diff options
author | G Sri Harsha | 2020-07-01 02:39:46 +0530 |
---|---|---|
committer | GitHub | 2020-07-01 02:39:46 +0530 |
commit | 1182faa41943d480fa156b01269ea467d032dfc9 (patch) | |
tree | 044018b83e16720ef38dcc71f486f372c13ce0a7 /FSF-2020/calculus | |
parent | 496552798bcb822ec018d192a975c84cba3bf4af (diff) | |
download | FSF-mathematics-python-code-archive-1182faa41943d480fa156b01269ea467d032dfc9.tar.gz FSF-mathematics-python-code-archive-1182faa41943d480fa156b01269ea467d032dfc9.tar.bz2 FSF-mathematics-python-code-archive-1182faa41943d480fa156b01269ea467d032dfc9.zip |
Added updated videos' codes
Diffstat (limited to 'FSF-2020/calculus')
4 files changed, 527 insertions, 0 deletions
diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/video1_convergence_Intuition.py b/FSF-2020/calculus/series-and-transformations/Power Series/video1_convergence_Intuition.py new file mode 100644 index 0000000..66f48f9 --- /dev/null +++ b/FSF-2020/calculus/series-and-transformations/Power Series/video1_convergence_Intuition.py @@ -0,0 +1,107 @@ +from manimlib.imports import * +import numpy as np + + +class convergence(Scene): + def construct(self): + originalFormula=TextMobject("$\sum _{ n=0 }^{ \infty }{ { a }_{ n }{ x }^{ n } }$") + originalFormula.set_color(RED) + self.play(Write(originalFormula)) + self.wait(1) + self.play(ApplyMethod(originalFormula.shift,2.7*UP)) + self.wait(1) + + colors=[PURPLE_E,PURPLE_D,MAROON_D,RED_E,RED_D,RED_C,ORANGE,YELLOW_E,YELLOW_D,YELLOW_B] + terms=["$a_{ 0 }$","$a_{ 1 }x$","$a_{ 2 }x^{ 2 }$","$a_{ 3 }x^{ 3 }$","$a_{ 4 }x^{ 4 }$","$a_{ 5 }x^{ 5 }$","$a_{ 6 }x^{ 6 }$","$a_{ 7 }x^{ 7 }$","$a_{ 8 }x^{ 8 }$","$a_{ 9 }x^{ 9 }$"] + termsTogetherString="+".join(terms) + #termsTogether=TextMobject(termsTogetherString+"...") + termsTogether=TextMobject("$a_{ 0 }$","+","$a_{ 1 }x$","+","$a_{ 2 }x^{ 2 }$","+","$a_{ 3 }x^{ 3 }$","+","$a_{ 4 }x^{ 4 }$","+","$a_{ 5 }x^{ 5 }$","+","$a_{ 6 }x^{ 6 }$","+","$a_{ 7 }x^{ 7 }$","+","$a_{ 8 }x^{ 8 }$","+","$a_{ 9 }x^{ 9 }$","+..") + termsTogether.set_color_by_tex_to_color_map({"$a_{ 0 }$":colors[0], + "$a_{ 1 }x$":colors[1], + "$a_{ 2 }x^{ 2 }$":colors[2], + "$a_{ 3 }x^{ 3 }$":colors[3], + "$a_{ 4 }x^{ 4 }$":colors[4], + "$a_{ 5 }x^{ 5 }$":colors[5], + "$a_{ 6 }x^{ 6 }$":colors[6], + "$a_{ 7 }x^{ 7 }$":colors[7], + "$a_{ 8 }x^{ 8 }$":colors[8], + "$a_{ 9 }x^{ 9 }$":colors[9]}) + termsTogether.scale(0.8) + termsTogether.shift(2.7*UP) + self.play(ReplacementTransform(originalFormula,termsTogether)) + self.wait(1) + + termMobjectRect=[0]*10 + termMobject=TextMobject(terms[0]).set_color(colors[0]) + termMobject.shift(2.7*UP+6.2*LEFT) + for i in range(1,11): + termMobjectOld=termMobject + termMobjectOld.scale(0.8) + if(i<10): + termMobject=TextMobject(terms[i]) + termMobject.set_color(colors[i]) + termMobject.next_to(termMobjectOld,buff=0.5) + if(i==1): + rectDefine=TextMobject("Here","each rectangle","represents the","value of the term") + rectDefine.set_color_by_tex_to_color_map({"each rectangle":BLUE,"value of the term":YELLOW}) + rectDefine.scale(0.7) + rectDefine.shift(3.2*DOWN) + self.play(Write(rectDefine)) + self.wait(1) + if(i==2): + ratio=TextMobject("If $\\frac { a_{ n+1 } }{ { a }_{ n } } < 1$") + ratio.set_color(RED) + ratio.scale(0.7) + ratio.move_to(3.2*DOWN) + inequality=TextMobject("$a_{ n+1 } < a_{ n }$") + inequality.set_color(RED) + inequality.scale(0.7) + inequality.move_to(3.2*DOWN) + self.play(FadeOut(rectDefine)) + self.play(Write(ratio)) + self.wait(1) + self.play(ReplacementTransform(ratio,inequality)) + self.wait(1) + #self.play(ApplyMethod(termMobjectOld.move_to,(2-0.3*i)*DOWN+RIGHT*0.2*i)) + termMobjectRect[i-1]=Rectangle(height=0.1,width=(4.2-0.4*i),color=colors[i-1]) + termMobjectRect[i-1].move_to((2-0.2*i)*DOWN+RIGHT*0.2*i) + #rectangles[p] = termMobjectRect + #p+=1 + self.play(ReplacementTransform(termMobjectOld,termMobjectRect[i-1])) + + uparrow=TextMobject("$\\uparrow$") + uparrow.set_color(GREEN) + uparrow.scale(5) + uparrow.shift(4*RIGHT+0.7*DOWN) + self.play(ShowCreation(uparrow)) + self.wait(1) + + converges=TextMobject("Converges!") + converges.set_color(RED) + converges.scale(0.6) + converges.next_to(uparrow) + self.play(FadeIn(converges)) + self.wait(2) + + self.play(FadeOut(converges),FadeOut(uparrow),FadeOut(inequality)) + self.wait(0.5) + rect=VGroup(termMobjectRect[0],termMobjectRect[1],termMobjectRect[2],termMobjectRect[3],termMobjectRect[4],termMobjectRect[5],termMobjectRect[6],termMobjectRect[7],termMobjectRect[8],termMobjectRect[9]) + self.play(ApplyMethod(rect.scale,0.2)) + for i in range(0,10): + self.play(ApplyMethod(termMobjectRect[i].shift,i*0.04*DOWN+(11-(3-0.11*i)*i)*LEFT*0.3)) + func=TextMobject("$\\approx$","$f(x)$") + func.set_color_by_tex_to_color_map({"$f(x)$":RED}) + func.scale(0.8) + func.shift(DOWN+4.5*RIGHT+0.1*UP) + self.play(FadeIn(func)) + + rightarrow=TextMobject("$\\rightarrow$") + rightarrow.set_color(GREEN) + rightarrow.scale(4) + rightarrow.shift(2*DOWN) + converges=TextMobject("Hence even the","sum converges!") + converges.set_color_by_tex_to_color_map({"sum converges!":RED}) + converges.move_to(3*DOWN) + converges.scale(0.7) + self.play(Write(rightarrow),FadeIn(converges)) + self.wait(2) diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/video2_convergence_of_a_function.py b/FSF-2020/calculus/series-and-transformations/Power Series/video2_convergence_of_a_function.py new file mode 100644 index 0000000..19b8b8b --- /dev/null +++ b/FSF-2020/calculus/series-and-transformations/Power Series/video2_convergence_of_a_function.py @@ -0,0 +1,156 @@ +from manimlib.imports import* +import math + +class intro(Scene): + def construct(self): + introText1=TextMobject("Let's analyse") + introText2=TextMobject("for") + function_main=TextMobject("$\sum { { (-1) }^{ n }{ x }^{ 2n } }$") + function_main.set_color(GREEN) + introText1.scale(1.2) + introText1.shift(2*UP) + introText2.scale(0.7) + introText2.shift(UP) + function_main.scale(2) + function_main.shift(DOWN) + function_expan=TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }+..$") + function_expan.set_color(RED) + function_expan.scale(1.2) + function_expan.shift(2*UP) + + self.play(Write(introText1)) + self.play(FadeIn(introText2)) + self.wait(0.5) + self.play(Write(function_main)) + self.wait(1) + + self.play(FadeOut(introText1),FadeOut(introText2)) + self.play(ApplyMethod(function_main.shift,3*UP)) + self.wait(0.5) + self.play(ReplacementTransform(function_main,function_expan)) + self.wait(1) + self.play(ApplyMethod(function_expan.scale,0.5)) + function_expan.to_edge(UP+RIGHT) + self.play(ReplacementTransform(function_expan,function_expan)) + self.wait(1) + + +class graphScene(GraphScene): + CONFIG = { + "x_min": -8, + "x_max": 8, + "y_min": -8, + "y_max": 8, + "graph_origin": ORIGIN, + "function_color": RED, + "axes_color": GREEN, + "x_axis_label": "$x$", + "y_axis_label": "$y$", + "exclude_zero_label": True, + "x_labeled_nums": range(-1, 2, 1), + "y_labeled_nums": range(0,2,1) + } + + def construct(self): + + x_each_unit = self.x_axis_width / (self.x_max - self.x_min) + y_each_unit = self.y_axis_height / (self.y_max - self.y_min) + + function_expan=TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }+..$") + function_expan.set_color(RED) + function_expan.scale(0.6) + function_expan.to_edge(UP+RIGHT) + self.add(function_expan) + + self.setup_axes(animate=True) + + eqText=[TextMobject("$1$"),TextMobject("$1-{ x }^{ 2 }$"),TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }$"),TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }$")] + for i in range(0,len(eqText)): + eqText[i].scale(0.6) + eqText[i].set_color(BLUE) + eqText[i].shift(ORIGIN+UP*2*y_each_unit+RIGHT*3.3*x_each_unit) + # eqTextTerm=TextMobject("And so on..!") + # eqTextTerm.set_color(BLUE) + # eqTextTerm.scale(0.6) + # eqTextTerm.shift(ORIGIN+UP*2*y_each_unit+3*RIGHT*x_each_unit) + equation1 = self.get_graph(lambda x : 1,color = RED,x_min = -8,x_max=8) + equation2 = self.get_graph(lambda x : 1-math.pow(x,2),color = RED,x_min = -1.7,x_max=1.7) + equation3 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4),color = RED,x_min = -1.6,x_max=1.6) + equation4 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6),color = RED,x_min = -1.45,x_max=1.45) + equation5 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8),color = RED,x_min = -1.35,x_max=1.35) + equation6 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10),color = RED,x_min = -1.3,x_max=1.3) + equation7 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12),color = RED,x_min = -1.25,x_max=1.25) + equation8 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14),color = RED,x_min = -1.2,x_max=1.2) + equation9 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16),color = RED,x_min = -1.15,x_max=1.15) + equation10 = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16)-math.pow(x,18),color = RED,x_min = -1.15,x_max=1.15) + + textBtwAnim1=TextMobject("Here the graph just","oscilates") + textBtwAnim1.set_color_by_tex_to_color_map({"oscilates":BLUE}) + textBtwAnim2=TextMobject("after","the","point","(as we add higher order terms)") + textBtwAnim2.set_color_by_tex_to_color_map({"after":BLUE,"point":YELLOW}) + textBtwAnim3=TextMobject("$x=1$") + textBtwAnim1.scale(0.4) + textBtwAnim2.scale(0.4) + textBtwAnim3.scale(1.2) + textBtwAnim1.shift(2.1*DOWN+4.3*RIGHT) + textBtwAnim2.shift(2.4*DOWN+4.1*RIGHT) + textBtwAnim3.shift(2.9*DOWN+4.3*RIGHT) + + self.play(ShowCreation(equation1),run_time=0.8) + self.add(eqText[0]) + self.wait(1) + self.play(ReplacementTransform(equation1,equation2),ReplacementTransform(eqText[0],eqText[1])) + self.wait(0.5) + self.play(ReplacementTransform(equation2,equation3),ReplacementTransform(eqText[1],eqText[2])) + self.wait(0.4) + self.play(ReplacementTransform(equation3,equation4),ReplacementTransform(eqText[2],eqText[3])) + self.wait(0.3) + self.play(FadeOut(eqText[3])) + #self.play(FadeIn(eqTextTerm)) + self.play(Write(textBtwAnim1),Write(textBtwAnim2)) + self.play(FadeIn(textBtwAnim3)) + self.play(ReplacementTransform(equation4,equation5)) + self.wait(0.2) + self.play(ReplacementTransform(equation5,equation6)) + self.wait(0.2) + self.play(ReplacementTransform(equation6,equation7)) + self.wait(0.2) + self.play(ReplacementTransform(equation7,equation8)) + self.wait(0.2) + self.play(ReplacementTransform(equation8,equation9)) + self.wait(0.2) + self.play(ReplacementTransform(equation9,equation10)) + self.wait(1) + + self.play(FadeOut(textBtwAnim1),FadeOut(textBtwAnim2),FadeOut(textBtwAnim3),FadeOut(equation10)) + self.wait(1) + + convergeLine=Line(start=ORIGIN+x_each_unit*LEFT,end=ORIGIN+x_each_unit*RIGHT,color=WHITE) + divergeLineLeft=Line(start=ORIGIN+x_each_unit*LEFT,end=ORIGIN+x_each_unit*LEFT*8,color=RED) + divergeLineRight=Line(start=ORIGIN+x_each_unit*RIGHT,end=ORIGIN+x_each_unit*8*RIGHT,color=RED) + circle1=Circle(radius=0.01,color=PURPLE_E) + circle2=Circle(radius=0.01,color=PURPLE_E) + circle1.shift(ORIGIN+LEFT*x_each_unit) + circle2.shift(ORIGIN+RIGHT*x_each_unit) + convergeText=TextMobject("Converges") + divergeText1=TextMobject("Diverges") + divergeText2=TextMobject("Diverges") + convergeText.set_color(GREEN) + divergeText1.set_color(RED) + divergeText2.set_color(RED) + convergeText.scale(0.5) + divergeText1.scale(0.5) + divergeText2.scale(0.5) + convergeText.shift(1.6*UP) + divergeText1.shift(0.3*UP+1.5*LEFT) + divergeText2.shift(0.3*UP+1.5*RIGHT) + self.play(Write(divergeLineLeft),Write(divergeLineRight)) + self.play(FadeIn(convergeLine)) + self.wait(0.5) + self.play(FadeOut(self.axes)) + self.play(Write(circle1),Write(circle2)) + self.wait(0.5) + self.play(ApplyMethod(convergeLine.shift,1.3*UP),ApplyMethod(function_expan.shift,5*LEFT+DOWN)) + self.play(FadeIn(convergeText),FadeIn(divergeText1),FadeIn(divergeText2)) + self.wait(2) + diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/video3_radius_and_intervalOfConvergence.py b/FSF-2020/calculus/series-and-transformations/Power Series/video3_radius_and_intervalOfConvergence.py new file mode 100644 index 0000000..f35fea8 --- /dev/null +++ b/FSF-2020/calculus/series-and-transformations/Power Series/video3_radius_and_intervalOfConvergence.py @@ -0,0 +1,113 @@ +from manimlib.imports import * +import math + +class intro(Scene): + def construct(self): + introText1=TextMobject("Consider the example","above",) + introText1.scale(0.8) + introText1.set_color_by_tex_to_color_map({"above":YELLOW}) + self.play(Write(introText1)) + self.wait(1) + +class graphScene(GraphScene,MovingCameraScene): + CONFIG = { + "x_min": -5, + "x_max": 5, + "y_min": -5, + "y_max": 5, + "graph_origin": ORIGIN, + "function_color": RED, + "axes_color": GREEN, + "x_axis_label": "$x$", + "y_axis_label": "$y$", + "exclude_zero_label": True, + "x_labeled_nums": range(-1, 2, 1), + "y_labeled_nums": range(0,2,1), + "y_axis_height":7, + "x_axis_width":7, + } + + def setup(self): + GraphScene.setup(self) + MovingCameraScene.setup(self) + + + def construct(self): + x_each_unit = self.x_axis_width / (self.x_max - self.x_min) + y_each_unit = self.y_axis_height / (self.y_max - self.y_min) + + function_expan=TextMobject("$1-{ x }^{ 2 }+{ x }^{ 4 }-{ x }^{ 6 }+{ x }^{ 8 }+..$") + function_expan.scale(0.6) + function_expan.set_color(RED) + function_expan.to_edge(UP+RIGHT) + self.add(function_expan) + + self.setup_axes() + + equation = self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16)-math.pow(x,18),color = RED,x_min = -1.1,x_max=1.1) + self.play(ShowCreation(equation)) + self.wait(1) + + dashLineLeft=DashedLine(start=ORIGIN+y_each_unit*5*UP,end=ORIGIN+y_each_unit*5*DOWN) + dashLineRight=DashedLine(start=ORIGIN+y_each_unit*5*UP,end=ORIGIN+y_each_unit*5*DOWN) + dashLineLeft.shift(ORIGIN+LEFT*x_each_unit) + dashLineRight.shift(ORIGIN+RIGHT*x_each_unit) + radiusLine=Line(start=ORIGIN,end=ORIGIN+RIGHT*x_each_unit) + rangeLine=Line(start=ORIGIN+LEFT*x_each_unit,end=ORIGIN+RIGHT*x_each_unit) + circle=Circle(radius=x_each_unit) + movingPoint=Circle(radius=0.025) + movingPoint.shift(ORIGIN+RIGHT*x_each_unit) + circleEq1=self.get_graph(lambda x:math.sqrt(1-x**2),color=BLUE,x_max=-1,x_min=1) + circleEq2=self.get_graph(lambda x:-math.sqrt(1-x**2),color=BLUE,x_max=1,x_min=-1) + + self.play(Write(dashLineLeft),Write(dashLineRight)) + self.wait(1) + + equation_updated=self.get_graph(lambda x : 1-math.pow(x,2)+math.pow(x,4)-math.pow(x,6)+math.pow(x,8)-math.pow(x,10)+math.pow(x,12)-math.pow(x,14)+math.pow(x,16)-math.pow(x,18),color = GREEN,x_min = -1,x_max=1) + self.play(FadeOut(self.axes),ReplacementTransform(equation,equation_updated)) + self.wait(0.5) + self.play(Write(radiusLine)) + self.play(MoveAlongPath(movingPoint,circleEq1)) + self.play(MoveAlongPath(movingPoint,circleEq2)) + self.play(FadeIn(circle)) + self.wait(1) + + radiusText=TextMobject("Radius of convergence") + radiusText.scale(0.14) + radiusText.shift(ORIGIN+RIGHT*x_each_unit*0.45+DOWN*y_each_unit*0.2) + #self.activate_zooming(animate=True) + self.play(Write(radiusText)) + self.wait(0.6) + + self.camera_frame.save_state() + self.play(self.camera_frame.set_width,5.5) + self.wait(1) + self.play(self.camera_frame.set_width,14) + self.wait(1.3) + + self.play(FadeOut(radiusText),FadeOut(circle),FadeOut(movingPoint)) + extendLine=Line(start=ORIGIN,end=ORIGIN+x_each_unit*LEFT) + self.play(Write(extendLine)) + doubleArrow=TextMobject("$\longleftrightarrow$") + doubleArrow.scale(1.6) + doubleArrow.set_color(BLUE) + doubleArrow.shift(ORIGIN+DOWN*y_each_unit*0.5) + self.play(FadeIn(doubleArrow)) + self.wait(1) + rangeText=TextMobject("Interval of convergence") + rangeText.scale(0.15) + rangeText.shift(ORIGIN+y_each_unit*DOWN) + self.play(Write(rangeText)) + self.wait(0.6) + + self.camera_frame.save_state() + self.play(self.camera_frame.set_width,5.5) + self.wait(1) + self.play(self.camera_frame.set_width,14) + self.wait(1.3) + # self.camera_frame.save_state() + # self.camera_frame.set_width(5.5) + # self.play(self.camera_frame.move_to, ORIGIN) + # self.wait(1) + # self.camera_frame.set_width(14) + # self.wait(1.5) diff --git a/FSF-2020/calculus/series-and-transformations/Power Series/video4_UniformConvergence.py b/FSF-2020/calculus/series-and-transformations/Power Series/video4_UniformConvergence.py new file mode 100644 index 0000000..1f3e26c --- /dev/null +++ b/FSF-2020/calculus/series-and-transformations/Power Series/video4_UniformConvergence.py @@ -0,0 +1,151 @@ +from manimlib.imports import * +import math + +class uniformlyConvergent(Scene): + def construct(self): + #introText1=TextMobject("Again consider the","above","example") + introText2=TextMobject("Let","$g(x)=\\frac { 1 }{ 1+{ x }^{ 2 } }$","and","x=0.5 $\in$(-1,1)") + introText3=TextMobject("Lets analyse..","!") + #introText1.scale(0.8) + introText2.scale(0.7) + introText3.scale(0.9) + introText3.shift(DOWN) + #introText1.set_color_by_tex_to_color_map({"above":YELLOW}) + introText2.set_color_by_tex_to_color_map({"$g(x)=\\frac { 1 }{ 1+{ x }^{ 2 } }$":BLUE,"x=0.5 $\in$(-1,1)":YELLOW}) + introText3.set_color_by_tex_to_color_map({"!":GREEN}) + #self.play(Write(introText1)) + #self.wait(0.5) + #self.play(FadeOut(introText1)) + self.play(Write(introText2)) + self.play(FadeIn(introText3)) + self.wait(2) + + +def gety(x,n): + ans=0 + for i in range(0,n+1): + if(i%2==0): + ans+=(math.pow(x,2*i)) + else: + ans-=(math.pow(x,2*i)) + return ans + +def makeSeries(x,points,x_each_unit,y_each_unit): + p=0 + for point in points: + y=gety(x,p) + point.shift(ORIGIN+RIGHT*x_each_unit*p+UP*y_each_unit*y) + p+=1 + +def makeLines(x,numPoints,x_each_unit,y_each_unit): + lines=[0]*numPoints + for i in range(0,numPoints-1): + y=gety(x,i) + y_next=gety(x,i+1) + lines[i]=Line(start=ORIGIN+RIGHT*x_each_unit*i+UP*y_each_unit*y,end=ORIGIN+RIGHT*x_each_unit*(i+1)+UP*y_each_unit*y_next,color=RED) + return lines + +class graphScene(GraphScene,ZoomedScene): + CONFIG = { + "x_min": -6, + "x_max": 6, + "y_min": -5, + "y_max": 5, + "graph_origin": ORIGIN, + "function_color": RED, + "axes_color": GREEN, + "x_axis_label": "$k$", + "y_axis_label": "$f(\\frac{1}{2})_k$", + "exclude_zero_label": True, + "x_axis_width":7, + "y_axis_height":7, + "zoomed_camera_frame_starting_position": 0.5*UP+0.5*RIGHT, + "zoom_factor": 0.4, + } + + def setup(self): + GraphScene.setup(self) + #MovingCameraScene.setup(self) + ZoomedScene.setup(self) + + + def construct(self): + x_each_unit = self.x_axis_width / (self.x_max - self.x_min) + y_each_unit = self.y_axis_height / (self.y_max - self.y_min) + sequence=TextMobject("$1$ , $1-(0.5)^2$ , $1-(0.5)^2+(0.5)^4..$") + sequence.set_color(RED) + sequence.scale(0.35) + sequence.to_edge(UP+RIGHT) + formula=TextMobject("$f(x)_{ k }=\sum _{ i=0 }^{ k }{ (-1)^{ i }(x)^{ 2i } } $") + formula.set_color(PURPLE_C) + formula.scale(0.4) + formula.shift(5.3*RIGHT+3*UP) + fLine=Line(start=ORIGIN+x_each_unit*6*LEFT,end=ORIGIN+x_each_unit*6*RIGHT) + fLine.shift(ORIGIN+(4/5)*y_each_unit*UP) + fLineText=TextMobject("$g(0.5)=\\frac { 4 }{ 5 } $") + fLineText.set_color(RED) + fLineText.scale(0.3) + fLineText.shift(UP*1.2*y_each_unit+RIGHT*x_each_unit+4*LEFT) + points=[Dot(radius=0.03,color=BLUE) for i in range(0,6)] + makeSeries(0.5,points,x_each_unit,y_each_unit) + lines=makeLines(0.5,6,x_each_unit,y_each_unit) + + func1=TextMobject("$g(x)=\\frac { 1 }{ 1+{ x }^{ 2 } }$") + func2=TextMobject("x=0.5 $\in$(-1,1)") + func1.scale(0.4) + func2.scale(0.4) + func1.shift(5.3*LEFT+3.3*UP) + func2.shift(5.3*LEFT+2.9*UP) + self.add(func1) + self.add(func2) + + self.add(sequence) + self.add(formula) + self.setup_axes(animate=True) + self.play(Write(fLine)) + self.add(fLineText) + for p in points: + self.add(p) + self.setup() + self.activate_zooming(animate=True) + for p in range(0,5): + self.play(Write(lines[p])) + # self.wait(0.5) + # self.camera_frame.save_state() + # self.camera_frame.set_width(0.6) + # self.play(self.camera_frame.move_to, points[0]) + # self.wait(0.4) + # self.play(self.camera_frame.move_to, points[1]) + # self.wait(0.4) + # self.play(self.camera_frame.move_to, points[2]) + # self.wait(0.3) + # self.play(self.camera_frame.move_to, points[3]) + # self.wait(1) + # self.play(self.camera_frame.move_to,ORIGIN) + # self.camera_frame.set_width(14) + + self.wait(1) + self.get_zoomed_display_pop_out_animation() + + explanation1=TextMobject("Since the series","converges","to") + explanation1.set_color_by_tex_to_color_map({"converges":YELLOW}) + explanation2=TextMobject("$\\frac {4}{5}$") + explanation2.set_color(BLUE) + explanation3=TextMobject("Hence","$\\forall \epsilon>0$,","$\exists k$","such that,") + explanation3.set_color_by_tex_to_color_map({"$\\forall \epsilon>0$":BLUE,"$\exists k$":YELLOW}) + explanation4=TextMobject("$\left| { f\left( \\frac { 1 }{ 2 } \\right) }_{ k }-\\frac { 4 }{ 5 } \\right| <$","$\epsilon$") + explanation4.set_color_by_tex_to_color_map({"$\epsilon$":RED}) + explanation1.scale(0.5) + explanation3.scale(0.5) + explanation1.shift(1.8*DOWN+3.5*RIGHT) + explanation2.shift(2.4*DOWN+3.5*RIGHT) + explanation3.shift(1.8*DOWN+3.5*RIGHT) + explanation4.shift(2.4*DOWN+3.5*RIGHT) + + self.play(Write(explanation1)) + self.play(FadeIn(explanation2)) + self.wait(1) + self.play(FadeOut(explanation1),FadeOut(explanation2)) + self.play(Write(explanation3)) + self.play(Write(explanation4)) + self.wait(2) |