
FOSSEE Optimization
Toolbox

Developer’s Manual

toolbox@scilab.in

August 7, 2019

mailto:toolbox@scilab.in

Contents

1 Introduction 1
1.1 Scilab . 1
1.2 Optimization Libraries . 2
1.3 Downloading the toolbox . 3
1.4 Prerequisites . 3
1.5 Purpose of document . 3

2 Toolbox Structure 5

3 Builder files 7
3.1 Introduction . 7
3.2 builder.sce . 7
3.3 buildmacros.sce . 8
3.4 builder_gateway.sce . 8

3.4.1 builder_gateway_cpp.sce 9
3.5 builder_help.sce . 9

4 etc directory 10
4.1 Introduction . 10
4.2 FOSSEE_Optimization_Toolbox.start 10
4.3 FOSSEE_Optimization_Toolbox.quit 10

5 macros directory 12
5.1 Introduction . 12
5.2 Outline of a macros file . 12

5.2.1 Commented Help page 13
5.2.2 Input retrieval . 13
5.2.3 Error checks . 14
5.2.4 Input modifications 14
5.2.5 Call to the C++ library 14
5.2.6 Output retrieval,checks and modifications 15

ii

FOT Developer’s Manual

6 sci_gateway files 16
6.1 Introduction . 16
6.2 Basic Scilab API Functions 16
6.3 Outline of a sci_gateway file 16

6.3.1 Variable initialization 17
6.3.2 Input retrieval . 18
6.3.3 Input modifications 22
6.3.4 Calling the library . 23
6.3.5 Output management 24
6.3.6 Returning output to Scilab 24

7 Solver Libraries 26
7.1 Introduction . 26
7.2 Prerequisites . 26
7.3 Compiling libraries . 26

7.3.1 ecos . 27
7.3.2 CLP . 28
7.3.3 Symphony . 29
7.3.4 Ipopt . 30
7.3.5 CBC . 31
7.3.6 Bonmin . 33

7.4 Shared libraries . 35
7.5 Header files . 35

8 Help Files 36
8.1 Introduction . 36
8.2 Basic help document structure 36
8.3 Methods of writing help documents 37

8.3.1 Using help_from_sci 37
8.3.2 Directly via XML . 37

8.4 Style Preferences . 38
8.4.1 Using LATEX . 38

8.5 Additional Notes . 38
8.5.1 Problems faced while using LATEX 38

Appendix A Codes 40
A.1 FOSSEE_Optimization_Toolbox.start 40
A.2 FOSSEE_Optimization_Toolbox.quit 42

Appendix B Tutorial 43
B.1 Toolbox Tutorial . 43
B.2 Help Tutorial . 43

B.2.1 Introduction . 43
B.2.2 Using help_from_sci 43

iii

FOT Developer’s Manual

B.2.3 Modifying the XML 44

Appendix C Assignments 45

iv

1

Introduction

FOSSEE Optimization toolbox is a toolbox in Scilab maintained and de-
veloped by FOSSEE1(Free and Open Source Software in Education), IIT
Bombay2. It can solve the following optimization problems :

1. Linear programming(LP)
2. Quadratic programming(QP)
3. Nonlinear programming(NLP)
4. Integer programming(IP)
5. Second order Conic Programming(SOCP) problems

It also solves specific optimization problems like least squares, minimax and
goal attainment problem.
Scilab is a open-source numerical computational package licensed under
GPLv2 license which has broad applications in educational and engineer-
ing domains. It is a competitive alternative to Matlab and Octave. Scilab
was initially maintained and developed by INRIA3(French Institute for Re-
search in Computer Science and Automation). Scilab consortium was formed
in June 2010 which now handles Scilab development. FOSSEE Optimiza-
tion toolbox uses a dozen of open-source optimization solvers to solve the
optimization problems. Many of these solvers are part of the COIN-OR4

initiative which promotes the development and use of open-source softwares
for operations research community. Scilab provides API functions to call
libraries from C, C++ and FORTRAN. Most of the solvers used by the
toolbox is programmed in C++.

1.1 Scilab

Scilab, as mentioned above is a numerical computational software. It can be
downloaded from the Scilab website5 or from the respective repositories in

1https://fossee.in/
2http://iitb.ac.in/
3https://www.inria.fr/en/

4https://www.coin-or.org/
5http://www.scilab.org/download/latest

1

FOT Developer’s Manual

case of Linux or macOS. The standard IDE of Scilab is given in figure ??.It
contains a file browser,variable browser, command history and the console.
Scilab also provides a command line interface which can be run by scilab-cli

from the terminal.
Native scilab provides only limited functions. For advanced and specific
functions, the user has to download toolboxes which are scilab packages.
The scilab package manager is called ATOMS(AuTomatic mOdules Man-
agement for Scilab).The available scilab toolboxes on ATOMS can either
accessed through the ATOMS website6 or by clicking Applications»Module
manager in the Scilab menu bar.

NOTE
It is good practise to run atomsSystemUpdate() in scilab console to up-
date ATOMS upon fresh install. In case, you are using Scilab 5.5, ex-
ecute atomsRepositoryAdd(’http://atoms.scilab.org’) instead of the pre-
vious command

1.2 Optimization Libraries
FOSSEE Optimization toolbox mainly uses six mathematical optimization
libraries, namely :

1. CLP7 (Coin-or Linear Programming)

2. Ipopt8 (Interior Point OPTimizer)

3. Symphony9

4. Bonmin10 (Basic Open-source Nonlinear Mixed INteger programming)

5. CBC11(Coin-or branch and cut)

6. ECOS12

These libraries, in turn are dependent other libraries such as:

1. CGL13 (Cut Generation Library)

2. LAPACK14(Linear Algebra PACKage)

3. BLAS15 (Basic Linear Algebra Subprograms)
6https://atoms.scilab.org/
7https://projects.coin-or.org/Clp
8https://projects.coin-or.org/Ipopt
9https://projects.coin-

or.org/SYMPHONY
10https://www.coin-or.org/Bonmin/

11https://projects.coin-or.org/Cbc
12https://www.embotech.com/ECOS/
13https://projects.coin-or.org/Cgl
14https:/www.netlib.org/lapack/
15https:/www.netlib.org/blas/

2

FOT Developer’s Manual

4. MUMPS16 (MUltifrontal Massively Parallel Sparse direct Solver)

5. OSI17 (Open Solver Interface)

NOTE
The source codes for all the COIN-OR libraries can be found at coin-or
download pagea or on githubb

ahttps://www.coin-or.org/download/source/
bhttps://github.com/coin-or

1.3 Downloading the toolbox

FOT can be downloaded onto your system in the following ways:

1. From ATOMS : by executing atomsInstall(’FOT’) on Scilab prompt
followed by restarting Scilab.

2. From github : clone from the github repository, git clone https://

github.com/FOSSEE/FOSSEE-Optimization-toolbox.git

We prefer the latter method and the following instructions are with respect
to this mode. You can load the toolbox in Scilab by going to the FOT root
directory and running exec builder.sce followed by exec loader.sce on the
Scilab console. These commands compiles and loads the files onto Scilab
memory. In case, the toolbox is already compiled, only the latter command
has to be run exec cleaner.sce will delete all the compiled binary files.

1.4 Prerequisites

We expect you to have a novice knowledge of both Scilab and C++. You
should be familiar with Object Oriented Programming concepts and com-
fortable with pointers in C++. In addition to this, you should have good
command over Linux and familiar with its workflows.

1.5 Purpose of document

This manual is made to help developers and enthusiasts get beyond the
initial barrier and contribute productively to the development and mainte-
nance of FOSSEE Optimization toolbox. This point is highly relevant for
this toolbox because of its multidisciplinary domain.

16https:/mumps.enseeiht.fr/ 17https://projects.coin-or.org/Osi

3

FOT Developer’s Manual

This Developer’s Manual consists of 8 chapters. chapter 2 deals with
structure of the toolbox and describes them briefly.It is followed by chapter 3
which explains in detail how the toolbox is built and loaded onto Scilab.
chapter 4 describes the start and quit files which are run at the initialization
and finalization of the toolbox. chapter 5 is about Scilab function files
and explains it by taking one of function files. After that, chapter 6 is
on the C++ files that is used to call the solver libraries and is followed by
chapter 7 which consists of detailed description of downloading and building
each of the libraries needed for the Toolbox. chapter 8 guides on the help
documentation and its related aspects. The Appendix of this manual is
divided into three different chapters. Appendix A displays some codes which
are referred to in the some of the chapters. Appendix B gives some tutorials
for practise and is followed by Appendix C which are assignments which
gives you first hand experience in toolbox development.

4

2

Toolbox Structure

Scilab toolboxes are important for it’s development. Scilab, being a nu-
merical computational package caters to a vast domain. This being said,
a person working with Image processing may not need the functions re-
lated fuzzy logic. Hence, releasing these specialized functions as modules or
toolboxes not only serves as the aforementioned purpose, but also helps in
reducing the size of the basic Scilab installation.

Toolboxes are developed when there are a number of functions to be
provided in the particular domain. If the number of functions are very few,
the developer can use ilib_build function to build the required files rather
than create a toolbox. For more details about ilib_build, check the help
page.

To be versatile in usage, Scilab has a particular folder structure for its
toolbox. A detailed article on the Scilab toolboxes written by the Scilab
team can be found here1. It is recommended for a new developer to go
through that article. Advanced toolbox development can be found in this
document written by Michaël Baudin 2.

FOSSEE Optimization toolbox also follows a similar folder structure.
We will be discussing about these folders in the coming chapters. A tree of
the current version of FOT is given below.

Some of the important directories are :

1. macros : Contains the scilab function files containing the functions
that are to be called form Scilab and their respective builder files.

2. sci_gateway : Contains gateway files which are to be called from the
thirdparty directory

3. thirdparty : Contains the header files and dynamic linking libraries(shared
libraries) of the toolbox classified by OS and architecture

4. etc : Contains the files needed at the time of building the toolbox
1https://wiki.scilab.org/howto/Create%20a%20toolbox2https://forge.scilab.org/index.php/p/docsciextensions/downloads/547/

5

FOT Developer’s Manual

Figure 2.1: FOT folder structure tree

6

FOT Developer’s Manual

5. help : Contains the required help files for the toolbox

6. tests : Contains the test files for the toolbox

7. demo : Contains demo files for the toolbox

7

3

Builder files

3.1 Introduction

A builder file is a file used to build the toolbox. It creates binaries of the
toolbox that is loaded into Scilab memory. Most of the directories mentioned
in the previous chapter has their own builder files. The general file name of
builder files are builder*.sce where * is replaced by a string.

3.2 builder.sce

The following is the main FOT builder.sce file which is located at the root
directory:
lines (0);
try

getversion (’scilab ’);
catch

error(gettext (’Scilab 5.0 or more is required .’));
end;
//

==

if ~ with_module (" development_tools ") then
error(msprintf (gettext ("%s module not installed ."),"

development_tools "));
end
//

==

TOOLBOX_NAME = " FOSSEE_Optimization_Toolbox ";
TOOLBOX_TITLE = " FOSSEE Optimization Toolbox ";
//

==

toolbox_dir = get_absolute_file_path (" builder .sce");
tbx_builder_macros (toolbox_dir);

8

FOT Developer’s Manual

tbx_builder_gateway (toolbox_dir);
tbx_builder_help (toolbox_dir);
tbx_build_loader (TOOLBOX_NAME , toolbox_dir);
tbx_build_cleaner (TOOLBOX_NAME , toolbox_dir);
clear toolbox_dir TOOLBOX_NAME TOOLBOX_TITLE ;

lines(0) disables vertical paging of the display. The try-catch condition
exits the builder if the required Scilab version is not available. The if loop
following that checks if the development_tool module is present. Generally,
it should be present with your default Scilab installation. The following
lines assign name and title, gets the path of the builder file and executes the
other builder files which compiles the required directories with respective
commands. It also builds a loader.sce which is used to load the binary files
into Scilab memory and a cleaner.sce file to remove binary files.

3.3 buildmacros.sce
The buildmacros.sce file is located in macros directory. It compiles the scilab
macro files which are scilab function files. The following is the content of
the buildmacros.sce file:
tbx_build_macros (" FOSSEE_Optimization_Toolbox ",

get_absolute_file_path (" buildmacros .sce"))
;

clear tbx_build_macros ;

tbx_build_macros is the scilab function used to compile the macros file. The
first argument is the toolbox name which is set in the main builder file and
the second input is the path of the macros builder file. clear tbx_build_macros

clears the tbx_build_macros function from the scilab memory.

3.4 builder_gateway.sce
builder_gateway.sce file is used to run the compiles the builder files which
are located in sub-directories.

sci_gateway_dir = get_absolute_file_path (’builder_gateway .sce ’)
;

tbx_builder_gateway_lang (’cpp ’, sci_gateway_dir);
tbx_build_gateway_loader ([’cpp ’], sci_gateway_dir);

clear tbx_builder_gateway_lang tbx_build_gateway_loader ;
clear sci_gateway_dir ;

sci_gateway_dir stores the path to the this file. tbx_builder_gateway_lang

runs the builder file in the respective sub-directories which in turn com-
piles the scripts. The first argument for this function is an array of lan-
guages which are to be compiled and the second argument is the path the

9

FOT Developer’s Manual

builder_gateway.sce file. The sub-directories have to be named in the name
of the languages that the toolbox uses in these files. Scilab accepts C, C++
and FORTRAN as API languages.
tbx_build_gateway_loader([’cpp’], sci_gateway_dir); generates the loader_gateway
script. The inputs are the same as tbx_builder_gateway_lang.

3.4.1 builder_gateway_cpp.sce

builder_gateway_cpp.sce file in root_dir/sci_gateway/cpp/ is the builder file for
C++ files. The explanation for this file can be found in Section 4.6.4 of
Michaël Baudin’s article mentioned in chapter 2.

3.5 builder_help.sce
builder_help.sce file is used to compile the help files which are located in
directories, the names of which are the locales. locales are parameters which
refers to the user’s languages. The FOT uses en_US locale and hence only
has one sub-directory in the help directory.
mode (-1)
lines (0)

toolbox_title = " FOSSEE_Optimization_Toolbox "

help_dir = get_absolute_file_path (’builder_help .sce ’);

tbx_builder_help_lang ("en_US", help_dir);

clear toolbox_title ;

mode(-1) executes the builder_help.sce file silently. tbx_builder_help_lang is
used to build the help files which are located in the en_US directory.

10

4

etc directory

4.1 Introduction
etc directory contains the initialization and finalization script of the toolbox
which are run at the beginning and termination of the toolbox. They are
executed while executing the loader and unloader files.

4.2 FOSSEE_Optimization_Toolbox.start
The name of the initialization script for a toolbox is the name of the toolbox
followed by ".start". In our case, the name of the file is "FOSSEE_Optimization_Toolbox.start".
The code for the same is given in Appendix section A.1.

The FOSSEE_Optimization_Toolbox.start file is executed when we run
the loader. It’s purpose includes :

1. Load function libraries from macros directory.

2. Load gateway and shared libraries form sci_gateway and thirdparty
directory.

3. Load help from help directory.

4. Load demos from demos directory.

4.3 FOSSEE_Optimization_Toolbox.quit
The name of the finalization script for a toolbox is the name of the toolbox
followed by ".quit". In our case, the name of the file is "FOSSEE_Optimization_Toolbox.quit".
The code for the same is given in section A.2.

The FOSSEE_Optimization_Toolbox.quit file is executed when we run
the loader. It’s purpose includes :

1. Unlink the toolbox libraries.

11

FOT Developer’s Manual

2. Remove any preferences that was set by the toolbox.

12

5

macros directory

5.1 Introduction

Macros folder contains scilab function files(*.sci). Files with extensions other
than sci will not be compiled when the builder is run. Scilab macros can be:

1. A Scilab function file which returns the result after computation.

2. A Scilab function which calls a C, C++ or FORTRAN code.

3. A Scilab function which calls a binary library.

In FOT, the macros files are of second kind which calls a C++ file. They
should have the same file name as that of function inside. Except the licence
information and some information’s in comments ,the whole code and the
help texts in comments are inside the function.

5.2 Outline of a macros file

The general outline of most of macros files in FOT is as follows:

1. Help page comments

2. Input retrieval

3. Error checks

4. Input modifications

5. Call to the C++ library

6. Output retrieval,checks and modifications

13

FOT Developer’s Manual

Lets take each of these steps and go through ROOT_DIR/macros/fmincon.sci file
to analyze it. The function is declared with function [xopt,fopt,exitflag,

output,lambda,gradient,hessian] = fmincon (varargin) where varargin helps fa-
cilitates the input argument which can be a variable. It is a list with the
input variables.

5.2.1 Commented Help page

The function declaration is immediately followed by the help documentation
comments which is explained in detail in chapter 8.

5.2.2 Input retrieval

The inputs from the Scilab execution is parsed here using varargin function.
[lhs , rhs] = argn ();

//To check the number of arguments given by the user
if (rhs <4 | rhs >10) then

errmsg = msprintf (gettext ("%s: Unexpected number of input
arguments : %d provided while it should be 4 ,6 ,8 ,9 ,10") ,

" fmincon ", rhs);
error(errmsg)

end

if (rhs ==5 | rhs ==7) then
errmsg = msprintf (gettext ("%s: Unexpected number of input

arguments : %d provided while it should be 4,6,8,9,10s"), "
fmincon ", rhs);

error(errmsg)
end

// Storing the Input Parameters
fun = varargin (1);
x0 = varargin (2);
A = varargin (3);
b = varargin (4);
Aeq = [];
beq = [];
lb = [];
ub = [];
nlc = [];

if (rhs >4) then
Aeq = varargin (5);
beq = varargin (6);

end

if (rhs >6) then
lb = varargin (7);
ub = varargin (8);

end

14

FOT Developer’s Manual

if (rhs >8) then
nlc = varargin (9);

end

argn function returns the number of lhs and rhs arguments in the call.
The subsequent if conditions eliminate the possibility of unplanned inputs.
varargin being a list is parsed to extract the respective inputs.

5.2.3 Error checks

The code for Error checks is not shown here. It starts from the end of Input
retrieval and goes on till the declaration of fGrad1 function. These error
checks can be :

1. Checking the type of the variable passed. The Checktype.sci file in the
macros directory assists in this process.

2. Dimension checks in case of a real number,lists or Matrix.

3. Dependency checks. For example, if input A is empty, then input b
should also be empty and vice versa.

4. Initialization checks in case of a function to check if the current value
is feasible for the function.

5. Double checks, to affirm the credibility of user provided values.

6. Content check, to check if the content of a variable is valid. For ex-
ample, lower bound,lb cannot take infinity.

7. Input modification checks, if the given input has to be modified to get
the actual input. For example, if an input taking row vector is given
a column vector.

5.2.4 Input modifications

The input modification for fmincon.sci includes the functions fGrad1,lHess1

and addcGrad1. Some of the inputs are also modified in the above error
checking process. In these modifications, the inputs are modified to suit to
the specifications of the solver libraries.

5.2.5 Call to the C++ library

Following is the code to call the C++ library.
// Creating a Dummy Variable for IPopt use
empty =[0];

// Calling the Ipopt function for solving the above problem

15

FOT Developer’s Manual

[xopt ,fopt ,status ,iter ,cpu ,obj_eval ,dual ,lambda1 ,zl ,zu ,gradient
, hessian1] = solveminconp (f,A,b,Aeq ,beq ,lb ,ub ,no_nlc ,
no_nlic ,addnlc1 ,fGrad1 ,lHess1 ,addcGrad1 ,x0 ,options ,empty)

The empty dummy variable is provided to aid in retrieving functions in using
scilab_call API function of Scilab. We will discuss about it in the coming
sections.

5.2.6 Output retrieval,checks and modifications

The subsequent lines after calling the solver library are to manage output
and pass it back to Scilab which are self-explanatory.

16

6

sci_gateway files

6.1 Introduction

The gateway files as the name suggests, acts as a gateway between Scilab
and C++. The inputs from Scilab are not compatible with other languages
and hence Scilab provides an array of API functions to accomplish this.
sci_gateway files generally are used to get input form Scilab ,pass it to the
respective library, retrieve the results and pass the results back to Scilab.

6.2 Basic Scilab API Functions

The Scilab 6 API to pass and return values from C and C++ has been
a major improvement over the previous versions of Scilab. In the context
of the FOSSEE Optimization Toolbox, it reduces the dependence on the
sci_iofunc file.

The main purpose of sci_ iofunc file was to management input and
output for FOT. It made the main code less cumbersome. However, since
the advent of the new API, a lot of the advantages offered by sci_iofunc are
rendered moot.

A list of API functions provided by Scilab can be found at this link1.These
API functions are used in the interfaces directly, instead of relying on
root_dir/sci_gateway/cpp/sci_iofunc.cpp as we did in previous versions.

6.3 Outline of a sci_gateway file

The general outline of a sci_gateway file are as follows :

1. Variable initialization

2. Input retrieval
1https://help.scilab.org/docs/6.0.2/en_US/api_scilab.html

17

FOT Developer’s Manual

3. Input modifications, if any

4. Calling the library

5. Output management

6. Returning output to Scilab

It is categorized so to help developers get an overall view of the functions.
Many of the files don’t have clear cut difference between two of the above
said outline. We will go through this section with the help of root_dir/

sci_gateway/cpp/cpp_intfmincon.cpp file.

6.3.1 Variable initialization

Variable declarations are not just restricted to variables, but namespace
declarations as well.
using namespace Ipopt;

if (nin !=13) // Checking the input arguments
{

Scierror (999 , "%s: Wrong number of input arguments : %d
expected .\n", fname , 13);

return STATUS_ERROR ;
}

if (nout !=3) // Checking the output arguments

{
Scierror (999 , "%s: Wrong number of output argument (s): %d

expected .\n", fname , 3);
return 1;

}

// Function pointers , input matrix (Starting point) pointer , flag
variable

double *x0ptr=NULL , *lbptr=NULL , *ubptr=NULL ,* Aptr=NULL , *bptr=
NULL , * Aeqptr =NULL , * beqptr =NULL;

double nonlinCon =0, nonlinIneqCon =0;

// Input arguments
double * cpu_time =NULL ,* max_iter =NULL;
static unsigned int nVars = 0,nCons = 0;
unsigned int temp1 = 0,temp2 = 0, iret = 0;
int x0_rows =0, x0_cols =0, lb_rows =0, lb_cols =0, ub_rows =0,

ub_cols =0, A_rows =0, A_cols =0, b_rows =0, b_cols =0, Aeq_rows
=0, Aeq_cols =0, beq_rows =0, beq_cols =0;

// Output arguments

18

FOT Developer’s Manual

double ObjVal =0, iteration =0, cpuTime =0, fobj_eval =0;
double dual_inf , constr_viol , complementarity , kkt_error ;
const double *fX = NULL , *fGrad = NULL;
const double *fHess = NULL;
const double * fLambda = NULL;
const double *fZl=NULL;
const double *fZu=NULL;
int rstatus = 0;
int int_fobj_eval , int_constr_eval , int_fobj_grad_eval ,

int_constr_jac_eval , int_hess_eval ;

nin and nout are Scilab API variables which check the inputs and outputs of
the Scilab call.

6.3.2 Input retrieval

The following lines code below of sci_ipoptfmincon.cpp retrieves the input
from Scilab into C++.
if (scilab_isDouble (env , in [5]) == 0 || scilab_isMatrix2d (env ,

in [5]) == 0)
{

Scierror (999 , "%s: Wrong type for input argument #%d: A
double matrix expected .\n", fname , 6);

return 1;
}

scilab_getDoubleArray (env , in[5], &x0);
int size1 = scilab_getDim2d (env , in[5], &x0_rows , & x0_cols);

if (scilab_isDouble (env , in [6]) == 0 || scilab_isMatrix2d (
env , in [6]) == 0)

{
Scierror (999 , "%s: Wrong type for input argument #%d: A

double matrix expected .\n", fname , 7);
return 1;

}

scilab_getDoubleArray (env , in[6], &lb);

if (scilab_isDouble (env , in [7]) == 0 || scilab_isMatrix2d (
env , in [7]) == 0)

{
Scierror (999 , "%s: Wrong type for input argument #%d: A

double matrix expected .\n", fname , 8);
return 1;

}

scilab_getDoubleArray (env , in[7], &ub);

19

FOT Developer’s Manual

if (scilab_isDouble (env , in [8]) == 0 || scilab_isMatrix2d (
env , in [8]) == 0)

{
Scierror (999 , "%s: Wrong type for input argument #%d: A

double matrix expected .\n", fname , 9);
return 1;

}

scilab_getDoubleArray (env , in[8], &conLb);
size1 = scilab_getDim2d (env , in[8], &nCons , & nCons2);

if (scilab_isDouble (env , in [9]) == 0 || scilab_isMatrix2d (
env , in [9]) == 0)

{
Scierror (999 , "%s: Wrong type for input argument #%d: A

double matrix expected .\n", fname , 10);
return 1;

}

scilab_getDoubleArray (env , in[9], &conUb);

// Getting intcon
if (scilab_isDouble (env , in [10]) == 0 || scilab_isMatrix2d (

env , in [10]) == 0)
{

Scierror (999 , "%s: Wrong type for input argument #%d: A
double matrix expected .\n", fname , 11);

return 1;
}

scilab_getDoubleArray (env , in [10] , & intcon);
size1 = scilab_getDim2d (env , in [10] , &intconSize , &

intconSize2);

if (scilab_isDouble (env , in [12]) == 0 || scilab_isMatrix2d (
env , in [12]) == 0)

{
Scierror (999 , "%s: Wrong type for input argument #%d: A

double matrix expected .\n", fname , 13);
return 1;

}

scilab_getDoubleArray (env , in [12] , &LC);

// Initialization of parameters

20

FOT Developer’s Manual

// Getting parameters
if (scilab_isList (env , in [11]) == 0)

{
Scierror (999 , "%s: Wrong type for input argument #%d: A

list expected .\n", fname , 12);
return 1;

}

scilabVar temp1 = scilab_getListItem (env , in [11] , 1);
scilabVar temp2 = scilab_getListItem (env , in [11] , 3);
scilabVar temp3 = scilab_getListItem (env , in [11] , 5);
scilabVar temp4 = scilab_getListItem (env , in [11] , 7);
scilabVar temp5 = scilab_getListItem (env , in [11] , 9);

double integertolerance =0, allowable_gap =0, maxnodes =0,
cpuTime =0, maxiter =0;

scilab_getDouble (env , temp1 , & integertolerance);
scilab_getDouble (env , temp2 , & maxnodes);
scilab_getDouble (env , temp3 , & cpuTime);
scilab_getDouble (env , temp4 , & allowable_gap);
scilab_getDouble (env , temp5 , & maxiter);

int max_nodes = (int) maxnodes ;
int cpu_time = (int) cpuTime ;
int iterLim = (int) maxiter ;

Each of if conditions processes one of inputs from Scilab and saves the ad-
dress to a pointer which was declared earlier. getFixedSizeDoubleMatrixInList

is used to retrieve the options which are passed as a list.

scilab_call function

scilab_call is a C++ API function for Scilab which helps in evaluating a
Scilab function at the given input. It is of particular interest because of
the way it interacts with the Scilab call. We will see about this function
with an example from root_dir/sci_gateway/cpp/sci_minconNLP.cpp. Before we
move ahead, give a thought to the inputs of the API call :
[xopt ,fopt ,status ,iter ,cpu ,obj_eval ,dual ,lambda1 ,zl ,zu ,gradient

, hessian1] = solveminconp (f,A,b,Aeq ,beq ,lb ,ub ,no_nlc ,
no_nlic ,addnlc1 ,fGrad1 ,lHess1 ,addcGrad1 ,x0 ,options ,empty)

Notice that the first input f is a function, and so are the 10th,11th,12th

and 13th input which are addnlc1, fGrad1, lHess1 and addcGrad1 respectively.
There last three real inputs in the end, i.e. x0,options and empty,the dummy
variable.

Now we return to the minconNLP::eval_h function in root_dir/sci_gateway/

cpp/sci_minconNLP.cpp. If the values are null, the hessian, which is represented
as a sparse matrix is given random values. Else, the hessian matrix from is
taken in from Scilab using the following code :

21

FOT Developer’s Manual

double check;

const Number *xNew=x;

const Number * lambdaNew = lambda ;
double objfac = obj_factor ;

scilabVar * funcIn = (scilabVar *) malloc (sizeof (scilabVar) * (
numVars_) * 1);

funcIn [0] = scilab_createDoubleMatrix2d (env_ , 1, numVars_ , 0);
scilab_setDoubleArray (env_ , funcIn [0], x);
double t= 2;
funcIn [1] = scilab_createDouble (env_ , objfac);
funcIn [2] = scilab_createDoubleMatrix2d (env_ , 1, numConstr_ , 0)

;

scilab_setDoubleArray (env_ , funcIn [2], lambdaNew);

scilab_call (env_ , L" lHess1 ", 3, funcIn , 2, out);

double * resCh;

if (scilab_isDouble (env_ , out [1]) == 0 || scilab_isScalar (env_ ,
out [1]) == 0)

{
Scierror (999 , "Wrong type for input argument #%d: An int

expected .\n", 2);
return 1;

}

scilab_getDouble (env_ , out [1], &check);
if (check ==1)
{

return true;
}
else
{

if (scilab_isDouble (env_ , out [0]) == 0 || scilab_isMatrix2d (
env_ , out [0]) == 0)

{
Scierror (999 , "Wrong type for input argument #%d: An int

expected .\n", 2);
return 1;

}

scilab_getDoubleArray (env_ , out [0], &resCh);

Index index =0;
for (Index row =0; row < numVars_ ;++ row)
{

for (Index col =0; col < numVars_ ; ++ col)

22

FOT Developer’s Manual

{
values [index ++]= resCh[numVars_ *row+col];

}
}

}

Index index =0;
for (Index row =0; row < numVars_ ;++ row)
{

for (Index col =0; col <= row; ++ col)
{

finalHessian_ [n*row+col]= values [index ++];
}

}

index =0;
for (Index col =0; col < numVars_ ;++ col)
{

for (Index row =0; row <= col; ++ row)
{

finalHessian_ [n*row+col]= values [index ++];
}

}

}

scilab_call function sends back the evaluated value of the Scilab function
at input. In order to use scilab_call, we have to obtain the the inputs using
Scilab API writing function like scilab_getDouble. Then scilab_call function
is called and the outputs from Scilab functions are overwritten over the first
position of input that you gave earlier.

In this case, the lHess1 function in fmincon.sci has three inputs and
two outputs. For the three inputs, the get* functions are used, with their
respective arguments. The dummy variable was exclusively declared for this
function as the other functions only have two inputs. scilab_call has as the
first input the name of the scilabEnv variable and the second is the function
name. The third and fith inputs of the function are the numbers of inputs
and outputs respectively. The fourth and sixth inputs are the pointers to
the input and output variables. Once the scilab_call function is executed,
the outputs are written to the scilabVar* variable specificied in the output.
Hence, you can see that check and resCh are retrieved from out[1] and out[0]
respectively.

6.3.3 Input modifications

In this file, only these two lines modify the input.
// Number of variables and constraints
nVars = x0_cols ;
nCons = A_rows + Aeq_rows + nonlinCon ;

23

FOT Developer’s Manual

SmartPtr <minconNLP > Prob = new minconNLP (nVars , nCons , x0ptr ,
Aptr , bptr , Aeqptr , beqptr , A_rows , A_cols , b_rows , b_cols ,

Aeq_rows , Aeq_cols , beq_rows , beq_cols , lbptr , ubptr ,
nonlinCon , nonlinIneqCon);

The newly assigned variables are generally the required inputs for the solver
library. They are not assigned and passed on from Scilab to reduce the API
function usage.

The smart pointer SmartPtr is declared in the namespace Ipopt. Here we
create a new instance of minconNLP method, which is defined in root_dir

/sci_gateway/cpp/sci_minconNLP.cpp. minconNLP method is used to pass to
modify the inputs in a way favourable to the solver. It is inspired from
hs071_nlp.hpp in the MyExample directory in earlier versions of Ipopt. In
the latest version of Ipopt, the file is Ipopt/Ipopt/tutorial/CodingExercise/Cpp

/1-skeleton/TutorialCpp_nlp.hpp

6.3.4 Calling the library

In case of fmincon, Ipopt solver is called.
SmartPtr < IpoptApplication > app = IpoptApplicationFactory ();

// //////// Managing the parameters //////////

app -> Options () -> SetNumericValue ("tol", 1e -6);
app -> Options () -> SetIntegerValue (" max_iter ", (int)* max_iter);
app -> Options () -> SetNumericValue (" max_cpu_time ", * cpu_time);
// app -> Options () ->SetStringValue (" hessian_approximation ", "

limited - memory ");

// /////// Initialize the IpoptApplication and process the
options /////////

ApplicationReturnStatus status ;
status = app -> Initialize ();
if (status != Solve_Succeeded)
{

sciprint ("\n*** Error during initialization !\n");
return (int) status ;

}

// Ask Ipopt to solve the problem
status = app -> OptimizeTNLP ((SmartPtr <TNLP >&) Prob);

A new instance of Ipopt instance is made in the first line. We are using the
IpoptApplicationFactory since this allows us to compile this with an Ipopt
Windows DLL. The respective options are passed in the following lines .
Hessian approximation option is commented out as we calculate the hessian
in the Scilab macro and is already initiated in the Prob instance.
In the following lines, the Ipopt library is initialized with the options. If the
initialization succeeds, app->OptimizeTNLP((SmartPtr<TNLP>&)Prob) solves the
problem with the given parameters

24

FOT Developer’s Manual

6.3.5 Output management

The following lines of code manages the output of the solver that has to
passed back to Scilab.
// Get the solve statistics

cpuTime = app -> Statistics () ->TotalCPUTime ();
app -> Statistics () -> NumberOfEvaluations (int_fobj_eval ,

int_constr_eval , int_fobj_grad_eval , int_constr_jac_eval ,
int_hess_eval);

app -> Statistics () ->Infeasibilities (dual_inf , constr_viol ,
complementarity , kkt_error);

rstatus = Prob -> returnStatus ();
fobj_eval =(double) int_fobj_eval ;

// //////// Manage the output argument //////////

fX = Prob ->getX ();
fGrad = Prob -> getGrad ();
fHess = Prob -> getHess ();
fLambda = Prob -> getLambda ();
fZl = Prob ->getZl ();
fZu = Prob ->getZu ();
ObjVal = Prob -> getObjVal ();
iteration = (double)app -> Statistics () ->IterationCount ();

The above code is self-explanatory. The solver statistics are extracted form
app and the problem statistics are extracted from Prob.

6.3.6 Returning output to Scilab

These lines of code return the required outputs back to Scilab. They are
similar to the Input retrieval functions and are self-explanatory.
out [0] = scilab_createDoubleMatrix2d (env , 1, nVars , 0);

scilab_setDoubleArray (env , out [0], fX);

out [1] = scilab_createDouble (env , ObjVal);

out [2] = scilab_createDouble (env , rstatus);
out [3] = scilab_createDouble (env , iteration);
out [4] = scilab_createDouble (env , cpuTime);
out [5] = scilab_createDouble (env , fobj_eval);

out [6] = scilab_createDouble (env , dual_inf);

out [7] = scilab_createDoubleMatrix2d (env , 1, nCons , 0);
scilab_setDoubleArray (env , out [7], fLambda);

out [8] = scilab_createDoubleMatrix2d (env , 1, nVars , 0);
scilab_setDoubleArray (env , out [8], fZl);

out [9] = scilab_createDoubleMatrix2d (env , 1, nVars , 0);
scilab_setDoubleArray (env , out [9], fZu);

25

FOT Developer’s Manual

out [10] = scilab_createDoubleMatrix2d (env , 1, nVars , 0);
scilab_setDoubleArray (env , out [10] , fGrad);

out [11] = scilab_createDoubleMatrix2d (env , 1, nVars*nVars ,
0);

scilab_setDoubleArray (env , out [11] , fHess);

26

7

Solver Libraries

7.1 Introduction
This chapter deals with the compilation of solver and other libraries that
are needed in the toolbox. It explains elaborately the tools and libraries
needed to be compiled and related information

7.2 Prerequisites
Before we go ahead with library compilations, we need to setup our en-
vironment. The instructions that proceeds are meant for Linux operating
systems, specifically Debian OS. Windows User are advised to install Cyg-
win and take necessary steps where required.Execute the following command
on the terminal to install the needed packages
$ sudo apt-get install git subversion build-essential gfortran

7.3 Compiling libraries
FOSSEE Optimization toolbox directly uses the following libraries for their
respective solving domains:

1. CLP

2. Symphony

3. Ipopt

4. Bonmin

5. CBC

6. ecos

27

FOT Developer’s Manual

But since the dependent libraries of these solvers have gone ahead with
many minor releases when compared to the one included in the respective
solvers, it is recommended to replace the dependent libraries in the solver
library with the latest version.Hence the list of the libraries other than the
one given above are :

1. CLP

2. CGL

3. OSI

4. CoinUtils

These libraries can be downloaded directly or by subversion1 or git. The
download information can be found at their respective websites.

We will be giving step-by-step instruction on compilation of the source
code of all the libraries required. Many of the steps are same for most of
the solvers.

7.3.1 ecos

ecos is lightweight second order conic optimization solver which is written
in C. In FOT, ecos function uses the ecos library. The steps to download,
modify and compile ecos source code are given below:

1. The ecos source code is hosted on github at this link2. Download using
$ git clone https://github.com/embotech/ecos.git ECOS.

2. Since there are function names conflicts between ecos and scilab, we
have to change the names in ecos source code before we compile. This
can be done by running the following commands.
$ cd ECOS
$sed -ir ’s/ createSparseMatrix / EcosCreateSparseMatrix /g’ *

3. Run the following command to compile ecos source code and generate
shared library.
$ make shared

The shared libraries will be generated in ECOS and the header files will be in
ECOS/include and ECOS/external.

1subversion.tigris.org/ 2https://github.com/embotech/ecos

28

FOT Developer’s Manual

7.3.2 CLP

CLP or COIN-OR Linear Programming is an open-source LP solver written
in C++. In FOT, linprog uses CLP library. The latest version of CLP can
be downloaded from the following link3. CLP depends on three other COIN-
OR projects, namely BuildTools,CoinUtils and OSI. The steps to download,
modify and compile CLP source code are given below:

1. Download using $ svn co https://projects.coin-or.org/svn/Clp/releases

/x.xx.xx CLP.The x.xx.xx in the end of svn link should to be replaced
with the respective version that is to be downloaded. Hence CLP will
be downloaded into a directory called CLP.

2. Run get.Lapack, get.Mumps and getBlas in Lapack, Mumps and Blas sub-
directory in the CLP/ThirdParty from the terminal.

$./ CLP/ ThirdParty / Lapack /get. Lapack
$./ CLP/ ThirdParty /Blas/get.Blas
$./ CLP/ ThirdParty /Mumps/get.Mumps

3. The dependencies on which CLP depends on has to be replaced with
the latest version of the same. They can be downloaded from the
following link4. Download them in the same directory where CLP is
downloaded as they will be used by other solvers as well.

$ svn co https :// projects .coin -or.org/svn/ BuildTools /
releases /x.xx.xx BUILDTOOLS

$ svn co https :// projects .coin -or.org/svn/ CoinUtils /
releases /y.yy.yy COINUTILS

$ svn co https :// projects .coin -or.org/svn/OSI/ releases /z.
zz.zz OSI

4. Move the current dependencies to another directory and replace it
with the latest ones that was downloaded in the previous step. For
example, for CoinUtils, move the CLP/CoinUtils to CLP/Old.CoinUtils

and move CoinUtils/CoinUtils to CLP/CoinUtils.Please note that the
new CoinUtils directory to be replaced is inside the main CoinUtils
directory. The same is done for BuildTools and OSI as well.
$ mv CLP/ BuildTools CLP/Old. BuildTools
$ mv BUILDTOOLS / BuildTools CLP/ BuildTools
$ mv CLP/ CoinUtils CLP/Old. CoinUtils
$ mv COINUTILS / CoinUtils CLP/ CoinUtils
$ mv CLP/Osi CLP/Old.Osi
$ mv OSI/Osi CLP/Osi

3https://projects.coin-
or.org/svn/Clp/releases/

4https://projects.coin-or.org/svn/

29

FOT Developer’s Manual

5. Make a directory called build and go into that directory. Run the
configure script followed by make and make install.
$ mkdir build
$ cd build
$../ configure
$ make
$ make install

The shared libraries will be generated in CLP/build/lib and the header files
will be in CLP/build/include.

7.3.3 Symphony

Symphony is yet another Linear Programming solver which is an open-source
written in C++. In FOT, symphony and symphonymat uses Symphony. The
latest version of Symphony can be downloaded from the following link5.
Symphony depends the following COIN-OR projects :

1. CGL

2. CLP

3. CoinUtils

4. OSI

5. BuildTools

The steps to download, modify and compile Symphony source code are given
below:

1. Download using $ svn co https://projects.coin-or.org/svn/Symphony/releases

/x.xx.xx SYMPHONY.The x.xx.xx in the end of svn link should to be re-
placed with the respective version that is to be downloaded. Hence
Symphony will be downloaded into a directory called SYMPHONY.

2. Run get.Lapack and getBlas in Lapack and Blas subdirectory in the
Symphony/ThirdParty from the terminal.

$./ SYMPHONY / ThirdParty / Lapack /get. Lapack
$./ SYMPHONY / ThirdParty /Blas/get.Blas

3. The dependencies on which Symphony depends on has to be replaced
with the latest version of the same. They can be downloaded from

5https://projects.coin-
or.org/svn/Symphony/releases/

30

FOT Developer’s Manual

the following link6. Download them in the same directory where Sym-
phony is downloaded as they will be used by other solvers as well.
Ignore the libraries which have been already downloaded.

$ svn co https :// projects .coin -or.org/svn/Cgl/ releases /x.
xx.xx CGL

$ svn co https :// projects .coin -or.org/svn/Clp/ releases /y.
yy.yy CLP

$ svn co https :// projects .coin -or.org/svn/ CoinUtils /
releases /z.zz.zz COINUTILS

$ svn co https :// projects .coin -or.org/svn/OSI/ releases /w.
ww.ww OSI

$ svn co https :// projects .coin -or.org/svn/ BuildTools /
releases /v.vv.vv BUILDTOOLS

4. Move the current dependencies to another directory and replace it with
the latest ones that was downloaded in the previous step.
$ mv SYMPHONY /Cgl SYMPHONY /Old.Cgl
$ mv CGL/Cgl SYMPHONY /Cgl
$ mv SYMPHONY /Clp SYMPHONY /Old.Clp
$ mv CLP/Clp SYMPHONY /Clp
$ mv SYMPHONY / CoinUtils SYMPHONY /Old. CoinUtils
$ mv COINUTILS / CoinUtils SYMPHONY / CoinUtils
$ mv SYMPHONY /Osi SYMPHONY /Old.Osi
$ mv OSI/Osi SYMPHONY /Osi
$ mv SYMPHONY / BuildTools SYMPHONY /Old. BuildTools
$ mv OSI/ BUILDTOOLS SYMPHONY / BuildTools

5. Make a directory called build and go into that directory. Run the
configure script followed by make and make install.
$ mkdir build
$ cd build
$../ configure
$ make
$ make install

The shared libraries will be generated in SYMPHONY/build/lib and the header
files will be in SYMPHONY/build/include.

7.3.4 Ipopt

Ipopt or Interior Point Optimizer is a non-linear programming optimization
solver which is an open-source written in C++. In FOT, fminunc, fminbnd

, fmincon,fminimax, fgoalattain, lsqlin, lsqnonlin,lsqnonneg and qpipopt uses
Ipopt. The latest version of Ipopt can be downloaded from the following

6https://projects.coin-or.org/svn/

31

FOT Developer’s Manual

link7. Ipopt depends on only BuildTools. The steps to download, modify
and compile Ipopt source code are given below:

1. Download using $ svn co https://projects.coin-or.org/svn/Ipopt/releases

/x.xx.xx IPOPT.The x.xx.xx in the end of svn link should to be replaced
with the respective version that is to be downloaded. Hence Ipopt will
be downloaded into a directory called IPOPT.

2. Run get.Lapack,get.Mumps and getBlas in Lapack, Mumps and Blas sub-
directory in the IPOPT/ThirdParty from the terminal.

$./ IPOPT/ ThirdParty / Lapack /get. Lapack
$./ IPOPT/ ThirdParty /Mumps/get.Mumps
$./ IPOPT/ ThirdParty /Blas/get.Blas

3. Make a directory called build and go into that directory. Run the
configure script followed by make and make install.
$ mkdir build
$ cd build
$../ configure
$ make
$ make install

The shared libraries will be generated in IPOPT/build/lib and the header files
will be in IPOPT/build/include.

7.3.5 CBC

CBC is yet another Linear Programming solver which is an open-source
written in C++. In FOT, cbcintlinprog and cbcmatrixlinprog uses CBC. The
latest version of CBC can be downloaded from the following link8. CBC
depends the following COIN-OR projects :

1. CGL

2. CLP

3. CoinUtils

4. OSI

5. BuildTools

The steps to download, modify and compile CBC source code are given
below:

7https://projects.coin-
or.org/svn/Ipopt/releases/

8https://projects.coin-
or.org/svn/Cbc/releases/

32

FOT Developer’s Manual

1. Download using $ svn co https://projects.coin-or.org/svn/Cbc/releases

/x.xx.xx CBC.The x.xx.xx in the end of svn link should to be replaced
with the respective version that is to be downloaded. Hence Cbc will
be downloaded into a directory called SYMPHONY.

2. Run get.Lapack, get.Mumps and getBlas in Lapack and Blas subdirectory
in the CBC/ThirdParty from the terminal.

$./ CBC/ ThirdParty / Lapack /get. Lapack
$./ CBC/ ThirdParty /Mumps/get.Mumps
$./ CBC/ ThirdParty /Blas/get.Blas

3. The dependencies on which CBC depends on has to be replaced with
the latest version of the same. They can be downloaded from the
following link9. Download them in the same directory where CBC is
downloaded as they will be used by other solvers as well. Ignore the
libraries which have been already downloaded.

$ svn co https :// projects .coin -or.org/svn/Cgl/ releases /x.
xx.xx CGL

$ svn co https :// projects .coin -or.org/svn/Clp/ releases /y.
yy.yy CLP

$ svn co https :// projects .coin -or.org/svn/ CoinUtils /
releases /z.zz.zz COINUTILS

$ svn co https :// projects .coin -or.org/svn/OSI/ releases /w.
ww.ww OSI

$ svn co https :// projects .coin -or.org/svn/ BuildTools /
releases /w.ww.ww BUILDTOOLS

4. Move the current dependencies to another directory and replace it with
the latest ones that was downloaded in the previous step.
$ mv CBC/Cgl CBC/Old.Cgl
$ mv CGL/Cgl CBC/Cgl
$ mv CBC/Clp CBC/Old.Clp
$ mv CLP/Clp CBC/Clp
$ mv CBC/ CoinUtils CBC/Old. CoinUtils
$ mv COINUTILS / CoinUtils CBC/ CoinUtils
$ mv CBC/Osi CBC/Old.Osi
$ mv OSI/Osi CBC/Osi
$ mv CBC/ BuildTools CBC/Old. BuildTools
$ mv BUILDTOOLS / BuildTools CBC/ BuildTools

5. Make a directory called build and go into that directory. Run the
configure script followed by make and make install.

9https://projects.coin-or.org/svn/

33

FOT Developer’s Manual

$ mkdir build
$ cd build
$../ configure
$ make
$ make install

The shared libraries will be generated in CBC/build/lib and the header files
will be in CBC/build/include.

7.3.6 Bonmin

Bonmin is yet another Linear Programming solver which is an open-source
written in C++. In FOT, intfminunc, intfminbnd, intfmincon and intfminimax

uses Bonmin. The latest version of Bonmin can be downloaded from the
following link10. Bonmin depends the following COIN-OR projects :

1. CGL

2. CLP

3. CoinUtils

4. OSI

5. BuildTools

6. Ipopt

7. CBC

The steps to download, modify and compile CBC source code are given
below:

1. Download using $ svn co https://projects.coin-or.org/svn/Bonmin/releases

/x.xx.xx BONMIN.The x.xx.xx in the end of svn link should to be replaced
with the respective version that is to be downloaded. Hence Cbc will
be downloaded into a directory called BONMIN.

2. Run get.Lapack, get.Mumps and getBlas in Lapack and Blas subdirectory
in the BONMIN/ThirdParty from the terminal.

$./ BONMIN / ThirdParty / Lapack /get. Lapack
$./ BONMIN / ThirdParty /Mumps/get.Mumps
$./ BONMIN / ThirdParty /Blas/get.Blas

10https://projects.coin-
or.org/svn/Bonmin/releases/

34

FOT Developer’s Manual

3. The dependencies on which CBC depends on has to be replaced with
the latest version of the same. They can be downloaded from the fol-
lowing link11. Download them in the same directory where CBC is
downloaded as they will be used by other solvers as well. Ignore the
libraries which have been already downloaded.

$ svn co https :// projects .coin -or.org/svn/Cgl/ releases /x.
xx.xx CGL

$ svn co https :// projects .coin -or.org/svn/Clp/ releases /y.
yy.yy CLP

$ svn co https :// projects .coin -or.org/svn/ CoinUtils /
releases /z.zz.zz COINUTILS

$ svn co https :// projects .coin -or.org/svn/OSI/ releases /w.
ww.ww OSI

$ svn co https :// projects .coin -or.org/svn/Ipopt/ releases /w
.ww.ww IPOPT

$ svn co https :// projects .coin -or.org/svn/Cbc/ releases /w.
ww.ww CBC

4. Move the current dependencies to another directory and replace it with
the latest ones that was downloaded in the previous step.
$ mv BONMIN /Cgl BONMIN /Old.Cgl
$ mv CGL/Cgl BONMIN /Cgl
$ mv BONMIN /Clp BONMIN /Old.Clp
$ mv CLP/Clp BONMIN /Clp
$ mv BONMIN / CoinUtils BONMIN /Old. CoinUtils
$ mv COINUTILS / CoinUtils BONMIN / CoinUtils
$ mv BONMIN /Osi BONMIN /Old.Osi
$ mv OSI/Osi BONMIN /Osi
$ mv BONMIN / BuildTools BONMIN /Old. BuildTools
$ mv BUILDTOOLS / BuildTools BONMIN / BuildTools
$ mv BONMIN /Ipopt BONMIN /Old.Ipopt
$ mv IPOPT/Ipopt BONMIN /Ipopt
$ mv BONMIN /Cbc BONMIN /Old.Cbc
$ mv CBC/Cbc BONMIN /Cbc

5. Make a directory called build and go into that directory. Run the
configure script followed by make and make install.
$ mkdir build
$ cd build
$../ configure
$ make
$ make install

The shared libraries will be generated in BONMIN/build/lib and the header
files will be in BONMIN/build/include.

11https://projects.coin-or.org/svn/

35

FOT Developer’s Manual

7.4 Shared libraries
Files having extension *.so* are called shared or dynamic libraries in Linux.
In case of windows they are *.dll and *.lib. In FOT, the shared libraries
have to be compiled for only windows and linux. it has to compiled for
different architectures(x64 and x32) as well. The windows dlls are kept in
ROOT_DIR/thirdparty/windows/bin/ and ROOT_DIR/thirdparty/windows/lib/. Both
of these directories have x64 and x32 directories. The Linux shared libraries
are in ROOT_DIR/thirdparty/linux/lib/ which again has x64 and x32 directories.
Copy all the shared libraries having *.so* extension generated in the previous
section into the respective architecture directory.

7.5 Header files
Files having extension *.h or *.hpp are called header files. The windows
header files are kept in ROOT_DIR/thirdparty/windows/include/. The linux shared
libraries are in ROOT_DIR/thirdparty/linux/include/. Copy all the header files
generated in the previous section into the these directory.

36

8

Help Files

8.1 Introduction
The FOSSEE Optimization Toolbox has an extensive help section that cov-
ers all of the functions that the toolbox currently consists of. This chapter
will explain the basic structure of a standard help document, the methods to
make it, and the preferred style to be used while making it. The appendix
contains a short tutorial on how to create a simple help document for a
toolbox function.

8.2 Basic help document structure
The sections included in a standard help document are:

• Calling Sequence: Describe the calling sequence of the function, men-
tioning all possible variations of inputs, and outputs.

• Input Parameters: Describe each of the Input Parameters of the func-
tion.

• Outputs: Describe each of the Outputs of the function.

• Description: Mathematical description of the type of problem being
solved.

• Options: Detail the solver options available to the user.

• Misc.: Describing the exitflags, the output data structure, and other
outputs of the function.

• Examples: Provide examples demonstrating the usage of the function,
and cases where a solution is not possible.

• Authors: Name the authors.

37

FOT Developer’s Manual

To get a better idea of the structure, see the structure of a help document
currently being used.

fmincon1

8.3 Methods of writing help documents

In this section, we touch upon the methods via which you can write the help
documents.

8.3.1 Using help_from_sci

Scilab provides means to generate a help document for a macro directly from
comments made in it. After defining the function, the user can write the
documentation in english, and use the function help_from_sci to compile the
help document from it. To generate a basic function template with a basic
documentation skeleton, use help_from_sci(funname,helpdir).

Sections available in help_from_sci

The following sections are available directly while generating documentation
via help_from_sci.

• Calling Sequence

• Parameters

• Description

• Examples

• Authors

8.3.2 Directly via XML

This is akin to writing a simple webpage and provides the developer with
all the freedom that they have while writing a webpage. The style sheet is
already provided within the toolbox, so that won’t prove to be a problem.
This method, however, will prove to be time consuming because the devel-
oper will have to write everything from scratch, and that might prove to be
time consuming.

An easier way to go about this might be to generate a basic help page
skeleton using help_from_sci and then modifying the generated XML file in
help/en_US as needed to make a help document according to the developer’s
requirements.

1http://www.scilab.in/scilab-toolbox- help-files/fmincon.php

38

FOT Developer’s Manual

8.4 Style Preferences

• Calling Sequence: The calling sequence is to be enclosed in <synopsis>
tags.

• The Input parameters and the outputs will be part of a single refsec-
tion.

• The problem description, options, and misc. details will be enclosed in
a single refsection. LATEX should be used to provide the mathematical
description.

• Examples: LATEX should be used to specify the problem being solved.
The code snippets are to be enclosed in a <programlisting> tag. Each
example will be enclosed in a separate refsection.

8.4.1 Using LATEX

<latex> tags have been provided for typesetting mathematical equations. It
is advised that it be used within <para> tags. Basic LATEX functionality has
been included in this, but no packages are to be used. Equations can be
aligned using {eqnarray}. There is no need to use standard LATEX commands
to begin documents. The developer can simply enter the <latex> tags and
start working.

8.5 Additional Notes

The following observations were made while developing the current batch of
help documents and the developer is advised to be familiar with them.

8.5.1 Problems faced while using LATEX

• The developer will face some minor issues while using LATEX in the
documentation. The first and most obvious one will be that in some
help files, they will run into an error if they begin a line with an amper-
sand. This error won’t show up on the log, but will prevent the chunk
of LATEX information from rendering in the document. Currently, we
do not know what is causing this error, but to work around it, the
developer can add, for example, a \hspace{1pt} before the ampersand.

• Another thing that the developer will face in the same files that will
have the aforementioned ampersand issue is that they will not be able
to use multiple ampersands next to each other. The developer is ad-
vised to avoid doing so, and use \qquad or hspace.

39

FOT Developer’s Manual

• The developer will notice that the term ’some files’ has been used.
This is because the issue currently affects less than half the files. It
specifically affects those files that are at the end of the sorting system,
which currently is the alphabetical order.

40

Appendix A

Codes

A.1 FOSSEE_Optimization_Toolbox.start

1 mprintf ("Start FOSSEE Optimization Toolbox \n");
2
3 [a, opt] = getversion ();
4 Version = opt (2);
5
6 etc_tlbx = get_absolute_file_path (" FOSSEE_Optimization_Toolbox

.start");
7 etc_tlbx = getshortpathname (etc_tlbx);
8 root_tlbx = strncpy (etc_tlbx , length (etc_tlbx)-length ("\etc \")

);
9
10 // Load functions library
11
12 mprintf ("\tLoad macros \n");
13 if (getos ()==" Windows ") then
14 pathmacros = pathconvert (root_tlbx) + " macros_win " +

filesep ();
15 symphony_lib = lib(pathmacros);
16 clear pathmacros ;
17 else
18 pathmacros = pathconvert (root_tlbx) + " macros " + filesep

();
19 symphony_lib = lib(pathmacros);
20 clear pathmacros ;
21 end
22
23 // load gateways
24
25 mprintf ("\tLoad gateways \n");
26 [a, opt] = getversion ();
27 Version = opt (2);
28 ilib_verbose (0);
29 if getos ()==" Windows " then
30 lib_path = root_tlbx + "/ thirdparty / windows /bin/" + Version

;

41

FOT Developer’s Manual

31 link(lib_path + filesep ()+" IpOptFSS .dll");
32 link(lib_path + filesep ()+"IpOpt -vc10.dll");
33 else
34 lib_path = root_tlbx + "/ thirdparty /linux/lib/" + Version ;
35 link(lib_path + "/ libCoinUtils .so");
36 link(lib_path + "/ libcoinblas .so");
37 link(lib_path + "/ libcoinlapack .so");
38 link(lib_path + "/ libcoinmumps .so");
39 link(lib_path + ’/ libCbc .so ’);
40 link(lib_path + "/ libClp .so");
41 link(lib_path + "/ libClpSolver .so");
42 link(lib_path + "/ libOsi .so");
43 link(lib_path + "/ libOsiCommonTests .so");
44 link(lib_path + "/ libOsiClp .so");
45 link(lib_path + "/ libCgl .so");
46 link(lib_path + "/ libSym .so");
47 link(lib_path + "/ libOsiSym .so");
48 link(lib_path + "/ libipopt .so");
49 link(lib_path + ’/ libbonmin .so ’);
50 link(lib_path + "/ libecos .so");
51 end
52 exec(pathconvert (root_tlbx + filesep () + " sci_gateway " +

filesep () + " loader_gateway .sce",%f));
53
54 // Load and add help chapter
55
56 if (%t) then
57 if or(getscilabmode () == ["NW";"STD"]) then
58 mprintf ("\tLoad help\n");
59 path_addchapter = pathconvert (root_tlbx +"/jar");
60 if (isdir(path_addchapter) <> []) then
61 add_help_chapter (" FOSSEE_Optimization_Toolbox ",

path_addchapter , %F);
62 clear add_help_chapter ;
63 end
64 clear path_addchapter ;
65 end
66 end
67
68 // add demos
69
70 if (%t) then
71 if or(getscilabmode () == ["NW";"STD"]) then
72 mprintf ("\tLoad demos\n");
73 pathdemos = pathconvert (root_tlbx +"/demos/

sci_FOSSEE_Optimization_Toolbox .dem. gateway .sce",%f ,%t)
;

74 add_demo (" FOSSEE_Optimization_Toolbox ",pathdemos);
75 clear pathdemos ;
76 end
77 end
78
79 clear etc_tlbx root_tlbx Version a opt lib_path ;

42

FOT Developer’s Manual

A.2 FOSSEE_Optimization_Toolbox.quit

1 function quitModule ()
2
3 etc_tlbx = get_absolute_file_path ("

FOSSEE_Optimization_Toolbox .quit");
4 etc_tlbx = getshortpathname (etc_tlbx);
5 root_tlbx = strncpy (etc_tlbx , length (etc_tlbx)-length ("\

etc \"));
6
7 // unlink libraries
8 [bOK , ilib] = c_link (’ FOSSEE_Optimization_Toolbox ’);
9 if bOK then
10 ulink(ilib);
11 end
12
13 // Remove Preferences GUI
14 if getscilabmode () == "STD" then
15 removeModulePreferences (root_tlbx);
16 end
17 ulink ();
18 endfunction
19
20 quitModule ();
21
22 clear quitModule ;

43

Appendix B

Tutorial

B.1 Toolbox Tutorial

B.2 Help Tutorial

B.2.1 Introduction

Here we see how to go about making a basic help document for a function
in the FOT. Both methods of doing so have been illustrated below:

B.2.2 Using help_from_sci

• Use help_from_sci() to generate a basic skeleton for the documentation,
along with the function. Save it as funname.sci

• Write the function, and the documentation as discussed in the chapter
on help documents.

• Enter the command help_from_sci(funname,helpdir) to generate the help
document from the function.

• Once done, open scilab and build the FOT. You can see the help
document on using the help command.

Example

--> help_from_sci ()

This will generate a function template. We save the following function in
the template, and modify the filename accordingly.

function [y, z]= funname (a, b)
y=a+b,z=1;
endfunction

44

FOT Developer’s Manual

After modifying the documentation as necessary, we use the following com-
mand to generate a help document in the same directory.

--> help_from_sci (funname ,".")

B.2.3 Modifying the XML

This method has its basis in the method described above, but here the
developer has a lot more freedom. In this method, the developer can simply
edit the XML file generated by the previous method, and implement a lot
of their own ideas about the documentation.

In this method, the developer should generate a basic XML file as dis-
played in the previous subsection. And then go on to make changes as
needed. There isn’t a lot to write here because this section depends largely
on the developer’s comfort with XML.

To view the modifications made, simply rebuild the FOT once the mod-
ifications have been made, and use the help command to view them.

45

Appendix C

Assignments

1. Make a gateway file of a language of your choice that accepts two
matrices and returns the

(a) Sum of both matrices
(b) Difference of both matrices
(c) Multiplication of both matrices
(d) All the above three operations. Use a third input which specifies

which operation is to be performed.

2. Go through the sourcecode of lp_solve API given at this link1. Un-
derstand the implementation and try to make a FOT implementation
of the same similar to intlinprog.

3. Create the same for GLPK2.

1https://sourceforge.net/projects/lpsolve/files/lpsolve/5.5.2.5/lp_solve_5.5.2.5
_scilab_source.tar.gz/download

2https://github.com/ycollet/scilab-
mip/tree/master/sciglpk

46

	Introduction
	Scilab
	Optimization Libraries
	Downloading the toolbox
	Prerequisites
	Purpose of document

	Toolbox Structure
	Builder files
	Introduction
	builder.sce
	buildmacros.sce
	builder_gateway.sce
	builder_gateway_cpp.sce

	builder_help.sce

	etc directory
	Introduction
	FOSSEE_Optimization_Toolbox.start
	FOSSEE_Optimization_Toolbox.quit

	macros directory
	Introduction
	Outline of a macros file
	Commented Help page
	Input retrieval
	Error checks
	Input modifications
	Call to the C++ library
	Output retrieval,checks and modifications

	sci_gateway files
	Introduction
	Basic Scilab API Functions
	Outline of a sci_gateway file
	Variable initialization
	Input retrieval
	Input modifications
	Calling the library
	Output management
	Returning output to Scilab

	Solver Libraries
	Introduction
	Prerequisites
	Compiling libraries
	ecos
	CLP
	Symphony
	Ipopt
	CBC
	Bonmin

	Shared libraries
	Header files

	Help Files
	Introduction
	Basic help document structure
	Methods of writing help documents
	Using help_from_sci
	Directly via XML

	Style Preferences
	Using LaTeX

	Additional Notes
	Problems faced while using LaTeX

	Appendix Codes
	FOSSEE_Optimization_Toolbox.start
	FOSSEE_Optimization_Toolbox.quit

	Appendix Tutorial
	Toolbox Tutorial
	Help Tutorial
	Introduction
	Using help_from_sci
	Modifying the XML

	Appendix Assignments

