/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2014, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_SALIENCY_BASE_CLASSES_HPP__ #define __OPENCV_SALIENCY_BASE_CLASSES_HPP__ #include "opencv2/core.hpp" #include #include "opencv2/imgproc.hpp" #include #include #include namespace cv { namespace saliency { //! @addtogroup saliency //! @{ /************************************ Saliency Base Class ************************************/ class CV_EXPORTS_W Saliency : public virtual Algorithm { public: /** * \brief Destructor */ virtual ~Saliency(); /** * \brief Create Saliency by saliency type. */ static Ptr create( const String& saliencyType ); /** * \brief Compute the saliency * \param image The image. * \param saliencyMap The computed saliency map. * \return true if the saliency map is computed, false otherwise */ CV_WRAP bool computeSaliency( InputArray image, OutputArray saliencyMap ); /** * \brief Get the name of the specific saliency type * \return The name of the tracker initializer */ CV_WRAP String getClassName() const; protected: virtual bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap ) = 0; String className; }; /************************************ Static Saliency Base Class ************************************/ class CV_EXPORTS_W StaticSaliency : public virtual Saliency { public: /** @brief This function perform a binary map of given saliency map. This is obtained in this way: In a first step, to improve the definition of interest areas and facilitate identification of targets, a segmentation by clustering is performed, using *K-means algorithm*. Then, to gain a binary representation of clustered saliency map, since values of the map can vary according to the characteristics of frame under analysis, it is not convenient to use a fixed threshold. So, *Otsu’s algorithm* is used, which assumes that the image to be thresholded contains two classes of pixels or bi-modal histograms (e.g. foreground and back-ground pixels); later on, the algorithm calculates the optimal threshold separating those two classes, so that their intra-class variance is minimal. @param _saliencyMap the saliency map obtained through one of the specialized algorithms @param _binaryMap the binary map */ CV_WRAP bool computeBinaryMap( InputArray _saliencyMap, OutputArray _binaryMap ); protected: virtual bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap )=0; }; /************************************ Motion Saliency Base Class ************************************/ class CV_EXPORTS_W MotionSaliency : public virtual Saliency { protected: virtual bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap )=0; }; /************************************ Objectness Base Class ************************************/ class CV_EXPORTS_W Objectness : public virtual Saliency { protected: virtual bool computeSaliencyImpl( InputArray image, OutputArray saliencyMap )=0; }; //! @} } /* namespace saliency */ } /* namespace cv */ #endif