//By downloading, copying, installing or using the software you agree to this license. //If you do not agree to this license, do not download, install, //copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // (3-clause BSD License) // //Copyright (C) 2000-2015, Intel Corporation, all rights reserved. //Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. //Copyright (C) 2009-2015, NVIDIA Corporation, all rights reserved. //Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved. //Copyright (C) 2015, OpenCV Foundation, all rights reserved. //Copyright (C) 2015, Itseez Inc., all rights reserved. //Third party copyrights are property of their respective owners. // //Redistribution and use in source and binary forms, with or without modification, //are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * Neither the names of the copyright holders nor the names of the contributors // may be used to endorse or promote products derived from this software // without specific prior written permission. // //This software is provided by the copyright holders and contributors "as is" and //any express or implied warranties, including, but not limited to, the implied //warranties of merchantability and fitness for a particular purpose are disclaimed. //In no event shall copyright holders or contributors be liable for any direct, //indirect, incidental, special, exemplary, or consequential damages //(including, but not limited to, procurement of substitute goods or services; //loss of use, data, or profits; or business interruption) however caused //and on any theory of liability, whether in contract, strict liability, //or tort (including negligence or otherwise) arising in any way out of //the use of this software, even if advised of the possibility of such damage. /*****************************************************************************************************************\ * The interface contains the main descriptors that will be implemented in the descriptor class * \*****************************************************************************************************************/ #include #ifndef _OPENCV_DESCRIPTOR_HPP_ #define _OPENCV_DESCRIPTOR_HPP_ #ifdef __cplusplus namespace cv { namespace stereo { //types of supported kernels enum { CV_DENSE_CENSUS, CV_SPARSE_CENSUS, CV_CS_CENSUS, CV_MODIFIED_CS_CENSUS, CV_MODIFIED_CENSUS_TRANSFORM, CV_MEAN_VARIATION, CV_STAR_KERNEL }; //!Mean Variation is a robust kernel that compares a pixel //!not just with the center but also with the mean of the window template struct MVKernel { uint8_t *image[num_images]; int *integralImage[num_images]; int stop; MVKernel(){} MVKernel(uint8_t **images, int **integral) { for(int i = 0; i < num_images; i++) { image[i] = images[i]; integralImage[i] = integral[i]; } stop = num_images; } void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const { (void)w2; for (int i = 0; i < stop; i++) { if (image[i][rrWidth + jj] > image[i][rWidth + j]) { c[i] = c[i] + 1; } c[i] = c[i] << 1; if (integralImage[i][rrWidth + jj] > image[i][rWidth + j]) { c[i] = c[i] + 1; } c[i] = c[i] << 1; } } }; //!Compares pixels from a patch giving high weights to pixels in which //!the intensity is higher. The other pixels receive a lower weight template struct MCTKernel { uint8_t *image[num_images]; int t,imageStop; MCTKernel(){} MCTKernel(uint8_t ** images, int threshold) { for(int i = 0; i < num_images; i++) { image[i] = images[i]; } imageStop = num_images; t = threshold; } void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const { (void)w2; for(int i = 0; i < imageStop; i++) { if (image[i][rrWidth + jj] > image[i][rWidth + j] - t) { c[i] = c[i] << 1; c[i] = c[i] + 1; c[i] = c[i] << 1; c[i] = c[i] + 1; } else if (image[i][rWidth + j] - t < image[i][rrWidth + jj] && image[i][rWidth + j] + t >= image[i][rrWidth + jj]) { c[i] = c[i] << 2; c[i] = c[i] + 1; } else { c[i] <<= 2; } } } }; //!A madified cs census that compares a pixel with the imediat neightbour starting //!from the center template struct ModifiedCsCensus { uint8_t *image[num_images]; int n2; int imageStop; ModifiedCsCensus(){} ModifiedCsCensus(uint8_t **images, int ker) { for(int i = 0; i < num_images; i++) image[i] = images[i]; imageStop = num_images; n2 = ker; } void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const { (void)j; (void)rWidth; for(int i = 0; i < imageStop; i++) { if (image[i][(rrWidth + jj)] > image[i][(w2 + (jj + n2))]) { c[i] = c[i] + 1; } c[i] = c[i] * 2; } } }; //!A kernel in which a pixel is compared with the center of the window template struct CensusKernel { uint8_t *image[num_images]; int imageStop; CensusKernel(){} CensusKernel(uint8_t **images) { for(int i = 0; i < num_images; i++) image[i] = images[i]; imageStop = num_images; } void operator()(int rrWidth,int w2, int rWidth, int jj, int j, int c[num_images]) const { (void)w2; for(int i = 0; i < imageStop; i++) { ////compare a pixel with the center from the kernel if (image[i][rrWidth + jj] > image[i][rWidth + j]) { c[i] += 1; } c[i] <<= 1; } } }; //template clas which efficiently combines the descriptors template class CombinedDescriptor:public ParallelLoopBody { private: int width, height,n2; int stride_; int *dst[nr_img]; Kernel kernel_; int n2_stop; public: CombinedDescriptor(int w, int h,int stride, int k2, int **distance, Kernel kernel,int k2Stop) { width = w; height = h; n2 = k2; stride_ = stride; for(int i = 0; i < nr_img; i++) dst[i] = distance[i]; kernel_ = kernel; n2_stop = k2Stop; } void operator()(const cv::Range &r) const { for (int i = r.start; i <= r.end ; i++) { int rWidth = i * stride_; for (int j = n2 + 2; j <= width - n2 - 2; j++) { int c[nr_img]; memset(c,0,nr_img); for(int step = step_start; step <= step_end; step += step_inc) { for (int ii = - n2; ii <= + n2_stop; ii += step) { int rrWidth = (ii + i) * stride_; int rrWidthC = (ii + i + n2) * stride_; for (int jj = j - n2; jj <= j + n2; jj += step) { if (ii != i || jj != j) { kernel_(rrWidth,rrWidthC, rWidth, jj, j,c); } } } } for(int l = 0; l < nr_img; l++) dst[l][rWidth + j] = c[l]; } } } }; //!calculate the mean of every windowSizexWindwoSize block from the integral Image //!this is a preprocessing for MV kernel class MeanKernelIntegralImage : public ParallelLoopBody { private: int *img; int windowSize,width; float scalling; int *c; public: MeanKernelIntegralImage(const cv::Mat &image, int window,float scale, int *cost): img((int *)image.data),windowSize(window) ,width(image.cols) ,scalling(scale) , c(cost){}; void operator()(const cv::Range &r) const{ for (int i = r.start; i <= r.end; i++) { int iw = i * width; for (int j = windowSize + 1; j <= width - windowSize - 1; j++) { c[iw + j] = (int)((img[(i + windowSize - 1) * width + j + windowSize - 1] + img[(i - windowSize - 1) * width + j - windowSize - 1] - img[(i + windowSize) * width + j - windowSize] - img[(i - windowSize) * width + j + windowSize]) * scalling); } } } }; //!implementation for the star kernel descriptor template class StarKernelCensus:public ParallelLoopBody { private: uint8_t *image[num_images]; int *dst[num_images]; int n2, width, height, im_num,stride_; public: StarKernelCensus(const cv::Mat *img, int k2, int **distance) { for(int i = 0; i < num_images; i++) { image[i] = img[i].data; dst[i] = distance[i]; } n2 = k2; width = img[0].cols; height = img[0].rows; im_num = num_images; stride_ = (int)img[0].step; } void operator()(const cv::Range &r) const { for (int i = r.start; i <= r.end ; i++) { int rWidth = i * stride_; for (int j = n2; j <= width - n2; j++) { for(int d = 0 ; d < im_num; d++) { int c = 0; for(int step = 4; step > 0; step--) { for (int ii = i - step; ii <= i + step; ii += step) { int rrWidth = ii * stride_; for (int jj = j - step; jj <= j + step; jj += step) { if (image[d][rrWidth + jj] > image[d][rWidth + j]) { c = c + 1; } c = c * 2; } } } for (int ii = -1; ii <= +1; ii++) { int rrWidth = (ii + i) * stride_; if (i == -1) { if (ii + i != i) { if (image[d][rrWidth + j] > image[d][rWidth + j]) { c = c + 1; } c = c * 2; } } else if (i == 0) { for (int j2 = -1; j2 <= 1; j2 += 2) { if (ii + i != i) { if (image[d][rrWidth + j + j2] > image[d][rWidth + j]) { c = c + 1; } c = c * 2; } } } else { if (ii + i != i) { if (image[d][rrWidth + j] > image[d][rWidth + j]) { c = c + 1; } c = c * 2; } } } dst[d][rWidth + j] = c; } } } } }; //!paralel implementation of the center symetric census template class SymetricCensus:public ParallelLoopBody { private: uint8_t *image[num_images]; int *dst[num_images]; int n2, width, height, im_num,stride_; public: SymetricCensus(const cv::Mat *img, int k2, int **distance) { for(int i = 0; i < num_images; i++) { image[i] = img[i].data; dst[i] = distance[i]; } n2 = k2; width = img[0].cols; height = img[0].rows; im_num = num_images; stride_ = (int)img[0].step; } void operator()(const cv::Range &r) const { for (int i = r.start; i <= r.end ; i++) { int distV = i*stride_; for (int j = n2; j <= width - n2; j++) { for(int d = 0; d < im_num; d++) { int c = 0; //the classic center symetric census which compares the curent pixel with its symetric not its center. for (int ii = -n2; ii <= 0; ii++) { int rrWidth = (ii + i) * stride_; for (int jj = -n2; jj <= +n2; jj++) { if (image[d][(rrWidth + (jj + j))] > image[d][((ii * (-1) + i) * width + (-1 * jj) + j)]) { c = c + 1; } c = c * 2; if(ii == 0 && jj < 0) { if (image[d][(i * width + (jj + j))] > image[d][(i * width + (-1 * jj) + j)]) { c = c + 1; } c = c * 2; } } } dst[d][(distV + j)] = c; } } } } }; /** Two variations of census applied on input images Implementation of a census transform which is taking into account just the some pixels from the census kernel thus allowing for larger block sizes **/ //void applyCensusOnImages(const cv::Mat &im1,const cv::Mat &im2, int kernelSize, cv::Mat &dist, cv::Mat &dist2, const int type); CV_EXPORTS void censusTransform(const cv::Mat &image1, const cv::Mat &image2, int kernelSize, cv::Mat &dist1, cv::Mat &dist2, const int type); //single image census transform CV_EXPORTS void censusTransform(const cv::Mat &image1, int kernelSize, cv::Mat &dist1, const int type); /** STANDARD_MCT - Modified census which is memorizing for each pixel 2 bits and includes a tolerance to the pixel comparison MCT_MEAN_VARIATION - Implementation of a modified census transform which is also taking into account the variation to the mean of the window not just the center pixel **/ CV_EXPORTS void modifiedCensusTransform(const cv::Mat &img1, const cv::Mat &img2, int kernelSize, cv::Mat &dist1,cv::Mat &dist2, const int type, int t = 0 , const cv::Mat &IntegralImage1 = cv::Mat::zeros(100,100,CV_8UC1), const cv::Mat &IntegralImage2 = cv::Mat::zeros(100,100,CV_8UC1)); //single version of modified census transform descriptor CV_EXPORTS void modifiedCensusTransform(const cv::Mat &img1, int kernelSize, cv::Mat &dist, const int type, int t = 0 ,const cv::Mat &IntegralImage = cv::Mat::zeros(100,100,CV_8UC1)); /**The classical center symetric census A modified version of cs census which is comparing a pixel with its correspondent after the center **/ CV_EXPORTS void symetricCensusTransform(const cv::Mat &img1, const cv::Mat &img2, int kernelSize, cv::Mat &dist1, cv::Mat &dist2, const int type); //single version of census transform CV_EXPORTS void symetricCensusTransform(const cv::Mat &img1, int kernelSize, cv::Mat &dist1, const int type); //in a 9x9 kernel only certain positions are choosen CV_EXPORTS void starCensusTransform(const cv::Mat &img1, const cv::Mat &img2, int kernelSize, cv::Mat &dist1,cv::Mat &dist2); //single image version of star kernel CV_EXPORTS void starCensusTransform(const cv::Mat &img1, int kernelSize, cv::Mat &dist); //integral image computation used in the Mean Variation Census Transform void imageMeanKernelSize(const cv::Mat &img, int windowSize, cv::Mat &c); } } #endif #endif /*End of file*/