function [varargout] = detectSURFFeatures(image, varargin) // This function is used to detect SURF(Speeded Up Robust Features) Features in a grayscale Image. // // Calling Sequence // result = detectSURFFeatures(Image); // result = detectSURFFeatures(Image, Name, Value, ...) // // Parameters // result: SURFPoints struct which contains Location of KeyPoints, Orientation, Metric, SignOfLaplacian, Scale and Count of the features. // Image : Input image, specified as a A-by-N 2D grayscale. // MetricThreshold : (Optional) With default value equal to 1000, it is to be specified as a scalar. Every interest point detected has a strength associated with it. In case, only the stronget ones are needed, this parameter has to be given a larger value. To get more no of interest points/blobs, it is to be reduced. // NumOctaves : (Optional)With default value equal to 3, it is to be specified as a scalar. Larger the number of octaves, larger is the size of blobs detected. This is because higher octave use large sized filters. Value must be an integer scalar in between 1 and 4. // NumScaleLevels : (Optional)With default value equal to 4, it is to be specified as a scalar. It denotes the number of scale level for each octave. The Value must be an integer scalar greater than or equal to 3. // ROI : (Optional) Region Of Interest. This is taken as a vector [u v width height]. When specified, the function detects the key points within region of area width*height with u and v being the top left corner coordinates. // Description // This function return the SURF(Speeded Up Robust Features) Interest Points for a 2D Grayscale image. It is scale- and rotation- invariant point detector and descriptor and its application include Camera Calibration, 3D Reconstruction, Object Recognition to name a few. // // Examples // image = imread('sample.jpg'); // results = detectSURFFeatures(image); // // Authors // Shashank Shekhar image_list = mattolist(image); [ lhs, rhs ] = argn(0) if rhs > 9 then error(msprintf("Too many input arguments")) end if lhs > 1 then error(msprintf("Not enough input arguments")) end select rhs case 1 then [a b c d e f] = ocv_detectSURFFeatures(image_list) case 3 then [a b c d e f] = ocv_detectSURFFeatures(image_list, varargin(1), varargin(2)) case 5 then [a b c d e f] = ocv_detectSURFFeatures(image_list, varargin(1), varargin(2), varargin(3), varargin(4)) case 7 then [a b c d e f] = ocv_detectSURFFeatures(image_list, varargin(1), varargin(2), varargin(3), varargin(4), varargin(5), varargin(6)) case 9 then [a b c d e f] = ocv_detectSURFFeatures(image_list, varargin(1), varargin(2), varargin(3), varargin(4), varargin(5), varargin(6), varargin(7), varargin(8)) end varargout(1) = struct('KeyPoints', a, 'Orientation', b, 'Metric', c ,'SignOfLaplacian', d,'Scale', e, 'Count', f ); endfunction