// This is an example for unconstraint nonlinear problems. // Ref:R.fletcher and M.J.D Powell, A Rapidly Convergent Descent Method for Minimization Algorithms, Computer journal, Vol. 6, pp. 163-168, 1963 //Example: //f(x1,x2,x3) = 100*((x3 - 10*theta(x1,x2))^2 + (sqrt(x1^2 + x1^2) - 1)^2) + x3^2 //theta(x1,x2) = (atan(x(2)/x(1)))/(2*%pi) if x(1)>0 // = %pi + atan(x(2)/x(1)) if x(1)<0 //====================================================================== // Copyright (C) 2018 - IIT Bombay - FOSSEE // This file must be used under the terms of the CeCILL. // This source file is licensed as described in the file COPYING, which // you should have received as part of this distribution. The terms // are also available at // http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt // Author:Debasis Maharana // Organization: FOSSEE, IIT Bombay // Email: toolbox@scilab.in //====================================================================== clc; clc;clear;close function y = FletcherPowell(x) if (x(1)>0) theta_x1x2 = (atan(x(2)/x(1)))/(2*%pi); elseif (x(1)<0) theta_x1x2 = %pi + atan(x(2)/x(1)); end y = 100*( (x(3) - 10*theta_x1x2 ).^2 + (sqrt(x(1)^2 + x(2)^2) - 1)^2) + x(3)^2; endfunction X0 = [-1 0 0]; MFes = 500; Miter = 200; TF = 1D-10; TX = 1D-10; mprintf('The following settings are used\n Maximum iterations %d \n maximum functional exaluations %d\n Function tolerance %s \n variable tolerance %s ',Miter,MFes,string(TF),string(TX)); input('Press enter to proceed ') clc; mprintf('Scilab is solving the problem...') options = optimset ("MaxFunEvals",MFes,"MaxIter",Miter,"PlotFcns",optimplotfval,"TolFun",TF,"TolX",TX); [x,fval,exitflag,output] = fminsearch(FletcherPowell,X0,options) clc select exitflag case -1 disp(output.algorithm, 'Algorithm used') mprintf('\n The maximum number of iterations has been reached \n') mprintf('\n The number of iterations %d ',output.iterations) mprintf('\n The number of function evaluations %d',output.funcCount) case 0 disp(output.algorithm, 'Algorithm used ') mprintf('\n The maximum number of function evaluations has been reached \n') mprintf('\n The number of function evaluations %d',output.funcCount) mprintf('\n The number of iterations %d ',output.iterations) case 1 disp(output.algorithm, 'Algorithm used ') mprintf('\n The tolerance on the simplex size and function value delta has been reached\n') mprintf('\n The number of function evaluations %d',output.funcCount) mprintf('\n The number of iterations %d ',output.iterations) end disp(x,"The optimal solution is") mprintf("\n The optimum value of the function is %s",string(fval))