/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_DNN_DNN_BLOB_INL_HPP__ #define __OPENCV_DNN_DNN_BLOB_INL_HPP__ #include "blob.hpp" namespace cv { namespace dnn { inline BlobShape::BlobShape() { sz.allocate(4); for (size_t i = 0; i < sz.size(); i++) sz[i] = 1; } inline BlobShape BlobShape::all(int ndims, int fill) { CV_Assert(ndims >= 0); BlobShape res; res.sz.allocate(ndims); for (int i = 0; i < ndims; i++) res.sz[i] = fill; return res; } inline BlobShape::BlobShape(int ndims, const int *sizes) : sz( (size_t)std::max(ndims, 0) ) { CV_Assert(ndims >= 0); if (!sizes) return; for (int i = 0; i < ndims; i++) sz[i] = sizes[i]; } inline BlobShape::BlobShape(int s0) : sz(1) { sz[0] = s0; } inline BlobShape::BlobShape(int s0, int s1) : sz(2) { sz[0] = s0; sz[1] = s1; } inline BlobShape::BlobShape(int s0, int s1, int s2) : sz(3) { sz[0] = s0; sz[1] = s1; sz[2] = s2; } inline BlobShape::BlobShape(int num, int cn, int rows, int cols) : sz(4) { sz[0] = num; sz[1] = cn; sz[2] = rows; sz[3] = cols; } inline BlobShape::BlobShape(const std::vector &sizes) : sz( sizes.size() ) { for (int i = 0; i < (int)sizes.size(); i++) sz[i] = sizes[i]; } template inline BlobShape::BlobShape(const Vec &shape) : sz(n) { for (int i = 0; i < n; i++) sz[i] = shape[i]; } inline int BlobShape::dims() const { return (int)sz.size(); } inline int BlobShape::xsize(int axis) const { if (axis < -dims() || axis >= dims()) return 1; return sz[(axis < 0) ? axis + dims() : axis]; } inline int BlobShape::size(int axis) const { CV_Assert(-dims() <= axis && axis < dims()); return sz[(axis < 0) ? axis + dims() : axis]; } inline int &BlobShape::size(int axis) { CV_Assert(-dims() <= axis && axis < dims()); return sz[(axis < 0) ? axis + dims() : axis]; } inline int BlobShape::operator[] (int axis) const { CV_Assert(-dims() <= axis && axis < dims()); return sz[(axis < 0) ? axis + dims() : axis]; } inline int &BlobShape::operator[] (int axis) { CV_Assert(-dims() <= axis && axis < dims()); return sz[(axis < 0) ? axis + dims() : axis]; } inline int BlobShape::canonicalAxis(int axis) const { CV_Assert(-dims() <= axis && axis < dims()); return (axis < 0) ? axis + dims() : axis; } inline ptrdiff_t BlobShape::total() const { if (dims() == 0) return 0; ptrdiff_t res = 1; for (int i = 0; i < dims(); i++) res *= sz[i]; return res; } inline ptrdiff_t BlobShape::total(int startAxis, int endAxis) const { if (isEmpty()) return 0; if (endAxis == INT_MAX) endAxis = dims(); else if (endAxis < 0) endAxis += dims(); startAxis = (startAxis < 0) ? startAxis + dims() : startAxis; CV_Assert(0 <= startAxis && startAxis <= endAxis && endAxis <= dims()); ptrdiff_t res = 1; for (int i = startAxis; i < endAxis; i++) res *= sz[i]; return res; } inline BlobShape BlobShape::slice(int startAxis, int endAxis) const { if (isEmpty()) return BlobShape::empty(); if (endAxis == INT_MAX) endAxis = dims(); else if (endAxis < 0) endAxis += dims(); startAxis = (startAxis < 0) ? startAxis + dims() : startAxis; CV_Assert(0 <= startAxis && startAxis <= endAxis && endAxis <= dims()); BlobShape res(endAxis - startAxis, (const int*)NULL); for (int i = startAxis; i < endAxis; i++) res[i - startAxis] = sz[i]; return res; } inline const int *BlobShape::ptr() const { return sz; } inline int *BlobShape::ptr() { return sz; } inline bool BlobShape::equal(const BlobShape &other) const { if (this->dims() != other.dims()) return false; for (int i = 0; i < other.dims(); i++) { if (sz[i] != other.sz[i]) return false; } return true; } inline bool BlobShape::operator==(const BlobShape &r) const { return this->equal(r); } inline BlobShape BlobShape::like(const Mat &m) { return BlobShape(m.dims, (const int*)m.size); } inline BlobShape BlobShape::like(const UMat &m) { return BlobShape(m.dims, (const int*)m.size); } inline BlobShape BlobShape::empty() { return BlobShape(0, (const int*)NULL); } inline bool BlobShape::isEmpty() const { return dims() == 0; } inline BlobShape BlobShape::operator+(const BlobShape &r) const { BlobShape newShape(this->dims() + r.dims(), (int*)NULL); for (int i = 0; i < this->dims(); i++) newShape[i] = (*this)[i]; for (int i = 0; i < r.dims(); i++) newShape[this->dims() + i] = r[i]; return newShape; } CV_EXPORTS std::ostream &operator<< (std::ostream &stream, const BlobShape &shape); ///////////////////////////////////////////////////////////////////// #ifndef CV_DNN_UMAT # define CV_DNN_SWITCH_MU(cpu_expr, gpu_expr) (cpu_expr) #else # define CV_DNN_SWITCH_MU(cpu_expr, gpu_expr) ((state == HEAD_AT_UMAT) ? (gpu_expr) : (cpu_expr)) #endif inline int Blob::dims() const { return CV_DNN_SWITCH_MU(m.dims, um.dims); } inline const int * Blob::sizes() const { return CV_DNN_SWITCH_MU((const int*)m.size, (const int*)um.size); } inline int Blob::type() const { return CV_DNN_SWITCH_MU(m.type(), um.type()); } template inline size_t Blob::offset(const Vec &pos) const { const MatStep &step = CV_DNN_SWITCH_MU(m.step, um.step); size_t ofs = 0; int i; for (i = 0; i < std::min(n, dims()); i++) { CV_DbgAssert(pos[i] >= 0 && pos[i] < size(i)); ofs += step[i] * pos[i]; } for (; i < dims(); i++) CV_DbgAssert(pos[i] == 0); CV_DbgAssert(ofs % elemSize() == 0); return ofs / elemSize(); } inline int Blob::canonicalAxis(int axis) const { CV_Assert(-dims() <= axis && axis < dims()); return (axis < 0) ? axis + dims() : axis; } inline int Blob::xsize(int axis) const { if (axis < -dims() || axis >= dims()) return 1; return sizes()[(axis < 0) ? axis + dims() : axis]; } inline int Blob::size(int axis) const { CV_Assert(-dims() <= axis && axis < dims()); return sizes()[(axis < 0) ? axis + dims() : axis]; } inline size_t Blob::total(int startAxis, int endAxis) const { if (startAxis < 0) startAxis += dims(); if (endAxis == INT_MAX) endAxis = dims(); else if (endAxis < 0) endAxis += dims(); CV_Assert(0 <= startAxis && startAxis <= endAxis && endAxis <= dims()); size_t cnt = 1; //fix: assume that slice isn't empty for (int i = startAxis; i < endAxis; i++) cnt *= (size_t)sizes()[i]; return cnt; } inline size_t Blob::offset(int n, int cn, int row, int col) const { return offset(Vec4i(n, cn, row, col)); } inline float *Blob::ptrf(int n, int cn, int row, int col) { return matRef(false).ptr() + offset(n, cn, row, col); } inline uchar *Blob::ptr(int n, int cn, int row, int col) { Mat &mat = matRef(false); return mat.ptr() + mat.elemSize() * offset(n, cn, row, col); } template inline Dtype* Blob::ptr(int n, int cn, int row, int col) { CV_Assert(type() == cv::DataDepth::value); return (Dtype*) ptr(n, cn, row, col); } inline BlobShape Blob::shape() const { return BlobShape(dims(), sizes()); } inline bool Blob::equalShape(const Blob &other) const { if (this->dims() != other.dims()) return false; for (int i = 0; i < dims(); i++) { if (this->sizes()[i] != other.sizes()[i]) return false; } return true; } inline Mat& Blob::matRef(bool writeOnly) { #ifdef CV_DNN_UMAT updateMat(!writeOnly); state = HEAD_AT_MAT; #else (void)writeOnly; #endif return m; } inline const Mat& Blob::matRefConst() const { CV_DNN_UMAT_ONLY( updateMat() ); return m; } inline UMat &Blob::umatRef(bool writeOnly) { #ifndef CV_DNN_UMAT CV_Error(Error::GpuNotSupported, ""); (void)writeOnly; return *(new UMat()); #else updateUMat(!writeOnly); state = HEAD_AT_UMAT; return um; #endif } inline const UMat &Blob::umatRefConst() const { #ifndef CV_DNN_UMAT CV_Error(Error::GpuNotSupported, ""); return *(new UMat()); #else updateUMat(); return um; #endif } template<> inline Mat &Blob::getRef(bool writeOnly) { return matRef(writeOnly); } template<> inline UMat &Blob::getRef(bool writeOnly) { return umatRef(writeOnly); } template<> inline const Mat &Blob::getRefConst() const { return matRefConst(); } template<> inline const UMat &Blob::getRefConst() const { return umatRefConst(); } inline Mat Blob::getPlane(int n, int cn) { CV_Assert(dims() > 2); return Mat(dims() - 2, sizes() + 2, type(), ptr(n, cn)); } inline Mat Blob::getPlanes(int n) { CV_Assert(dims() > 3); return Mat(dims() - 1, sizes() + 1, type(), ptr(n)); } inline int Blob::cols() const { return xsize(3); } inline int Blob::rows() const { return xsize(2); } inline int Blob::channels() const { return xsize(1); } inline int Blob::num() const { return xsize(0); } inline Size Blob::size2() const { return Size(cols(), rows()); } inline Blob &Blob::shareFrom(const Blob &blob) { this->m = blob.m; #ifdef CV_DNN_UMAT this->um = blob.um; this->state = blob.state; #endif return *this; } inline Blob &Blob::reshape(const BlobShape &newShape) { if (!m.empty()) m = m.reshape(1, newShape.dims(), newShape.ptr()); #ifdef CV_DNN_UMAT if (!um.empty()) um = um.reshape(1, newShape.dims(), newShape.ptr()); #endif return *this; } inline Blob Blob::reshaped(const BlobShape &newShape) const { Blob res(*this); //also, res.shareFrom(*this) could be used res.reshape(newShape); return res; } inline int Blob::elemSize() const { return CV_ELEM_SIZE(type()); } inline int Blob::getState() const { #ifdef CV_DNN_UMAT return this->state; #else return m.empty() ? UNINITIALIZED : HEAD_AT_MAT; #endif } } } #endif