_Space.py
@@ -0,0 +1,26 @@
+from manimlib.imports import *
+
+class Left_Null_Space(Scene):
+ def construct(self):
+
+ A = TextMobject(r"Left Null Space of A")
+ A.move_to(3*UP)
+ defn = TextMobject(r"It is a vector space that consists of all the solution $x$ to the equation $A^{T}x=0$")
+ defn.move_to(2*UP)
+ defn.scale(0.75)
+ eqn1 = TextMobject(r"$A^{T}x=0 \cdots (i)$")
+ eqn1.move_to(UP)
+ self.play(Write(A), Write(defn), Write(eqn1),run_time=1)
+ statement = TextMobject(r"Taking transpose of eqn $(i)$")
+ eqn = TextMobject(r"$(A^{T}x)^{T}=0$")
+ eqn.move_to(DOWN)
+ eqn2 = TextMobject(r"$x^{T}(A^{T})^{T}=0$")
+ eqn2.move_to(DOWN)
+ eqn3 = TextMobject(r"$x^{T}A=0$")
+ eqn3.move_to(DOWN)
+ self.play(Write(statement),Write(eqn),run_time=1)
+ self.wait(0.5)
+ self.play(Transform(eqn,eqn2),run_time=1)
+ self.wait(0.5)
+ self.play(Transform(eqn,eqn3),run_time=1)
+ self.wait(0.5) \ No newline at end of file
diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file9_left_null_space.py b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file9_left_null_space.py
new file mode 100644
index 0000000..61285be
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/The-Four-Fundamental-Subspaces/file9_left_null_space.py
@@ -0,0 +1,186 @@
+from manimlib.imports import *
+class row_space(LinearTransformationScene):
+ def construct(self):
+
+ self.setup()
+ self.wait()
+
+ o = TextMobject(r"This is the original vector space $R^2$(before Linear Transformation)")
+ o.move_to(DOWN)
+ o.scale(0.75)
+ o.add_background_rectangle()
+ self.play(Write(o))
+ self.wait()
+ self.play(FadeOut(o))
+
+ o1 = TextMobject("Consider a set of vectors which are linear")
+ o2 = TextMobject(r"span of a $\left(\begin{array}{c} 1 \\ 1 \end{array}\right)$i.e. the null space.")
+ o1.move_to(2*DOWN+3*RIGHT)
+ o2.move_to(2.75*DOWN+3*RIGHT)
+ o1.scale(0.7)
+ o2.scale(0.7)
+ o1.add_background_rectangle()
+ o2.add_background_rectangle()
+ self.play(Write(o1))
+ self.play(Write(o2))
+
+ arrow = Arrow(start = ORIGIN, end = UP+RIGHT)
+ arrow.set_color(YELLOW)
+ arrow1 = Arrow(start = ORIGIN, end = 2*(UP+RIGHT))
+ arrow1.set_color(YELLOW)
+ arrow2 = Arrow(start = ORIGIN, end = 3*(UP+RIGHT))
+ arrow2.set_color(YELLOW)
+ arrow3 = Arrow(start = ORIGIN, end = 4*(UP+RIGHT))
+ arrow3.set_color(YELLOW)
+ arrow4 = Arrow(start = ORIGIN, end = DOWN+LEFT)
+ arrow4.set_color(YELLOW)
+ arrow5 = Arrow(start = ORIGIN, end = 2*(DOWN+LEFT))
+ arrow5.set_color(YELLOW)
+ arrow6 = Arrow(start = ORIGIN, end = 3*(DOWN+LEFT))
+ arrow6.set_color(YELLOW)
+ arrow7 = Arrow(start = ORIGIN, end = 4*(DOWN+LEFT))
+ arrow7.set_color(YELLOW)
+
+ arrow.scale(1.5)
+ arrow1.scale(1.2)
+ arrow2.scale(1.15)
+ arrow3.scale(1.1)
+ arrow4.scale(1.5)
+ arrow5.scale(1.2)
+ arrow6.scale(1.15)
+ arrow7.scale(1.1)
+
+ self.play(ShowCreation(arrow),
+ ShowCreation(arrow1),
+ ShowCreation(arrow2),
+ ShowCreation(arrow3),
+ ShowCreation(arrow4),
+ ShowCreation(arrow5),
+ ShowCreation(arrow6),
+ ShowCreation(arrow7),
+ )
+
+ self.wait(2)
+ self.play(FadeOut(o1), FadeOut(o2))
+
+ o1 = TextMobject("Consider a set of vectors which are linear")
+ o2 = TextMobject(r"span of a vector $\left(\begin{array}{c} 1 \\ -1 \end{array}\right)$i.e. the row space.")
+ o1.move_to(2*DOWN+3*RIGHT)
+ o2.move_to(2.75*DOWN+3*RIGHT)
+ o1.scale(0.7)
+ o2.scale(0.7)
+ o1.add_background_rectangle()
+ o2.add_background_rectangle()
+ self.play(Write(o1))
+ self.play(Write(o2))
+
+ rarrow = Arrow(start = ORIGIN, end = -UP+RIGHT)
+ rarrow.set_color(PURPLE)
+ rarrow1 = Arrow(start = ORIGIN, end = 2*(-UP+RIGHT))
+ rarrow1.set_color(PURPLE)
+ rarrow2 = Arrow(start = ORIGIN, end = 3*(-UP+RIGHT))
+ rarrow2.set_color(PURPLE)
+ rarrow3 = Arrow(start = ORIGIN, end = 4*(-UP+RIGHT))
+ rarrow3.set_color(PURPLE)
+ rarrow4 = Arrow(start = ORIGIN, end = -DOWN+LEFT)
+ rarrow4.set_color(PURPLE)
+ rarrow5 = Arrow(start = ORIGIN, end = 2*(-DOWN+LEFT))
+ rarrow5.set_color(PURPLE)
+ rarrow6 = Arrow(start = ORIGIN, end = 3*(-DOWN+LEFT))
+ rarrow6.set_color(PURPLE)
+ rarrow7 = Arrow(start = ORIGIN, end = 4*(-DOWN+LEFT))
+ rarrow7.set_color(PURPLE)
+
+ rarrow.scale(1.5)
+ rarrow1.scale(1.2)
+ rarrow2.scale(1.15)
+ rarrow3.scale(1.1)
+ rarrow4.scale(1.5)
+ rarrow5.scale(1.2)
+ rarrow6.scale(1.15)
+ rarrow7.scale(1.1)
+
+ self.play(ShowCreation(rarrow),
+ ShowCreation(rarrow1),
+ ShowCreation(rarrow2),
+ ShowCreation(rarrow3),
+ ShowCreation(rarrow4),
+ ShowCreation(rarrow5),
+ ShowCreation(rarrow6),
+ ShowCreation(rarrow7),
+ )
+
+ self.wait(2)
+ self.play(FadeOut(o1), FadeOut(o2))
+
+ self.add_transformable_mobject(arrow)
+ self.add_transformable_mobject(arrow1)
+ self.add_transformable_mobject(arrow2)
+ self.add_transformable_mobject(arrow3)
+ self.add_transformable_mobject(arrow4)
+ self.add_transformable_mobject(arrow5)
+ self.add_transformable_mobject(arrow6)
+ self.add_transformable_mobject(arrow7)
+
+ self.add_transformable_mobject(rarrow)
+ self.add_transformable_mobject(rarrow1)
+ self.add_transformable_mobject(rarrow2)
+ self.add_transformable_mobject(rarrow3)
+ self.add_transformable_mobject(rarrow4)
+ self.add_transformable_mobject(rarrow5)
+ self.add_transformable_mobject(rarrow6)
+ self.add_transformable_mobject(rarrow7)
+
+ matrix = [[1,-1],[1,-1]]
+ self.apply_matrix(matrix)
+ self.wait(3)
+
+ o1 = TextMobject("Consider a set of vectors which are linear span of a vector")
+ o2 = TextMobject(r"$\left(\begin{array}{c} 1 \\ -1 \end{array}\right)$ which is orthogonal to column space i.e. Left Null Space")
+ o1.move_to(2*DOWN)
+ o2.move_to(2.75*DOWN)
+ o1.scale(0.7)
+ o2.scale(0.7)
+ o1.add_background_rectangle()
+ o2.add_background_rectangle()
+ self.play(Write(o1))
+ self.play(Write(o2))
+
+ rarrow = Arrow(start = ORIGIN, end = -UP+RIGHT)
+ rarrow.set_color(YELLOW)
+ rarrow1 = Arrow(start = ORIGIN, end = 2*(-UP+RIGHT))
+ rarrow1.set_color(YELLOW)
+ rarrow2 = Arrow(start = ORIGIN, end = 3*(-UP+RIGHT))
+ rarrow2.set_color(YELLOW)
+ rarrow3 = Arrow(start = ORIGIN, end = 4*(-UP+RIGHT))
+ rarrow3.set_color(YELLOW)
+ rarrow4 = Arrow(start = ORIGIN, end = -DOWN+LEFT)
+ rarrow4.set_color(YELLOW)
+ rarrow5 = Arrow(start = ORIGIN, end = 2*(-DOWN+LEFT))
+ rarrow5.set_color(YELLOW)
+ rarrow6 = Arrow(start = ORIGIN, end = 3*(-DOWN+LEFT))
+ rarrow6.set_color(YELLOW)
+ rarrow7 = Arrow(start = ORIGIN, end = 4*(-DOWN+LEFT))
+ rarrow7.set_color(YELLOW)
+
+ rarrow.scale(1.5)
+ rarrow1.scale(1.2)
+ rarrow2.scale(1.15)
+ rarrow3.scale(1.1)
+ rarrow4.scale(1.5)
+ rarrow5.scale(1.2)
+ rarrow6.scale(1.15)
+ rarrow7.scale(1.1)
+
+ self.play(ShowCreation(rarrow),
+ ShowCreation(rarrow1),
+ ShowCreation(rarrow2),
+ ShowCreation(rarrow3),
+ ShowCreation(rarrow4),
+ ShowCreation(rarrow5),
+ ShowCreation(rarrow6),
+ ShowCreation(rarrow7),
+ )
+
+ self.wait(2)
+ self.play(FadeOut(o1), FadeOut(o2))
diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Rank-Nullity-Theorem/README.md b/FSF-2020/linear-algebra/linear-transformations/The-Rank-Nullity-Theorem/README.md
new file mode 100644
index 0000000..ee1a337
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/The-Rank-Nullity-Theorem/README.md
@@ -0,0 +1,9 @@
+# Contributer: Archit Sangal
+My Github Account : <a href="https://github.com/architsangal">architsangal</a>
+<br/></br>
+
+## Sub-Topics Covered:
++ The Rank-Nullity Theorem
+
+#### Video 1: Visually understanding linear transformation(using grid)
+![GIF1](file2.gif) \ No newline at end of file
diff --git a/FSF-2020/linear-algebra/linear-transformations/The-Rank-Nullity-Theorem/file2.gif b/FSF-2020/linear-algebra/linear-transformations/The-Rank-Nullity-Theorem/file2.gif
new file mode 100644
index 0000000..46efc66
--- /dev/null
+++ b/FSF-2020/linear-algebra/linear-transformations/The-Rank-Nullity-Theorem/file2.gif
Binary files differ