/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_FEATURE_HPP__ #define __OPENCV_FEATURE_HPP__ #include "opencv2/core.hpp" #include "opencv2/imgproc.hpp" #include #include #include /* * TODO This implementation is based on apps/traincascade/ * TODO Changed CvHaarEvaluator based on ADABOOSTING implementation (Grabner et al.) */ namespace cv { //! @addtogroup tracking //! @{ #define FEATURES "features" #define CC_FEATURES FEATURES #define CC_FEATURE_PARAMS "featureParams" #define CC_MAX_CAT_COUNT "maxCatCount" #define CC_FEATURE_SIZE "featSize" #define CC_NUM_FEATURES "numFeat" #define CC_ISINTEGRAL "isIntegral" #define CC_RECTS "rects" #define CC_TILTED "tilted" #define CC_RECT "rect" #define LBPF_NAME "lbpFeatureParams" #define HOGF_NAME "HOGFeatureParams" #define HFP_NAME "haarFeatureParams" #define CV_HAAR_FEATURE_MAX 3 #define N_BINS 9 #define N_CELLS 4 #define CV_SUM_OFFSETS( p0, p1, p2, p3, rect, step ) \ /* (x, y) */ \ (p0) = (rect).x + (step) * (rect).y; \ /* (x + w, y) */ \ (p1) = (rect).x + (rect).width + (step) * (rect).y; \ /* (x + w, y) */ \ (p2) = (rect).x + (step) * ((rect).y + (rect).height); \ /* (x + w, y + h) */ \ (p3) = (rect).x + (rect).width + (step) * ((rect).y + (rect).height); #define CV_TILTED_OFFSETS( p0, p1, p2, p3, rect, step ) \ /* (x, y) */ \ (p0) = (rect).x + (step) * (rect).y; \ /* (x - h, y + h) */ \ (p1) = (rect).x - (rect).height + (step) * ((rect).y + (rect).height);\ /* (x + w, y + w) */ \ (p2) = (rect).x + (rect).width + (step) * ((rect).y + (rect).width); \ /* (x + w - h, y + w + h) */ \ (p3) = (rect).x + (rect).width - (rect).height \ + (step) * ((rect).y + (rect).width + (rect).height); float calcNormFactor( const Mat& sum, const Mat& sqSum ); template void _writeFeatures( const std::vector features, FileStorage &fs, const Mat& featureMap ) { fs << FEATURES << "["; const Mat_& featureMap_ = (const Mat_&) featureMap; for ( int fi = 0; fi < featureMap.cols; fi++ ) if( featureMap_( 0, fi ) >= 0 ) { fs << "{"; features[fi].write( fs ); fs << "}"; } fs << "]"; } class CvParams { public: CvParams(); virtual ~CvParams() { } // from|to file virtual void write( FileStorage &fs ) const = 0; virtual bool read( const FileNode &node ) = 0; // from|to screen virtual void printDefaults() const; virtual void printAttrs() const; virtual bool scanAttr( const std::string prmName, const std::string val ); std::string name; }; class CvFeatureParams : public CvParams { public: enum { HAAR = 0, LBP = 1, HOG = 2 }; CvFeatureParams(); virtual void init( const CvFeatureParams& fp ); virtual void write( FileStorage &fs ) const; virtual bool read( const FileNode &node ); static Ptr create( int featureType ); int maxCatCount; // 0 in case of numerical features int featSize; // 1 in case of simple features (HAAR, LBP) and N_BINS(9)*N_CELLS(4) in case of Dalal's HOG features int numFeatures; }; class CvFeatureEvaluator { public: virtual ~CvFeatureEvaluator() { } virtual void init( const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize ); virtual void setImage( const Mat& img, uchar clsLabel, int idx ); virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const = 0; virtual float operator()( int featureIdx, int sampleIdx ) = 0; static Ptr create( int type ); int getNumFeatures() const { return numFeatures; } int getMaxCatCount() const { return featureParams->maxCatCount; } int getFeatureSize() const { return featureParams->featSize; } const Mat& getCls() const { return cls; } float getCls( int si ) const { return cls.at( si, 0 ); } protected: virtual void generateFeatures() = 0; int npos, nneg; int numFeatures; Size winSize; CvFeatureParams *featureParams; Mat cls; }; class CvHaarFeatureParams : public CvFeatureParams { public: CvHaarFeatureParams(); virtual void init( const CvFeatureParams& fp ); virtual void write( FileStorage &fs ) const; virtual bool read( const FileNode &node ); virtual void printDefaults() const; virtual void printAttrs() const; virtual bool scanAttr( const std::string prm, const std::string val ); bool isIntegral; }; class CvHaarEvaluator : public CvFeatureEvaluator { public: class FeatureHaar { public: FeatureHaar( Size patchSize ); bool eval( const Mat& image, Rect ROI, float* result ) const; int getNumAreas(); const std::vector& getWeights() const; const std::vector& getAreas() const; void write( FileStorage ) const { } ; float getInitMean() const; float getInitSigma() const; private: int m_type; int m_numAreas; std::vector m_weights; float m_initMean; float m_initSigma; void generateRandomFeature( Size imageSize ); float getSum( const Mat& image, Rect imgROI ) const; std::vector m_areas; // areas within the patch over which to compute the feature cv::Size m_initSize; // size of the patch used during training cv::Size m_curSize; // size of the patches currently under investigation float m_scaleFactorHeight; // scaling factor in vertical direction float m_scaleFactorWidth; // scaling factor in horizontal direction std::vector m_scaleAreas; // areas after scaling std::vector m_scaleWeights; // weights after scaling }; virtual void init( const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize ); virtual void setImage( const Mat& img, uchar clsLabel = 0, int idx = 1 ); virtual float operator()( int featureIdx, int sampleIdx ); virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const; void writeFeature( FileStorage &fs ) const; // for old file format const std::vector& getFeatures() const; inline CvHaarEvaluator::FeatureHaar& getFeatures( int idx ) { return features[idx]; } void setWinSize( Size patchSize ); Size setWinSize() const; virtual void generateFeatures(); /** * TODO new method * \brief Overload the original generateFeatures in order to limit the number of the features * @param numFeatures Number of the features */ virtual void generateFeatures( int numFeatures ); protected: bool isIntegral; /* TODO Added from MIL implementation */ Mat _ii_img; void compute_integral( const cv::Mat & img, std::vector > & ii_imgs ) { Mat ii_img; integral( img, ii_img, CV_32F ); split( ii_img, ii_imgs ); } std::vector features; Mat sum; /* sum images (each row represents image) */ }; struct CvHOGFeatureParams : public CvFeatureParams { CvHOGFeatureParams(); }; class CvHOGEvaluator : public CvFeatureEvaluator { public: virtual ~CvHOGEvaluator() { } virtual void init( const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize ); virtual void setImage( const Mat& img, uchar clsLabel, int idx ); virtual float operator()( int varIdx, int sampleIdx ); virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const; protected: virtual void generateFeatures(); virtual void integralHistogram( const Mat &img, std::vector &histogram, Mat &norm, int nbins ) const; class Feature { public: Feature(); Feature( int offset, int x, int y, int cellW, int cellH ); float calc( const std::vector &_hists, const Mat &_normSum, size_t y, int featComponent ) const; void write( FileStorage &fs ) const; void write( FileStorage &fs, int varIdx ) const; Rect rect[N_CELLS]; //cells struct { int p0, p1, p2, p3; } fastRect[N_CELLS]; }; std::vector features; Mat normSum; //for nomalization calculation (L1 or L2) std::vector hist; }; inline float CvHOGEvaluator::operator()( int varIdx, int sampleIdx ) { int featureIdx = varIdx / ( N_BINS * N_CELLS ); int componentIdx = varIdx % ( N_BINS * N_CELLS ); //return features[featureIdx].calc( hist, sampleIdx, componentIdx); return features[featureIdx].calc( hist, normSum, sampleIdx, componentIdx ); } inline float CvHOGEvaluator::Feature::calc( const std::vector& _hists, const Mat& _normSum, size_t y, int featComponent ) const { float normFactor; float res; int binIdx = featComponent % N_BINS; int cellIdx = featComponent / N_BINS; const float *phist = _hists[binIdx].ptr( (int) y ); res = phist[fastRect[cellIdx].p0] - phist[fastRect[cellIdx].p1] - phist[fastRect[cellIdx].p2] + phist[fastRect[cellIdx].p3]; const float *pnormSum = _normSum.ptr( (int) y ); normFactor = (float) ( pnormSum[fastRect[0].p0] - pnormSum[fastRect[1].p1] - pnormSum[fastRect[2].p2] + pnormSum[fastRect[3].p3] ); res = ( res > 0.001f ) ? ( res / ( normFactor + 0.001f ) ) : 0.f; //for cutting negative values, which apper due to floating precision return res; } struct CvLBPFeatureParams : CvFeatureParams { CvLBPFeatureParams(); }; class CvLBPEvaluator : public CvFeatureEvaluator { public: virtual ~CvLBPEvaluator() { } virtual void init( const CvFeatureParams *_featureParams, int _maxSampleCount, Size _winSize ); virtual void setImage( const Mat& img, uchar clsLabel, int idx ); virtual float operator()( int featureIdx, int sampleIdx ) { return (float) features[featureIdx].calc( sum, sampleIdx ); } virtual void writeFeatures( FileStorage &fs, const Mat& featureMap ) const; protected: virtual void generateFeatures(); class Feature { public: Feature(); Feature( int offset, int x, int y, int _block_w, int _block_h ); uchar calc( const Mat& _sum, size_t y ) const; void write( FileStorage &fs ) const; Rect rect; int p[16]; }; std::vector features; Mat sum; }; inline uchar CvLBPEvaluator::Feature::calc( const Mat &_sum, size_t y ) const { const int* psum = _sum.ptr( (int) y ); int cval = psum[p[5]] - psum[p[6]] - psum[p[9]] + psum[p[10]]; return (uchar) ( ( psum[p[0]] - psum[p[1]] - psum[p[4]] + psum[p[5]] >= cval ? 128 : 0 ) | // 0 ( psum[p[1]] - psum[p[2]] - psum[p[5]] + psum[p[6]] >= cval ? 64 : 0 ) | // 1 ( psum[p[2]] - psum[p[3]] - psum[p[6]] + psum[p[7]] >= cval ? 32 : 0 ) | // 2 ( psum[p[6]] - psum[p[7]] - psum[p[10]] + psum[p[11]] >= cval ? 16 : 0 ) | // 5 ( psum[p[10]] - psum[p[11]] - psum[p[14]] + psum[p[15]] >= cval ? 8 : 0 ) | // 8 ( psum[p[9]] - psum[p[10]] - psum[p[13]] + psum[p[14]] >= cval ? 4 : 0 ) | // 7 ( psum[p[8]] - psum[p[9]] - psum[p[12]] + psum[p[13]] >= cval ? 2 : 0 ) | // 6 ( psum[p[4]] - psum[p[5]] - psum[p[8]] + psum[p[9]] >= cval ? 1 : 0 ) ); // 3 } //! @} } /* namespace cv */ #endif