/******************************************************** Author: Abhilasha Sancheti & Sukul Bagai ********************************************************* return_image = arrowedline(image , x1 , y1 , x2,y2,r_value,g_value,b_value,thickness,linetype,shift,tiplength); ********************************************************/ #include #include "opencv2/core/core.hpp" #include "opencv2/highgui/highgui.hpp" #include "opencv2/opencv.hpp" #include using namespace cv; using namespace std; extern "C" { #include "api_scilab.h" #include "Scierror.h" #include "BOOL.h" #include #include #include "../common.h" int opencv_arrowedline(char *fname, unsigned long fname_len) { SciErr sciErr; int intErr=0; int iRows=0,iCols=0; int *piAddr2 = NULL; int *piAddr3 = NULL; int *piAddr4 = NULL; int *piAddr5 = NULL; int *piAddr6 = NULL; int *piAddr7 = NULL; int *piAddr8 = NULL; int *piAddr9 = NULL; int *piAddr10 = NULL; int *piAddr11 = NULL; int *piAddr12 = NULL; int i,j,k; double thickness=1 , linetype=8,shift =0 ,tiplength=0.1; double x1,y1,x2,y2,r_value,g_value,b_value; //checking input argument CheckInputArgument(pvApiCtx, 8, 12); CheckOutputArgument(pvApiCtx, 1, 1) ; Mat src; retrieveImage(src,1); //for value of x coordinate of first point sciErr = getVarAddressFromPosition(pvApiCtx,2,&piAddr2); if (sciErr.iErr) { printError(&sciErr, 0); return 0; } intErr = getScalarDouble(pvApiCtx, piAddr2 ,&x1); if(intErr) return intErr; //for value of y coordinate of first point sciErr = getVarAddressFromPosition(pvApiCtx,3,&piAddr3); if (sciErr.iErr) { printError(&sciErr, 0); return 0; } intErr = getScalarDouble(pvApiCtx, piAddr3,&y1); if(intErr) return intErr; //for value of x coordinate of second point sciErr = getVarAddressFromPosition(pvApiCtx,4,&piAddr4); if (sciErr.iErr) { printError(&sciErr, 0); return 0; } intErr = getScalarDouble(pvApiCtx, piAddr4 ,&x2); if(intErr) return intErr; ///for value of y coordinate of second point sciErr = getVarAddressFromPosition(pvApiCtx,5,&piAddr5); if (sciErr.iErr) { printError(&sciErr, 0); return 0; } intErr = getScalarDouble(pvApiCtx, piAddr5 ,&y2); if(intErr) return intErr; //for value of R value of colour sciErr = getVarAddressFromPosition(pvApiCtx,6,&piAddr6); if (sciErr.iErr) { printError(&sciErr, 0); return 0; } intErr = getScalarDouble(pvApiCtx, piAddr6,&r_value); if(intErr) return intErr; // for G value of colour sciErr = getVarAddressFromPosition(pvApiCtx,7,&piAddr7); if (sciErr.iErr) { printError(&sciErr, 0); return 0; } intErr = getScalarDouble(pvApiCtx, piAddr7,&g_value); if(intErr) return intErr; // for B value of colour sciErr = getVarAddressFromPosition(pvApiCtx,8,&piAddr8); if (sciErr.iErr) { printError(&sciErr, 0); return 0; } intErr = getScalarDouble(pvApiCtx, piAddr8,&b_value); if(intErr) return intErr; // for thickness of circle default: 1 sciErr = getVarAddressFromPosition(pvApiCtx,9,&piAddr9); if (sciErr.iErr) { printError(&sciErr, 0); return 0; } intErr = getScalarDouble(pvApiCtx, piAddr9 ,&thickness); if(intErr) return intErr; //for line type of circle default: 8 sciErr = getVarAddressFromPosition(pvApiCtx,10,&piAddr10); if (sciErr.iErr) { printError(&sciErr, 0); return 0; } intErr = getScalarDouble(pvApiCtx, piAddr10,&linetype); if(intErr) return intErr; // for shift in line defulat : 0 sciErr = getVarAddressFromPosition(pvApiCtx,11,&piAddr11); if (sciErr.iErr) { printError(&sciErr, 0); return 0; } //Syntax: sciErr = getMatrixOfInteger8(pvApiCtx, piAddr8, &iRows8, &iCols8, &pcData); intErr = getScalarDouble(pvApiCtx, piAddr11 ,&shift); if(intErr) return intErr; // for tiplength of arrow default : 0.1 sciErr = getVarAddressFromPosition(pvApiCtx,12,&piAddr12); if (sciErr.iErr) { printError(&sciErr, 0); return 0; } //Syntax: sciErr = getMatrixOfInteger8(pvApiCtx, piAddr8, &iRows8, &iCols8, &pcData); intErr = getScalarDouble(pvApiCtx, piAddr12,&tiplength); if(intErr) return intErr; //temporary pt variable, to use in function as centre Point pt1(x1,y1); Point pt2(x2,y2); /// checking the parmeters for correct values if( r_value <0 || r_value >255) { r_value=0; sciprint(" r value of colour should be between 0 and 255 , using 0 instead\n"); } if( g_value <0 || g_value >255) { g_value=0; sciprint(" g value of colour should be between 0 and 255 , using 0 instead\n"); } if( b_value <0 || b_value >255) { b_value=0; sciprint(" b value of colour should be between 0 and 255 , using 0 instead\n"); } if ((linetype!=0) && (linetype!=4)&& (linetype!=8)) { linetype=8; sciprint("Only 0/4/8 allowed , using 8 instead"); } //calling the opencv function arrowedLine( src, pt1, pt2, Scalar(b_value,g_value,r_value), thickness, linetype, shift, tiplength); string tempstring = type2str(src.type()); char *checker; checker = (char *)malloc(tempstring.size() + 1); memcpy(checker, tempstring.c_str(), tempstring.size() + 1); returnImage(checker,src,1); free(checker); //Assigning the list as the Output Variable AssignOutputVariable(pvApiCtx, 1) = nbInputArgument(pvApiCtx) + 1; //Returning the Output Variables as arguments to the Scilab environment ReturnArguments(pvApiCtx); return 0; } }