From a6df67e8bcd5159cde27556f4f6a315f8dc2215f Mon Sep 17 00:00:00 2001 From: shamikam Date: Mon, 16 Jan 2017 02:56:17 +0530 Subject: First Commit --- thirdparty1/linux/include/opencv/cv.h | 73 + thirdparty1/linux/include/opencv/cv.hpp | 60 + thirdparty1/linux/include/opencv/cvaux.h | 57 + thirdparty1/linux/include/opencv/cvaux.hpp | 52 + thirdparty1/linux/include/opencv/cvwimage.h | 46 + thirdparty1/linux/include/opencv/cxcore.h | 52 + thirdparty1/linux/include/opencv/cxcore.hpp | 53 + thirdparty1/linux/include/opencv/cxeigen.hpp | 48 + thirdparty1/linux/include/opencv/cxmisc.h | 8 + thirdparty1/linux/include/opencv/highgui.h | 48 + thirdparty1/linux/include/opencv/ml.h | 47 + thirdparty1/linux/include/opencv2/aruco.hpp | 541 +++ .../linux/include/opencv2/aruco/charuco.hpp | 341 ++ .../linux/include/opencv2/aruco/dictionary.hpp | 205 + thirdparty1/linux/include/opencv2/bgsegm.hpp | 194 + thirdparty1/linux/include/opencv2/bioinspired.hpp | 60 + .../include/opencv2/bioinspired/bioinspired.hpp | 48 + .../linux/include/opencv2/bioinspired/retina.hpp | 456 ++ .../opencv2/bioinspired/retinafasttonemapping.hpp | 138 + .../transientareassegmentationmodule.hpp | 205 + thirdparty1/linux/include/opencv2/calib3d.hpp | 2134 +++++++++ .../linux/include/opencv2/calib3d/calib3d.hpp | 48 + .../linux/include/opencv2/calib3d/calib3d_c.h | 426 ++ thirdparty1/linux/include/opencv2/ccalib.hpp | 157 + .../linux/include/opencv2/ccalib/multicalib.hpp | 212 + .../linux/include/opencv2/ccalib/omnidir.hpp | 312 ++ .../linux/include/opencv2/ccalib/randpattern.hpp | 177 + thirdparty1/linux/include/opencv2/core.hpp | 3220 ++++++++++++++ thirdparty1/linux/include/opencv2/core/affine.hpp | 517 +++ thirdparty1/linux/include/opencv2/core/base.hpp | 691 +++ .../linux/include/opencv2/core/bufferpool.hpp | 31 + thirdparty1/linux/include/opencv2/core/core.hpp | 48 + thirdparty1/linux/include/opencv2/core/core_c.h | 3184 ++++++++++++++ thirdparty1/linux/include/opencv2/core/cuda.hpp | 874 ++++ .../linux/include/opencv2/core/cuda.inl.hpp | 631 +++ .../linux/include/opencv2/core/cuda/block.hpp | 211 + .../opencv2/core/cuda/border_interpolate.hpp | 722 +++ .../linux/include/opencv2/core/cuda/color.hpp | 309 ++ .../linux/include/opencv2/core/cuda/common.hpp | 109 + .../include/opencv2/core/cuda/datamov_utils.hpp | 113 + .../opencv2/core/cuda/detail/color_detail.hpp | 1980 +++++++++ .../include/opencv2/core/cuda/detail/reduce.hpp | 365 ++ .../opencv2/core/cuda/detail/reduce_key_val.hpp | 502 +++ .../opencv2/core/cuda/detail/transform_detail.hpp | 399 ++ .../core/cuda/detail/type_traits_detail.hpp | 191 + .../core/cuda/detail/vec_distance_detail.hpp | 121 + .../include/opencv2/core/cuda/dynamic_smem.hpp | 88 + .../linux/include/opencv2/core/cuda/emulation.hpp | 269 ++ .../linux/include/opencv2/core/cuda/filters.hpp | 286 ++ .../linux/include/opencv2/core/cuda/funcattrib.hpp | 79 + .../linux/include/opencv2/core/cuda/functional.hpp | 797 ++++ .../linux/include/opencv2/core/cuda/limits.hpp | 128 + .../linux/include/opencv2/core/cuda/reduce.hpp | 209 + .../include/opencv2/core/cuda/saturate_cast.hpp | 292 ++ .../linux/include/opencv2/core/cuda/scan.hpp | 258 ++ .../include/opencv2/core/cuda/simd_functions.hpp | 869 ++++ .../linux/include/opencv2/core/cuda/transform.hpp | 75 + .../include/opencv2/core/cuda/type_traits.hpp | 90 + .../linux/include/opencv2/core/cuda/utility.hpp | 230 + .../include/opencv2/core/cuda/vec_distance.hpp | 232 + .../linux/include/opencv2/core/cuda/vec_math.hpp | 930 ++++ .../linux/include/opencv2/core/cuda/vec_traits.hpp | 288 ++ .../linux/include/opencv2/core/cuda/warp.hpp | 139 + .../include/opencv2/core/cuda/warp_reduce.hpp | 76 + .../include/opencv2/core/cuda/warp_shuffle.hpp | 153 + .../include/opencv2/core/cuda_stream_accessor.hpp | 86 + .../linux/include/opencv2/core/cuda_types.hpp | 135 + thirdparty1/linux/include/opencv2/core/cvdef.h | 481 ++ thirdparty1/linux/include/opencv2/core/cvstd.hpp | 1066 +++++ .../linux/include/opencv2/core/cvstd.inl.hpp | 267 ++ thirdparty1/linux/include/opencv2/core/directx.hpp | 184 + thirdparty1/linux/include/opencv2/core/eigen.hpp | 280 ++ .../linux/include/opencv2/core/fast_math.hpp | 303 ++ thirdparty1/linux/include/opencv2/core/hal/hal.hpp | 250 ++ .../linux/include/opencv2/core/hal/interface.h | 178 + .../linux/include/opencv2/core/hal/intrin.hpp | 414 ++ .../linux/include/opencv2/core/hal/intrin_cpp.hpp | 1790 ++++++++ .../linux/include/opencv2/core/hal/intrin_neon.hpp | 1234 ++++++ .../linux/include/opencv2/core/hal/intrin_sse.hpp | 1744 ++++++++ .../linux/include/opencv2/core/ippasync.hpp | 195 + thirdparty1/linux/include/opencv2/core/mat.hpp | 3520 +++++++++++++++ thirdparty1/linux/include/opencv2/core/mat.inl.hpp | 3733 ++++++++++++++++ thirdparty1/linux/include/opencv2/core/matx.hpp | 1407 ++++++ .../linux/include/opencv2/core/neon_utils.hpp | 128 + thirdparty1/linux/include/opencv2/core/ocl.hpp | 757 ++++ .../linux/include/opencv2/core/ocl_genbase.hpp | 64 + thirdparty1/linux/include/opencv2/core/opengl.hpp | 729 +++ .../linux/include/opencv2/core/operations.hpp | 530 +++ thirdparty1/linux/include/opencv2/core/optim.hpp | 302 ++ thirdparty1/linux/include/opencv2/core/ovx.hpp | 28 + .../linux/include/opencv2/core/persistence.hpp | 1274 ++++++ .../linux/include/opencv2/core/private.cuda.hpp | 172 + thirdparty1/linux/include/opencv2/core/private.hpp | 585 +++ thirdparty1/linux/include/opencv2/core/ptr.inl.hpp | 379 ++ .../linux/include/opencv2/core/saturate.hpp | 150 + .../linux/include/opencv2/core/sse_utils.hpp | 652 +++ thirdparty1/linux/include/opencv2/core/traits.hpp | 326 ++ thirdparty1/linux/include/opencv2/core/types.hpp | 2264 ++++++++++ thirdparty1/linux/include/opencv2/core/types_c.h | 1837 ++++++++ thirdparty1/linux/include/opencv2/core/utility.hpp | 1171 +++++ .../linux/include/opencv2/core/va_intel.hpp | 77 + thirdparty1/linux/include/opencv2/core/version.hpp | 71 + thirdparty1/linux/include/opencv2/core/wimage.hpp | 603 +++ thirdparty1/linux/include/opencv2/cvconfig.h | 208 + .../linux/include/opencv2/datasets/ar_hmdb.hpp | 80 + .../linux/include/opencv2/datasets/ar_sports.hpp | 79 + .../linux/include/opencv2/datasets/dataset.hpp | 545 +++ .../linux/include/opencv2/datasets/fr_adience.hpp | 98 + .../linux/include/opencv2/datasets/fr_lfw.hpp | 79 + .../linux/include/opencv2/datasets/gr_chalearn.hpp | 96 + .../linux/include/opencv2/datasets/gr_skig.hpp | 118 + .../include/opencv2/datasets/hpe_humaneva.hpp | 90 + .../linux/include/opencv2/datasets/hpe_parse.hpp | 78 + .../linux/include/opencv2/datasets/ir_affine.hpp | 80 + .../linux/include/opencv2/datasets/ir_robot.hpp | 89 + .../linux/include/opencv2/datasets/is_bsds.hpp | 78 + .../linux/include/opencv2/datasets/is_weizmann.hpp | 81 + .../linux/include/opencv2/datasets/msm_epfl.hpp | 90 + .../include/opencv2/datasets/msm_middlebury.hpp | 81 + .../linux/include/opencv2/datasets/or_imagenet.hpp | 79 + .../linux/include/opencv2/datasets/or_mnist.hpp | 79 + .../linux/include/opencv2/datasets/or_pascal.hpp | 102 + .../linux/include/opencv2/datasets/or_sun.hpp | 81 + .../linux/include/opencv2/datasets/pd_caltech.hpp | 89 + .../linux/include/opencv2/datasets/pd_inria.hpp | 96 + .../linux/include/opencv2/datasets/slam_kitti.hpp | 87 + .../include/opencv2/datasets/slam_tumindoor.hpp | 87 + .../linux/include/opencv2/datasets/tr_chars.hpp | 79 + .../linux/include/opencv2/datasets/tr_icdar.hpp | 87 + .../linux/include/opencv2/datasets/tr_svt.hpp | 86 + .../linux/include/opencv2/datasets/track_alov.hpp | 107 + .../linux/include/opencv2/datasets/track_vot.hpp | 96 + .../linux/include/opencv2/datasets/util.hpp | 74 + thirdparty1/linux/include/opencv2/dnn.hpp | 64 + .../linux/include/opencv2/dnn/all_layers.hpp | 423 ++ thirdparty1/linux/include/opencv2/dnn/blob.hpp | 341 ++ thirdparty1/linux/include/opencv2/dnn/blob.inl.hpp | 533 +++ thirdparty1/linux/include/opencv2/dnn/dict.hpp | 143 + thirdparty1/linux/include/opencv2/dnn/dnn.hpp | 350 ++ thirdparty1/linux/include/opencv2/dnn/dnn.inl.hpp | 351 ++ thirdparty1/linux/include/opencv2/dnn/layer.hpp | 148 + .../linux/include/opencv2/dnn/shape_utils.hpp | 137 + thirdparty1/linux/include/opencv2/dpm.hpp | 148 + thirdparty1/linux/include/opencv2/face.hpp | 375 ++ thirdparty1/linux/include/opencv2/face/bif.hpp | 83 + thirdparty1/linux/include/opencv2/face/facerec.hpp | 166 + .../include/opencv2/face/predict_collector.hpp | 127 + thirdparty1/linux/include/opencv2/features2d.hpp | 1365 ++++++ .../include/opencv2/features2d/features2d.hpp | 48 + thirdparty1/linux/include/opencv2/flann.hpp | 531 +++ .../linux/include/opencv2/flann/all_indices.h | 155 + .../linux/include/opencv2/flann/allocator.h | 188 + thirdparty1/linux/include/opencv2/flann/any.h | 324 ++ .../linux/include/opencv2/flann/autotuned_index.h | 588 +++ .../linux/include/opencv2/flann/composite_index.h | 194 + thirdparty1/linux/include/opencv2/flann/config.h | 38 + thirdparty1/linux/include/opencv2/flann/defines.h | 177 + thirdparty1/linux/include/opencv2/flann/dist.h | 905 ++++ thirdparty1/linux/include/opencv2/flann/dummy.h | 16 + .../linux/include/opencv2/flann/dynamic_bitset.h | 159 + thirdparty1/linux/include/opencv2/flann/flann.hpp | 48 + .../linux/include/opencv2/flann/flann_base.hpp | 290 ++ thirdparty1/linux/include/opencv2/flann/general.h | 50 + .../linux/include/opencv2/flann/ground_truth.h | 94 + thirdparty1/linux/include/opencv2/flann/hdf5.h | 231 + thirdparty1/linux/include/opencv2/flann/heap.h | 165 + .../opencv2/flann/hierarchical_clustering_index.h | 848 ++++ .../linux/include/opencv2/flann/index_testing.h | 318 ++ .../linux/include/opencv2/flann/kdtree_index.h | 621 +++ .../include/opencv2/flann/kdtree_single_index.h | 634 +++ .../linux/include/opencv2/flann/kmeans_index.h | 1171 +++++ .../linux/include/opencv2/flann/linear_index.h | 132 + thirdparty1/linux/include/opencv2/flann/logger.h | 130 + .../linux/include/opencv2/flann/lsh_index.h | 392 ++ .../linux/include/opencv2/flann/lsh_table.h | 492 +++ thirdparty1/linux/include/opencv2/flann/matrix.h | 116 + .../linux/include/opencv2/flann/miniflann.hpp | 158 + thirdparty1/linux/include/opencv2/flann/nn_index.h | 177 + .../linux/include/opencv2/flann/object_factory.h | 91 + thirdparty1/linux/include/opencv2/flann/params.h | 99 + thirdparty1/linux/include/opencv2/flann/random.h | 133 + .../linux/include/opencv2/flann/result_set.h | 543 +++ thirdparty1/linux/include/opencv2/flann/sampling.h | 81 + thirdparty1/linux/include/opencv2/flann/saving.h | 187 + .../linux/include/opencv2/flann/simplex_downhill.h | 186 + thirdparty1/linux/include/opencv2/flann/timer.h | 94 + thirdparty1/linux/include/opencv2/freetype.hpp | 190 + thirdparty1/linux/include/opencv2/fuzzy.hpp | 66 + .../linux/include/opencv2/fuzzy/fuzzy_F0_math.hpp | 128 + .../linux/include/opencv2/fuzzy/fuzzy_image.hpp | 109 + thirdparty1/linux/include/opencv2/fuzzy/types.hpp | 70 + thirdparty1/linux/include/opencv2/hdf.hpp | 54 + thirdparty1/linux/include/opencv2/hdf/hdf5.hpp | 707 +++ thirdparty1/linux/include/opencv2/highgui.hpp | 790 ++++ .../linux/include/opencv2/highgui/highgui.hpp | 48 + .../linux/include/opencv2/highgui/highgui_c.h | 257 ++ thirdparty1/linux/include/opencv2/imgcodecs.hpp | 281 ++ .../linux/include/opencv2/imgcodecs/imgcodecs.hpp | 48 + .../linux/include/opencv2/imgcodecs/imgcodecs_c.h | 148 + thirdparty1/linux/include/opencv2/imgcodecs/ios.h | 57 + thirdparty1/linux/include/opencv2/imgproc.hpp | 4650 ++++++++++++++++++++ .../opencv2/imgproc/detail/distortion_model.hpp | 123 + .../linux/include/opencv2/imgproc/hal/hal.hpp | 189 + .../linux/include/opencv2/imgproc/hal/interface.h | 26 + .../linux/include/opencv2/imgproc/imgproc.hpp | 48 + .../linux/include/opencv2/imgproc/imgproc_c.h | 1210 +++++ .../linux/include/opencv2/imgproc/types_c.h | 626 +++ .../linux/include/opencv2/line_descriptor.hpp | 119 + .../include/opencv2/line_descriptor/descriptor.hpp | 1369 ++++++ thirdparty1/linux/include/opencv2/ml.hpp | 1690 +++++++ thirdparty1/linux/include/opencv2/ml/ml.hpp | 48 + thirdparty1/linux/include/opencv2/objdetect.hpp | 466 ++ .../opencv2/objdetect/detection_based_tracker.hpp | 225 + .../linux/include/opencv2/objdetect/objdetect.hpp | 48 + .../linux/include/opencv2/objdetect/objdetect_c.h | 165 + thirdparty1/linux/include/opencv2/opencv.hpp | 136 + .../linux/include/opencv2/opencv_modules.hpp | 58 + thirdparty1/linux/include/opencv2/optflow.hpp | 364 ++ .../linux/include/opencv2/optflow/motempl.hpp | 147 + .../linux/include/opencv2/optflow/pcaflow.hpp | 149 + .../opencv2/optflow/sparse_matching_gpc.hpp | 380 ++ .../linux/include/opencv2/phase_unwrapping.hpp | 61 + .../phase_unwrapping/histogramphaseunwrapping.hpp | 107 + .../opencv2/phase_unwrapping/phase_unwrapping.hpp | 74 + thirdparty1/linux/include/opencv2/photo.hpp | 870 ++++ thirdparty1/linux/include/opencv2/photo/cuda.hpp | 132 + thirdparty1/linux/include/opencv2/photo/photo.hpp | 48 + thirdparty1/linux/include/opencv2/photo/photo_c.h | 74 + thirdparty1/linux/include/opencv2/plot.hpp | 109 + thirdparty1/linux/include/opencv2/reg/map.hpp | 175 + .../linux/include/opencv2/reg/mapaffine.hpp | 105 + thirdparty1/linux/include/opencv2/reg/mapper.hpp | 113 + .../linux/include/opencv2/reg/mappergradaffine.hpp | 67 + .../linux/include/opencv2/reg/mappergradeuclid.hpp | 67 + .../linux/include/opencv2/reg/mappergradproj.hpp | 67 + .../linux/include/opencv2/reg/mappergradshift.hpp | 67 + .../include/opencv2/reg/mappergradsimilar.hpp | 67 + .../linux/include/opencv2/reg/mapperpyramid.hpp | 78 + .../linux/include/opencv2/reg/mapprojec.hpp | 105 + thirdparty1/linux/include/opencv2/reg/mapshift.hpp | 96 + thirdparty1/linux/include/opencv2/rgbd.hpp | 1049 +++++ thirdparty1/linux/include/opencv2/rgbd/linemod.hpp | 458 ++ thirdparty1/linux/include/opencv2/saliency.hpp | 83 + .../opencv2/saliency/saliencyBaseClasses.hpp | 144 + .../saliency/saliencySpecializedClasses.hpp | 493 +++ thirdparty1/linux/include/opencv2/shape.hpp | 57 + thirdparty1/linux/include/opencv2/shape/emdL1.hpp | 72 + .../linux/include/opencv2/shape/hist_cost.hpp | 111 + thirdparty1/linux/include/opencv2/shape/shape.hpp | 48 + .../linux/include/opencv2/shape/shape_distance.hpp | 224 + .../include/opencv2/shape/shape_transformer.hpp | 132 + thirdparty1/linux/include/opencv2/stereo.hpp | 280 ++ .../linux/include/opencv2/stereo/descriptor.hpp | 452 ++ .../linux/include/opencv2/stereo/matching.hpp | 624 +++ .../linux/include/opencv2/stereo/stereo.hpp | 49 + thirdparty1/linux/include/opencv2/stitching.hpp | 320 ++ .../include/opencv2/stitching/detail/autocalib.hpp | 86 + .../include/opencv2/stitching/detail/blenders.hpp | 167 + .../include/opencv2/stitching/detail/camera.hpp | 78 + .../stitching/detail/exposure_compensate.hpp | 136 + .../include/opencv2/stitching/detail/matchers.hpp | 355 ++ .../opencv2/stitching/detail/motion_estimators.hpp | 357 ++ .../opencv2/stitching/detail/seam_finders.hpp | 285 ++ .../opencv2/stitching/detail/timelapsers.hpp | 91 + .../include/opencv2/stitching/detail/util.hpp | 121 + .../include/opencv2/stitching/detail/util_inl.hpp | 131 + .../include/opencv2/stitching/detail/warpers.hpp | 616 +++ .../opencv2/stitching/detail/warpers_inl.hpp | 774 ++++ .../linux/include/opencv2/stitching/warpers.hpp | 192 + .../linux/include/opencv2/structured_light.hpp | 68 + .../opencv2/structured_light/graycodepattern.hpp | 149 + .../opencv2/structured_light/sinusoidalpattern.hpp | 151 + .../opencv2/structured_light/structured_light.hpp | 91 + thirdparty1/linux/include/opencv2/superres.hpp | 207 + .../include/opencv2/superres/optical_flow.hpp | 203 + .../linux/include/opencv2/surface_matching.hpp | 402 ++ .../linux/include/opencv2/surface_matching/icp.hpp | 170 + .../include/opencv2/surface_matching/pose_3d.hpp | 188 + .../opencv2/surface_matching/ppf_helpers.hpp | 164 + .../opencv2/surface_matching/ppf_match_3d.hpp | 179 + .../opencv2/surface_matching/t_hash_int.hpp | 113 + thirdparty1/linux/include/opencv2/text.hpp | 101 + .../linux/include/opencv2/text/erfilter.hpp | 360 ++ thirdparty1/linux/include/opencv2/text/ocr.hpp | 470 ++ thirdparty1/linux/include/opencv2/tracking.hpp | 307 ++ .../linux/include/opencv2/tracking/feature.hpp | 415 ++ .../include/opencv2/tracking/kalman_filters.hpp | 228 + .../include/opencv2/tracking/onlineBoosting.hpp | 288 ++ .../linux/include/opencv2/tracking/onlineMIL.hpp | 118 + .../linux/include/opencv2/tracking/tldDataset.hpp | 56 + .../linux/include/opencv2/tracking/tracker.hpp | 1485 +++++++ .../linux/include/opencv2/tracking/tracking.hpp | 46 + thirdparty1/linux/include/opencv2/video.hpp | 63 + .../include/opencv2/video/background_segm.hpp | 306 ++ .../linux/include/opencv2/video/tracking.hpp | 626 +++ .../linux/include/opencv2/video/tracking_c.h | 232 + thirdparty1/linux/include/opencv2/video/video.hpp | 48 + thirdparty1/linux/include/opencv2/videoio.hpp | 935 ++++ .../linux/include/opencv2/videoio/cap_ios.h | 150 + .../linux/include/opencv2/videoio/videoio.hpp | 48 + .../linux/include/opencv2/videoio/videoio_c.h | 587 +++ thirdparty1/linux/include/opencv2/videostab.hpp | 81 + .../linux/include/opencv2/videostab/deblurring.hpp | 116 + .../include/opencv2/videostab/fast_marching.hpp | 121 + .../opencv2/videostab/fast_marching_inl.hpp | 165 + .../include/opencv2/videostab/frame_source.hpp | 94 + .../include/opencv2/videostab/global_motion.hpp | 299 ++ .../linux/include/opencv2/videostab/inpainting.hpp | 212 + .../linux/include/opencv2/videostab/log.hpp | 80 + .../include/opencv2/videostab/motion_core.hpp | 129 + .../opencv2/videostab/motion_stabilizing.hpp | 174 + .../include/opencv2/videostab/optical_flow.hpp | 150 + .../opencv2/videostab/outlier_rejection.hpp | 101 + .../include/opencv2/videostab/ring_buffer.hpp | 72 + .../linux/include/opencv2/videostab/stabilizer.hpp | 200 + .../opencv2/videostab/wobble_suppression.hpp | 140 + thirdparty1/linux/include/opencv2/viz.hpp | 84 + thirdparty1/linux/include/opencv2/viz/types.hpp | 329 ++ thirdparty1/linux/include/opencv2/viz/viz3d.hpp | 351 ++ thirdparty1/linux/include/opencv2/viz/vizcore.hpp | 176 + .../linux/include/opencv2/viz/widget_accessor.hpp | 89 + thirdparty1/linux/include/opencv2/viz/widgets.hpp | 850 ++++ thirdparty1/linux/include/opencv2/xfeatures2d.hpp | 842 ++++ .../linux/include/opencv2/xfeatures2d/cuda.hpp | 166 + .../linux/include/opencv2/xfeatures2d/nonfree.hpp | 156 + thirdparty1/linux/include/opencv2/ximgproc.hpp | 131 + .../include/opencv2/ximgproc/deriche_filter.hpp | 77 + .../include/opencv2/ximgproc/disparity_filter.hpp | 210 + .../linux/include/opencv2/ximgproc/edge_filter.hpp | 454 ++ .../opencv2/ximgproc/estimated_covariance.hpp | 82 + .../opencv2/ximgproc/fast_hough_transform.hpp | 164 + .../opencv2/ximgproc/fast_line_detector.hpp | 81 + thirdparty1/linux/include/opencv2/ximgproc/lsc.hpp | 157 + .../include/opencv2/ximgproc/paillou_filter.hpp | 67 + .../linux/include/opencv2/ximgproc/seeds.hpp | 183 + .../include/opencv2/ximgproc/segmentation.hpp | 252 ++ .../linux/include/opencv2/ximgproc/slic.hpp | 168 + .../opencv2/ximgproc/sparse_match_interpolator.hpp | 132 + .../opencv2/ximgproc/structured_edge_detection.hpp | 128 + .../opencv2/ximgproc/weighted_median_filter.hpp | 95 + thirdparty1/linux/include/opencv2/xobjdetect.hpp | 105 + thirdparty1/linux/include/opencv2/xphoto.hpp | 53 + .../opencv2/xphoto/bm3d_image_denoising.hpp | 186 + .../include/opencv2/xphoto/dct_image_denoising.hpp | 79 + .../linux/include/opencv2/xphoto/inpainting.hpp | 90 + .../linux/include/opencv2/xphoto/white_balance.hpp | 230 + thirdparty1/linux/lib/x64/libopencv_aruco.so | 1 + thirdparty1/linux/lib/x64/libopencv_aruco.so.3.2 | 1 + thirdparty1/linux/lib/x64/libopencv_aruco.so.3.2.0 | Bin 0 -> 365683 bytes thirdparty1/linux/lib/x64/libopencv_bgsegm.so | 1 + thirdparty1/linux/lib/x64/libopencv_bgsegm.so.3.2 | 1 + .../linux/lib/x64/libopencv_bgsegm.so.3.2.0 | Bin 0 -> 74456 bytes thirdparty1/linux/lib/x64/libopencv_bioinspired.so | 1 + .../linux/lib/x64/libopencv_bioinspired.so.3.2 | 1 + .../linux/lib/x64/libopencv_bioinspired.so.3.2.0 | Bin 0 -> 368064 bytes thirdparty1/linux/lib/x64/libopencv_calib3d.so | 1 + thirdparty1/linux/lib/x64/libopencv_calib3d.so.3.2 | 1 + .../linux/lib/x64/libopencv_calib3d.so.3.2.0 | Bin 0 -> 1722717 bytes thirdparty1/linux/lib/x64/libopencv_ccalib.so | 1 + thirdparty1/linux/lib/x64/libopencv_ccalib.so.3.2 | 1 + .../linux/lib/x64/libopencv_ccalib.so.3.2.0 | Bin 0 -> 510896 bytes thirdparty1/linux/lib/x64/libopencv_core.so | 1 + thirdparty1/linux/lib/x64/libopencv_core.so.2.4 | 1 + thirdparty1/linux/lib/x64/libopencv_core.so.2.4.9 | Bin 0 -> 2953515 bytes thirdparty1/linux/lib/x64/libopencv_core.so.3.2 | 1 + thirdparty1/linux/lib/x64/libopencv_core.so.3.2.0 | Bin 0 -> 3364047 bytes thirdparty1/linux/lib/x64/libopencv_datasets.so | 1 + .../linux/lib/x64/libopencv_datasets.so.3.2 | 1 + .../linux/lib/x64/libopencv_datasets.so.3.2.0 | Bin 0 -> 680235 bytes thirdparty1/linux/lib/x64/libopencv_dnn.so | 1 + thirdparty1/linux/lib/x64/libopencv_dnn.so.3.2 | 1 + thirdparty1/linux/lib/x64/libopencv_dnn.so.3.2.0 | Bin 0 -> 3991547 bytes thirdparty1/linux/lib/x64/libopencv_dpm.so | 1 + thirdparty1/linux/lib/x64/libopencv_dpm.so.3.2 | 1 + thirdparty1/linux/lib/x64/libopencv_dpm.so.3.2.0 | Bin 0 -> 162599 bytes thirdparty1/linux/lib/x64/libopencv_face.so | 1 + thirdparty1/linux/lib/x64/libopencv_face.so.3.2 | 1 + thirdparty1/linux/lib/x64/libopencv_face.so.3.2.0 | Bin 0 -> 215676 bytes thirdparty1/linux/lib/x64/libopencv_features2d.so | 1 + .../linux/lib/x64/libopencv_features2d.so.3.2 | 1 + .../linux/lib/x64/libopencv_features2d.so.3.2.0 | Bin 0 -> 947471 bytes thirdparty1/linux/lib/x64/libopencv_flann.so | 1 + thirdparty1/linux/lib/x64/libopencv_flann.so.3.2 | 1 + thirdparty1/linux/lib/x64/libopencv_flann.so.3.2.0 | Bin 0 -> 484888 bytes thirdparty1/linux/lib/x64/libopencv_freetype.so | 1 + .../linux/lib/x64/libopencv_freetype.so.3.2 | 1 + .../linux/lib/x64/libopencv_freetype.so.3.2.0 | Bin 0 -> 40229 bytes thirdparty1/linux/lib/x64/libopencv_fuzzy.so | 1 + thirdparty1/linux/lib/x64/libopencv_fuzzy.so.3.2 | 1 + thirdparty1/linux/lib/x64/libopencv_fuzzy.so.3.2.0 | Bin 0 -> 66570 bytes thirdparty1/linux/lib/x64/libopencv_hdf.so | 1 + thirdparty1/linux/lib/x64/libopencv_hdf.so.3.2 | 1 + thirdparty1/linux/lib/x64/libopencv_hdf.so.3.2.0 | Bin 0 -> 54559 bytes thirdparty1/linux/lib/x64/libopencv_highgui.so | 1 + thirdparty1/linux/lib/x64/libopencv_highgui.so.2.4 | 1 + .../linux/lib/x64/libopencv_highgui.so.2.4.9 | Bin 0 -> 733938 bytes thirdparty1/linux/lib/x64/libopencv_highgui.so.3.2 | 1 + .../linux/lib/x64/libopencv_highgui.so.3.2.0 | Bin 0 -> 30075 bytes thirdparty1/linux/lib/x64/libopencv_imgcodecs.so | 1 + .../linux/lib/x64/libopencv_imgcodecs.so.3.2 | 1 + .../linux/lib/x64/libopencv_imgcodecs.so.3.2.0 | Bin 0 -> 326902 bytes thirdparty1/linux/lib/x64/libopencv_imgproc.so | 1 + thirdparty1/linux/lib/x64/libopencv_imgproc.so.2.4 | 1 + .../linux/lib/x64/libopencv_imgproc.so.2.4.9 | Bin 0 -> 2681811 bytes thirdparty1/linux/lib/x64/libopencv_imgproc.so.3.2 | 1 + .../linux/lib/x64/libopencv_imgproc.so.3.2.0 | Bin 0 -> 3859364 bytes .../linux/lib/x64/libopencv_line_descriptor.so | 1 + .../linux/lib/x64/libopencv_line_descriptor.so.3.2 | 1 + .../lib/x64/libopencv_line_descriptor.so.3.2.0 | Bin 0 -> 239807 bytes thirdparty1/linux/lib/x64/libopencv_ml.so | 1 + thirdparty1/linux/lib/x64/libopencv_ml.so.3.2 | 1 + thirdparty1/linux/lib/x64/libopencv_ml.so.3.2.0 | Bin 0 -> 899800 bytes thirdparty1/linux/lib/x64/libopencv_objdetect.so | 1 + .../linux/lib/x64/libopencv_objdetect.so.3.2 | 1 + .../linux/lib/x64/libopencv_objdetect.so.3.2.0 | Bin 0 -> 463986 bytes thirdparty1/linux/lib/x64/libopencv_optflow.so | 1 + thirdparty1/linux/lib/x64/libopencv_optflow.so.3.2 | 1 + .../linux/lib/x64/libopencv_optflow.so.3.2.0 | Bin 0 -> 429880 bytes .../linux/lib/x64/libopencv_phase_unwrapping.so | 1 + .../lib/x64/libopencv_phase_unwrapping.so.3.2 | 1 + .../lib/x64/libopencv_phase_unwrapping.so.3.2.0 | Bin 0 -> 57090 bytes thirdparty1/linux/lib/x64/libopencv_photo.so | 1 + thirdparty1/linux/lib/x64/libopencv_photo.so.3.2 | 1 + thirdparty1/linux/lib/x64/libopencv_photo.so.3.2.0 | Bin 0 -> 999650 bytes thirdparty1/linux/lib/x64/libopencv_plot.so | 1 + thirdparty1/linux/lib/x64/libopencv_plot.so.3.2 | 1 + thirdparty1/linux/lib/x64/libopencv_plot.so.3.2.0 | Bin 0 -> 51256 bytes thirdparty1/linux/lib/x64/libopencv_reg.so | 1 + thirdparty1/linux/lib/x64/libopencv_reg.so.3.2 | 1 + thirdparty1/linux/lib/x64/libopencv_reg.so.3.2.0 | Bin 0 -> 167784 bytes thirdparty1/linux/lib/x64/libopencv_rgbd.so | 1 + thirdparty1/linux/lib/x64/libopencv_rgbd.so.3.2 | 1 + thirdparty1/linux/lib/x64/libopencv_rgbd.so.3.2.0 | Bin 0 -> 628660 bytes thirdparty1/linux/lib/x64/libopencv_saliency.so | 1 + .../linux/lib/x64/libopencv_saliency.so.3.2 | 1 + .../linux/lib/x64/libopencv_saliency.so.3.2.0 | Bin 0 -> 236684 bytes thirdparty1/linux/lib/x64/libopencv_shape.so | 1 + thirdparty1/linux/lib/x64/libopencv_shape.so.3.2 | 1 + thirdparty1/linux/lib/x64/libopencv_shape.so.3.2.0 | Bin 0 -> 265244 bytes thirdparty1/linux/lib/x64/libopencv_stereo.so | 1 + thirdparty1/linux/lib/x64/libopencv_stereo.so.3.2 | 1 + .../linux/lib/x64/libopencv_stereo.so.3.2.0 | Bin 0 -> 180362 bytes thirdparty1/linux/lib/x64/libopencv_stitching.so | 1 + .../linux/lib/x64/libopencv_stitching.so.3.2 | 1 + .../linux/lib/x64/libopencv_stitching.so.3.2.0 | Bin 0 -> 644997 bytes .../linux/lib/x64/libopencv_structured_light.so | 1 + .../lib/x64/libopencv_structured_light.so.3.2 | 1 + .../lib/x64/libopencv_structured_light.so.3.2.0 | Bin 0 -> 140225 bytes thirdparty1/linux/lib/x64/libopencv_superres.so | 1 + .../linux/lib/x64/libopencv_superres.so.3.2 | 1 + .../linux/lib/x64/libopencv_superres.so.3.2.0 | Bin 0 -> 216109 bytes .../linux/lib/x64/libopencv_surface_matching.so | 1 + .../lib/x64/libopencv_surface_matching.so.3.2 | 1 + .../lib/x64/libopencv_surface_matching.so.3.2.0 | Bin 0 -> 388261 bytes thirdparty1/linux/lib/x64/libopencv_text.so | 1 + thirdparty1/linux/lib/x64/libopencv_text.so.3.2 | 1 + thirdparty1/linux/lib/x64/libopencv_text.so.3.2.0 | Bin 0 -> 460845 bytes thirdparty1/linux/lib/x64/libopencv_tracking.so | 1 + .../linux/lib/x64/libopencv_tracking.so.3.2 | 1 + .../linux/lib/x64/libopencv_tracking.so.3.2.0 | Bin 0 -> 3578478 bytes thirdparty1/linux/lib/x64/libopencv_video.so | 1 + thirdparty1/linux/lib/x64/libopencv_video.so.3.2 | 1 + thirdparty1/linux/lib/x64/libopencv_video.so.3.2.0 | Bin 0 -> 485509 bytes thirdparty1/linux/lib/x64/libopencv_videoio.so | 1 + thirdparty1/linux/lib/x64/libopencv_videoio.so.3.2 | 1 + .../linux/lib/x64/libopencv_videoio.so.3.2.0 | Bin 0 -> 261110 bytes thirdparty1/linux/lib/x64/libopencv_videostab.so | 1 + .../linux/lib/x64/libopencv_videostab.so.3.2 | 1 + .../linux/lib/x64/libopencv_videostab.so.3.2.0 | Bin 0 -> 404525 bytes thirdparty1/linux/lib/x64/libopencv_viz.so | 1 + thirdparty1/linux/lib/x64/libopencv_viz.so.3.2 | 1 + thirdparty1/linux/lib/x64/libopencv_viz.so.3.2.0 | Bin 0 -> 470285 bytes thirdparty1/linux/lib/x64/libopencv_xfeatures2d.so | 1 + .../linux/lib/x64/libopencv_xfeatures2d.so.3.2 | 1 + .../linux/lib/x64/libopencv_xfeatures2d.so.3.2.0 | Bin 0 -> 2932735 bytes thirdparty1/linux/lib/x64/libopencv_ximgproc.so | 1 + .../linux/lib/x64/libopencv_ximgproc.so.3.2 | 1 + .../linux/lib/x64/libopencv_ximgproc.so.3.2.0 | Bin 0 -> 1342985 bytes thirdparty1/linux/lib/x64/libopencv_xobjdetect.so | 1 + .../linux/lib/x64/libopencv_xobjdetect.so.3.2 | 1 + .../linux/lib/x64/libopencv_xobjdetect.so.3.2.0 | Bin 0 -> 120464 bytes thirdparty1/linux/lib/x64/libopencv_xphoto.so | 1 + thirdparty1/linux/lib/x64/libopencv_xphoto.so.3.2 | 1 + .../linux/lib/x64/libopencv_xphoto.so.3.2.0 | Bin 0 -> 528140 bytes thirdparty1/linux/lib/x64/pkgconfig/opencv.pc | 14 + .../linux/lib/x64/python2.7/dist-packages/cv2.so | Bin 0 -> 3858804 bytes .../x64/python3.4/dist-packages/cv2.cpython-34m.so | Bin 0 -> 3858951 bytes 487 files changed, 117043 insertions(+) create mode 100644 thirdparty1/linux/include/opencv/cv.h create mode 100644 thirdparty1/linux/include/opencv/cv.hpp create mode 100644 thirdparty1/linux/include/opencv/cvaux.h create mode 100644 thirdparty1/linux/include/opencv/cvaux.hpp create mode 100644 thirdparty1/linux/include/opencv/cvwimage.h create mode 100644 thirdparty1/linux/include/opencv/cxcore.h create mode 100644 thirdparty1/linux/include/opencv/cxcore.hpp create mode 100644 thirdparty1/linux/include/opencv/cxeigen.hpp create mode 100644 thirdparty1/linux/include/opencv/cxmisc.h create mode 100644 thirdparty1/linux/include/opencv/highgui.h create mode 100644 thirdparty1/linux/include/opencv/ml.h create mode 100644 thirdparty1/linux/include/opencv2/aruco.hpp create mode 100644 thirdparty1/linux/include/opencv2/aruco/charuco.hpp create mode 100644 thirdparty1/linux/include/opencv2/aruco/dictionary.hpp create mode 100644 thirdparty1/linux/include/opencv2/bgsegm.hpp create mode 100644 thirdparty1/linux/include/opencv2/bioinspired.hpp create mode 100644 thirdparty1/linux/include/opencv2/bioinspired/bioinspired.hpp create mode 100644 thirdparty1/linux/include/opencv2/bioinspired/retina.hpp create mode 100644 thirdparty1/linux/include/opencv2/bioinspired/retinafasttonemapping.hpp create mode 100644 thirdparty1/linux/include/opencv2/bioinspired/transientareassegmentationmodule.hpp create mode 100644 thirdparty1/linux/include/opencv2/calib3d.hpp create mode 100644 thirdparty1/linux/include/opencv2/calib3d/calib3d.hpp create mode 100644 thirdparty1/linux/include/opencv2/calib3d/calib3d_c.h create mode 100644 thirdparty1/linux/include/opencv2/ccalib.hpp create mode 100644 thirdparty1/linux/include/opencv2/ccalib/multicalib.hpp create mode 100644 thirdparty1/linux/include/opencv2/ccalib/omnidir.hpp create mode 100644 thirdparty1/linux/include/opencv2/ccalib/randpattern.hpp create mode 100644 thirdparty1/linux/include/opencv2/core.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/affine.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/base.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/bufferpool.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/core.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/core_c.h create mode 100644 thirdparty1/linux/include/opencv2/core/cuda.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda.inl.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda/block.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda/border_interpolate.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda/color.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda/common.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda/datamov_utils.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda/detail/color_detail.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda/detail/reduce.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda/detail/reduce_key_val.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda/detail/transform_detail.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda/detail/type_traits_detail.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda/detail/vec_distance_detail.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda/dynamic_smem.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda/emulation.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda/filters.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda/funcattrib.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda/functional.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda/limits.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda/reduce.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda/saturate_cast.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda/scan.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda/simd_functions.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda/transform.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda/type_traits.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda/utility.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda/vec_distance.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda/vec_math.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda/vec_traits.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda/warp.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda/warp_reduce.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda/warp_shuffle.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda_stream_accessor.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cuda_types.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cvdef.h create mode 100644 thirdparty1/linux/include/opencv2/core/cvstd.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/cvstd.inl.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/directx.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/eigen.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/fast_math.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/hal/hal.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/hal/interface.h create mode 100644 thirdparty1/linux/include/opencv2/core/hal/intrin.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/hal/intrin_cpp.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/hal/intrin_neon.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/hal/intrin_sse.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/ippasync.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/mat.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/mat.inl.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/matx.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/neon_utils.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/ocl.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/ocl_genbase.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/opengl.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/operations.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/optim.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/ovx.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/persistence.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/private.cuda.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/private.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/ptr.inl.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/saturate.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/sse_utils.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/traits.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/types.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/types_c.h create mode 100644 thirdparty1/linux/include/opencv2/core/utility.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/va_intel.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/version.hpp create mode 100644 thirdparty1/linux/include/opencv2/core/wimage.hpp create mode 100644 thirdparty1/linux/include/opencv2/cvconfig.h create mode 100644 thirdparty1/linux/include/opencv2/datasets/ar_hmdb.hpp create mode 100644 thirdparty1/linux/include/opencv2/datasets/ar_sports.hpp create mode 100644 thirdparty1/linux/include/opencv2/datasets/dataset.hpp create mode 100644 thirdparty1/linux/include/opencv2/datasets/fr_adience.hpp create mode 100644 thirdparty1/linux/include/opencv2/datasets/fr_lfw.hpp create mode 100644 thirdparty1/linux/include/opencv2/datasets/gr_chalearn.hpp create mode 100644 thirdparty1/linux/include/opencv2/datasets/gr_skig.hpp create mode 100644 thirdparty1/linux/include/opencv2/datasets/hpe_humaneva.hpp create mode 100644 thirdparty1/linux/include/opencv2/datasets/hpe_parse.hpp create mode 100644 thirdparty1/linux/include/opencv2/datasets/ir_affine.hpp create mode 100644 thirdparty1/linux/include/opencv2/datasets/ir_robot.hpp create mode 100644 thirdparty1/linux/include/opencv2/datasets/is_bsds.hpp create mode 100644 thirdparty1/linux/include/opencv2/datasets/is_weizmann.hpp create mode 100644 thirdparty1/linux/include/opencv2/datasets/msm_epfl.hpp create mode 100644 thirdparty1/linux/include/opencv2/datasets/msm_middlebury.hpp create mode 100644 thirdparty1/linux/include/opencv2/datasets/or_imagenet.hpp create mode 100644 thirdparty1/linux/include/opencv2/datasets/or_mnist.hpp create mode 100644 thirdparty1/linux/include/opencv2/datasets/or_pascal.hpp create mode 100644 thirdparty1/linux/include/opencv2/datasets/or_sun.hpp create mode 100644 thirdparty1/linux/include/opencv2/datasets/pd_caltech.hpp create mode 100644 thirdparty1/linux/include/opencv2/datasets/pd_inria.hpp create mode 100644 thirdparty1/linux/include/opencv2/datasets/slam_kitti.hpp create mode 100644 thirdparty1/linux/include/opencv2/datasets/slam_tumindoor.hpp create mode 100644 thirdparty1/linux/include/opencv2/datasets/tr_chars.hpp create mode 100644 thirdparty1/linux/include/opencv2/datasets/tr_icdar.hpp create mode 100644 thirdparty1/linux/include/opencv2/datasets/tr_svt.hpp create mode 100644 thirdparty1/linux/include/opencv2/datasets/track_alov.hpp create mode 100644 thirdparty1/linux/include/opencv2/datasets/track_vot.hpp create mode 100644 thirdparty1/linux/include/opencv2/datasets/util.hpp create mode 100644 thirdparty1/linux/include/opencv2/dnn.hpp create mode 100644 thirdparty1/linux/include/opencv2/dnn/all_layers.hpp create mode 100644 thirdparty1/linux/include/opencv2/dnn/blob.hpp create mode 100644 thirdparty1/linux/include/opencv2/dnn/blob.inl.hpp create mode 100644 thirdparty1/linux/include/opencv2/dnn/dict.hpp create mode 100644 thirdparty1/linux/include/opencv2/dnn/dnn.hpp create mode 100644 thirdparty1/linux/include/opencv2/dnn/dnn.inl.hpp create mode 100644 thirdparty1/linux/include/opencv2/dnn/layer.hpp create mode 100644 thirdparty1/linux/include/opencv2/dnn/shape_utils.hpp create mode 100644 thirdparty1/linux/include/opencv2/dpm.hpp create mode 100644 thirdparty1/linux/include/opencv2/face.hpp create mode 100644 thirdparty1/linux/include/opencv2/face/bif.hpp create mode 100644 thirdparty1/linux/include/opencv2/face/facerec.hpp create mode 100644 thirdparty1/linux/include/opencv2/face/predict_collector.hpp create mode 100644 thirdparty1/linux/include/opencv2/features2d.hpp create mode 100644 thirdparty1/linux/include/opencv2/features2d/features2d.hpp create mode 100644 thirdparty1/linux/include/opencv2/flann.hpp create mode 100644 thirdparty1/linux/include/opencv2/flann/all_indices.h create mode 100644 thirdparty1/linux/include/opencv2/flann/allocator.h create mode 100644 thirdparty1/linux/include/opencv2/flann/any.h create mode 100644 thirdparty1/linux/include/opencv2/flann/autotuned_index.h create mode 100644 thirdparty1/linux/include/opencv2/flann/composite_index.h create mode 100644 thirdparty1/linux/include/opencv2/flann/config.h create mode 100644 thirdparty1/linux/include/opencv2/flann/defines.h create mode 100644 thirdparty1/linux/include/opencv2/flann/dist.h create mode 100644 thirdparty1/linux/include/opencv2/flann/dummy.h create mode 100644 thirdparty1/linux/include/opencv2/flann/dynamic_bitset.h create mode 100644 thirdparty1/linux/include/opencv2/flann/flann.hpp create mode 100644 thirdparty1/linux/include/opencv2/flann/flann_base.hpp create mode 100644 thirdparty1/linux/include/opencv2/flann/general.h create mode 100644 thirdparty1/linux/include/opencv2/flann/ground_truth.h create mode 100644 thirdparty1/linux/include/opencv2/flann/hdf5.h create mode 100644 thirdparty1/linux/include/opencv2/flann/heap.h create mode 100644 thirdparty1/linux/include/opencv2/flann/hierarchical_clustering_index.h create mode 100644 thirdparty1/linux/include/opencv2/flann/index_testing.h create mode 100644 thirdparty1/linux/include/opencv2/flann/kdtree_index.h create mode 100644 thirdparty1/linux/include/opencv2/flann/kdtree_single_index.h create mode 100644 thirdparty1/linux/include/opencv2/flann/kmeans_index.h create mode 100644 thirdparty1/linux/include/opencv2/flann/linear_index.h create mode 100644 thirdparty1/linux/include/opencv2/flann/logger.h create mode 100644 thirdparty1/linux/include/opencv2/flann/lsh_index.h create mode 100644 thirdparty1/linux/include/opencv2/flann/lsh_table.h create mode 100644 thirdparty1/linux/include/opencv2/flann/matrix.h create mode 100644 thirdparty1/linux/include/opencv2/flann/miniflann.hpp create mode 100644 thirdparty1/linux/include/opencv2/flann/nn_index.h create mode 100644 thirdparty1/linux/include/opencv2/flann/object_factory.h create mode 100644 thirdparty1/linux/include/opencv2/flann/params.h create mode 100644 thirdparty1/linux/include/opencv2/flann/random.h create mode 100644 thirdparty1/linux/include/opencv2/flann/result_set.h create mode 100644 thirdparty1/linux/include/opencv2/flann/sampling.h create mode 100644 thirdparty1/linux/include/opencv2/flann/saving.h create mode 100644 thirdparty1/linux/include/opencv2/flann/simplex_downhill.h create mode 100644 thirdparty1/linux/include/opencv2/flann/timer.h create mode 100644 thirdparty1/linux/include/opencv2/freetype.hpp create mode 100644 thirdparty1/linux/include/opencv2/fuzzy.hpp create mode 100644 thirdparty1/linux/include/opencv2/fuzzy/fuzzy_F0_math.hpp create mode 100644 thirdparty1/linux/include/opencv2/fuzzy/fuzzy_image.hpp create mode 100644 thirdparty1/linux/include/opencv2/fuzzy/types.hpp create mode 100644 thirdparty1/linux/include/opencv2/hdf.hpp create mode 100644 thirdparty1/linux/include/opencv2/hdf/hdf5.hpp create mode 100644 thirdparty1/linux/include/opencv2/highgui.hpp create mode 100644 thirdparty1/linux/include/opencv2/highgui/highgui.hpp create mode 100644 thirdparty1/linux/include/opencv2/highgui/highgui_c.h create mode 100644 thirdparty1/linux/include/opencv2/imgcodecs.hpp create mode 100644 thirdparty1/linux/include/opencv2/imgcodecs/imgcodecs.hpp create mode 100644 thirdparty1/linux/include/opencv2/imgcodecs/imgcodecs_c.h create mode 100644 thirdparty1/linux/include/opencv2/imgcodecs/ios.h create mode 100644 thirdparty1/linux/include/opencv2/imgproc.hpp create mode 100644 thirdparty1/linux/include/opencv2/imgproc/detail/distortion_model.hpp create mode 100644 thirdparty1/linux/include/opencv2/imgproc/hal/hal.hpp create mode 100644 thirdparty1/linux/include/opencv2/imgproc/hal/interface.h create mode 100644 thirdparty1/linux/include/opencv2/imgproc/imgproc.hpp create mode 100644 thirdparty1/linux/include/opencv2/imgproc/imgproc_c.h create mode 100644 thirdparty1/linux/include/opencv2/imgproc/types_c.h create mode 100644 thirdparty1/linux/include/opencv2/line_descriptor.hpp create mode 100644 thirdparty1/linux/include/opencv2/line_descriptor/descriptor.hpp create mode 100644 thirdparty1/linux/include/opencv2/ml.hpp create mode 100644 thirdparty1/linux/include/opencv2/ml/ml.hpp create mode 100644 thirdparty1/linux/include/opencv2/objdetect.hpp create mode 100644 thirdparty1/linux/include/opencv2/objdetect/detection_based_tracker.hpp create mode 100644 thirdparty1/linux/include/opencv2/objdetect/objdetect.hpp create mode 100644 thirdparty1/linux/include/opencv2/objdetect/objdetect_c.h create mode 100644 thirdparty1/linux/include/opencv2/opencv.hpp create mode 100644 thirdparty1/linux/include/opencv2/opencv_modules.hpp create mode 100644 thirdparty1/linux/include/opencv2/optflow.hpp create mode 100644 thirdparty1/linux/include/opencv2/optflow/motempl.hpp create mode 100644 thirdparty1/linux/include/opencv2/optflow/pcaflow.hpp create mode 100644 thirdparty1/linux/include/opencv2/optflow/sparse_matching_gpc.hpp create mode 100644 thirdparty1/linux/include/opencv2/phase_unwrapping.hpp create mode 100644 thirdparty1/linux/include/opencv2/phase_unwrapping/histogramphaseunwrapping.hpp create mode 100644 thirdparty1/linux/include/opencv2/phase_unwrapping/phase_unwrapping.hpp create mode 100644 thirdparty1/linux/include/opencv2/photo.hpp create mode 100644 thirdparty1/linux/include/opencv2/photo/cuda.hpp create mode 100644 thirdparty1/linux/include/opencv2/photo/photo.hpp create mode 100644 thirdparty1/linux/include/opencv2/photo/photo_c.h create mode 100644 thirdparty1/linux/include/opencv2/plot.hpp create mode 100644 thirdparty1/linux/include/opencv2/reg/map.hpp create mode 100644 thirdparty1/linux/include/opencv2/reg/mapaffine.hpp create mode 100644 thirdparty1/linux/include/opencv2/reg/mapper.hpp create mode 100644 thirdparty1/linux/include/opencv2/reg/mappergradaffine.hpp create mode 100644 thirdparty1/linux/include/opencv2/reg/mappergradeuclid.hpp create mode 100644 thirdparty1/linux/include/opencv2/reg/mappergradproj.hpp create mode 100644 thirdparty1/linux/include/opencv2/reg/mappergradshift.hpp create mode 100644 thirdparty1/linux/include/opencv2/reg/mappergradsimilar.hpp create mode 100644 thirdparty1/linux/include/opencv2/reg/mapperpyramid.hpp create mode 100644 thirdparty1/linux/include/opencv2/reg/mapprojec.hpp create mode 100644 thirdparty1/linux/include/opencv2/reg/mapshift.hpp create mode 100644 thirdparty1/linux/include/opencv2/rgbd.hpp create mode 100644 thirdparty1/linux/include/opencv2/rgbd/linemod.hpp create mode 100644 thirdparty1/linux/include/opencv2/saliency.hpp create mode 100644 thirdparty1/linux/include/opencv2/saliency/saliencyBaseClasses.hpp create mode 100644 thirdparty1/linux/include/opencv2/saliency/saliencySpecializedClasses.hpp create mode 100644 thirdparty1/linux/include/opencv2/shape.hpp create mode 100644 thirdparty1/linux/include/opencv2/shape/emdL1.hpp create mode 100644 thirdparty1/linux/include/opencv2/shape/hist_cost.hpp create mode 100644 thirdparty1/linux/include/opencv2/shape/shape.hpp create mode 100644 thirdparty1/linux/include/opencv2/shape/shape_distance.hpp create mode 100644 thirdparty1/linux/include/opencv2/shape/shape_transformer.hpp create mode 100644 thirdparty1/linux/include/opencv2/stereo.hpp create mode 100644 thirdparty1/linux/include/opencv2/stereo/descriptor.hpp create mode 100644 thirdparty1/linux/include/opencv2/stereo/matching.hpp create mode 100644 thirdparty1/linux/include/opencv2/stereo/stereo.hpp create mode 100644 thirdparty1/linux/include/opencv2/stitching.hpp create mode 100644 thirdparty1/linux/include/opencv2/stitching/detail/autocalib.hpp create mode 100644 thirdparty1/linux/include/opencv2/stitching/detail/blenders.hpp create mode 100644 thirdparty1/linux/include/opencv2/stitching/detail/camera.hpp create mode 100644 thirdparty1/linux/include/opencv2/stitching/detail/exposure_compensate.hpp create mode 100644 thirdparty1/linux/include/opencv2/stitching/detail/matchers.hpp create mode 100644 thirdparty1/linux/include/opencv2/stitching/detail/motion_estimators.hpp create mode 100644 thirdparty1/linux/include/opencv2/stitching/detail/seam_finders.hpp create mode 100644 thirdparty1/linux/include/opencv2/stitching/detail/timelapsers.hpp create mode 100644 thirdparty1/linux/include/opencv2/stitching/detail/util.hpp create mode 100644 thirdparty1/linux/include/opencv2/stitching/detail/util_inl.hpp create mode 100644 thirdparty1/linux/include/opencv2/stitching/detail/warpers.hpp create mode 100644 thirdparty1/linux/include/opencv2/stitching/detail/warpers_inl.hpp create mode 100644 thirdparty1/linux/include/opencv2/stitching/warpers.hpp create mode 100644 thirdparty1/linux/include/opencv2/structured_light.hpp create mode 100644 thirdparty1/linux/include/opencv2/structured_light/graycodepattern.hpp create mode 100644 thirdparty1/linux/include/opencv2/structured_light/sinusoidalpattern.hpp create mode 100644 thirdparty1/linux/include/opencv2/structured_light/structured_light.hpp create mode 100644 thirdparty1/linux/include/opencv2/superres.hpp create mode 100644 thirdparty1/linux/include/opencv2/superres/optical_flow.hpp create mode 100644 thirdparty1/linux/include/opencv2/surface_matching.hpp create mode 100644 thirdparty1/linux/include/opencv2/surface_matching/icp.hpp create mode 100644 thirdparty1/linux/include/opencv2/surface_matching/pose_3d.hpp create mode 100644 thirdparty1/linux/include/opencv2/surface_matching/ppf_helpers.hpp create mode 100644 thirdparty1/linux/include/opencv2/surface_matching/ppf_match_3d.hpp create mode 100644 thirdparty1/linux/include/opencv2/surface_matching/t_hash_int.hpp create mode 100644 thirdparty1/linux/include/opencv2/text.hpp create mode 100644 thirdparty1/linux/include/opencv2/text/erfilter.hpp create mode 100644 thirdparty1/linux/include/opencv2/text/ocr.hpp create mode 100644 thirdparty1/linux/include/opencv2/tracking.hpp create mode 100644 thirdparty1/linux/include/opencv2/tracking/feature.hpp create mode 100644 thirdparty1/linux/include/opencv2/tracking/kalman_filters.hpp create mode 100644 thirdparty1/linux/include/opencv2/tracking/onlineBoosting.hpp create mode 100644 thirdparty1/linux/include/opencv2/tracking/onlineMIL.hpp create mode 100644 thirdparty1/linux/include/opencv2/tracking/tldDataset.hpp create mode 100644 thirdparty1/linux/include/opencv2/tracking/tracker.hpp create mode 100644 thirdparty1/linux/include/opencv2/tracking/tracking.hpp create mode 100644 thirdparty1/linux/include/opencv2/video.hpp create mode 100644 thirdparty1/linux/include/opencv2/video/background_segm.hpp create mode 100644 thirdparty1/linux/include/opencv2/video/tracking.hpp create mode 100644 thirdparty1/linux/include/opencv2/video/tracking_c.h create mode 100644 thirdparty1/linux/include/opencv2/video/video.hpp create mode 100644 thirdparty1/linux/include/opencv2/videoio.hpp create mode 100644 thirdparty1/linux/include/opencv2/videoio/cap_ios.h create mode 100644 thirdparty1/linux/include/opencv2/videoio/videoio.hpp create mode 100644 thirdparty1/linux/include/opencv2/videoio/videoio_c.h create mode 100644 thirdparty1/linux/include/opencv2/videostab.hpp create mode 100644 thirdparty1/linux/include/opencv2/videostab/deblurring.hpp create mode 100644 thirdparty1/linux/include/opencv2/videostab/fast_marching.hpp create mode 100644 thirdparty1/linux/include/opencv2/videostab/fast_marching_inl.hpp create mode 100644 thirdparty1/linux/include/opencv2/videostab/frame_source.hpp create mode 100644 thirdparty1/linux/include/opencv2/videostab/global_motion.hpp create mode 100644 thirdparty1/linux/include/opencv2/videostab/inpainting.hpp create mode 100644 thirdparty1/linux/include/opencv2/videostab/log.hpp create mode 100644 thirdparty1/linux/include/opencv2/videostab/motion_core.hpp create mode 100644 thirdparty1/linux/include/opencv2/videostab/motion_stabilizing.hpp create mode 100644 thirdparty1/linux/include/opencv2/videostab/optical_flow.hpp create mode 100644 thirdparty1/linux/include/opencv2/videostab/outlier_rejection.hpp create mode 100644 thirdparty1/linux/include/opencv2/videostab/ring_buffer.hpp create mode 100644 thirdparty1/linux/include/opencv2/videostab/stabilizer.hpp create mode 100644 thirdparty1/linux/include/opencv2/videostab/wobble_suppression.hpp create mode 100644 thirdparty1/linux/include/opencv2/viz.hpp create mode 100644 thirdparty1/linux/include/opencv2/viz/types.hpp create mode 100644 thirdparty1/linux/include/opencv2/viz/viz3d.hpp create mode 100644 thirdparty1/linux/include/opencv2/viz/vizcore.hpp create mode 100644 thirdparty1/linux/include/opencv2/viz/widget_accessor.hpp create mode 100644 thirdparty1/linux/include/opencv2/viz/widgets.hpp create mode 100644 thirdparty1/linux/include/opencv2/xfeatures2d.hpp create mode 100644 thirdparty1/linux/include/opencv2/xfeatures2d/cuda.hpp create mode 100644 thirdparty1/linux/include/opencv2/xfeatures2d/nonfree.hpp create mode 100644 thirdparty1/linux/include/opencv2/ximgproc.hpp create mode 100644 thirdparty1/linux/include/opencv2/ximgproc/deriche_filter.hpp create mode 100644 thirdparty1/linux/include/opencv2/ximgproc/disparity_filter.hpp create mode 100644 thirdparty1/linux/include/opencv2/ximgproc/edge_filter.hpp create mode 100644 thirdparty1/linux/include/opencv2/ximgproc/estimated_covariance.hpp create mode 100644 thirdparty1/linux/include/opencv2/ximgproc/fast_hough_transform.hpp create mode 100644 thirdparty1/linux/include/opencv2/ximgproc/fast_line_detector.hpp create mode 100644 thirdparty1/linux/include/opencv2/ximgproc/lsc.hpp create mode 100644 thirdparty1/linux/include/opencv2/ximgproc/paillou_filter.hpp create mode 100644 thirdparty1/linux/include/opencv2/ximgproc/seeds.hpp create mode 100644 thirdparty1/linux/include/opencv2/ximgproc/segmentation.hpp create mode 100644 thirdparty1/linux/include/opencv2/ximgproc/slic.hpp create mode 100644 thirdparty1/linux/include/opencv2/ximgproc/sparse_match_interpolator.hpp create mode 100644 thirdparty1/linux/include/opencv2/ximgproc/structured_edge_detection.hpp create mode 100644 thirdparty1/linux/include/opencv2/ximgproc/weighted_median_filter.hpp create mode 100644 thirdparty1/linux/include/opencv2/xobjdetect.hpp create mode 100644 thirdparty1/linux/include/opencv2/xphoto.hpp create mode 100644 thirdparty1/linux/include/opencv2/xphoto/bm3d_image_denoising.hpp create mode 100644 thirdparty1/linux/include/opencv2/xphoto/dct_image_denoising.hpp create mode 100644 thirdparty1/linux/include/opencv2/xphoto/inpainting.hpp create mode 100644 thirdparty1/linux/include/opencv2/xphoto/white_balance.hpp create mode 120000 thirdparty1/linux/lib/x64/libopencv_aruco.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_aruco.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_aruco.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_bgsegm.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_bgsegm.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_bgsegm.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_bioinspired.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_bioinspired.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_bioinspired.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_calib3d.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_calib3d.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_calib3d.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_ccalib.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_ccalib.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_ccalib.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_core.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_core.so.2.4 create mode 100644 thirdparty1/linux/lib/x64/libopencv_core.so.2.4.9 create mode 120000 thirdparty1/linux/lib/x64/libopencv_core.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_core.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_datasets.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_datasets.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_datasets.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_dnn.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_dnn.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_dnn.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_dpm.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_dpm.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_dpm.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_face.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_face.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_face.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_features2d.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_features2d.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_features2d.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_flann.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_flann.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_flann.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_freetype.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_freetype.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_freetype.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_fuzzy.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_fuzzy.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_fuzzy.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_hdf.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_hdf.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_hdf.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_highgui.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_highgui.so.2.4 create mode 100644 thirdparty1/linux/lib/x64/libopencv_highgui.so.2.4.9 create mode 120000 thirdparty1/linux/lib/x64/libopencv_highgui.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_highgui.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_imgcodecs.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_imgcodecs.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_imgcodecs.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_imgproc.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_imgproc.so.2.4 create mode 100644 thirdparty1/linux/lib/x64/libopencv_imgproc.so.2.4.9 create mode 120000 thirdparty1/linux/lib/x64/libopencv_imgproc.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_imgproc.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_line_descriptor.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_line_descriptor.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_line_descriptor.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_ml.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_ml.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_ml.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_objdetect.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_objdetect.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_objdetect.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_optflow.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_optflow.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_optflow.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_phase_unwrapping.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_phase_unwrapping.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_phase_unwrapping.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_photo.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_photo.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_photo.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_plot.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_plot.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_plot.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_reg.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_reg.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_reg.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_rgbd.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_rgbd.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_rgbd.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_saliency.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_saliency.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_saliency.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_shape.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_shape.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_shape.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_stereo.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_stereo.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_stereo.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_stitching.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_stitching.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_stitching.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_structured_light.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_structured_light.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_structured_light.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_superres.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_superres.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_superres.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_surface_matching.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_surface_matching.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_surface_matching.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_text.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_text.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_text.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_tracking.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_tracking.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_tracking.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_video.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_video.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_video.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_videoio.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_videoio.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_videoio.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_videostab.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_videostab.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_videostab.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_viz.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_viz.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_viz.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_xfeatures2d.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_xfeatures2d.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_xfeatures2d.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_ximgproc.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_ximgproc.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_ximgproc.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_xobjdetect.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_xobjdetect.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_xobjdetect.so.3.2.0 create mode 120000 thirdparty1/linux/lib/x64/libopencv_xphoto.so create mode 120000 thirdparty1/linux/lib/x64/libopencv_xphoto.so.3.2 create mode 100644 thirdparty1/linux/lib/x64/libopencv_xphoto.so.3.2.0 create mode 100644 thirdparty1/linux/lib/x64/pkgconfig/opencv.pc create mode 100644 thirdparty1/linux/lib/x64/python2.7/dist-packages/cv2.so create mode 100644 thirdparty1/linux/lib/x64/python3.4/dist-packages/cv2.cpython-34m.so (limited to 'thirdparty1/linux') diff --git a/thirdparty1/linux/include/opencv/cv.h b/thirdparty1/linux/include/opencv/cv.h new file mode 100644 index 0000000..19a74e2 --- /dev/null +++ b/thirdparty1/linux/include/opencv/cv.h @@ -0,0 +1,73 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_OLD_CV_H +#define OPENCV_OLD_CV_H + +#if defined(_MSC_VER) + #define CV_DO_PRAGMA(x) __pragma(x) + #define __CVSTR2__(x) #x + #define __CVSTR1__(x) __CVSTR2__(x) + #define __CVMSVCLOC__ __FILE__ "("__CVSTR1__(__LINE__)") : " + #define CV_MSG_PRAGMA(_msg) CV_DO_PRAGMA(message (__CVMSVCLOC__ _msg)) +#elif defined(__GNUC__) + #define CV_DO_PRAGMA(x) _Pragma (#x) + #define CV_MSG_PRAGMA(_msg) CV_DO_PRAGMA(message (_msg)) +#else + #define CV_DO_PRAGMA(x) + #define CV_MSG_PRAGMA(_msg) +#endif +#define CV_WARNING(x) CV_MSG_PRAGMA("Warning: " #x) + +//CV_WARNING("This is a deprecated opencv header provided for compatibility. Please include a header from a corresponding opencv module") + +#include "opencv2/core/core_c.h" +#include "opencv2/imgproc/imgproc_c.h" +#include "opencv2/photo/photo_c.h" +#include "opencv2/video/tracking_c.h" +#include "opencv2/objdetect/objdetect_c.h" + +#if !defined(CV_IMPL) +#define CV_IMPL extern "C" +#endif //CV_IMPL + +#endif // __OPENCV_OLD_CV_H_ diff --git a/thirdparty1/linux/include/opencv/cv.hpp b/thirdparty1/linux/include/opencv/cv.hpp new file mode 100644 index 0000000..8673956 --- /dev/null +++ b/thirdparty1/linux/include/opencv/cv.hpp @@ -0,0 +1,60 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_OLD_CV_HPP +#define OPENCV_OLD_CV_HPP + +//#if defined(__GNUC__) +//#warning "This is a deprecated opencv header provided for compatibility. Please include a header from a corresponding opencv module" +//#endif + +#include "cv.h" +#include "opencv2/core.hpp" +#include "opencv2/imgproc.hpp" +#include "opencv2/photo.hpp" +#include "opencv2/video.hpp" +#include "opencv2/highgui.hpp" +#include "opencv2/features2d.hpp" +#include "opencv2/calib3d.hpp" +#include "opencv2/objdetect.hpp" + +#endif diff --git a/thirdparty1/linux/include/opencv/cvaux.h b/thirdparty1/linux/include/opencv/cvaux.h new file mode 100644 index 0000000..c0367cc --- /dev/null +++ b/thirdparty1/linux/include/opencv/cvaux.h @@ -0,0 +1,57 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// Intel License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000, Intel Corporation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of Intel Corporation may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_OLD_AUX_H +#define OPENCV_OLD_AUX_H + +//#if defined(__GNUC__) +//#warning "This is a deprecated opencv header provided for compatibility. Please include a header from a corresponding opencv module" +//#endif + +#include "opencv2/core/core_c.h" +#include "opencv2/imgproc/imgproc_c.h" +#include "opencv2/photo/photo_c.h" +#include "opencv2/video/tracking_c.h" +#include "opencv2/objdetect/objdetect_c.h" + +#endif + +/* End of file. */ diff --git a/thirdparty1/linux/include/opencv/cvaux.hpp b/thirdparty1/linux/include/opencv/cvaux.hpp new file mode 100644 index 0000000..4888eef --- /dev/null +++ b/thirdparty1/linux/include/opencv/cvaux.hpp @@ -0,0 +1,52 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// Intel License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000, Intel Corporation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of Intel Corporation may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_OLD_AUX_HPP +#define OPENCV_OLD_AUX_HPP + +//#if defined(__GNUC__) +//#warning "This is a deprecated opencv header provided for compatibility. Please include a header from a corresponding opencv module" +//#endif + +#include "cvaux.h" +#include "opencv2/core/utility.hpp" + +#endif diff --git a/thirdparty1/linux/include/opencv/cvwimage.h b/thirdparty1/linux/include/opencv/cvwimage.h new file mode 100644 index 0000000..ec0ab14 --- /dev/null +++ b/thirdparty1/linux/include/opencv/cvwimage.h @@ -0,0 +1,46 @@ +/////////////////////////////////////////////////////////////////////////////// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to +// this license. If you do not agree to this license, do not download, +// install, copy or use the software. +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2008, Google, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of Intel Corporation or contributors may not be used to endorse +// or promote products derived from this software without specific +// prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" +// and any express or implied warranties, including, but not limited to, the +// implied warranties of merchantability and fitness for a particular purpose +// are disclaimed. In no event shall the Intel Corporation or contributors be +// liable for any direct, indirect, incidental, special, exemplary, or +// consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. + + +#ifndef OPENCV_OLD_WIMAGE_HPP +#define OPENCV_OLD_WIMAGE_HPP + +#include "opencv2/core/wimage.hpp" + +#endif diff --git a/thirdparty1/linux/include/opencv/cxcore.h b/thirdparty1/linux/include/opencv/cxcore.h new file mode 100644 index 0000000..dc070c7 --- /dev/null +++ b/thirdparty1/linux/include/opencv/cxcore.h @@ -0,0 +1,52 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_OLD_CXCORE_H +#define OPENCV_OLD_CXCORE_H + +//#if defined(__GNUC__) +//#warning "This is a deprecated opencv header provided for compatibility. Please include a header from a corresponding opencv module" +//#endif + +#include "opencv2/core/core_c.h" + +#endif diff --git a/thirdparty1/linux/include/opencv/cxcore.hpp b/thirdparty1/linux/include/opencv/cxcore.hpp new file mode 100644 index 0000000..c371677 --- /dev/null +++ b/thirdparty1/linux/include/opencv/cxcore.hpp @@ -0,0 +1,53 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_OLD_CXCORE_HPP +#define OPENCV_OLD_CXCORE_HPP + +//#if defined(__GNUC__) +//#warning "This is a deprecated opencv header provided for compatibility. Please include a header from a corresponding opencv module" +//#endif + +#include "cxcore.h" +#include "opencv2/core.hpp" + +#endif diff --git a/thirdparty1/linux/include/opencv/cxeigen.hpp b/thirdparty1/linux/include/opencv/cxeigen.hpp new file mode 100644 index 0000000..1d3df91 --- /dev/null +++ b/thirdparty1/linux/include/opencv/cxeigen.hpp @@ -0,0 +1,48 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_OLD_EIGEN_HPP +#define OPENCV_OLD_EIGEN_HPP + +#include "opencv2/core/eigen.hpp" + +#endif diff --git a/thirdparty1/linux/include/opencv/cxmisc.h b/thirdparty1/linux/include/opencv/cxmisc.h new file mode 100644 index 0000000..9b9bc82 --- /dev/null +++ b/thirdparty1/linux/include/opencv/cxmisc.h @@ -0,0 +1,8 @@ +#ifndef OPENCV_OLD_CXMISC_H +#define OPENCV_OLD_CXMISC_H + +#ifdef __cplusplus +# include "opencv2/core/utility.hpp" +#endif + +#endif diff --git a/thirdparty1/linux/include/opencv/highgui.h b/thirdparty1/linux/include/opencv/highgui.h new file mode 100644 index 0000000..69b394e --- /dev/null +++ b/thirdparty1/linux/include/opencv/highgui.h @@ -0,0 +1,48 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// Intel License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000, Intel Corporation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of Intel Corporation may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_OLD_HIGHGUI_H +#define OPENCV_OLD_HIGHGUI_H + +#include "opencv2/core/core_c.h" +#include "opencv2/highgui/highgui_c.h" + +#endif diff --git a/thirdparty1/linux/include/opencv/ml.h b/thirdparty1/linux/include/opencv/ml.h new file mode 100644 index 0000000..0c376ba --- /dev/null +++ b/thirdparty1/linux/include/opencv/ml.h @@ -0,0 +1,47 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// Intel License Agreement +// +// Copyright (C) 2000, Intel Corporation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of Intel Corporation may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_OLD_ML_H +#define OPENCV_OLD_ML_H + +#include "opencv2/core/core_c.h" +#include "opencv2/ml.hpp" + +#endif diff --git a/thirdparty1/linux/include/opencv2/aruco.hpp b/thirdparty1/linux/include/opencv2/aruco.hpp new file mode 100644 index 0000000..e9e88c5 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/aruco.hpp @@ -0,0 +1,541 @@ +/* +By downloading, copying, installing or using the software you agree to this +license. If you do not agree to this license, do not download, install, +copy or use the software. + + License Agreement + For Open Source Computer Vision Library + (3-clause BSD License) + +Copyright (C) 2013, OpenCV Foundation, all rights reserved. +Third party copyrights are property of their respective owners. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + + * Neither the names of the copyright holders nor the names of the contributors + may be used to endorse or promote products derived from this software + without specific prior written permission. + +This software is provided by the copyright holders and contributors "as is" and +any express or implied warranties, including, but not limited to, the implied +warranties of merchantability and fitness for a particular purpose are +disclaimed. In no event shall copyright holders or contributors be liable for +any direct, indirect, incidental, special, exemplary, or consequential damages +(including, but not limited to, procurement of substitute goods or services; +loss of use, data, or profits; or business interruption) however caused +and on any theory of liability, whether in contract, strict liability, +or tort (including negligence or otherwise) arising in any way out of +the use of this software, even if advised of the possibility of such damage. +*/ + +#ifndef __OPENCV_ARUCO_HPP__ +#define __OPENCV_ARUCO_HPP__ + +#include +#include +#include "opencv2/aruco/dictionary.hpp" + +/** + * @defgroup aruco ArUco Marker Detection + * This module is dedicated to square fiducial markers (also known as Augmented Reality Markers) + * These markers are useful for easy, fast and robust camera pose estimation.ç + * + * The main functionalities are: + * - Detection of markers in a image + * - Pose estimation from a single marker or from a board/set of markers + * - Detection of ChArUco board for high subpixel accuracy + * - Camera calibration from both, ArUco boards and ChArUco boards. + * - Detection of ChArUco diamond markers + * The samples directory includes easy examples of how to use the module. + * + * The implementation is based on the ArUco Library by R. Muñoz-Salinas and S. Garrido-Jurado. + * + * @sa S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J. Marín-Jiménez. 2014. + * "Automatic generation and detection of highly reliable fiducial markers under occlusion". + * Pattern Recogn. 47, 6 (June 2014), 2280-2292. DOI=10.1016/j.patcog.2014.01.005 + * + * @sa http://www.uco.es/investiga/grupos/ava/node/26 + * + * This module has been originally developed by Sergio Garrido-Jurado as a project + * for Google Summer of Code 2015 (GSoC 15). + * + * +*/ + +namespace cv { +namespace aruco { + +//! @addtogroup aruco +//! @{ + + + +/** + * @brief Parameters for the detectMarker process: + * - adaptiveThreshWinSizeMin: minimum window size for adaptive thresholding before finding + * contours (default 3). + * - adaptiveThreshWinSizeMax: maximum window size for adaptive thresholding before finding + * contours (default 23). + * - adaptiveThreshWinSizeStep: increments from adaptiveThreshWinSizeMin to adaptiveThreshWinSizeMax + * during the thresholding (default 10). + * - adaptiveThreshConstant: constant for adaptive thresholding before finding contours (default 7) + * - minMarkerPerimeterRate: determine minimum perimeter for marker contour to be detected. This + * is defined as a rate respect to the maximum dimension of the input image (default 0.03). + * - maxMarkerPerimeterRate: determine maximum perimeter for marker contour to be detected. This + * is defined as a rate respect to the maximum dimension of the input image (default 4.0). + * - polygonalApproxAccuracyRate: minimum accuracy during the polygonal approximation process to + * determine which contours are squares. + * - minCornerDistanceRate: minimum distance between corners for detected markers relative to its + * perimeter (default 0.05) + * - minDistanceToBorder: minimum distance of any corner to the image border for detected markers + * (in pixels) (default 3) + * - minMarkerDistanceRate: minimum mean distance beetween two marker corners to be considered + * similar, so that the smaller one is removed. The rate is relative to the smaller perimeter + * of the two markers (default 0.05). + * - doCornerRefinement: do subpixel refinement or not + * - cornerRefinementWinSize: window size for the corner refinement process (in pixels) (default 5). + * - cornerRefinementMaxIterations: maximum number of iterations for stop criteria of the corner + * refinement process (default 30). + * - cornerRefinementMinAccuracy: minimum error for the stop cristeria of the corner refinement + * process (default: 0.1) + * - markerBorderBits: number of bits of the marker border, i.e. marker border width (default 1). + * - perpectiveRemovePixelPerCell: number of bits (per dimension) for each cell of the marker + * when removing the perspective (default 8). + * - perspectiveRemoveIgnoredMarginPerCell: width of the margin of pixels on each cell not + * considered for the determination of the cell bit. Represents the rate respect to the total + * size of the cell, i.e. perpectiveRemovePixelPerCell (default 0.13) + * - maxErroneousBitsInBorderRate: maximum number of accepted erroneous bits in the border (i.e. + * number of allowed white bits in the border). Represented as a rate respect to the total + * number of bits per marker (default 0.35). + * - minOtsuStdDev: minimun standard deviation in pixels values during the decodification step to + * apply Otsu thresholding (otherwise, all the bits are set to 0 or 1 depending on mean higher + * than 128 or not) (default 5.0) + * - errorCorrectionRate error correction rate respect to the maximun error correction capability + * for each dictionary. (default 0.6). + */ +struct CV_EXPORTS_W DetectorParameters { + + DetectorParameters(); + + CV_WRAP static Ptr create(); + + CV_PROP_RW int adaptiveThreshWinSizeMin; + CV_PROP_RW int adaptiveThreshWinSizeMax; + CV_PROP_RW int adaptiveThreshWinSizeStep; + CV_PROP_RW double adaptiveThreshConstant; + CV_PROP_RW double minMarkerPerimeterRate; + CV_PROP_RW double maxMarkerPerimeterRate; + CV_PROP_RW double polygonalApproxAccuracyRate; + CV_PROP_RW double minCornerDistanceRate; + CV_PROP_RW int minDistanceToBorder; + CV_PROP_RW double minMarkerDistanceRate; + CV_PROP_RW bool doCornerRefinement; + CV_PROP_RW int cornerRefinementWinSize; + CV_PROP_RW int cornerRefinementMaxIterations; + CV_PROP_RW double cornerRefinementMinAccuracy; + CV_PROP_RW int markerBorderBits; + CV_PROP_RW int perspectiveRemovePixelPerCell; + CV_PROP_RW double perspectiveRemoveIgnoredMarginPerCell; + CV_PROP_RW double maxErroneousBitsInBorderRate; + CV_PROP_RW double minOtsuStdDev; + CV_PROP_RW double errorCorrectionRate; +}; + + + +/** + * @brief Basic marker detection + * + * @param image input image + * @param dictionary indicates the type of markers that will be searched + * @param corners vector of detected marker corners. For each marker, its four corners + * are provided, (e.g std::vector > ). For N detected markers, + * the dimensions of this array is Nx4. The order of the corners is clockwise. + * @param ids vector of identifiers of the detected markers. The identifier is of type int + * (e.g. std::vector). For N detected markers, the size of ids is also N. + * The identifiers have the same order than the markers in the imgPoints array. + * @param parameters marker detection parameters + * @param rejectedImgPoints contains the imgPoints of those squares whose inner code has not a + * correct codification. Useful for debugging purposes. + * + * Performs marker detection in the input image. Only markers included in the specific dictionary + * are searched. For each detected marker, it returns the 2D position of its corner in the image + * and its corresponding identifier. + * Note that this function does not perform pose estimation. + * @sa estimatePoseSingleMarkers, estimatePoseBoard + * + */ +CV_EXPORTS_W void detectMarkers(InputArray image, const Ptr &dictionary, OutputArrayOfArrays corners, + OutputArray ids, const Ptr ¶meters = DetectorParameters::create(), + OutputArrayOfArrays rejectedImgPoints = noArray()); + + + +/** + * @brief Pose estimation for single markers + * + * @param corners vector of already detected markers corners. For each marker, its four corners + * are provided, (e.g std::vector > ). For N detected markers, + * the dimensions of this array should be Nx4. The order of the corners should be clockwise. + * @sa detectMarkers + * @param markerLength the length of the markers' side. The returning translation vectors will + * be in the same unit. Normally, unit is meters. + * @param cameraMatrix input 3x3 floating-point camera matrix + * \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ + * @param distCoeffs vector of distortion coefficients + * \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements + * @param rvecs array of output rotation vectors (@sa Rodrigues) (e.g. std::vector). + * Each element in rvecs corresponds to the specific marker in imgPoints. + * @param tvecs array of output translation vectors (e.g. std::vector). + * Each element in tvecs corresponds to the specific marker in imgPoints. + * + * This function receives the detected markers and returns their pose estimation respect to + * the camera individually. So for each marker, one rotation and translation vector is returned. + * The returned transformation is the one that transforms points from each marker coordinate system + * to the camera coordinate system. + * The marker corrdinate system is centered on the middle of the marker, with the Z axis + * perpendicular to the marker plane. + * The coordinates of the four corners of the marker in its own coordinate system are: + * (-markerLength/2, markerLength/2, 0), (markerLength/2, markerLength/2, 0), + * (markerLength/2, -markerLength/2, 0), (-markerLength/2, -markerLength/2, 0) + */ +CV_EXPORTS_W void estimatePoseSingleMarkers(InputArrayOfArrays corners, float markerLength, + InputArray cameraMatrix, InputArray distCoeffs, + OutputArray rvecs, OutputArray tvecs); + + + +/** + * @brief Board of markers + * + * A board is a set of markers in the 3D space with a common cordinate system. + * The common form of a board of marker is a planar (2D) board, however any 3D layout can be used. + * A Board object is composed by: + * - The object points of the marker corners, i.e. their coordinates respect to the board system. + * - The dictionary which indicates the type of markers of the board + * - The identifier of all the markers in the board. + */ +class CV_EXPORTS_W Board { + + public: + /** + * @brief Provide way to create Board by passing nessesary data. Specially needed in Python. + * + * @param objPoints array of object points of all the marker corners in the board + * @param dictionary the dictionary of markers employed for this board + * @param ids vector of the identifiers of the markers in the board + * + */ + CV_WRAP static Ptr create(InputArrayOfArrays objPoints, const Ptr &dictionary, InputArray ids); + /// array of object points of all the marker corners in the board + /// each marker include its 4 corners in CCW order. For M markers, the size is Mx4. + CV_PROP std::vector< std::vector< Point3f > > objPoints; + + /// the dictionary of markers employed for this board + CV_PROP Ptr dictionary; + + /// vector of the identifiers of the markers in the board (same size than objPoints) + /// The identifiers refers to the board dictionary + CV_PROP std::vector< int > ids; +}; + + + +/** + * @brief Planar board with grid arrangement of markers + * More common type of board. All markers are placed in the same plane in a grid arrangment. + * The board can be drawn using drawPlanarBoard() function (@sa drawPlanarBoard) + */ +class CV_EXPORTS_W GridBoard : public Board { + + public: + /** + * @brief Draw a GridBoard + * + * @param outSize size of the output image in pixels. + * @param img output image with the board. The size of this image will be outSize + * and the board will be on the center, keeping the board proportions. + * @param marginSize minimum margins (in pixels) of the board in the output image + * @param borderBits width of the marker borders. + * + * This function return the image of the GridBoard, ready to be printed. + */ + CV_WRAP void draw(Size outSize, OutputArray img, int marginSize = 0, int borderBits = 1); + + + /** + * @brief Create a GridBoard object + * + * @param markersX number of markers in X direction + * @param markersY number of markers in Y direction + * @param markerLength marker side length (normally in meters) + * @param markerSeparation separation between two markers (same unit as markerLength) + * @param dictionary dictionary of markers indicating the type of markers + * @param firstMarker id of first marker in dictionary to use on board. + * @return the output GridBoard object + * + * This functions creates a GridBoard object given the number of markers in each direction and + * the marker size and marker separation. + */ + CV_WRAP static Ptr create(int markersX, int markersY, float markerLength, + float markerSeparation, const Ptr &dictionary, int firstMarker = 0); + + /** + * + */ + CV_WRAP Size getGridSize() const { return Size(_markersX, _markersY); } + + /** + * + */ + CV_WRAP float getMarkerLength() const { return _markerLength; } + + /** + * + */ + CV_WRAP float getMarkerSeparation() const { return _markerSeparation; } + + + private: + // number of markers in X and Y directions + int _markersX, _markersY; + + // marker side lenght (normally in meters) + float _markerLength; + + // separation between markers in the grid + float _markerSeparation; +}; + + + +/** + * @brief Pose estimation for a board of markers + * + * @param corners vector of already detected markers corners. For each marker, its four corners + * are provided, (e.g std::vector > ). For N detected markers, the + * dimensions of this array should be Nx4. The order of the corners should be clockwise. + * @param ids list of identifiers for each marker in corners + * @param board layout of markers in the board. The layout is composed by the marker identifiers + * and the positions of each marker corner in the board reference system. + * @param cameraMatrix input 3x3 floating-point camera matrix + * \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ + * @param distCoeffs vector of distortion coefficients + * \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements + * @param rvec Output vector (e.g. cv::Mat) corresponding to the rotation vector of the board + * (@sa Rodrigues). Used as initial guess if not empty. + * @param tvec Output vector (e.g. cv::Mat) corresponding to the translation vector of the board. + * Used as initial guess if not empty. + * + * This function receives the detected markers and returns the pose of a marker board composed + * by those markers. + * A Board of marker has a single world coordinate system which is defined by the board layout. + * The returned transformation is the one that transforms points from the board coordinate system + * to the camera coordinate system. + * Input markers that are not included in the board layout are ignored. + * The function returns the number of markers from the input employed for the board pose estimation. + * Note that returning a 0 means the pose has not been estimated. + */ +CV_EXPORTS_W int estimatePoseBoard(InputArrayOfArrays corners, InputArray ids, const Ptr &board, + InputArray cameraMatrix, InputArray distCoeffs, OutputArray rvec, + OutputArray tvec); + + + + +/** + * @brief Refind not detected markers based on the already detected and the board layout + * + * @param image input image + * @param board layout of markers in the board. + * @param detectedCorners vector of already detected marker corners. + * @param detectedIds vector of already detected marker identifiers. + * @param rejectedCorners vector of rejected candidates during the marker detection process. + * @param cameraMatrix optional input 3x3 floating-point camera matrix + * \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ + * @param distCoeffs optional vector of distortion coefficients + * \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements + * @param minRepDistance minimum distance between the corners of the rejected candidate and the + * reprojected marker in order to consider it as a correspondence. + * @param errorCorrectionRate rate of allowed erroneous bits respect to the error correction + * capability of the used dictionary. -1 ignores the error correction step. + * @param checkAllOrders Consider the four posible corner orders in the rejectedCorners array. + * If it set to false, only the provided corner order is considered (default true). + * @param recoveredIdxs Optional array to returns the indexes of the recovered candidates in the + * original rejectedCorners array. + * @param parameters marker detection parameters + * + * This function tries to find markers that were not detected in the basic detecMarkers function. + * First, based on the current detected marker and the board layout, the function interpolates + * the position of the missing markers. Then it tries to find correspondence between the reprojected + * markers and the rejected candidates based on the minRepDistance and errorCorrectionRate + * parameters. + * If camera parameters and distortion coefficients are provided, missing markers are reprojected + * using projectPoint function. If not, missing marker projections are interpolated using global + * homography, and all the marker corners in the board must have the same Z coordinate. + */ +CV_EXPORTS_W void refineDetectedMarkers( + InputArray image,const Ptr &board, InputOutputArrayOfArrays detectedCorners, + InputOutputArray detectedIds, InputOutputArrayOfArrays rejectedCorners, + InputArray cameraMatrix = noArray(), InputArray distCoeffs = noArray(), + float minRepDistance = 10.f, float errorCorrectionRate = 3.f, bool checkAllOrders = true, + OutputArray recoveredIdxs = noArray(), const Ptr ¶meters = DetectorParameters::create()); + + + +/** + * @brief Draw detected markers in image + * + * @param image input/output image. It must have 1 or 3 channels. The number of channels is not + * altered. + * @param corners positions of marker corners on input image. + * (e.g std::vector > ). For N detected markers, the dimensions of + * this array should be Nx4. The order of the corners should be clockwise. + * @param ids vector of identifiers for markers in markersCorners . + * Optional, if not provided, ids are not painted. + * @param borderColor color of marker borders. Rest of colors (text color and first corner color) + * are calculated based on this one to improve visualization. + * + * Given an array of detected marker corners and its corresponding ids, this functions draws + * the markers in the image. The marker borders are painted and the markers identifiers if provided. + * Useful for debugging purposes. + */ +CV_EXPORTS_W void drawDetectedMarkers(InputOutputArray image, InputArrayOfArrays corners, + InputArray ids = noArray(), + Scalar borderColor = Scalar(0, 255, 0)); + + + +/** + * @brief Draw coordinate system axis from pose estimation + * + * @param image input/output image. It must have 1 or 3 channels. The number of channels is not + * altered. + * @param cameraMatrix input 3x3 floating-point camera matrix + * \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ + * @param distCoeffs vector of distortion coefficients + * \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements + * @param rvec rotation vector of the coordinate system that will be drawn. (@sa Rodrigues). + * @param tvec translation vector of the coordinate system that will be drawn. + * @param length length of the painted axis in the same unit than tvec (usually in meters) + * + * Given the pose estimation of a marker or board, this function draws the axis of the world + * coordinate system, i.e. the system centered on the marker/board. Useful for debugging purposes. + */ +CV_EXPORTS_W void drawAxis(InputOutputArray image, InputArray cameraMatrix, InputArray distCoeffs, + InputArray rvec, InputArray tvec, float length); + + + +/** + * @brief Draw a canonical marker image + * + * @param dictionary dictionary of markers indicating the type of markers + * @param id identifier of the marker that will be returned. It has to be a valid id + * in the specified dictionary. + * @param sidePixels size of the image in pixels + * @param img output image with the marker + * @param borderBits width of the marker border. + * + * This function returns a marker image in its canonical form (i.e. ready to be printed) + */ +CV_EXPORTS_W void drawMarker(const Ptr &dictionary, int id, int sidePixels, OutputArray img, + int borderBits = 1); + + + +/** + * @brief Draw a planar board + * @sa _drawPlanarBoardImpl + * + * @param board layout of the board that will be drawn. The board should be planar, + * z coordinate is ignored + * @param outSize size of the output image in pixels. + * @param img output image with the board. The size of this image will be outSize + * and the board will be on the center, keeping the board proportions. + * @param marginSize minimum margins (in pixels) of the board in the output image + * @param borderBits width of the marker borders. + * + * This function return the image of a planar board, ready to be printed. It assumes + * the Board layout specified is planar by ignoring the z coordinates of the object points. + */ +CV_EXPORTS_W void drawPlanarBoard(const Ptr &board, Size outSize, OutputArray img, + int marginSize = 0, int borderBits = 1); + + + +/** + * @brief Implementation of drawPlanarBoard that accepts a raw Board pointer. + */ +void _drawPlanarBoardImpl(Board *board, Size outSize, OutputArray img, + int marginSize = 0, int borderBits = 1); + + + +/** + * @brief Calibrate a camera using aruco markers + * + * @param corners vector of detected marker corners in all frames. + * The corners should have the same format returned by detectMarkers (see #detectMarkers). + * @param ids list of identifiers for each marker in corners + * @param counter number of markers in each frame so that corners and ids can be split + * @param board Marker Board layout + * @param imageSize Size of the image used only to initialize the intrinsic camera matrix. + * @param cameraMatrix Output 3x3 floating-point camera matrix + * \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If CV\_CALIB\_USE\_INTRINSIC\_GUESS + * and/or CV_CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be + * initialized before calling the function. + * @param distCoeffs Output vector of distortion coefficients + * \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements + * @param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each board view + * (e.g. std::vector>). That is, each k-th rotation vector together with the corresponding + * k-th translation vector (see the next output parameter description) brings the board pattern + * from the model coordinate space (in which object points are specified) to the world coordinate + * space, that is, a real position of the board pattern in the k-th pattern view (k=0.. *M* -1). + * @param tvecs Output vector of translation vectors estimated for each pattern view. + * @param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic parameters. + * Order of deviations values: + * \f$(f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3, + * s_4, \tau_x, \tau_y)\f$ If one of parameters is not estimated, it's deviation is equals to zero. + * @param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic parameters. + * Order of deviations values: \f$(R_1, T_1, \dotsc , R_M, T_M)\f$ where M is number of pattern views, + * \f$R_i, T_i\f$ are concatenated 1x3 vectors. + * @param perViewErrors Output vector of average re-projection errors estimated for each pattern view. + * @param flags flags Different flags for the calibration process (see #calibrateCamera for details). + * @param criteria Termination criteria for the iterative optimization algorithm. + * + * This function calibrates a camera using an Aruco Board. The function receives a list of + * detected markers from several views of the Board. The process is similar to the chessboard + * calibration in calibrateCamera(). The function returns the final re-projection error. + */ +CV_EXPORTS_AS(calibrateCameraArucoExtended) double calibrateCameraAruco( + InputArrayOfArrays corners, InputArray ids, InputArray counter, const Ptr &board, + Size imageSize, InputOutputArray cameraMatrix, InputOutputArray distCoeffs, + OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, + OutputArray stdDeviationsIntrinsics, OutputArray stdDeviationsExtrinsics, + OutputArray perViewErrors, int flags = 0, + TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON)); + + +/** @brief It's the same function as #calibrateCameraAruco but without calibration error estimation. + */ +CV_EXPORTS_W double calibrateCameraAruco( + InputArrayOfArrays corners, InputArray ids, InputArray counter, const Ptr &board, + Size imageSize, InputOutputArray cameraMatrix, InputOutputArray distCoeffs, + OutputArrayOfArrays rvecs = noArray(), OutputArrayOfArrays tvecs = noArray(), int flags = 0, + TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON)); + + +//! @} +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/aruco/charuco.hpp b/thirdparty1/linux/include/opencv2/aruco/charuco.hpp new file mode 100644 index 0000000..7be82ed --- /dev/null +++ b/thirdparty1/linux/include/opencv2/aruco/charuco.hpp @@ -0,0 +1,341 @@ +/* +By downloading, copying, installing or using the software you agree to this +license. If you do not agree to this license, do not download, install, +copy or use the software. + + License Agreement + For Open Source Computer Vision Library + (3-clause BSD License) + +Copyright (C) 2013, OpenCV Foundation, all rights reserved. +Third party copyrights are property of their respective owners. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + + * Neither the names of the copyright holders nor the names of the contributors + may be used to endorse or promote products derived from this software + without specific prior written permission. + +This software is provided by the copyright holders and contributors "as is" and +any express or implied warranties, including, but not limited to, the implied +warranties of merchantability and fitness for a particular purpose are +disclaimed. In no event shall copyright holders or contributors be liable for +any direct, indirect, incidental, special, exemplary, or consequential damages +(including, but not limited to, procurement of substitute goods or services; +loss of use, data, or profits; or business interruption) however caused +and on any theory of liability, whether in contract, strict liability, +or tort (including negligence or otherwise) arising in any way out of +the use of this software, even if advised of the possibility of such damage. +*/ + +#ifndef __OPENCV_CHARUCO_HPP__ +#define __OPENCV_CHARUCO_HPP__ + +#include +#include +#include + + +namespace cv { +namespace aruco { + +//! @addtogroup aruco +//! @{ + + +/** + * @brief ChArUco board + * Specific class for ChArUco boards. A ChArUco board is a planar board where the markers are placed + * inside the white squares of a chessboard. The benefits of ChArUco boards is that they provide + * both, ArUco markers versatility and chessboard corner precision, which is important for + * calibration and pose estimation. + * This class also allows the easy creation and drawing of ChArUco boards. + */ +class CV_EXPORTS_W CharucoBoard : public Board { + + public: + // vector of chessboard 3D corners precalculated + CV_PROP std::vector< Point3f > chessboardCorners; + + // for each charuco corner, nearest marker id and nearest marker corner id of each marker + CV_PROP std::vector< std::vector< int > > nearestMarkerIdx; + CV_PROP std::vector< std::vector< int > > nearestMarkerCorners; + + /** + * @brief Draw a ChArUco board + * + * @param outSize size of the output image in pixels. + * @param img output image with the board. The size of this image will be outSize + * and the board will be on the center, keeping the board proportions. + * @param marginSize minimum margins (in pixels) of the board in the output image + * @param borderBits width of the marker borders. + * + * This function return the image of the ChArUco board, ready to be printed. + */ + CV_WRAP void draw(Size outSize, OutputArray img, int marginSize = 0, int borderBits = 1); + + + /** + * @brief Create a CharucoBoard object + * + * @param squaresX number of chessboard squares in X direction + * @param squaresY number of chessboard squares in Y direction + * @param squareLength chessboard square side length (normally in meters) + * @param markerLength marker side length (same unit than squareLength) + * @param dictionary dictionary of markers indicating the type of markers. + * The first markers in the dictionary are used to fill the white chessboard squares. + * @return the output CharucoBoard object + * + * This functions creates a CharucoBoard object given the number of squares in each direction + * and the size of the markers and chessboard squares. + */ + CV_WRAP static Ptr create(int squaresX, int squaresY, float squareLength, + float markerLength, const Ptr &dictionary); + + /** + * + */ + CV_WRAP Size getChessboardSize() const { return Size(_squaresX, _squaresY); } + + /** + * + */ + CV_WRAP float getSquareLength() const { return _squareLength; } + + /** + * + */ + CV_WRAP float getMarkerLength() const { return _markerLength; } + + private: + void _getNearestMarkerCorners(); + + // number of markers in X and Y directions + int _squaresX, _squaresY; + + // size of chessboard squares side (normally in meters) + float _squareLength; + + // marker side lenght (normally in meters) + float _markerLength; +}; + + + + +/** + * @brief Interpolate position of ChArUco board corners + * @param markerCorners vector of already detected markers corners. For each marker, its four + * corners are provided, (e.g std::vector > ). For N detected markers, the + * dimensions of this array should be Nx4. The order of the corners should be clockwise. + * @param markerIds list of identifiers for each marker in corners + * @param image input image necesary for corner refinement. Note that markers are not detected and + * should be sent in corners and ids parameters. + * @param board layout of ChArUco board. + * @param charucoCorners interpolated chessboard corners + * @param charucoIds interpolated chessboard corners identifiers + * @param cameraMatrix optional 3x3 floating-point camera matrix + * \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ + * @param distCoeffs optional vector of distortion coefficients + * \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements + * @param minMarkers number of adjacent markers that must be detected to return a charuco corner + * + * This function receives the detected markers and returns the 2D position of the chessboard corners + * from a ChArUco board using the detected Aruco markers. If camera parameters are provided, + * the process is based in an approximated pose estimation, else it is based on local homography. + * Only visible corners are returned. For each corner, its corresponding identifier is + * also returned in charucoIds. + * The function returns the number of interpolated corners. + */ +CV_EXPORTS_W int interpolateCornersCharuco(InputArrayOfArrays markerCorners, InputArray markerIds, + InputArray image, const Ptr &board, + OutputArray charucoCorners, OutputArray charucoIds, + InputArray cameraMatrix = noArray(), + InputArray distCoeffs = noArray(), int minMarkers = 2); + + + + +/** + * @brief Pose estimation for a ChArUco board given some of their corners + * @param charucoCorners vector of detected charuco corners + * @param charucoIds list of identifiers for each corner in charucoCorners + * @param board layout of ChArUco board. + * @param cameraMatrix input 3x3 floating-point camera matrix + * \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ + * @param distCoeffs vector of distortion coefficients + * \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements + * @param rvec Output vector (e.g. cv::Mat) corresponding to the rotation vector of the board + * (@sa Rodrigues). + * @param tvec Output vector (e.g. cv::Mat) corresponding to the translation vector of the board. + * + * This function estimates a Charuco board pose from some detected corners. + * The function checks if the input corners are enough and valid to perform pose estimation. + * If pose estimation is valid, returns true, else returns false. + */ +CV_EXPORTS_W bool estimatePoseCharucoBoard(InputArray charucoCorners, InputArray charucoIds, + const Ptr &board, InputArray cameraMatrix, + InputArray distCoeffs, OutputArray rvec, OutputArray tvec); + + + + +/** + * @brief Draws a set of Charuco corners + * @param image input/output image. It must have 1 or 3 channels. The number of channels is not + * altered. + * @param charucoCorners vector of detected charuco corners + * @param charucoIds list of identifiers for each corner in charucoCorners + * @param cornerColor color of the square surrounding each corner + * + * This function draws a set of detected Charuco corners. If identifiers vector is provided, it also + * draws the id of each corner. + */ +CV_EXPORTS_W void drawDetectedCornersCharuco(InputOutputArray image, InputArray charucoCorners, + InputArray charucoIds = noArray(), + Scalar cornerColor = Scalar(255, 0, 0)); + + + +/** + * @brief Calibrate a camera using Charuco corners + * + * @param charucoCorners vector of detected charuco corners per frame + * @param charucoIds list of identifiers for each corner in charucoCorners per frame + * @param board Marker Board layout + * @param imageSize input image size + * @param cameraMatrix Output 3x3 floating-point camera matrix + * \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If CV\_CALIB\_USE\_INTRINSIC\_GUESS + * and/or CV_CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be + * initialized before calling the function. + * @param distCoeffs Output vector of distortion coefficients + * \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6],[s_1, s_2, s_3, s_4]])\f$ of 4, 5, 8 or 12 elements + * @param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each board view + * (e.g. std::vector>). That is, each k-th rotation vector together with the corresponding + * k-th translation vector (see the next output parameter description) brings the board pattern + * from the model coordinate space (in which object points are specified) to the world coordinate + * space, that is, a real position of the board pattern in the k-th pattern view (k=0.. *M* -1). + * @param tvecs Output vector of translation vectors estimated for each pattern view. + * @param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic parameters. + * Order of deviations values: + * \f$(f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3, + * s_4, \tau_x, \tau_y)\f$ If one of parameters is not estimated, it's deviation is equals to zero. + * @param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic parameters. + * Order of deviations values: \f$(R_1, T_1, \dotsc , R_M, T_M)\f$ where M is number of pattern views, + * \f$R_i, T_i\f$ are concatenated 1x3 vectors. + * @param perViewErrors Output vector of average re-projection errors estimated for each pattern view. + * @param flags flags Different flags for the calibration process (see #calibrateCamera for details). + * @param criteria Termination criteria for the iterative optimization algorithm. + * + * This function calibrates a camera using a set of corners of a Charuco Board. The function + * receives a list of detected corners and its identifiers from several views of the Board. + * The function returns the final re-projection error. + */ +CV_EXPORTS_AS(calibrateCameraCharucoExtended) double calibrateCameraCharuco( + InputArrayOfArrays charucoCorners, InputArrayOfArrays charucoIds, const Ptr &board, + Size imageSize, InputOutputArray cameraMatrix, InputOutputArray distCoeffs, + OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, + OutputArray stdDeviationsIntrinsics, OutputArray stdDeviationsExtrinsics, + OutputArray perViewErrors, int flags = 0, + TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON)); + +/** @brief It's the same function as #calibrateCameraCharuco but without calibration error estimation. +*/ +CV_EXPORTS_W double calibrateCameraCharuco( + InputArrayOfArrays charucoCorners, InputArrayOfArrays charucoIds, const Ptr &board, + Size imageSize, InputOutputArray cameraMatrix, InputOutputArray distCoeffs, + OutputArrayOfArrays rvecs = noArray(), OutputArrayOfArrays tvecs = noArray(), int flags = 0, + TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON)); + + + +/** + * @brief Detect ChArUco Diamond markers + * + * @param image input image necessary for corner subpixel. + * @param markerCorners list of detected marker corners from detectMarkers function. + * @param markerIds list of marker ids in markerCorners. + * @param squareMarkerLengthRate rate between square and marker length: + * squareMarkerLengthRate = squareLength/markerLength. The real units are not necessary. + * @param diamondCorners output list of detected diamond corners (4 corners per diamond). The order + * is the same than in marker corners: top left, top right, bottom right and bottom left. Similar + * format than the corners returned by detectMarkers (e.g std::vector > ). + * @param diamondIds ids of the diamonds in diamondCorners. The id of each diamond is in fact of + * type Vec4i, so each diamond has 4 ids, which are the ids of the aruco markers composing the + * diamond. + * @param cameraMatrix Optional camera calibration matrix. + * @param distCoeffs Optional camera distortion coefficients. + * + * This function detects Diamond markers from the previous detected ArUco markers. The diamonds + * are returned in the diamondCorners and diamondIds parameters. If camera calibration parameters + * are provided, the diamond search is based on reprojection. If not, diamond search is based on + * homography. Homography is faster than reprojection but can slightly reduce the detection rate. + */ +CV_EXPORTS_W void detectCharucoDiamond(InputArray image, InputArrayOfArrays markerCorners, + InputArray markerIds, float squareMarkerLengthRate, + OutputArrayOfArrays diamondCorners, OutputArray diamondIds, + InputArray cameraMatrix = noArray(), + InputArray distCoeffs = noArray()); + + + +/** + * @brief Draw a set of detected ChArUco Diamond markers + * + * @param image input/output image. It must have 1 or 3 channels. The number of channels is not + * altered. + * @param diamondCorners positions of diamond corners in the same format returned by + * detectCharucoDiamond(). (e.g std::vector > ). For N detected markers, + * the dimensions of this array should be Nx4. The order of the corners should be clockwise. + * @param diamondIds vector of identifiers for diamonds in diamondCorners, in the same format + * returned by detectCharucoDiamond() (e.g. std::vector). + * Optional, if not provided, ids are not painted. + * @param borderColor color of marker borders. Rest of colors (text color and first corner color) + * are calculated based on this one. + * + * Given an array of detected diamonds, this functions draws them in the image. The marker borders + * are painted and the markers identifiers if provided. + * Useful for debugging purposes. + */ +CV_EXPORTS_W void drawDetectedDiamonds(InputOutputArray image, InputArrayOfArrays diamondCorners, + InputArray diamondIds = noArray(), + Scalar borderColor = Scalar(0, 0, 255)); + + + + +/** + * @brief Draw a ChArUco Diamond marker + * + * @param dictionary dictionary of markers indicating the type of markers. + * @param ids list of 4 ids for each ArUco marker in the ChArUco marker. + * @param squareLength size of the chessboard squares in pixels. + * @param markerLength size of the markers in pixels. + * @param img output image with the marker. The size of this image will be + * 3*squareLength + 2*marginSize,. + * @param marginSize minimum margins (in pixels) of the marker in the output image + * @param borderBits width of the marker borders. + * + * This function return the image of a ChArUco marker, ready to be printed. + */ +// TODO cannot be exported yet; conversion from/to Vec4i is not wrapped in core +CV_EXPORTS void drawCharucoDiamond(const Ptr &dictionary, Vec4i ids, int squareLength, + int markerLength, OutputArray img, int marginSize = 0, + int borderBits = 1); + + + + +//! @} +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/aruco/dictionary.hpp b/thirdparty1/linux/include/opencv2/aruco/dictionary.hpp new file mode 100644 index 0000000..b94ee25 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/aruco/dictionary.hpp @@ -0,0 +1,205 @@ +/* +By downloading, copying, installing or using the software you agree to this +license. If you do not agree to this license, do not download, install, +copy or use the software. + + License Agreement + For Open Source Computer Vision Library + (3-clause BSD License) + +Copyright (C) 2013, OpenCV Foundation, all rights reserved. +Third party copyrights are property of their respective owners. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + + * Neither the names of the copyright holders nor the names of the contributors + may be used to endorse or promote products derived from this software + without specific prior written permission. + +This software is provided by the copyright holders and contributors "as is" and +any express or implied warranties, including, but not limited to, the implied +warranties of merchantability and fitness for a particular purpose are +disclaimed. In no event shall copyright holders or contributors be liable for +any direct, indirect, incidental, special, exemplary, or consequential damages +(including, but not limited to, procurement of substitute goods or services; +loss of use, data, or profits; or business interruption) however caused +and on any theory of liability, whether in contract, strict liability, +or tort (including negligence or otherwise) arising in any way out of +the use of this software, even if advised of the possibility of such damage. +*/ + +#ifndef __OPENCV_DICTIONARY_HPP__ +#define __OPENCV_DICTIONARY_HPP__ + +#include + +namespace cv { +namespace aruco { + +//! @addtogroup aruco +//! @{ + + +/** + * @brief Dictionary/Set of markers. It contains the inner codification + * + * bytesList contains the marker codewords where + * - bytesList.rows is the dictionary size + * - each marker is encoded using `nbytes = ceil(markerSize*markerSize/8.)` + * - each row contains all 4 rotations of the marker, so its length is `4*nbytes` + * + * `bytesList.ptr(i)[k*nbytes + j]` is then the j-th byte of i-th marker, in its k-th rotation. + */ +class CV_EXPORTS_W Dictionary { + + public: + CV_PROP Mat bytesList; // marker code information + CV_PROP int markerSize; // number of bits per dimension + CV_PROP int maxCorrectionBits; // maximum number of bits that can be corrected + + + /** + */ + Dictionary(const Mat &_bytesList = Mat(), int _markerSize = 0, int _maxcorr = 0); + + + /** + Dictionary(const Dictionary &_dictionary); + */ + + + /** + */ + Dictionary(const Ptr &_dictionary); + + + /** + * @see generateCustomDictionary + */ + CV_WRAP_AS(create) static Ptr create(int nMarkers, int markerSize); + + + /** + * @see generateCustomDictionary + */ + CV_WRAP_AS(create_from) static Ptr create(int nMarkers, int markerSize, + const Ptr &baseDictionary); + + /** + * @see getPredefinedDictionary + */ + CV_WRAP static Ptr get(int dict); + + /** + * @brief Given a matrix of bits. Returns whether if marker is identified or not. + * It returns by reference the correct id (if any) and the correct rotation + */ + bool identify(const Mat &onlyBits, int &idx, int &rotation, double maxCorrectionRate) const; + + /** + * @brief Returns the distance of the input bits to the specific id. If allRotations is true, + * the four posible bits rotation are considered + */ + int getDistanceToId(InputArray bits, int id, bool allRotations = true) const; + + + /** + * @brief Draw a canonical marker image + */ + CV_WRAP void drawMarker(int id, int sidePixels, OutputArray _img, int borderBits = 1) const; + + + /** + * @brief Transform matrix of bits to list of bytes in the 4 rotations + */ + static Mat getByteListFromBits(const Mat &bits); + + + /** + * @brief Transform list of bytes to matrix of bits + */ + static Mat getBitsFromByteList(const Mat &byteList, int markerSize); +}; + + + + +/** + * @brief Predefined markers dictionaries/sets + * Each dictionary indicates the number of bits and the number of markers contained + * - DICT_ARUCO_ORIGINAL: standard ArUco Library Markers. 1024 markers, 5x5 bits, 0 minimum + distance + */ +enum CV_EXPORTS_W_SIMPLE PREDEFINED_DICTIONARY_NAME { + DICT_4X4_50 = 0, + DICT_4X4_100, + DICT_4X4_250, + DICT_4X4_1000, + DICT_5X5_50, + DICT_5X5_100, + DICT_5X5_250, + DICT_5X5_1000, + DICT_6X6_50, + DICT_6X6_100, + DICT_6X6_250, + DICT_6X6_1000, + DICT_7X7_50, + DICT_7X7_100, + DICT_7X7_250, + DICT_7X7_1000, + DICT_ARUCO_ORIGINAL +}; + + +/** + * @brief Returns one of the predefined dictionaries defined in PREDEFINED_DICTIONARY_NAME + */ +CV_EXPORTS Ptr getPredefinedDictionary(PREDEFINED_DICTIONARY_NAME name); + + +/** + * @brief Returns one of the predefined dictionaries referenced by DICT_*. + */ +CV_EXPORTS_W Ptr getPredefinedDictionary(int dict); + + +/** + * @see generateCustomDictionary + */ +CV_EXPORTS_AS(custom_dictionary) Ptr generateCustomDictionary( + int nMarkers, + int markerSize); + + +/** + * @brief Generates a new customizable marker dictionary + * + * @param nMarkers number of markers in the dictionary + * @param markerSize number of bits per dimension of each markers + * @param baseDictionary Include the markers in this dictionary at the beginning (optional) + * + * This function creates a new dictionary composed by nMarkers markers and each markers composed + * by markerSize x markerSize bits. If baseDictionary is provided, its markers are directly + * included and the rest are generated based on them. If the size of baseDictionary is higher + * than nMarkers, only the first nMarkers in baseDictionary are taken and no new marker is added. + */ +CV_EXPORTS_AS(custom_dictionary_from) Ptr generateCustomDictionary( + int nMarkers, + int markerSize, + const Ptr &baseDictionary); + + + +//! @} +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/bgsegm.hpp b/thirdparty1/linux/include/opencv2/bgsegm.hpp new file mode 100644 index 0000000..5a4ae3f --- /dev/null +++ b/thirdparty1/linux/include/opencv2/bgsegm.hpp @@ -0,0 +1,194 @@ +/* +By downloading, copying, installing or using the software you agree to this +license. If you do not agree to this license, do not download, install, +copy or use the software. + + + License Agreement + For Open Source Computer Vision Library + (3-clause BSD License) + +Copyright (C) 2013, OpenCV Foundation, all rights reserved. +Third party copyrights are property of their respective owners. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + + * Neither the names of the copyright holders nor the names of the contributors + may be used to endorse or promote products derived from this software + without specific prior written permission. + +This software is provided by the copyright holders and contributors "as is" and +any express or implied warranties, including, but not limited to, the implied +warranties of merchantability and fitness for a particular purpose are +disclaimed. In no event shall copyright holders or contributors be liable for +any direct, indirect, incidental, special, exemplary, or consequential damages +(including, but not limited to, procurement of substitute goods or services; +loss of use, data, or profits; or business interruption) however caused +and on any theory of liability, whether in contract, strict liability, +or tort (including negligence or otherwise) arising in any way out of +the use of this software, even if advised of the possibility of such damage. +*/ + +#ifndef __OPENCV_BGSEGM_HPP__ +#define __OPENCV_BGSEGM_HPP__ + +#include "opencv2/video.hpp" + +#ifdef __cplusplus + +/** @defgroup bgsegm Improved Background-Foreground Segmentation Methods +*/ + +namespace cv +{ +namespace bgsegm +{ + +//! @addtogroup bgsegm +//! @{ + +/** @brief Gaussian Mixture-based Background/Foreground Segmentation Algorithm. + +The class implements the algorithm described in @cite KB2001 . + */ +class CV_EXPORTS_W BackgroundSubtractorMOG : public BackgroundSubtractor +{ +public: + CV_WRAP virtual int getHistory() const = 0; + CV_WRAP virtual void setHistory(int nframes) = 0; + + CV_WRAP virtual int getNMixtures() const = 0; + CV_WRAP virtual void setNMixtures(int nmix) = 0; + + CV_WRAP virtual double getBackgroundRatio() const = 0; + CV_WRAP virtual void setBackgroundRatio(double backgroundRatio) = 0; + + CV_WRAP virtual double getNoiseSigma() const = 0; + CV_WRAP virtual void setNoiseSigma(double noiseSigma) = 0; +}; + +/** @brief Creates mixture-of-gaussian background subtractor + +@param history Length of the history. +@param nmixtures Number of Gaussian mixtures. +@param backgroundRatio Background ratio. +@param noiseSigma Noise strength (standard deviation of the brightness or each color channel). 0 +means some automatic value. + */ +CV_EXPORTS_W Ptr + createBackgroundSubtractorMOG(int history=200, int nmixtures=5, + double backgroundRatio=0.7, double noiseSigma=0); + + +/** @brief Background Subtractor module based on the algorithm given in @cite Gold2012 . + + Takes a series of images and returns a sequence of mask (8UC1) + images of the same size, where 255 indicates Foreground and 0 represents Background. + This class implements an algorithm described in "Visual Tracking of Human Visitors under + Variable-Lighting Conditions for a Responsive Audio Art Installation," A. Godbehere, + A. Matsukawa, K. Goldberg, American Control Conference, Montreal, June 2012. + */ +class CV_EXPORTS_W BackgroundSubtractorGMG : public BackgroundSubtractor +{ +public: + /** @brief Returns total number of distinct colors to maintain in histogram. + */ + CV_WRAP virtual int getMaxFeatures() const = 0; + /** @brief Sets total number of distinct colors to maintain in histogram. + */ + CV_WRAP virtual void setMaxFeatures(int maxFeatures) = 0; + + /** @brief Returns the learning rate of the algorithm. + + It lies between 0.0 and 1.0. It determines how quickly features are "forgotten" from + histograms. + */ + CV_WRAP virtual double getDefaultLearningRate() const = 0; + /** @brief Sets the learning rate of the algorithm. + */ + CV_WRAP virtual void setDefaultLearningRate(double lr) = 0; + + /** @brief Returns the number of frames used to initialize background model. + */ + CV_WRAP virtual int getNumFrames() const = 0; + /** @brief Sets the number of frames used to initialize background model. + */ + CV_WRAP virtual void setNumFrames(int nframes) = 0; + + /** @brief Returns the parameter used for quantization of color-space. + + It is the number of discrete levels in each channel to be used in histograms. + */ + CV_WRAP virtual int getQuantizationLevels() const = 0; + /** @brief Sets the parameter used for quantization of color-space + */ + CV_WRAP virtual void setQuantizationLevels(int nlevels) = 0; + + /** @brief Returns the prior probability that each individual pixel is a background pixel. + */ + CV_WRAP virtual double getBackgroundPrior() const = 0; + /** @brief Sets the prior probability that each individual pixel is a background pixel. + */ + CV_WRAP virtual void setBackgroundPrior(double bgprior) = 0; + + /** @brief Returns the kernel radius used for morphological operations + */ + CV_WRAP virtual int getSmoothingRadius() const = 0; + /** @brief Sets the kernel radius used for morphological operations + */ + CV_WRAP virtual void setSmoothingRadius(int radius) = 0; + + /** @brief Returns the value of decision threshold. + + Decision value is the value above which pixel is determined to be FG. + */ + CV_WRAP virtual double getDecisionThreshold() const = 0; + /** @brief Sets the value of decision threshold. + */ + CV_WRAP virtual void setDecisionThreshold(double thresh) = 0; + + /** @brief Returns the status of background model update + */ + CV_WRAP virtual bool getUpdateBackgroundModel() const = 0; + /** @brief Sets the status of background model update + */ + CV_WRAP virtual void setUpdateBackgroundModel(bool update) = 0; + + /** @brief Returns the minimum value taken on by pixels in image sequence. Usually 0. + */ + CV_WRAP virtual double getMinVal() const = 0; + /** @brief Sets the minimum value taken on by pixels in image sequence. + */ + CV_WRAP virtual void setMinVal(double val) = 0; + + /** @brief Returns the maximum value taken on by pixels in image sequence. e.g. 1.0 or 255. + */ + CV_WRAP virtual double getMaxVal() const = 0; + /** @brief Sets the maximum value taken on by pixels in image sequence. + */ + CV_WRAP virtual void setMaxVal(double val) = 0; +}; + +/** @brief Creates a GMG Background Subtractor + +@param initializationFrames number of frames used to initialize the background models. +@param decisionThreshold Threshold value, above which it is marked foreground, else background. + */ +CV_EXPORTS_W Ptr createBackgroundSubtractorGMG(int initializationFrames=120, + double decisionThreshold=0.8); + +//! @} + +} +} + +#endif +#endif diff --git a/thirdparty1/linux/include/opencv2/bioinspired.hpp b/thirdparty1/linux/include/opencv2/bioinspired.hpp new file mode 100644 index 0000000..9c7e23b --- /dev/null +++ b/thirdparty1/linux/include/opencv2/bioinspired.hpp @@ -0,0 +1,60 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef __OPENCV_BIOINSPIRED_HPP__ +#define __OPENCV_BIOINSPIRED_HPP__ + +#include "opencv2/core.hpp" +#include "opencv2/bioinspired/retina.hpp" +#include "opencv2/bioinspired/retinafasttonemapping.hpp" +#include "opencv2/bioinspired/transientareassegmentationmodule.hpp" + +/** @defgroup bioinspired Biologically inspired vision models and derivated tools + +The module provides biological visual systems models (human visual system and others). It also +provides derivated objects that take advantage of those bio-inspired models. + +@ref bioinspired_retina + +*/ + +#endif diff --git a/thirdparty1/linux/include/opencv2/bioinspired/bioinspired.hpp b/thirdparty1/linux/include/opencv2/bioinspired/bioinspired.hpp new file mode 100644 index 0000000..40be285 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/bioinspired/bioinspired.hpp @@ -0,0 +1,48 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifdef __OPENCV_BUILD +#error this is a compatibility header which should not be used inside the OpenCV library +#endif + +#include "opencv2/bioinspired.hpp" diff --git a/thirdparty1/linux/include/opencv2/bioinspired/retina.hpp b/thirdparty1/linux/include/opencv2/bioinspired/retina.hpp new file mode 100644 index 0000000..583599c --- /dev/null +++ b/thirdparty1/linux/include/opencv2/bioinspired/retina.hpp @@ -0,0 +1,456 @@ +/*#****************************************************************************** + ** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. + ** + ** By downloading, copying, installing or using the software you agree to this license. + ** If you do not agree to this license, do not download, install, + ** copy or use the software. + ** + ** + ** bioinspired : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. + ** Use: extract still images & image sequences features, from contours details to motion spatio-temporal features, etc. for high level visual scene analysis. Also contribute to image enhancement/compression such as tone mapping. + ** + ** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications) + ** + ** Creation - enhancement process 2007-2015 + ** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France + ** + ** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr). + ** Refer to the following research paper for more information: + ** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011 + ** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book: + ** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891. + ** + ** The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author : + ** _take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper: + ** ====> B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007 + ** _take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions. + ** ====> more informations in the above cited Jeanny Heraults's book. + ** + ** License Agreement + ** For Open Source Computer Vision Library + ** + ** Copyright (C) 2000-2008, Intel Corporation, all rights reserved. + ** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. + ** + ** For Human Visual System tools (bioinspired) + ** Copyright (C) 2007-2015, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved. + ** + ** Third party copyrights are property of their respective owners. + ** + ** Redistribution and use in source and binary forms, with or without modification, + ** are permitted provided that the following conditions are met: + ** + ** * Redistributions of source code must retain the above copyright notice, + ** this list of conditions and the following disclaimer. + ** + ** * Redistributions in binary form must reproduce the above copyright notice, + ** this list of conditions and the following disclaimer in the documentation + ** and/or other materials provided with the distribution. + ** + ** * The name of the copyright holders may not be used to endorse or promote products + ** derived from this software without specific prior written permission. + ** + ** This software is provided by the copyright holders and contributors "as is" and + ** any express or implied warranties, including, but not limited to, the implied + ** warranties of merchantability and fitness for a particular purpose are disclaimed. + ** In no event shall the Intel Corporation or contributors be liable for any direct, + ** indirect, incidental, special, exemplary, or consequential damages + ** (including, but not limited to, procurement of substitute goods or services; + ** loss of use, data, or profits; or business interruption) however caused + ** and on any theory of liability, whether in contract, strict liability, + ** or tort (including negligence or otherwise) arising in any way out of + ** the use of this software, even if advised of the possibility of such damage. + *******************************************************************************/ + +#ifndef __OPENCV_BIOINSPIRED_RETINA_HPP__ +#define __OPENCV_BIOINSPIRED_RETINA_HPP__ + +/** +@file +@date Jul 19, 2011 +@author Alexandre Benoit +*/ + +#include "opencv2/core.hpp" // for all OpenCV core functionalities access, including cv::Exception support + + +namespace cv{ +namespace bioinspired{ + +//! @addtogroup bioinspired +//! @{ + +enum { + RETINA_COLOR_RANDOM, //!< each pixel position is either R, G or B in a random choice + RETINA_COLOR_DIAGONAL,//!< color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR... + RETINA_COLOR_BAYER//!< standard bayer sampling +}; + + +/** @brief retina model parameters structure + + For better clarity, check explenations on the comments of methods : setupOPLandIPLParvoChannel and setupIPLMagnoChannel + + Here is the default configuration file of the retina module. It gives results such as the first + retina output shown on the top of this page. + + @code{xml} + + + + 1 + 1 + 7.5e-01 + 9.0e-01 + 5.3e-01 + 0.01 + 0.5 + 7. + 7.5e-01 + + 1 + 0. + 0. + 7. + 2.0e+00 + 9.5e-01 + 0. + 7. + + @endcode + + Here is the 'realistic" setup used to obtain the second retina output shown on the top of this page. + + @code{xml} + + + + 1 + 1 + 8.9e-01 + 9.0e-01 + 5.3e-01 + 0.3 + 0.5 + 7. + 8.9e-01 + + 1 + 0. + 0. + 7. + 2.0e+00 + 9.5e-01 + 0. + 7. + + @endcode + */ + struct RetinaParameters{ + //! Outer Plexiform Layer (OPL) and Inner Plexiform Layer Parvocellular (IplParvo) parameters + struct OPLandIplParvoParameters{ + OPLandIplParvoParameters():colorMode(true), + normaliseOutput(true), + photoreceptorsLocalAdaptationSensitivity(0.75f), + photoreceptorsTemporalConstant(0.9f), + photoreceptorsSpatialConstant(0.53f), + horizontalCellsGain(0.01f), + hcellsTemporalConstant(0.5f), + hcellsSpatialConstant(7.f), + ganglionCellsSensitivity(0.75f) { } // default setup + bool colorMode, normaliseOutput; + float photoreceptorsLocalAdaptationSensitivity, photoreceptorsTemporalConstant, photoreceptorsSpatialConstant, horizontalCellsGain, hcellsTemporalConstant, hcellsSpatialConstant, ganglionCellsSensitivity; + }; + //! Inner Plexiform Layer Magnocellular channel (IplMagno) + struct IplMagnoParameters{ + IplMagnoParameters(): + normaliseOutput(true), + parasolCells_beta(0.f), + parasolCells_tau(0.f), + parasolCells_k(7.f), + amacrinCellsTemporalCutFrequency(2.0f), + V0CompressionParameter(0.95f), + localAdaptintegration_tau(0.f), + localAdaptintegration_k(7.f) { } // default setup + bool normaliseOutput; + float parasolCells_beta, parasolCells_tau, parasolCells_k, amacrinCellsTemporalCutFrequency, V0CompressionParameter, localAdaptintegration_tau, localAdaptintegration_k; + }; + OPLandIplParvoParameters OPLandIplParvo; + IplMagnoParameters IplMagno; + }; + + + +/** @brief class which allows the Gipsa/Listic Labs model to be used with OpenCV. + +This retina model allows spatio-temporal image processing (applied on still images, video sequences). +As a summary, these are the retina model properties: +- It applies a spectral whithening (mid-frequency details enhancement) +- high frequency spatio-temporal noise reduction +- low frequency luminance to be reduced (luminance range compression) +- local logarithmic luminance compression allows details to be enhanced in low light conditions + +USE : this model can be used basically for spatio-temporal video effects but also for : + _using the getParvo method output matrix : texture analysiswith enhanced signal to noise ratio and enhanced details robust against input images luminance ranges + _using the getMagno method output matrix : motion analysis also with the previously cited properties + +for more information, reer to the following papers : +Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011 +Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891. + +The retina filter includes the research contributions of phd/research collegues from which code has been redrawn by the author : +take a look at the retinacolor.hpp module to discover Brice Chaix de Lavarene color mosaicing/demosaicing and the reference paper: +B. Chaix de Lavarene, D. Alleysson, B. Durette, J. Herault (2007). "Efficient demosaicing through recursive filtering", IEEE International Conference on Image Processing ICIP 2007 +take a look at imagelogpolprojection.hpp to discover retina spatial log sampling which originates from Barthelemy Durette phd with Jeanny Herault. A Retina / V1 cortex projection is also proposed and originates from Jeanny's discussions. +more informations in the above cited Jeanny Heraults's book. + */ +class CV_EXPORTS_W Retina : public Algorithm { + +public: + + + /** @brief Retreive retina input buffer size + @return the retina input buffer size + */ + CV_WRAP virtual Size getInputSize()=0; + + /** @brief Retreive retina output buffer size that can be different from the input if a spatial log + transformation is applied + @return the retina output buffer size + */ + CV_WRAP virtual Size getOutputSize()=0; + + /** @brief Try to open an XML retina parameters file to adjust current retina instance setup + + - if the xml file does not exist, then default setup is applied + - warning, Exceptions are thrown if read XML file is not valid + @param retinaParameterFile the parameters filename + @param applyDefaultSetupOnFailure set to true if an error must be thrown on error + + You can retrieve the current parameters structure using the method Retina::getParameters and update + it before running method Retina::setup. + */ + CV_WRAP virtual void setup(String retinaParameterFile="", const bool applyDefaultSetupOnFailure=true)=0; + + /** @overload + @param fs the open Filestorage which contains retina parameters + @param applyDefaultSetupOnFailure set to true if an error must be thrown on error + */ + virtual void setup(cv::FileStorage &fs, const bool applyDefaultSetupOnFailure=true)=0; + + /** @overload + @param newParameters a parameters structures updated with the new target configuration. + */ + virtual void setup(RetinaParameters newParameters)=0; + + /** + @return the current parameters setup + */ + virtual RetinaParameters getParameters()=0; + + /** @brief Outputs a string showing the used parameters setup + @return a string which contains formated parameters information + */ + CV_WRAP virtual const String printSetup()=0; + + /** @brief Write xml/yml formated parameters information + @param fs the filename of the xml file that will be open and writen with formatted parameters + information + */ + CV_WRAP virtual void write( String fs ) const=0; + + /** @overload */ + virtual void write( FileStorage& fs ) const=0; + + /** @brief Setup the OPL and IPL parvo channels (see biologocal model) + + OPL is referred as Outer Plexiform Layer of the retina, it allows the spatio-temporal filtering + which withens the spectrum and reduces spatio-temporal noise while attenuating global luminance + (low frequency energy) IPL parvo is the OPL next processing stage, it refers to a part of the + Inner Plexiform layer of the retina, it allows high contours sensitivity in foveal vision. See + reference papers for more informations. + for more informations, please have a look at the paper Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011 + @param colorMode specifies if (true) color is processed of not (false) to then processing gray + level image + @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false) + @param photoreceptorsLocalAdaptationSensitivity the photoreceptors sensitivity renage is 0-1 + (more log compression effect when value increases) + @param photoreceptorsTemporalConstant the time constant of the first order low pass filter of + the photoreceptors, use it to cut high temporal frequencies (noise or fast motion), unit is + frames, typical value is 1 frame + @param photoreceptorsSpatialConstant the spatial constant of the first order low pass filter of + the photoreceptors, use it to cut high spatial frequencies (noise or thick contours), unit is + pixels, typical value is 1 pixel + @param horizontalCellsGain gain of the horizontal cells network, if 0, then the mean value of + the output is zero, if the parameter is near 1, then, the luminance is not filtered and is + still reachable at the output, typicall value is 0 + @param HcellsTemporalConstant the time constant of the first order low pass filter of the + horizontal cells, use it to cut low temporal frequencies (local luminance variations), unit is + frames, typical value is 1 frame, as the photoreceptors + @param HcellsSpatialConstant the spatial constant of the first order low pass filter of the + horizontal cells, use it to cut low spatial frequencies (local luminance), unit is pixels, + typical value is 5 pixel, this value is also used for local contrast computing when computing + the local contrast adaptation at the ganglion cells level (Inner Plexiform Layer parvocellular + channel model) + @param ganglionCellsSensitivity the compression strengh of the ganglion cells local adaptation + output, set a value between 0.6 and 1 for best results, a high value increases more the low + value sensitivity... and the output saturates faster, recommended value: 0.7 + */ + CV_WRAP virtual void setupOPLandIPLParvoChannel(const bool colorMode=true, const bool normaliseOutput = true, const float photoreceptorsLocalAdaptationSensitivity=0.7f, const float photoreceptorsTemporalConstant=0.5f, const float photoreceptorsSpatialConstant=0.53f, const float horizontalCellsGain=0.f, const float HcellsTemporalConstant=1.f, const float HcellsSpatialConstant=7.f, const float ganglionCellsSensitivity=0.7f)=0; + + /** @brief Set parameters values for the Inner Plexiform Layer (IPL) magnocellular channel + + this channel processes signals output from OPL processing stage in peripheral vision, it allows + motion information enhancement. It is decorrelated from the details channel. See reference + papers for more details. + + @param normaliseOutput specifies if (true) output is rescaled between 0 and 255 of not (false) + @param parasolCells_beta the low pass filter gain used for local contrast adaptation at the + IPL level of the retina (for ganglion cells local adaptation), typical value is 0 + @param parasolCells_tau the low pass filter time constant used for local contrast adaptation + at the IPL level of the retina (for ganglion cells local adaptation), unit is frame, typical + value is 0 (immediate response) + @param parasolCells_k the low pass filter spatial constant used for local contrast adaptation + at the IPL level of the retina (for ganglion cells local adaptation), unit is pixels, typical + value is 5 + @param amacrinCellsTemporalCutFrequency the time constant of the first order high pass fiter of + the magnocellular way (motion information channel), unit is frames, typical value is 1.2 + @param V0CompressionParameter the compression strengh of the ganglion cells local adaptation + output, set a value between 0.6 and 1 for best results, a high value increases more the low + value sensitivity... and the output saturates faster, recommended value: 0.95 + @param localAdaptintegration_tau specifies the temporal constant of the low pas filter + involved in the computation of the local "motion mean" for the local adaptation computation + @param localAdaptintegration_k specifies the spatial constant of the low pas filter involved + in the computation of the local "motion mean" for the local adaptation computation + */ + CV_WRAP virtual void setupIPLMagnoChannel(const bool normaliseOutput = true, const float parasolCells_beta=0.f, const float parasolCells_tau=0.f, const float parasolCells_k=7.f, const float amacrinCellsTemporalCutFrequency=1.2f, const float V0CompressionParameter=0.95f, const float localAdaptintegration_tau=0.f, const float localAdaptintegration_k=7.f)=0; + + /** @brief Method which allows retina to be applied on an input image, + + after run, encapsulated retina module is ready to deliver its outputs using dedicated + acccessors, see getParvo and getMagno methods + @param inputImage the input Mat image to be processed, can be gray level or BGR coded in any + format (from 8bit to 16bits) + */ + CV_WRAP virtual void run(InputArray inputImage)=0; + + /** @brief Method which processes an image in the aim to correct its luminance correct + backlight problems, enhance details in shadows. + + This method is designed to perform High Dynamic Range image tone mapping (compress \>8bit/pixel + images to 8bit/pixel). This is a simplified version of the Retina Parvocellular model + (simplified version of the run/getParvo methods call) since it does not include the + spatio-temporal filter modelling the Outer Plexiform Layer of the retina that performs spectral + whitening and many other stuff. However, it works great for tone mapping and in a faster way. + + Check the demos and experiments section to see examples and the way to perform tone mapping + using the original retina model and the method. + + @param inputImage the input image to process (should be coded in float format : CV_32F, + CV_32FC1, CV_32F_C3, CV_32F_C4, the 4th channel won't be considered). + @param outputToneMappedImage the output 8bit/channel tone mapped image (CV_8U or CV_8UC3 format). + */ + CV_WRAP virtual void applyFastToneMapping(InputArray inputImage, OutputArray outputToneMappedImage)=0; + + /** @brief Accessor of the details channel of the retina (models foveal vision). + + Warning, getParvoRAW methods return buffers that are not rescaled within range [0;255] while + the non RAW method allows a normalized matrix to be retrieved. + + @param retinaOutput_parvo the output buffer (reallocated if necessary), format can be : + - a Mat, this output is rescaled for standard 8bits image processing use in OpenCV + - RAW methods actually return a 1D matrix (encoding is R1, R2, ... Rn, G1, G2, ..., Gn, B1, + B2, ...Bn), this output is the original retina filter model output, without any + quantification or rescaling. + @see getParvoRAW + */ + CV_WRAP virtual void getParvo(OutputArray retinaOutput_parvo)=0; + + /** @brief Accessor of the details channel of the retina (models foveal vision). + @see getParvo + */ + CV_WRAP virtual void getParvoRAW(OutputArray retinaOutput_parvo)=0; + + /** @brief Accessor of the motion channel of the retina (models peripheral vision). + + Warning, getMagnoRAW methods return buffers that are not rescaled within range [0;255] while + the non RAW method allows a normalized matrix to be retrieved. + @param retinaOutput_magno the output buffer (reallocated if necessary), format can be : + - a Mat, this output is rescaled for standard 8bits image processing use in OpenCV + - RAW methods actually return a 1D matrix (encoding is M1, M2,... Mn), this output is the + original retina filter model output, without any quantification or rescaling. + @see getMagnoRAW + */ + CV_WRAP virtual void getMagno(OutputArray retinaOutput_magno)=0; + + /** @brief Accessor of the motion channel of the retina (models peripheral vision). + @see getMagno + */ + CV_WRAP virtual void getMagnoRAW(OutputArray retinaOutput_magno)=0; + + /** @overload */ + CV_WRAP virtual const Mat getMagnoRAW() const=0; + /** @overload */ + CV_WRAP virtual const Mat getParvoRAW() const=0; + + /** @brief Activate color saturation as the final step of the color demultiplexing process -\> this + saturation is a sigmoide function applied to each channel of the demultiplexed image. + @param saturateColors boolean that activates color saturation (if true) or desactivate (if false) + @param colorSaturationValue the saturation factor : a simple factor applied on the chrominance + buffers + */ + CV_WRAP virtual void setColorSaturation(const bool saturateColors=true, const float colorSaturationValue=4.0f)=0; + + /** @brief Clears all retina buffers + + (equivalent to opening the eyes after a long period of eye close ;o) whatchout the temporal + transition occuring just after this method call. + */ + CV_WRAP virtual void clearBuffers()=0; + + /** @brief Activate/desactivate the Magnocellular pathway processing (motion information extraction), by + default, it is activated + @param activate true if Magnocellular output should be activated, false if not... if activated, + the Magnocellular output can be retrieved using the **getMagno** methods + */ + CV_WRAP virtual void activateMovingContoursProcessing(const bool activate)=0; + + /** @brief Activate/desactivate the Parvocellular pathway processing (contours information extraction), by + default, it is activated + @param activate true if Parvocellular (contours information extraction) output should be + activated, false if not... if activated, the Parvocellular output can be retrieved using the + Retina::getParvo methods + */ + CV_WRAP virtual void activateContoursProcessing(const bool activate)=0; +}; + +//! @relates bioinspired::Retina +//! @{ + +/** @overload */ +CV_EXPORTS_W Ptr createRetina(Size inputSize); +/** @brief Constructors from standardized interfaces : retreive a smart pointer to a Retina instance + +@param inputSize the input frame size +@param colorMode the chosen processing mode : with or without color processing +@param colorSamplingMethod specifies which kind of color sampling will be used : +- cv::bioinspired::RETINA_COLOR_RANDOM: each pixel position is either R, G or B in a random choice +- cv::bioinspired::RETINA_COLOR_DIAGONAL: color sampling is RGBRGBRGB..., line 2 BRGBRGBRG..., line 3, GBRGBRGBR... +- cv::bioinspired::RETINA_COLOR_BAYER: standard bayer sampling +@param useRetinaLogSampling activate retina log sampling, if true, the 2 following parameters can +be used +@param reductionFactor only usefull if param useRetinaLogSampling=true, specifies the reduction +factor of the output frame (as the center (fovea) is high resolution and corners can be +underscaled, then a reduction of the output is allowed without precision leak +@param samplingStrenght only usefull if param useRetinaLogSampling=true, specifies the strenght of +the log scale that is applied + */ +CV_EXPORTS_W Ptr createRetina(Size inputSize, const bool colorMode, int colorSamplingMethod=RETINA_COLOR_BAYER, const bool useRetinaLogSampling=false, const float reductionFactor=1.0f, const float samplingStrenght=10.0f); + +//! @} + +//! @} + +} +} +#endif /* __OPENCV_BIOINSPIRED_RETINA_HPP__ */ diff --git a/thirdparty1/linux/include/opencv2/bioinspired/retinafasttonemapping.hpp b/thirdparty1/linux/include/opencv2/bioinspired/retinafasttonemapping.hpp new file mode 100644 index 0000000..c65709d --- /dev/null +++ b/thirdparty1/linux/include/opencv2/bioinspired/retinafasttonemapping.hpp @@ -0,0 +1,138 @@ + +/*#****************************************************************************** + ** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. + ** + ** By downloading, copying, installing or using the software you agree to this license. + ** If you do not agree to this license, do not download, install, + ** copy or use the software. + ** + ** + ** bioinspired : interfaces allowing OpenCV users to integrate Human Vision System models. Presented models originate from Jeanny Herault's original research and have been reused and adapted by the author&collaborators for computed vision applications since his thesis with Alice Caplier at Gipsa-Lab. + ** + ** Maintainers : Listic lab (code author current affiliation & applications) and Gipsa Lab (original research origins & applications) + ** + ** Creation - enhancement process 2007-2013 + ** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France + ** + ** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr). + ** Refer to the following research paper for more information: + ** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011 + ** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book: + ** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891. + ** + ** + ** + ** + ** + ** This class is based on image processing tools of the author and already used within the Retina class (this is the same code as method retina::applyFastToneMapping, but in an independent class, it is ligth from a memory requirement point of view). It implements an adaptation of the efficient tone mapping algorithm propose by David Alleyson, Sabine Susstruck and Laurence Meylan's work, please cite: + ** -> Meylan L., Alleysson D., and Susstrunk S., A Model of Retinal Local Adaptation for the Tone Mapping of Color Filter Array Images, Journal of Optical Society of America, A, Vol. 24, N 9, September, 1st, 2007, pp. 2807-2816 + ** + ** + ** License Agreement + ** For Open Source Computer Vision Library + ** + ** Copyright (C) 2000-2008, Intel Corporation, all rights reserved. + ** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. + ** + ** For Human Visual System tools (bioinspired) + ** Copyright (C) 2007-2011, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved. + ** + ** Third party copyrights are property of their respective owners. + ** + ** Redistribution and use in source and binary forms, with or without modification, + ** are permitted provided that the following conditions are met: + ** + ** * Redistributions of source code must retain the above copyright notice, + ** this list of conditions and the following disclaimer. + ** + ** * Redistributions in binary form must reproduce the above copyright notice, + ** this list of conditions and the following disclaimer in the documentation + ** and/or other materials provided with the distribution. + ** + ** * The name of the copyright holders may not be used to endorse or promote products + ** derived from this software without specific prior written permission. + ** + ** This software is provided by the copyright holders and contributors "as is" and + ** any express or implied warranties, including, but not limited to, the implied + ** warranties of merchantability and fitness for a particular purpose are disclaimed. + ** In no event shall the Intel Corporation or contributors be liable for any direct, + ** indirect, incidental, special, exemplary, or consequential damages + ** (including, but not limited to, procurement of substitute goods or services; + ** loss of use, data, or profits; or business interruption) however caused + ** and on any theory of liability, whether in contract, strict liability, + ** or tort (including negligence or otherwise) arising in any way out of + ** the use of this software, even if advised of the possibility of such damage. + *******************************************************************************/ + +#ifndef __OPENCV_BIOINSPIRED_RETINAFASTTONEMAPPING_HPP__ +#define __OPENCV_BIOINSPIRED_RETINAFASTTONEMAPPING_HPP__ + +/** +@file +@date May 26, 2013 +@author Alexandre Benoit + */ + +#include "opencv2/core.hpp" // for all OpenCV core functionalities access, including cv::Exception support + +namespace cv{ +namespace bioinspired{ + +//! @addtogroup bioinspired +//! @{ + +/** @brief a wrapper class which allows the tone mapping algorithm of Meylan&al(2007) to be used with OpenCV. + +This algorithm is already implemented in thre Retina class (retina::applyFastToneMapping) but used it does not require all the retina model to be allocated. This allows a light memory use for low memory devices (smartphones, etc. +As a summary, these are the model properties: +- 2 stages of local luminance adaptation with a different local neighborhood for each. +- first stage models the retina photorecetors local luminance adaptation +- second stage models th ganglion cells local information adaptation +- compared to the initial publication, this class uses spatio-temporal low pass filters instead of spatial only filters. + this can help noise robustness and temporal stability for video sequence use cases. + +for more information, read to the following papers : +Meylan L., Alleysson D., and Susstrunk S., A Model of Retinal Local Adaptation for the Tone Mapping of Color Filter Array Images, Journal of Optical Society of America, A, Vol. 24, N 9, September, 1st, 2007, pp. 2807-2816Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011 +regarding spatio-temporal filter and the bigger retina model : +Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891. +*/ +class CV_EXPORTS_W RetinaFastToneMapping : public Algorithm +{ +public: + + /** @brief applies a luminance correction (initially High Dynamic Range (HDR) tone mapping) + + using only the 2 local adaptation stages of the retina parvocellular channel : photoreceptors + level and ganlion cells level. Spatio temporal filtering is applied but limited to temporal + smoothing and eventually high frequencies attenuation. This is a lighter method than the one + available using the regular retina::run method. It is then faster but it does not include + complete temporal filtering nor retina spectral whitening. Then, it can have a more limited + effect on images with a very high dynamic range. This is an adptation of the original still + image HDR tone mapping algorithm of David Alleyson, Sabine Susstruck and Laurence Meylan's + work, please cite: -> Meylan L., Alleysson D., and Susstrunk S., A Model of Retinal Local + Adaptation for the Tone Mapping of Color Filter Array Images, Journal of Optical Society of + America, A, Vol. 24, N 9, September, 1st, 2007, pp. 2807-2816 + + @param inputImage the input image to process RGB or gray levels + @param outputToneMappedImage the output tone mapped image + */ + CV_WRAP virtual void applyFastToneMapping(InputArray inputImage, OutputArray outputToneMappedImage)=0; + + /** @brief updates tone mapping behaviors by adjusing the local luminance computation area + + @param photoreceptorsNeighborhoodRadius the first stage local adaptation area + @param ganglioncellsNeighborhoodRadius the second stage local adaptation area + @param meanLuminanceModulatorK the factor applied to modulate the meanLuminance information + (default is 1, see reference paper) + */ + CV_WRAP virtual void setup(const float photoreceptorsNeighborhoodRadius=3.f, const float ganglioncellsNeighborhoodRadius=1.f, const float meanLuminanceModulatorK=1.f)=0; +}; + +//! @relates bioinspired::RetinaFastToneMapping +CV_EXPORTS_W Ptr createRetinaFastToneMapping(Size inputSize); + +//! @} + +} +} +#endif /* __OPENCV_BIOINSPIRED_RETINAFASTTONEMAPPING_HPP__ */ diff --git a/thirdparty1/linux/include/opencv2/bioinspired/transientareassegmentationmodule.hpp b/thirdparty1/linux/include/opencv2/bioinspired/transientareassegmentationmodule.hpp new file mode 100644 index 0000000..b11b61d --- /dev/null +++ b/thirdparty1/linux/include/opencv2/bioinspired/transientareassegmentationmodule.hpp @@ -0,0 +1,205 @@ +/*#****************************************************************************** + ** IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. + ** + ** By downloading, copying, installing or using the software you agree to this license. + ** If you do not agree to this license, do not download, install, + ** copy or use the software. + ** + ** + ** bioinspired : interfaces allowing OpenCV users to integrate Human Vision System models. + ** TransientAreasSegmentationModule Use: extract areas that present spatio-temporal changes. + ** => It should be used at the output of the cv::bioinspired::Retina::getMagnoRAW() output that enhances spatio-temporal changes + ** + ** Maintainers : Listic lab (code author current affiliation & applications) + ** + ** Creation - enhancement process 2007-2015 + ** Author: Alexandre Benoit (benoit.alexandre.vision@gmail.com), LISTIC lab, Annecy le vieux, France + ** + ** Theses algorithm have been developped by Alexandre BENOIT since his thesis with Alice Caplier at Gipsa-Lab (www.gipsa-lab.inpg.fr) and the research he pursues at LISTIC Lab (www.listic.univ-savoie.fr). + ** Refer to the following research paper for more information: + ** Strat, S.T.; Benoit, A.; Lambert, P., "Retina enhanced bag of words descriptors for video classification," Signal Processing Conference (EUSIPCO), 2014 Proceedings of the 22nd European , vol., no., pp.1307,1311, 1-5 Sept. 2014 (http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6952461&isnumber=6951911) + ** Benoit A., Caplier A., Durette B., Herault, J., "USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING", Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011 + ** This work have been carried out thanks to Jeanny Herault who's research and great discussions are the basis of all this work, please take a look at his book: + ** Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891. + ** + ** + ** License Agreement + ** For Open Source Computer Vision Library + ** + ** Copyright (C) 2000-2008, Intel Corporation, all rights reserved. + ** Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved. + ** + ** For Human Visual System tools (bioinspired) + ** Copyright (C) 2007-2015, LISTIC Lab, Annecy le Vieux and GIPSA Lab, Grenoble, France, all rights reserved. + ** + ** Third party copyrights are property of their respective owners. + ** + ** Redistribution and use in source and binary forms, with or without modification, + ** are permitted provided that the following conditions are met: + ** + ** * Redistributions of source code must retain the above copyright notice, + ** this list of conditions and the following disclaimer. + ** + ** * Redistributions in binary form must reproduce the above copyright notice, + ** this list of conditions and the following disclaimer in the documentation + ** and/or other materials provided with the distribution. + ** + ** * The name of the copyright holders may not be used to endorse or promote products + ** derived from this software without specific prior written permission. + ** + ** This software is provided by the copyright holders and contributors "as is" and + ** any express or implied warranties, including, but not limited to, the implied + ** warranties of merchantability and fitness for a particular purpose are disclaimed. + ** In no event shall the Intel Corporation or contributors be liable for any direct, + ** indirect, incidental, special, exemplary, or consequential damages + ** (including, but not limited to, procurement of substitute goods or services; + ** loss of use, data, or profits; or business interruption) however caused + ** and on any theory of liability, whether in contract, strict liability, + ** or tort (including negligence or otherwise) arising in any way out of + ** the use of this software, even if advised of the possibility of such damage. + *******************************************************************************/ + +#ifndef SEGMENTATIONMODULE_HPP_ +#define SEGMENTATIONMODULE_HPP_ + +/** +@file +@date 2007-2013 +@author Alexandre BENOIT, benoit.alexandre.vision@gmail.com +*/ + +#include "opencv2/core.hpp" // for all OpenCV core functionalities access, including cv::Exception support + +namespace cv +{ +namespace bioinspired +{ +//! @addtogroup bioinspired +//! @{ + +/** @brief parameter structure that stores the transient events detector setup parameters +*/ +struct SegmentationParameters{ // CV_EXPORTS_W_MAP to export to python native dictionnaries + // default structure instance construction with default values + SegmentationParameters(): + thresholdON(100), + thresholdOFF(100), + localEnergy_temporalConstant(0.5), + localEnergy_spatialConstant(5), + neighborhoodEnergy_temporalConstant(1), + neighborhoodEnergy_spatialConstant(15), + contextEnergy_temporalConstant(1), + contextEnergy_spatialConstant(75){}; + // all properties list + float thresholdON; + float thresholdOFF; + //! the time constant of the first order low pass filter, use it to cut high temporal frequencies (noise or fast motion), unit is frames, typical value is 0.5 frame + float localEnergy_temporalConstant; + //! the spatial constant of the first order low pass filter, use it to cut high spatial frequencies (noise or thick contours), unit is pixels, typical value is 5 pixel + float localEnergy_spatialConstant; + //! local neighborhood energy filtering parameters : the aim is to get information about the energy neighborhood to perform a center surround energy analysis + float neighborhoodEnergy_temporalConstant; + float neighborhoodEnergy_spatialConstant; + //! context neighborhood energy filtering parameters : the aim is to get information about the energy on a wide neighborhood area to filtered out local effects + float contextEnergy_temporalConstant; + float contextEnergy_spatialConstant; +}; + +/** @brief class which provides a transient/moving areas segmentation module + +perform a locally adapted segmentation by using the retina magno input data Based on Alexandre +BENOIT thesis: "Le système visuel humain au secours de la vision par ordinateur" + +3 spatio temporal filters are used: +- a first one which filters the noise and local variations of the input motion energy +- a second (more powerfull low pass spatial filter) which gives the neighborhood motion energy the +segmentation consists in the comparison of these both outputs, if the local motion energy is higher +to the neighborhood otion energy, then the area is considered as moving and is segmented +- a stronger third low pass filter helps decision by providing a smooth information about the +"motion context" in a wider area + */ + +class CV_EXPORTS_W TransientAreasSegmentationModule: public Algorithm +{ +public: + + + /** @brief return the sze of the manage input and output images + */ + CV_WRAP virtual Size getSize()=0; + + /** @brief try to open an XML segmentation parameters file to adjust current segmentation instance setup + + - if the xml file does not exist, then default setup is applied + - warning, Exceptions are thrown if read XML file is not valid + @param segmentationParameterFile : the parameters filename + @param applyDefaultSetupOnFailure : set to true if an error must be thrown on error + */ + CV_WRAP virtual void setup(String segmentationParameterFile="", const bool applyDefaultSetupOnFailure=true)=0; + + /** @brief try to open an XML segmentation parameters file to adjust current segmentation instance setup + + - if the xml file does not exist, then default setup is applied + - warning, Exceptions are thrown if read XML file is not valid + @param fs : the open Filestorage which contains segmentation parameters + @param applyDefaultSetupOnFailure : set to true if an error must be thrown on error + */ + virtual void setup(cv::FileStorage &fs, const bool applyDefaultSetupOnFailure=true)=0; + + /** @brief try to open an XML segmentation parameters file to adjust current segmentation instance setup + + - if the xml file does not exist, then default setup is applied + - warning, Exceptions are thrown if read XML file is not valid + @param newParameters : a parameters structures updated with the new target configuration + */ + virtual void setup(SegmentationParameters newParameters)=0; + + /** @brief return the current parameters setup + */ + virtual SegmentationParameters getParameters()=0; + + /** @brief parameters setup display method + @return a string which contains formatted parameters information + */ + CV_WRAP virtual const String printSetup()=0; + + /** @brief write xml/yml formated parameters information + @param fs : the filename of the xml file that will be open and writen with formatted parameters information + */ + CV_WRAP virtual void write( String fs ) const=0; + + /** @brief write xml/yml formated parameters information + @param fs : a cv::Filestorage object ready to be filled + */ + virtual void write( cv::FileStorage& fs ) const=0; + + /** @brief main processing method, get result using methods getSegmentationPicture() + @param inputToSegment : the image to process, it must match the instance buffer size ! + @param channelIndex : the channel to process in case of multichannel images + */ + CV_WRAP virtual void run(InputArray inputToSegment, const int channelIndex=0)=0; + + /** @brief access function + @return the last segmentation result: a boolean picture which is resampled between 0 and 255 for a display purpose + */ + CV_WRAP virtual void getSegmentationPicture(OutputArray transientAreas)=0; + + /** @brief cleans all the buffers of the instance + */ + CV_WRAP virtual void clearAllBuffers()=0; +}; + +/** @brief allocator +@param inputSize : size of the images input to segment (output will be the same size) +@relates bioinspired::TransientAreasSegmentationModule + */ +CV_EXPORTS_W Ptr createTransientAreasSegmentationModule(Size inputSize); + +//! @} + +}} // namespaces end : cv and bioinspired + + +#endif + + diff --git a/thirdparty1/linux/include/opencv2/calib3d.hpp b/thirdparty1/linux/include/opencv2/calib3d.hpp new file mode 100644 index 0000000..5a0e020 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/calib3d.hpp @@ -0,0 +1,2134 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CALIB3D_HPP +#define OPENCV_CALIB3D_HPP + +#include "opencv2/core.hpp" +#include "opencv2/features2d.hpp" +#include "opencv2/core/affine.hpp" + +/** + @defgroup calib3d Camera Calibration and 3D Reconstruction + +The functions in this section use a so-called pinhole camera model. In this model, a scene view is +formed by projecting 3D points into the image plane using a perspective transformation. + +\f[s \; m' = A [R|t] M'\f] + +or + +\f[s \vecthree{u}{v}{1} = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1} +\begin{bmatrix} +r_{11} & r_{12} & r_{13} & t_1 \\ +r_{21} & r_{22} & r_{23} & t_2 \\ +r_{31} & r_{32} & r_{33} & t_3 +\end{bmatrix} +\begin{bmatrix} +X \\ +Y \\ +Z \\ +1 +\end{bmatrix}\f] + +where: + +- \f$(X, Y, Z)\f$ are the coordinates of a 3D point in the world coordinate space +- \f$(u, v)\f$ are the coordinates of the projection point in pixels +- \f$A\f$ is a camera matrix, or a matrix of intrinsic parameters +- \f$(cx, cy)\f$ is a principal point that is usually at the image center +- \f$fx, fy\f$ are the focal lengths expressed in pixel units. + +Thus, if an image from the camera is scaled by a factor, all of these parameters should be scaled +(multiplied/divided, respectively) by the same factor. The matrix of intrinsic parameters does not +depend on the scene viewed. So, once estimated, it can be re-used as long as the focal length is +fixed (in case of zoom lens). The joint rotation-translation matrix \f$[R|t]\f$ is called a matrix of +extrinsic parameters. It is used to describe the camera motion around a static scene, or vice versa, +rigid motion of an object in front of a still camera. That is, \f$[R|t]\f$ translates coordinates of a +point \f$(X, Y, Z)\f$ to a coordinate system, fixed with respect to the camera. The transformation above +is equivalent to the following (when \f$z \ne 0\f$ ): + +\f[\begin{array}{l} +\vecthree{x}{y}{z} = R \vecthree{X}{Y}{Z} + t \\ +x' = x/z \\ +y' = y/z \\ +u = f_x*x' + c_x \\ +v = f_y*y' + c_y +\end{array}\f] + +The following figure illustrates the pinhole camera model. + +![Pinhole camera model](pics/pinhole_camera_model.png) + +Real lenses usually have some distortion, mostly radial distortion and slight tangential distortion. +So, the above model is extended as: + +\f[\begin{array}{l} +\vecthree{x}{y}{z} = R \vecthree{X}{Y}{Z} + t \\ +x' = x/z \\ +y' = y/z \\ +x'' = x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + 2 p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4 \\ +y'' = y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\ +\text{where} \quad r^2 = x'^2 + y'^2 \\ +u = f_x*x'' + c_x \\ +v = f_y*y'' + c_y +\end{array}\f] + +\f$k_1\f$, \f$k_2\f$, \f$k_3\f$, \f$k_4\f$, \f$k_5\f$, and \f$k_6\f$ are radial distortion coefficients. \f$p_1\f$ and \f$p_2\f$ are +tangential distortion coefficients. \f$s_1\f$, \f$s_2\f$, \f$s_3\f$, and \f$s_4\f$, are the thin prism distortion +coefficients. Higher-order coefficients are not considered in OpenCV. + +The next figure shows two common types of radial distortion: barrel distortion (typically \f$ k_1 > 0 \f$ and pincushion distortion (typically \f$ k_1 < 0 \f$). + +![](pics/distortion_examples.png) + +In some cases the image sensor may be tilted in order to focus an oblique plane in front of the +camera (Scheimpfug condition). This can be useful for particle image velocimetry (PIV) or +triangulation with a laser fan. The tilt causes a perspective distortion of \f$x''\f$ and +\f$y''\f$. This distortion can be modelled in the following way, see e.g. @cite Louhichi07. + +\f[\begin{array}{l} +s\vecthree{x'''}{y'''}{1} = +\vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}(\tau_x, \tau_y)} +{0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)} +{0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\\ +u = f_x*x''' + c_x \\ +v = f_y*y''' + c_y +\end{array}\f] + +where the matrix \f$R(\tau_x, \tau_y)\f$ is defined by two rotations with angular parameter \f$\tau_x\f$ +and \f$\tau_y\f$, respectively, + +\f[ +R(\tau_x, \tau_y) = +\vecthreethree{\cos(\tau_y)}{0}{-\sin(\tau_y)}{0}{1}{0}{\sin(\tau_y)}{0}{\cos(\tau_y)} +\vecthreethree{1}{0}{0}{0}{\cos(\tau_x)}{\sin(\tau_x)}{0}{-\sin(\tau_x)}{\cos(\tau_x)} = +\vecthreethree{\cos(\tau_y)}{\sin(\tau_y)\sin(\tau_x)}{-\sin(\tau_y)\cos(\tau_x)} +{0}{\cos(\tau_x)}{\sin(\tau_x)} +{\sin(\tau_y)}{-\cos(\tau_y)\sin(\tau_x)}{\cos(\tau_y)\cos(\tau_x)}. +\f] + +In the functions below the coefficients are passed or returned as + +\f[(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f] + +vector. That is, if the vector contains four elements, it means that \f$k_3=0\f$ . The distortion +coefficients do not depend on the scene viewed. Thus, they also belong to the intrinsic camera +parameters. And they remain the same regardless of the captured image resolution. If, for example, a +camera has been calibrated on images of 320 x 240 resolution, absolutely the same distortion +coefficients can be used for 640 x 480 images from the same camera while \f$f_x\f$, \f$f_y\f$, \f$c_x\f$, and +\f$c_y\f$ need to be scaled appropriately. + +The functions below use the above model to do the following: + +- Project 3D points to the image plane given intrinsic and extrinsic parameters. +- Compute extrinsic parameters given intrinsic parameters, a few 3D points, and their +projections. +- Estimate intrinsic and extrinsic camera parameters from several views of a known calibration +pattern (every view is described by several 3D-2D point correspondences). +- Estimate the relative position and orientation of the stereo camera "heads" and compute the +*rectification* transformation that makes the camera optical axes parallel. + +@note + - A calibration sample for 3 cameras in horizontal position can be found at + opencv_source_code/samples/cpp/3calibration.cpp + - A calibration sample based on a sequence of images can be found at + opencv_source_code/samples/cpp/calibration.cpp + - A calibration sample in order to do 3D reconstruction can be found at + opencv_source_code/samples/cpp/build3dmodel.cpp + - A calibration sample of an artificially generated camera and chessboard patterns can be + found at opencv_source_code/samples/cpp/calibration_artificial.cpp + - A calibration example on stereo calibration can be found at + opencv_source_code/samples/cpp/stereo_calib.cpp + - A calibration example on stereo matching can be found at + opencv_source_code/samples/cpp/stereo_match.cpp + - (Python) A camera calibration sample can be found at + opencv_source_code/samples/python/calibrate.py + + @{ + @defgroup calib3d_fisheye Fisheye camera model + + Definitions: Let P be a point in 3D of coordinates X in the world reference frame (stored in the + matrix X) The coordinate vector of P in the camera reference frame is: + + \f[Xc = R X + T\f] + + where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om); call x, y + and z the 3 coordinates of Xc: + + \f[x = Xc_1 \\ y = Xc_2 \\ z = Xc_3\f] + + The pinhole projection coordinates of P is [a; b] where + + \f[a = x / z \ and \ b = y / z \\ r^2 = a^2 + b^2 \\ \theta = atan(r)\f] + + Fisheye distortion: + + \f[\theta_d = \theta (1 + k_1 \theta^2 + k_2 \theta^4 + k_3 \theta^6 + k_4 \theta^8)\f] + + The distorted point coordinates are [x'; y'] where + + \f[x' = (\theta_d / r) a \\ y' = (\theta_d / r) b \f] + + Finally, conversion into pixel coordinates: The final pixel coordinates vector [u; v] where: + + \f[u = f_x (x' + \alpha y') + c_x \\ + v = f_y y' + c_y\f] + + @defgroup calib3d_c C API + + @} + */ + +namespace cv +{ + +//! @addtogroup calib3d +//! @{ + +//! type of the robust estimation algorithm +enum { LMEDS = 4, //!< least-median algorithm + RANSAC = 8, //!< RANSAC algorithm + RHO = 16 //!< RHO algorithm + }; + +enum { SOLVEPNP_ITERATIVE = 0, + SOLVEPNP_EPNP = 1, //!< EPnP: Efficient Perspective-n-Point Camera Pose Estimation @cite lepetit2009epnp + SOLVEPNP_P3P = 2, //!< Complete Solution Classification for the Perspective-Three-Point Problem @cite gao2003complete + SOLVEPNP_DLS = 3, //!< A Direct Least-Squares (DLS) Method for PnP @cite hesch2011direct + SOLVEPNP_UPNP = 4 //!< Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation @cite penate2013exhaustive + +}; + +enum { CALIB_CB_ADAPTIVE_THRESH = 1, + CALIB_CB_NORMALIZE_IMAGE = 2, + CALIB_CB_FILTER_QUADS = 4, + CALIB_CB_FAST_CHECK = 8 + }; + +enum { CALIB_CB_SYMMETRIC_GRID = 1, + CALIB_CB_ASYMMETRIC_GRID = 2, + CALIB_CB_CLUSTERING = 4 + }; + +enum { CALIB_USE_INTRINSIC_GUESS = 0x00001, + CALIB_FIX_ASPECT_RATIO = 0x00002, + CALIB_FIX_PRINCIPAL_POINT = 0x00004, + CALIB_ZERO_TANGENT_DIST = 0x00008, + CALIB_FIX_FOCAL_LENGTH = 0x00010, + CALIB_FIX_K1 = 0x00020, + CALIB_FIX_K2 = 0x00040, + CALIB_FIX_K3 = 0x00080, + CALIB_FIX_K4 = 0x00800, + CALIB_FIX_K5 = 0x01000, + CALIB_FIX_K6 = 0x02000, + CALIB_RATIONAL_MODEL = 0x04000, + CALIB_THIN_PRISM_MODEL = 0x08000, + CALIB_FIX_S1_S2_S3_S4 = 0x10000, + CALIB_TILTED_MODEL = 0x40000, + CALIB_FIX_TAUX_TAUY = 0x80000, + CALIB_USE_QR = 0x100000, //!< use QR instead of SVD decomposition for solving. Faster but potentially less precise + // only for stereo + CALIB_FIX_INTRINSIC = 0x00100, + CALIB_SAME_FOCAL_LENGTH = 0x00200, + // for stereo rectification + CALIB_ZERO_DISPARITY = 0x00400, + CALIB_USE_LU = (1 << 17), //!< use LU instead of SVD decomposition for solving. much faster but potentially less precise + }; + +//! the algorithm for finding fundamental matrix +enum { FM_7POINT = 1, //!< 7-point algorithm + FM_8POINT = 2, //!< 8-point algorithm + FM_LMEDS = 4, //!< least-median algorithm + FM_RANSAC = 8 //!< RANSAC algorithm + }; + + + +/** @brief Converts a rotation matrix to a rotation vector or vice versa. + +@param src Input rotation vector (3x1 or 1x3) or rotation matrix (3x3). +@param dst Output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively. +@param jacobian Optional output Jacobian matrix, 3x9 or 9x3, which is a matrix of partial +derivatives of the output array components with respect to the input array components. + +\f[\begin{array}{l} \theta \leftarrow norm(r) \\ r \leftarrow r/ \theta \\ R = \cos{\theta} I + (1- \cos{\theta} ) r r^T + \sin{\theta} \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} \end{array}\f] + +Inverse transformation can be also done easily, since + +\f[\sin ( \theta ) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} = \frac{R - R^T}{2}\f] + +A rotation vector is a convenient and most compact representation of a rotation matrix (since any +rotation matrix has just 3 degrees of freedom). The representation is used in the global 3D geometry +optimization procedures like calibrateCamera, stereoCalibrate, or solvePnP . + */ +CV_EXPORTS_W void Rodrigues( InputArray src, OutputArray dst, OutputArray jacobian = noArray() ); + +/** @brief Finds a perspective transformation between two planes. + +@param srcPoints Coordinates of the points in the original plane, a matrix of the type CV_32FC2 +or vector\ . +@param dstPoints Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or +a vector\ . +@param method Method used to computed a homography matrix. The following methods are possible: +- **0** - a regular method using all the points +- **RANSAC** - RANSAC-based robust method +- **LMEDS** - Least-Median robust method +- **RHO** - PROSAC-based robust method +@param ransacReprojThreshold Maximum allowed reprojection error to treat a point pair as an inlier +(used in the RANSAC and RHO methods only). That is, if +\f[\| \texttt{dstPoints} _i - \texttt{convertPointsHomogeneous} ( \texttt{H} * \texttt{srcPoints} _i) \| > \texttt{ransacReprojThreshold}\f] +then the point \f$i\f$ is considered an outlier. If srcPoints and dstPoints are measured in pixels, +it usually makes sense to set this parameter somewhere in the range of 1 to 10. +@param mask Optional output mask set by a robust method ( RANSAC or LMEDS ). Note that the input +mask values are ignored. +@param maxIters The maximum number of RANSAC iterations, 2000 is the maximum it can be. +@param confidence Confidence level, between 0 and 1. + +The function finds and returns the perspective transformation \f$H\f$ between the source and the +destination planes: + +\f[s_i \vecthree{x'_i}{y'_i}{1} \sim H \vecthree{x_i}{y_i}{1}\f] + +so that the back-projection error + +\f[\sum _i \left ( x'_i- \frac{h_{11} x_i + h_{12} y_i + h_{13}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2+ \left ( y'_i- \frac{h_{21} x_i + h_{22} y_i + h_{23}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2\f] + +is minimized. If the parameter method is set to the default value 0, the function uses all the point +pairs to compute an initial homography estimate with a simple least-squares scheme. + +However, if not all of the point pairs ( \f$srcPoints_i\f$, \f$dstPoints_i\f$ ) fit the rigid perspective +transformation (that is, there are some outliers), this initial estimate will be poor. In this case, +you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different +random subsets of the corresponding point pairs (of four pairs each), estimate the homography matrix +using this subset and a simple least-square algorithm, and then compute the quality/goodness of the +computed homography (which is the number of inliers for RANSAC or the median re-projection error for +LMeDs). The best subset is then used to produce the initial estimate of the homography matrix and +the mask of inliers/outliers. + +Regardless of the method, robust or not, the computed homography matrix is refined further (using +inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the +re-projection error even more. + +The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to +distinguish inliers from outliers. The method LMeDS does not need any threshold but it works +correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the +noise is rather small, use the default method (method=0). + +The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is +determined up to a scale. Thus, it is normalized so that \f$h_{33}=1\f$. Note that whenever an H matrix +cannot be estimated, an empty one will be returned. + +@sa +getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective, +perspectiveTransform + + +@note + - A example on calculating a homography for image matching can be found at + opencv_source_code/samples/cpp/video_homography.cpp + + */ +CV_EXPORTS_W Mat findHomography( InputArray srcPoints, InputArray dstPoints, + int method = 0, double ransacReprojThreshold = 3, + OutputArray mask=noArray(), const int maxIters = 2000, + const double confidence = 0.995); + +/** @overload */ +CV_EXPORTS Mat findHomography( InputArray srcPoints, InputArray dstPoints, + OutputArray mask, int method = 0, double ransacReprojThreshold = 3 ); + +/** @brief Computes an RQ decomposition of 3x3 matrices. + +@param src 3x3 input matrix. +@param mtxR Output 3x3 upper-triangular matrix. +@param mtxQ Output 3x3 orthogonal matrix. +@param Qx Optional output 3x3 rotation matrix around x-axis. +@param Qy Optional output 3x3 rotation matrix around y-axis. +@param Qz Optional output 3x3 rotation matrix around z-axis. + +The function computes a RQ decomposition using the given rotations. This function is used in +decomposeProjectionMatrix to decompose the left 3x3 submatrix of a projection matrix into a camera +and a rotation matrix. + +It optionally returns three rotation matrices, one for each axis, and the three Euler angles in +degrees (as the return value) that could be used in OpenGL. Note, there is always more than one +sequence of rotations about the three principal axes that results in the same orientation of an +object, eg. see @cite Slabaugh . Returned tree rotation matrices and corresponding three Euler angules +are only one of the possible solutions. + */ +CV_EXPORTS_W Vec3d RQDecomp3x3( InputArray src, OutputArray mtxR, OutputArray mtxQ, + OutputArray Qx = noArray(), + OutputArray Qy = noArray(), + OutputArray Qz = noArray()); + +/** @brief Decomposes a projection matrix into a rotation matrix and a camera matrix. + +@param projMatrix 3x4 input projection matrix P. +@param cameraMatrix Output 3x3 camera matrix K. +@param rotMatrix Output 3x3 external rotation matrix R. +@param transVect Output 4x1 translation vector T. +@param rotMatrixX Optional 3x3 rotation matrix around x-axis. +@param rotMatrixY Optional 3x3 rotation matrix around y-axis. +@param rotMatrixZ Optional 3x3 rotation matrix around z-axis. +@param eulerAngles Optional three-element vector containing three Euler angles of rotation in +degrees. + +The function computes a decomposition of a projection matrix into a calibration and a rotation +matrix and the position of a camera. + +It optionally returns three rotation matrices, one for each axis, and three Euler angles that could +be used in OpenGL. Note, there is always more than one sequence of rotations about the three +principal axes that results in the same orientation of an object, eg. see @cite Slabaugh . Returned +tree rotation matrices and corresponding three Euler angules are only one of the possible solutions. + +The function is based on RQDecomp3x3 . + */ +CV_EXPORTS_W void decomposeProjectionMatrix( InputArray projMatrix, OutputArray cameraMatrix, + OutputArray rotMatrix, OutputArray transVect, + OutputArray rotMatrixX = noArray(), + OutputArray rotMatrixY = noArray(), + OutputArray rotMatrixZ = noArray(), + OutputArray eulerAngles =noArray() ); + +/** @brief Computes partial derivatives of the matrix product for each multiplied matrix. + +@param A First multiplied matrix. +@param B Second multiplied matrix. +@param dABdA First output derivative matrix d(A\*B)/dA of size +\f$\texttt{A.rows*B.cols} \times {A.rows*A.cols}\f$ . +@param dABdB Second output derivative matrix d(A\*B)/dB of size +\f$\texttt{A.rows*B.cols} \times {B.rows*B.cols}\f$ . + +The function computes partial derivatives of the elements of the matrix product \f$A*B\f$ with regard to +the elements of each of the two input matrices. The function is used to compute the Jacobian +matrices in stereoCalibrate but can also be used in any other similar optimization function. + */ +CV_EXPORTS_W void matMulDeriv( InputArray A, InputArray B, OutputArray dABdA, OutputArray dABdB ); + +/** @brief Combines two rotation-and-shift transformations. + +@param rvec1 First rotation vector. +@param tvec1 First translation vector. +@param rvec2 Second rotation vector. +@param tvec2 Second translation vector. +@param rvec3 Output rotation vector of the superposition. +@param tvec3 Output translation vector of the superposition. +@param dr3dr1 +@param dr3dt1 +@param dr3dr2 +@param dr3dt2 +@param dt3dr1 +@param dt3dt1 +@param dt3dr2 +@param dt3dt2 Optional output derivatives of rvec3 or tvec3 with regard to rvec1, rvec2, tvec1 and +tvec2, respectively. + +The functions compute: + +\f[\begin{array}{l} \texttt{rvec3} = \mathrm{rodrigues} ^{-1} \left ( \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \mathrm{rodrigues} ( \texttt{rvec1} ) \right ) \\ \texttt{tvec3} = \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \texttt{tvec1} + \texttt{tvec2} \end{array} ,\f] + +where \f$\mathrm{rodrigues}\f$ denotes a rotation vector to a rotation matrix transformation, and +\f$\mathrm{rodrigues}^{-1}\f$ denotes the inverse transformation. See Rodrigues for details. + +Also, the functions can compute the derivatives of the output vectors with regards to the input +vectors (see matMulDeriv ). The functions are used inside stereoCalibrate but can also be used in +your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a +function that contains a matrix multiplication. + */ +CV_EXPORTS_W void composeRT( InputArray rvec1, InputArray tvec1, + InputArray rvec2, InputArray tvec2, + OutputArray rvec3, OutputArray tvec3, + OutputArray dr3dr1 = noArray(), OutputArray dr3dt1 = noArray(), + OutputArray dr3dr2 = noArray(), OutputArray dr3dt2 = noArray(), + OutputArray dt3dr1 = noArray(), OutputArray dt3dt1 = noArray(), + OutputArray dt3dr2 = noArray(), OutputArray dt3dt2 = noArray() ); + +/** @brief Projects 3D points to an image plane. + +@param objectPoints Array of object points, 3xN/Nx3 1-channel or 1xN/Nx1 3-channel (or +vector\ ), where N is the number of points in the view. +@param rvec Rotation vector. See Rodrigues for details. +@param tvec Translation vector. +@param cameraMatrix Camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$ . +@param distCoeffs Input vector of distortion coefficients +\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of +4, 5, 8, 12 or 14 elements. If the vector is empty, the zero distortion coefficients are assumed. +@param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or +vector\ . +@param jacobian Optional output 2Nx(10+\) jacobian matrix of derivatives of image +points with respect to components of the rotation vector, translation vector, focal lengths, +coordinates of the principal point and the distortion coefficients. In the old interface different +components of the jacobian are returned via different output parameters. +@param aspectRatio Optional "fixed aspect ratio" parameter. If the parameter is not 0, the +function assumes that the aspect ratio (*fx/fy*) is fixed and correspondingly adjusts the jacobian +matrix. + +The function computes projections of 3D points to the image plane given intrinsic and extrinsic +camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of +image points coordinates (as functions of all the input parameters) with respect to the particular +parameters, intrinsic and/or extrinsic. The Jacobians are used during the global optimization in +calibrateCamera, solvePnP, and stereoCalibrate . The function itself can also be used to compute a +re-projection error given the current intrinsic and extrinsic parameters. + +@note By setting rvec=tvec=(0,0,0) or by setting cameraMatrix to a 3x3 identity matrix, or by +passing zero distortion coefficients, you can get various useful partial cases of the function. This +means that you can compute the distorted coordinates for a sparse set of points or apply a +perspective transformation (and also compute the derivatives) in the ideal zero-distortion setup. + */ +CV_EXPORTS_W void projectPoints( InputArray objectPoints, + InputArray rvec, InputArray tvec, + InputArray cameraMatrix, InputArray distCoeffs, + OutputArray imagePoints, + OutputArray jacobian = noArray(), + double aspectRatio = 0 ); + +/** @brief Finds an object pose from 3D-2D point correspondences. + +@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or +1xN/Nx1 3-channel, where N is the number of points. vector\ can be also passed here. +@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel, +where N is the number of points. vector\ can be also passed here. +@param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ . +@param distCoeffs Input vector of distortion coefficients +\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of +4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are +assumed. +@param rvec Output rotation vector (see Rodrigues ) that, together with tvec , brings points from +the model coordinate system to the camera coordinate system. +@param tvec Output translation vector. +@param useExtrinsicGuess Parameter used for SOLVEPNP_ITERATIVE. If true (1), the function uses +the provided rvec and tvec values as initial approximations of the rotation and translation +vectors, respectively, and further optimizes them. +@param flags Method for solving a PnP problem: +- **SOLVEPNP_ITERATIVE** Iterative method is based on Levenberg-Marquardt optimization. In +this case the function finds such a pose that minimizes reprojection error, that is the sum +of squared distances between the observed projections imagePoints and the projected (using +projectPoints ) objectPoints . +- **SOLVEPNP_P3P** Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang +"Complete Solution Classification for the Perspective-Three-Point Problem". In this case the +function requires exactly four object and image points. +- **SOLVEPNP_EPNP** Method has been introduced by F.Moreno-Noguer, V.Lepetit and P.Fua in the +paper "EPnP: Efficient Perspective-n-Point Camera Pose Estimation". +- **SOLVEPNP_DLS** Method is based on the paper of Joel A. Hesch and Stergios I. Roumeliotis. +"A Direct Least-Squares (DLS) Method for PnP". +- **SOLVEPNP_UPNP** Method is based on the paper of A.Penate-Sanchez, J.Andrade-Cetto, +F.Moreno-Noguer. "Exhaustive Linearization for Robust Camera Pose and Focal Length +Estimation". In this case the function also estimates the parameters \f$f_x\f$ and \f$f_y\f$ +assuming that both have the same value. Then the cameraMatrix is updated with the estimated +focal length. + +The function estimates the object pose given a set of object points, their corresponding image +projections, as well as the camera matrix and the distortion coefficients. + +@note + - An example of how to use solvePnP for planar augmented reality can be found at + opencv_source_code/samples/python/plane_ar.py + - If you are using Python: + - Numpy array slices won't work as input because solvePnP requires contiguous + arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of + modules/calib3d/src/solvepnp.cpp version 2.4.9) + - The P3P algorithm requires image points to be in an array of shape (N,1,2) due + to its calling of cv::undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9) + which requires 2-channel information. + - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of + it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints = + np.ascontiguousarray(D[:,:2]).reshape((N,1,2)) + - The methods **SOLVEPNP_DLS** and **SOLVEPNP_UPNP** cannot be used as the current implementations are + unstable and sometimes give completly wrong results. If you pass one of these two flags, + **SOLVEPNP_EPNP** method will be used instead. + */ +CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints, + InputArray cameraMatrix, InputArray distCoeffs, + OutputArray rvec, OutputArray tvec, + bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE ); + +/** @brief Finds an object pose from 3D-2D point correspondences using the RANSAC scheme. + +@param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or +1xN/Nx1 3-channel, where N is the number of points. vector\ can be also passed here. +@param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel, +where N is the number of points. vector\ can be also passed here. +@param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ . +@param distCoeffs Input vector of distortion coefficients +\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of +4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are +assumed. +@param rvec Output rotation vector (see Rodrigues ) that, together with tvec , brings points from +the model coordinate system to the camera coordinate system. +@param tvec Output translation vector. +@param useExtrinsicGuess Parameter used for SOLVEPNP_ITERATIVE. If true (1), the function uses +the provided rvec and tvec values as initial approximations of the rotation and translation +vectors, respectively, and further optimizes them. +@param iterationsCount Number of iterations. +@param reprojectionError Inlier threshold value used by the RANSAC procedure. The parameter value +is the maximum allowed distance between the observed and computed point projections to consider it +an inlier. +@param confidence The probability that the algorithm produces a useful result. +@param inliers Output vector that contains indices of inliers in objectPoints and imagePoints . +@param flags Method for solving a PnP problem (see solvePnP ). + +The function estimates an object pose given a set of object points, their corresponding image +projections, as well as the camera matrix and the distortion coefficients. This function finds such +a pose that minimizes reprojection error, that is, the sum of squared distances between the observed +projections imagePoints and the projected (using projectPoints ) objectPoints. The use of RANSAC +makes the function resistant to outliers. + +@note + - An example of how to use solvePNPRansac for object detection can be found at + opencv_source_code/samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/ + */ +CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints, + InputArray cameraMatrix, InputArray distCoeffs, + OutputArray rvec, OutputArray tvec, + bool useExtrinsicGuess = false, int iterationsCount = 100, + float reprojectionError = 8.0, double confidence = 0.99, + OutputArray inliers = noArray(), int flags = SOLVEPNP_ITERATIVE ); + +/** @brief Finds an initial camera matrix from 3D-2D point correspondences. + +@param objectPoints Vector of vectors of the calibration pattern points in the calibration pattern +coordinate space. In the old interface all the per-view vectors are concatenated. See +calibrateCamera for details. +@param imagePoints Vector of vectors of the projections of the calibration pattern points. In the +old interface all the per-view vectors are concatenated. +@param imageSize Image size in pixels used to initialize the principal point. +@param aspectRatio If it is zero or negative, both \f$f_x\f$ and \f$f_y\f$ are estimated independently. +Otherwise, \f$f_x = f_y * \texttt{aspectRatio}\f$ . + +The function estimates and returns an initial camera matrix for the camera calibration process. +Currently, the function only supports planar calibration patterns, which are patterns where each +object point has z-coordinate =0. + */ +CV_EXPORTS_W Mat initCameraMatrix2D( InputArrayOfArrays objectPoints, + InputArrayOfArrays imagePoints, + Size imageSize, double aspectRatio = 1.0 ); + +/** @brief Finds the positions of internal corners of the chessboard. + +@param image Source chessboard view. It must be an 8-bit grayscale or color image. +@param patternSize Number of inner corners per a chessboard row and column +( patternSize = cvSize(points_per_row,points_per_colum) = cvSize(columns,rows) ). +@param corners Output array of detected corners. +@param flags Various operation flags that can be zero or a combination of the following values: +- **CV_CALIB_CB_ADAPTIVE_THRESH** Use adaptive thresholding to convert the image to black +and white, rather than a fixed threshold level (computed from the average image brightness). +- **CV_CALIB_CB_NORMALIZE_IMAGE** Normalize the image gamma with equalizeHist before +applying fixed or adaptive thresholding. +- **CV_CALIB_CB_FILTER_QUADS** Use additional criteria (like contour area, perimeter, +square-like shape) to filter out false quads extracted at the contour retrieval stage. +- **CALIB_CB_FAST_CHECK** Run a fast check on the image that looks for chessboard corners, +and shortcut the call if none is found. This can drastically speed up the call in the +degenerate condition when no chessboard is observed. + +The function attempts to determine whether the input image is a view of the chessboard pattern and +locate the internal chessboard corners. The function returns a non-zero value if all of the corners +are found and they are placed in a certain order (row by row, left to right in every row). +Otherwise, if the function fails to find all the corners or reorder them, it returns 0. For example, +a regular chessboard has 8 x 8 squares and 7 x 7 internal corners, that is, points where the black +squares touch each other. The detected coordinates are approximate, and to determine their positions +more accurately, the function calls cornerSubPix. You also may use the function cornerSubPix with +different parameters if returned coordinates are not accurate enough. + +Sample usage of detecting and drawing chessboard corners: : +@code + Size patternsize(8,6); //interior number of corners + Mat gray = ....; //source image + vector corners; //this will be filled by the detected corners + + //CALIB_CB_FAST_CHECK saves a lot of time on images + //that do not contain any chessboard corners + bool patternfound = findChessboardCorners(gray, patternsize, corners, + CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE + + CALIB_CB_FAST_CHECK); + + if(patternfound) + cornerSubPix(gray, corners, Size(11, 11), Size(-1, -1), + TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1)); + + drawChessboardCorners(img, patternsize, Mat(corners), patternfound); +@endcode +@note The function requires white space (like a square-thick border, the wider the better) around +the board to make the detection more robust in various environments. Otherwise, if there is no +border and the background is dark, the outer black squares cannot be segmented properly and so the +square grouping and ordering algorithm fails. + */ +CV_EXPORTS_W bool findChessboardCorners( InputArray image, Size patternSize, OutputArray corners, + int flags = CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE ); + +//! finds subpixel-accurate positions of the chessboard corners +CV_EXPORTS bool find4QuadCornerSubpix( InputArray img, InputOutputArray corners, Size region_size ); + +/** @brief Renders the detected chessboard corners. + +@param image Destination image. It must be an 8-bit color image. +@param patternSize Number of inner corners per a chessboard row and column +(patternSize = cv::Size(points_per_row,points_per_column)). +@param corners Array of detected corners, the output of findChessboardCorners. +@param patternWasFound Parameter indicating whether the complete board was found or not. The +return value of findChessboardCorners should be passed here. + +The function draws individual chessboard corners detected either as red circles if the board was not +found, or as colored corners connected with lines if the board was found. + */ +CV_EXPORTS_W void drawChessboardCorners( InputOutputArray image, Size patternSize, + InputArray corners, bool patternWasFound ); + +/** @brief Finds centers in the grid of circles. + +@param image grid view of input circles; it must be an 8-bit grayscale or color image. +@param patternSize number of circles per row and column +( patternSize = Size(points_per_row, points_per_colum) ). +@param centers output array of detected centers. +@param flags various operation flags that can be one of the following values: +- **CALIB_CB_SYMMETRIC_GRID** uses symmetric pattern of circles. +- **CALIB_CB_ASYMMETRIC_GRID** uses asymmetric pattern of circles. +- **CALIB_CB_CLUSTERING** uses a special algorithm for grid detection. It is more robust to +perspective distortions but much more sensitive to background clutter. +@param blobDetector feature detector that finds blobs like dark circles on light background. + +The function attempts to determine whether the input image contains a grid of circles. If it is, the +function locates centers of the circles. The function returns a non-zero value if all of the centers +have been found and they have been placed in a certain order (row by row, left to right in every +row). Otherwise, if the function fails to find all the corners or reorder them, it returns 0. + +Sample usage of detecting and drawing the centers of circles: : +@code + Size patternsize(7,7); //number of centers + Mat gray = ....; //source image + vector centers; //this will be filled by the detected centers + + bool patternfound = findCirclesGrid(gray, patternsize, centers); + + drawChessboardCorners(img, patternsize, Mat(centers), patternfound); +@endcode +@note The function requires white space (like a square-thick border, the wider the better) around +the board to make the detection more robust in various environments. + */ +CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize, + OutputArray centers, int flags = CALIB_CB_SYMMETRIC_GRID, + const Ptr &blobDetector = SimpleBlobDetector::create()); + +/** @brief Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern. + +@param objectPoints In the new interface it is a vector of vectors of calibration pattern points in +the calibration pattern coordinate space (e.g. std::vector>). The outer +vector contains as many elements as the number of the pattern views. If the same calibration pattern +is shown in each view and it is fully visible, all the vectors will be the same. Although, it is +possible to use partially occluded patterns, or even different patterns in different views. Then, +the vectors will be different. The points are 3D, but since they are in a pattern coordinate system, +then, if the rig is planar, it may make sense to put the model to a XY coordinate plane so that +Z-coordinate of each input object point is 0. +In the old interface all the vectors of object points from different views are concatenated +together. +@param imagePoints In the new interface it is a vector of vectors of the projections of calibration +pattern points (e.g. std::vector>). imagePoints.size() and +objectPoints.size() and imagePoints[i].size() must be equal to objectPoints[i].size() for each i. +In the old interface all the vectors of object points from different views are concatenated +together. +@param imageSize Size of the image used only to initialize the intrinsic camera matrix. +@param cameraMatrix Output 3x3 floating-point camera matrix +\f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If CV\_CALIB\_USE\_INTRINSIC\_GUESS +and/or CV_CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be +initialized before calling the function. +@param distCoeffs Output vector of distortion coefficients +\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of +4, 5, 8, 12 or 14 elements. +@param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view +(e.g. std::vector>). That is, each k-th rotation vector together with the corresponding +k-th translation vector (see the next output parameter description) brings the calibration pattern +from the model coordinate space (in which object points are specified) to the world coordinate +space, that is, a real position of the calibration pattern in the k-th pattern view (k=0.. *M* -1). +@param tvecs Output vector of translation vectors estimated for each pattern view. +@param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic parameters. + Order of deviations values: +\f$(f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3, + s_4, \tau_x, \tau_y)\f$ If one of parameters is not estimated, it's deviation is equals to zero. +@param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic parameters. + Order of deviations values: \f$(R_1, T_1, \dotsc , R_M, T_M)\f$ where M is number of pattern views, + \f$R_i, T_i\f$ are concatenated 1x3 vectors. + @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view. +@param flags Different flags that may be zero or a combination of the following values: +- **CV_CALIB_USE_INTRINSIC_GUESS** cameraMatrix contains valid initial values of +fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image +center ( imageSize is used), and focal distances are computed in a least-squares fashion. +Note, that if intrinsic parameters are known, there is no need to use this function just to +estimate extrinsic parameters. Use solvePnP instead. +- **CV_CALIB_FIX_PRINCIPAL_POINT** The principal point is not changed during the global +optimization. It stays at the center or at a different location specified when +CV_CALIB_USE_INTRINSIC_GUESS is set too. +- **CV_CALIB_FIX_ASPECT_RATIO** The functions considers only fy as a free parameter. The +ratio fx/fy stays the same as in the input cameraMatrix . When +CV_CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and fy are +ignored, only their ratio is computed and used further. +- **CV_CALIB_ZERO_TANGENT_DIST** Tangential distortion coefficients \f$(p_1, p_2)\f$ are set +to zeros and stay zero. +- **CV_CALIB_FIX_K1,...,CV_CALIB_FIX_K6** The corresponding radial distortion +coefficient is not changed during the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is +set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0. +- **CV_CALIB_RATIONAL_MODEL** Coefficients k4, k5, and k6 are enabled. To provide the +backward compatibility, this extra flag should be explicitly specified to make the +calibration function use the rational model and return 8 coefficients. If the flag is not +set, the function computes and returns only 5 distortion coefficients. +- **CALIB_THIN_PRISM_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the +backward compatibility, this extra flag should be explicitly specified to make the +calibration function use the thin prism model and return 12 coefficients. If the flag is not +set, the function computes and returns only 5 distortion coefficients. +- **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during +the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the +supplied distCoeffs matrix is used. Otherwise, it is set to 0. +- **CALIB_TILTED_MODEL** Coefficients tauX and tauY are enabled. To provide the +backward compatibility, this extra flag should be explicitly specified to make the +calibration function use the tilted sensor model and return 14 coefficients. If the flag is not +set, the function computes and returns only 5 distortion coefficients. +- **CALIB_FIX_TAUX_TAUY** The coefficients of the tilted sensor model are not changed during +the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the +supplied distCoeffs matrix is used. Otherwise, it is set to 0. +@param criteria Termination criteria for the iterative optimization algorithm. + +@return the overall RMS re-projection error. + +The function estimates the intrinsic camera parameters and extrinsic parameters for each of the +views. The algorithm is based on @cite Zhang2000 and @cite BouguetMCT . The coordinates of 3D object +points and their corresponding 2D projections in each view must be specified. That may be achieved +by using an object with a known geometry and easily detectable feature points. Such an object is +called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as +a calibration rig (see findChessboardCorners ). Currently, initialization of intrinsic parameters +(when CV_CALIB_USE_INTRINSIC_GUESS is not set) is only implemented for planar calibration +patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also +be used as long as initial cameraMatrix is provided. + +The algorithm performs the following steps: + +- Compute the initial intrinsic parameters (the option only available for planar calibration + patterns) or read them from the input parameters. The distortion coefficients are all set to + zeros initially unless some of CV_CALIB_FIX_K? are specified. + +- Estimate the initial camera pose as if the intrinsic parameters have been already known. This is + done using solvePnP . + +- Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection error, + that is, the total sum of squared distances between the observed feature points imagePoints and + the projected (using the current estimates for camera parameters and the poses) object points + objectPoints. See projectPoints for details. + +@note + If you use a non-square (=non-NxN) grid and findChessboardCorners for calibration, and + calibrateCamera returns bad values (zero distortion coefficients, an image center very far from + (w/2-0.5,h/2-0.5), and/or large differences between \f$f_x\f$ and \f$f_y\f$ (ratios of 10:1 or more)), + then you have probably used patternSize=cvSize(rows,cols) instead of using + patternSize=cvSize(cols,rows) in findChessboardCorners . + +@sa + findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort + */ +CV_EXPORTS_AS(calibrateCameraExtended) double calibrateCamera( InputArrayOfArrays objectPoints, + InputArrayOfArrays imagePoints, Size imageSize, + InputOutputArray cameraMatrix, InputOutputArray distCoeffs, + OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, + OutputArray stdDeviationsIntrinsics, + OutputArray stdDeviationsExtrinsics, + OutputArray perViewErrors, + int flags = 0, TermCriteria criteria = TermCriteria( + TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) ); + +/** @overload double calibrateCamera( InputArrayOfArrays objectPoints, + InputArrayOfArrays imagePoints, Size imageSize, + InputOutputArray cameraMatrix, InputOutputArray distCoeffs, + OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, + OutputArray stdDeviations, OutputArray perViewErrors, + int flags = 0, TermCriteria criteria = TermCriteria( + TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) ) + */ +CV_EXPORTS_W double calibrateCamera( InputArrayOfArrays objectPoints, + InputArrayOfArrays imagePoints, Size imageSize, + InputOutputArray cameraMatrix, InputOutputArray distCoeffs, + OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, + int flags = 0, TermCriteria criteria = TermCriteria( + TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) ); + +/** @brief Computes useful camera characteristics from the camera matrix. + +@param cameraMatrix Input camera matrix that can be estimated by calibrateCamera or +stereoCalibrate . +@param imageSize Input image size in pixels. +@param apertureWidth Physical width in mm of the sensor. +@param apertureHeight Physical height in mm of the sensor. +@param fovx Output field of view in degrees along the horizontal sensor axis. +@param fovy Output field of view in degrees along the vertical sensor axis. +@param focalLength Focal length of the lens in mm. +@param principalPoint Principal point in mm. +@param aspectRatio \f$f_y/f_x\f$ + +The function computes various useful camera characteristics from the previously estimated camera +matrix. + +@note + Do keep in mind that the unity measure 'mm' stands for whatever unit of measure one chooses for + the chessboard pitch (it can thus be any value). + */ +CV_EXPORTS_W void calibrationMatrixValues( InputArray cameraMatrix, Size imageSize, + double apertureWidth, double apertureHeight, + CV_OUT double& fovx, CV_OUT double& fovy, + CV_OUT double& focalLength, CV_OUT Point2d& principalPoint, + CV_OUT double& aspectRatio ); + +/** @brief Calibrates the stereo camera. + +@param objectPoints Vector of vectors of the calibration pattern points. +@param imagePoints1 Vector of vectors of the projections of the calibration pattern points, +observed by the first camera. +@param imagePoints2 Vector of vectors of the projections of the calibration pattern points, +observed by the second camera. +@param cameraMatrix1 Input/output first camera matrix: +\f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If +any of CV_CALIB_USE_INTRINSIC_GUESS , CV_CALIB_FIX_ASPECT_RATIO , +CV_CALIB_FIX_INTRINSIC , or CV_CALIB_FIX_FOCAL_LENGTH are specified, some or all of the +matrix components must be initialized. See the flags description for details. +@param distCoeffs1 Input/output vector of distortion coefficients +\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of +4, 5, 8, 12 or 14 elements. The output vector length depends on the flags. +@param cameraMatrix2 Input/output second camera matrix. The parameter is similar to cameraMatrix1 +@param distCoeffs2 Input/output lens distortion coefficients for the second camera. The parameter +is similar to distCoeffs1 . +@param imageSize Size of the image used only to initialize intrinsic camera matrix. +@param R Output rotation matrix between the 1st and the 2nd camera coordinate systems. +@param T Output translation vector between the coordinate systems of the cameras. +@param E Output essential matrix. +@param F Output fundamental matrix. +@param flags Different flags that may be zero or a combination of the following values: +- **CV_CALIB_FIX_INTRINSIC** Fix cameraMatrix? and distCoeffs? so that only R, T, E , and F +matrices are estimated. +- **CV_CALIB_USE_INTRINSIC_GUESS** Optimize some or all of the intrinsic parameters +according to the specified flags. Initial values are provided by the user. +- **CV_CALIB_FIX_PRINCIPAL_POINT** Fix the principal points during the optimization. +- **CV_CALIB_FIX_FOCAL_LENGTH** Fix \f$f^{(j)}_x\f$ and \f$f^{(j)}_y\f$ . +- **CV_CALIB_FIX_ASPECT_RATIO** Optimize \f$f^{(j)}_y\f$ . Fix the ratio \f$f^{(j)}_x/f^{(j)}_y\f$ +. +- **CV_CALIB_SAME_FOCAL_LENGTH** Enforce \f$f^{(0)}_x=f^{(1)}_x\f$ and \f$f^{(0)}_y=f^{(1)}_y\f$ . +- **CV_CALIB_ZERO_TANGENT_DIST** Set tangential distortion coefficients for each camera to +zeros and fix there. +- **CV_CALIB_FIX_K1,...,CV_CALIB_FIX_K6** Do not change the corresponding radial +distortion coefficient during the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, +the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0. +- **CV_CALIB_RATIONAL_MODEL** Enable coefficients k4, k5, and k6. To provide the backward +compatibility, this extra flag should be explicitly specified to make the calibration +function use the rational model and return 8 coefficients. If the flag is not set, the +function computes and returns only 5 distortion coefficients. +- **CALIB_THIN_PRISM_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the +backward compatibility, this extra flag should be explicitly specified to make the +calibration function use the thin prism model and return 12 coefficients. If the flag is not +set, the function computes and returns only 5 distortion coefficients. +- **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during +the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the +supplied distCoeffs matrix is used. Otherwise, it is set to 0. +- **CALIB_TILTED_MODEL** Coefficients tauX and tauY are enabled. To provide the +backward compatibility, this extra flag should be explicitly specified to make the +calibration function use the tilted sensor model and return 14 coefficients. If the flag is not +set, the function computes and returns only 5 distortion coefficients. +- **CALIB_FIX_TAUX_TAUY** The coefficients of the tilted sensor model are not changed during +the optimization. If CV_CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the +supplied distCoeffs matrix is used. Otherwise, it is set to 0. +@param criteria Termination criteria for the iterative optimization algorithm. + +The function estimates transformation between two cameras making a stereo pair. If you have a stereo +camera where the relative position and orientation of two cameras is fixed, and if you computed +poses of an object relative to the first camera and to the second camera, (R1, T1) and (R2, T2), +respectively (this can be done with solvePnP ), then those poses definitely relate to each other. +This means that, given ( \f$R_1\f$,\f$T_1\f$ ), it should be possible to compute ( \f$R_2\f$,\f$T_2\f$ ). You only +need to know the position and orientation of the second camera relative to the first camera. This is +what the described function does. It computes ( \f$R\f$,\f$T\f$ ) so that: + +\f[R_2=R*R_1\f] +\f[T_2=R*T_1 + T,\f] + +Optionally, it computes the essential matrix E: + +\f[E= \vecthreethree{0}{-T_2}{T_1}{T_2}{0}{-T_0}{-T_1}{T_0}{0} *R\f] + +where \f$T_i\f$ are components of the translation vector \f$T\f$ : \f$T=[T_0, T_1, T_2]^T\f$ . And the function +can also compute the fundamental matrix F: + +\f[F = cameraMatrix2^{-T} E cameraMatrix1^{-1}\f] + +Besides the stereo-related information, the function can also perform a full calibration of each of +two cameras. However, due to the high dimensionality of the parameter space and noise in the input +data, the function can diverge from the correct solution. If the intrinsic parameters can be +estimated with high accuracy for each of the cameras individually (for example, using +calibrateCamera ), you are recommended to do so and then pass CV_CALIB_FIX_INTRINSIC flag to the +function along with the computed intrinsic parameters. Otherwise, if all the parameters are +estimated at once, it makes sense to restrict some parameters, for example, pass +CV_CALIB_SAME_FOCAL_LENGTH and CV_CALIB_ZERO_TANGENT_DIST flags, which is usually a +reasonable assumption. + +Similarly to calibrateCamera , the function minimizes the total re-projection error for all the +points in all the available views from both cameras. The function returns the final value of the +re-projection error. + */ +CV_EXPORTS_W double stereoCalibrate( InputArrayOfArrays objectPoints, + InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2, + InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1, + InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2, + Size imageSize, OutputArray R,OutputArray T, OutputArray E, OutputArray F, + int flags = CALIB_FIX_INTRINSIC, + TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) ); + + +/** @brief Computes rectification transforms for each head of a calibrated stereo camera. + +@param cameraMatrix1 First camera matrix. +@param distCoeffs1 First camera distortion parameters. +@param cameraMatrix2 Second camera matrix. +@param distCoeffs2 Second camera distortion parameters. +@param imageSize Size of the image used for stereo calibration. +@param R Rotation matrix between the coordinate systems of the first and the second cameras. +@param T Translation vector between coordinate systems of the cameras. +@param R1 Output 3x3 rectification transform (rotation matrix) for the first camera. +@param R2 Output 3x3 rectification transform (rotation matrix) for the second camera. +@param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first +camera. +@param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second +camera. +@param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ). +@param flags Operation flags that may be zero or CV_CALIB_ZERO_DISPARITY . If the flag is set, +the function makes the principal points of each camera have the same pixel coordinates in the +rectified views. And if the flag is not set, the function may still shift the images in the +horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the +useful image area. +@param alpha Free scaling parameter. If it is -1 or absent, the function performs the default +scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified +images are zoomed and shifted so that only valid pixels are visible (no black areas after +rectification). alpha=1 means that the rectified image is decimated and shifted so that all the +pixels from the original images from the cameras are retained in the rectified images (no source +image pixels are lost). Obviously, any intermediate value yields an intermediate result between +those two extreme cases. +@param newImageSize New image resolution after rectification. The same size should be passed to +initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0) +is passed (default), it is set to the original imageSize . Setting it to larger value can help you +preserve details in the original image, especially when there is a big radial distortion. +@param validPixROI1 Optional output rectangles inside the rectified images where all the pixels +are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller +(see the picture below). +@param validPixROI2 Optional output rectangles inside the rectified images where all the pixels +are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller +(see the picture below). + +The function computes the rotation matrices for each camera that (virtually) make both camera image +planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies +the dense stereo correspondence problem. The function takes the matrices computed by stereoCalibrate +as input. As output, it provides two rotation matrices and also two projection matrices in the new +coordinates. The function distinguishes the following two cases: + +- **Horizontal stereo**: the first and the second camera views are shifted relative to each other + mainly along the x axis (with possible small vertical shift). In the rectified images, the + corresponding epipolar lines in the left and right cameras are horizontal and have the same + y-coordinate. P1 and P2 look like: + + \f[\texttt{P1} = \begin{bmatrix} f & 0 & cx_1 & 0 \\ 0 & f & cy & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}\f] + + \f[\texttt{P2} = \begin{bmatrix} f & 0 & cx_2 & T_x*f \\ 0 & f & cy & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} ,\f] + + where \f$T_x\f$ is a horizontal shift between the cameras and \f$cx_1=cx_2\f$ if + CV_CALIB_ZERO_DISPARITY is set. + +- **Vertical stereo**: the first and the second camera views are shifted relative to each other + mainly in vertical direction (and probably a bit in the horizontal direction too). The epipolar + lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like: + + \f[\texttt{P1} = \begin{bmatrix} f & 0 & cx & 0 \\ 0 & f & cy_1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}\f] + + \f[\texttt{P2} = \begin{bmatrix} f & 0 & cx & 0 \\ 0 & f & cy_2 & T_y*f \\ 0 & 0 & 1 & 0 \end{bmatrix} ,\f] + + where \f$T_y\f$ is a vertical shift between the cameras and \f$cy_1=cy_2\f$ if CALIB_ZERO_DISPARITY is + set. + +As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera +matrices. The matrices, together with R1 and R2 , can then be passed to initUndistortRectifyMap to +initialize the rectification map for each camera. + +See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through +the corresponding image regions. This means that the images are well rectified, which is what most +stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that +their interiors are all valid pixels. + +![image](pics/stereo_undistort.jpg) + */ +CV_EXPORTS_W void stereoRectify( InputArray cameraMatrix1, InputArray distCoeffs1, + InputArray cameraMatrix2, InputArray distCoeffs2, + Size imageSize, InputArray R, InputArray T, + OutputArray R1, OutputArray R2, + OutputArray P1, OutputArray P2, + OutputArray Q, int flags = CALIB_ZERO_DISPARITY, + double alpha = -1, Size newImageSize = Size(), + CV_OUT Rect* validPixROI1 = 0, CV_OUT Rect* validPixROI2 = 0 ); + +/** @brief Computes a rectification transform for an uncalibrated stereo camera. + +@param points1 Array of feature points in the first image. +@param points2 The corresponding points in the second image. The same formats as in +findFundamentalMat are supported. +@param F Input fundamental matrix. It can be computed from the same set of point pairs using +findFundamentalMat . +@param imgSize Size of the image. +@param H1 Output rectification homography matrix for the first image. +@param H2 Output rectification homography matrix for the second image. +@param threshold Optional threshold used to filter out the outliers. If the parameter is greater +than zero, all the point pairs that do not comply with the epipolar geometry (that is, the points +for which \f$|\texttt{points2[i]}^T*\texttt{F}*\texttt{points1[i]}|>\texttt{threshold}\f$ ) are +rejected prior to computing the homographies. Otherwise,all the points are considered inliers. + +The function computes the rectification transformations without knowing intrinsic parameters of the +cameras and their relative position in the space, which explains the suffix "uncalibrated". Another +related difference from stereoRectify is that the function outputs not the rectification +transformations in the object (3D) space, but the planar perspective transformations encoded by the +homography matrices H1 and H2 . The function implements the algorithm @cite Hartley99 . + +@note + While the algorithm does not need to know the intrinsic parameters of the cameras, it heavily + depends on the epipolar geometry. Therefore, if the camera lenses have a significant distortion, + it would be better to correct it before computing the fundamental matrix and calling this + function. For example, distortion coefficients can be estimated for each head of stereo camera + separately by using calibrateCamera . Then, the images can be corrected using undistort , or + just the point coordinates can be corrected with undistortPoints . + */ +CV_EXPORTS_W bool stereoRectifyUncalibrated( InputArray points1, InputArray points2, + InputArray F, Size imgSize, + OutputArray H1, OutputArray H2, + double threshold = 5 ); + +//! computes the rectification transformations for 3-head camera, where all the heads are on the same line. +CV_EXPORTS_W float rectify3Collinear( InputArray cameraMatrix1, InputArray distCoeffs1, + InputArray cameraMatrix2, InputArray distCoeffs2, + InputArray cameraMatrix3, InputArray distCoeffs3, + InputArrayOfArrays imgpt1, InputArrayOfArrays imgpt3, + Size imageSize, InputArray R12, InputArray T12, + InputArray R13, InputArray T13, + OutputArray R1, OutputArray R2, OutputArray R3, + OutputArray P1, OutputArray P2, OutputArray P3, + OutputArray Q, double alpha, Size newImgSize, + CV_OUT Rect* roi1, CV_OUT Rect* roi2, int flags ); + +/** @brief Returns the new camera matrix based on the free scaling parameter. + +@param cameraMatrix Input camera matrix. +@param distCoeffs Input vector of distortion coefficients +\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of +4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are +assumed. +@param imageSize Original image size. +@param alpha Free scaling parameter between 0 (when all the pixels in the undistorted image are +valid) and 1 (when all the source image pixels are retained in the undistorted image). See +stereoRectify for details. +@param newImgSize Image size after rectification. By default,it is set to imageSize . +@param validPixROI Optional output rectangle that outlines all-good-pixels region in the +undistorted image. See roi1, roi2 description in stereoRectify . +@param centerPrincipalPoint Optional flag that indicates whether in the new camera matrix the +principal point should be at the image center or not. By default, the principal point is chosen to +best fit a subset of the source image (determined by alpha) to the corrected image. +@return new_camera_matrix Output new camera matrix. + +The function computes and returns the optimal new camera matrix based on the free scaling parameter. +By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original +image pixels if there is valuable information in the corners alpha=1 , or get something in between. +When alpha\>0 , the undistortion result is likely to have some black pixels corresponding to +"virtual" pixels outside of the captured distorted image. The original camera matrix, distortion +coefficients, the computed new camera matrix, and newImageSize should be passed to +initUndistortRectifyMap to produce the maps for remap . + */ +CV_EXPORTS_W Mat getOptimalNewCameraMatrix( InputArray cameraMatrix, InputArray distCoeffs, + Size imageSize, double alpha, Size newImgSize = Size(), + CV_OUT Rect* validPixROI = 0, + bool centerPrincipalPoint = false); + +/** @brief Converts points from Euclidean to homogeneous space. + +@param src Input vector of N-dimensional points. +@param dst Output vector of N+1-dimensional points. + +The function converts points from Euclidean to homogeneous space by appending 1's to the tuple of +point coordinates. That is, each point (x1, x2, ..., xn) is converted to (x1, x2, ..., xn, 1). + */ +CV_EXPORTS_W void convertPointsToHomogeneous( InputArray src, OutputArray dst ); + +/** @brief Converts points from homogeneous to Euclidean space. + +@param src Input vector of N-dimensional points. +@param dst Output vector of N-1-dimensional points. + +The function converts points homogeneous to Euclidean space using perspective projection. That is, +each point (x1, x2, ... x(n-1), xn) is converted to (x1/xn, x2/xn, ..., x(n-1)/xn). When xn=0, the +output point coordinates will be (0,0,0,...). + */ +CV_EXPORTS_W void convertPointsFromHomogeneous( InputArray src, OutputArray dst ); + +/** @brief Converts points to/from homogeneous coordinates. + +@param src Input array or vector of 2D, 3D, or 4D points. +@param dst Output vector of 2D, 3D, or 4D points. + +The function converts 2D or 3D points from/to homogeneous coordinates by calling either +convertPointsToHomogeneous or convertPointsFromHomogeneous. + +@note The function is obsolete. Use one of the previous two functions instead. + */ +CV_EXPORTS void convertPointsHomogeneous( InputArray src, OutputArray dst ); + +/** @brief Calculates a fundamental matrix from the corresponding points in two images. + +@param points1 Array of N points from the first image. The point coordinates should be +floating-point (single or double precision). +@param points2 Array of the second image points of the same size and format as points1 . +@param method Method for computing a fundamental matrix. +- **CV_FM_7POINT** for a 7-point algorithm. \f$N = 7\f$ +- **CV_FM_8POINT** for an 8-point algorithm. \f$N \ge 8\f$ +- **CV_FM_RANSAC** for the RANSAC algorithm. \f$N \ge 8\f$ +- **CV_FM_LMEDS** for the LMedS algorithm. \f$N \ge 8\f$ +@param param1 Parameter used for RANSAC. It is the maximum distance from a point to an epipolar +line in pixels, beyond which the point is considered an outlier and is not used for computing the +final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the +point localization, image resolution, and the image noise. +@param param2 Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level +of confidence (probability) that the estimated matrix is correct. +@param mask + +The epipolar geometry is described by the following equation: + +\f[[p_2; 1]^T F [p_1; 1] = 0\f] + +where \f$F\f$ is a fundamental matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the +second images, respectively. + +The function calculates the fundamental matrix using one of four methods listed above and returns +the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point +algorithm, the function may return up to 3 solutions ( \f$9 \times 3\f$ matrix that stores all 3 +matrices sequentially). + +The calculated fundamental matrix may be passed further to computeCorrespondEpilines that finds the +epipolar lines corresponding to the specified points. It can also be passed to +stereoRectifyUncalibrated to compute the rectification transformation. : +@code + // Example. Estimation of fundamental matrix using the RANSAC algorithm + int point_count = 100; + vector points1(point_count); + vector points2(point_count); + + // initialize the points here ... + for( int i = 0; i < point_count; i++ ) + { + points1[i] = ...; + points2[i] = ...; + } + + Mat fundamental_matrix = + findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99); +@endcode + */ +CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2, + int method = FM_RANSAC, + double param1 = 3., double param2 = 0.99, + OutputArray mask = noArray() ); + +/** @overload */ +CV_EXPORTS Mat findFundamentalMat( InputArray points1, InputArray points2, + OutputArray mask, int method = FM_RANSAC, + double param1 = 3., double param2 = 0.99 ); + +/** @brief Calculates an essential matrix from the corresponding points in two images. + +@param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should +be floating-point (single or double precision). +@param points2 Array of the second image points of the same size and format as points1 . +@param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . +Note that this function assumes that points1 and points2 are feature points from cameras with the +same camera matrix. +@param method Method for computing a fundamental matrix. +- **RANSAC** for the RANSAC algorithm. +- **MEDS** for the LMedS algorithm. +@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of +confidence (probability) that the estimated matrix is correct. +@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar +line in pixels, beyond which the point is considered an outlier and is not used for computing the +final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the +point localization, image resolution, and the image noise. +@param mask Output array of N elements, every element of which is set to 0 for outliers and to 1 +for the other points. The array is computed only in the RANSAC and LMedS methods. + +This function estimates essential matrix based on the five-point algorithm solver in @cite Nister03 . +@cite SteweniusCFS is also a related. The epipolar geometry is described by the following equation: + +\f[[p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\f] + +where \f$E\f$ is an essential matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the +second images, respectively. The result of this function may be passed further to +decomposeEssentialMat or recoverPose to recover the relative pose between cameras. + */ +CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2, + InputArray cameraMatrix, int method = RANSAC, + double prob = 0.999, double threshold = 1.0, + OutputArray mask = noArray() ); + +/** @overload +@param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should +be floating-point (single or double precision). +@param points2 Array of the second image points of the same size and format as points1 . +@param focal focal length of the camera. Note that this function assumes that points1 and points2 +are feature points from cameras with same focal length and principal point. +@param pp principal point of the camera. +@param method Method for computing a fundamental matrix. +- **RANSAC** for the RANSAC algorithm. +- **LMEDS** for the LMedS algorithm. +@param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar +line in pixels, beyond which the point is considered an outlier and is not used for computing the +final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the +point localization, image resolution, and the image noise. +@param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of +confidence (probability) that the estimated matrix is correct. +@param mask Output array of N elements, every element of which is set to 0 for outliers and to 1 +for the other points. The array is computed only in the RANSAC and LMedS methods. + +This function differs from the one above that it computes camera matrix from focal length and +principal point: + +\f[K = +\begin{bmatrix} +f & 0 & x_{pp} \\ +0 & f & y_{pp} \\ +0 & 0 & 1 +\end{bmatrix}\f] + */ +CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2, + double focal = 1.0, Point2d pp = Point2d(0, 0), + int method = RANSAC, double prob = 0.999, + double threshold = 1.0, OutputArray mask = noArray() ); + +/** @brief Decompose an essential matrix to possible rotations and translation. + +@param E The input essential matrix. +@param R1 One possible rotation matrix. +@param R2 Another possible rotation matrix. +@param t One possible translation. + +This function decompose an essential matrix E using svd decomposition @cite HartleyZ00 . Generally 4 +possible poses exists for a given E. They are \f$[R_1, t]\f$, \f$[R_1, -t]\f$, \f$[R_2, t]\f$, \f$[R_2, -t]\f$. By +decomposing E, you can only get the direction of the translation, so the function returns unit t. + */ +CV_EXPORTS_W void decomposeEssentialMat( InputArray E, OutputArray R1, OutputArray R2, OutputArray t ); + +/** @brief Recover relative camera rotation and translation from an estimated essential matrix and the +corresponding points in two images, using cheirality check. Returns the number of inliers which pass +the check. + +@param E The input essential matrix. +@param points1 Array of N 2D points from the first image. The point coordinates should be +floating-point (single or double precision). +@param points2 Array of the second image points of the same size and format as points1 . +@param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . +Note that this function assumes that points1 and points2 are feature points from cameras with the +same camera matrix. +@param R Recovered relative rotation. +@param t Recoverd relative translation. +@param mask Input/output mask for inliers in points1 and points2. +: If it is not empty, then it marks inliers in points1 and points2 for then given essential +matrix E. Only these inliers will be used to recover pose. In the output mask only inliers +which pass the cheirality check. +This function decomposes an essential matrix using decomposeEssentialMat and then verifies possible +pose hypotheses by doing cheirality check. The cheirality check basically means that the +triangulated 3D points should have positive depth. Some details can be found in @cite Nister03 . + +This function can be used to process output E and mask from findEssentialMat. In this scenario, +points1 and points2 are the same input for findEssentialMat. : +@code + // Example. Estimation of fundamental matrix using the RANSAC algorithm + int point_count = 100; + vector points1(point_count); + vector points2(point_count); + + // initialize the points here ... + for( int i = 0; i < point_count; i++ ) + { + points1[i] = ...; + points2[i] = ...; + } + + // cametra matrix with both focal lengths = 1, and principal point = (0, 0) + Mat cameraMatrix = Mat::eye(3, 3, CV_64F); + + Mat E, R, t, mask; + + E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask); + recoverPose(E, points1, points2, cameraMatrix, R, t, mask); +@endcode + */ +CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2, + InputArray cameraMatrix, OutputArray R, OutputArray t, + InputOutputArray mask = noArray() ); + +/** @overload +@param E The input essential matrix. +@param points1 Array of N 2D points from the first image. The point coordinates should be +floating-point (single or double precision). +@param points2 Array of the second image points of the same size and format as points1 . +@param R Recovered relative rotation. +@param t Recoverd relative translation. +@param focal Focal length of the camera. Note that this function assumes that points1 and points2 +are feature points from cameras with same focal length and principal point. +@param pp principal point of the camera. +@param mask Input/output mask for inliers in points1 and points2. +: If it is not empty, then it marks inliers in points1 and points2 for then given essential +matrix E. Only these inliers will be used to recover pose. In the output mask only inliers +which pass the cheirality check. + +This function differs from the one above that it computes camera matrix from focal length and +principal point: + +\f[K = +\begin{bmatrix} +f & 0 & x_{pp} \\ +0 & f & y_{pp} \\ +0 & 0 & 1 +\end{bmatrix}\f] + */ +CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2, + OutputArray R, OutputArray t, + double focal = 1.0, Point2d pp = Point2d(0, 0), + InputOutputArray mask = noArray() ); + +/** @brief For points in an image of a stereo pair, computes the corresponding epilines in the other image. + +@param points Input points. \f$N \times 1\f$ or \f$1 \times N\f$ matrix of type CV_32FC2 or +vector\ . +@param whichImage Index of the image (1 or 2) that contains the points . +@param F Fundamental matrix that can be estimated using findFundamentalMat or stereoRectify . +@param lines Output vector of the epipolar lines corresponding to the points in the other image. +Each line \f$ax + by + c=0\f$ is encoded by 3 numbers \f$(a, b, c)\f$ . + +For every point in one of the two images of a stereo pair, the function finds the equation of the +corresponding epipolar line in the other image. + +From the fundamental matrix definition (see findFundamentalMat ), line \f$l^{(2)}_i\f$ in the second +image for the point \f$p^{(1)}_i\f$ in the first image (when whichImage=1 ) is computed as: + +\f[l^{(2)}_i = F p^{(1)}_i\f] + +And vice versa, when whichImage=2, \f$l^{(1)}_i\f$ is computed from \f$p^{(2)}_i\f$ as: + +\f[l^{(1)}_i = F^T p^{(2)}_i\f] + +Line coefficients are defined up to a scale. They are normalized so that \f$a_i^2+b_i^2=1\f$ . + */ +CV_EXPORTS_W void computeCorrespondEpilines( InputArray points, int whichImage, + InputArray F, OutputArray lines ); + +/** @brief Reconstructs points by triangulation. + +@param projMatr1 3x4 projection matrix of the first camera. +@param projMatr2 3x4 projection matrix of the second camera. +@param projPoints1 2xN array of feature points in the first image. In case of c++ version it can +be also a vector of feature points or two-channel matrix of size 1xN or Nx1. +@param projPoints2 2xN array of corresponding points in the second image. In case of c++ version +it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1. +@param points4D 4xN array of reconstructed points in homogeneous coordinates. + +The function reconstructs 3-dimensional points (in homogeneous coordinates) by using their +observations with a stereo camera. Projections matrices can be obtained from stereoRectify. + +@note + Keep in mind that all input data should be of float type in order for this function to work. + +@sa + reprojectImageTo3D + */ +CV_EXPORTS_W void triangulatePoints( InputArray projMatr1, InputArray projMatr2, + InputArray projPoints1, InputArray projPoints2, + OutputArray points4D ); + +/** @brief Refines coordinates of corresponding points. + +@param F 3x3 fundamental matrix. +@param points1 1xN array containing the first set of points. +@param points2 1xN array containing the second set of points. +@param newPoints1 The optimized points1. +@param newPoints2 The optimized points2. + +The function implements the Optimal Triangulation Method (see Multiple View Geometry for details). +For each given point correspondence points1[i] \<-\> points2[i], and a fundamental matrix F, it +computes the corrected correspondences newPoints1[i] \<-\> newPoints2[i] that minimize the geometric +error \f$d(points1[i], newPoints1[i])^2 + d(points2[i],newPoints2[i])^2\f$ (where \f$d(a,b)\f$ is the +geometric distance between points \f$a\f$ and \f$b\f$ ) subject to the epipolar constraint +\f$newPoints2^T * F * newPoints1 = 0\f$ . + */ +CV_EXPORTS_W void correctMatches( InputArray F, InputArray points1, InputArray points2, + OutputArray newPoints1, OutputArray newPoints2 ); + +/** @brief Filters off small noise blobs (speckles) in the disparity map + +@param img The input 16-bit signed disparity image +@param newVal The disparity value used to paint-off the speckles +@param maxSpeckleSize The maximum speckle size to consider it a speckle. Larger blobs are not +affected by the algorithm +@param maxDiff Maximum difference between neighbor disparity pixels to put them into the same +blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point +disparity map, where disparity values are multiplied by 16, this scale factor should be taken into +account when specifying this parameter value. +@param buf The optional temporary buffer to avoid memory allocation within the function. + */ +CV_EXPORTS_W void filterSpeckles( InputOutputArray img, double newVal, + int maxSpeckleSize, double maxDiff, + InputOutputArray buf = noArray() ); + +//! computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by cv::stereoRectify()) +CV_EXPORTS_W Rect getValidDisparityROI( Rect roi1, Rect roi2, + int minDisparity, int numberOfDisparities, + int SADWindowSize ); + +//! validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm +CV_EXPORTS_W void validateDisparity( InputOutputArray disparity, InputArray cost, + int minDisparity, int numberOfDisparities, + int disp12MaxDisp = 1 ); + +/** @brief Reprojects a disparity image to 3D space. + +@param disparity Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit +floating-point disparity image. If 16-bit signed format is used, the values are assumed to have no +fractional bits. +@param _3dImage Output 3-channel floating-point image of the same size as disparity . Each +element of _3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity +map. +@param Q \f$4 \times 4\f$ perspective transformation matrix that can be obtained with stereoRectify. +@param handleMissingValues Indicates, whether the function should handle missing values (i.e. +points where the disparity was not computed). If handleMissingValues=true, then pixels with the +minimal disparity that corresponds to the outliers (see StereoMatcher::compute ) are transformed +to 3D points with a very large Z value (currently set to 10000). +@param ddepth The optional output array depth. If it is -1, the output image will have CV_32F +depth. ddepth can also be set to CV_16S, CV_32S or CV_32F. + +The function transforms a single-channel disparity map to a 3-channel image representing a 3D +surface. That is, for each pixel (x,y) andthe corresponding disparity d=disparity(x,y) , it +computes: + +\f[\begin{array}{l} [X \; Y \; Z \; W]^T = \texttt{Q} *[x \; y \; \texttt{disparity} (x,y) \; 1]^T \\ \texttt{\_3dImage} (x,y) = (X/W, \; Y/W, \; Z/W) \end{array}\f] + +The matrix Q can be an arbitrary \f$4 \times 4\f$ matrix (for example, the one computed by +stereoRectify). To reproject a sparse set of points {(x,y,d),...} to 3D space, use +perspectiveTransform . + */ +CV_EXPORTS_W void reprojectImageTo3D( InputArray disparity, + OutputArray _3dImage, InputArray Q, + bool handleMissingValues = false, + int ddepth = -1 ); + +/** @brief Calculates the Sampson Distance between two points. + +The function sampsonDistance calculates and returns the first order approximation of the geometric error as: +\f[sd( \texttt{pt1} , \texttt{pt2} )= \frac{(\texttt{pt2}^t \cdot \texttt{F} \cdot \texttt{pt1})^2}{(\texttt{F} \cdot \texttt{pt1})(0) + (\texttt{F} \cdot \texttt{pt1})(1) + (\texttt{F}^t \cdot \texttt{pt2})(0) + (\texttt{F}^t \cdot \texttt{pt2})(1)}\f] +The fundamental matrix may be calculated using the cv::findFundamentalMat function. See HZ 11.4.3 for details. +@param pt1 first homogeneous 2d point +@param pt2 second homogeneous 2d point +@param F fundamental matrix +*/ +CV_EXPORTS_W double sampsonDistance(InputArray pt1, InputArray pt2, InputArray F); + +/** @brief Computes an optimal affine transformation between two 3D point sets. + +@param src First input 3D point set. +@param dst Second input 3D point set. +@param out Output 3D affine transformation matrix \f$3 \times 4\f$ . +@param inliers Output vector indicating which points are inliers. +@param ransacThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as +an inlier. +@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything +between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation +significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation. + +The function estimates an optimal 3D affine transformation between two 3D point sets using the +RANSAC algorithm. + */ +CV_EXPORTS_W int estimateAffine3D(InputArray src, InputArray dst, + OutputArray out, OutputArray inliers, + double ransacThreshold = 3, double confidence = 0.99); + +/** @brief Computes an optimal affine transformation between two 2D point sets. + +@param from First input 2D point set. +@param to Second input 2D point set. +@param inliers Output vector indicating which points are inliers. +@param method Robust method used to compute tranformation. The following methods are possible: +- cv::RANSAC - RANSAC-based robust method +- cv::LMEDS - Least-Median robust method +RANSAC is the default method. +@param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider +a point as an inlier. Applies only to RANSAC. +@param maxIters The maximum number of robust method iterations, 2000 is the maximum it can be. +@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything +between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation +significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation. +@param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt). +Passing 0 will disable refining, so the output matrix will be output of robust method. + +@return Output 2D affine transformation matrix \f$2 \times 3\f$ or empty matrix if transformation +could not be estimated. + +The function estimates an optimal 2D affine transformation between two 2D point sets using the +selected robust algorithm. + +The computed transformation is then refined further (using only inliers) with the +Levenberg-Marquardt method to reduce the re-projection error even more. + +@note +The RANSAC method can handle practically any ratio of outliers but need a threshold to +distinguish inliers from outliers. The method LMeDS does not need any threshold but it works +correctly only when there are more than 50% of inliers. + +@sa estimateAffinePartial2D, getAffineTransform +*/ +CV_EXPORTS_W cv::Mat estimateAffine2D(InputArray from, InputArray to, OutputArray inliers = noArray(), + int method = RANSAC, double ransacReprojThreshold = 3, + size_t maxIters = 2000, double confidence = 0.99, + size_t refineIters = 10); + +/** @brief Computes an optimal limited affine transformation with 4 degrees of freedom between +two 2D point sets. + +@param from First input 2D point set. +@param to Second input 2D point set. +@param inliers Output vector indicating which points are inliers. +@param method Robust method used to compute tranformation. The following methods are possible: +- cv::RANSAC - RANSAC-based robust method +- cv::LMEDS - Least-Median robust method +RANSAC is the default method. +@param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider +a point as an inlier. Applies only to RANSAC. +@param maxIters The maximum number of robust method iterations, 2000 is the maximum it can be. +@param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything +between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation +significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation. +@param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt). +Passing 0 will disable refining, so the output matrix will be output of robust method. + +@return Output 2D affine transformation (4 degrees of freedom) matrix \f$2 \times 3\f$ or +empty matrix if transformation could not be estimated. + +The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to +combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust +estimation. + +The computed transformation is then refined further (using only inliers) with the +Levenberg-Marquardt method to reduce the re-projection error even more. + +Estimated transformation matrix is: +\f[ \begin{bmatrix} \cos(\theta)s & -\sin(\theta)s & tx \\ + \sin(\theta)s & \cos(\theta)s & ty +\end{bmatrix} \f] +Where \f$ \theta \f$ is the rotation angle, \f$ s \f$ the scaling factor and \f$ tx, ty \f$ are +translations in \f$ x, y \f$ axes respectively. + +@note +The RANSAC method can handle practically any ratio of outliers but need a threshold to +distinguish inliers from outliers. The method LMeDS does not need any threshold but it works +correctly only when there are more than 50% of inliers. + +@sa estimateAffine2D, getAffineTransform +*/ +CV_EXPORTS_W cv::Mat estimateAffinePartial2D(InputArray from, InputArray to, OutputArray inliers = noArray(), + int method = RANSAC, double ransacReprojThreshold = 3, + size_t maxIters = 2000, double confidence = 0.99, + size_t refineIters = 10); + +/** @brief Decompose a homography matrix to rotation(s), translation(s) and plane normal(s). + +@param H The input homography matrix between two images. +@param K The input intrinsic camera calibration matrix. +@param rotations Array of rotation matrices. +@param translations Array of translation matrices. +@param normals Array of plane normal matrices. + +This function extracts relative camera motion between two views observing a planar object from the +homography H induced by the plane. The intrinsic camera matrix K must also be provided. The function +may return up to four mathematical solution sets. At least two of the solutions may further be +invalidated if point correspondences are available by applying positive depth constraint (all points +must be in front of the camera). The decomposition method is described in detail in @cite Malis . + */ +CV_EXPORTS_W int decomposeHomographyMat(InputArray H, + InputArray K, + OutputArrayOfArrays rotations, + OutputArrayOfArrays translations, + OutputArrayOfArrays normals); + +/** @brief The base class for stereo correspondence algorithms. + */ +class CV_EXPORTS_W StereoMatcher : public Algorithm +{ +public: + enum { DISP_SHIFT = 4, + DISP_SCALE = (1 << DISP_SHIFT) + }; + + /** @brief Computes disparity map for the specified stereo pair + + @param left Left 8-bit single-channel image. + @param right Right image of the same size and the same type as the left one. + @param disparity Output disparity map. It has the same size as the input images. Some algorithms, + like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value + has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map. + */ + CV_WRAP virtual void compute( InputArray left, InputArray right, + OutputArray disparity ) = 0; + + CV_WRAP virtual int getMinDisparity() const = 0; + CV_WRAP virtual void setMinDisparity(int minDisparity) = 0; + + CV_WRAP virtual int getNumDisparities() const = 0; + CV_WRAP virtual void setNumDisparities(int numDisparities) = 0; + + CV_WRAP virtual int getBlockSize() const = 0; + CV_WRAP virtual void setBlockSize(int blockSize) = 0; + + CV_WRAP virtual int getSpeckleWindowSize() const = 0; + CV_WRAP virtual void setSpeckleWindowSize(int speckleWindowSize) = 0; + + CV_WRAP virtual int getSpeckleRange() const = 0; + CV_WRAP virtual void setSpeckleRange(int speckleRange) = 0; + + CV_WRAP virtual int getDisp12MaxDiff() const = 0; + CV_WRAP virtual void setDisp12MaxDiff(int disp12MaxDiff) = 0; +}; + + +/** @brief Class for computing stereo correspondence using the block matching algorithm, introduced and +contributed to OpenCV by K. Konolige. + */ +class CV_EXPORTS_W StereoBM : public StereoMatcher +{ +public: + enum { PREFILTER_NORMALIZED_RESPONSE = 0, + PREFILTER_XSOBEL = 1 + }; + + CV_WRAP virtual int getPreFilterType() const = 0; + CV_WRAP virtual void setPreFilterType(int preFilterType) = 0; + + CV_WRAP virtual int getPreFilterSize() const = 0; + CV_WRAP virtual void setPreFilterSize(int preFilterSize) = 0; + + CV_WRAP virtual int getPreFilterCap() const = 0; + CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0; + + CV_WRAP virtual int getTextureThreshold() const = 0; + CV_WRAP virtual void setTextureThreshold(int textureThreshold) = 0; + + CV_WRAP virtual int getUniquenessRatio() const = 0; + CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0; + + CV_WRAP virtual int getSmallerBlockSize() const = 0; + CV_WRAP virtual void setSmallerBlockSize(int blockSize) = 0; + + CV_WRAP virtual Rect getROI1() const = 0; + CV_WRAP virtual void setROI1(Rect roi1) = 0; + + CV_WRAP virtual Rect getROI2() const = 0; + CV_WRAP virtual void setROI2(Rect roi2) = 0; + + /** @brief Creates StereoBM object + + @param numDisparities the disparity search range. For each pixel algorithm will find the best + disparity from 0 (default minimum disparity) to numDisparities. The search range can then be + shifted by changing the minimum disparity. + @param blockSize the linear size of the blocks compared by the algorithm. The size should be odd + (as the block is centered at the current pixel). Larger block size implies smoother, though less + accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher + chance for algorithm to find a wrong correspondence. + + The function create StereoBM object. You can then call StereoBM::compute() to compute disparity for + a specific stereo pair. + */ + CV_WRAP static Ptr create(int numDisparities = 0, int blockSize = 21); +}; + +/** @brief The class implements the modified H. Hirschmuller algorithm @cite HH08 that differs from the original +one as follows: + +- By default, the algorithm is single-pass, which means that you consider only 5 directions +instead of 8. Set mode=StereoSGBM::MODE_HH in createStereoSGBM to run the full variant of the +algorithm but beware that it may consume a lot of memory. +- The algorithm matches blocks, not individual pixels. Though, setting blockSize=1 reduces the +blocks to single pixels. +- Mutual information cost function is not implemented. Instead, a simpler Birchfield-Tomasi +sub-pixel metric from @cite BT98 is used. Though, the color images are supported as well. +- Some pre- and post- processing steps from K. Konolige algorithm StereoBM are included, for +example: pre-filtering (StereoBM::PREFILTER_XSOBEL type) and post-filtering (uniqueness +check, quadratic interpolation and speckle filtering). + +@note + - (Python) An example illustrating the use of the StereoSGBM matching algorithm can be found + at opencv_source_code/samples/python/stereo_match.py + */ +class CV_EXPORTS_W StereoSGBM : public StereoMatcher +{ +public: + enum + { + MODE_SGBM = 0, + MODE_HH = 1, + MODE_SGBM_3WAY = 2 + }; + + CV_WRAP virtual int getPreFilterCap() const = 0; + CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0; + + CV_WRAP virtual int getUniquenessRatio() const = 0; + CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0; + + CV_WRAP virtual int getP1() const = 0; + CV_WRAP virtual void setP1(int P1) = 0; + + CV_WRAP virtual int getP2() const = 0; + CV_WRAP virtual void setP2(int P2) = 0; + + CV_WRAP virtual int getMode() const = 0; + CV_WRAP virtual void setMode(int mode) = 0; + + /** @brief Creates StereoSGBM object + + @param minDisparity Minimum possible disparity value. Normally, it is zero but sometimes + rectification algorithms can shift images, so this parameter needs to be adjusted accordingly. + @param numDisparities Maximum disparity minus minimum disparity. The value is always greater than + zero. In the current implementation, this parameter must be divisible by 16. + @param blockSize Matched block size. It must be an odd number \>=1 . Normally, it should be + somewhere in the 3..11 range. + @param P1 The first parameter controlling the disparity smoothness. See below. + @param P2 The second parameter controlling the disparity smoothness. The larger the values are, + the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1 + between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor + pixels. The algorithm requires P2 \> P1 . See stereo_match.cpp sample where some reasonably good + P1 and P2 values are shown (like 8\*number_of_image_channels\*SADWindowSize\*SADWindowSize and + 32\*number_of_image_channels\*SADWindowSize\*SADWindowSize , respectively). + @param disp12MaxDiff Maximum allowed difference (in integer pixel units) in the left-right + disparity check. Set it to a non-positive value to disable the check. + @param preFilterCap Truncation value for the prefiltered image pixels. The algorithm first + computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval. + The result values are passed to the Birchfield-Tomasi pixel cost function. + @param uniquenessRatio Margin in percentage by which the best (minimum) computed cost function + value should "win" the second best value to consider the found match correct. Normally, a value + within the 5-15 range is good enough. + @param speckleWindowSize Maximum size of smooth disparity regions to consider their noise speckles + and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the + 50-200 range. + @param speckleRange Maximum disparity variation within each connected component. If you do speckle + filtering, set the parameter to a positive value, it will be implicitly multiplied by 16. + Normally, 1 or 2 is good enough. + @param mode Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming + algorithm. It will consume O(W\*H\*numDisparities) bytes, which is large for 640x480 stereo and + huge for HD-size pictures. By default, it is set to false . + + The first constructor initializes StereoSGBM with all the default parameters. So, you only have to + set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter + to a custom value. + */ + CV_WRAP static Ptr create(int minDisparity, int numDisparities, int blockSize, + int P1 = 0, int P2 = 0, int disp12MaxDiff = 0, + int preFilterCap = 0, int uniquenessRatio = 0, + int speckleWindowSize = 0, int speckleRange = 0, + int mode = StereoSGBM::MODE_SGBM); +}; + +//! @} calib3d + +/** @brief The methods in this namespace use a so-called fisheye camera model. + @ingroup calib3d_fisheye +*/ +namespace fisheye +{ +//! @addtogroup calib3d_fisheye +//! @{ + + enum{ + CALIB_USE_INTRINSIC_GUESS = 1 << 0, + CALIB_RECOMPUTE_EXTRINSIC = 1 << 1, + CALIB_CHECK_COND = 1 << 2, + CALIB_FIX_SKEW = 1 << 3, + CALIB_FIX_K1 = 1 << 4, + CALIB_FIX_K2 = 1 << 5, + CALIB_FIX_K3 = 1 << 6, + CALIB_FIX_K4 = 1 << 7, + CALIB_FIX_INTRINSIC = 1 << 8, + CALIB_FIX_PRINCIPAL_POINT = 1 << 9 + }; + + /** @brief Projects points using fisheye model + + @param objectPoints Array of object points, 1xN/Nx1 3-channel (or vector\ ), where N is + the number of points in the view. + @param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or + vector\. + @param affine + @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. + @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. + @param alpha The skew coefficient. + @param jacobian Optional output 2Nx15 jacobian matrix of derivatives of image points with respect + to components of the focal lengths, coordinates of the principal point, distortion coefficients, + rotation vector, translation vector, and the skew. In the old interface different components of + the jacobian are returned via different output parameters. + + The function computes projections of 3D points to the image plane given intrinsic and extrinsic + camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of + image points coordinates (as functions of all the input parameters) with respect to the particular + parameters, intrinsic and/or extrinsic. + */ + CV_EXPORTS void projectPoints(InputArray objectPoints, OutputArray imagePoints, const Affine3d& affine, + InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray()); + + /** @overload */ + CV_EXPORTS_W void projectPoints(InputArray objectPoints, OutputArray imagePoints, InputArray rvec, InputArray tvec, + InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray()); + + /** @brief Distorts 2D points using fisheye model. + + @param undistorted Array of object points, 1xN/Nx1 2-channel (or vector\ ), where N is + the number of points in the view. + @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. + @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. + @param alpha The skew coefficient. + @param distorted Output array of image points, 1xN/Nx1 2-channel, or vector\ . + + Note that the function assumes the camera matrix of the undistorted points to be indentity. + This means if you want to transform back points undistorted with undistortPoints() you have to + multiply them with \f$P^{-1}\f$. + */ + CV_EXPORTS_W void distortPoints(InputArray undistorted, OutputArray distorted, InputArray K, InputArray D, double alpha = 0); + + /** @brief Undistorts 2D points using fisheye model + + @param distorted Array of object points, 1xN/Nx1 2-channel (or vector\ ), where N is the + number of points in the view. + @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. + @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. + @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3 + 1-channel or 1x1 3-channel + @param P New camera matrix (3x3) or new projection matrix (3x4) + @param undistorted Output array of image points, 1xN/Nx1 2-channel, or vector\ . + */ + CV_EXPORTS_W void undistortPoints(InputArray distorted, OutputArray undistorted, + InputArray K, InputArray D, InputArray R = noArray(), InputArray P = noArray()); + + /** @brief Computes undistortion and rectification maps for image transform by cv::remap(). If D is empty zero + distortion is used, if R or P is empty identity matrixes are used. + + @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. + @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. + @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3 + 1-channel or 1x1 3-channel + @param P New camera matrix (3x3) or new projection matrix (3x4) + @param size Undistorted image size. + @param m1type Type of the first output map that can be CV_32FC1 or CV_16SC2 . See convertMaps() + for details. + @param map1 The first output map. + @param map2 The second output map. + */ + CV_EXPORTS_W void initUndistortRectifyMap(InputArray K, InputArray D, InputArray R, InputArray P, + const cv::Size& size, int m1type, OutputArray map1, OutputArray map2); + + /** @brief Transforms an image to compensate for fisheye lens distortion. + + @param distorted image with fisheye lens distortion. + @param undistorted Output image with compensated fisheye lens distortion. + @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. + @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. + @param Knew Camera matrix of the distorted image. By default, it is the identity matrix but you + may additionally scale and shift the result by using a different matrix. + @param new_size + + The function transforms an image to compensate radial and tangential lens distortion. + + The function is simply a combination of fisheye::initUndistortRectifyMap (with unity R ) and remap + (with bilinear interpolation). See the former function for details of the transformation being + performed. + + See below the results of undistortImage. + - a\) result of undistort of perspective camera model (all possible coefficients (k_1, k_2, k_3, + k_4, k_5, k_6) of distortion were optimized under calibration) + - b\) result of fisheye::undistortImage of fisheye camera model (all possible coefficients (k_1, k_2, + k_3, k_4) of fisheye distortion were optimized under calibration) + - c\) original image was captured with fisheye lens + + Pictures a) and b) almost the same. But if we consider points of image located far from the center + of image, we can notice that on image a) these points are distorted. + + ![image](pics/fisheye_undistorted.jpg) + */ + CV_EXPORTS_W void undistortImage(InputArray distorted, OutputArray undistorted, + InputArray K, InputArray D, InputArray Knew = cv::noArray(), const Size& new_size = Size()); + + /** @brief Estimates new camera matrix for undistortion or rectification. + + @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. + @param image_size + @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. + @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3 + 1-channel or 1x1 3-channel + @param P New camera matrix (3x3) or new projection matrix (3x4) + @param balance Sets the new focal length in range between the min focal length and the max focal + length. Balance is in range of [0, 1]. + @param new_size + @param fov_scale Divisor for new focal length. + */ + CV_EXPORTS_W void estimateNewCameraMatrixForUndistortRectify(InputArray K, InputArray D, const Size &image_size, InputArray R, + OutputArray P, double balance = 0.0, const Size& new_size = Size(), double fov_scale = 1.0); + + /** @brief Performs camera calibaration + + @param objectPoints vector of vectors of calibration pattern points in the calibration pattern + coordinate space. + @param imagePoints vector of vectors of the projections of calibration pattern points. + imagePoints.size() and objectPoints.size() and imagePoints[i].size() must be equal to + objectPoints[i].size() for each i. + @param image_size Size of the image used only to initialize the intrinsic camera matrix. + @param K Output 3x3 floating-point camera matrix + \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If + fisheye::CALIB_USE_INTRINSIC_GUESS/ is specified, some or all of fx, fy, cx, cy must be + initialized before calling the function. + @param D Output vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. + @param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view. + That is, each k-th rotation vector together with the corresponding k-th translation vector (see + the next output parameter description) brings the calibration pattern from the model coordinate + space (in which object points are specified) to the world coordinate space, that is, a real + position of the calibration pattern in the k-th pattern view (k=0.. *M* -1). + @param tvecs Output vector of translation vectors estimated for each pattern view. + @param flags Different flags that may be zero or a combination of the following values: + - **fisheye::CALIB_USE_INTRINSIC_GUESS** cameraMatrix contains valid initial values of + fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image + center ( imageSize is used), and focal distances are computed in a least-squares fashion. + - **fisheye::CALIB_RECOMPUTE_EXTRINSIC** Extrinsic will be recomputed after each iteration + of intrinsic optimization. + - **fisheye::CALIB_CHECK_COND** The functions will check validity of condition number. + - **fisheye::CALIB_FIX_SKEW** Skew coefficient (alpha) is set to zero and stay zero. + - **fisheye::CALIB_FIX_K1..fisheye::CALIB_FIX_K4** Selected distortion coefficients + are set to zeros and stay zero. + - **fisheye::CALIB_FIX_PRINCIPAL_POINT** The principal point is not changed during the global +optimization. It stays at the center or at a different location specified when CALIB_USE_INTRINSIC_GUESS is set too. + @param criteria Termination criteria for the iterative optimization algorithm. + */ + CV_EXPORTS_W double calibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, const Size& image_size, + InputOutputArray K, InputOutputArray D, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags = 0, + TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON)); + + /** @brief Stereo rectification for fisheye camera model + + @param K1 First camera matrix. + @param D1 First camera distortion parameters. + @param K2 Second camera matrix. + @param D2 Second camera distortion parameters. + @param imageSize Size of the image used for stereo calibration. + @param R Rotation matrix between the coordinate systems of the first and the second + cameras. + @param tvec Translation vector between coordinate systems of the cameras. + @param R1 Output 3x3 rectification transform (rotation matrix) for the first camera. + @param R2 Output 3x3 rectification transform (rotation matrix) for the second camera. + @param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first + camera. + @param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second + camera. + @param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ). + @param flags Operation flags that may be zero or CV_CALIB_ZERO_DISPARITY . If the flag is set, + the function makes the principal points of each camera have the same pixel coordinates in the + rectified views. And if the flag is not set, the function may still shift the images in the + horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the + useful image area. + @param newImageSize New image resolution after rectification. The same size should be passed to + initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0) + is passed (default), it is set to the original imageSize . Setting it to larger value can help you + preserve details in the original image, especially when there is a big radial distortion. + @param balance Sets the new focal length in range between the min focal length and the max focal + length. Balance is in range of [0, 1]. + @param fov_scale Divisor for new focal length. + */ + CV_EXPORTS_W void stereoRectify(InputArray K1, InputArray D1, InputArray K2, InputArray D2, const Size &imageSize, InputArray R, InputArray tvec, + OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2, OutputArray Q, int flags, const Size &newImageSize = Size(), + double balance = 0.0, double fov_scale = 1.0); + + /** @brief Performs stereo calibration + + @param objectPoints Vector of vectors of the calibration pattern points. + @param imagePoints1 Vector of vectors of the projections of the calibration pattern points, + observed by the first camera. + @param imagePoints2 Vector of vectors of the projections of the calibration pattern points, + observed by the second camera. + @param K1 Input/output first camera matrix: + \f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If + any of fisheye::CALIB_USE_INTRINSIC_GUESS , fisheye::CV_CALIB_FIX_INTRINSIC are specified, + some or all of the matrix components must be initialized. + @param D1 Input/output vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$ of 4 elements. + @param K2 Input/output second camera matrix. The parameter is similar to K1 . + @param D2 Input/output lens distortion coefficients for the second camera. The parameter is + similar to D1 . + @param imageSize Size of the image used only to initialize intrinsic camera matrix. + @param R Output rotation matrix between the 1st and the 2nd camera coordinate systems. + @param T Output translation vector between the coordinate systems of the cameras. + @param flags Different flags that may be zero or a combination of the following values: + - **fisheye::CV_CALIB_FIX_INTRINSIC** Fix K1, K2? and D1, D2? so that only R, T matrices + are estimated. + - **fisheye::CALIB_USE_INTRINSIC_GUESS** K1, K2 contains valid initial values of + fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image + center (imageSize is used), and focal distances are computed in a least-squares fashion. + - **fisheye::CALIB_RECOMPUTE_EXTRINSIC** Extrinsic will be recomputed after each iteration + of intrinsic optimization. + - **fisheye::CALIB_CHECK_COND** The functions will check validity of condition number. + - **fisheye::CALIB_FIX_SKEW** Skew coefficient (alpha) is set to zero and stay zero. + - **fisheye::CALIB_FIX_K1..4** Selected distortion coefficients are set to zeros and stay + zero. + @param criteria Termination criteria for the iterative optimization algorithm. + */ + CV_EXPORTS_W double stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2, + InputOutputArray K1, InputOutputArray D1, InputOutputArray K2, InputOutputArray D2, Size imageSize, + OutputArray R, OutputArray T, int flags = fisheye::CALIB_FIX_INTRINSIC, + TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON)); + +//! @} calib3d_fisheye +} + +} // cv + +#ifndef DISABLE_OPENCV_24_COMPATIBILITY +#include "opencv2/calib3d/calib3d_c.h" +#endif + +#endif diff --git a/thirdparty1/linux/include/opencv2/calib3d/calib3d.hpp b/thirdparty1/linux/include/opencv2/calib3d/calib3d.hpp new file mode 100644 index 0000000..b3da45e --- /dev/null +++ b/thirdparty1/linux/include/opencv2/calib3d/calib3d.hpp @@ -0,0 +1,48 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifdef __OPENCV_BUILD +#error this is a compatibility header which should not be used inside the OpenCV library +#endif + +#include "opencv2/calib3d.hpp" diff --git a/thirdparty1/linux/include/opencv2/calib3d/calib3d_c.h b/thirdparty1/linux/include/opencv2/calib3d/calib3d_c.h new file mode 100644 index 0000000..1069b58 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/calib3d/calib3d_c.h @@ -0,0 +1,426 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CALIB3D_C_H +#define OPENCV_CALIB3D_C_H + +#include "opencv2/core/core_c.h" + +#ifdef __cplusplus +extern "C" { +#endif + +/** @addtogroup calib3d_c + @{ + */ + +/****************************************************************************************\ +* Camera Calibration, Pose Estimation and Stereo * +\****************************************************************************************/ + +typedef struct CvPOSITObject CvPOSITObject; + +/* Allocates and initializes CvPOSITObject structure before doing cvPOSIT */ +CVAPI(CvPOSITObject*) cvCreatePOSITObject( CvPoint3D32f* points, int point_count ); + + +/* Runs POSIT (POSe from ITeration) algorithm for determining 3d position of + an object given its model and projection in a weak-perspective case */ +CVAPI(void) cvPOSIT( CvPOSITObject* posit_object, CvPoint2D32f* image_points, + double focal_length, CvTermCriteria criteria, + float* rotation_matrix, float* translation_vector); + +/* Releases CvPOSITObject structure */ +CVAPI(void) cvReleasePOSITObject( CvPOSITObject** posit_object ); + +/* updates the number of RANSAC iterations */ +CVAPI(int) cvRANSACUpdateNumIters( double p, double err_prob, + int model_points, int max_iters ); + +CVAPI(void) cvConvertPointsHomogeneous( const CvMat* src, CvMat* dst ); + +/* Calculates fundamental matrix given a set of corresponding points */ +#define CV_FM_7POINT 1 +#define CV_FM_8POINT 2 + +#define CV_LMEDS 4 +#define CV_RANSAC 8 + +#define CV_FM_LMEDS_ONLY CV_LMEDS +#define CV_FM_RANSAC_ONLY CV_RANSAC +#define CV_FM_LMEDS CV_LMEDS +#define CV_FM_RANSAC CV_RANSAC + +enum +{ + CV_ITERATIVE = 0, + CV_EPNP = 1, // F.Moreno-Noguer, V.Lepetit and P.Fua "EPnP: Efficient Perspective-n-Point Camera Pose Estimation" + CV_P3P = 2, // X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang; "Complete Solution Classification for the Perspective-Three-Point Problem" + CV_DLS = 3 // Joel A. Hesch and Stergios I. Roumeliotis. "A Direct Least-Squares (DLS) Method for PnP" +}; + +CVAPI(int) cvFindFundamentalMat( const CvMat* points1, const CvMat* points2, + CvMat* fundamental_matrix, + int method CV_DEFAULT(CV_FM_RANSAC), + double param1 CV_DEFAULT(3.), double param2 CV_DEFAULT(0.99), + CvMat* status CV_DEFAULT(NULL) ); + +/* For each input point on one of images + computes parameters of the corresponding + epipolar line on the other image */ +CVAPI(void) cvComputeCorrespondEpilines( const CvMat* points, + int which_image, + const CvMat* fundamental_matrix, + CvMat* correspondent_lines ); + +/* Triangulation functions */ + +CVAPI(void) cvTriangulatePoints(CvMat* projMatr1, CvMat* projMatr2, + CvMat* projPoints1, CvMat* projPoints2, + CvMat* points4D); + +CVAPI(void) cvCorrectMatches(CvMat* F, CvMat* points1, CvMat* points2, + CvMat* new_points1, CvMat* new_points2); + + +/* Computes the optimal new camera matrix according to the free scaling parameter alpha: + alpha=0 - only valid pixels will be retained in the undistorted image + alpha=1 - all the source image pixels will be retained in the undistorted image +*/ +CVAPI(void) cvGetOptimalNewCameraMatrix( const CvMat* camera_matrix, + const CvMat* dist_coeffs, + CvSize image_size, double alpha, + CvMat* new_camera_matrix, + CvSize new_imag_size CV_DEFAULT(cvSize(0,0)), + CvRect* valid_pixel_ROI CV_DEFAULT(0), + int center_principal_point CV_DEFAULT(0)); + +/* Converts rotation vector to rotation matrix or vice versa */ +CVAPI(int) cvRodrigues2( const CvMat* src, CvMat* dst, + CvMat* jacobian CV_DEFAULT(0) ); + +/* Finds perspective transformation between the object plane and image (view) plane */ +CVAPI(int) cvFindHomography( const CvMat* src_points, + const CvMat* dst_points, + CvMat* homography, + int method CV_DEFAULT(0), + double ransacReprojThreshold CV_DEFAULT(3), + CvMat* mask CV_DEFAULT(0), + int maxIters CV_DEFAULT(2000), + double confidence CV_DEFAULT(0.995)); + +/* Computes RQ decomposition for 3x3 matrices */ +CVAPI(void) cvRQDecomp3x3( const CvMat *matrixM, CvMat *matrixR, CvMat *matrixQ, + CvMat *matrixQx CV_DEFAULT(NULL), + CvMat *matrixQy CV_DEFAULT(NULL), + CvMat *matrixQz CV_DEFAULT(NULL), + CvPoint3D64f *eulerAngles CV_DEFAULT(NULL)); + +/* Computes projection matrix decomposition */ +CVAPI(void) cvDecomposeProjectionMatrix( const CvMat *projMatr, CvMat *calibMatr, + CvMat *rotMatr, CvMat *posVect, + CvMat *rotMatrX CV_DEFAULT(NULL), + CvMat *rotMatrY CV_DEFAULT(NULL), + CvMat *rotMatrZ CV_DEFAULT(NULL), + CvPoint3D64f *eulerAngles CV_DEFAULT(NULL)); + +/* Computes d(AB)/dA and d(AB)/dB */ +CVAPI(void) cvCalcMatMulDeriv( const CvMat* A, const CvMat* B, CvMat* dABdA, CvMat* dABdB ); + +/* Computes r3 = rodrigues(rodrigues(r2)*rodrigues(r1)), + t3 = rodrigues(r2)*t1 + t2 and the respective derivatives */ +CVAPI(void) cvComposeRT( const CvMat* _rvec1, const CvMat* _tvec1, + const CvMat* _rvec2, const CvMat* _tvec2, + CvMat* _rvec3, CvMat* _tvec3, + CvMat* dr3dr1 CV_DEFAULT(0), CvMat* dr3dt1 CV_DEFAULT(0), + CvMat* dr3dr2 CV_DEFAULT(0), CvMat* dr3dt2 CV_DEFAULT(0), + CvMat* dt3dr1 CV_DEFAULT(0), CvMat* dt3dt1 CV_DEFAULT(0), + CvMat* dt3dr2 CV_DEFAULT(0), CvMat* dt3dt2 CV_DEFAULT(0) ); + +/* Projects object points to the view plane using + the specified extrinsic and intrinsic camera parameters */ +CVAPI(void) cvProjectPoints2( const CvMat* object_points, const CvMat* rotation_vector, + const CvMat* translation_vector, const CvMat* camera_matrix, + const CvMat* distortion_coeffs, CvMat* image_points, + CvMat* dpdrot CV_DEFAULT(NULL), CvMat* dpdt CV_DEFAULT(NULL), + CvMat* dpdf CV_DEFAULT(NULL), CvMat* dpdc CV_DEFAULT(NULL), + CvMat* dpddist CV_DEFAULT(NULL), + double aspect_ratio CV_DEFAULT(0)); + +/* Finds extrinsic camera parameters from + a few known corresponding point pairs and intrinsic parameters */ +CVAPI(void) cvFindExtrinsicCameraParams2( const CvMat* object_points, + const CvMat* image_points, + const CvMat* camera_matrix, + const CvMat* distortion_coeffs, + CvMat* rotation_vector, + CvMat* translation_vector, + int use_extrinsic_guess CV_DEFAULT(0) ); + +/* Computes initial estimate of the intrinsic camera parameters + in case of planar calibration target (e.g. chessboard) */ +CVAPI(void) cvInitIntrinsicParams2D( const CvMat* object_points, + const CvMat* image_points, + const CvMat* npoints, CvSize image_size, + CvMat* camera_matrix, + double aspect_ratio CV_DEFAULT(1.) ); + +#define CV_CALIB_CB_ADAPTIVE_THRESH 1 +#define CV_CALIB_CB_NORMALIZE_IMAGE 2 +#define CV_CALIB_CB_FILTER_QUADS 4 +#define CV_CALIB_CB_FAST_CHECK 8 + +// Performs a fast check if a chessboard is in the input image. This is a workaround to +// a problem of cvFindChessboardCorners being slow on images with no chessboard +// - src: input image +// - size: chessboard size +// Returns 1 if a chessboard can be in this image and findChessboardCorners should be called, +// 0 if there is no chessboard, -1 in case of error +CVAPI(int) cvCheckChessboard(IplImage* src, CvSize size); + + /* Detects corners on a chessboard calibration pattern */ +CVAPI(int) cvFindChessboardCorners( const void* image, CvSize pattern_size, + CvPoint2D32f* corners, + int* corner_count CV_DEFAULT(NULL), + int flags CV_DEFAULT(CV_CALIB_CB_ADAPTIVE_THRESH+CV_CALIB_CB_NORMALIZE_IMAGE) ); + +/* Draws individual chessboard corners or the whole chessboard detected */ +CVAPI(void) cvDrawChessboardCorners( CvArr* image, CvSize pattern_size, + CvPoint2D32f* corners, + int count, int pattern_was_found ); + +#define CV_CALIB_USE_INTRINSIC_GUESS 1 +#define CV_CALIB_FIX_ASPECT_RATIO 2 +#define CV_CALIB_FIX_PRINCIPAL_POINT 4 +#define CV_CALIB_ZERO_TANGENT_DIST 8 +#define CV_CALIB_FIX_FOCAL_LENGTH 16 +#define CV_CALIB_FIX_K1 32 +#define CV_CALIB_FIX_K2 64 +#define CV_CALIB_FIX_K3 128 +#define CV_CALIB_FIX_K4 2048 +#define CV_CALIB_FIX_K5 4096 +#define CV_CALIB_FIX_K6 8192 +#define CV_CALIB_RATIONAL_MODEL 16384 +#define CV_CALIB_THIN_PRISM_MODEL 32768 +#define CV_CALIB_FIX_S1_S2_S3_S4 65536 +#define CV_CALIB_TILTED_MODEL 262144 +#define CV_CALIB_FIX_TAUX_TAUY 524288 + +#define CV_CALIB_NINTRINSIC 18 + +/* Finds intrinsic and extrinsic camera parameters + from a few views of known calibration pattern */ +CVAPI(double) cvCalibrateCamera2( const CvMat* object_points, + const CvMat* image_points, + const CvMat* point_counts, + CvSize image_size, + CvMat* camera_matrix, + CvMat* distortion_coeffs, + CvMat* rotation_vectors CV_DEFAULT(NULL), + CvMat* translation_vectors CV_DEFAULT(NULL), + int flags CV_DEFAULT(0), + CvTermCriteria term_crit CV_DEFAULT(cvTermCriteria( + CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30,DBL_EPSILON)) ); + +/* Computes various useful characteristics of the camera from the data computed by + cvCalibrateCamera2 */ +CVAPI(void) cvCalibrationMatrixValues( const CvMat *camera_matrix, + CvSize image_size, + double aperture_width CV_DEFAULT(0), + double aperture_height CV_DEFAULT(0), + double *fovx CV_DEFAULT(NULL), + double *fovy CV_DEFAULT(NULL), + double *focal_length CV_DEFAULT(NULL), + CvPoint2D64f *principal_point CV_DEFAULT(NULL), + double *pixel_aspect_ratio CV_DEFAULT(NULL)); + +#define CV_CALIB_FIX_INTRINSIC 256 +#define CV_CALIB_SAME_FOCAL_LENGTH 512 + +/* Computes the transformation from one camera coordinate system to another one + from a few correspondent views of the same calibration target. Optionally, calibrates + both cameras */ +CVAPI(double) cvStereoCalibrate( const CvMat* object_points, const CvMat* image_points1, + const CvMat* image_points2, const CvMat* npoints, + CvMat* camera_matrix1, CvMat* dist_coeffs1, + CvMat* camera_matrix2, CvMat* dist_coeffs2, + CvSize image_size, CvMat* R, CvMat* T, + CvMat* E CV_DEFAULT(0), CvMat* F CV_DEFAULT(0), + int flags CV_DEFAULT(CV_CALIB_FIX_INTRINSIC), + CvTermCriteria term_crit CV_DEFAULT(cvTermCriteria( + CV_TERMCRIT_ITER+CV_TERMCRIT_EPS,30,1e-6)) ); + +#define CV_CALIB_ZERO_DISPARITY 1024 + +/* Computes 3D rotations (+ optional shift) for each camera coordinate system to make both + views parallel (=> to make all the epipolar lines horizontal or vertical) */ +CVAPI(void) cvStereoRectify( const CvMat* camera_matrix1, const CvMat* camera_matrix2, + const CvMat* dist_coeffs1, const CvMat* dist_coeffs2, + CvSize image_size, const CvMat* R, const CvMat* T, + CvMat* R1, CvMat* R2, CvMat* P1, CvMat* P2, + CvMat* Q CV_DEFAULT(0), + int flags CV_DEFAULT(CV_CALIB_ZERO_DISPARITY), + double alpha CV_DEFAULT(-1), + CvSize new_image_size CV_DEFAULT(cvSize(0,0)), + CvRect* valid_pix_ROI1 CV_DEFAULT(0), + CvRect* valid_pix_ROI2 CV_DEFAULT(0)); + +/* Computes rectification transformations for uncalibrated pair of images using a set + of point correspondences */ +CVAPI(int) cvStereoRectifyUncalibrated( const CvMat* points1, const CvMat* points2, + const CvMat* F, CvSize img_size, + CvMat* H1, CvMat* H2, + double threshold CV_DEFAULT(5)); + + + +/* stereo correspondence parameters and functions */ + +#define CV_STEREO_BM_NORMALIZED_RESPONSE 0 +#define CV_STEREO_BM_XSOBEL 1 + +/* Block matching algorithm structure */ +typedef struct CvStereoBMState +{ + // pre-filtering (normalization of input images) + int preFilterType; // =CV_STEREO_BM_NORMALIZED_RESPONSE now + int preFilterSize; // averaging window size: ~5x5..21x21 + int preFilterCap; // the output of pre-filtering is clipped by [-preFilterCap,preFilterCap] + + // correspondence using Sum of Absolute Difference (SAD) + int SADWindowSize; // ~5x5..21x21 + int minDisparity; // minimum disparity (can be negative) + int numberOfDisparities; // maximum disparity - minimum disparity (> 0) + + // post-filtering + int textureThreshold; // the disparity is only computed for pixels + // with textured enough neighborhood + int uniquenessRatio; // accept the computed disparity d* only if + // SAD(d) >= SAD(d*)*(1 + uniquenessRatio/100.) + // for any d != d*+/-1 within the search range. + int speckleWindowSize; // disparity variation window + int speckleRange; // acceptable range of variation in window + + int trySmallerWindows; // if 1, the results may be more accurate, + // at the expense of slower processing + CvRect roi1, roi2; + int disp12MaxDiff; + + // temporary buffers + CvMat* preFilteredImg0; + CvMat* preFilteredImg1; + CvMat* slidingSumBuf; + CvMat* cost; + CvMat* disp; +} CvStereoBMState; + +#define CV_STEREO_BM_BASIC 0 +#define CV_STEREO_BM_FISH_EYE 1 +#define CV_STEREO_BM_NARROW 2 + +CVAPI(CvStereoBMState*) cvCreateStereoBMState(int preset CV_DEFAULT(CV_STEREO_BM_BASIC), + int numberOfDisparities CV_DEFAULT(0)); + +CVAPI(void) cvReleaseStereoBMState( CvStereoBMState** state ); + +CVAPI(void) cvFindStereoCorrespondenceBM( const CvArr* left, const CvArr* right, + CvArr* disparity, CvStereoBMState* state ); + +CVAPI(CvRect) cvGetValidDisparityROI( CvRect roi1, CvRect roi2, int minDisparity, + int numberOfDisparities, int SADWindowSize ); + +CVAPI(void) cvValidateDisparity( CvArr* disparity, const CvArr* cost, + int minDisparity, int numberOfDisparities, + int disp12MaxDiff CV_DEFAULT(1) ); + +/* Reprojects the computed disparity image to the 3D space using the specified 4x4 matrix */ +CVAPI(void) cvReprojectImageTo3D( const CvArr* disparityImage, + CvArr* _3dImage, const CvMat* Q, + int handleMissingValues CV_DEFAULT(0) ); + +/** @} calib3d_c */ + +#ifdef __cplusplus +} // extern "C" + +////////////////////////////////////////////////////////////////////////////////////////// +class CV_EXPORTS CvLevMarq +{ +public: + CvLevMarq(); + CvLevMarq( int nparams, int nerrs, CvTermCriteria criteria= + cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON), + bool completeSymmFlag=false ); + ~CvLevMarq(); + void init( int nparams, int nerrs, CvTermCriteria criteria= + cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,DBL_EPSILON), + bool completeSymmFlag=false ); + bool update( const CvMat*& param, CvMat*& J, CvMat*& err ); + bool updateAlt( const CvMat*& param, CvMat*& JtJ, CvMat*& JtErr, double*& errNorm ); + + void clear(); + void step(); + enum { DONE=0, STARTED=1, CALC_J=2, CHECK_ERR=3 }; + + cv::Ptr mask; + cv::Ptr prevParam; + cv::Ptr param; + cv::Ptr J; + cv::Ptr err; + cv::Ptr JtJ; + cv::Ptr JtJN; + cv::Ptr JtErr; + cv::Ptr JtJV; + cv::Ptr JtJW; + double prevErrNorm, errNorm; + int lambdaLg10; + CvTermCriteria criteria; + int state; + int iters; + bool completeSymmFlag; + int solveMethod; +}; + +#endif + +#endif /* OPENCV_CALIB3D_C_H */ diff --git a/thirdparty1/linux/include/opencv2/ccalib.hpp b/thirdparty1/linux/include/opencv2/ccalib.hpp new file mode 100644 index 0000000..79df598 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/ccalib.hpp @@ -0,0 +1,157 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// + // + // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. + // + // By downloading, copying, installing or using the software you agree to this license. + // If you do not agree to this license, do not download, install, + // copy or use the software. + // + // + // License Agreement + // For Open Source Computer Vision Library + // + // Copyright (C) 2014, OpenCV Foundation, all rights reserved. + // Third party copyrights are property of their respective owners. + // + // Redistribution and use in source and binary forms, with or without modification, + // are permitted provided that the following conditions are met: + // + // * Redistribution's of source code must retain the above copyright notice, + // this list of conditions and the following disclaimer. + // + // * Redistribution's in binary form must reproduce the above copyright notice, + // this list of conditions and the following disclaimer in the documentation + // and/or other materials provided with the distribution. + // + // * The name of the copyright holders may not be used to endorse or promote products + // derived from this software without specific prior written permission. + // + // This software is provided by the copyright holders and contributors "as is" and + // any express or implied warranties, including, but not limited to, the implied + // warranties of merchantability and fitness for a particular purpose are disclaimed. + // In no event shall the Intel Corporation or contributors be liable for any direct, + // indirect, incidental, special, exemplary, or consequential damages + // (including, but not limited to, procurement of substitute goods or services; + // loss of use, data, or profits; or business interruption) however caused + // and on any theory of liability, whether in contract, strict liability, + // or tort (including negligence or otherwise) arising in any way out of + // the use of this software, even if advised of the possibility of such damage. + // + //M*/ + +#ifndef __OPENCV_CCALIB_HPP__ +#define __OPENCV_CCALIB_HPP__ + +#include +#include +#include +#include + +#include + +/** @defgroup ccalib Custom Calibration Pattern for 3D reconstruction +*/ + +namespace cv{ namespace ccalib{ + +//! @addtogroup ccalib +//! @{ + +class CV_EXPORTS CustomPattern : public Algorithm +{ +public: + CustomPattern(); + virtual ~CustomPattern(); + + bool create(InputArray pattern, const Size2f boardSize, OutputArray output = noArray()); + + bool findPattern(InputArray image, OutputArray matched_features, OutputArray pattern_points, const double ratio = 0.7, + const double proj_error = 8.0, const bool refine_position = false, OutputArray out = noArray(), + OutputArray H = noArray(), OutputArray pattern_corners = noArray()); + + bool isInitialized(); + + void getPatternPoints(OutputArray original_points); + /**< + Returns a vector of the original points. + */ + double getPixelSize(); + /**< + Get the pixel size of the pattern + */ + + bool setFeatureDetector(Ptr featureDetector); + bool setDescriptorExtractor(Ptr extractor); + bool setDescriptorMatcher(Ptr matcher); + + Ptr getFeatureDetector(); + Ptr getDescriptorExtractor(); + Ptr getDescriptorMatcher(); + + double calibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, + Size imageSize, InputOutputArray cameraMatrix, InputOutputArray distCoeffs, + OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags = 0, + TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON)); + /**< + Calls the calirateCamera function with the same inputs. + */ + + bool findRt(InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, + OutputArray rvec, OutputArray tvec, bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE); + bool findRt(InputArray image, InputArray cameraMatrix, InputArray distCoeffs, + OutputArray rvec, OutputArray tvec, bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE); + /**< + Uses solvePnP to find the rotation and translation of the pattern + with respect to the camera frame. + */ + + bool findRtRANSAC(InputArray objectPoints, InputArray imagePoints, InputArray cameraMatrix, InputArray distCoeffs, + OutputArray rvec, OutputArray tvec, bool useExtrinsicGuess = false, int iterationsCount = 100, + float reprojectionError = 8.0, int minInliersCount = 100, OutputArray inliers = noArray(), int flags = SOLVEPNP_ITERATIVE); + bool findRtRANSAC(InputArray image, InputArray cameraMatrix, InputArray distCoeffs, + OutputArray rvec, OutputArray tvec, bool useExtrinsicGuess = false, int iterationsCount = 100, + float reprojectionError = 8.0, int minInliersCount = 100, OutputArray inliers = noArray(), int flags = SOLVEPNP_ITERATIVE); + /**< + Uses solvePnPRansac() + */ + + void drawOrientation(InputOutputArray image, InputArray tvec, InputArray rvec, InputArray cameraMatrix, + InputArray distCoeffs, double axis_length = 3, int axis_width = 2); + /**< + pattern_corners -> projected over the image position of the edges of the pattern. + */ + +private: + + Mat img_roi; + std::vector obj_corners; + double pxSize; + + bool initialized; + + Ptr detector; + Ptr descriptorExtractor; + Ptr descriptorMatcher; + + std::vector keypoints; + std::vector points3d; + Mat descriptor; + + bool init(Mat& image, const float pixel_size, OutputArray output = noArray()); + bool findPatternPass(const Mat& image, std::vector& matched_features, std::vector& pattern_points, + Mat& H, std::vector& scene_corners, const double pratio, const double proj_error, + const bool refine_position = false, const Mat& mask = Mat(), OutputArray output = noArray()); + void scaleFoundPoints(const double squareSize, const std::vector& corners, std::vector& pts3d); + void check_matches(std::vector& matched, const std::vector& pattern, std::vector& good, std::vector& pattern_3d, const Mat& H); + + void keypoints2points(const std::vector& in, std::vector& out); + void updateKeypointsPos(std::vector& in, const std::vector& new_pos); + void refinePointsPos(const Mat& img, std::vector& p); + void refineKeypointsPos(const Mat& img, std::vector& kp); +}; + +//! @} + +}} // namespace ccalib, cv + +#endif diff --git a/thirdparty1/linux/include/opencv2/ccalib/multicalib.hpp b/thirdparty1/linux/include/opencv2/ccalib/multicalib.hpp new file mode 100644 index 0000000..686d7a5 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/ccalib/multicalib.hpp @@ -0,0 +1,212 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2015, Baisheng Lai (laibaisheng@gmail.com), Zhejiang University, +// all rights reserved. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef __OPENCV_MULTICAMERACALIBRATION_HPP__ +#define __OPENCV_MULTICAMERACALIBRATION_HPP__ + +#include "opencv2/ccalib/randpattern.hpp" +#include "opencv2/ccalib/omnidir.hpp" +#include +#include + +namespace cv { namespace multicalib { + +//! @addtogroup ccalib +//! @{ + +#define HEAD -1 +#define INVALID -2 + +/** @brief Class for multiple camera calibration that supports pinhole camera and omnidirection camera. +For omnidirectional camera model, please refer to omnidir.hpp in ccalib module. +It first calibrate each camera individually, then a bundle adjustment like optimization is applied to +refine extrinsic parameters. So far, it only support "random" pattern for calibration, +see randomPattern.hpp in ccalib module for details. +Images that are used should be named by "cameraIdx-timestamp.*", several images with the same timestamp +means that they are the same pattern that are photographed. cameraIdx should start from 0. + +For more details, please refer to paper + B. Li, L. Heng, K. Kevin and M. Pollefeys, "A Multiple-Camera System + Calibration Toolbox Using A Feature Descriptor-Based Calibration + Pattern", in IROS 2013. +*/ + +class CV_EXPORTS MultiCameraCalibration +{ +public: + enum { + PINHOLE, + OMNIDIRECTIONAL + //FISHEYE + }; + + // an edge connects a camera and pattern + struct edge + { + int cameraVertex; // vertex index for camera in this edge + int photoVertex; // vertex index for pattern in this edge + int photoIndex; // photo index among photos for this camera + Mat transform; // transform from pattern to camera + + edge(int cv, int pv, int pi, Mat trans) + { + cameraVertex = cv; + photoVertex = pv; + photoIndex = pi; + transform = trans; + } + }; + + struct vertex + { + Mat pose; // relative pose to the first camera. For camera vertex, it is the + // transform from the first camera to this camera, for pattern vertex, + // it is the transform from pattern to the first camera + int timestamp; // timestamp of photo, only available for photo vertex + + vertex(Mat po, int ts) + { + pose = po; + timestamp = ts; + } + + vertex() + { + pose = Mat::eye(4, 4, CV_32F); + timestamp = -1; + } + }; + /* @brief Constructor + @param cameraType camera type, PINHOLE or OMNIDIRECTIONAL + @param nCameras number of cameras + @fileName filename of string list that are used for calibration, the file is generated + by imagelist_creator from OpenCv samples. The first one in the list is the pattern filename. + @patternWidth the physical width of pattern, in user defined unit. + @patternHeight the physical height of pattern, in user defined unit. + @showExtration whether show extracted features and feature filtering. + @nMiniMatches minimal number of matched features for a frame. + @flags Calibration flags + @criteria optimization stopping criteria. + @detector feature detector that detect feature points in pattern and images. + @descriptor feature descriptor. + @matcher feature matcher. + */ + MultiCameraCalibration(int cameraType, int nCameras, const std::string& fileName, float patternWidth, + float patternHeight, int verbose = 0, int showExtration = 0, int nMiniMatches = 20, int flags = 0, + TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 200, 1e-7), + Ptr detector = AKAZE::create(AKAZE::DESCRIPTOR_MLDB, 0, 3, 0.006f), + Ptr descriptor = AKAZE::create(AKAZE::DESCRIPTOR_MLDB,0, 3, 0.006f), + Ptr matcher = DescriptorMatcher::create("BruteForce-L1")); + + /* @brief load images + */ + void loadImages(); + + /* @brief initialize multiple camera calibration. It calibrates each camera individually. + */ + void initialize(); + + /* @brief optimization extrinsic parameters + */ + double optimizeExtrinsics(); + + /* @brief run multi-camera camera calibration, it runs loadImage(), initialize() and optimizeExtrinsics() + */ + double run(); + + /* @brief write camera parameters to file. + */ + void writeParameters(const std::string& filename); + +private: + std::vector readStringList(); + + int getPhotoVertex(int timestamp); + + void graphTraverse(const Mat& G, int begin, std::vector& order, std::vector& pre); + + void findRowNonZero(const Mat& row, Mat& idx); + + void computeJacobianExtrinsic(const Mat& extrinsicParams, Mat& JTJ_inv, Mat& JTE); + + void computePhotoCameraJacobian(const Mat& rvecPhoto, const Mat& tvecPhoto, const Mat& rvecCamera, + const Mat& tvecCamera, Mat& rvecTran, Mat& tvecTran, const Mat& objectPoints, const Mat& imagePoints, const Mat& K, + const Mat& distort, const Mat& xi, Mat& jacobianPhoto, Mat& jacobianCamera, Mat& E); + + void compose_motion(InputArray _om1, InputArray _T1, InputArray _om2, InputArray _T2, Mat& om3, Mat& T3, Mat& dom3dom1, + Mat& dom3dT1, Mat& dom3dom2, Mat& dom3dT2, Mat& dT3dom1, Mat& dT3dT1, Mat& dT3dom2, Mat& dT3dT2); + + void JRodriguesMatlab(const Mat& src, Mat& dst); + void dAB(InputArray A, InputArray B, OutputArray dABdA, OutputArray dABdB); + + double computeProjectError(Mat& parameters); + + void vector2parameters(const Mat& parameters, std::vector& rvecVertex, std::vector& tvecVertexs); + void parameters2vector(const std::vector& rvecVertex, const std::vector& tvecVertex, Mat& parameters); + + int _camType; //PINHOLE, FISHEYE or OMNIDIRECTIONAL + int _nCamera; + int _nMiniMatches; + int _flags; + int _verbose; + double _error; + float _patternWidth, _patternHeight; + TermCriteria _criteria; + std::string _filename; + int _showExtraction; + Ptr _detector; + Ptr _descriptor; + Ptr _matcher; + + std::vector _edgeList; + std::vector _vertexList; + std::vector > _objectPointsForEachCamera; + std::vector > _imagePointsForEachCamera; + std::vector _cameraMatrix; + std::vector _distortCoeffs; + std::vector _xi; + std::vector > _omEachCamera, _tEachCamera; +}; + +//! @} + +}} // namespace multicalib, cv +#endif \ No newline at end of file diff --git a/thirdparty1/linux/include/opencv2/ccalib/omnidir.hpp b/thirdparty1/linux/include/opencv2/ccalib/omnidir.hpp new file mode 100644 index 0000000..9663c18 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/ccalib/omnidir.hpp @@ -0,0 +1,312 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2015, Baisheng Lai (laibaisheng@gmail.com), Zhejiang University, +// all rights reserved. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#include +#include + +#ifndef __OPENCV_OMNIDIR_HPP__ +#define __OPENCV_OMNIDIR_HPP__ + +namespace cv +{ +namespace omnidir +{ + //! @addtogroup ccalib + //! @{ + + enum { + CALIB_USE_GUESS = 1, + CALIB_FIX_SKEW = 2, + CALIB_FIX_K1 = 4, + CALIB_FIX_K2 = 8, + CALIB_FIX_P1 = 16, + CALIB_FIX_P2 = 32, + CALIB_FIX_XI = 64, + CALIB_FIX_GAMMA = 128, + CALIB_FIX_CENTER = 256 + }; + + enum{ + RECTIFY_PERSPECTIVE = 1, + RECTIFY_CYLINDRICAL = 2, + RECTIFY_LONGLATI = 3, + RECTIFY_STEREOGRAPHIC = 4 + }; + + enum{ + XYZRGB = 1, + XYZ = 2 + }; +/** + * This module was accepted as a GSoC 2015 project for OpenCV, authored by + * Baisheng Lai, mentored by Bo Li. + */ + + /** @brief Projects points for omnidirectional camera using CMei's model + + @param objectPoints Object points in world coordinate, vector of vector of Vec3f or Mat of + 1xN/Nx1 3-channel of type CV_32F and N is the number of points. 64F is also acceptable. + @param imagePoints Output array of image points, vector of vector of Vec2f or + 1xN/Nx1 2-channel of type CV_32F. 64F is also acceptable. + @param rvec vector of rotation between world coordinate and camera coordinate, i.e., om + @param tvec vector of translation between pattern coordinate and camera coordinate + @param K Camera matrix \f$K = \vecthreethree{f_x}{s}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. + @param D Input vector of distortion coefficients \f$(k_1, k_2, p_1, p_2)\f$. + @param xi The parameter xi for CMei's model + @param jacobian Optional output 2Nx16 of type CV_64F jacobian matrix, contains the derivatives of + image pixel points wrt parameters including \f$om, T, f_x, f_y, s, c_x, c_y, xi, k_1, k_2, p_1, p_2\f$. + This matrix will be used in calibration by optimization. + + The function projects object 3D points of world coordinate to image pixels, parameter by intrinsic + and extrinsic parameters. Also, it optionally compute a by-product: the jacobian matrix containing + contains the derivatives of image pixel points wrt intrinsic and extrinsic parameters. + */ + CV_EXPORTS_W void projectPoints(InputArray objectPoints, OutputArray imagePoints, InputArray rvec, InputArray tvec, + InputArray K, double xi, InputArray D, OutputArray jacobian = noArray()); + + /** @brief Undistort 2D image points for omnidirectional camera using CMei's model + + @param distorted Array of distorted image points, vector of Vec2f + or 1xN/Nx1 2-channel Mat of type CV_32F, 64F depth is also acceptable + @param K Camera matrix \f$K = \vecthreethree{f_x}{s}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. + @param D Distortion coefficients \f$(k_1, k_2, p_1, p_2)\f$. + @param xi The parameter xi for CMei's model + @param R Rotation trainsform between the original and object space : 3x3 1-channel, or vector: 3x1/1x3 + 1-channel or 1x1 3-channel + @param undistorted array of normalized object points, vector of Vec2f/Vec2d or 1xN/Nx1 2-channel Mat with the same + depth of distorted points. + */ + CV_EXPORTS_W void undistortPoints(InputArray distorted, OutputArray undistorted, InputArray K, InputArray D, InputArray xi, InputArray R); + + /** @brief Computes undistortion and rectification maps for omnidirectional camera image transform by a rotation R. + It output two maps that are used for cv::remap(). If D is empty then zero distortion is used, + if R or P is empty then identity matrices are used. + + @param K Camera matrix \f$K = \vecthreethree{f_x}{s}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$, with depth CV_32F or CV_64F + @param D Input vector of distortion coefficients \f$(k_1, k_2, p_1, p_2)\f$, with depth CV_32F or CV_64F + @param xi The parameter xi for CMei's model + @param R Rotation transform between the original and object space : 3x3 1-channel, or vector: 3x1/1x3, with depth CV_32F or CV_64F + @param P New camera matrix (3x3) or new projection matrix (3x4) + @param size Undistorted image size. + @param mltype Type of the first output map that can be CV_32FC1 or CV_16SC2 . See convertMaps() + for details. + @param map1 The first output map. + @param map2 The second output map. + @param flags Flags indicates the rectification type, RECTIFY_PERSPECTIVE, RECTIFY_CYLINDRICAL, RECTIFY_LONGLATI and RECTIFY_STEREOGRAPHIC + are supported. + */ + CV_EXPORTS_W void initUndistortRectifyMap(InputArray K, InputArray D, InputArray xi, InputArray R, InputArray P, const cv::Size& size, + int mltype, OutputArray map1, OutputArray map2, int flags); + + /** @brief Undistort omnidirectional images to perspective images + + @param distorted The input omnidirectional image. + @param undistorted The output undistorted image. + @param K Camera matrix \f$K = \vecthreethree{f_x}{s}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. + @param D Input vector of distortion coefficients \f$(k_1, k_2, p_1, p_2)\f$. + @param xi The parameter xi for CMei's model. + @param flags Flags indicates the rectification type, RECTIFY_PERSPECTIVE, RECTIFY_CYLINDRICAL, RECTIFY_LONGLATI and RECTIFY_STEREOGRAPHIC + @param Knew Camera matrix of the distorted image. If it is not assigned, it is just K. + @param new_size The new image size. By default, it is the size of distorted. + @param R Rotation matrix between the input and output images. By default, it is identity matrix. + */ + CV_EXPORTS_W void undistortImage(InputArray distorted, OutputArray undistorted, InputArray K, InputArray D, InputArray xi, int flags, + InputArray Knew = cv::noArray(), const Size& new_size = Size(), InputArray R = Mat::eye(3, 3, CV_64F)); + + /** @brief Perform omnidirectional camera calibration, the default depth of outputs is CV_64F. + + @param objectPoints Vector of vector of Vec3f object points in world (pattern) coordinate. + It also can be vector of Mat with size 1xN/Nx1 and type CV_32FC3. Data with depth of 64_F is also acceptable. + @param imagePoints Vector of vector of Vec2f corresponding image points of objectPoints. It must be the same + size and the same type with objectPoints. + @param size Image size of calibration images. + @param K Output calibrated camera matrix. + @param xi Output parameter xi for CMei's model + @param D Output distortion parameters \f$(k_1, k_2, p_1, p_2)\f$ + @param rvecs Output rotations for each calibration images + @param tvecs Output translation for each calibration images + @param flags The flags that control calibrate + @param criteria Termination criteria for optimization + @param idx Indices of images that pass initialization, which are really used in calibration. So the size of rvecs is the + same as idx.total(). + */ + CV_EXPORTS_W double calibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, Size size, + InputOutputArray K, InputOutputArray xi, InputOutputArray D, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, + int flags, TermCriteria criteria, OutputArray idx=noArray()); + + /** @brief Stereo calibration for omnidirectional camera model. It computes the intrinsic parameters for two + cameras and the extrinsic parameters between two cameras. The default depth of outputs is CV_64F. + + @param objectPoints Object points in world (pattern) coordinate. Its type is vector >. + It also can be vector of Mat with size 1xN/Nx1 and type CV_32FC3. Data with depth of 64_F is also acceptable. + @param imagePoints1 The corresponding image points of the first camera, with type vector >. + It must be the same size and the same type as objectPoints. + @param imagePoints2 The corresponding image points of the second camera, with type vector >. + It must be the same size and the same type as objectPoints. + @param imageSize1 Image size of calibration images of the first camera. + @param imageSize2 Image size of calibration images of the second camera. + @param K1 Output camera matrix for the first camera. + @param xi1 Output parameter xi of Mei's model for the first camera + @param D1 Output distortion parameters \f$(k_1, k_2, p_1, p_2)\f$ for the first camera + @param K2 Output camera matrix for the first camera. + @param xi2 Output parameter xi of CMei's model for the second camera + @param D2 Output distortion parameters \f$(k_1, k_2, p_1, p_2)\f$ for the second camera + @param rvec Output rotation between the first and second camera + @param tvec Output translation between the first and second camera + @param rvecsL Output rotation for each image of the first camera + @param tvecsL Output translation for each image of the first camera + @param flags The flags that control stereoCalibrate + @param criteria Termination criteria for optimization + @param idx Indices of image pairs that pass initialization, which are really used in calibration. So the size of rvecs is the + same as idx.total(). + @ + */ + CV_EXPORTS_W double stereoCalibrate(InputOutputArrayOfArrays objectPoints, InputOutputArrayOfArrays imagePoints1, InputOutputArrayOfArrays imagePoints2, + const Size& imageSize1, const Size& imageSize2, InputOutputArray K1, InputOutputArray xi1, InputOutputArray D1, InputOutputArray K2, InputOutputArray xi2, + InputOutputArray D2, OutputArray rvec, OutputArray tvec, OutputArrayOfArrays rvecsL, OutputArrayOfArrays tvecsL, int flags, TermCriteria criteria, OutputArray idx=noArray()); + + /** @brief Stereo rectification for omnidirectional camera model. It computes the rectification rotations for two cameras + + @param R Rotation between the first and second camera + @param T Translation between the first and second camera + @param R1 Output 3x3 rotation matrix for the first camera + @param R2 Output 3x3 rotation matrix for the second camera + */ + CV_EXPORTS_W void stereoRectify(InputArray R, InputArray T, OutputArray R1, OutputArray R2); + + /** @brief Stereo 3D reconstruction from a pair of images + + @param image1 The first input image + @param image2 The second input image + @param K1 Input camera matrix of the first camera + @param D1 Input distortion parameters \f$(k_1, k_2, p_1, p_2)\f$ for the first camera + @param xi1 Input parameter xi for the first camera for CMei's model + @param K2 Input camera matrix of the second camera + @param D2 Input distortion parameters \f$(k_1, k_2, p_1, p_2)\f$ for the second camera + @param xi2 Input parameter xi for the second camera for CMei's model + @param R Rotation between the first and second camera + @param T Translation between the first and second camera + @param flag Flag of rectification type, RECTIFY_PERSPECTIVE or RECTIFY_LONGLATI + @param numDisparities The parameter 'numDisparities' in StereoSGBM, see StereoSGBM for details. + @param SADWindowSize The parameter 'SADWindowSize' in StereoSGBM, see StereoSGBM for details. + @param disparity Disparity map generated by stereo matching + @param image1Rec Rectified image of the first image + @param image2Rec rectified image of the second image + @param newSize Image size of rectified image, see omnidir::undistortImage + @param Knew New camera matrix of rectified image, see omnidir::undistortImage + @param pointCloud Point cloud of 3D reconstruction, with type CV_64FC3 + @param pointType Point cloud type, it can be XYZRGB or XYZ + */ + CV_EXPORTS_W void stereoReconstruct(InputArray image1, InputArray image2, InputArray K1, InputArray D1, InputArray xi1, + InputArray K2, InputArray D2, InputArray xi2, InputArray R, InputArray T, int flag, int numDisparities, int SADWindowSize, + OutputArray disparity, OutputArray image1Rec, OutputArray image2Rec, const Size& newSize = Size(), InputArray Knew = cv::noArray(), + OutputArray pointCloud = cv::noArray(), int pointType = XYZRGB); + +namespace internal +{ + void initializeCalibration(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, Size size, OutputArrayOfArrays omAll, + OutputArrayOfArrays tAll, OutputArray K, double& xi, OutputArray idx = noArray()); + + void initializeStereoCalibration(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2, + const Size& size1, const Size& size2, OutputArray om, OutputArray T, OutputArrayOfArrays omL, OutputArrayOfArrays tL, OutputArray K1, OutputArray D1, OutputArray K2, OutputArray D2, + double &xi1, double &xi2, int flags, OutputArray idx); + + void computeJacobian(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, InputArray parameters, Mat& JTJ_inv, Mat& JTE, int flags, + double epsilon); + + void computeJacobianStereo(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2, + InputArray parameters, Mat& JTJ_inv, Mat& JTE, int flags, double epsilon); + + void encodeParameters(InputArray K, InputArrayOfArrays omAll, InputArrayOfArrays tAll, InputArray distoaration, double xi, OutputArray parameters); + + void encodeParametersStereo(InputArray K1, InputArray K2, InputArray om, InputArray T, InputArrayOfArrays omL, InputArrayOfArrays tL, + InputArray D1, InputArray D2, double xi1, double xi2, OutputArray parameters); + + void decodeParameters(InputArray paramsters, OutputArray K, OutputArrayOfArrays omAll, OutputArrayOfArrays tAll, OutputArray distoration, double& xi); + + void decodeParametersStereo(InputArray parameters, OutputArray K1, OutputArray K2, OutputArray om, OutputArray T, OutputArrayOfArrays omL, + OutputArrayOfArrays tL, OutputArray D1, OutputArray D2, double& xi1, double& xi2); + + void estimateUncertainties(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, InputArray parameters, Mat& errors, Vec2d& std_error, double& rms, int flags); + + void estimateUncertaintiesStereo(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2, InputArray parameters, Mat& errors, + Vec2d& std_error, double& rms, int flags); + + double computeMeanReproErr(InputArrayOfArrays imagePoints, InputArrayOfArrays proImagePoints); + + double computeMeanReproErr(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, InputArray K, InputArray D, double xi, InputArrayOfArrays omAll, + InputArrayOfArrays tAll); + + double computeMeanReproErrStereo(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2, InputArray K1, InputArray K2, + InputArray D1, InputArray D2, double xi1, double xi2, InputArray om, InputArray T, InputArrayOfArrays omL, InputArrayOfArrays TL); + + void checkFixed(Mat &G, int flags, int n); + + void subMatrix(const Mat& src, Mat& dst, const std::vector& cols, const std::vector& rows); + + void flags2idx(int flags, std::vector& idx, int n); + + void flags2idxStereo(int flags, std::vector& idx, int n); + + void fillFixed(Mat&G, int flags, int n); + + void fillFixedStereo(Mat& G, int flags, int n); + + double findMedian(const Mat& row); + + Vec3d findMedian3(InputArray mat); + + void getInterset(InputArray idx1, InputArray idx2, OutputArray inter1, OutputArray inter2, OutputArray inter_ori); + + void compose_motion(InputArray _om1, InputArray _T1, InputArray _om2, InputArray _T2, Mat& om3, Mat& T3, Mat& dom3dom1, + Mat& dom3dT1, Mat& dom3dom2, Mat& dom3dT2, Mat& dT3dom1, Mat& dT3dT1, Mat& dT3dom2, Mat& dT3dT2); + + //void JRodriguesMatlab(const Mat& src, Mat& dst); + + //void dAB(InputArray A, InputArray B, OutputArray dABdA, OutputArray dABdB); +} // internal + +//! @} + +} // omnidir + +} //cv +#endif \ No newline at end of file diff --git a/thirdparty1/linux/include/opencv2/ccalib/randpattern.hpp b/thirdparty1/linux/include/opencv2/ccalib/randpattern.hpp new file mode 100644 index 0000000..9fc08f8 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/ccalib/randpattern.hpp @@ -0,0 +1,177 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2015, Baisheng Lai (laibaisheng@gmail.com), Zhejiang University, +// all rights reserved. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef __OPENCV_RANDOMPATTERN_HPP__ +#define __OPENCV_RANDOMPATTERN_HPP__ + +#include "opencv2/features2d.hpp" +#include "opencv2/highgui.hpp" + +namespace cv { namespace randpattern { + + +//! @addtogroup ccalib +//! @{ + +/** @brief Class for finding features points and corresponding 3D in world coordinate of +a "random" pattern, which can be to be used in calibration. It is useful when pattern is +partly occluded or only a part of pattern can be observed in multiple cameras calibration. +The pattern can be generated by RandomPatternGenerator class described in this file. + +Please refer to paper + B. Li, L. Heng, K. Kevin and M. Pollefeys, "A Multiple-Camera System + Calibration Toolbox Using A Feature Descriptor-Based Calibration + Pattern", in IROS 2013. +*/ + +class CV_EXPORTS RandomPatternCornerFinder +{ +public: + + /* @brief Construct RandomPatternCornerFinder object + + @param patternWidth the real width of "random" pattern in a user defined unit. + @param patternHeight the real height of "random" pattern in a user defined unit. + @param nMiniMatch number of minimal matches, otherwise that image is abandoned + @depth depth of output objectPoints and imagePoints, set it to be CV_32F or CV_64F. + @showExtraction whether show feature extraction, 0 for no and 1 for yes. + @detector feature detector to detect feature points in pattern and images. + @descriptor feature descriptor. + @matcher feature matcher. + */ + RandomPatternCornerFinder(float patternWidth, float patternHeight, + int nminiMatch = 20, int depth = CV_32F, int verbose = 0, int showExtraction = 0, + Ptr detector = AKAZE::create(AKAZE::DESCRIPTOR_MLDB, 0, 3, 0.005f), + Ptr descriptor = AKAZE::create(AKAZE::DESCRIPTOR_MLDB,0, 3, 0.005f), + Ptr matcher = DescriptorMatcher::create("BruteForce-L1")); + + /* @brief Load pattern image and compute features for pattern + @param patternImage image for "random" pattern generated by RandomPatternGenerator, run it first. + */ + void loadPattern(cv::Mat patternImage); + + /* @brief Compute matched object points and image points which are used for calibration + The objectPoints (3D) and imagePoints (2D) are stored inside the class. Run getObjectPoints() + and getImagePoints() to get them. + + @param inputImages vector of 8-bit grayscale images containing "random" pattern + that are used for calibration. + */ + void computeObjectImagePoints(std::vector inputImages); + + //void computeObjectImagePoints2(std::vector inputImages); + + /* @brief Compute object and image points for a single image. It returns a vector that + the first element stores the imagePoints and the second one stores the objectPoints. + + @param inputImage single input image for calibration + */ + std::vector computeObjectImagePointsForSingle(cv::Mat inputImage); + + /* @brief Get object(3D) points + */ + std::vector getObjectPoints(); + + /* @brief and image(2D) points + */ + std::vector getImagePoints(); + +private: + + std::vector _objectPonits, _imagePoints; + float _patternWidth, _patternHeight; + cv::Size _patternImageSize; + int _nminiMatch; + int _depth; + int _verbose; + + Ptr _detector; + Ptr _descriptor; + Ptr _matcher; + Mat _descriptorPattern; + std::vector _keypointsPattern; + Mat _patternImage; + int _showExtraction; + + void keyPoints2MatchedLocation(const std::vector& imageKeypoints, + const std::vector& patternKeypoints, const std::vector matchces, + cv::Mat& matchedImagelocation, cv::Mat& matchedPatternLocation); + void getFilteredLocation(cv::Mat& imageKeypoints, cv::Mat& patternKeypoints, const cv::Mat mask); + void getObjectImagePoints(const cv::Mat& imageKeypoints, const cv::Mat& patternKeypoints); + void crossCheckMatching( cv::Ptr& descriptorMatcher, + const Mat& descriptors1, const Mat& descriptors2, + std::vector& filteredMatches12, int knn=1 ); + void drawCorrespondence(const Mat& image1, const std::vector keypoint1, + const Mat& image2, const std::vector keypoint2, const std::vector matchces, + const Mat& mask1, const Mat& mask2, const int step); +}; + +/* @brief Class to generate "random" pattern image that are used for RandomPatternCornerFinder +Please refer to paper +B. Li, L. Heng, K. Kevin and M. Pollefeys, "A Multiple-Camera System +Calibration Toolbox Using A Feature Descriptor-Based Calibration +Pattern", in IROS 2013. +*/ +class CV_EXPORTS RandomPatternGenerator +{ +public: + /* @brief Construct RandomPatternGenerator + + @param imageWidth image width of the generated pattern image + @param imageHeight image height of the generated pattern image + */ + RandomPatternGenerator(int imageWidth, int imageHeight); + + /* @brief Generate pattern + */ + void generatePattern(); + /* @brief Get pattern + */ + cv::Mat getPattern(); +private: + cv::Mat _pattern; + int _imageWidth, _imageHeight; +}; + +//! @} + +}} //namespace randpattern, cv +#endif \ No newline at end of file diff --git a/thirdparty1/linux/include/opencv2/core.hpp b/thirdparty1/linux/include/opencv2/core.hpp new file mode 100644 index 0000000..6b89c42 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core.hpp @@ -0,0 +1,3220 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2015, Intel Corporation, all rights reserved. +// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. +// Copyright (C) 2015, OpenCV Foundation, all rights reserved. +// Copyright (C) 2015, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_HPP +#define OPENCV_CORE_HPP + +#ifndef __cplusplus +# error core.hpp header must be compiled as C++ +#endif + +#include "opencv2/core/cvdef.h" +#include "opencv2/core/version.hpp" +#include "opencv2/core/base.hpp" +#include "opencv2/core/cvstd.hpp" +#include "opencv2/core/traits.hpp" +#include "opencv2/core/matx.hpp" +#include "opencv2/core/types.hpp" +#include "opencv2/core/mat.hpp" +#include "opencv2/core/persistence.hpp" + +/** +@defgroup core Core functionality +@{ + @defgroup core_basic Basic structures + @defgroup core_c C structures and operations + @{ + @defgroup core_c_glue Connections with C++ + @} + @defgroup core_array Operations on arrays + @defgroup core_xml XML/YAML Persistence + @defgroup core_cluster Clustering + @defgroup core_utils Utility and system functions and macros + @{ + @defgroup core_utils_sse SSE utilities + @defgroup core_utils_neon NEON utilities + @} + @defgroup core_opengl OpenGL interoperability + @defgroup core_ipp Intel IPP Asynchronous C/C++ Converters + @defgroup core_optim Optimization Algorithms + @defgroup core_directx DirectX interoperability + @defgroup core_eigen Eigen support + @defgroup core_opencl OpenCL support + @defgroup core_va_intel Intel VA-API/OpenCL (CL-VA) interoperability + @defgroup core_hal Hardware Acceleration Layer + @{ + @defgroup core_hal_functions Functions + @defgroup core_hal_interface Interface + @defgroup core_hal_intrin Universal intrinsics + @{ + @defgroup core_hal_intrin_impl Private implementation helpers + @} + @} +@} + */ + +namespace cv { + +//! @addtogroup core_utils +//! @{ + +/*! @brief Class passed to an error. + +This class encapsulates all or almost all necessary +information about the error happened in the program. The exception is +usually constructed and thrown implicitly via CV_Error and CV_Error_ macros. +@see error + */ +class CV_EXPORTS Exception : public std::exception +{ +public: + /*! + Default constructor + */ + Exception(); + /*! + Full constructor. Normally the constuctor is not called explicitly. + Instead, the macros CV_Error(), CV_Error_() and CV_Assert() are used. + */ + Exception(int _code, const String& _err, const String& _func, const String& _file, int _line); + virtual ~Exception() throw(); + + /*! + \return the error description and the context as a text string. + */ + virtual const char *what() const throw(); + void formatMessage(); + + String msg; ///< the formatted error message + + int code; ///< error code @see CVStatus + String err; ///< error description + String func; ///< function name. Available only when the compiler supports getting it + String file; ///< source file name where the error has occured + int line; ///< line number in the source file where the error has occured +}; + +/*! @brief Signals an error and raises the exception. + +By default the function prints information about the error to stderr, +then it either stops if cv::setBreakOnError() had been called before or raises the exception. +It is possible to alternate error processing by using cv::redirectError(). +@param exc the exception raisen. +@deprecated drop this version + */ +CV_EXPORTS void error( const Exception& exc ); + +enum SortFlags { SORT_EVERY_ROW = 0, //!< each matrix row is sorted independently + SORT_EVERY_COLUMN = 1, //!< each matrix column is sorted + //!< independently; this flag and the previous one are + //!< mutually exclusive. + SORT_ASCENDING = 0, //!< each matrix row is sorted in the ascending + //!< order. + SORT_DESCENDING = 16 //!< each matrix row is sorted in the + //!< descending order; this flag and the previous one are also + //!< mutually exclusive. + }; + +//! @} core_utils + +//! @addtogroup core +//! @{ + +//! Covariation flags +enum CovarFlags { + /** The output covariance matrix is calculated as: + \f[\texttt{scale} \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...]^T \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...],\f] + The covariance matrix will be nsamples x nsamples. Such an unusual covariance matrix is used + for fast PCA of a set of very large vectors (see, for example, the EigenFaces technique for + face recognition). Eigenvalues of this "scrambled" matrix match the eigenvalues of the true + covariance matrix. The "true" eigenvectors can be easily calculated from the eigenvectors of + the "scrambled" covariance matrix. */ + COVAR_SCRAMBLED = 0, + /**The output covariance matrix is calculated as: + \f[\texttt{scale} \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...] \cdot [ \texttt{vects} [0]- \texttt{mean} , \texttt{vects} [1]- \texttt{mean} ,...]^T,\f] + covar will be a square matrix of the same size as the total number of elements in each input + vector. One and only one of COVAR_SCRAMBLED and COVAR_NORMAL must be specified.*/ + COVAR_NORMAL = 1, + /** If the flag is specified, the function does not calculate mean from + the input vectors but, instead, uses the passed mean vector. This is useful if mean has been + pre-calculated or known in advance, or if the covariance matrix is calculated by parts. In + this case, mean is not a mean vector of the input sub-set of vectors but rather the mean + vector of the whole set.*/ + COVAR_USE_AVG = 2, + /** If the flag is specified, the covariance matrix is scaled. In the + "normal" mode, scale is 1./nsamples . In the "scrambled" mode, scale is the reciprocal of the + total number of elements in each input vector. By default (if the flag is not specified), the + covariance matrix is not scaled ( scale=1 ).*/ + COVAR_SCALE = 4, + /** If the flag is + specified, all the input vectors are stored as rows of the samples matrix. mean should be a + single-row vector in this case.*/ + COVAR_ROWS = 8, + /** If the flag is + specified, all the input vectors are stored as columns of the samples matrix. mean should be a + single-column vector in this case.*/ + COVAR_COLS = 16 +}; + +//! k-Means flags +enum KmeansFlags { + /** Select random initial centers in each attempt.*/ + KMEANS_RANDOM_CENTERS = 0, + /** Use kmeans++ center initialization by Arthur and Vassilvitskii [Arthur2007].*/ + KMEANS_PP_CENTERS = 2, + /** During the first (and possibly the only) attempt, use the + user-supplied labels instead of computing them from the initial centers. For the second and + further attempts, use the random or semi-random centers. Use one of KMEANS_\*_CENTERS flag + to specify the exact method.*/ + KMEANS_USE_INITIAL_LABELS = 1 +}; + +//! type of line +enum LineTypes { + FILLED = -1, + LINE_4 = 4, //!< 4-connected line + LINE_8 = 8, //!< 8-connected line + LINE_AA = 16 //!< antialiased line +}; + +//! Only a subset of Hershey fonts +//! are supported +enum HersheyFonts { + FONT_HERSHEY_SIMPLEX = 0, //!< normal size sans-serif font + FONT_HERSHEY_PLAIN = 1, //!< small size sans-serif font + FONT_HERSHEY_DUPLEX = 2, //!< normal size sans-serif font (more complex than FONT_HERSHEY_SIMPLEX) + FONT_HERSHEY_COMPLEX = 3, //!< normal size serif font + FONT_HERSHEY_TRIPLEX = 4, //!< normal size serif font (more complex than FONT_HERSHEY_COMPLEX) + FONT_HERSHEY_COMPLEX_SMALL = 5, //!< smaller version of FONT_HERSHEY_COMPLEX + FONT_HERSHEY_SCRIPT_SIMPLEX = 6, //!< hand-writing style font + FONT_HERSHEY_SCRIPT_COMPLEX = 7, //!< more complex variant of FONT_HERSHEY_SCRIPT_SIMPLEX + FONT_ITALIC = 16 //!< flag for italic font +}; + +enum ReduceTypes { REDUCE_SUM = 0, //!< the output is the sum of all rows/columns of the matrix. + REDUCE_AVG = 1, //!< the output is the mean vector of all rows/columns of the matrix. + REDUCE_MAX = 2, //!< the output is the maximum (column/row-wise) of all rows/columns of the matrix. + REDUCE_MIN = 3 //!< the output is the minimum (column/row-wise) of all rows/columns of the matrix. + }; + + +/** @brief Swaps two matrices +*/ +CV_EXPORTS void swap(Mat& a, Mat& b); +/** @overload */ +CV_EXPORTS void swap( UMat& a, UMat& b ); + +//! @} core + +//! @addtogroup core_array +//! @{ + +/** @brief Computes the source location of an extrapolated pixel. + +The function computes and returns the coordinate of a donor pixel corresponding to the specified +extrapolated pixel when using the specified extrapolation border mode. For example, if you use +cv::BORDER_WRAP mode in the horizontal direction, cv::BORDER_REFLECT_101 in the vertical direction and +want to compute value of the "virtual" pixel Point(-5, 100) in a floating-point image img , it +looks like: +@code{.cpp} + float val = img.at(borderInterpolate(100, img.rows, cv::BORDER_REFLECT_101), + borderInterpolate(-5, img.cols, cv::BORDER_WRAP)); +@endcode +Normally, the function is not called directly. It is used inside filtering functions and also in +copyMakeBorder. +@param p 0-based coordinate of the extrapolated pixel along one of the axes, likely \<0 or \>= len +@param len Length of the array along the corresponding axis. +@param borderType Border type, one of the cv::BorderTypes, except for cv::BORDER_TRANSPARENT and +cv::BORDER_ISOLATED . When borderType==cv::BORDER_CONSTANT , the function always returns -1, regardless +of p and len. + +@sa copyMakeBorder +*/ +CV_EXPORTS_W int borderInterpolate(int p, int len, int borderType); + +/** @brief Forms a border around an image. + +The function copies the source image into the middle of the destination image. The areas to the +left, to the right, above and below the copied source image will be filled with extrapolated +pixels. This is not what filtering functions based on it do (they extrapolate pixels on-fly), but +what other more complex functions, including your own, may do to simplify image boundary handling. + +The function supports the mode when src is already in the middle of dst . In this case, the +function does not copy src itself but simply constructs the border, for example: + +@code{.cpp} + // let border be the same in all directions + int border=2; + // constructs a larger image to fit both the image and the border + Mat gray_buf(rgb.rows + border*2, rgb.cols + border*2, rgb.depth()); + // select the middle part of it w/o copying data + Mat gray(gray_canvas, Rect(border, border, rgb.cols, rgb.rows)); + // convert image from RGB to grayscale + cvtColor(rgb, gray, COLOR_RGB2GRAY); + // form a border in-place + copyMakeBorder(gray, gray_buf, border, border, + border, border, BORDER_REPLICATE); + // now do some custom filtering ... + ... +@endcode +@note When the source image is a part (ROI) of a bigger image, the function will try to use the +pixels outside of the ROI to form a border. To disable this feature and always do extrapolation, as +if src was not a ROI, use borderType | BORDER_ISOLATED. + +@param src Source image. +@param dst Destination image of the same type as src and the size Size(src.cols+left+right, +src.rows+top+bottom) . +@param top +@param bottom +@param left +@param right Parameter specifying how many pixels in each direction from the source image rectangle +to extrapolate. For example, top=1, bottom=1, left=1, right=1 mean that 1 pixel-wide border needs +to be built. +@param borderType Border type. See borderInterpolate for details. +@param value Border value if borderType==BORDER_CONSTANT . + +@sa borderInterpolate +*/ +CV_EXPORTS_W void copyMakeBorder(InputArray src, OutputArray dst, + int top, int bottom, int left, int right, + int borderType, const Scalar& value = Scalar() ); + +/** @brief Calculates the per-element sum of two arrays or an array and a scalar. + +The function add calculates: +- Sum of two arrays when both input arrays have the same size and the same number of channels: +\f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) + \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\f] +- Sum of an array and a scalar when src2 is constructed from Scalar or has the same number of +elements as `src1.channels()`: +\f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) + \texttt{src2} ) \quad \texttt{if mask}(I) \ne0\f] +- Sum of a scalar and an array when src1 is constructed from Scalar or has the same number of +elements as `src2.channels()`: +\f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1} + \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0\f] +where `I` is a multi-dimensional index of array elements. In case of multi-channel arrays, each +channel is processed independently. + +The first function in the list above can be replaced with matrix expressions: +@code{.cpp} + dst = src1 + src2; + dst += src1; // equivalent to add(dst, src1, dst); +@endcode +The input arrays and the output array can all have the same or different depths. For example, you +can add a 16-bit unsigned array to a 8-bit signed array and store the sum as a 32-bit +floating-point array. Depth of the output array is determined by the dtype parameter. In the second +and third cases above, as well as in the first case, when src1.depth() == src2.depth(), dtype can +be set to the default -1. In this case, the output array will have the same depth as the input +array, be it src1, src2 or both. +@note Saturation is not applied when the output array has the depth CV_32S. You may even get +result of an incorrect sign in the case of overflow. +@param src1 first input array or a scalar. +@param src2 second input array or a scalar. +@param dst output array that has the same size and number of channels as the input array(s); the +depth is defined by dtype or src1/src2. +@param mask optional operation mask - 8-bit single channel array, that specifies elements of the +output array to be changed. +@param dtype optional depth of the output array (see the discussion below). +@sa subtract, addWeighted, scaleAdd, Mat::convertTo +*/ +CV_EXPORTS_W void add(InputArray src1, InputArray src2, OutputArray dst, + InputArray mask = noArray(), int dtype = -1); + +/** @brief Calculates the per-element difference between two arrays or array and a scalar. + +The function subtract calculates: +- Difference between two arrays, when both input arrays have the same size and the same number of +channels: + \f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) - \texttt{src2}(I)) \quad \texttt{if mask}(I) \ne0\f] +- Difference between an array and a scalar, when src2 is constructed from Scalar or has the same +number of elements as `src1.channels()`: + \f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1}(I) - \texttt{src2} ) \quad \texttt{if mask}(I) \ne0\f] +- Difference between a scalar and an array, when src1 is constructed from Scalar or has the same +number of elements as `src2.channels()`: + \f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src1} - \texttt{src2}(I) ) \quad \texttt{if mask}(I) \ne0\f] +- The reverse difference between a scalar and an array in the case of `SubRS`: + \f[\texttt{dst}(I) = \texttt{saturate} ( \texttt{src2} - \texttt{src1}(I) ) \quad \texttt{if mask}(I) \ne0\f] +where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each +channel is processed independently. + +The first function in the list above can be replaced with matrix expressions: +@code{.cpp} + dst = src1 - src2; + dst -= src1; // equivalent to subtract(dst, src1, dst); +@endcode +The input arrays and the output array can all have the same or different depths. For example, you +can subtract to 8-bit unsigned arrays and store the difference in a 16-bit signed array. Depth of +the output array is determined by dtype parameter. In the second and third cases above, as well as +in the first case, when src1.depth() == src2.depth(), dtype can be set to the default -1. In this +case the output array will have the same depth as the input array, be it src1, src2 or both. +@note Saturation is not applied when the output array has the depth CV_32S. You may even get +result of an incorrect sign in the case of overflow. +@param src1 first input array or a scalar. +@param src2 second input array or a scalar. +@param dst output array of the same size and the same number of channels as the input array. +@param mask optional operation mask; this is an 8-bit single channel array that specifies elements +of the output array to be changed. +@param dtype optional depth of the output array +@sa add, addWeighted, scaleAdd, Mat::convertTo + */ +CV_EXPORTS_W void subtract(InputArray src1, InputArray src2, OutputArray dst, + InputArray mask = noArray(), int dtype = -1); + + +/** @brief Calculates the per-element scaled product of two arrays. + +The function multiply calculates the per-element product of two arrays: + +\f[\texttt{dst} (I)= \texttt{saturate} ( \texttt{scale} \cdot \texttt{src1} (I) \cdot \texttt{src2} (I))\f] + +There is also a @ref MatrixExpressions -friendly variant of the first function. See Mat::mul . + +For a not-per-element matrix product, see gemm . + +@note Saturation is not applied when the output array has the depth +CV_32S. You may even get result of an incorrect sign in the case of +overflow. +@param src1 first input array. +@param src2 second input array of the same size and the same type as src1. +@param dst output array of the same size and type as src1. +@param scale optional scale factor. +@param dtype optional depth of the output array +@sa add, subtract, divide, scaleAdd, addWeighted, accumulate, accumulateProduct, accumulateSquare, +Mat::convertTo +*/ +CV_EXPORTS_W void multiply(InputArray src1, InputArray src2, + OutputArray dst, double scale = 1, int dtype = -1); + +/** @brief Performs per-element division of two arrays or a scalar by an array. + +The function cv::divide divides one array by another: +\f[\texttt{dst(I) = saturate(src1(I)*scale/src2(I))}\f] +or a scalar by an array when there is no src1 : +\f[\texttt{dst(I) = saturate(scale/src2(I))}\f] + +When src2(I) is zero, dst(I) will also be zero. Different channels of +multi-channel arrays are processed independently. + +@note Saturation is not applied when the output array has the depth CV_32S. You may even get +result of an incorrect sign in the case of overflow. +@param src1 first input array. +@param src2 second input array of the same size and type as src1. +@param scale scalar factor. +@param dst output array of the same size and type as src2. +@param dtype optional depth of the output array; if -1, dst will have depth src2.depth(), but in +case of an array-by-array division, you can only pass -1 when src1.depth()==src2.depth(). +@sa multiply, add, subtract +*/ +CV_EXPORTS_W void divide(InputArray src1, InputArray src2, OutputArray dst, + double scale = 1, int dtype = -1); + +/** @overload */ +CV_EXPORTS_W void divide(double scale, InputArray src2, + OutputArray dst, int dtype = -1); + +/** @brief Calculates the sum of a scaled array and another array. + +The function scaleAdd is one of the classical primitive linear algebra operations, known as DAXPY +or SAXPY in [BLAS](http://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms). It calculates +the sum of a scaled array and another array: +\f[\texttt{dst} (I)= \texttt{scale} \cdot \texttt{src1} (I) + \texttt{src2} (I)\f] +The function can also be emulated with a matrix expression, for example: +@code{.cpp} + Mat A(3, 3, CV_64F); + ... + A.row(0) = A.row(1)*2 + A.row(2); +@endcode +@param src1 first input array. +@param alpha scale factor for the first array. +@param src2 second input array of the same size and type as src1. +@param dst output array of the same size and type as src1. +@sa add, addWeighted, subtract, Mat::dot, Mat::convertTo +*/ +CV_EXPORTS_W void scaleAdd(InputArray src1, double alpha, InputArray src2, OutputArray dst); + +/** @brief Calculates the weighted sum of two arrays. + +The function addWeighted calculates the weighted sum of two arrays as follows: +\f[\texttt{dst} (I)= \texttt{saturate} ( \texttt{src1} (I)* \texttt{alpha} + \texttt{src2} (I)* \texttt{beta} + \texttt{gamma} )\f] +where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each +channel is processed independently. +The function can be replaced with a matrix expression: +@code{.cpp} + dst = src1*alpha + src2*beta + gamma; +@endcode +@note Saturation is not applied when the output array has the depth CV_32S. You may even get +result of an incorrect sign in the case of overflow. +@param src1 first input array. +@param alpha weight of the first array elements. +@param src2 second input array of the same size and channel number as src1. +@param beta weight of the second array elements. +@param gamma scalar added to each sum. +@param dst output array that has the same size and number of channels as the input arrays. +@param dtype optional depth of the output array; when both input arrays have the same depth, dtype +can be set to -1, which will be equivalent to src1.depth(). +@sa add, subtract, scaleAdd, Mat::convertTo +*/ +CV_EXPORTS_W void addWeighted(InputArray src1, double alpha, InputArray src2, + double beta, double gamma, OutputArray dst, int dtype = -1); + +/** @brief Scales, calculates absolute values, and converts the result to 8-bit. + +On each element of the input array, the function convertScaleAbs +performs three operations sequentially: scaling, taking an absolute +value, conversion to an unsigned 8-bit type: +\f[\texttt{dst} (I)= \texttt{saturate\_cast} (| \texttt{src} (I)* \texttt{alpha} + \texttt{beta} |)\f] +In case of multi-channel arrays, the function processes each channel +independently. When the output is not 8-bit, the operation can be +emulated by calling the Mat::convertTo method (or by using matrix +expressions) and then by calculating an absolute value of the result. +For example: +@code{.cpp} + Mat_ A(30,30); + randu(A, Scalar(-100), Scalar(100)); + Mat_ B = A*5 + 3; + B = abs(B); + // Mat_ B = abs(A*5+3) will also do the job, + // but it will allocate a temporary matrix +@endcode +@param src input array. +@param dst output array. +@param alpha optional scale factor. +@param beta optional delta added to the scaled values. +@sa Mat::convertTo, cv::abs(const Mat&) +*/ +CV_EXPORTS_W void convertScaleAbs(InputArray src, OutputArray dst, + double alpha = 1, double beta = 0); + +/** @brief Converts an array to half precision floating number. + +This function converts FP32 (single precision floating point) from/to FP16 (half precision floating point). The input array has to have type of CV_32F or +CV_16S to represent the bit depth. If the input array is neither of them, the function will raise an error. +The format of half precision floating point is defined in IEEE 754-2008. + +@param src input array. +@param dst output array. +*/ +CV_EXPORTS_W void convertFp16(InputArray src, OutputArray dst); + +/** @brief Performs a look-up table transform of an array. + +The function LUT fills the output array with values from the look-up table. Indices of the entries +are taken from the input array. That is, the function processes each element of src as follows: +\f[\texttt{dst} (I) \leftarrow \texttt{lut(src(I) + d)}\f] +where +\f[d = \fork{0}{if \(\texttt{src}\) has depth \(\texttt{CV_8U}\)}{128}{if \(\texttt{src}\) has depth \(\texttt{CV_8S}\)}\f] +@param src input array of 8-bit elements. +@param lut look-up table of 256 elements; in case of multi-channel input array, the table should +either have a single channel (in this case the same table is used for all channels) or the same +number of channels as in the input array. +@param dst output array of the same size and number of channels as src, and the same depth as lut. +@sa convertScaleAbs, Mat::convertTo +*/ +CV_EXPORTS_W void LUT(InputArray src, InputArray lut, OutputArray dst); + +/** @brief Calculates the sum of array elements. + +The function cv::sum calculates and returns the sum of array elements, +independently for each channel. +@param src input array that must have from 1 to 4 channels. +@sa countNonZero, mean, meanStdDev, norm, minMaxLoc, reduce +*/ +CV_EXPORTS_AS(sumElems) Scalar sum(InputArray src); + +/** @brief Counts non-zero array elements. + +The function returns the number of non-zero elements in src : +\f[\sum _{I: \; \texttt{src} (I) \ne0 } 1\f] +@param src single-channel array. +@sa mean, meanStdDev, norm, minMaxLoc, calcCovarMatrix +*/ +CV_EXPORTS_W int countNonZero( InputArray src ); + +/** @brief Returns the list of locations of non-zero pixels + +Given a binary matrix (likely returned from an operation such +as threshold(), compare(), >, ==, etc, return all of +the non-zero indices as a cv::Mat or std::vector (x,y) +For example: +@code{.cpp} + cv::Mat binaryImage; // input, binary image + cv::Mat locations; // output, locations of non-zero pixels + cv::findNonZero(binaryImage, locations); + + // access pixel coordinates + Point pnt = locations.at(i); +@endcode +or +@code{.cpp} + cv::Mat binaryImage; // input, binary image + vector locations; // output, locations of non-zero pixels + cv::findNonZero(binaryImage, locations); + + // access pixel coordinates + Point pnt = locations[i]; +@endcode +@param src single-channel array (type CV_8UC1) +@param idx the output array, type of cv::Mat or std::vector, corresponding to non-zero indices in the input +*/ +CV_EXPORTS_W void findNonZero( InputArray src, OutputArray idx ); + +/** @brief Calculates an average (mean) of array elements. + +The function cv::mean calculates the mean value M of array elements, +independently for each channel, and return it: +\f[\begin{array}{l} N = \sum _{I: \; \texttt{mask} (I) \ne 0} 1 \\ M_c = \left ( \sum _{I: \; \texttt{mask} (I) \ne 0}{ \texttt{mtx} (I)_c} \right )/N \end{array}\f] +When all the mask elements are 0's, the function returns Scalar::all(0) +@param src input array that should have from 1 to 4 channels so that the result can be stored in +Scalar_ . +@param mask optional operation mask. +@sa countNonZero, meanStdDev, norm, minMaxLoc +*/ +CV_EXPORTS_W Scalar mean(InputArray src, InputArray mask = noArray()); + +/** Calculates a mean and standard deviation of array elements. + +The function cv::meanStdDev calculates the mean and the standard deviation M +of array elements independently for each channel and returns it via the +output parameters: +\f[\begin{array}{l} N = \sum _{I, \texttt{mask} (I) \ne 0} 1 \\ \texttt{mean} _c = \frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \texttt{src} (I)_c}{N} \\ \texttt{stddev} _c = \sqrt{\frac{\sum_{ I: \; \texttt{mask}(I) \ne 0} \left ( \texttt{src} (I)_c - \texttt{mean} _c \right )^2}{N}} \end{array}\f] +When all the mask elements are 0's, the function returns +mean=stddev=Scalar::all(0). +@note The calculated standard deviation is only the diagonal of the +complete normalized covariance matrix. If the full matrix is needed, you +can reshape the multi-channel array M x N to the single-channel array +M\*N x mtx.channels() (only possible when the matrix is continuous) and +then pass the matrix to calcCovarMatrix . +@param src input array that should have from 1 to 4 channels so that the results can be stored in +Scalar_ 's. +@param mean output parameter: calculated mean value. +@param stddev output parameter: calculateded standard deviation. +@param mask optional operation mask. +@sa countNonZero, mean, norm, minMaxLoc, calcCovarMatrix +*/ +CV_EXPORTS_W void meanStdDev(InputArray src, OutputArray mean, OutputArray stddev, + InputArray mask=noArray()); + +/** @brief Calculates an absolute array norm, an absolute difference norm, or a +relative difference norm. + +The function cv::norm calculates an absolute norm of src1 (when there is no +src2 ): + +\f[norm = \forkthree{\|\texttt{src1}\|_{L_{\infty}} = \max _I | \texttt{src1} (I)|}{if \(\texttt{normType} = \texttt{NORM_INF}\) } +{ \| \texttt{src1} \| _{L_1} = \sum _I | \texttt{src1} (I)|}{if \(\texttt{normType} = \texttt{NORM_L1}\) } +{ \| \texttt{src1} \| _{L_2} = \sqrt{\sum_I \texttt{src1}(I)^2} }{if \(\texttt{normType} = \texttt{NORM_L2}\) }\f] + +or an absolute or relative difference norm if src2 is there: + +\f[norm = \forkthree{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} = \max _I | \texttt{src1} (I) - \texttt{src2} (I)|}{if \(\texttt{normType} = \texttt{NORM_INF}\) } +{ \| \texttt{src1} - \texttt{src2} \| _{L_1} = \sum _I | \texttt{src1} (I) - \texttt{src2} (I)|}{if \(\texttt{normType} = \texttt{NORM_L1}\) } +{ \| \texttt{src1} - \texttt{src2} \| _{L_2} = \sqrt{\sum_I (\texttt{src1}(I) - \texttt{src2}(I))^2} }{if \(\texttt{normType} = \texttt{NORM_L2}\) }\f] + +or + +\f[norm = \forkthree{\frac{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} }{\|\texttt{src2}\|_{L_{\infty}} }}{if \(\texttt{normType} = \texttt{NORM_RELATIVE_INF}\) } +{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_1} }{\|\texttt{src2}\|_{L_1}} }{if \(\texttt{normType} = \texttt{NORM_RELATIVE_L1}\) } +{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_2} }{\|\texttt{src2}\|_{L_2}} }{if \(\texttt{normType} = \texttt{NORM_RELATIVE_L2}\) }\f] + +The function cv::norm returns the calculated norm. + +When the mask parameter is specified and it is not empty, the norm is +calculated only over the region specified by the mask. + +A multi-channel input arrays are treated as a single-channel, that is, +the results for all channels are combined. + +@param src1 first input array. +@param normType type of the norm (see cv::NormTypes). +@param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type. +*/ +CV_EXPORTS_W double norm(InputArray src1, int normType = NORM_L2, InputArray mask = noArray()); + +/** @overload +@param src1 first input array. +@param src2 second input array of the same size and the same type as src1. +@param normType type of the norm (cv::NormTypes). +@param mask optional operation mask; it must have the same size as src1 and CV_8UC1 type. +*/ +CV_EXPORTS_W double norm(InputArray src1, InputArray src2, + int normType = NORM_L2, InputArray mask = noArray()); +/** @overload +@param src first input array. +@param normType type of the norm (see cv::NormTypes). +*/ +CV_EXPORTS double norm( const SparseMat& src, int normType ); + +/** @brief computes PSNR image/video quality metric + +see http://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio for details +@todo document + */ +CV_EXPORTS_W double PSNR(InputArray src1, InputArray src2); + +/** @brief naive nearest neighbor finder + +see http://en.wikipedia.org/wiki/Nearest_neighbor_search +@todo document + */ +CV_EXPORTS_W void batchDistance(InputArray src1, InputArray src2, + OutputArray dist, int dtype, OutputArray nidx, + int normType = NORM_L2, int K = 0, + InputArray mask = noArray(), int update = 0, + bool crosscheck = false); + +/** @brief Normalizes the norm or value range of an array. + +The function cv::normalize normalizes scale and shift the input array elements so that +\f[\| \texttt{dst} \| _{L_p}= \texttt{alpha}\f] +(where p=Inf, 1 or 2) when normType=NORM_INF, NORM_L1, or NORM_L2, respectively; or so that +\f[\min _I \texttt{dst} (I)= \texttt{alpha} , \, \, \max _I \texttt{dst} (I)= \texttt{beta}\f] + +when normType=NORM_MINMAX (for dense arrays only). The optional mask specifies a sub-array to be +normalized. This means that the norm or min-n-max are calculated over the sub-array, and then this +sub-array is modified to be normalized. If you want to only use the mask to calculate the norm or +min-max but modify the whole array, you can use norm and Mat::convertTo. + +In case of sparse matrices, only the non-zero values are analyzed and transformed. Because of this, +the range transformation for sparse matrices is not allowed since it can shift the zero level. + +Possible usage with some positive example data: +@code{.cpp} + vector positiveData = { 2.0, 8.0, 10.0 }; + vector normalizedData_l1, normalizedData_l2, normalizedData_inf, normalizedData_minmax; + + // Norm to probability (total count) + // sum(numbers) = 20.0 + // 2.0 0.1 (2.0/20.0) + // 8.0 0.4 (8.0/20.0) + // 10.0 0.5 (10.0/20.0) + normalize(positiveData, normalizedData_l1, 1.0, 0.0, NORM_L1); + + // Norm to unit vector: ||positiveData|| = 1.0 + // 2.0 0.15 + // 8.0 0.62 + // 10.0 0.77 + normalize(positiveData, normalizedData_l2, 1.0, 0.0, NORM_L2); + + // Norm to max element + // 2.0 0.2 (2.0/10.0) + // 8.0 0.8 (8.0/10.0) + // 10.0 1.0 (10.0/10.0) + normalize(positiveData, normalizedData_inf, 1.0, 0.0, NORM_INF); + + // Norm to range [0.0;1.0] + // 2.0 0.0 (shift to left border) + // 8.0 0.75 (6.0/8.0) + // 10.0 1.0 (shift to right border) + normalize(positiveData, normalizedData_minmax, 1.0, 0.0, NORM_MINMAX); +@endcode + +@param src input array. +@param dst output array of the same size as src . +@param alpha norm value to normalize to or the lower range boundary in case of the range +normalization. +@param beta upper range boundary in case of the range normalization; it is not used for the norm +normalization. +@param norm_type normalization type (see cv::NormTypes). +@param dtype when negative, the output array has the same type as src; otherwise, it has the same +number of channels as src and the depth =CV_MAT_DEPTH(dtype). +@param mask optional operation mask. +@sa norm, Mat::convertTo, SparseMat::convertTo +*/ +CV_EXPORTS_W void normalize( InputArray src, InputOutputArray dst, double alpha = 1, double beta = 0, + int norm_type = NORM_L2, int dtype = -1, InputArray mask = noArray()); + +/** @overload +@param src input array. +@param dst output array of the same size as src . +@param alpha norm value to normalize to or the lower range boundary in case of the range +normalization. +@param normType normalization type (see cv::NormTypes). +*/ +CV_EXPORTS void normalize( const SparseMat& src, SparseMat& dst, double alpha, int normType ); + +/** @brief Finds the global minimum and maximum in an array. + +The function cv::minMaxLoc finds the minimum and maximum element values and their positions. The +extremums are searched across the whole array or, if mask is not an empty array, in the specified +array region. + +The function do not work with multi-channel arrays. If you need to find minimum or maximum +elements across all the channels, use Mat::reshape first to reinterpret the array as +single-channel. Or you may extract the particular channel using either extractImageCOI , or +mixChannels , or split . +@param src input single-channel array. +@param minVal pointer to the returned minimum value; NULL is used if not required. +@param maxVal pointer to the returned maximum value; NULL is used if not required. +@param minLoc pointer to the returned minimum location (in 2D case); NULL is used if not required. +@param maxLoc pointer to the returned maximum location (in 2D case); NULL is used if not required. +@param mask optional mask used to select a sub-array. +@sa max, min, compare, inRange, extractImageCOI, mixChannels, split, Mat::reshape +*/ +CV_EXPORTS_W void minMaxLoc(InputArray src, CV_OUT double* minVal, + CV_OUT double* maxVal = 0, CV_OUT Point* minLoc = 0, + CV_OUT Point* maxLoc = 0, InputArray mask = noArray()); + + +/** @brief Finds the global minimum and maximum in an array + +The function cv::minMaxIdx finds the minimum and maximum element values and their positions. The +extremums are searched across the whole array or, if mask is not an empty array, in the specified +array region. The function does not work with multi-channel arrays. If you need to find minimum or +maximum elements across all the channels, use Mat::reshape first to reinterpret the array as +single-channel. Or you may extract the particular channel using either extractImageCOI , or +mixChannels , or split . In case of a sparse matrix, the minimum is found among non-zero elements +only. +@note When minIdx is not NULL, it must have at least 2 elements (as well as maxIdx), even if src is +a single-row or single-column matrix. In OpenCV (following MATLAB) each array has at least 2 +dimensions, i.e. single-column matrix is Mx1 matrix (and therefore minIdx/maxIdx will be +(i1,0)/(i2,0)) and single-row matrix is 1xN matrix (and therefore minIdx/maxIdx will be +(0,j1)/(0,j2)). +@param src input single-channel array. +@param minVal pointer to the returned minimum value; NULL is used if not required. +@param maxVal pointer to the returned maximum value; NULL is used if not required. +@param minIdx pointer to the returned minimum location (in nD case); NULL is used if not required; +Otherwise, it must point to an array of src.dims elements, the coordinates of the minimum element +in each dimension are stored there sequentially. +@param maxIdx pointer to the returned maximum location (in nD case). NULL is used if not required. +@param mask specified array region +*/ +CV_EXPORTS void minMaxIdx(InputArray src, double* minVal, double* maxVal = 0, + int* minIdx = 0, int* maxIdx = 0, InputArray mask = noArray()); + +/** @overload +@param a input single-channel array. +@param minVal pointer to the returned minimum value; NULL is used if not required. +@param maxVal pointer to the returned maximum value; NULL is used if not required. +@param minIdx pointer to the returned minimum location (in nD case); NULL is used if not required; +Otherwise, it must point to an array of src.dims elements, the coordinates of the minimum element +in each dimension are stored there sequentially. +@param maxIdx pointer to the returned maximum location (in nD case). NULL is used if not required. +*/ +CV_EXPORTS void minMaxLoc(const SparseMat& a, double* minVal, + double* maxVal, int* minIdx = 0, int* maxIdx = 0); + +/** @brief Reduces a matrix to a vector. + +The function cv::reduce reduces the matrix to a vector by treating the matrix rows/columns as a set of +1D vectors and performing the specified operation on the vectors until a single row/column is +obtained. For example, the function can be used to compute horizontal and vertical projections of a +raster image. In case of REDUCE_MAX and REDUCE_MIN , the output image should have the same type as the source one. +In case of REDUCE_SUM and REDUCE_AVG , the output may have a larger element bit-depth to preserve accuracy. +And multi-channel arrays are also supported in these two reduction modes. +@param src input 2D matrix. +@param dst output vector. Its size and type is defined by dim and dtype parameters. +@param dim dimension index along which the matrix is reduced. 0 means that the matrix is reduced to +a single row. 1 means that the matrix is reduced to a single column. +@param rtype reduction operation that could be one of cv::ReduceTypes +@param dtype when negative, the output vector will have the same type as the input matrix, +otherwise, its type will be CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), src.channels()). +@sa repeat +*/ +CV_EXPORTS_W void reduce(InputArray src, OutputArray dst, int dim, int rtype, int dtype = -1); + +/** @brief Creates one multi-channel array out of several single-channel ones. + +The function cv::merge merges several arrays to make a single multi-channel array. That is, each +element of the output array will be a concatenation of the elements of the input arrays, where +elements of i-th input array are treated as mv[i].channels()-element vectors. + +The function cv::split does the reverse operation. If you need to shuffle channels in some other +advanced way, use cv::mixChannels. +@param mv input array of matrices to be merged; all the matrices in mv must have the same +size and the same depth. +@param count number of input matrices when mv is a plain C array; it must be greater than zero. +@param dst output array of the same size and the same depth as mv[0]; The number of channels will +be equal to the parameter count. +@sa mixChannels, split, Mat::reshape +*/ +CV_EXPORTS void merge(const Mat* mv, size_t count, OutputArray dst); + +/** @overload +@param mv input vector of matrices to be merged; all the matrices in mv must have the same +size and the same depth. +@param dst output array of the same size and the same depth as mv[0]; The number of channels will +be the total number of channels in the matrix array. + */ +CV_EXPORTS_W void merge(InputArrayOfArrays mv, OutputArray dst); + +/** @brief Divides a multi-channel array into several single-channel arrays. + +The function cv::split splits a multi-channel array into separate single-channel arrays: +\f[\texttt{mv} [c](I) = \texttt{src} (I)_c\f] +If you need to extract a single channel or do some other sophisticated channel permutation, use +mixChannels . +@param src input multi-channel array. +@param mvbegin output array; the number of arrays must match src.channels(); the arrays themselves are +reallocated, if needed. +@sa merge, mixChannels, cvtColor +*/ +CV_EXPORTS void split(const Mat& src, Mat* mvbegin); + +/** @overload +@param m input multi-channel array. +@param mv output vector of arrays; the arrays themselves are reallocated, if needed. +*/ +CV_EXPORTS_W void split(InputArray m, OutputArrayOfArrays mv); + +/** @brief Copies specified channels from input arrays to the specified channels of +output arrays. + +The function cv::mixChannels provides an advanced mechanism for shuffling image channels. + +cv::split,cv::merge,cv::extractChannel,cv::insertChannel and some forms of cv::cvtColor are partial cases of cv::mixChannels. + +In the example below, the code splits a 4-channel BGRA image into a 3-channel BGR (with B and R +channels swapped) and a separate alpha-channel image: +@code{.cpp} + Mat bgra( 100, 100, CV_8UC4, Scalar(255,0,0,255) ); + Mat bgr( bgra.rows, bgra.cols, CV_8UC3 ); + Mat alpha( bgra.rows, bgra.cols, CV_8UC1 ); + + // forming an array of matrices is a quite efficient operation, + // because the matrix data is not copied, only the headers + Mat out[] = { bgr, alpha }; + // bgra[0] -> bgr[2], bgra[1] -> bgr[1], + // bgra[2] -> bgr[0], bgra[3] -> alpha[0] + int from_to[] = { 0,2, 1,1, 2,0, 3,3 }; + mixChannels( &bgra, 1, out, 2, from_to, 4 ); +@endcode +@note Unlike many other new-style C++ functions in OpenCV (see the introduction section and +Mat::create ), cv::mixChannels requires the output arrays to be pre-allocated before calling the +function. +@param src input array or vector of matrices; all of the matrices must have the same size and the +same depth. +@param nsrcs number of matrices in `src`. +@param dst output array or vector of matrices; all the matrices **must be allocated**; their size and +depth must be the same as in `src[0]`. +@param ndsts number of matrices in `dst`. +@param fromTo array of index pairs specifying which channels are copied and where; fromTo[k\*2] is +a 0-based index of the input channel in src, fromTo[k\*2+1] is an index of the output channel in +dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to +src[0].channels()-1, the second input image channels are indexed from src[0].channels() to +src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image +channels; as a special case, when fromTo[k\*2] is negative, the corresponding output channel is +filled with zero . +@param npairs number of index pairs in `fromTo`. +@sa split, merge, extractChannel, insertChannel, cvtColor +*/ +CV_EXPORTS void mixChannels(const Mat* src, size_t nsrcs, Mat* dst, size_t ndsts, + const int* fromTo, size_t npairs); + +/** @overload +@param src input array or vector of matrices; all of the matrices must have the same size and the +same depth. +@param dst output array or vector of matrices; all the matrices **must be allocated**; their size and +depth must be the same as in src[0]. +@param fromTo array of index pairs specifying which channels are copied and where; fromTo[k\*2] is +a 0-based index of the input channel in src, fromTo[k\*2+1] is an index of the output channel in +dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to +src[0].channels()-1, the second input image channels are indexed from src[0].channels() to +src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image +channels; as a special case, when fromTo[k\*2] is negative, the corresponding output channel is +filled with zero . +@param npairs number of index pairs in fromTo. +*/ +CV_EXPORTS void mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst, + const int* fromTo, size_t npairs); + +/** @overload +@param src input array or vector of matrices; all of the matrices must have the same size and the +same depth. +@param dst output array or vector of matrices; all the matrices **must be allocated**; their size and +depth must be the same as in src[0]. +@param fromTo array of index pairs specifying which channels are copied and where; fromTo[k\*2] is +a 0-based index of the input channel in src, fromTo[k\*2+1] is an index of the output channel in +dst; the continuous channel numbering is used: the first input image channels are indexed from 0 to +src[0].channels()-1, the second input image channels are indexed from src[0].channels() to +src[0].channels() + src[1].channels()-1, and so on, the same scheme is used for the output image +channels; as a special case, when fromTo[k\*2] is negative, the corresponding output channel is +filled with zero . +*/ +CV_EXPORTS_W void mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst, + const std::vector& fromTo); + +/** @brief Extracts a single channel from src (coi is 0-based index) +@param src input array +@param dst output array +@param coi index of channel to extract +@sa mixChannels, split +*/ +CV_EXPORTS_W void extractChannel(InputArray src, OutputArray dst, int coi); + +/** @brief Inserts a single channel to dst (coi is 0-based index) +@param src input array +@param dst output array +@param coi index of channel for insertion +@sa mixChannels, merge +*/ +CV_EXPORTS_W void insertChannel(InputArray src, InputOutputArray dst, int coi); + +/** @brief Flips a 2D array around vertical, horizontal, or both axes. + +The function cv::flip flips the array in one of three different ways (row +and column indices are 0-based): +\f[\texttt{dst} _{ij} = +\left\{ +\begin{array}{l l} +\texttt{src} _{\texttt{src.rows}-i-1,j} & if\; \texttt{flipCode} = 0 \\ +\texttt{src} _{i, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} > 0 \\ +\texttt{src} _{ \texttt{src.rows} -i-1, \texttt{src.cols} -j-1} & if\; \texttt{flipCode} < 0 \\ +\end{array} +\right.\f] +The example scenarios of using the function are the following: +* Vertical flipping of the image (flipCode == 0) to switch between + top-left and bottom-left image origin. This is a typical operation + in video processing on Microsoft Windows\* OS. +* Horizontal flipping of the image with the subsequent horizontal + shift and absolute difference calculation to check for a + vertical-axis symmetry (flipCode \> 0). +* Simultaneous horizontal and vertical flipping of the image with + the subsequent shift and absolute difference calculation to check + for a central symmetry (flipCode \< 0). +* Reversing the order of point arrays (flipCode \> 0 or + flipCode == 0). +@param src input array. +@param dst output array of the same size and type as src. +@param flipCode a flag to specify how to flip the array; 0 means +flipping around the x-axis and positive value (for example, 1) means +flipping around y-axis. Negative value (for example, -1) means flipping +around both axes. +@sa transpose , repeat , completeSymm +*/ +CV_EXPORTS_W void flip(InputArray src, OutputArray dst, int flipCode); + +enum RotateFlags { + ROTATE_90_CLOCKWISE = 0, //Rotate 90 degrees clockwise + ROTATE_180 = 1, //Rotate 180 degrees clockwise + ROTATE_90_COUNTERCLOCKWISE = 2, //Rotate 270 degrees clockwise +}; +/** @brief Rotates a 2D array in multiples of 90 degrees. +The function rotate rotates the array in one of three different ways: +* Rotate by 90 degrees clockwise (rotateCode = ROTATE_90). +* Rotate by 180 degrees clockwise (rotateCode = ROTATE_180). +* Rotate by 270 degrees clockwise (rotateCode = ROTATE_270). +@param src input array. +@param dst output array of the same type as src. The size is the same with ROTATE_180, +and the rows and cols are switched for ROTATE_90 and ROTATE_270. +@param rotateCode an enum to specify how to rotate the array; see the enum RotateFlags +@sa transpose , repeat , completeSymm, flip, RotateFlags +*/ +CV_EXPORTS_W void rotate(InputArray src, OutputArray dst, int rotateCode); + +/** @brief Fills the output array with repeated copies of the input array. + +The function cv::repeat duplicates the input array one or more times along each of the two axes: +\f[\texttt{dst} _{ij}= \texttt{src} _{i\mod src.rows, \; j\mod src.cols }\f] +The second variant of the function is more convenient to use with @ref MatrixExpressions. +@param src input array to replicate. +@param ny Flag to specify how many times the `src` is repeated along the +vertical axis. +@param nx Flag to specify how many times the `src` is repeated along the +horizontal axis. +@param dst output array of the same type as `src`. +@sa cv::reduce +*/ +CV_EXPORTS_W void repeat(InputArray src, int ny, int nx, OutputArray dst); + +/** @overload +@param src input array to replicate. +@param ny Flag to specify how many times the `src` is repeated along the +vertical axis. +@param nx Flag to specify how many times the `src` is repeated along the +horizontal axis. + */ +CV_EXPORTS Mat repeat(const Mat& src, int ny, int nx); + +/** @brief Applies horizontal concatenation to given matrices. + +The function horizontally concatenates two or more cv::Mat matrices (with the same number of rows). +@code{.cpp} + cv::Mat matArray[] = { cv::Mat(4, 1, CV_8UC1, cv::Scalar(1)), + cv::Mat(4, 1, CV_8UC1, cv::Scalar(2)), + cv::Mat(4, 1, CV_8UC1, cv::Scalar(3)),}; + + cv::Mat out; + cv::hconcat( matArray, 3, out ); + //out: + //[1, 2, 3; + // 1, 2, 3; + // 1, 2, 3; + // 1, 2, 3] +@endcode +@param src input array or vector of matrices. all of the matrices must have the same number of rows and the same depth. +@param nsrc number of matrices in src. +@param dst output array. It has the same number of rows and depth as the src, and the sum of cols of the src. +@sa cv::vconcat(const Mat*, size_t, OutputArray), @sa cv::vconcat(InputArrayOfArrays, OutputArray) and @sa cv::vconcat(InputArray, InputArray, OutputArray) +*/ +CV_EXPORTS void hconcat(const Mat* src, size_t nsrc, OutputArray dst); +/** @overload + @code{.cpp} + cv::Mat_ A = (cv::Mat_(3, 2) << 1, 4, + 2, 5, + 3, 6); + cv::Mat_ B = (cv::Mat_(3, 2) << 7, 10, + 8, 11, + 9, 12); + + cv::Mat C; + cv::hconcat(A, B, C); + //C: + //[1, 4, 7, 10; + // 2, 5, 8, 11; + // 3, 6, 9, 12] + @endcode + @param src1 first input array to be considered for horizontal concatenation. + @param src2 second input array to be considered for horizontal concatenation. + @param dst output array. It has the same number of rows and depth as the src1 and src2, and the sum of cols of the src1 and src2. + */ +CV_EXPORTS void hconcat(InputArray src1, InputArray src2, OutputArray dst); +/** @overload + @code{.cpp} + std::vector matrices = { cv::Mat(4, 1, CV_8UC1, cv::Scalar(1)), + cv::Mat(4, 1, CV_8UC1, cv::Scalar(2)), + cv::Mat(4, 1, CV_8UC1, cv::Scalar(3)),}; + + cv::Mat out; + cv::hconcat( matrices, out ); + //out: + //[1, 2, 3; + // 1, 2, 3; + // 1, 2, 3; + // 1, 2, 3] + @endcode + @param src input array or vector of matrices. all of the matrices must have the same number of rows and the same depth. + @param dst output array. It has the same number of rows and depth as the src, and the sum of cols of the src. +same depth. + */ +CV_EXPORTS_W void hconcat(InputArrayOfArrays src, OutputArray dst); + +/** @brief Applies vertical concatenation to given matrices. + +The function vertically concatenates two or more cv::Mat matrices (with the same number of cols). +@code{.cpp} + cv::Mat matArray[] = { cv::Mat(1, 4, CV_8UC1, cv::Scalar(1)), + cv::Mat(1, 4, CV_8UC1, cv::Scalar(2)), + cv::Mat(1, 4, CV_8UC1, cv::Scalar(3)),}; + + cv::Mat out; + cv::vconcat( matArray, 3, out ); + //out: + //[1, 1, 1, 1; + // 2, 2, 2, 2; + // 3, 3, 3, 3] +@endcode +@param src input array or vector of matrices. all of the matrices must have the same number of cols and the same depth. +@param nsrc number of matrices in src. +@param dst output array. It has the same number of cols and depth as the src, and the sum of rows of the src. +@sa cv::hconcat(const Mat*, size_t, OutputArray), @sa cv::hconcat(InputArrayOfArrays, OutputArray) and @sa cv::hconcat(InputArray, InputArray, OutputArray) +*/ +CV_EXPORTS void vconcat(const Mat* src, size_t nsrc, OutputArray dst); +/** @overload + @code{.cpp} + cv::Mat_ A = (cv::Mat_(3, 2) << 1, 7, + 2, 8, + 3, 9); + cv::Mat_ B = (cv::Mat_(3, 2) << 4, 10, + 5, 11, + 6, 12); + + cv::Mat C; + cv::vconcat(A, B, C); + //C: + //[1, 7; + // 2, 8; + // 3, 9; + // 4, 10; + // 5, 11; + // 6, 12] + @endcode + @param src1 first input array to be considered for vertical concatenation. + @param src2 second input array to be considered for vertical concatenation. + @param dst output array. It has the same number of cols and depth as the src1 and src2, and the sum of rows of the src1 and src2. + */ +CV_EXPORTS void vconcat(InputArray src1, InputArray src2, OutputArray dst); +/** @overload + @code{.cpp} + std::vector matrices = { cv::Mat(1, 4, CV_8UC1, cv::Scalar(1)), + cv::Mat(1, 4, CV_8UC1, cv::Scalar(2)), + cv::Mat(1, 4, CV_8UC1, cv::Scalar(3)),}; + + cv::Mat out; + cv::vconcat( matrices, out ); + //out: + //[1, 1, 1, 1; + // 2, 2, 2, 2; + // 3, 3, 3, 3] + @endcode + @param src input array or vector of matrices. all of the matrices must have the same number of cols and the same depth + @param dst output array. It has the same number of cols and depth as the src, and the sum of rows of the src. +same depth. + */ +CV_EXPORTS_W void vconcat(InputArrayOfArrays src, OutputArray dst); + +/** @brief computes bitwise conjunction of the two arrays (dst = src1 & src2) +Calculates the per-element bit-wise conjunction of two arrays or an +array and a scalar. + +The function cv::bitwise_and calculates the per-element bit-wise logical conjunction for: +* Two arrays when src1 and src2 have the same size: + \f[\texttt{dst} (I) = \texttt{src1} (I) \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f] +* An array and a scalar when src2 is constructed from Scalar or has + the same number of elements as `src1.channels()`: + \f[\texttt{dst} (I) = \texttt{src1} (I) \wedge \texttt{src2} \quad \texttt{if mask} (I) \ne0\f] +* A scalar and an array when src1 is constructed from Scalar or has + the same number of elements as `src2.channels()`: + \f[\texttt{dst} (I) = \texttt{src1} \wedge \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f] +In case of floating-point arrays, their machine-specific bit +representations (usually IEEE754-compliant) are used for the operation. +In case of multi-channel arrays, each channel is processed +independently. In the second and third cases above, the scalar is first +converted to the array type. +@param src1 first input array or a scalar. +@param src2 second input array or a scalar. +@param dst output array that has the same size and type as the input +arrays. +@param mask optional operation mask, 8-bit single channel array, that +specifies elements of the output array to be changed. +*/ +CV_EXPORTS_W void bitwise_and(InputArray src1, InputArray src2, + OutputArray dst, InputArray mask = noArray()); + +/** @brief Calculates the per-element bit-wise disjunction of two arrays or an +array and a scalar. + +The function cv::bitwise_or calculates the per-element bit-wise logical disjunction for: +* Two arrays when src1 and src2 have the same size: + \f[\texttt{dst} (I) = \texttt{src1} (I) \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f] +* An array and a scalar when src2 is constructed from Scalar or has + the same number of elements as `src1.channels()`: + \f[\texttt{dst} (I) = \texttt{src1} (I) \vee \texttt{src2} \quad \texttt{if mask} (I) \ne0\f] +* A scalar and an array when src1 is constructed from Scalar or has + the same number of elements as `src2.channels()`: + \f[\texttt{dst} (I) = \texttt{src1} \vee \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f] +In case of floating-point arrays, their machine-specific bit +representations (usually IEEE754-compliant) are used for the operation. +In case of multi-channel arrays, each channel is processed +independently. In the second and third cases above, the scalar is first +converted to the array type. +@param src1 first input array or a scalar. +@param src2 second input array or a scalar. +@param dst output array that has the same size and type as the input +arrays. +@param mask optional operation mask, 8-bit single channel array, that +specifies elements of the output array to be changed. +*/ +CV_EXPORTS_W void bitwise_or(InputArray src1, InputArray src2, + OutputArray dst, InputArray mask = noArray()); + +/** @brief Calculates the per-element bit-wise "exclusive or" operation on two +arrays or an array and a scalar. + +The function cv::bitwise_xor calculates the per-element bit-wise logical "exclusive-or" +operation for: +* Two arrays when src1 and src2 have the same size: + \f[\texttt{dst} (I) = \texttt{src1} (I) \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f] +* An array and a scalar when src2 is constructed from Scalar or has + the same number of elements as `src1.channels()`: + \f[\texttt{dst} (I) = \texttt{src1} (I) \oplus \texttt{src2} \quad \texttt{if mask} (I) \ne0\f] +* A scalar and an array when src1 is constructed from Scalar or has + the same number of elements as `src2.channels()`: + \f[\texttt{dst} (I) = \texttt{src1} \oplus \texttt{src2} (I) \quad \texttt{if mask} (I) \ne0\f] +In case of floating-point arrays, their machine-specific bit +representations (usually IEEE754-compliant) are used for the operation. +In case of multi-channel arrays, each channel is processed +independently. In the 2nd and 3rd cases above, the scalar is first +converted to the array type. +@param src1 first input array or a scalar. +@param src2 second input array or a scalar. +@param dst output array that has the same size and type as the input +arrays. +@param mask optional operation mask, 8-bit single channel array, that +specifies elements of the output array to be changed. +*/ +CV_EXPORTS_W void bitwise_xor(InputArray src1, InputArray src2, + OutputArray dst, InputArray mask = noArray()); + +/** @brief Inverts every bit of an array. + +The function cv::bitwise_not calculates per-element bit-wise inversion of the input +array: +\f[\texttt{dst} (I) = \neg \texttt{src} (I)\f] +In case of a floating-point input array, its machine-specific bit +representation (usually IEEE754-compliant) is used for the operation. In +case of multi-channel arrays, each channel is processed independently. +@param src input array. +@param dst output array that has the same size and type as the input +array. +@param mask optional operation mask, 8-bit single channel array, that +specifies elements of the output array to be changed. +*/ +CV_EXPORTS_W void bitwise_not(InputArray src, OutputArray dst, + InputArray mask = noArray()); + +/** @brief Calculates the per-element absolute difference between two arrays or between an array and a scalar. + +The function cv::absdiff calculates: +* Absolute difference between two arrays when they have the same + size and type: + \f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1}(I) - \texttt{src2}(I)|)\f] +* Absolute difference between an array and a scalar when the second + array is constructed from Scalar or has as many elements as the + number of channels in `src1`: + \f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1}(I) - \texttt{src2} |)\f] +* Absolute difference between a scalar and an array when the first + array is constructed from Scalar or has as many elements as the + number of channels in `src2`: + \f[\texttt{dst}(I) = \texttt{saturate} (| \texttt{src1} - \texttt{src2}(I) |)\f] + where I is a multi-dimensional index of array elements. In case of + multi-channel arrays, each channel is processed independently. +@note Saturation is not applied when the arrays have the depth CV_32S. +You may even get a negative value in the case of overflow. +@param src1 first input array or a scalar. +@param src2 second input array or a scalar. +@param dst output array that has the same size and type as input arrays. +@sa cv::abs(const Mat&) +*/ +CV_EXPORTS_W void absdiff(InputArray src1, InputArray src2, OutputArray dst); + +/** @brief Checks if array elements lie between the elements of two other arrays. + +The function checks the range as follows: +- For every element of a single-channel input array: + \f[\texttt{dst} (I)= \texttt{lowerb} (I)_0 \leq \texttt{src} (I)_0 \leq \texttt{upperb} (I)_0\f] +- For two-channel arrays: + \f[\texttt{dst} (I)= \texttt{lowerb} (I)_0 \leq \texttt{src} (I)_0 \leq \texttt{upperb} (I)_0 \land \texttt{lowerb} (I)_1 \leq \texttt{src} (I)_1 \leq \texttt{upperb} (I)_1\f] +- and so forth. + +That is, dst (I) is set to 255 (all 1 -bits) if src (I) is within the +specified 1D, 2D, 3D, ... box and 0 otherwise. + +When the lower and/or upper boundary parameters are scalars, the indexes +(I) at lowerb and upperb in the above formulas should be omitted. +@param src first input array. +@param lowerb inclusive lower boundary array or a scalar. +@param upperb inclusive upper boundary array or a scalar. +@param dst output array of the same size as src and CV_8U type. +*/ +CV_EXPORTS_W void inRange(InputArray src, InputArray lowerb, + InputArray upperb, OutputArray dst); + +/** @brief Performs the per-element comparison of two arrays or an array and scalar value. + +The function compares: +* Elements of two arrays when src1 and src2 have the same size: + \f[\texttt{dst} (I) = \texttt{src1} (I) \,\texttt{cmpop}\, \texttt{src2} (I)\f] +* Elements of src1 with a scalar src2 when src2 is constructed from + Scalar or has a single element: + \f[\texttt{dst} (I) = \texttt{src1}(I) \,\texttt{cmpop}\, \texttt{src2}\f] +* src1 with elements of src2 when src1 is constructed from Scalar or + has a single element: + \f[\texttt{dst} (I) = \texttt{src1} \,\texttt{cmpop}\, \texttt{src2} (I)\f] +When the comparison result is true, the corresponding element of output +array is set to 255. The comparison operations can be replaced with the +equivalent matrix expressions: +@code{.cpp} + Mat dst1 = src1 >= src2; + Mat dst2 = src1 < 8; + ... +@endcode +@param src1 first input array or a scalar; when it is an array, it must have a single channel. +@param src2 second input array or a scalar; when it is an array, it must have a single channel. +@param dst output array of type ref CV_8U that has the same size and the same number of channels as + the input arrays. +@param cmpop a flag, that specifies correspondence between the arrays (cv::CmpTypes) +@sa checkRange, min, max, threshold +*/ +CV_EXPORTS_W void compare(InputArray src1, InputArray src2, OutputArray dst, int cmpop); + +/** @brief Calculates per-element minimum of two arrays or an array and a scalar. + +The function cv::min calculates the per-element minimum of two arrays: +\f[\texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{src2} (I))\f] +or array and a scalar: +\f[\texttt{dst} (I)= \min ( \texttt{src1} (I), \texttt{value} )\f] +@param src1 first input array. +@param src2 second input array of the same size and type as src1. +@param dst output array of the same size and type as src1. +@sa max, compare, inRange, minMaxLoc +*/ +CV_EXPORTS_W void min(InputArray src1, InputArray src2, OutputArray dst); +/** @overload +needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare) +*/ +CV_EXPORTS void min(const Mat& src1, const Mat& src2, Mat& dst); +/** @overload +needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare) +*/ +CV_EXPORTS void min(const UMat& src1, const UMat& src2, UMat& dst); + +/** @brief Calculates per-element maximum of two arrays or an array and a scalar. + +The function cv::max calculates the per-element maximum of two arrays: +\f[\texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{src2} (I))\f] +or array and a scalar: +\f[\texttt{dst} (I)= \max ( \texttt{src1} (I), \texttt{value} )\f] +@param src1 first input array. +@param src2 second input array of the same size and type as src1 . +@param dst output array of the same size and type as src1. +@sa min, compare, inRange, minMaxLoc, @ref MatrixExpressions +*/ +CV_EXPORTS_W void max(InputArray src1, InputArray src2, OutputArray dst); +/** @overload +needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare) +*/ +CV_EXPORTS void max(const Mat& src1, const Mat& src2, Mat& dst); +/** @overload +needed to avoid conflicts with const _Tp& std::min(const _Tp&, const _Tp&, _Compare) +*/ +CV_EXPORTS void max(const UMat& src1, const UMat& src2, UMat& dst); + +/** @brief Calculates a square root of array elements. + +The function cv::sqrt calculates a square root of each input array element. +In case of multi-channel arrays, each channel is processed +independently. The accuracy is approximately the same as of the built-in +std::sqrt . +@param src input floating-point array. +@param dst output array of the same size and type as src. +*/ +CV_EXPORTS_W void sqrt(InputArray src, OutputArray dst); + +/** @brief Raises every array element to a power. + +The function cv::pow raises every element of the input array to power : +\f[\texttt{dst} (I) = \fork{\texttt{src}(I)^{power}}{if \(\texttt{power}\) is integer}{|\texttt{src}(I)|^{power}}{otherwise}\f] + +So, for a non-integer power exponent, the absolute values of input array +elements are used. However, it is possible to get true values for +negative values using some extra operations. In the example below, +computing the 5th root of array src shows: +@code{.cpp} + Mat mask = src < 0; + pow(src, 1./5, dst); + subtract(Scalar::all(0), dst, dst, mask); +@endcode +For some values of power, such as integer values, 0.5 and -0.5, +specialized faster algorithms are used. + +Special values (NaN, Inf) are not handled. +@param src input array. +@param power exponent of power. +@param dst output array of the same size and type as src. +@sa sqrt, exp, log, cartToPolar, polarToCart +*/ +CV_EXPORTS_W void pow(InputArray src, double power, OutputArray dst); + +/** @brief Calculates the exponent of every array element. + +The function cv::exp calculates the exponent of every element of the input +array: +\f[\texttt{dst} [I] = e^{ src(I) }\f] + +The maximum relative error is about 7e-6 for single-precision input and +less than 1e-10 for double-precision input. Currently, the function +converts denormalized values to zeros on output. Special values (NaN, +Inf) are not handled. +@param src input array. +@param dst output array of the same size and type as src. +@sa log , cartToPolar , polarToCart , phase , pow , sqrt , magnitude +*/ +CV_EXPORTS_W void exp(InputArray src, OutputArray dst); + +/** @brief Calculates the natural logarithm of every array element. + +The function cv::log calculates the natural logarithm of every element of the input array: +\f[\texttt{dst} (I) = \log (\texttt{src}(I)) \f] + +Output on zero, negative and special (NaN, Inf) values is undefined. + +@param src input array. +@param dst output array of the same size and type as src . +@sa exp, cartToPolar, polarToCart, phase, pow, sqrt, magnitude +*/ +CV_EXPORTS_W void log(InputArray src, OutputArray dst); + +/** @brief Calculates x and y coordinates of 2D vectors from their magnitude and angle. + +The function cv::polarToCart calculates the Cartesian coordinates of each 2D +vector represented by the corresponding elements of magnitude and angle: +\f[\begin{array}{l} \texttt{x} (I) = \texttt{magnitude} (I) \cos ( \texttt{angle} (I)) \\ \texttt{y} (I) = \texttt{magnitude} (I) \sin ( \texttt{angle} (I)) \\ \end{array}\f] + +The relative accuracy of the estimated coordinates is about 1e-6. +@param magnitude input floating-point array of magnitudes of 2D vectors; +it can be an empty matrix (=Mat()), in this case, the function assumes +that all the magnitudes are =1; if it is not empty, it must have the +same size and type as angle. +@param angle input floating-point array of angles of 2D vectors. +@param x output array of x-coordinates of 2D vectors; it has the same +size and type as angle. +@param y output array of y-coordinates of 2D vectors; it has the same +size and type as angle. +@param angleInDegrees when true, the input angles are measured in +degrees, otherwise, they are measured in radians. +@sa cartToPolar, magnitude, phase, exp, log, pow, sqrt +*/ +CV_EXPORTS_W void polarToCart(InputArray magnitude, InputArray angle, + OutputArray x, OutputArray y, bool angleInDegrees = false); + +/** @brief Calculates the magnitude and angle of 2D vectors. + +The function cv::cartToPolar calculates either the magnitude, angle, or both +for every 2D vector (x(I),y(I)): +\f[\begin{array}{l} \texttt{magnitude} (I)= \sqrt{\texttt{x}(I)^2+\texttt{y}(I)^2} , \\ \texttt{angle} (I)= \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))[ \cdot180 / \pi ] \end{array}\f] + +The angles are calculated with accuracy about 0.3 degrees. For the point +(0,0), the angle is set to 0. +@param x array of x-coordinates; this must be a single-precision or +double-precision floating-point array. +@param y array of y-coordinates, that must have the same size and same type as x. +@param magnitude output array of magnitudes of the same size and type as x. +@param angle output array of angles that has the same size and type as +x; the angles are measured in radians (from 0 to 2\*Pi) or in degrees (0 to 360 degrees). +@param angleInDegrees a flag, indicating whether the angles are measured +in radians (which is by default), or in degrees. +@sa Sobel, Scharr +*/ +CV_EXPORTS_W void cartToPolar(InputArray x, InputArray y, + OutputArray magnitude, OutputArray angle, + bool angleInDegrees = false); + +/** @brief Calculates the rotation angle of 2D vectors. + +The function cv::phase calculates the rotation angle of each 2D vector that +is formed from the corresponding elements of x and y : +\f[\texttt{angle} (I) = \texttt{atan2} ( \texttt{y} (I), \texttt{x} (I))\f] + +The angle estimation accuracy is about 0.3 degrees. When x(I)=y(I)=0 , +the corresponding angle(I) is set to 0. +@param x input floating-point array of x-coordinates of 2D vectors. +@param y input array of y-coordinates of 2D vectors; it must have the +same size and the same type as x. +@param angle output array of vector angles; it has the same size and +same type as x . +@param angleInDegrees when true, the function calculates the angle in +degrees, otherwise, they are measured in radians. +*/ +CV_EXPORTS_W void phase(InputArray x, InputArray y, OutputArray angle, + bool angleInDegrees = false); + +/** @brief Calculates the magnitude of 2D vectors. + +The function cv::magnitude calculates the magnitude of 2D vectors formed +from the corresponding elements of x and y arrays: +\f[\texttt{dst} (I) = \sqrt{\texttt{x}(I)^2 + \texttt{y}(I)^2}\f] +@param x floating-point array of x-coordinates of the vectors. +@param y floating-point array of y-coordinates of the vectors; it must +have the same size as x. +@param magnitude output array of the same size and type as x. +@sa cartToPolar, polarToCart, phase, sqrt +*/ +CV_EXPORTS_W void magnitude(InputArray x, InputArray y, OutputArray magnitude); + +/** @brief Checks every element of an input array for invalid values. + +The function cv::checkRange checks that every array element is neither NaN nor infinite. When minVal \> +-DBL_MAX and maxVal \< DBL_MAX, the function also checks that each value is between minVal and +maxVal. In case of multi-channel arrays, each channel is processed independently. If some values +are out of range, position of the first outlier is stored in pos (when pos != NULL). Then, the +function either returns false (when quiet=true) or throws an exception. +@param a input array. +@param quiet a flag, indicating whether the functions quietly return false when the array elements +are out of range or they throw an exception. +@param pos optional output parameter, when not NULL, must be a pointer to array of src.dims +elements. +@param minVal inclusive lower boundary of valid values range. +@param maxVal exclusive upper boundary of valid values range. +*/ +CV_EXPORTS_W bool checkRange(InputArray a, bool quiet = true, CV_OUT Point* pos = 0, + double minVal = -DBL_MAX, double maxVal = DBL_MAX); + +/** @brief converts NaN's to the given number +*/ +CV_EXPORTS_W void patchNaNs(InputOutputArray a, double val = 0); + +/** @brief Performs generalized matrix multiplication. + +The function cv::gemm performs generalized matrix multiplication similar to the +gemm functions in BLAS level 3. For example, +`gemm(src1, src2, alpha, src3, beta, dst, GEMM_1_T + GEMM_3_T)` +corresponds to +\f[\texttt{dst} = \texttt{alpha} \cdot \texttt{src1} ^T \cdot \texttt{src2} + \texttt{beta} \cdot \texttt{src3} ^T\f] + +In case of complex (two-channel) data, performed a complex matrix +multiplication. + +The function can be replaced with a matrix expression. For example, the +above call can be replaced with: +@code{.cpp} + dst = alpha*src1.t()*src2 + beta*src3.t(); +@endcode +@param src1 first multiplied input matrix that could be real(CV_32FC1, +CV_64FC1) or complex(CV_32FC2, CV_64FC2). +@param src2 second multiplied input matrix of the same type as src1. +@param alpha weight of the matrix product. +@param src3 third optional delta matrix added to the matrix product; it +should have the same type as src1 and src2. +@param beta weight of src3. +@param dst output matrix; it has the proper size and the same type as +input matrices. +@param flags operation flags (cv::GemmFlags) +@sa mulTransposed , transform +*/ +CV_EXPORTS_W void gemm(InputArray src1, InputArray src2, double alpha, + InputArray src3, double beta, OutputArray dst, int flags = 0); + +/** @brief Calculates the product of a matrix and its transposition. + +The function cv::mulTransposed calculates the product of src and its +transposition: +\f[\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} )^T ( \texttt{src} - \texttt{delta} )\f] +if aTa=true , and +\f[\texttt{dst} = \texttt{scale} ( \texttt{src} - \texttt{delta} ) ( \texttt{src} - \texttt{delta} )^T\f] +otherwise. The function is used to calculate the covariance matrix. With +zero delta, it can be used as a faster substitute for general matrix +product A\*B when B=A' +@param src input single-channel matrix. Note that unlike gemm, the +function can multiply not only floating-point matrices. +@param dst output square matrix. +@param aTa Flag specifying the multiplication ordering. See the +description below. +@param delta Optional delta matrix subtracted from src before the +multiplication. When the matrix is empty ( delta=noArray() ), it is +assumed to be zero, that is, nothing is subtracted. If it has the same +size as src , it is simply subtracted. Otherwise, it is "repeated" (see +repeat ) to cover the full src and then subtracted. Type of the delta +matrix, when it is not empty, must be the same as the type of created +output matrix. See the dtype parameter description below. +@param scale Optional scale factor for the matrix product. +@param dtype Optional type of the output matrix. When it is negative, +the output matrix will have the same type as src . Otherwise, it will be +type=CV_MAT_DEPTH(dtype) that should be either CV_32F or CV_64F . +@sa calcCovarMatrix, gemm, repeat, reduce +*/ +CV_EXPORTS_W void mulTransposed( InputArray src, OutputArray dst, bool aTa, + InputArray delta = noArray(), + double scale = 1, int dtype = -1 ); + +/** @brief Transposes a matrix. + +The function cv::transpose transposes the matrix src : +\f[\texttt{dst} (i,j) = \texttt{src} (j,i)\f] +@note No complex conjugation is done in case of a complex matrix. It it +should be done separately if needed. +@param src input array. +@param dst output array of the same type as src. +*/ +CV_EXPORTS_W void transpose(InputArray src, OutputArray dst); + +/** @brief Performs the matrix transformation of every array element. + +The function cv::transform performs the matrix transformation of every +element of the array src and stores the results in dst : +\f[\texttt{dst} (I) = \texttt{m} \cdot \texttt{src} (I)\f] +(when m.cols=src.channels() ), or +\f[\texttt{dst} (I) = \texttt{m} \cdot [ \texttt{src} (I); 1]\f] +(when m.cols=src.channels()+1 ) + +Every element of the N -channel array src is interpreted as N -element +vector that is transformed using the M x N or M x (N+1) matrix m to +M-element vector - the corresponding element of the output array dst . + +The function may be used for geometrical transformation of +N -dimensional points, arbitrary linear color space transformation (such +as various kinds of RGB to YUV transforms), shuffling the image +channels, and so forth. +@param src input array that must have as many channels (1 to 4) as +m.cols or m.cols-1. +@param dst output array of the same size and depth as src; it has as +many channels as m.rows. +@param m transformation 2x2 or 2x3 floating-point matrix. +@sa perspectiveTransform, getAffineTransform, estimateAffine2D, warpAffine, warpPerspective +*/ +CV_EXPORTS_W void transform(InputArray src, OutputArray dst, InputArray m ); + +/** @brief Performs the perspective matrix transformation of vectors. + +The function cv::perspectiveTransform transforms every element of src by +treating it as a 2D or 3D vector, in the following way: +\f[(x, y, z) \rightarrow (x'/w, y'/w, z'/w)\f] +where +\f[(x', y', z', w') = \texttt{mat} \cdot \begin{bmatrix} x & y & z & 1 \end{bmatrix}\f] +and +\f[w = \fork{w'}{if \(w' \ne 0\)}{\infty}{otherwise}\f] + +Here a 3D vector transformation is shown. In case of a 2D vector +transformation, the z component is omitted. + +@note The function transforms a sparse set of 2D or 3D vectors. If you +want to transform an image using perspective transformation, use +warpPerspective . If you have an inverse problem, that is, you want to +compute the most probable perspective transformation out of several +pairs of corresponding points, you can use getPerspectiveTransform or +findHomography . +@param src input two-channel or three-channel floating-point array; each +element is a 2D/3D vector to be transformed. +@param dst output array of the same size and type as src. +@param m 3x3 or 4x4 floating-point transformation matrix. +@sa transform, warpPerspective, getPerspectiveTransform, findHomography +*/ +CV_EXPORTS_W void perspectiveTransform(InputArray src, OutputArray dst, InputArray m ); + +/** @brief Copies the lower or the upper half of a square matrix to another half. + +The function cv::completeSymm copies the lower half of a square matrix to +its another half. The matrix diagonal remains unchanged: +* \f$\texttt{mtx}_{ij}=\texttt{mtx}_{ji}\f$ for \f$i > j\f$ if + lowerToUpper=false +* \f$\texttt{mtx}_{ij}=\texttt{mtx}_{ji}\f$ for \f$i < j\f$ if + lowerToUpper=true +@param mtx input-output floating-point square matrix. +@param lowerToUpper operation flag; if true, the lower half is copied to +the upper half. Otherwise, the upper half is copied to the lower half. +@sa flip, transpose +*/ +CV_EXPORTS_W void completeSymm(InputOutputArray mtx, bool lowerToUpper = false); + +/** @brief Initializes a scaled identity matrix. + +The function cv::setIdentity initializes a scaled identity matrix: +\f[\texttt{mtx} (i,j)= \fork{\texttt{value}}{ if \(i=j\)}{0}{otherwise}\f] + +The function can also be emulated using the matrix initializers and the +matrix expressions: +@code + Mat A = Mat::eye(4, 3, CV_32F)*5; + // A will be set to [[5, 0, 0], [0, 5, 0], [0, 0, 5], [0, 0, 0]] +@endcode +@param mtx matrix to initialize (not necessarily square). +@param s value to assign to diagonal elements. +@sa Mat::zeros, Mat::ones, Mat::setTo, Mat::operator= +*/ +CV_EXPORTS_W void setIdentity(InputOutputArray mtx, const Scalar& s = Scalar(1)); + +/** @brief Returns the determinant of a square floating-point matrix. + +The function cv::determinant calculates and returns the determinant of the +specified matrix. For small matrices ( mtx.cols=mtx.rows\<=3 ), the +direct method is used. For larger matrices, the function uses LU +factorization with partial pivoting. + +For symmetric positively-determined matrices, it is also possible to use +eigen decomposition to calculate the determinant. +@param mtx input matrix that must have CV_32FC1 or CV_64FC1 type and +square size. +@sa trace, invert, solve, eigen, @ref MatrixExpressions +*/ +CV_EXPORTS_W double determinant(InputArray mtx); + +/** @brief Returns the trace of a matrix. + +The function cv::trace returns the sum of the diagonal elements of the +matrix mtx . +\f[\mathrm{tr} ( \texttt{mtx} ) = \sum _i \texttt{mtx} (i,i)\f] +@param mtx input matrix. +*/ +CV_EXPORTS_W Scalar trace(InputArray mtx); + +/** @brief Finds the inverse or pseudo-inverse of a matrix. + +The function cv::invert inverts the matrix src and stores the result in dst +. When the matrix src is singular or non-square, the function calculates +the pseudo-inverse matrix (the dst matrix) so that norm(src\*dst - I) is +minimal, where I is an identity matrix. + +In case of the DECOMP_LU method, the function returns non-zero value if +the inverse has been successfully calculated and 0 if src is singular. + +In case of the DECOMP_SVD method, the function returns the inverse +condition number of src (the ratio of the smallest singular value to the +largest singular value) and 0 if src is singular. The SVD method +calculates a pseudo-inverse matrix if src is singular. + +Similarly to DECOMP_LU, the method DECOMP_CHOLESKY works only with +non-singular square matrices that should also be symmetrical and +positively defined. In this case, the function stores the inverted +matrix in dst and returns non-zero. Otherwise, it returns 0. + +@param src input floating-point M x N matrix. +@param dst output matrix of N x M size and the same type as src. +@param flags inversion method (cv::DecompTypes) +@sa solve, SVD +*/ +CV_EXPORTS_W double invert(InputArray src, OutputArray dst, int flags = DECOMP_LU); + +/** @brief Solves one or more linear systems or least-squares problems. + +The function cv::solve solves a linear system or least-squares problem (the +latter is possible with SVD or QR methods, or by specifying the flag +DECOMP_NORMAL ): +\f[\texttt{dst} = \arg \min _X \| \texttt{src1} \cdot \texttt{X} - \texttt{src2} \|\f] + +If DECOMP_LU or DECOMP_CHOLESKY method is used, the function returns 1 +if src1 (or \f$\texttt{src1}^T\texttt{src1}\f$ ) is non-singular. Otherwise, +it returns 0. In the latter case, dst is not valid. Other methods find a +pseudo-solution in case of a singular left-hand side part. + +@note If you want to find a unity-norm solution of an under-defined +singular system \f$\texttt{src1}\cdot\texttt{dst}=0\f$ , the function solve +will not do the work. Use SVD::solveZ instead. + +@param src1 input matrix on the left-hand side of the system. +@param src2 input matrix on the right-hand side of the system. +@param dst output solution. +@param flags solution (matrix inversion) method (cv::DecompTypes) +@sa invert, SVD, eigen +*/ +CV_EXPORTS_W bool solve(InputArray src1, InputArray src2, + OutputArray dst, int flags = DECOMP_LU); + +/** @brief Sorts each row or each column of a matrix. + +The function cv::sort sorts each matrix row or each matrix column in +ascending or descending order. So you should pass two operation flags to +get desired behaviour. If you want to sort matrix rows or columns +lexicographically, you can use STL std::sort generic function with the +proper comparison predicate. + +@param src input single-channel array. +@param dst output array of the same size and type as src. +@param flags operation flags, a combination of cv::SortFlags +@sa sortIdx, randShuffle +*/ +CV_EXPORTS_W void sort(InputArray src, OutputArray dst, int flags); + +/** @brief Sorts each row or each column of a matrix. + +The function cv::sortIdx sorts each matrix row or each matrix column in the +ascending or descending order. So you should pass two operation flags to +get desired behaviour. Instead of reordering the elements themselves, it +stores the indices of sorted elements in the output array. For example: +@code + Mat A = Mat::eye(3,3,CV_32F), B; + sortIdx(A, B, SORT_EVERY_ROW + SORT_ASCENDING); + // B will probably contain + // (because of equal elements in A some permutations are possible): + // [[1, 2, 0], [0, 2, 1], [0, 1, 2]] +@endcode +@param src input single-channel array. +@param dst output integer array of the same size as src. +@param flags operation flags that could be a combination of cv::SortFlags +@sa sort, randShuffle +*/ +CV_EXPORTS_W void sortIdx(InputArray src, OutputArray dst, int flags); + +/** @brief Finds the real roots of a cubic equation. + +The function solveCubic finds the real roots of a cubic equation: +- if coeffs is a 4-element vector: +\f[\texttt{coeffs} [0] x^3 + \texttt{coeffs} [1] x^2 + \texttt{coeffs} [2] x + \texttt{coeffs} [3] = 0\f] +- if coeffs is a 3-element vector: +\f[x^3 + \texttt{coeffs} [0] x^2 + \texttt{coeffs} [1] x + \texttt{coeffs} [2] = 0\f] + +The roots are stored in the roots array. +@param coeffs equation coefficients, an array of 3 or 4 elements. +@param roots output array of real roots that has 1 or 3 elements. +*/ +CV_EXPORTS_W int solveCubic(InputArray coeffs, OutputArray roots); + +/** @brief Finds the real or complex roots of a polynomial equation. + +The function cv::solvePoly finds real and complex roots of a polynomial equation: +\f[\texttt{coeffs} [n] x^{n} + \texttt{coeffs} [n-1] x^{n-1} + ... + \texttt{coeffs} [1] x + \texttt{coeffs} [0] = 0\f] +@param coeffs array of polynomial coefficients. +@param roots output (complex) array of roots. +@param maxIters maximum number of iterations the algorithm does. +*/ +CV_EXPORTS_W double solvePoly(InputArray coeffs, OutputArray roots, int maxIters = 300); + +/** @brief Calculates eigenvalues and eigenvectors of a symmetric matrix. + +The function cv::eigen calculates just eigenvalues, or eigenvalues and eigenvectors of the symmetric +matrix src: +@code + src*eigenvectors.row(i).t() = eigenvalues.at(i)*eigenvectors.row(i).t() +@endcode +@note in the new and the old interfaces different ordering of eigenvalues and eigenvectors +parameters is used. +@param src input matrix that must have CV_32FC1 or CV_64FC1 type, square size and be symmetrical +(src ^T^ == src). +@param eigenvalues output vector of eigenvalues of the same type as src; the eigenvalues are stored +in the descending order. +@param eigenvectors output matrix of eigenvectors; it has the same size and type as src; the +eigenvectors are stored as subsequent matrix rows, in the same order as the corresponding +eigenvalues. +@sa completeSymm , PCA +*/ +CV_EXPORTS_W bool eigen(InputArray src, OutputArray eigenvalues, + OutputArray eigenvectors = noArray()); + +/** @brief Calculates the covariance matrix of a set of vectors. + +The function cv::calcCovarMatrix calculates the covariance matrix and, optionally, the mean vector of +the set of input vectors. +@param samples samples stored as separate matrices +@param nsamples number of samples +@param covar output covariance matrix of the type ctype and square size. +@param mean input or output (depending on the flags) array as the average value of the input vectors. +@param flags operation flags as a combination of cv::CovarFlags +@param ctype type of the matrixl; it equals 'CV_64F' by default. +@sa PCA, mulTransposed, Mahalanobis +@todo InputArrayOfArrays +*/ +CV_EXPORTS void calcCovarMatrix( const Mat* samples, int nsamples, Mat& covar, Mat& mean, + int flags, int ctype = CV_64F); + +/** @overload +@note use cv::COVAR_ROWS or cv::COVAR_COLS flag +@param samples samples stored as rows/columns of a single matrix. +@param covar output covariance matrix of the type ctype and square size. +@param mean input or output (depending on the flags) array as the average value of the input vectors. +@param flags operation flags as a combination of cv::CovarFlags +@param ctype type of the matrixl; it equals 'CV_64F' by default. +*/ +CV_EXPORTS_W void calcCovarMatrix( InputArray samples, OutputArray covar, + InputOutputArray mean, int flags, int ctype = CV_64F); + +/** wrap PCA::operator() */ +CV_EXPORTS_W void PCACompute(InputArray data, InputOutputArray mean, + OutputArray eigenvectors, int maxComponents = 0); + +/** wrap PCA::operator() */ +CV_EXPORTS_W void PCACompute(InputArray data, InputOutputArray mean, + OutputArray eigenvectors, double retainedVariance); + +/** wrap PCA::project */ +CV_EXPORTS_W void PCAProject(InputArray data, InputArray mean, + InputArray eigenvectors, OutputArray result); + +/** wrap PCA::backProject */ +CV_EXPORTS_W void PCABackProject(InputArray data, InputArray mean, + InputArray eigenvectors, OutputArray result); + +/** wrap SVD::compute */ +CV_EXPORTS_W void SVDecomp( InputArray src, OutputArray w, OutputArray u, OutputArray vt, int flags = 0 ); + +/** wrap SVD::backSubst */ +CV_EXPORTS_W void SVBackSubst( InputArray w, InputArray u, InputArray vt, + InputArray rhs, OutputArray dst ); + +/** @brief Calculates the Mahalanobis distance between two vectors. + +The function cv::Mahalanobis calculates and returns the weighted distance between two vectors: +\f[d( \texttt{vec1} , \texttt{vec2} )= \sqrt{\sum_{i,j}{\texttt{icovar(i,j)}\cdot(\texttt{vec1}(I)-\texttt{vec2}(I))\cdot(\texttt{vec1(j)}-\texttt{vec2(j)})} }\f] +The covariance matrix may be calculated using the cv::calcCovarMatrix function and then inverted using +the invert function (preferably using the cv::DECOMP_SVD method, as the most accurate). +@param v1 first 1D input vector. +@param v2 second 1D input vector. +@param icovar inverse covariance matrix. +*/ +CV_EXPORTS_W double Mahalanobis(InputArray v1, InputArray v2, InputArray icovar); + +/** @brief Performs a forward or inverse Discrete Fourier transform of a 1D or 2D floating-point array. + +The function cv::dft performs one of the following: +- Forward the Fourier transform of a 1D vector of N elements: + \f[Y = F^{(N)} \cdot X,\f] + where \f$F^{(N)}_{jk}=\exp(-2\pi i j k/N)\f$ and \f$i=\sqrt{-1}\f$ +- Inverse the Fourier transform of a 1D vector of N elements: + \f[\begin{array}{l} X'= \left (F^{(N)} \right )^{-1} \cdot Y = \left (F^{(N)} \right )^* \cdot y \\ X = (1/N) \cdot X, \end{array}\f] + where \f$F^*=\left(\textrm{Re}(F^{(N)})-\textrm{Im}(F^{(N)})\right)^T\f$ +- Forward the 2D Fourier transform of a M x N matrix: + \f[Y = F^{(M)} \cdot X \cdot F^{(N)}\f] +- Inverse the 2D Fourier transform of a M x N matrix: + \f[\begin{array}{l} X'= \left (F^{(M)} \right )^* \cdot Y \cdot \left (F^{(N)} \right )^* \\ X = \frac{1}{M \cdot N} \cdot X' \end{array}\f] + +In case of real (single-channel) data, the output spectrum of the forward Fourier transform or input +spectrum of the inverse Fourier transform can be represented in a packed format called *CCS* +(complex-conjugate-symmetrical). It was borrowed from IPL (Intel\* Image Processing Library). Here +is how 2D *CCS* spectrum looks: +\f[\begin{bmatrix} Re Y_{0,0} & Re Y_{0,1} & Im Y_{0,1} & Re Y_{0,2} & Im Y_{0,2} & \cdots & Re Y_{0,N/2-1} & Im Y_{0,N/2-1} & Re Y_{0,N/2} \\ Re Y_{1,0} & Re Y_{1,1} & Im Y_{1,1} & Re Y_{1,2} & Im Y_{1,2} & \cdots & Re Y_{1,N/2-1} & Im Y_{1,N/2-1} & Re Y_{1,N/2} \\ Im Y_{1,0} & Re Y_{2,1} & Im Y_{2,1} & Re Y_{2,2} & Im Y_{2,2} & \cdots & Re Y_{2,N/2-1} & Im Y_{2,N/2-1} & Im Y_{1,N/2} \\ \hdotsfor{9} \\ Re Y_{M/2-1,0} & Re Y_{M-3,1} & Im Y_{M-3,1} & \hdotsfor{3} & Re Y_{M-3,N/2-1} & Im Y_{M-3,N/2-1}& Re Y_{M/2-1,N/2} \\ Im Y_{M/2-1,0} & Re Y_{M-2,1} & Im Y_{M-2,1} & \hdotsfor{3} & Re Y_{M-2,N/2-1} & Im Y_{M-2,N/2-1}& Im Y_{M/2-1,N/2} \\ Re Y_{M/2,0} & Re Y_{M-1,1} & Im Y_{M-1,1} & \hdotsfor{3} & Re Y_{M-1,N/2-1} & Im Y_{M-1,N/2-1}& Re Y_{M/2,N/2} \end{bmatrix}\f] + +In case of 1D transform of a real vector, the output looks like the first row of the matrix above. + +So, the function chooses an operation mode depending on the flags and size of the input array: +- If DFT_ROWS is set or the input array has a single row or single column, the function + performs a 1D forward or inverse transform of each row of a matrix when DFT_ROWS is set. + Otherwise, it performs a 2D transform. +- If the input array is real and DFT_INVERSE is not set, the function performs a forward 1D or + 2D transform: + - When DFT_COMPLEX_OUTPUT is set, the output is a complex matrix of the same size as + input. + - When DFT_COMPLEX_OUTPUT is not set, the output is a real matrix of the same size as + input. In case of 2D transform, it uses the packed format as shown above. In case of a + single 1D transform, it looks like the first row of the matrix above. In case of + multiple 1D transforms (when using the DFT_ROWS flag), each row of the output matrix + looks like the first row of the matrix above. +- If the input array is complex and either DFT_INVERSE or DFT_REAL_OUTPUT are not set, the + output is a complex array of the same size as input. The function performs a forward or + inverse 1D or 2D transform of the whole input array or each row of the input array + independently, depending on the flags DFT_INVERSE and DFT_ROWS. +- When DFT_INVERSE is set and the input array is real, or it is complex but DFT_REAL_OUTPUT + is set, the output is a real array of the same size as input. The function performs a 1D or 2D + inverse transformation of the whole input array or each individual row, depending on the flags + DFT_INVERSE and DFT_ROWS. + +If DFT_SCALE is set, the scaling is done after the transformation. + +Unlike dct , the function supports arrays of arbitrary size. But only those arrays are processed +efficiently, whose sizes can be factorized in a product of small prime numbers (2, 3, and 5 in the +current implementation). Such an efficient DFT size can be calculated using the getOptimalDFTSize +method. + +The sample below illustrates how to calculate a DFT-based convolution of two 2D real arrays: +@code + void convolveDFT(InputArray A, InputArray B, OutputArray C) + { + // reallocate the output array if needed + C.create(abs(A.rows - B.rows)+1, abs(A.cols - B.cols)+1, A.type()); + Size dftSize; + // calculate the size of DFT transform + dftSize.width = getOptimalDFTSize(A.cols + B.cols - 1); + dftSize.height = getOptimalDFTSize(A.rows + B.rows - 1); + + // allocate temporary buffers and initialize them with 0's + Mat tempA(dftSize, A.type(), Scalar::all(0)); + Mat tempB(dftSize, B.type(), Scalar::all(0)); + + // copy A and B to the top-left corners of tempA and tempB, respectively + Mat roiA(tempA, Rect(0,0,A.cols,A.rows)); + A.copyTo(roiA); + Mat roiB(tempB, Rect(0,0,B.cols,B.rows)); + B.copyTo(roiB); + + // now transform the padded A & B in-place; + // use "nonzeroRows" hint for faster processing + dft(tempA, tempA, 0, A.rows); + dft(tempB, tempB, 0, B.rows); + + // multiply the spectrums; + // the function handles packed spectrum representations well + mulSpectrums(tempA, tempB, tempA); + + // transform the product back from the frequency domain. + // Even though all the result rows will be non-zero, + // you need only the first C.rows of them, and thus you + // pass nonzeroRows == C.rows + dft(tempA, tempA, DFT_INVERSE + DFT_SCALE, C.rows); + + // now copy the result back to C. + tempA(Rect(0, 0, C.cols, C.rows)).copyTo(C); + + // all the temporary buffers will be deallocated automatically + } +@endcode +To optimize this sample, consider the following approaches: +- Since nonzeroRows != 0 is passed to the forward transform calls and since A and B are copied to + the top-left corners of tempA and tempB, respectively, it is not necessary to clear the whole + tempA and tempB. It is only necessary to clear the tempA.cols - A.cols ( tempB.cols - B.cols) + rightmost columns of the matrices. +- This DFT-based convolution does not have to be applied to the whole big arrays, especially if B + is significantly smaller than A or vice versa. Instead, you can calculate convolution by parts. + To do this, you need to split the output array C into multiple tiles. For each tile, estimate + which parts of A and B are required to calculate convolution in this tile. If the tiles in C are + too small, the speed will decrease a lot because of repeated work. In the ultimate case, when + each tile in C is a single pixel, the algorithm becomes equivalent to the naive convolution + algorithm. If the tiles are too big, the temporary arrays tempA and tempB become too big and + there is also a slowdown because of bad cache locality. So, there is an optimal tile size + somewhere in the middle. +- If different tiles in C can be calculated in parallel and, thus, the convolution is done by + parts, the loop can be threaded. + +All of the above improvements have been implemented in matchTemplate and filter2D . Therefore, by +using them, you can get the performance even better than with the above theoretically optimal +implementation. Though, those two functions actually calculate cross-correlation, not convolution, +so you need to "flip" the second convolution operand B vertically and horizontally using flip . +@note +- An example using the discrete fourier transform can be found at + opencv_source_code/samples/cpp/dft.cpp +- (Python) An example using the dft functionality to perform Wiener deconvolution can be found + at opencv_source/samples/python/deconvolution.py +- (Python) An example rearranging the quadrants of a Fourier image can be found at + opencv_source/samples/python/dft.py +@param src input array that could be real or complex. +@param dst output array whose size and type depends on the flags . +@param flags transformation flags, representing a combination of the cv::DftFlags +@param nonzeroRows when the parameter is not zero, the function assumes that only the first +nonzeroRows rows of the input array (DFT_INVERSE is not set) or only the first nonzeroRows of the +output array (DFT_INVERSE is set) contain non-zeros, thus, the function can handle the rest of the +rows more efficiently and save some time; this technique is very useful for calculating array +cross-correlation or convolution using DFT. +@sa dct , getOptimalDFTSize , mulSpectrums, filter2D , matchTemplate , flip , cartToPolar , +magnitude , phase +*/ +CV_EXPORTS_W void dft(InputArray src, OutputArray dst, int flags = 0, int nonzeroRows = 0); + +/** @brief Calculates the inverse Discrete Fourier Transform of a 1D or 2D array. + +idft(src, dst, flags) is equivalent to dft(src, dst, flags | DFT_INVERSE) . +@note None of dft and idft scales the result by default. So, you should pass DFT_SCALE to one of +dft or idft explicitly to make these transforms mutually inverse. +@sa dft, dct, idct, mulSpectrums, getOptimalDFTSize +@param src input floating-point real or complex array. +@param dst output array whose size and type depend on the flags. +@param flags operation flags (see dft and cv::DftFlags). +@param nonzeroRows number of dst rows to process; the rest of the rows have undefined content (see +the convolution sample in dft description. +*/ +CV_EXPORTS_W void idft(InputArray src, OutputArray dst, int flags = 0, int nonzeroRows = 0); + +/** @brief Performs a forward or inverse discrete Cosine transform of 1D or 2D array. + +The function cv::dct performs a forward or inverse discrete Cosine transform (DCT) of a 1D or 2D +floating-point array: +- Forward Cosine transform of a 1D vector of N elements: + \f[Y = C^{(N)} \cdot X\f] + where + \f[C^{(N)}_{jk}= \sqrt{\alpha_j/N} \cos \left ( \frac{\pi(2k+1)j}{2N} \right )\f] + and + \f$\alpha_0=1\f$, \f$\alpha_j=2\f$ for *j \> 0*. +- Inverse Cosine transform of a 1D vector of N elements: + \f[X = \left (C^{(N)} \right )^{-1} \cdot Y = \left (C^{(N)} \right )^T \cdot Y\f] + (since \f$C^{(N)}\f$ is an orthogonal matrix, \f$C^{(N)} \cdot \left(C^{(N)}\right)^T = I\f$ ) +- Forward 2D Cosine transform of M x N matrix: + \f[Y = C^{(N)} \cdot X \cdot \left (C^{(N)} \right )^T\f] +- Inverse 2D Cosine transform of M x N matrix: + \f[X = \left (C^{(N)} \right )^T \cdot X \cdot C^{(N)}\f] + +The function chooses the mode of operation by looking at the flags and size of the input array: +- If (flags & DCT_INVERSE) == 0 , the function does a forward 1D or 2D transform. Otherwise, it + is an inverse 1D or 2D transform. +- If (flags & DCT_ROWS) != 0 , the function performs a 1D transform of each row. +- If the array is a single column or a single row, the function performs a 1D transform. +- If none of the above is true, the function performs a 2D transform. + +@note Currently dct supports even-size arrays (2, 4, 6 ...). For data analysis and approximation, you +can pad the array when necessary. +Also, the function performance depends very much, and not monotonically, on the array size (see +getOptimalDFTSize ). In the current implementation DCT of a vector of size N is calculated via DFT +of a vector of size N/2 . Thus, the optimal DCT size N1 \>= N can be calculated as: +@code + size_t getOptimalDCTSize(size_t N) { return 2*getOptimalDFTSize((N+1)/2); } + N1 = getOptimalDCTSize(N); +@endcode +@param src input floating-point array. +@param dst output array of the same size and type as src . +@param flags transformation flags as a combination of cv::DftFlags (DCT_*) +@sa dft , getOptimalDFTSize , idct +*/ +CV_EXPORTS_W void dct(InputArray src, OutputArray dst, int flags = 0); + +/** @brief Calculates the inverse Discrete Cosine Transform of a 1D or 2D array. + +idct(src, dst, flags) is equivalent to dct(src, dst, flags | DCT_INVERSE). +@param src input floating-point single-channel array. +@param dst output array of the same size and type as src. +@param flags operation flags. +@sa dct, dft, idft, getOptimalDFTSize +*/ +CV_EXPORTS_W void idct(InputArray src, OutputArray dst, int flags = 0); + +/** @brief Performs the per-element multiplication of two Fourier spectrums. + +The function cv::mulSpectrums performs the per-element multiplication of the two CCS-packed or complex +matrices that are results of a real or complex Fourier transform. + +The function, together with dft and idft , may be used to calculate convolution (pass conjB=false ) +or correlation (pass conjB=true ) of two arrays rapidly. When the arrays are complex, they are +simply multiplied (per element) with an optional conjugation of the second-array elements. When the +arrays are real, they are assumed to be CCS-packed (see dft for details). +@param a first input array. +@param b second input array of the same size and type as src1 . +@param c output array of the same size and type as src1 . +@param flags operation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that +each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a `0` as value. +@param conjB optional flag that conjugates the second input array before the multiplication (true) +or not (false). +*/ +CV_EXPORTS_W void mulSpectrums(InputArray a, InputArray b, OutputArray c, + int flags, bool conjB = false); + +/** @brief Returns the optimal DFT size for a given vector size. + +DFT performance is not a monotonic function of a vector size. Therefore, when you calculate +convolution of two arrays or perform the spectral analysis of an array, it usually makes sense to +pad the input data with zeros to get a bit larger array that can be transformed much faster than the +original one. Arrays whose size is a power-of-two (2, 4, 8, 16, 32, ...) are the fastest to process. +Though, the arrays whose size is a product of 2's, 3's, and 5's (for example, 300 = 5\*5\*3\*2\*2) +are also processed quite efficiently. + +The function cv::getOptimalDFTSize returns the minimum number N that is greater than or equal to vecsize +so that the DFT of a vector of size N can be processed efficiently. In the current implementation N += 2 ^p^ \* 3 ^q^ \* 5 ^r^ for some integer p, q, r. + +The function returns a negative number if vecsize is too large (very close to INT_MAX ). + +While the function cannot be used directly to estimate the optimal vector size for DCT transform +(since the current DCT implementation supports only even-size vectors), it can be easily processed +as getOptimalDFTSize((vecsize+1)/2)\*2. +@param vecsize vector size. +@sa dft , dct , idft , idct , mulSpectrums +*/ +CV_EXPORTS_W int getOptimalDFTSize(int vecsize); + +/** @brief Returns the default random number generator. + +The function cv::theRNG returns the default random number generator. For each thread, there is a +separate random number generator, so you can use the function safely in multi-thread environments. +If you just need to get a single random number using this generator or initialize an array, you can +use randu or randn instead. But if you are going to generate many random numbers inside a loop, it +is much faster to use this function to retrieve the generator and then use RNG::operator _Tp() . +@sa RNG, randu, randn +*/ +CV_EXPORTS RNG& theRNG(); + +/** @brief Sets state of default random number generator. + +The function cv::setRNGSeed sets state of default random number generator to custom value. +@param seed new state for default random number generator +@sa RNG, randu, randn +*/ +CV_EXPORTS_W void setRNGSeed(int seed); + +/** @brief Generates a single uniformly-distributed random number or an array of random numbers. + +Non-template variant of the function fills the matrix dst with uniformly-distributed +random numbers from the specified range: +\f[\texttt{low} _c \leq \texttt{dst} (I)_c < \texttt{high} _c\f] +@param dst output array of random numbers; the array must be pre-allocated. +@param low inclusive lower boundary of the generated random numbers. +@param high exclusive upper boundary of the generated random numbers. +@sa RNG, randn, theRNG +*/ +CV_EXPORTS_W void randu(InputOutputArray dst, InputArray low, InputArray high); + +/** @brief Fills the array with normally distributed random numbers. + +The function cv::randn fills the matrix dst with normally distributed random numbers with the specified +mean vector and the standard deviation matrix. The generated random numbers are clipped to fit the +value range of the output array data type. +@param dst output array of random numbers; the array must be pre-allocated and have 1 to 4 channels. +@param mean mean value (expectation) of the generated random numbers. +@param stddev standard deviation of the generated random numbers; it can be either a vector (in +which case a diagonal standard deviation matrix is assumed) or a square matrix. +@sa RNG, randu +*/ +CV_EXPORTS_W void randn(InputOutputArray dst, InputArray mean, InputArray stddev); + +/** @brief Shuffles the array elements randomly. + +The function cv::randShuffle shuffles the specified 1D array by randomly choosing pairs of elements and +swapping them. The number of such swap operations will be dst.rows\*dst.cols\*iterFactor . +@param dst input/output numerical 1D array. +@param iterFactor scale factor that determines the number of random swap operations (see the details +below). +@param rng optional random number generator used for shuffling; if it is zero, theRNG () is used +instead. +@sa RNG, sort +*/ +CV_EXPORTS_W void randShuffle(InputOutputArray dst, double iterFactor = 1., RNG* rng = 0); + +/** @brief Principal Component Analysis + +The class is used to calculate a special basis for a set of vectors. The +basis will consist of eigenvectors of the covariance matrix calculated +from the input set of vectors. The class %PCA can also transform +vectors to/from the new coordinate space defined by the basis. Usually, +in this new coordinate system, each vector from the original set (and +any linear combination of such vectors) can be quite accurately +approximated by taking its first few components, corresponding to the +eigenvectors of the largest eigenvalues of the covariance matrix. +Geometrically it means that you calculate a projection of the vector to +a subspace formed by a few eigenvectors corresponding to the dominant +eigenvalues of the covariance matrix. And usually such a projection is +very close to the original vector. So, you can represent the original +vector from a high-dimensional space with a much shorter vector +consisting of the projected vector's coordinates in the subspace. Such a +transformation is also known as Karhunen-Loeve Transform, or KLT. +See http://en.wikipedia.org/wiki/Principal_component_analysis + +The sample below is the function that takes two matrices. The first +function stores a set of vectors (a row per vector) that is used to +calculate PCA. The second function stores another "test" set of vectors +(a row per vector). First, these vectors are compressed with PCA, then +reconstructed back, and then the reconstruction error norm is computed +and printed for each vector. : + +@code{.cpp} +using namespace cv; + +PCA compressPCA(const Mat& pcaset, int maxComponents, + const Mat& testset, Mat& compressed) +{ + PCA pca(pcaset, // pass the data + Mat(), // we do not have a pre-computed mean vector, + // so let the PCA engine to compute it + PCA::DATA_AS_ROW, // indicate that the vectors + // are stored as matrix rows + // (use PCA::DATA_AS_COL if the vectors are + // the matrix columns) + maxComponents // specify, how many principal components to retain + ); + // if there is no test data, just return the computed basis, ready-to-use + if( !testset.data ) + return pca; + CV_Assert( testset.cols == pcaset.cols ); + + compressed.create(testset.rows, maxComponents, testset.type()); + + Mat reconstructed; + for( int i = 0; i < testset.rows; i++ ) + { + Mat vec = testset.row(i), coeffs = compressed.row(i), reconstructed; + // compress the vector, the result will be stored + // in the i-th row of the output matrix + pca.project(vec, coeffs); + // and then reconstruct it + pca.backProject(coeffs, reconstructed); + // and measure the error + printf("%d. diff = %g\n", i, norm(vec, reconstructed, NORM_L2)); + } + return pca; +} +@endcode +@sa calcCovarMatrix, mulTransposed, SVD, dft, dct +*/ +class CV_EXPORTS PCA +{ +public: + enum Flags { DATA_AS_ROW = 0, //!< indicates that the input samples are stored as matrix rows + DATA_AS_COL = 1, //!< indicates that the input samples are stored as matrix columns + USE_AVG = 2 //! + }; + + /** @brief default constructor + + The default constructor initializes an empty %PCA structure. The other + constructors initialize the structure and call PCA::operator()(). + */ + PCA(); + + /** @overload + @param data input samples stored as matrix rows or matrix columns. + @param mean optional mean value; if the matrix is empty (@c noArray()), + the mean is computed from the data. + @param flags operation flags; currently the parameter is only used to + specify the data layout (PCA::Flags) + @param maxComponents maximum number of components that %PCA should + retain; by default, all the components are retained. + */ + PCA(InputArray data, InputArray mean, int flags, int maxComponents = 0); + + /** @overload + @param data input samples stored as matrix rows or matrix columns. + @param mean optional mean value; if the matrix is empty (noArray()), + the mean is computed from the data. + @param flags operation flags; currently the parameter is only used to + specify the data layout (PCA::Flags) + @param retainedVariance Percentage of variance that PCA should retain. + Using this parameter will let the PCA decided how many components to + retain but it will always keep at least 2. + */ + PCA(InputArray data, InputArray mean, int flags, double retainedVariance); + + /** @brief performs %PCA + + The operator performs %PCA of the supplied dataset. It is safe to reuse + the same PCA structure for multiple datasets. That is, if the structure + has been previously used with another dataset, the existing internal + data is reclaimed and the new @ref eigenvalues, @ref eigenvectors and @ref + mean are allocated and computed. + + The computed @ref eigenvalues are sorted from the largest to the smallest and + the corresponding @ref eigenvectors are stored as eigenvectors rows. + + @param data input samples stored as the matrix rows or as the matrix + columns. + @param mean optional mean value; if the matrix is empty (noArray()), + the mean is computed from the data. + @param flags operation flags; currently the parameter is only used to + specify the data layout. (Flags) + @param maxComponents maximum number of components that PCA should + retain; by default, all the components are retained. + */ + PCA& operator()(InputArray data, InputArray mean, int flags, int maxComponents = 0); + + /** @overload + @param data input samples stored as the matrix rows or as the matrix + columns. + @param mean optional mean value; if the matrix is empty (noArray()), + the mean is computed from the data. + @param flags operation flags; currently the parameter is only used to + specify the data layout. (PCA::Flags) + @param retainedVariance Percentage of variance that %PCA should retain. + Using this parameter will let the %PCA decided how many components to + retain but it will always keep at least 2. + */ + PCA& operator()(InputArray data, InputArray mean, int flags, double retainedVariance); + + /** @brief Projects vector(s) to the principal component subspace. + + The methods project one or more vectors to the principal component + subspace, where each vector projection is represented by coefficients in + the principal component basis. The first form of the method returns the + matrix that the second form writes to the result. So the first form can + be used as a part of expression while the second form can be more + efficient in a processing loop. + @param vec input vector(s); must have the same dimensionality and the + same layout as the input data used at %PCA phase, that is, if + DATA_AS_ROW are specified, then `vec.cols==data.cols` + (vector dimensionality) and `vec.rows` is the number of vectors to + project, and the same is true for the PCA::DATA_AS_COL case. + */ + Mat project(InputArray vec) const; + + /** @overload + @param vec input vector(s); must have the same dimensionality and the + same layout as the input data used at PCA phase, that is, if + DATA_AS_ROW are specified, then `vec.cols==data.cols` + (vector dimensionality) and `vec.rows` is the number of vectors to + project, and the same is true for the PCA::DATA_AS_COL case. + @param result output vectors; in case of PCA::DATA_AS_COL, the + output matrix has as many columns as the number of input vectors, this + means that `result.cols==vec.cols` and the number of rows match the + number of principal components (for example, `maxComponents` parameter + passed to the constructor). + */ + void project(InputArray vec, OutputArray result) const; + + /** @brief Reconstructs vectors from their PC projections. + + The methods are inverse operations to PCA::project. They take PC + coordinates of projected vectors and reconstruct the original vectors. + Unless all the principal components have been retained, the + reconstructed vectors are different from the originals. But typically, + the difference is small if the number of components is large enough (but + still much smaller than the original vector dimensionality). As a + result, PCA is used. + @param vec coordinates of the vectors in the principal component + subspace, the layout and size are the same as of PCA::project output + vectors. + */ + Mat backProject(InputArray vec) const; + + /** @overload + @param vec coordinates of the vectors in the principal component + subspace, the layout and size are the same as of PCA::project output + vectors. + @param result reconstructed vectors; the layout and size are the same as + of PCA::project input vectors. + */ + void backProject(InputArray vec, OutputArray result) const; + + /** @brief write PCA objects + + Writes @ref eigenvalues @ref eigenvectors and @ref mean to specified FileStorage + */ + void write(FileStorage& fs) const; + + /** @brief load PCA objects + + Loads @ref eigenvalues @ref eigenvectors and @ref mean from specified FileNode + */ + void read(const FileNode& fn); + + Mat eigenvectors; //!< eigenvectors of the covariation matrix + Mat eigenvalues; //!< eigenvalues of the covariation matrix + Mat mean; //!< mean value subtracted before the projection and added after the back projection +}; + +/** @example pca.cpp + An example using %PCA for dimensionality reduction while maintaining an amount of variance + */ + +/** + @brief Linear Discriminant Analysis + @todo document this class + */ +class CV_EXPORTS LDA +{ +public: + /** @brief constructor + Initializes a LDA with num_components (default 0). + */ + explicit LDA(int num_components = 0); + + /** Initializes and performs a Discriminant Analysis with Fisher's + Optimization Criterion on given data in src and corresponding labels + in labels. If 0 (or less) number of components are given, they are + automatically determined for given data in computation. + */ + LDA(InputArrayOfArrays src, InputArray labels, int num_components = 0); + + /** Serializes this object to a given filename. + */ + void save(const String& filename) const; + + /** Deserializes this object from a given filename. + */ + void load(const String& filename); + + /** Serializes this object to a given cv::FileStorage. + */ + void save(FileStorage& fs) const; + + /** Deserializes this object from a given cv::FileStorage. + */ + void load(const FileStorage& node); + + /** destructor + */ + ~LDA(); + + /** Compute the discriminants for data in src (row aligned) and labels. + */ + void compute(InputArrayOfArrays src, InputArray labels); + + /** Projects samples into the LDA subspace. + src may be one or more row aligned samples. + */ + Mat project(InputArray src); + + /** Reconstructs projections from the LDA subspace. + src may be one or more row aligned projections. + */ + Mat reconstruct(InputArray src); + + /** Returns the eigenvectors of this LDA. + */ + Mat eigenvectors() const { return _eigenvectors; } + + /** Returns the eigenvalues of this LDA. + */ + Mat eigenvalues() const { return _eigenvalues; } + + static Mat subspaceProject(InputArray W, InputArray mean, InputArray src); + static Mat subspaceReconstruct(InputArray W, InputArray mean, InputArray src); + +protected: + bool _dataAsRow; // unused, but needed for 3.0 ABI compatibility. + int _num_components; + Mat _eigenvectors; + Mat _eigenvalues; + void lda(InputArrayOfArrays src, InputArray labels); +}; + +/** @brief Singular Value Decomposition + +Class for computing Singular Value Decomposition of a floating-point +matrix. The Singular Value Decomposition is used to solve least-square +problems, under-determined linear systems, invert matrices, compute +condition numbers, and so on. + +If you want to compute a condition number of a matrix or an absolute value of +its determinant, you do not need `u` and `vt`. You can pass +flags=SVD::NO_UV|... . Another flag SVD::FULL_UV indicates that full-size u +and vt must be computed, which is not necessary most of the time. + +@sa invert, solve, eigen, determinant +*/ +class CV_EXPORTS SVD +{ +public: + enum Flags { + /** allow the algorithm to modify the decomposed matrix; it can save space and speed up + processing. currently ignored. */ + MODIFY_A = 1, + /** indicates that only a vector of singular values `w` is to be processed, while u and vt + will be set to empty matrices */ + NO_UV = 2, + /** when the matrix is not square, by default the algorithm produces u and vt matrices of + sufficiently large size for the further A reconstruction; if, however, FULL_UV flag is + specified, u and vt will be full-size square orthogonal matrices.*/ + FULL_UV = 4 + }; + + /** @brief the default constructor + + initializes an empty SVD structure + */ + SVD(); + + /** @overload + initializes an empty SVD structure and then calls SVD::operator() + @param src decomposed matrix. + @param flags operation flags (SVD::Flags) + */ + SVD( InputArray src, int flags = 0 ); + + /** @brief the operator that performs SVD. The previously allocated u, w and vt are released. + + The operator performs the singular value decomposition of the supplied + matrix. The u,`vt` , and the vector of singular values w are stored in + the structure. The same SVD structure can be reused many times with + different matrices. Each time, if needed, the previous u,`vt` , and w + are reclaimed and the new matrices are created, which is all handled by + Mat::create. + @param src decomposed matrix. + @param flags operation flags (SVD::Flags) + */ + SVD& operator ()( InputArray src, int flags = 0 ); + + /** @brief decomposes matrix and stores the results to user-provided matrices + + The methods/functions perform SVD of matrix. Unlike SVD::SVD constructor + and SVD::operator(), they store the results to the user-provided + matrices: + + @code{.cpp} + Mat A, w, u, vt; + SVD::compute(A, w, u, vt); + @endcode + + @param src decomposed matrix + @param w calculated singular values + @param u calculated left singular vectors + @param vt transposed matrix of right singular values + @param flags operation flags - see SVD::SVD. + */ + static void compute( InputArray src, OutputArray w, + OutputArray u, OutputArray vt, int flags = 0 ); + + /** @overload + computes singular values of a matrix + @param src decomposed matrix + @param w calculated singular values + @param flags operation flags - see SVD::Flags. + */ + static void compute( InputArray src, OutputArray w, int flags = 0 ); + + /** @brief performs back substitution + */ + static void backSubst( InputArray w, InputArray u, + InputArray vt, InputArray rhs, + OutputArray dst ); + + /** @brief solves an under-determined singular linear system + + The method finds a unit-length solution x of a singular linear system + A\*x = 0. Depending on the rank of A, there can be no solutions, a + single solution or an infinite number of solutions. In general, the + algorithm solves the following problem: + \f[dst = \arg \min _{x: \| x \| =1} \| src \cdot x \|\f] + @param src left-hand-side matrix. + @param dst found solution. + */ + static void solveZ( InputArray src, OutputArray dst ); + + /** @brief performs a singular value back substitution. + + The method calculates a back substitution for the specified right-hand + side: + + \f[\texttt{x} = \texttt{vt} ^T \cdot diag( \texttt{w} )^{-1} \cdot \texttt{u} ^T \cdot \texttt{rhs} \sim \texttt{A} ^{-1} \cdot \texttt{rhs}\f] + + Using this technique you can either get a very accurate solution of the + convenient linear system, or the best (in the least-squares terms) + pseudo-solution of an overdetermined linear system. + + @param rhs right-hand side of a linear system (u\*w\*v')\*dst = rhs to + be solved, where A has been previously decomposed. + + @param dst found solution of the system. + + @note Explicit SVD with the further back substitution only makes sense + if you need to solve many linear systems with the same left-hand side + (for example, src ). If all you need is to solve a single system + (possibly with multiple rhs immediately available), simply call solve + add pass DECOMP_SVD there. It does absolutely the same thing. + */ + void backSubst( InputArray rhs, OutputArray dst ) const; + + /** @todo document */ + template static + void compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w, Matx<_Tp, m, nm>& u, Matx<_Tp, n, nm>& vt ); + + /** @todo document */ + template static + void compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w ); + + /** @todo document */ + template static + void backSubst( const Matx<_Tp, nm, 1>& w, const Matx<_Tp, m, nm>& u, const Matx<_Tp, n, nm>& vt, const Matx<_Tp, m, nb>& rhs, Matx<_Tp, n, nb>& dst ); + + Mat u, w, vt; +}; + +/** @brief Random Number Generator + +Random number generator. It encapsulates the state (currently, a 64-bit +integer) and has methods to return scalar random values and to fill +arrays with random values. Currently it supports uniform and Gaussian +(normal) distributions. The generator uses Multiply-With-Carry +algorithm, introduced by G. Marsaglia ( + ). +Gaussian-distribution random numbers are generated using the Ziggurat +algorithm ( ), +introduced by G. Marsaglia and W. W. Tsang. +*/ +class CV_EXPORTS RNG +{ +public: + enum { UNIFORM = 0, + NORMAL = 1 + }; + + /** @brief constructor + + These are the RNG constructors. The first form sets the state to some + pre-defined value, equal to 2\*\*32-1 in the current implementation. The + second form sets the state to the specified value. If you passed state=0 + , the constructor uses the above default value instead to avoid the + singular random number sequence, consisting of all zeros. + */ + RNG(); + /** @overload + @param state 64-bit value used to initialize the RNG. + */ + RNG(uint64 state); + /**The method updates the state using the MWC algorithm and returns the + next 32-bit random number.*/ + unsigned next(); + + /**Each of the methods updates the state using the MWC algorithm and + returns the next random number of the specified type. In case of integer + types, the returned number is from the available value range for the + specified type. In case of floating-point types, the returned value is + from [0,1) range. + */ + operator uchar(); + /** @overload */ + operator schar(); + /** @overload */ + operator ushort(); + /** @overload */ + operator short(); + /** @overload */ + operator unsigned(); + /** @overload */ + operator int(); + /** @overload */ + operator float(); + /** @overload */ + operator double(); + + /** @brief returns a random integer sampled uniformly from [0, N). + + The methods transform the state using the MWC algorithm and return the + next random number. The first form is equivalent to RNG::next . The + second form returns the random number modulo N , which means that the + result is in the range [0, N) . + */ + unsigned operator ()(); + /** @overload + @param N upper non-inclusive boundary of the returned random number. + */ + unsigned operator ()(unsigned N); + + /** @brief returns uniformly distributed integer random number from [a,b) range + + The methods transform the state using the MWC algorithm and return the + next uniformly-distributed random number of the specified type, deduced + from the input parameter type, from the range [a, b) . There is a nuance + illustrated by the following sample: + + @code{.cpp} + RNG rng; + + // always produces 0 + double a = rng.uniform(0, 1); + + // produces double from [0, 1) + double a1 = rng.uniform((double)0, (double)1); + + // produces float from [0, 1) + double b = rng.uniform(0.f, 1.f); + + // produces double from [0, 1) + double c = rng.uniform(0., 1.); + + // may cause compiler error because of ambiguity: + // RNG::uniform(0, (int)0.999999)? or RNG::uniform((double)0, 0.99999)? + double d = rng.uniform(0, 0.999999); + @endcode + + The compiler does not take into account the type of the variable to + which you assign the result of RNG::uniform . The only thing that + matters to the compiler is the type of a and b parameters. So, if you + want a floating-point random number, but the range boundaries are + integer numbers, either put dots in the end, if they are constants, or + use explicit type cast operators, as in the a1 initialization above. + @param a lower inclusive boundary of the returned random numbers. + @param b upper non-inclusive boundary of the returned random numbers. + */ + int uniform(int a, int b); + /** @overload */ + float uniform(float a, float b); + /** @overload */ + double uniform(double a, double b); + + /** @brief Fills arrays with random numbers. + + @param mat 2D or N-dimensional matrix; currently matrices with more than + 4 channels are not supported by the methods, use Mat::reshape as a + possible workaround. + @param distType distribution type, RNG::UNIFORM or RNG::NORMAL. + @param a first distribution parameter; in case of the uniform + distribution, this is an inclusive lower boundary, in case of the normal + distribution, this is a mean value. + @param b second distribution parameter; in case of the uniform + distribution, this is a non-inclusive upper boundary, in case of the + normal distribution, this is a standard deviation (diagonal of the + standard deviation matrix or the full standard deviation matrix). + @param saturateRange pre-saturation flag; for uniform distribution only; + if true, the method will first convert a and b to the acceptable value + range (according to the mat datatype) and then will generate uniformly + distributed random numbers within the range [saturate(a), saturate(b)), + if saturateRange=false, the method will generate uniformly distributed + random numbers in the original range [a, b) and then will saturate them, + it means, for example, that + theRNG().fill(mat_8u, RNG::UNIFORM, -DBL_MAX, DBL_MAX) will likely + produce array mostly filled with 0's and 255's, since the range (0, 255) + is significantly smaller than [-DBL_MAX, DBL_MAX). + + Each of the methods fills the matrix with the random values from the + specified distribution. As the new numbers are generated, the RNG state + is updated accordingly. In case of multiple-channel images, every + channel is filled independently, which means that RNG cannot generate + samples from the multi-dimensional Gaussian distribution with + non-diagonal covariance matrix directly. To do that, the method + generates samples from multi-dimensional standard Gaussian distribution + with zero mean and identity covariation matrix, and then transforms them + using transform to get samples from the specified Gaussian distribution. + */ + void fill( InputOutputArray mat, int distType, InputArray a, InputArray b, bool saturateRange = false ); + + /** @brief Returns the next random number sampled from the Gaussian distribution + @param sigma standard deviation of the distribution. + + The method transforms the state using the MWC algorithm and returns the + next random number from the Gaussian distribution N(0,sigma) . That is, + the mean value of the returned random numbers is zero and the standard + deviation is the specified sigma . + */ + double gaussian(double sigma); + + uint64 state; +}; + +/** @brief Mersenne Twister random number generator + +Inspired by http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/CODES/mt19937ar.c +@todo document + */ +class CV_EXPORTS RNG_MT19937 +{ +public: + RNG_MT19937(); + RNG_MT19937(unsigned s); + void seed(unsigned s); + + unsigned next(); + + operator int(); + operator unsigned(); + operator float(); + operator double(); + + unsigned operator ()(unsigned N); + unsigned operator ()(); + + /** @brief returns uniformly distributed integer random number from [a,b) range + +*/ + int uniform(int a, int b); + /** @brief returns uniformly distributed floating-point random number from [a,b) range + +*/ + float uniform(float a, float b); + /** @brief returns uniformly distributed double-precision floating-point random number from [a,b) range + +*/ + double uniform(double a, double b); + +private: + enum PeriodParameters {N = 624, M = 397}; + unsigned state[N]; + int mti; +}; + +//! @} core_array + +//! @addtogroup core_cluster +//! @{ + +/** @example kmeans.cpp + An example on K-means clustering +*/ + +/** @brief Finds centers of clusters and groups input samples around the clusters. + +The function kmeans implements a k-means algorithm that finds the centers of cluster_count clusters +and groups the input samples around the clusters. As an output, \f$\texttt{labels}_i\f$ contains a +0-based cluster index for the sample stored in the \f$i^{th}\f$ row of the samples matrix. + +@note +- (Python) An example on K-means clustering can be found at + opencv_source_code/samples/python/kmeans.py +@param data Data for clustering. An array of N-Dimensional points with float coordinates is needed. +Examples of this array can be: +- Mat points(count, 2, CV_32F); +- Mat points(count, 1, CV_32FC2); +- Mat points(1, count, CV_32FC2); +- std::vector\ points(sampleCount); +@param K Number of clusters to split the set by. +@param bestLabels Input/output integer array that stores the cluster indices for every sample. +@param criteria The algorithm termination criteria, that is, the maximum number of iterations and/or +the desired accuracy. The accuracy is specified as criteria.epsilon. As soon as each of the cluster +centers moves by less than criteria.epsilon on some iteration, the algorithm stops. +@param attempts Flag to specify the number of times the algorithm is executed using different +initial labellings. The algorithm returns the labels that yield the best compactness (see the last +function parameter). +@param flags Flag that can take values of cv::KmeansFlags +@param centers Output matrix of the cluster centers, one row per each cluster center. +@return The function returns the compactness measure that is computed as +\f[\sum _i \| \texttt{samples} _i - \texttt{centers} _{ \texttt{labels} _i} \| ^2\f] +after every attempt. The best (minimum) value is chosen and the corresponding labels and the +compactness value are returned by the function. Basically, you can use only the core of the +function, set the number of attempts to 1, initialize labels each time using a custom algorithm, +pass them with the ( flags = KMEANS_USE_INITIAL_LABELS ) flag, and then choose the best +(most-compact) clustering. +*/ +CV_EXPORTS_W double kmeans( InputArray data, int K, InputOutputArray bestLabels, + TermCriteria criteria, int attempts, + int flags, OutputArray centers = noArray() ); + +//! @} core_cluster + +//! @addtogroup core_basic +//! @{ + +/////////////////////////////// Formatted output of cv::Mat /////////////////////////// + +/** @todo document */ +class CV_EXPORTS Formatted +{ +public: + virtual const char* next() = 0; + virtual void reset() = 0; + virtual ~Formatted(); +}; + +/** @todo document */ +class CV_EXPORTS Formatter +{ +public: + enum { FMT_DEFAULT = 0, + FMT_MATLAB = 1, + FMT_CSV = 2, + FMT_PYTHON = 3, + FMT_NUMPY = 4, + FMT_C = 5 + }; + + virtual ~Formatter(); + + virtual Ptr format(const Mat& mtx) const = 0; + + virtual void set32fPrecision(int p = 8) = 0; + virtual void set64fPrecision(int p = 16) = 0; + virtual void setMultiline(bool ml = true) = 0; + + static Ptr get(int fmt = FMT_DEFAULT); + +}; + +static inline +String& operator << (String& out, Ptr fmtd) +{ + fmtd->reset(); + for(const char* str = fmtd->next(); str; str = fmtd->next()) + out += cv::String(str); + return out; +} + +static inline +String& operator << (String& out, const Mat& mtx) +{ + return out << Formatter::get()->format(mtx); +} + +//////////////////////////////////////// Algorithm //////////////////////////////////// + +class CV_EXPORTS Algorithm; + +template struct ParamType {}; + + +/** @brief This is a base class for all more or less complex algorithms in OpenCV + +especially for classes of algorithms, for which there can be multiple implementations. The examples +are stereo correspondence (for which there are algorithms like block matching, semi-global block +matching, graph-cut etc.), background subtraction (which can be done using mixture-of-gaussians +models, codebook-based algorithm etc.), optical flow (block matching, Lucas-Kanade, Horn-Schunck +etc.). + +Here is example of SIFT use in your application via Algorithm interface: +@code + #include "opencv2/opencv.hpp" + #include "opencv2/xfeatures2d.hpp" + using namespace cv::xfeatures2d; + + Ptr sift = SIFT::create(); + FileStorage fs("sift_params.xml", FileStorage::READ); + if( fs.isOpened() ) // if we have file with parameters, read them + { + sift->read(fs["sift_params"]); + fs.release(); + } + else // else modify the parameters and store them; user can later edit the file to use different parameters + { + sift->setContrastThreshold(0.01f); // lower the contrast threshold, compared to the default value + { + WriteStructContext ws(fs, "sift_params", CV_NODE_MAP); + sift->write(fs); + } + } + Mat image = imread("myimage.png", 0), descriptors; + vector keypoints; + sift->detectAndCompute(image, noArray(), keypoints, descriptors); +@endcode + */ +class CV_EXPORTS_W Algorithm +{ +public: + Algorithm(); + virtual ~Algorithm(); + + /** @brief Clears the algorithm state + */ + CV_WRAP virtual void clear() {} + + /** @brief Stores algorithm parameters in a file storage + */ + virtual void write(FileStorage& fs) const { (void)fs; } + + /** @brief Reads algorithm parameters from a file storage + */ + virtual void read(const FileNode& fn) { (void)fn; } + + /** @brief Returns true if the Algorithm is empty (e.g. in the very beginning or after unsuccessful read + */ + virtual bool empty() const { return false; } + + /** @brief Reads algorithm from the file node + + This is static template method of Algorithm. It's usage is following (in the case of SVM): + @code + cv::FileStorage fsRead("example.xml", FileStorage::READ); + Ptr svm = Algorithm::read(fsRead.root()); + @endcode + In order to make this method work, the derived class must overwrite Algorithm::read(const + FileNode& fn) and also have static create() method without parameters + (or with all the optional parameters) + */ + template static Ptr<_Tp> read(const FileNode& fn) + { + Ptr<_Tp> obj = _Tp::create(); + obj->read(fn); + return !obj->empty() ? obj : Ptr<_Tp>(); + } + + /** @brief Loads algorithm from the file + + @param filename Name of the file to read. + @param objname The optional name of the node to read (if empty, the first top-level node will be used) + + This is static template method of Algorithm. It's usage is following (in the case of SVM): + @code + Ptr svm = Algorithm::load("my_svm_model.xml"); + @endcode + In order to make this method work, the derived class must overwrite Algorithm::read(const + FileNode& fn). + */ + template static Ptr<_Tp> load(const String& filename, const String& objname=String()) + { + FileStorage fs(filename, FileStorage::READ); + FileNode fn = objname.empty() ? fs.getFirstTopLevelNode() : fs[objname]; + if (fn.empty()) return Ptr<_Tp>(); + Ptr<_Tp> obj = _Tp::create(); + obj->read(fn); + return !obj->empty() ? obj : Ptr<_Tp>(); + } + + /** @brief Loads algorithm from a String + + @param strModel The string variable containing the model you want to load. + @param objname The optional name of the node to read (if empty, the first top-level node will be used) + + This is static template method of Algorithm. It's usage is following (in the case of SVM): + @code + Ptr svm = Algorithm::loadFromString(myStringModel); + @endcode + */ + template static Ptr<_Tp> loadFromString(const String& strModel, const String& objname=String()) + { + FileStorage fs(strModel, FileStorage::READ + FileStorage::MEMORY); + FileNode fn = objname.empty() ? fs.getFirstTopLevelNode() : fs[objname]; + Ptr<_Tp> obj = _Tp::create(); + obj->read(fn); + return !obj->empty() ? obj : Ptr<_Tp>(); + } + + /** Saves the algorithm to a file. + In order to make this method work, the derived class must implement Algorithm::write(FileStorage& fs). */ + CV_WRAP virtual void save(const String& filename) const; + + /** Returns the algorithm string identifier. + This string is used as top level xml/yml node tag when the object is saved to a file or string. */ + CV_WRAP virtual String getDefaultName() const; + +protected: + void writeFormat(FileStorage& fs) const; +}; + +struct Param { + enum { INT=0, BOOLEAN=1, REAL=2, STRING=3, MAT=4, MAT_VECTOR=5, ALGORITHM=6, FLOAT=7, + UNSIGNED_INT=8, UINT64=9, UCHAR=11 }; +}; + + + +template<> struct ParamType +{ + typedef bool const_param_type; + typedef bool member_type; + + enum { type = Param::BOOLEAN }; +}; + +template<> struct ParamType +{ + typedef int const_param_type; + typedef int member_type; + + enum { type = Param::INT }; +}; + +template<> struct ParamType +{ + typedef double const_param_type; + typedef double member_type; + + enum { type = Param::REAL }; +}; + +template<> struct ParamType +{ + typedef const String& const_param_type; + typedef String member_type; + + enum { type = Param::STRING }; +}; + +template<> struct ParamType +{ + typedef const Mat& const_param_type; + typedef Mat member_type; + + enum { type = Param::MAT }; +}; + +template<> struct ParamType > +{ + typedef const std::vector& const_param_type; + typedef std::vector member_type; + + enum { type = Param::MAT_VECTOR }; +}; + +template<> struct ParamType +{ + typedef const Ptr& const_param_type; + typedef Ptr member_type; + + enum { type = Param::ALGORITHM }; +}; + +template<> struct ParamType +{ + typedef float const_param_type; + typedef float member_type; + + enum { type = Param::FLOAT }; +}; + +template<> struct ParamType +{ + typedef unsigned const_param_type; + typedef unsigned member_type; + + enum { type = Param::UNSIGNED_INT }; +}; + +template<> struct ParamType +{ + typedef uint64 const_param_type; + typedef uint64 member_type; + + enum { type = Param::UINT64 }; +}; + +template<> struct ParamType +{ + typedef uchar const_param_type; + typedef uchar member_type; + + enum { type = Param::UCHAR }; +}; + +//! @} core_basic + +} //namespace cv + +#include "opencv2/core/operations.hpp" +#include "opencv2/core/cvstd.inl.hpp" +#include "opencv2/core/utility.hpp" +#include "opencv2/core/optim.hpp" +#include "opencv2/core/ovx.hpp" + +#endif /*OPENCV_CORE_HPP*/ diff --git a/thirdparty1/linux/include/opencv2/core/affine.hpp b/thirdparty1/linux/include/opencv2/core/affine.hpp new file mode 100644 index 0000000..311ff62 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/affine.hpp @@ -0,0 +1,517 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_AFFINE3_HPP +#define OPENCV_CORE_AFFINE3_HPP + +#ifdef __cplusplus + +#include + +namespace cv +{ + +//! @addtogroup core +//! @{ + + /** @brief Affine transform + @todo document + */ + template + class Affine3 + { + public: + typedef T float_type; + typedef Matx Mat3; + typedef Matx Mat4; + typedef Vec Vec3; + + Affine3(); + + //! Augmented affine matrix + Affine3(const Mat4& affine); + + //! Rotation matrix + Affine3(const Mat3& R, const Vec3& t = Vec3::all(0)); + + //! Rodrigues vector + Affine3(const Vec3& rvec, const Vec3& t = Vec3::all(0)); + + //! Combines all contructors above. Supports 4x4, 4x3, 3x3, 1x3, 3x1 sizes of data matrix + explicit Affine3(const Mat& data, const Vec3& t = Vec3::all(0)); + + //! From 16th element array + explicit Affine3(const float_type* vals); + + //! Create identity transform + static Affine3 Identity(); + + //! Rotation matrix + void rotation(const Mat3& R); + + //! Rodrigues vector + void rotation(const Vec3& rvec); + + //! Combines rotation methods above. Suports 3x3, 1x3, 3x1 sizes of data matrix; + void rotation(const Mat& data); + + void linear(const Mat3& L); + void translation(const Vec3& t); + + Mat3 rotation() const; + Mat3 linear() const; + Vec3 translation() const; + + //! Rodrigues vector + Vec3 rvec() const; + + Affine3 inv(int method = cv::DECOMP_SVD) const; + + //! a.rotate(R) is equivalent to Affine(R, 0) * a; + Affine3 rotate(const Mat3& R) const; + + //! a.rotate(rvec) is equivalent to Affine(rvec, 0) * a; + Affine3 rotate(const Vec3& rvec) const; + + //! a.translate(t) is equivalent to Affine(E, t) * a; + Affine3 translate(const Vec3& t) const; + + //! a.concatenate(affine) is equivalent to affine * a; + Affine3 concatenate(const Affine3& affine) const; + + template operator Affine3() const; + + template Affine3 cast() const; + + Mat4 matrix; + +#if defined EIGEN_WORLD_VERSION && defined EIGEN_GEOMETRY_MODULE_H + Affine3(const Eigen::Transform& affine); + Affine3(const Eigen::Transform& affine); + operator Eigen::Transform() const; + operator Eigen::Transform() const; +#endif + }; + + template static + Affine3 operator*(const Affine3& affine1, const Affine3& affine2); + + template static + V operator*(const Affine3& affine, const V& vector); + + typedef Affine3 Affine3f; + typedef Affine3 Affine3d; + + static Vec3f operator*(const Affine3f& affine, const Vec3f& vector); + static Vec3d operator*(const Affine3d& affine, const Vec3d& vector); + + template class DataType< Affine3<_Tp> > + { + public: + typedef Affine3<_Tp> value_type; + typedef Affine3::work_type> work_type; + typedef _Tp channel_type; + + enum { generic_type = 0, + depth = DataType::depth, + channels = 16, + fmt = DataType::fmt + ((channels - 1) << 8), + type = CV_MAKETYPE(depth, channels) + }; + + typedef Vec vec_type; + }; + +//! @} core + +} + +//! @cond IGNORED + +/////////////////////////////////////////////////////////////////////////////////// +// Implementaiton + +template inline +cv::Affine3::Affine3() + : matrix(Mat4::eye()) +{} + +template inline +cv::Affine3::Affine3(const Mat4& affine) + : matrix(affine) +{} + +template inline +cv::Affine3::Affine3(const Mat3& R, const Vec3& t) +{ + rotation(R); + translation(t); + matrix.val[12] = matrix.val[13] = matrix.val[14] = 0; + matrix.val[15] = 1; +} + +template inline +cv::Affine3::Affine3(const Vec3& _rvec, const Vec3& t) +{ + rotation(_rvec); + translation(t); + matrix.val[12] = matrix.val[13] = matrix.val[14] = 0; + matrix.val[15] = 1; +} + +template inline +cv::Affine3::Affine3(const cv::Mat& data, const Vec3& t) +{ + CV_Assert(data.type() == cv::DataType::type); + + if (data.cols == 4 && data.rows == 4) + { + data.copyTo(matrix); + return; + } + else if (data.cols == 4 && data.rows == 3) + { + rotation(data(Rect(0, 0, 3, 3))); + translation(data(Rect(3, 0, 1, 3))); + return; + } + + rotation(data); + translation(t); + matrix.val[12] = matrix.val[13] = matrix.val[14] = 0; + matrix.val[15] = 1; +} + +template inline +cv::Affine3::Affine3(const float_type* vals) : matrix(vals) +{} + +template inline +cv::Affine3 cv::Affine3::Identity() +{ + return Affine3(cv::Affine3::Mat4::eye()); +} + +template inline +void cv::Affine3::rotation(const Mat3& R) +{ + linear(R); +} + +template inline +void cv::Affine3::rotation(const Vec3& _rvec) +{ + double theta = norm(_rvec); + + if (theta < DBL_EPSILON) + rotation(Mat3::eye()); + else + { + double c = std::cos(theta); + double s = std::sin(theta); + double c1 = 1. - c; + double itheta = (theta != 0) ? 1./theta : 0.; + + Point3_ r = _rvec*itheta; + + Mat3 rrt( r.x*r.x, r.x*r.y, r.x*r.z, r.x*r.y, r.y*r.y, r.y*r.z, r.x*r.z, r.y*r.z, r.z*r.z ); + Mat3 r_x( 0, -r.z, r.y, r.z, 0, -r.x, -r.y, r.x, 0 ); + + // R = cos(theta)*I + (1 - cos(theta))*r*rT + sin(theta)*[r_x] + // where [r_x] is [0 -rz ry; rz 0 -rx; -ry rx 0] + Mat3 R = c*Mat3::eye() + c1*rrt + s*r_x; + + rotation(R); + } +} + +//Combines rotation methods above. Suports 3x3, 1x3, 3x1 sizes of data matrix; +template inline +void cv::Affine3::rotation(const cv::Mat& data) +{ + CV_Assert(data.type() == cv::DataType::type); + + if (data.cols == 3 && data.rows == 3) + { + Mat3 R; + data.copyTo(R); + rotation(R); + } + else if ((data.cols == 3 && data.rows == 1) || (data.cols == 1 && data.rows == 3)) + { + Vec3 _rvec; + data.reshape(1, 3).copyTo(_rvec); + rotation(_rvec); + } + else + CV_Assert(!"Input marix can be 3x3, 1x3 or 3x1"); +} + +template inline +void cv::Affine3::linear(const Mat3& L) +{ + matrix.val[0] = L.val[0]; matrix.val[1] = L.val[1]; matrix.val[ 2] = L.val[2]; + matrix.val[4] = L.val[3]; matrix.val[5] = L.val[4]; matrix.val[ 6] = L.val[5]; + matrix.val[8] = L.val[6]; matrix.val[9] = L.val[7]; matrix.val[10] = L.val[8]; +} + +template inline +void cv::Affine3::translation(const Vec3& t) +{ + matrix.val[3] = t[0]; matrix.val[7] = t[1]; matrix.val[11] = t[2]; +} + +template inline +typename cv::Affine3::Mat3 cv::Affine3::rotation() const +{ + return linear(); +} + +template inline +typename cv::Affine3::Mat3 cv::Affine3::linear() const +{ + typename cv::Affine3::Mat3 R; + R.val[0] = matrix.val[0]; R.val[1] = matrix.val[1]; R.val[2] = matrix.val[ 2]; + R.val[3] = matrix.val[4]; R.val[4] = matrix.val[5]; R.val[5] = matrix.val[ 6]; + R.val[6] = matrix.val[8]; R.val[7] = matrix.val[9]; R.val[8] = matrix.val[10]; + return R; +} + +template inline +typename cv::Affine3::Vec3 cv::Affine3::translation() const +{ + return Vec3(matrix.val[3], matrix.val[7], matrix.val[11]); +} + +template inline +typename cv::Affine3::Vec3 cv::Affine3::rvec() const +{ + cv::Vec3d w; + cv::Matx33d u, vt, R = rotation(); + cv::SVD::compute(R, w, u, vt, cv::SVD::FULL_UV + cv::SVD::MODIFY_A); + R = u * vt; + + double rx = R.val[7] - R.val[5]; + double ry = R.val[2] - R.val[6]; + double rz = R.val[3] - R.val[1]; + + double s = std::sqrt((rx*rx + ry*ry + rz*rz)*0.25); + double c = (R.val[0] + R.val[4] + R.val[8] - 1) * 0.5; + c = c > 1.0 ? 1.0 : c < -1.0 ? -1.0 : c; + double theta = acos(c); + + if( s < 1e-5 ) + { + if( c > 0 ) + rx = ry = rz = 0; + else + { + double t; + t = (R.val[0] + 1) * 0.5; + rx = std::sqrt(std::max(t, 0.0)); + t = (R.val[4] + 1) * 0.5; + ry = std::sqrt(std::max(t, 0.0)) * (R.val[1] < 0 ? -1.0 : 1.0); + t = (R.val[8] + 1) * 0.5; + rz = std::sqrt(std::max(t, 0.0)) * (R.val[2] < 0 ? -1.0 : 1.0); + + if( fabs(rx) < fabs(ry) && fabs(rx) < fabs(rz) && (R.val[5] > 0) != (ry*rz > 0) ) + rz = -rz; + theta /= std::sqrt(rx*rx + ry*ry + rz*rz); + rx *= theta; + ry *= theta; + rz *= theta; + } + } + else + { + double vth = 1/(2*s); + vth *= theta; + rx *= vth; ry *= vth; rz *= vth; + } + + return cv::Vec3d(rx, ry, rz); +} + +template inline +cv::Affine3 cv::Affine3::inv(int method) const +{ + return matrix.inv(method); +} + +template inline +cv::Affine3 cv::Affine3::rotate(const Mat3& R) const +{ + Mat3 Lc = linear(); + Vec3 tc = translation(); + Mat4 result; + result.val[12] = result.val[13] = result.val[14] = 0; + result.val[15] = 1; + + for(int j = 0; j < 3; ++j) + { + for(int i = 0; i < 3; ++i) + { + float_type value = 0; + for(int k = 0; k < 3; ++k) + value += R(j, k) * Lc(k, i); + result(j, i) = value; + } + + result(j, 3) = R.row(j).dot(tc.t()); + } + return result; +} + +template inline +cv::Affine3 cv::Affine3::rotate(const Vec3& _rvec) const +{ + return rotate(Affine3f(_rvec).rotation()); +} + +template inline +cv::Affine3 cv::Affine3::translate(const Vec3& t) const +{ + Mat4 m = matrix; + m.val[ 3] += t[0]; + m.val[ 7] += t[1]; + m.val[11] += t[2]; + return m; +} + +template inline +cv::Affine3 cv::Affine3::concatenate(const Affine3& affine) const +{ + return (*this).rotate(affine.rotation()).translate(affine.translation()); +} + +template template inline +cv::Affine3::operator Affine3() const +{ + return Affine3(matrix); +} + +template template inline +cv::Affine3 cv::Affine3::cast() const +{ + return Affine3(matrix); +} + +template inline +cv::Affine3 cv::operator*(const cv::Affine3& affine1, const cv::Affine3& affine2) +{ + return affine2.concatenate(affine1); +} + +template inline +V cv::operator*(const cv::Affine3& affine, const V& v) +{ + const typename Affine3::Mat4& m = affine.matrix; + + V r; + r.x = m.val[0] * v.x + m.val[1] * v.y + m.val[ 2] * v.z + m.val[ 3]; + r.y = m.val[4] * v.x + m.val[5] * v.y + m.val[ 6] * v.z + m.val[ 7]; + r.z = m.val[8] * v.x + m.val[9] * v.y + m.val[10] * v.z + m.val[11]; + return r; +} + +static inline +cv::Vec3f cv::operator*(const cv::Affine3f& affine, const cv::Vec3f& v) +{ + const cv::Matx44f& m = affine.matrix; + cv::Vec3f r; + r.val[0] = m.val[0] * v[0] + m.val[1] * v[1] + m.val[ 2] * v[2] + m.val[ 3]; + r.val[1] = m.val[4] * v[0] + m.val[5] * v[1] + m.val[ 6] * v[2] + m.val[ 7]; + r.val[2] = m.val[8] * v[0] + m.val[9] * v[1] + m.val[10] * v[2] + m.val[11]; + return r; +} + +static inline +cv::Vec3d cv::operator*(const cv::Affine3d& affine, const cv::Vec3d& v) +{ + const cv::Matx44d& m = affine.matrix; + cv::Vec3d r; + r.val[0] = m.val[0] * v[0] + m.val[1] * v[1] + m.val[ 2] * v[2] + m.val[ 3]; + r.val[1] = m.val[4] * v[0] + m.val[5] * v[1] + m.val[ 6] * v[2] + m.val[ 7]; + r.val[2] = m.val[8] * v[0] + m.val[9] * v[1] + m.val[10] * v[2] + m.val[11]; + return r; +} + + + +#if defined EIGEN_WORLD_VERSION && defined EIGEN_GEOMETRY_MODULE_H + +template inline +cv::Affine3::Affine3(const Eigen::Transform& affine) +{ + cv::Mat(4, 4, cv::DataType::type, affine.matrix().data()).copyTo(matrix); +} + +template inline +cv::Affine3::Affine3(const Eigen::Transform& affine) +{ + Eigen::Transform a = affine; + cv::Mat(4, 4, cv::DataType::type, a.matrix().data()).copyTo(matrix); +} + +template inline +cv::Affine3::operator Eigen::Transform() const +{ + Eigen::Transform r; + cv::Mat hdr(4, 4, cv::DataType::type, r.matrix().data()); + cv::Mat(matrix, false).copyTo(hdr); + return r; +} + +template inline +cv::Affine3::operator Eigen::Transform() const +{ + return this->operator Eigen::Transform(); +} + +#endif /* defined EIGEN_WORLD_VERSION && defined EIGEN_GEOMETRY_MODULE_H */ + +//! @endcond + +#endif /* __cplusplus */ + +#endif /* OPENCV_CORE_AFFINE3_HPP */ diff --git a/thirdparty1/linux/include/opencv2/core/base.hpp b/thirdparty1/linux/include/opencv2/core/base.hpp new file mode 100644 index 0000000..017b484 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/base.hpp @@ -0,0 +1,691 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2014, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_BASE_HPP +#define OPENCV_CORE_BASE_HPP + +#ifndef __cplusplus +# error base.hpp header must be compiled as C++ +#endif + +#include "opencv2/opencv_modules.hpp" + +#include +#include + +#include "opencv2/core/cvdef.h" +#include "opencv2/core/cvstd.hpp" + +namespace cv +{ + +//! @addtogroup core_utils +//! @{ + +namespace Error { +//! error codes +enum Code { + StsOk= 0, //!< everithing is ok + StsBackTrace= -1, //!< pseudo error for back trace + StsError= -2, //!< unknown /unspecified error + StsInternal= -3, //!< internal error (bad state) + StsNoMem= -4, //!< insufficient memory + StsBadArg= -5, //!< function arg/param is bad + StsBadFunc= -6, //!< unsupported function + StsNoConv= -7, //!< iter. didn't converge + StsAutoTrace= -8, //!< tracing + HeaderIsNull= -9, //!< image header is NULL + BadImageSize= -10, //!< image size is invalid + BadOffset= -11, //!< offset is invalid + BadDataPtr= -12, //!< + BadStep= -13, //!< + BadModelOrChSeq= -14, //!< + BadNumChannels= -15, //!< + BadNumChannel1U= -16, //!< + BadDepth= -17, //!< + BadAlphaChannel= -18, //!< + BadOrder= -19, //!< + BadOrigin= -20, //!< + BadAlign= -21, //!< + BadCallBack= -22, //!< + BadTileSize= -23, //!< + BadCOI= -24, //!< + BadROISize= -25, //!< + MaskIsTiled= -26, //!< + StsNullPtr= -27, //!< null pointer + StsVecLengthErr= -28, //!< incorrect vector length + StsFilterStructContentErr= -29, //!< incorr. filter structure content + StsKernelStructContentErr= -30, //!< incorr. transform kernel content + StsFilterOffsetErr= -31, //!< incorrect filter ofset value + StsBadSize= -201, //!< the input/output structure size is incorrect + StsDivByZero= -202, //!< division by zero + StsInplaceNotSupported= -203, //!< in-place operation is not supported + StsObjectNotFound= -204, //!< request can't be completed + StsUnmatchedFormats= -205, //!< formats of input/output arrays differ + StsBadFlag= -206, //!< flag is wrong or not supported + StsBadPoint= -207, //!< bad CvPoint + StsBadMask= -208, //!< bad format of mask (neither 8uC1 nor 8sC1) + StsUnmatchedSizes= -209, //!< sizes of input/output structures do not match + StsUnsupportedFormat= -210, //!< the data format/type is not supported by the function + StsOutOfRange= -211, //!< some of parameters are out of range + StsParseError= -212, //!< invalid syntax/structure of the parsed file + StsNotImplemented= -213, //!< the requested function/feature is not implemented + StsBadMemBlock= -214, //!< an allocated block has been corrupted + StsAssert= -215, //!< assertion failed + GpuNotSupported= -216, + GpuApiCallError= -217, + OpenGlNotSupported= -218, + OpenGlApiCallError= -219, + OpenCLApiCallError= -220, + OpenCLDoubleNotSupported= -221, + OpenCLInitError= -222, + OpenCLNoAMDBlasFft= -223 +}; +} //Error + +//! @} core_utils + +//! @addtogroup core_array +//! @{ + +//! matrix decomposition types +enum DecompTypes { + /** Gaussian elimination with the optimal pivot element chosen. */ + DECOMP_LU = 0, + /** singular value decomposition (SVD) method; the system can be over-defined and/or the matrix + src1 can be singular */ + DECOMP_SVD = 1, + /** eigenvalue decomposition; the matrix src1 must be symmetrical */ + DECOMP_EIG = 2, + /** Cholesky \f$LL^T\f$ factorization; the matrix src1 must be symmetrical and positively + defined */ + DECOMP_CHOLESKY = 3, + /** QR factorization; the system can be over-defined and/or the matrix src1 can be singular */ + DECOMP_QR = 4, + /** while all the previous flags are mutually exclusive, this flag can be used together with + any of the previous; it means that the normal equations + \f$\texttt{src1}^T\cdot\texttt{src1}\cdot\texttt{dst}=\texttt{src1}^T\texttt{src2}\f$ are + solved instead of the original system + \f$\texttt{src1}\cdot\texttt{dst}=\texttt{src2}\f$ */ + DECOMP_NORMAL = 16 +}; + +/** norm types +- For one array: +\f[norm = \forkthree{\|\texttt{src1}\|_{L_{\infty}} = \max _I | \texttt{src1} (I)|}{if \(\texttt{normType} = \texttt{NORM_INF}\) } +{ \| \texttt{src1} \| _{L_1} = \sum _I | \texttt{src1} (I)|}{if \(\texttt{normType} = \texttt{NORM_L1}\) } +{ \| \texttt{src1} \| _{L_2} = \sqrt{\sum_I \texttt{src1}(I)^2} }{if \(\texttt{normType} = \texttt{NORM_L2}\) }\f] + +- Absolute norm for two arrays +\f[norm = \forkthree{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} = \max _I | \texttt{src1} (I) - \texttt{src2} (I)|}{if \(\texttt{normType} = \texttt{NORM_INF}\) } +{ \| \texttt{src1} - \texttt{src2} \| _{L_1} = \sum _I | \texttt{src1} (I) - \texttt{src2} (I)|}{if \(\texttt{normType} = \texttt{NORM_L1}\) } +{ \| \texttt{src1} - \texttt{src2} \| _{L_2} = \sqrt{\sum_I (\texttt{src1}(I) - \texttt{src2}(I))^2} }{if \(\texttt{normType} = \texttt{NORM_L2}\) }\f] + +- Relative norm for two arrays +\f[norm = \forkthree{\frac{\|\texttt{src1}-\texttt{src2}\|_{L_{\infty}} }{\|\texttt{src2}\|_{L_{\infty}} }}{if \(\texttt{normType} = \texttt{NORM_RELATIVE_INF}\) } +{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_1} }{\|\texttt{src2}\|_{L_1}} }{if \(\texttt{normType} = \texttt{NORM_RELATIVE_L1}\) } +{ \frac{\|\texttt{src1}-\texttt{src2}\|_{L_2} }{\|\texttt{src2}\|_{L_2}} }{if \(\texttt{normType} = \texttt{NORM_RELATIVE_L2}\) }\f] + +As example for one array consider the function \f$r(x)= \begin{pmatrix} x \\ 1-x \end{pmatrix}, x \in [-1;1]\f$. +The \f$ L_{1}, L_{2} \f$ and \f$ L_{\infty} \f$ norm for the sample value \f$r(-1) = \begin{pmatrix} -1 \\ 2 \end{pmatrix}\f$ +is calculated as follows +\f{align*} + \| r(-1) \|_{L_1} &= |-1| + |2| = 3 \\ + \| r(-1) \|_{L_2} &= \sqrt{(-1)^{2} + (2)^{2}} = \sqrt{5} \\ + \| r(-1) \|_{L_\infty} &= \max(|-1|,|2|) = 2 +\f} +and for \f$r(0.5) = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}\f$ the calculation is +\f{align*} + \| r(0.5) \|_{L_1} &= |0.5| + |0.5| = 1 \\ + \| r(0.5) \|_{L_2} &= \sqrt{(0.5)^{2} + (0.5)^{2}} = \sqrt{0.5} \\ + \| r(0.5) \|_{L_\infty} &= \max(|0.5|,|0.5|) = 0.5. +\f} +The following graphic shows all values for the three norm functions \f$\| r(x) \|_{L_1}, \| r(x) \|_{L_2}\f$ and \f$\| r(x) \|_{L_\infty}\f$. +It is notable that the \f$ L_{1} \f$ norm forms the upper and the \f$ L_{\infty} \f$ norm forms the lower border for the example function \f$ r(x) \f$. +![Graphs for the different norm functions from the above example](pics/NormTypes_OneArray_1-2-INF.png) + */ +enum NormTypes { NORM_INF = 1, + NORM_L1 = 2, + NORM_L2 = 4, + NORM_L2SQR = 5, + NORM_HAMMING = 6, + NORM_HAMMING2 = 7, + NORM_TYPE_MASK = 7, + NORM_RELATIVE = 8, //!< flag + NORM_MINMAX = 32 //!< flag + }; + +//! comparison types +enum CmpTypes { CMP_EQ = 0, //!< src1 is equal to src2. + CMP_GT = 1, //!< src1 is greater than src2. + CMP_GE = 2, //!< src1 is greater than or equal to src2. + CMP_LT = 3, //!< src1 is less than src2. + CMP_LE = 4, //!< src1 is less than or equal to src2. + CMP_NE = 5 //!< src1 is unequal to src2. + }; + +//! generalized matrix multiplication flags +enum GemmFlags { GEMM_1_T = 1, //!< transposes src1 + GEMM_2_T = 2, //!< transposes src2 + GEMM_3_T = 4 //!< transposes src3 + }; + +enum DftFlags { + /** performs an inverse 1D or 2D transform instead of the default forward + transform. */ + DFT_INVERSE = 1, + /** scales the result: divide it by the number of array elements. Normally, it is + combined with DFT_INVERSE. */ + DFT_SCALE = 2, + /** performs a forward or inverse transform of every individual row of the input + matrix; this flag enables you to transform multiple vectors simultaneously and can be used to + decrease the overhead (which is sometimes several times larger than the processing itself) to + perform 3D and higher-dimensional transformations and so forth.*/ + DFT_ROWS = 4, + /** performs a forward transformation of 1D or 2D real array; the result, + though being a complex array, has complex-conjugate symmetry (*CCS*, see the function + description below for details), and such an array can be packed into a real array of the same + size as input, which is the fastest option and which is what the function does by default; + however, you may wish to get a full complex array (for simpler spectrum analysis, and so on) - + pass the flag to enable the function to produce a full-size complex output array. */ + DFT_COMPLEX_OUTPUT = 16, + /** performs an inverse transformation of a 1D or 2D complex array; the + result is normally a complex array of the same size, however, if the input array has + conjugate-complex symmetry (for example, it is a result of forward transformation with + DFT_COMPLEX_OUTPUT flag), the output is a real array; while the function itself does not + check whether the input is symmetrical or not, you can pass the flag and then the function + will assume the symmetry and produce the real output array (note that when the input is packed + into a real array and inverse transformation is executed, the function treats the input as a + packed complex-conjugate symmetrical array, and the output will also be a real array). */ + DFT_REAL_OUTPUT = 32, + /** performs an inverse 1D or 2D transform instead of the default forward transform. */ + DCT_INVERSE = DFT_INVERSE, + /** performs a forward or inverse transform of every individual row of the input + matrix. This flag enables you to transform multiple vectors simultaneously and can be used to + decrease the overhead (which is sometimes several times larger than the processing itself) to + perform 3D and higher-dimensional transforms and so forth.*/ + DCT_ROWS = DFT_ROWS +}; + +//! Various border types, image boundaries are denoted with `|` +//! @see borderInterpolate, copyMakeBorder +enum BorderTypes { + BORDER_CONSTANT = 0, //!< `iiiiii|abcdefgh|iiiiiii` with some specified `i` + BORDER_REPLICATE = 1, //!< `aaaaaa|abcdefgh|hhhhhhh` + BORDER_REFLECT = 2, //!< `fedcba|abcdefgh|hgfedcb` + BORDER_WRAP = 3, //!< `cdefgh|abcdefgh|abcdefg` + BORDER_REFLECT_101 = 4, //!< `gfedcb|abcdefgh|gfedcba` + BORDER_TRANSPARENT = 5, //!< `uvwxyz|absdefgh|ijklmno` + + BORDER_REFLECT101 = BORDER_REFLECT_101, //!< same as BORDER_REFLECT_101 + BORDER_DEFAULT = BORDER_REFLECT_101, //!< same as BORDER_REFLECT_101 + BORDER_ISOLATED = 16 //!< do not look outside of ROI +}; + +//! @} core_array + +//! @addtogroup core_utils +//! @{ + +//! @cond IGNORED + +//////////////// static assert ///////////////// +#define CVAUX_CONCAT_EXP(a, b) a##b +#define CVAUX_CONCAT(a, b) CVAUX_CONCAT_EXP(a,b) + +#if defined(__clang__) +# ifndef __has_extension +# define __has_extension __has_feature /* compatibility, for older versions of clang */ +# endif +# if __has_extension(cxx_static_assert) +# define CV_StaticAssert(condition, reason) static_assert((condition), reason " " #condition) +# elif __has_extension(c_static_assert) +# define CV_StaticAssert(condition, reason) _Static_assert((condition), reason " " #condition) +# endif +#elif defined(__GNUC__) +# if (defined(__GXX_EXPERIMENTAL_CXX0X__) || __cplusplus >= 201103L) +# define CV_StaticAssert(condition, reason) static_assert((condition), reason " " #condition) +# endif +#elif defined(_MSC_VER) +# if _MSC_VER >= 1600 /* MSVC 10 */ +# define CV_StaticAssert(condition, reason) static_assert((condition), reason " " #condition) +# endif +#endif +#ifndef CV_StaticAssert +# if !defined(__clang__) && defined(__GNUC__) && (__GNUC__*100 + __GNUC_MINOR__ > 302) +# define CV_StaticAssert(condition, reason) ({ extern int __attribute__((error("CV_StaticAssert: " reason " " #condition))) CV_StaticAssert(); ((condition) ? 0 : CV_StaticAssert()); }) +# else + template struct CV_StaticAssert_failed; + template <> struct CV_StaticAssert_failed { enum { val = 1 }; }; + template struct CV_StaticAssert_test {}; +# define CV_StaticAssert(condition, reason)\ + typedef cv::CV_StaticAssert_test< sizeof(cv::CV_StaticAssert_failed< static_cast(condition) >) > CVAUX_CONCAT(CV_StaticAssert_failed_at_, __LINE__) +# endif +#endif + +// Suppress warning "-Wdeprecated-declarations" / C4996 +#if defined(_MSC_VER) + #define CV_DO_PRAGMA(x) __pragma(x) +#elif defined(__GNUC__) + #define CV_DO_PRAGMA(x) _Pragma (#x) +#else + #define CV_DO_PRAGMA(x) +#endif + +#ifdef _MSC_VER +#define CV_SUPPRESS_DEPRECATED_START \ + CV_DO_PRAGMA(warning(push)) \ + CV_DO_PRAGMA(warning(disable: 4996)) +#define CV_SUPPRESS_DEPRECATED_END CV_DO_PRAGMA(warning(pop)) +#elif defined (__clang__) || ((__GNUC__) && (__GNUC__*100 + __GNUC_MINOR__ > 405)) +#define CV_SUPPRESS_DEPRECATED_START \ + CV_DO_PRAGMA(GCC diagnostic push) \ + CV_DO_PRAGMA(GCC diagnostic ignored "-Wdeprecated-declarations") +#define CV_SUPPRESS_DEPRECATED_END CV_DO_PRAGMA(GCC diagnostic pop) +#else +#define CV_SUPPRESS_DEPRECATED_START +#define CV_SUPPRESS_DEPRECATED_END +#endif +#define CV_UNUSED(name) (void)name +//! @endcond + +/*! @brief Signals an error and raises the exception. + +By default the function prints information about the error to stderr, +then it either stops if setBreakOnError() had been called before or raises the exception. +It is possible to alternate error processing by using redirectError(). +@param _code - error code (Error::Code) +@param _err - error description +@param _func - function name. Available only when the compiler supports getting it +@param _file - source file name where the error has occured +@param _line - line number in the source file where the error has occured +@see CV_Error, CV_Error_, CV_ErrorNoReturn, CV_ErrorNoReturn_, CV_Assert, CV_DbgAssert + */ +CV_EXPORTS void error(int _code, const String& _err, const char* _func, const char* _file, int _line); + +#ifdef __GNUC__ +# if defined __clang__ || defined __APPLE__ +# pragma GCC diagnostic push +# pragma GCC diagnostic ignored "-Winvalid-noreturn" +# endif +#endif + +/** same as cv::error, but does not return */ +CV_INLINE CV_NORETURN void errorNoReturn(int _code, const String& _err, const char* _func, const char* _file, int _line) +{ + error(_code, _err, _func, _file, _line); +#ifdef __GNUC__ +# if !defined __clang__ && !defined __APPLE__ + // this suppresses this warning: "noreturn" function does return [enabled by default] + __builtin_trap(); + // or use infinite loop: for (;;) {} +# endif +#endif +} +#ifdef __GNUC__ +# if defined __clang__ || defined __APPLE__ +# pragma GCC diagnostic pop +# endif +#endif + +#if defined __GNUC__ +#define CV_Func __func__ +#elif defined _MSC_VER +#define CV_Func __FUNCTION__ +#else +#define CV_Func "" +#endif + +/** @brief Call the error handler. + +Currently, the error handler prints the error code and the error message to the standard +error stream `stderr`. In the Debug configuration, it then provokes memory access violation, so that +the execution stack and all the parameters can be analyzed by the debugger. In the Release +configuration, the exception is thrown. + +@param code one of Error::Code +@param msg error message +*/ +#define CV_Error( code, msg ) cv::error( code, msg, CV_Func, __FILE__, __LINE__ ) + +/** @brief Call the error handler. + +This macro can be used to construct an error message on-fly to include some dynamic information, +for example: +@code + // note the extra parentheses around the formatted text message + CV_Error_( CV_StsOutOfRange, + ("the value at (%d, %d)=%g is out of range", badPt.x, badPt.y, badValue)); +@endcode +@param code one of Error::Code +@param args printf-like formatted error message in parentheses +*/ +#define CV_Error_( code, args ) cv::error( code, cv::format args, CV_Func, __FILE__, __LINE__ ) + +/** @brief Checks a condition at runtime and throws exception if it fails + +The macros CV_Assert (and CV_DbgAssert(expr)) evaluate the specified expression. If it is 0, the macros +raise an error (see cv::error). The macro CV_Assert checks the condition in both Debug and Release +configurations while CV_DbgAssert is only retained in the Debug configuration. +*/ +#define CV_Assert( expr ) if(!!(expr)) ; else cv::error( cv::Error::StsAssert, #expr, CV_Func, __FILE__, __LINE__ ) + +/** same as CV_Error(code,msg), but does not return */ +#define CV_ErrorNoReturn( code, msg ) cv::errorNoReturn( code, msg, CV_Func, __FILE__, __LINE__ ) + +/** same as CV_Error_(code,args), but does not return */ +#define CV_ErrorNoReturn_( code, args ) cv::errorNoReturn( code, cv::format args, CV_Func, __FILE__, __LINE__ ) + +/** replaced with CV_Assert(expr) in Debug configuration */ +#ifdef _DEBUG +# define CV_DbgAssert(expr) CV_Assert(expr) +#else +# define CV_DbgAssert(expr) +#endif + +/* + * Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor + * bit count of A exclusive XOR'ed with B + */ +struct CV_EXPORTS Hamming +{ + enum { normType = NORM_HAMMING }; + typedef unsigned char ValueType; + typedef int ResultType; + + /** this will count the bits in a ^ b + */ + ResultType operator()( const unsigned char* a, const unsigned char* b, int size ) const; +}; + +typedef Hamming HammingLUT; + +/////////////////////////////////// inline norms //////////////////////////////////// + +template inline _Tp cv_abs(_Tp x) { return std::abs(x); } +inline int cv_abs(uchar x) { return x; } +inline int cv_abs(schar x) { return std::abs(x); } +inline int cv_abs(ushort x) { return x; } +inline int cv_abs(short x) { return std::abs(x); } + +template static inline +_AccTp normL2Sqr(const _Tp* a, int n) +{ + _AccTp s = 0; + int i=0; +#if CV_ENABLE_UNROLLED + for( ; i <= n - 4; i += 4 ) + { + _AccTp v0 = a[i], v1 = a[i+1], v2 = a[i+2], v3 = a[i+3]; + s += v0*v0 + v1*v1 + v2*v2 + v3*v3; + } +#endif + for( ; i < n; i++ ) + { + _AccTp v = a[i]; + s += v*v; + } + return s; +} + +template static inline +_AccTp normL1(const _Tp* a, int n) +{ + _AccTp s = 0; + int i = 0; +#if CV_ENABLE_UNROLLED + for(; i <= n - 4; i += 4 ) + { + s += (_AccTp)cv_abs(a[i]) + (_AccTp)cv_abs(a[i+1]) + + (_AccTp)cv_abs(a[i+2]) + (_AccTp)cv_abs(a[i+3]); + } +#endif + for( ; i < n; i++ ) + s += cv_abs(a[i]); + return s; +} + +template static inline +_AccTp normInf(const _Tp* a, int n) +{ + _AccTp s = 0; + for( int i = 0; i < n; i++ ) + s = std::max(s, (_AccTp)cv_abs(a[i])); + return s; +} + +template static inline +_AccTp normL2Sqr(const _Tp* a, const _Tp* b, int n) +{ + _AccTp s = 0; + int i= 0; +#if CV_ENABLE_UNROLLED + for(; i <= n - 4; i += 4 ) + { + _AccTp v0 = _AccTp(a[i] - b[i]), v1 = _AccTp(a[i+1] - b[i+1]), v2 = _AccTp(a[i+2] - b[i+2]), v3 = _AccTp(a[i+3] - b[i+3]); + s += v0*v0 + v1*v1 + v2*v2 + v3*v3; + } +#endif + for( ; i < n; i++ ) + { + _AccTp v = _AccTp(a[i] - b[i]); + s += v*v; + } + return s; +} + +static inline float normL2Sqr(const float* a, const float* b, int n) +{ + float s = 0.f; + for( int i = 0; i < n; i++ ) + { + float v = a[i] - b[i]; + s += v*v; + } + return s; +} + +template static inline +_AccTp normL1(const _Tp* a, const _Tp* b, int n) +{ + _AccTp s = 0; + int i= 0; +#if CV_ENABLE_UNROLLED + for(; i <= n - 4; i += 4 ) + { + _AccTp v0 = _AccTp(a[i] - b[i]), v1 = _AccTp(a[i+1] - b[i+1]), v2 = _AccTp(a[i+2] - b[i+2]), v3 = _AccTp(a[i+3] - b[i+3]); + s += std::abs(v0) + std::abs(v1) + std::abs(v2) + std::abs(v3); + } +#endif + for( ; i < n; i++ ) + { + _AccTp v = _AccTp(a[i] - b[i]); + s += std::abs(v); + } + return s; +} + +inline float normL1(const float* a, const float* b, int n) +{ + float s = 0.f; + for( int i = 0; i < n; i++ ) + { + s += std::abs(a[i] - b[i]); + } + return s; +} + +inline int normL1(const uchar* a, const uchar* b, int n) +{ + int s = 0; + for( int i = 0; i < n; i++ ) + { + s += std::abs(a[i] - b[i]); + } + return s; +} + +template static inline +_AccTp normInf(const _Tp* a, const _Tp* b, int n) +{ + _AccTp s = 0; + for( int i = 0; i < n; i++ ) + { + _AccTp v0 = a[i] - b[i]; + s = std::max(s, std::abs(v0)); + } + return s; +} + +/** @brief Computes the cube root of an argument. + + The function cubeRoot computes \f$\sqrt[3]{\texttt{val}}\f$. Negative arguments are handled correctly. + NaN and Inf are not handled. The accuracy approaches the maximum possible accuracy for + single-precision data. + @param val A function argument. + */ +CV_EXPORTS_W float cubeRoot(float val); + +/** @brief Calculates the angle of a 2D vector in degrees. + + The function fastAtan2 calculates the full-range angle of an input 2D vector. The angle is measured + in degrees and varies from 0 to 360 degrees. The accuracy is about 0.3 degrees. + @param x x-coordinate of the vector. + @param y y-coordinate of the vector. + */ +CV_EXPORTS_W float fastAtan2(float y, float x); + +/** proxy for hal::LU */ +CV_EXPORTS int LU(float* A, size_t astep, int m, float* b, size_t bstep, int n); +/** proxy for hal::LU */ +CV_EXPORTS int LU(double* A, size_t astep, int m, double* b, size_t bstep, int n); +/** proxy for hal::Cholesky */ +CV_EXPORTS bool Cholesky(float* A, size_t astep, int m, float* b, size_t bstep, int n); +/** proxy for hal::Cholesky */ +CV_EXPORTS bool Cholesky(double* A, size_t astep, int m, double* b, size_t bstep, int n); + +////////////////// forward declarations for important OpenCV types ////////////////// + +//! @cond IGNORED + +template class Vec; +template class Matx; + +template class Complex; +template class Point_; +template class Point3_; +template class Size_; +template class Rect_; +template class Scalar_; + +class CV_EXPORTS RotatedRect; +class CV_EXPORTS Range; +class CV_EXPORTS TermCriteria; +class CV_EXPORTS KeyPoint; +class CV_EXPORTS DMatch; +class CV_EXPORTS RNG; + +class CV_EXPORTS Mat; +class CV_EXPORTS MatExpr; + +class CV_EXPORTS UMat; + +class CV_EXPORTS SparseMat; +typedef Mat MatND; + +template class Mat_; +template class SparseMat_; + +class CV_EXPORTS MatConstIterator; +class CV_EXPORTS SparseMatIterator; +class CV_EXPORTS SparseMatConstIterator; +template class MatIterator_; +template class MatConstIterator_; +template class SparseMatIterator_; +template class SparseMatConstIterator_; + +namespace ogl +{ + class CV_EXPORTS Buffer; + class CV_EXPORTS Texture2D; + class CV_EXPORTS Arrays; +} + +namespace cuda +{ + class CV_EXPORTS GpuMat; + class CV_EXPORTS HostMem; + class CV_EXPORTS Stream; + class CV_EXPORTS Event; +} + +namespace cudev +{ + template class GpuMat_; +} + +namespace ipp +{ +CV_EXPORTS int getIppFeatures(); +CV_EXPORTS void setIppStatus(int status, const char * const funcname = NULL, const char * const filename = NULL, + int line = 0); +CV_EXPORTS int getIppStatus(); +CV_EXPORTS String getIppErrorLocation(); +CV_EXPORTS bool useIPP(); +CV_EXPORTS void setUseIPP(bool flag); + +} // ipp + +//! @endcond + +//! @} core_utils + + + + +} // cv + +#include "opencv2/core/neon_utils.hpp" + +#endif //OPENCV_CORE_BASE_HPP diff --git a/thirdparty1/linux/include/opencv2/core/bufferpool.hpp b/thirdparty1/linux/include/opencv2/core/bufferpool.hpp new file mode 100644 index 0000000..9e7b7c2 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/bufferpool.hpp @@ -0,0 +1,31 @@ +// This file is part of OpenCV project. +// It is subject to the license terms in the LICENSE file found in the top-level directory +// of this distribution and at http://opencv.org/license.html. +// +// Copyright (C) 2014, Advanced Micro Devices, Inc., all rights reserved. + +#ifndef OPENCV_CORE_BUFFER_POOL_HPP +#define OPENCV_CORE_BUFFER_POOL_HPP + +namespace cv +{ + +//! @addtogroup core +//! @{ + +class BufferPoolController +{ +protected: + ~BufferPoolController() { } +public: + virtual size_t getReservedSize() const = 0; + virtual size_t getMaxReservedSize() const = 0; + virtual void setMaxReservedSize(size_t size) = 0; + virtual void freeAllReservedBuffers() = 0; +}; + +//! @} + +} + +#endif // OPENCV_CORE_BUFFER_POOL_HPP diff --git a/thirdparty1/linux/include/opencv2/core/core.hpp b/thirdparty1/linux/include/opencv2/core/core.hpp new file mode 100644 index 0000000..4389183 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/core.hpp @@ -0,0 +1,48 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifdef __OPENCV_BUILD +#error this is a compatibility header which should not be used inside the OpenCV library +#endif + +#include "opencv2/core.hpp" diff --git a/thirdparty1/linux/include/opencv2/core/core_c.h b/thirdparty1/linux/include/opencv2/core/core_c.h new file mode 100644 index 0000000..e12f79d --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/core_c.h @@ -0,0 +1,3184 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + + +#ifndef OPENCV_CORE_C_H +#define OPENCV_CORE_C_H + +#include "opencv2/core/types_c.h" + +#ifdef __cplusplus +# ifdef _MSC_VER +/* disable warning C4190: 'function' has C-linkage specified, but returns UDT 'typename' + which is incompatible with C + + It is OK to disable it because we only extend few plain structures with + C++ construrtors for simpler interoperability with C++ API of the library +*/ +# pragma warning(disable:4190) +# elif defined __clang__ && __clang_major__ >= 3 +# pragma GCC diagnostic ignored "-Wreturn-type-c-linkage" +# endif +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +/** @addtogroup core_c + @{ +*/ + +/****************************************************************************************\ +* Array allocation, deallocation, initialization and access to elements * +\****************************************************************************************/ + +/** `malloc` wrapper. + If there is no enough memory, the function + (as well as other OpenCV functions that call cvAlloc) + raises an error. */ +CVAPI(void*) cvAlloc( size_t size ); + +/** `free` wrapper. + Here and further all the memory releasing functions + (that all call cvFree) take double pointer in order to + to clear pointer to the data after releasing it. + Passing pointer to NULL pointer is Ok: nothing happens in this case +*/ +CVAPI(void) cvFree_( void* ptr ); +#define cvFree(ptr) (cvFree_(*(ptr)), *(ptr)=0) + +/** @brief Creates an image header but does not allocate the image data. + +@param size Image width and height +@param depth Image depth (see cvCreateImage ) +@param channels Number of channels (see cvCreateImage ) + */ +CVAPI(IplImage*) cvCreateImageHeader( CvSize size, int depth, int channels ); + +/** @brief Initializes an image header that was previously allocated. + +The returned IplImage\* points to the initialized header. +@param image Image header to initialize +@param size Image width and height +@param depth Image depth (see cvCreateImage ) +@param channels Number of channels (see cvCreateImage ) +@param origin Top-left IPL_ORIGIN_TL or bottom-left IPL_ORIGIN_BL +@param align Alignment for image rows, typically 4 or 8 bytes + */ +CVAPI(IplImage*) cvInitImageHeader( IplImage* image, CvSize size, int depth, + int channels, int origin CV_DEFAULT(0), + int align CV_DEFAULT(4)); + +/** @brief Creates an image header and allocates the image data. + +This function call is equivalent to the following code: +@code + header = cvCreateImageHeader(size, depth, channels); + cvCreateData(header); +@endcode +@param size Image width and height +@param depth Bit depth of image elements. See IplImage for valid depths. +@param channels Number of channels per pixel. See IplImage for details. This function only creates +images with interleaved channels. + */ +CVAPI(IplImage*) cvCreateImage( CvSize size, int depth, int channels ); + +/** @brief Deallocates an image header. + +This call is an analogue of : +@code + if(image ) + { + iplDeallocate(*image, IPL_IMAGE_HEADER | IPL_IMAGE_ROI); + *image = 0; + } +@endcode +but it does not use IPL functions by default (see the CV_TURN_ON_IPL_COMPATIBILITY macro). +@param image Double pointer to the image header + */ +CVAPI(void) cvReleaseImageHeader( IplImage** image ); + +/** @brief Deallocates the image header and the image data. + +This call is a shortened form of : +@code + if(*image ) + { + cvReleaseData(*image); + cvReleaseImageHeader(image); + } +@endcode +@param image Double pointer to the image header +*/ +CVAPI(void) cvReleaseImage( IplImage** image ); + +/** Creates a copy of IPL image (widthStep may differ) */ +CVAPI(IplImage*) cvCloneImage( const IplImage* image ); + +/** @brief Sets the channel of interest in an IplImage. + +If the ROI is set to NULL and the coi is *not* 0, the ROI is allocated. Most OpenCV functions do +*not* support the COI setting, so to process an individual image/matrix channel one may copy (via +cvCopy or cvSplit) the channel to a separate image/matrix, process it and then copy the result +back (via cvCopy or cvMerge) if needed. +@param image A pointer to the image header +@param coi The channel of interest. 0 - all channels are selected, 1 - first channel is selected, +etc. Note that the channel indices become 1-based. + */ +CVAPI(void) cvSetImageCOI( IplImage* image, int coi ); + +/** @brief Returns the index of the channel of interest. + +Returns the channel of interest of in an IplImage. Returned values correspond to the coi in +cvSetImageCOI. +@param image A pointer to the image header + */ +CVAPI(int) cvGetImageCOI( const IplImage* image ); + +/** @brief Sets an image Region Of Interest (ROI) for a given rectangle. + +If the original image ROI was NULL and the rect is not the whole image, the ROI structure is +allocated. + +Most OpenCV functions support the use of ROI and treat the image rectangle as a separate image. For +example, all of the pixel coordinates are counted from the top-left (or bottom-left) corner of the +ROI, not the original image. +@param image A pointer to the image header +@param rect The ROI rectangle + */ +CVAPI(void) cvSetImageROI( IplImage* image, CvRect rect ); + +/** @brief Resets the image ROI to include the entire image and releases the ROI structure. + +This produces a similar result to the following, but in addition it releases the ROI structure. : +@code + cvSetImageROI(image, cvRect(0, 0, image->width, image->height )); + cvSetImageCOI(image, 0); +@endcode +@param image A pointer to the image header + */ +CVAPI(void) cvResetImageROI( IplImage* image ); + +/** @brief Returns the image ROI. + +If there is no ROI set, cvRect(0,0,image-\>width,image-\>height) is returned. +@param image A pointer to the image header + */ +CVAPI(CvRect) cvGetImageROI( const IplImage* image ); + +/** @brief Creates a matrix header but does not allocate the matrix data. + +The function allocates a new matrix header and returns a pointer to it. The matrix data can then be +allocated using cvCreateData or set explicitly to user-allocated data via cvSetData. +@param rows Number of rows in the matrix +@param cols Number of columns in the matrix +@param type Type of the matrix elements, see cvCreateMat + */ +CVAPI(CvMat*) cvCreateMatHeader( int rows, int cols, int type ); + +#define CV_AUTOSTEP 0x7fffffff + +/** @brief Initializes a pre-allocated matrix header. + +This function is often used to process raw data with OpenCV matrix functions. For example, the +following code computes the matrix product of two matrices, stored as ordinary arrays: +@code + double a[] = { 1, 2, 3, 4, + 5, 6, 7, 8, + 9, 10, 11, 12 }; + + double b[] = { 1, 5, 9, + 2, 6, 10, + 3, 7, 11, + 4, 8, 12 }; + + double c[9]; + CvMat Ma, Mb, Mc ; + + cvInitMatHeader(&Ma, 3, 4, CV_64FC1, a); + cvInitMatHeader(&Mb, 4, 3, CV_64FC1, b); + cvInitMatHeader(&Mc, 3, 3, CV_64FC1, c); + + cvMatMulAdd(&Ma, &Mb, 0, &Mc); + // the c array now contains the product of a (3x4) and b (4x3) +@endcode +@param mat A pointer to the matrix header to be initialized +@param rows Number of rows in the matrix +@param cols Number of columns in the matrix +@param type Type of the matrix elements, see cvCreateMat . +@param data Optional: data pointer assigned to the matrix header +@param step Optional: full row width in bytes of the assigned data. By default, the minimal +possible step is used which assumes there are no gaps between subsequent rows of the matrix. + */ +CVAPI(CvMat*) cvInitMatHeader( CvMat* mat, int rows, int cols, + int type, void* data CV_DEFAULT(NULL), + int step CV_DEFAULT(CV_AUTOSTEP) ); + +/** @brief Creates a matrix header and allocates the matrix data. + +The function call is equivalent to the following code: +@code + CvMat* mat = cvCreateMatHeader(rows, cols, type); + cvCreateData(mat); +@endcode +@param rows Number of rows in the matrix +@param cols Number of columns in the matrix +@param type The type of the matrix elements in the form +CV_\\C\ , where S=signed, U=unsigned, F=float. For +example, CV _ 8UC1 means the elements are 8-bit unsigned and the there is 1 channel, and CV _ +32SC2 means the elements are 32-bit signed and there are 2 channels. + */ +CVAPI(CvMat*) cvCreateMat( int rows, int cols, int type ); + +/** @brief Deallocates a matrix. + +The function decrements the matrix data reference counter and deallocates matrix header. If the data +reference counter is 0, it also deallocates the data. : +@code + if(*mat ) + cvDecRefData(*mat); + cvFree((void**)mat); +@endcode +@param mat Double pointer to the matrix + */ +CVAPI(void) cvReleaseMat( CvMat** mat ); + +/** @brief Decrements an array data reference counter. + +The function decrements the data reference counter in a CvMat or CvMatND if the reference counter + +pointer is not NULL. If the counter reaches zero, the data is deallocated. In the current +implementation the reference counter is not NULL only if the data was allocated using the +cvCreateData function. The counter will be NULL in other cases such as: external data was assigned +to the header using cvSetData, header is part of a larger matrix or image, or the header was +converted from an image or n-dimensional matrix header. +@param arr Pointer to an array header + */ +CV_INLINE void cvDecRefData( CvArr* arr ) +{ + if( CV_IS_MAT( arr )) + { + CvMat* mat = (CvMat*)arr; + mat->data.ptr = NULL; + if( mat->refcount != NULL && --*mat->refcount == 0 ) + cvFree( &mat->refcount ); + mat->refcount = NULL; + } + else if( CV_IS_MATND( arr )) + { + CvMatND* mat = (CvMatND*)arr; + mat->data.ptr = NULL; + if( mat->refcount != NULL && --*mat->refcount == 0 ) + cvFree( &mat->refcount ); + mat->refcount = NULL; + } +} + +/** @brief Increments array data reference counter. + +The function increments CvMat or CvMatND data reference counter and returns the new counter value if +the reference counter pointer is not NULL, otherwise it returns zero. +@param arr Array header + */ +CV_INLINE int cvIncRefData( CvArr* arr ) +{ + int refcount = 0; + if( CV_IS_MAT( arr )) + { + CvMat* mat = (CvMat*)arr; + if( mat->refcount != NULL ) + refcount = ++*mat->refcount; + } + else if( CV_IS_MATND( arr )) + { + CvMatND* mat = (CvMatND*)arr; + if( mat->refcount != NULL ) + refcount = ++*mat->refcount; + } + return refcount; +} + + +/** Creates an exact copy of the input matrix (except, may be, step value) */ +CVAPI(CvMat*) cvCloneMat( const CvMat* mat ); + + +/** @brief Returns matrix header corresponding to the rectangular sub-array of input image or matrix. + +The function returns header, corresponding to a specified rectangle of the input array. In other + +words, it allows the user to treat a rectangular part of input array as a stand-alone array. ROI is +taken into account by the function so the sub-array of ROI is actually extracted. +@param arr Input array +@param submat Pointer to the resultant sub-array header +@param rect Zero-based coordinates of the rectangle of interest + */ +CVAPI(CvMat*) cvGetSubRect( const CvArr* arr, CvMat* submat, CvRect rect ); +#define cvGetSubArr cvGetSubRect + +/** @brief Returns array row or row span. + +The functions return the header, corresponding to a specified row/row span of the input array. +cvGetRow(arr, submat, row) is a shortcut for cvGetRows(arr, submat, row, row+1). +@param arr Input array +@param submat Pointer to the resulting sub-array header +@param start_row Zero-based index of the starting row (inclusive) of the span +@param end_row Zero-based index of the ending row (exclusive) of the span +@param delta_row Index step in the row span. That is, the function extracts every delta_row -th +row from start_row and up to (but not including) end_row . + */ +CVAPI(CvMat*) cvGetRows( const CvArr* arr, CvMat* submat, + int start_row, int end_row, + int delta_row CV_DEFAULT(1)); + +/** @overload +@param arr Input array +@param submat Pointer to the resulting sub-array header +@param row Zero-based index of the selected row +*/ +CV_INLINE CvMat* cvGetRow( const CvArr* arr, CvMat* submat, int row ) +{ + return cvGetRows( arr, submat, row, row + 1, 1 ); +} + + +/** @brief Returns one of more array columns. + +The functions return the header, corresponding to a specified column span of the input array. That + +is, no data is copied. Therefore, any modifications of the submatrix will affect the original array. +If you need to copy the columns, use cvCloneMat. cvGetCol(arr, submat, col) is a shortcut for +cvGetCols(arr, submat, col, col+1). +@param arr Input array +@param submat Pointer to the resulting sub-array header +@param start_col Zero-based index of the starting column (inclusive) of the span +@param end_col Zero-based index of the ending column (exclusive) of the span + */ +CVAPI(CvMat*) cvGetCols( const CvArr* arr, CvMat* submat, + int start_col, int end_col ); + +/** @overload +@param arr Input array +@param submat Pointer to the resulting sub-array header +@param col Zero-based index of the selected column +*/ +CV_INLINE CvMat* cvGetCol( const CvArr* arr, CvMat* submat, int col ) +{ + return cvGetCols( arr, submat, col, col + 1 ); +} + +/** @brief Returns one of array diagonals. + +The function returns the header, corresponding to a specified diagonal of the input array. +@param arr Input array +@param submat Pointer to the resulting sub-array header +@param diag Index of the array diagonal. Zero value corresponds to the main diagonal, -1 +corresponds to the diagonal above the main, 1 corresponds to the diagonal below the main, and so +forth. + */ +CVAPI(CvMat*) cvGetDiag( const CvArr* arr, CvMat* submat, + int diag CV_DEFAULT(0)); + +/** low-level scalar <-> raw data conversion functions */ +CVAPI(void) cvScalarToRawData( const CvScalar* scalar, void* data, int type, + int extend_to_12 CV_DEFAULT(0) ); + +CVAPI(void) cvRawDataToScalar( const void* data, int type, CvScalar* scalar ); + +/** @brief Creates a new matrix header but does not allocate the matrix data. + +The function allocates a header for a multi-dimensional dense array. The array data can further be +allocated using cvCreateData or set explicitly to user-allocated data via cvSetData. +@param dims Number of array dimensions +@param sizes Array of dimension sizes +@param type Type of array elements, see cvCreateMat + */ +CVAPI(CvMatND*) cvCreateMatNDHeader( int dims, const int* sizes, int type ); + +/** @brief Creates the header and allocates the data for a multi-dimensional dense array. + +This function call is equivalent to the following code: +@code + CvMatND* mat = cvCreateMatNDHeader(dims, sizes, type); + cvCreateData(mat); +@endcode +@param dims Number of array dimensions. This must not exceed CV_MAX_DIM (32 by default, but can be +changed at build time). +@param sizes Array of dimension sizes. +@param type Type of array elements, see cvCreateMat . + */ +CVAPI(CvMatND*) cvCreateMatND( int dims, const int* sizes, int type ); + +/** @brief Initializes a pre-allocated multi-dimensional array header. + +@param mat A pointer to the array header to be initialized +@param dims The number of array dimensions +@param sizes An array of dimension sizes +@param type Type of array elements, see cvCreateMat +@param data Optional data pointer assigned to the matrix header + */ +CVAPI(CvMatND*) cvInitMatNDHeader( CvMatND* mat, int dims, const int* sizes, + int type, void* data CV_DEFAULT(NULL) ); + +/** @brief Deallocates a multi-dimensional array. + +The function decrements the array data reference counter and releases the array header. If the +reference counter reaches 0, it also deallocates the data. : +@code + if(*mat ) + cvDecRefData(*mat); + cvFree((void**)mat); +@endcode +@param mat Double pointer to the array + */ +CV_INLINE void cvReleaseMatND( CvMatND** mat ) +{ + cvReleaseMat( (CvMat**)mat ); +} + +/** Creates a copy of CvMatND (except, may be, steps) */ +CVAPI(CvMatND*) cvCloneMatND( const CvMatND* mat ); + +/** @brief Creates sparse array. + +The function allocates a multi-dimensional sparse array. Initially the array contain no elements, +that is PtrND and other related functions will return 0 for every index. +@param dims Number of array dimensions. In contrast to the dense matrix, the number of dimensions is +practically unlimited (up to \f$2^{16}\f$ ). +@param sizes Array of dimension sizes +@param type Type of array elements. The same as for CvMat + */ +CVAPI(CvSparseMat*) cvCreateSparseMat( int dims, const int* sizes, int type ); + +/** @brief Deallocates sparse array. + +The function releases the sparse array and clears the array pointer upon exit. +@param mat Double pointer to the array + */ +CVAPI(void) cvReleaseSparseMat( CvSparseMat** mat ); + +/** Creates a copy of CvSparseMat (except, may be, zero items) */ +CVAPI(CvSparseMat*) cvCloneSparseMat( const CvSparseMat* mat ); + +/** @brief Initializes sparse array elements iterator. + +The function initializes iterator of sparse array elements and returns pointer to the first element, +or NULL if the array is empty. +@param mat Input array +@param mat_iterator Initialized iterator + */ +CVAPI(CvSparseNode*) cvInitSparseMatIterator( const CvSparseMat* mat, + CvSparseMatIterator* mat_iterator ); + +/** @brief Returns the next sparse matrix element + +The function moves iterator to the next sparse matrix element and returns pointer to it. In the +current version there is no any particular order of the elements, because they are stored in the +hash table. The sample below demonstrates how to iterate through the sparse matrix: +@code + // print all the non-zero sparse matrix elements and compute their sum + double sum = 0; + int i, dims = cvGetDims(sparsemat); + CvSparseMatIterator it; + CvSparseNode* node = cvInitSparseMatIterator(sparsemat, &it); + + for(; node != 0; node = cvGetNextSparseNode(&it)) + { + int* idx = CV_NODE_IDX(array, node); + float val = *(float*)CV_NODE_VAL(array, node); + printf("M"); + for(i = 0; i < dims; i++ ) + printf("[%d]", idx[i]); + printf("=%g\n", val); + + sum += val; + } + + printf("nTotal sum = %g\n", sum); +@endcode +@param mat_iterator Sparse array iterator + */ +CV_INLINE CvSparseNode* cvGetNextSparseNode( CvSparseMatIterator* mat_iterator ) +{ + if( mat_iterator->node->next ) + return mat_iterator->node = mat_iterator->node->next; + else + { + int idx; + for( idx = ++mat_iterator->curidx; idx < mat_iterator->mat->hashsize; idx++ ) + { + CvSparseNode* node = (CvSparseNode*)mat_iterator->mat->hashtable[idx]; + if( node ) + { + mat_iterator->curidx = idx; + return mat_iterator->node = node; + } + } + return NULL; + } +} + + +#define CV_MAX_ARR 10 + +/** matrix iterator: used for n-ary operations on dense arrays */ +typedef struct CvNArrayIterator +{ + int count; /**< number of arrays */ + int dims; /**< number of dimensions to iterate */ + CvSize size; /**< maximal common linear size: { width = size, height = 1 } */ + uchar* ptr[CV_MAX_ARR]; /**< pointers to the array slices */ + int stack[CV_MAX_DIM]; /**< for internal use */ + CvMatND* hdr[CV_MAX_ARR]; /**< pointers to the headers of the + matrices that are processed */ +} +CvNArrayIterator; + +#define CV_NO_DEPTH_CHECK 1 +#define CV_NO_CN_CHECK 2 +#define CV_NO_SIZE_CHECK 4 + +/** initializes iterator that traverses through several arrays simulteneously + (the function together with cvNextArraySlice is used for + N-ari element-wise operations) */ +CVAPI(int) cvInitNArrayIterator( int count, CvArr** arrs, + const CvArr* mask, CvMatND* stubs, + CvNArrayIterator* array_iterator, + int flags CV_DEFAULT(0) ); + +/** returns zero value if iteration is finished, non-zero (slice length) otherwise */ +CVAPI(int) cvNextNArraySlice( CvNArrayIterator* array_iterator ); + + +/** @brief Returns type of array elements. + +The function returns type of the array elements. In the case of IplImage the type is converted to +CvMat-like representation. For example, if the image has been created as: +@code + IplImage* img = cvCreateImage(cvSize(640, 480), IPL_DEPTH_8U, 3); +@endcode +The code cvGetElemType(img) will return CV_8UC3. +@param arr Input array + */ +CVAPI(int) cvGetElemType( const CvArr* arr ); + +/** @brief Return number of array dimensions + +The function returns the array dimensionality and the array of dimension sizes. In the case of +IplImage or CvMat it always returns 2 regardless of number of image/matrix rows. For example, the +following code calculates total number of array elements: +@code + int sizes[CV_MAX_DIM]; + int i, total = 1; + int dims = cvGetDims(arr, size); + for(i = 0; i < dims; i++ ) + total *= sizes[i]; +@endcode +@param arr Input array +@param sizes Optional output vector of the array dimension sizes. For 2d arrays the number of rows +(height) goes first, number of columns (width) next. + */ +CVAPI(int) cvGetDims( const CvArr* arr, int* sizes CV_DEFAULT(NULL) ); + + +/** @brief Returns array size along the specified dimension. + +@param arr Input array +@param index Zero-based dimension index (for matrices 0 means number of rows, 1 means number of +columns; for images 0 means height, 1 means width) + */ +CVAPI(int) cvGetDimSize( const CvArr* arr, int index ); + + +/** @brief Return pointer to a particular array element. + +The functions return a pointer to a specific array element. Number of array dimension should match +to the number of indices passed to the function except for cvPtr1D function that can be used for +sequential access to 1D, 2D or nD dense arrays. + +The functions can be used for sparse arrays as well - if the requested node does not exist they +create it and set it to zero. + +All these as well as other functions accessing array elements ( cvGetND , cvGetRealND , cvSet +, cvSetND , cvSetRealND ) raise an error in case if the element index is out of range. +@param arr Input array +@param idx0 The first zero-based component of the element index +@param type Optional output parameter: type of matrix elements + */ +CVAPI(uchar*) cvPtr1D( const CvArr* arr, int idx0, int* type CV_DEFAULT(NULL)); +/** @overload */ +CVAPI(uchar*) cvPtr2D( const CvArr* arr, int idx0, int idx1, int* type CV_DEFAULT(NULL) ); +/** @overload */ +CVAPI(uchar*) cvPtr3D( const CvArr* arr, int idx0, int idx1, int idx2, + int* type CV_DEFAULT(NULL)); +/** @overload +@param arr Input array +@param idx Array of the element indices +@param type Optional output parameter: type of matrix elements +@param create_node Optional input parameter for sparse matrices. Non-zero value of the parameter +means that the requested element is created if it does not exist already. +@param precalc_hashval Optional input parameter for sparse matrices. If the pointer is not NULL, +the function does not recalculate the node hash value, but takes it from the specified location. +It is useful for speeding up pair-wise operations (TODO: provide an example) +*/ +CVAPI(uchar*) cvPtrND( const CvArr* arr, const int* idx, int* type CV_DEFAULT(NULL), + int create_node CV_DEFAULT(1), + unsigned* precalc_hashval CV_DEFAULT(NULL)); + +/** @brief Return a specific array element. + +The functions return a specific array element. In the case of a sparse array the functions return 0 +if the requested node does not exist (no new node is created by the functions). +@param arr Input array +@param idx0 The first zero-based component of the element index + */ +CVAPI(CvScalar) cvGet1D( const CvArr* arr, int idx0 ); +/** @overload */ +CVAPI(CvScalar) cvGet2D( const CvArr* arr, int idx0, int idx1 ); +/** @overload */ +CVAPI(CvScalar) cvGet3D( const CvArr* arr, int idx0, int idx1, int idx2 ); +/** @overload +@param arr Input array +@param idx Array of the element indices +*/ +CVAPI(CvScalar) cvGetND( const CvArr* arr, const int* idx ); + +/** @brief Return a specific element of single-channel 1D, 2D, 3D or nD array. + +Returns a specific element of a single-channel array. If the array has multiple channels, a runtime +error is raised. Note that Get?D functions can be used safely for both single-channel and +multiple-channel arrays though they are a bit slower. + +In the case of a sparse array the functions return 0 if the requested node does not exist (no new +node is created by the functions). +@param arr Input array. Must have a single channel. +@param idx0 The first zero-based component of the element index + */ +CVAPI(double) cvGetReal1D( const CvArr* arr, int idx0 ); +/** @overload */ +CVAPI(double) cvGetReal2D( const CvArr* arr, int idx0, int idx1 ); +/** @overload */ +CVAPI(double) cvGetReal3D( const CvArr* arr, int idx0, int idx1, int idx2 ); +/** @overload +@param arr Input array. Must have a single channel. +@param idx Array of the element indices +*/ +CVAPI(double) cvGetRealND( const CvArr* arr, const int* idx ); + +/** @brief Change the particular array element. + +The functions assign the new value to a particular array element. In the case of a sparse array the +functions create the node if it does not exist yet. +@param arr Input array +@param idx0 The first zero-based component of the element index +@param value The assigned value + */ +CVAPI(void) cvSet1D( CvArr* arr, int idx0, CvScalar value ); +/** @overload */ +CVAPI(void) cvSet2D( CvArr* arr, int idx0, int idx1, CvScalar value ); +/** @overload */ +CVAPI(void) cvSet3D( CvArr* arr, int idx0, int idx1, int idx2, CvScalar value ); +/** @overload +@param arr Input array +@param idx Array of the element indices +@param value The assigned value +*/ +CVAPI(void) cvSetND( CvArr* arr, const int* idx, CvScalar value ); + +/** @brief Change a specific array element. + +The functions assign a new value to a specific element of a single-channel array. If the array has +multiple channels, a runtime error is raised. Note that the Set\*D function can be used safely for +both single-channel and multiple-channel arrays, though they are a bit slower. + +In the case of a sparse array the functions create the node if it does not yet exist. +@param arr Input array +@param idx0 The first zero-based component of the element index +@param value The assigned value + */ +CVAPI(void) cvSetReal1D( CvArr* arr, int idx0, double value ); +/** @overload */ +CVAPI(void) cvSetReal2D( CvArr* arr, int idx0, int idx1, double value ); +/** @overload */ +CVAPI(void) cvSetReal3D( CvArr* arr, int idx0, + int idx1, int idx2, double value ); +/** @overload +@param arr Input array +@param idx Array of the element indices +@param value The assigned value +*/ +CVAPI(void) cvSetRealND( CvArr* arr, const int* idx, double value ); + +/** clears element of ND dense array, + in case of sparse arrays it deletes the specified node */ +CVAPI(void) cvClearND( CvArr* arr, const int* idx ); + +/** @brief Returns matrix header for arbitrary array. + +The function returns a matrix header for the input array that can be a matrix - CvMat, an image - +IplImage, or a multi-dimensional dense array - CvMatND (the third option is allowed only if +allowND != 0) . In the case of matrix the function simply returns the input pointer. In the case of +IplImage\* or CvMatND it initializes the header structure with parameters of the current image ROI +and returns &header. Because COI is not supported by CvMat, it is returned separately. + +The function provides an easy way to handle both types of arrays - IplImage and CvMat using the same +code. Input array must have non-zero data pointer, otherwise the function will report an error. + +@note If the input array is IplImage with planar data layout and COI set, the function returns the +pointer to the selected plane and COI == 0. This feature allows user to process IplImage structures +with planar data layout, even though OpenCV does not support such images. +@param arr Input array +@param header Pointer to CvMat structure used as a temporary buffer +@param coi Optional output parameter for storing COI +@param allowND If non-zero, the function accepts multi-dimensional dense arrays (CvMatND\*) and +returns 2D matrix (if CvMatND has two dimensions) or 1D matrix (when CvMatND has 1 dimension or +more than 2 dimensions). The CvMatND array must be continuous. +@sa cvGetImage, cvarrToMat. + */ +CVAPI(CvMat*) cvGetMat( const CvArr* arr, CvMat* header, + int* coi CV_DEFAULT(NULL), + int allowND CV_DEFAULT(0)); + +/** @brief Returns image header for arbitrary array. + +The function returns the image header for the input array that can be a matrix (CvMat) or image +(IplImage). In the case of an image the function simply returns the input pointer. In the case of +CvMat it initializes an image_header structure with the parameters of the input matrix. Note that +if we transform IplImage to CvMat using cvGetMat and then transform CvMat back to IplImage using +this function, we will get different headers if the ROI is set in the original image. +@param arr Input array +@param image_header Pointer to IplImage structure used as a temporary buffer + */ +CVAPI(IplImage*) cvGetImage( const CvArr* arr, IplImage* image_header ); + + +/** @brief Changes the shape of a multi-dimensional array without copying the data. + +The function is an advanced version of cvReshape that can work with multi-dimensional arrays as +well (though it can work with ordinary images and matrices) and change the number of dimensions. + +Below are the two samples from the cvReshape description rewritten using cvReshapeMatND: +@code + IplImage* color_img = cvCreateImage(cvSize(320,240), IPL_DEPTH_8U, 3); + IplImage gray_img_hdr, *gray_img; + gray_img = (IplImage*)cvReshapeMatND(color_img, sizeof(gray_img_hdr), &gray_img_hdr, 1, 0, 0); + ... + int size[] = { 2, 2, 2 }; + CvMatND* mat = cvCreateMatND(3, size, CV_32F); + CvMat row_header, *row; + row = (CvMat*)cvReshapeMatND(mat, sizeof(row_header), &row_header, 0, 1, 0); +@endcode +In C, the header file for this function includes a convenient macro cvReshapeND that does away with +the sizeof_header parameter. So, the lines containing the call to cvReshapeMatND in the examples +may be replaced as follow: +@code + gray_img = (IplImage*)cvReshapeND(color_img, &gray_img_hdr, 1, 0, 0); + ... + row = (CvMat*)cvReshapeND(mat, &row_header, 0, 1, 0); +@endcode +@param arr Input array +@param sizeof_header Size of output header to distinguish between IplImage, CvMat and CvMatND +output headers +@param header Output header to be filled +@param new_cn New number of channels. new_cn = 0 means that the number of channels remains +unchanged. +@param new_dims New number of dimensions. new_dims = 0 means that the number of dimensions +remains the same. +@param new_sizes Array of new dimension sizes. Only new_dims-1 values are used, because the +total number of elements must remain the same. Thus, if new_dims = 1, new_sizes array is not +used. + */ +CVAPI(CvArr*) cvReshapeMatND( const CvArr* arr, + int sizeof_header, CvArr* header, + int new_cn, int new_dims, int* new_sizes ); + +#define cvReshapeND( arr, header, new_cn, new_dims, new_sizes ) \ + cvReshapeMatND( (arr), sizeof(*(header)), (header), \ + (new_cn), (new_dims), (new_sizes)) + +/** @brief Changes shape of matrix/image without copying data. + +The function initializes the CvMat header so that it points to the same data as the original array +but has a different shape - different number of channels, different number of rows, or both. + +The following example code creates one image buffer and two image headers, the first is for a +320x240x3 image and the second is for a 960x240x1 image: +@code + IplImage* color_img = cvCreateImage(cvSize(320,240), IPL_DEPTH_8U, 3); + CvMat gray_mat_hdr; + IplImage gray_img_hdr, *gray_img; + cvReshape(color_img, &gray_mat_hdr, 1); + gray_img = cvGetImage(&gray_mat_hdr, &gray_img_hdr); +@endcode +And the next example converts a 3x3 matrix to a single 1x9 vector: +@code + CvMat* mat = cvCreateMat(3, 3, CV_32F); + CvMat row_header, *row; + row = cvReshape(mat, &row_header, 0, 1); +@endcode +@param arr Input array +@param header Output header to be filled +@param new_cn New number of channels. 'new_cn = 0' means that the number of channels remains +unchanged. +@param new_rows New number of rows. 'new_rows = 0' means that the number of rows remains +unchanged unless it needs to be changed according to new_cn value. +*/ +CVAPI(CvMat*) cvReshape( const CvArr* arr, CvMat* header, + int new_cn, int new_rows CV_DEFAULT(0) ); + +/** Repeats source 2d array several times in both horizontal and + vertical direction to fill destination array */ +CVAPI(void) cvRepeat( const CvArr* src, CvArr* dst ); + +/** @brief Allocates array data + +The function allocates image, matrix or multi-dimensional dense array data. Note that in the case of +matrix types OpenCV allocation functions are used. In the case of IplImage they are used unless +CV_TURN_ON_IPL_COMPATIBILITY() has been called before. In the latter case IPL functions are used +to allocate the data. +@param arr Array header + */ +CVAPI(void) cvCreateData( CvArr* arr ); + +/** @brief Releases array data. + +The function releases the array data. In the case of CvMat or CvMatND it simply calls +cvDecRefData(), that is the function can not deallocate external data. See also the note to +cvCreateData . +@param arr Array header + */ +CVAPI(void) cvReleaseData( CvArr* arr ); + +/** @brief Assigns user data to the array header. + +The function assigns user data to the array header. Header should be initialized before using +cvCreateMatHeader, cvCreateImageHeader, cvCreateMatNDHeader, cvInitMatHeader, +cvInitImageHeader or cvInitMatNDHeader. +@param arr Array header +@param data User data +@param step Full row length in bytes + */ +CVAPI(void) cvSetData( CvArr* arr, void* data, int step ); + +/** @brief Retrieves low-level information about the array. + +The function fills output variables with low-level information about the array data. All output + +parameters are optional, so some of the pointers may be set to NULL. If the array is IplImage with +ROI set, the parameters of ROI are returned. + +The following example shows how to get access to array elements. It computes absolute values of the +array elements : +@code + float* data; + int step; + CvSize size; + + cvGetRawData(array, (uchar**)&data, &step, &size); + step /= sizeof(data[0]); + + for(int y = 0; y < size.height; y++, data += step ) + for(int x = 0; x < size.width; x++ ) + data[x] = (float)fabs(data[x]); +@endcode +@param arr Array header +@param data Output pointer to the whole image origin or ROI origin if ROI is set +@param step Output full row length in bytes +@param roi_size Output ROI size + */ +CVAPI(void) cvGetRawData( const CvArr* arr, uchar** data, + int* step CV_DEFAULT(NULL), + CvSize* roi_size CV_DEFAULT(NULL)); + +/** @brief Returns size of matrix or image ROI. + +The function returns number of rows (CvSize::height) and number of columns (CvSize::width) of the +input matrix or image. In the case of image the size of ROI is returned. +@param arr array header + */ +CVAPI(CvSize) cvGetSize( const CvArr* arr ); + +/** @brief Copies one array to another. + +The function copies selected elements from an input array to an output array: + +\f[\texttt{dst} (I)= \texttt{src} (I) \quad \text{if} \quad \texttt{mask} (I) \ne 0.\f] + +If any of the passed arrays is of IplImage type, then its ROI and COI fields are used. Both arrays +must have the same type, the same number of dimensions, and the same size. The function can also +copy sparse arrays (mask is not supported in this case). +@param src The source array +@param dst The destination array +@param mask Operation mask, 8-bit single channel array; specifies elements of the destination array +to be changed + */ +CVAPI(void) cvCopy( const CvArr* src, CvArr* dst, + const CvArr* mask CV_DEFAULT(NULL) ); + +/** @brief Sets every element of an array to a given value. + +The function copies the scalar value to every selected element of the destination array: +\f[\texttt{arr} (I)= \texttt{value} \quad \text{if} \quad \texttt{mask} (I) \ne 0\f] +If array arr is of IplImage type, then is ROI used, but COI must not be set. +@param arr The destination array +@param value Fill value +@param mask Operation mask, 8-bit single channel array; specifies elements of the destination +array to be changed + */ +CVAPI(void) cvSet( CvArr* arr, CvScalar value, + const CvArr* mask CV_DEFAULT(NULL) ); + +/** @brief Clears the array. + +The function clears the array. In the case of dense arrays (CvMat, CvMatND or IplImage), +cvZero(array) is equivalent to cvSet(array,cvScalarAll(0),0). In the case of sparse arrays all the +elements are removed. +@param arr Array to be cleared + */ +CVAPI(void) cvSetZero( CvArr* arr ); +#define cvZero cvSetZero + + +/** Splits a multi-channel array into the set of single-channel arrays or + extracts particular [color] plane */ +CVAPI(void) cvSplit( const CvArr* src, CvArr* dst0, CvArr* dst1, + CvArr* dst2, CvArr* dst3 ); + +/** Merges a set of single-channel arrays into the single multi-channel array + or inserts one particular [color] plane to the array */ +CVAPI(void) cvMerge( const CvArr* src0, const CvArr* src1, + const CvArr* src2, const CvArr* src3, + CvArr* dst ); + +/** Copies several channels from input arrays to + certain channels of output arrays */ +CVAPI(void) cvMixChannels( const CvArr** src, int src_count, + CvArr** dst, int dst_count, + const int* from_to, int pair_count ); + +/** @brief Converts one array to another with optional linear transformation. + +The function has several different purposes, and thus has several different names. It copies one +array to another with optional scaling, which is performed first, and/or optional type conversion, +performed after: + +\f[\texttt{dst} (I) = \texttt{scale} \texttt{src} (I) + ( \texttt{shift} _0, \texttt{shift} _1,...)\f] + +All the channels of multi-channel arrays are processed independently. + +The type of conversion is done with rounding and saturation, that is if the result of scaling + +conversion can not be represented exactly by a value of the destination array element type, it is +set to the nearest representable value on the real axis. +@param src Source array +@param dst Destination array +@param scale Scale factor +@param shift Value added to the scaled source array elements + */ +CVAPI(void) cvConvertScale( const CvArr* src, CvArr* dst, + double scale CV_DEFAULT(1), + double shift CV_DEFAULT(0) ); +#define cvCvtScale cvConvertScale +#define cvScale cvConvertScale +#define cvConvert( src, dst ) cvConvertScale( (src), (dst), 1, 0 ) + + +/** Performs linear transformation on every source array element, + stores absolute value of the result: + dst(x,y,c) = abs(scale*src(x,y,c)+shift). + destination array must have 8u type. + In other cases one may use cvConvertScale + cvAbsDiffS */ +CVAPI(void) cvConvertScaleAbs( const CvArr* src, CvArr* dst, + double scale CV_DEFAULT(1), + double shift CV_DEFAULT(0) ); +#define cvCvtScaleAbs cvConvertScaleAbs + + +/** checks termination criteria validity and + sets eps to default_eps (if it is not set), + max_iter to default_max_iters (if it is not set) +*/ +CVAPI(CvTermCriteria) cvCheckTermCriteria( CvTermCriteria criteria, + double default_eps, + int default_max_iters ); + +/****************************************************************************************\ +* Arithmetic, logic and comparison operations * +\****************************************************************************************/ + +/** dst(mask) = src1(mask) + src2(mask) */ +CVAPI(void) cvAdd( const CvArr* src1, const CvArr* src2, CvArr* dst, + const CvArr* mask CV_DEFAULT(NULL)); + +/** dst(mask) = src(mask) + value */ +CVAPI(void) cvAddS( const CvArr* src, CvScalar value, CvArr* dst, + const CvArr* mask CV_DEFAULT(NULL)); + +/** dst(mask) = src1(mask) - src2(mask) */ +CVAPI(void) cvSub( const CvArr* src1, const CvArr* src2, CvArr* dst, + const CvArr* mask CV_DEFAULT(NULL)); + +/** dst(mask) = src(mask) - value = src(mask) + (-value) */ +CV_INLINE void cvSubS( const CvArr* src, CvScalar value, CvArr* dst, + const CvArr* mask CV_DEFAULT(NULL)) +{ + cvAddS( src, cvScalar( -value.val[0], -value.val[1], -value.val[2], -value.val[3]), + dst, mask ); +} + +/** dst(mask) = value - src(mask) */ +CVAPI(void) cvSubRS( const CvArr* src, CvScalar value, CvArr* dst, + const CvArr* mask CV_DEFAULT(NULL)); + +/** dst(idx) = src1(idx) * src2(idx) * scale + (scaled element-wise multiplication of 2 arrays) */ +CVAPI(void) cvMul( const CvArr* src1, const CvArr* src2, + CvArr* dst, double scale CV_DEFAULT(1) ); + +/** element-wise division/inversion with scaling: + dst(idx) = src1(idx) * scale / src2(idx) + or dst(idx) = scale / src2(idx) if src1 == 0 */ +CVAPI(void) cvDiv( const CvArr* src1, const CvArr* src2, + CvArr* dst, double scale CV_DEFAULT(1)); + +/** dst = src1 * scale + src2 */ +CVAPI(void) cvScaleAdd( const CvArr* src1, CvScalar scale, + const CvArr* src2, CvArr* dst ); +#define cvAXPY( A, real_scalar, B, C ) cvScaleAdd(A, cvRealScalar(real_scalar), B, C) + +/** dst = src1 * alpha + src2 * beta + gamma */ +CVAPI(void) cvAddWeighted( const CvArr* src1, double alpha, + const CvArr* src2, double beta, + double gamma, CvArr* dst ); + +/** @brief Calculates the dot product of two arrays in Euclidean metrics. + +The function calculates and returns the Euclidean dot product of two arrays. + +\f[src1 \bullet src2 = \sum _I ( \texttt{src1} (I) \texttt{src2} (I))\f] + +In the case of multiple channel arrays, the results for all channels are accumulated. In particular, +cvDotProduct(a,a) where a is a complex vector, will return \f$||\texttt{a}||^2\f$. The function can +process multi-dimensional arrays, row by row, layer by layer, and so on. +@param src1 The first source array +@param src2 The second source array + */ +CVAPI(double) cvDotProduct( const CvArr* src1, const CvArr* src2 ); + +/** dst(idx) = src1(idx) & src2(idx) */ +CVAPI(void) cvAnd( const CvArr* src1, const CvArr* src2, + CvArr* dst, const CvArr* mask CV_DEFAULT(NULL)); + +/** dst(idx) = src(idx) & value */ +CVAPI(void) cvAndS( const CvArr* src, CvScalar value, + CvArr* dst, const CvArr* mask CV_DEFAULT(NULL)); + +/** dst(idx) = src1(idx) | src2(idx) */ +CVAPI(void) cvOr( const CvArr* src1, const CvArr* src2, + CvArr* dst, const CvArr* mask CV_DEFAULT(NULL)); + +/** dst(idx) = src(idx) | value */ +CVAPI(void) cvOrS( const CvArr* src, CvScalar value, + CvArr* dst, const CvArr* mask CV_DEFAULT(NULL)); + +/** dst(idx) = src1(idx) ^ src2(idx) */ +CVAPI(void) cvXor( const CvArr* src1, const CvArr* src2, + CvArr* dst, const CvArr* mask CV_DEFAULT(NULL)); + +/** dst(idx) = src(idx) ^ value */ +CVAPI(void) cvXorS( const CvArr* src, CvScalar value, + CvArr* dst, const CvArr* mask CV_DEFAULT(NULL)); + +/** dst(idx) = ~src(idx) */ +CVAPI(void) cvNot( const CvArr* src, CvArr* dst ); + +/** dst(idx) = lower(idx) <= src(idx) < upper(idx) */ +CVAPI(void) cvInRange( const CvArr* src, const CvArr* lower, + const CvArr* upper, CvArr* dst ); + +/** dst(idx) = lower <= src(idx) < upper */ +CVAPI(void) cvInRangeS( const CvArr* src, CvScalar lower, + CvScalar upper, CvArr* dst ); + +#define CV_CMP_EQ 0 +#define CV_CMP_GT 1 +#define CV_CMP_GE 2 +#define CV_CMP_LT 3 +#define CV_CMP_LE 4 +#define CV_CMP_NE 5 + +/** The comparison operation support single-channel arrays only. + Destination image should be 8uC1 or 8sC1 */ + +/** dst(idx) = src1(idx) _cmp_op_ src2(idx) */ +CVAPI(void) cvCmp( const CvArr* src1, const CvArr* src2, CvArr* dst, int cmp_op ); + +/** dst(idx) = src1(idx) _cmp_op_ value */ +CVAPI(void) cvCmpS( const CvArr* src, double value, CvArr* dst, int cmp_op ); + +/** dst(idx) = min(src1(idx),src2(idx)) */ +CVAPI(void) cvMin( const CvArr* src1, const CvArr* src2, CvArr* dst ); + +/** dst(idx) = max(src1(idx),src2(idx)) */ +CVAPI(void) cvMax( const CvArr* src1, const CvArr* src2, CvArr* dst ); + +/** dst(idx) = min(src(idx),value) */ +CVAPI(void) cvMinS( const CvArr* src, double value, CvArr* dst ); + +/** dst(idx) = max(src(idx),value) */ +CVAPI(void) cvMaxS( const CvArr* src, double value, CvArr* dst ); + +/** dst(x,y,c) = abs(src1(x,y,c) - src2(x,y,c)) */ +CVAPI(void) cvAbsDiff( const CvArr* src1, const CvArr* src2, CvArr* dst ); + +/** dst(x,y,c) = abs(src(x,y,c) - value(c)) */ +CVAPI(void) cvAbsDiffS( const CvArr* src, CvArr* dst, CvScalar value ); +#define cvAbs( src, dst ) cvAbsDiffS( (src), (dst), cvScalarAll(0)) + +/****************************************************************************************\ +* Math operations * +\****************************************************************************************/ + +/** Does cartesian->polar coordinates conversion. + Either of output components (magnitude or angle) is optional */ +CVAPI(void) cvCartToPolar( const CvArr* x, const CvArr* y, + CvArr* magnitude, CvArr* angle CV_DEFAULT(NULL), + int angle_in_degrees CV_DEFAULT(0)); + +/** Does polar->cartesian coordinates conversion. + Either of output components (magnitude or angle) is optional. + If magnitude is missing it is assumed to be all 1's */ +CVAPI(void) cvPolarToCart( const CvArr* magnitude, const CvArr* angle, + CvArr* x, CvArr* y, + int angle_in_degrees CV_DEFAULT(0)); + +/** Does powering: dst(idx) = src(idx)^power */ +CVAPI(void) cvPow( const CvArr* src, CvArr* dst, double power ); + +/** Does exponention: dst(idx) = exp(src(idx)). + Overflow is not handled yet. Underflow is handled. + Maximal relative error is ~7e-6 for single-precision input */ +CVAPI(void) cvExp( const CvArr* src, CvArr* dst ); + +/** Calculates natural logarithms: dst(idx) = log(abs(src(idx))). + Logarithm of 0 gives large negative number(~-700) + Maximal relative error is ~3e-7 for single-precision output +*/ +CVAPI(void) cvLog( const CvArr* src, CvArr* dst ); + +/** Fast arctangent calculation */ +CVAPI(float) cvFastArctan( float y, float x ); + +/** Fast cubic root calculation */ +CVAPI(float) cvCbrt( float value ); + +#define CV_CHECK_RANGE 1 +#define CV_CHECK_QUIET 2 +/** Checks array values for NaNs, Infs or simply for too large numbers + (if CV_CHECK_RANGE is set). If CV_CHECK_QUIET is set, + no runtime errors is raised (function returns zero value in case of "bad" values). + Otherwise cvError is called */ +CVAPI(int) cvCheckArr( const CvArr* arr, int flags CV_DEFAULT(0), + double min_val CV_DEFAULT(0), double max_val CV_DEFAULT(0)); +#define cvCheckArray cvCheckArr + +#define CV_RAND_UNI 0 +#define CV_RAND_NORMAL 1 + +/** @brief Fills an array with random numbers and updates the RNG state. + +The function fills the destination array with uniformly or normally distributed random numbers. +@param rng CvRNG state initialized by cvRNG +@param arr The destination array +@param dist_type Distribution type +> - **CV_RAND_UNI** uniform distribution +> - **CV_RAND_NORMAL** normal or Gaussian distribution +@param param1 The first parameter of the distribution. In the case of a uniform distribution it is +the inclusive lower boundary of the random numbers range. In the case of a normal distribution it +is the mean value of the random numbers. +@param param2 The second parameter of the distribution. In the case of a uniform distribution it +is the exclusive upper boundary of the random numbers range. In the case of a normal distribution +it is the standard deviation of the random numbers. +@sa randu, randn, RNG::fill. + */ +CVAPI(void) cvRandArr( CvRNG* rng, CvArr* arr, int dist_type, + CvScalar param1, CvScalar param2 ); + +CVAPI(void) cvRandShuffle( CvArr* mat, CvRNG* rng, + double iter_factor CV_DEFAULT(1.)); + +#define CV_SORT_EVERY_ROW 0 +#define CV_SORT_EVERY_COLUMN 1 +#define CV_SORT_ASCENDING 0 +#define CV_SORT_DESCENDING 16 + +CVAPI(void) cvSort( const CvArr* src, CvArr* dst CV_DEFAULT(NULL), + CvArr* idxmat CV_DEFAULT(NULL), + int flags CV_DEFAULT(0)); + +/** Finds real roots of a cubic equation */ +CVAPI(int) cvSolveCubic( const CvMat* coeffs, CvMat* roots ); + +/** Finds all real and complex roots of a polynomial equation */ +CVAPI(void) cvSolvePoly(const CvMat* coeffs, CvMat *roots2, + int maxiter CV_DEFAULT(20), int fig CV_DEFAULT(100)); + +/****************************************************************************************\ +* Matrix operations * +\****************************************************************************************/ + +/** @brief Calculates the cross product of two 3D vectors. + +The function calculates the cross product of two 3D vectors: +\f[\texttt{dst} = \texttt{src1} \times \texttt{src2}\f] +or: +\f[\begin{array}{l} \texttt{dst} _1 = \texttt{src1} _2 \texttt{src2} _3 - \texttt{src1} _3 \texttt{src2} _2 \\ \texttt{dst} _2 = \texttt{src1} _3 \texttt{src2} _1 - \texttt{src1} _1 \texttt{src2} _3 \\ \texttt{dst} _3 = \texttt{src1} _1 \texttt{src2} _2 - \texttt{src1} _2 \texttt{src2} _1 \end{array}\f] +@param src1 The first source vector +@param src2 The second source vector +@param dst The destination vector + */ +CVAPI(void) cvCrossProduct( const CvArr* src1, const CvArr* src2, CvArr* dst ); + +/** Matrix transform: dst = A*B + C, C is optional */ +#define cvMatMulAdd( src1, src2, src3, dst ) cvGEMM( (src1), (src2), 1., (src3), 1., (dst), 0 ) +#define cvMatMul( src1, src2, dst ) cvMatMulAdd( (src1), (src2), NULL, (dst)) + +#define CV_GEMM_A_T 1 +#define CV_GEMM_B_T 2 +#define CV_GEMM_C_T 4 +/** Extended matrix transform: + dst = alpha*op(A)*op(B) + beta*op(C), where op(X) is X or X^T */ +CVAPI(void) cvGEMM( const CvArr* src1, const CvArr* src2, double alpha, + const CvArr* src3, double beta, CvArr* dst, + int tABC CV_DEFAULT(0)); +#define cvMatMulAddEx cvGEMM + +/** Transforms each element of source array and stores + resultant vectors in destination array */ +CVAPI(void) cvTransform( const CvArr* src, CvArr* dst, + const CvMat* transmat, + const CvMat* shiftvec CV_DEFAULT(NULL)); +#define cvMatMulAddS cvTransform + +/** Does perspective transform on every element of input array */ +CVAPI(void) cvPerspectiveTransform( const CvArr* src, CvArr* dst, + const CvMat* mat ); + +/** Calculates (A-delta)*(A-delta)^T (order=0) or (A-delta)^T*(A-delta) (order=1) */ +CVAPI(void) cvMulTransposed( const CvArr* src, CvArr* dst, int order, + const CvArr* delta CV_DEFAULT(NULL), + double scale CV_DEFAULT(1.) ); + +/** Tranposes matrix. Square matrices can be transposed in-place */ +CVAPI(void) cvTranspose( const CvArr* src, CvArr* dst ); +#define cvT cvTranspose + +/** Completes the symmetric matrix from the lower (LtoR=0) or from the upper (LtoR!=0) part */ +CVAPI(void) cvCompleteSymm( CvMat* matrix, int LtoR CV_DEFAULT(0) ); + +/** Mirror array data around horizontal (flip=0), + vertical (flip=1) or both(flip=-1) axises: + cvFlip(src) flips images vertically and sequences horizontally (inplace) */ +CVAPI(void) cvFlip( const CvArr* src, CvArr* dst CV_DEFAULT(NULL), + int flip_mode CV_DEFAULT(0)); +#define cvMirror cvFlip + + +#define CV_SVD_MODIFY_A 1 +#define CV_SVD_U_T 2 +#define CV_SVD_V_T 4 + +/** Performs Singular Value Decomposition of a matrix */ +CVAPI(void) cvSVD( CvArr* A, CvArr* W, CvArr* U CV_DEFAULT(NULL), + CvArr* V CV_DEFAULT(NULL), int flags CV_DEFAULT(0)); + +/** Performs Singular Value Back Substitution (solves A*X = B): + flags must be the same as in cvSVD */ +CVAPI(void) cvSVBkSb( const CvArr* W, const CvArr* U, + const CvArr* V, const CvArr* B, + CvArr* X, int flags ); + +#define CV_LU 0 +#define CV_SVD 1 +#define CV_SVD_SYM 2 +#define CV_CHOLESKY 3 +#define CV_QR 4 +#define CV_NORMAL 16 + +/** Inverts matrix */ +CVAPI(double) cvInvert( const CvArr* src, CvArr* dst, + int method CV_DEFAULT(CV_LU)); +#define cvInv cvInvert + +/** Solves linear system (src1)*(dst) = (src2) + (returns 0 if src1 is a singular and CV_LU method is used) */ +CVAPI(int) cvSolve( const CvArr* src1, const CvArr* src2, CvArr* dst, + int method CV_DEFAULT(CV_LU)); + +/** Calculates determinant of input matrix */ +CVAPI(double) cvDet( const CvArr* mat ); + +/** Calculates trace of the matrix (sum of elements on the main diagonal) */ +CVAPI(CvScalar) cvTrace( const CvArr* mat ); + +/** Finds eigen values and vectors of a symmetric matrix */ +CVAPI(void) cvEigenVV( CvArr* mat, CvArr* evects, CvArr* evals, + double eps CV_DEFAULT(0), + int lowindex CV_DEFAULT(-1), + int highindex CV_DEFAULT(-1)); + +///* Finds selected eigen values and vectors of a symmetric matrix */ +//CVAPI(void) cvSelectedEigenVV( CvArr* mat, CvArr* evects, CvArr* evals, +// int lowindex, int highindex ); + +/** Makes an identity matrix (mat_ij = i == j) */ +CVAPI(void) cvSetIdentity( CvArr* mat, CvScalar value CV_DEFAULT(cvRealScalar(1)) ); + +/** Fills matrix with given range of numbers */ +CVAPI(CvArr*) cvRange( CvArr* mat, double start, double end ); + +/** @anchor core_c_CovarFlags +@name Flags for cvCalcCovarMatrix +@see cvCalcCovarMatrix + @{ +*/ + +/** flag for cvCalcCovarMatrix, transpose([v1-avg, v2-avg,...]) * [v1-avg,v2-avg,...] */ +#define CV_COVAR_SCRAMBLED 0 + +/** flag for cvCalcCovarMatrix, [v1-avg, v2-avg,...] * transpose([v1-avg,v2-avg,...]) */ +#define CV_COVAR_NORMAL 1 + +/** flag for cvCalcCovarMatrix, do not calc average (i.e. mean vector) - use the input vector instead + (useful for calculating covariance matrix by parts) */ +#define CV_COVAR_USE_AVG 2 + +/** flag for cvCalcCovarMatrix, scale the covariance matrix coefficients by number of the vectors */ +#define CV_COVAR_SCALE 4 + +/** flag for cvCalcCovarMatrix, all the input vectors are stored in a single matrix, as its rows */ +#define CV_COVAR_ROWS 8 + +/** flag for cvCalcCovarMatrix, all the input vectors are stored in a single matrix, as its columns */ +#define CV_COVAR_COLS 16 + +/** @} */ + +/** Calculates covariation matrix for a set of vectors +@see @ref core_c_CovarFlags "flags" +*/ +CVAPI(void) cvCalcCovarMatrix( const CvArr** vects, int count, + CvArr* cov_mat, CvArr* avg, int flags ); + +#define CV_PCA_DATA_AS_ROW 0 +#define CV_PCA_DATA_AS_COL 1 +#define CV_PCA_USE_AVG 2 +CVAPI(void) cvCalcPCA( const CvArr* data, CvArr* mean, + CvArr* eigenvals, CvArr* eigenvects, int flags ); + +CVAPI(void) cvProjectPCA( const CvArr* data, const CvArr* mean, + const CvArr* eigenvects, CvArr* result ); + +CVAPI(void) cvBackProjectPCA( const CvArr* proj, const CvArr* mean, + const CvArr* eigenvects, CvArr* result ); + +/** Calculates Mahalanobis(weighted) distance */ +CVAPI(double) cvMahalanobis( const CvArr* vec1, const CvArr* vec2, const CvArr* mat ); +#define cvMahalonobis cvMahalanobis + +/****************************************************************************************\ +* Array Statistics * +\****************************************************************************************/ + +/** Finds sum of array elements */ +CVAPI(CvScalar) cvSum( const CvArr* arr ); + +/** Calculates number of non-zero pixels */ +CVAPI(int) cvCountNonZero( const CvArr* arr ); + +/** Calculates mean value of array elements */ +CVAPI(CvScalar) cvAvg( const CvArr* arr, const CvArr* mask CV_DEFAULT(NULL) ); + +/** Calculates mean and standard deviation of pixel values */ +CVAPI(void) cvAvgSdv( const CvArr* arr, CvScalar* mean, CvScalar* std_dev, + const CvArr* mask CV_DEFAULT(NULL) ); + +/** Finds global minimum, maximum and their positions */ +CVAPI(void) cvMinMaxLoc( const CvArr* arr, double* min_val, double* max_val, + CvPoint* min_loc CV_DEFAULT(NULL), + CvPoint* max_loc CV_DEFAULT(NULL), + const CvArr* mask CV_DEFAULT(NULL) ); + +/** @anchor core_c_NormFlags + @name Flags for cvNorm and cvNormalize + @{ +*/ +#define CV_C 1 +#define CV_L1 2 +#define CV_L2 4 +#define CV_NORM_MASK 7 +#define CV_RELATIVE 8 +#define CV_DIFF 16 +#define CV_MINMAX 32 + +#define CV_DIFF_C (CV_DIFF | CV_C) +#define CV_DIFF_L1 (CV_DIFF | CV_L1) +#define CV_DIFF_L2 (CV_DIFF | CV_L2) +#define CV_RELATIVE_C (CV_RELATIVE | CV_C) +#define CV_RELATIVE_L1 (CV_RELATIVE | CV_L1) +#define CV_RELATIVE_L2 (CV_RELATIVE | CV_L2) +/** @} */ + +/** Finds norm, difference norm or relative difference norm for an array (or two arrays) +@see ref core_c_NormFlags "flags" +*/ +CVAPI(double) cvNorm( const CvArr* arr1, const CvArr* arr2 CV_DEFAULT(NULL), + int norm_type CV_DEFAULT(CV_L2), + const CvArr* mask CV_DEFAULT(NULL) ); + +/** @see ref core_c_NormFlags "flags" */ +CVAPI(void) cvNormalize( const CvArr* src, CvArr* dst, + double a CV_DEFAULT(1.), double b CV_DEFAULT(0.), + int norm_type CV_DEFAULT(CV_L2), + const CvArr* mask CV_DEFAULT(NULL) ); + +/** @anchor core_c_ReduceFlags + @name Flags for cvReduce + @{ +*/ +#define CV_REDUCE_SUM 0 +#define CV_REDUCE_AVG 1 +#define CV_REDUCE_MAX 2 +#define CV_REDUCE_MIN 3 +/** @} */ + +/** @see @ref core_c_ReduceFlags "flags" */ +CVAPI(void) cvReduce( const CvArr* src, CvArr* dst, int dim CV_DEFAULT(-1), + int op CV_DEFAULT(CV_REDUCE_SUM) ); + +/****************************************************************************************\ +* Discrete Linear Transforms and Related Functions * +\****************************************************************************************/ + +/** @anchor core_c_DftFlags + @name Flags for cvDFT, cvDCT and cvMulSpectrums + @{ + */ +#define CV_DXT_FORWARD 0 +#define CV_DXT_INVERSE 1 +#define CV_DXT_SCALE 2 /**< divide result by size of array */ +#define CV_DXT_INV_SCALE (CV_DXT_INVERSE + CV_DXT_SCALE) +#define CV_DXT_INVERSE_SCALE CV_DXT_INV_SCALE +#define CV_DXT_ROWS 4 /**< transform each row individually */ +#define CV_DXT_MUL_CONJ 8 /**< conjugate the second argument of cvMulSpectrums */ +/** @} */ + +/** Discrete Fourier Transform: + complex->complex, + real->ccs (forward), + ccs->real (inverse) +@see core_c_DftFlags "flags" +*/ +CVAPI(void) cvDFT( const CvArr* src, CvArr* dst, int flags, + int nonzero_rows CV_DEFAULT(0) ); +#define cvFFT cvDFT + +/** Multiply results of DFTs: DFT(X)*DFT(Y) or DFT(X)*conj(DFT(Y)) +@see core_c_DftFlags "flags" +*/ +CVAPI(void) cvMulSpectrums( const CvArr* src1, const CvArr* src2, + CvArr* dst, int flags ); + +/** Finds optimal DFT vector size >= size0 */ +CVAPI(int) cvGetOptimalDFTSize( int size0 ); + +/** Discrete Cosine Transform +@see core_c_DftFlags "flags" +*/ +CVAPI(void) cvDCT( const CvArr* src, CvArr* dst, int flags ); + +/****************************************************************************************\ +* Dynamic data structures * +\****************************************************************************************/ + +/** Calculates length of sequence slice (with support of negative indices). */ +CVAPI(int) cvSliceLength( CvSlice slice, const CvSeq* seq ); + + +/** Creates new memory storage. + block_size == 0 means that default, + somewhat optimal size, is used (currently, it is 64K) */ +CVAPI(CvMemStorage*) cvCreateMemStorage( int block_size CV_DEFAULT(0)); + + +/** Creates a memory storage that will borrow memory blocks from parent storage */ +CVAPI(CvMemStorage*) cvCreateChildMemStorage( CvMemStorage* parent ); + + +/** Releases memory storage. All the children of a parent must be released before + the parent. A child storage returns all the blocks to parent when it is released */ +CVAPI(void) cvReleaseMemStorage( CvMemStorage** storage ); + + +/** Clears memory storage. This is the only way(!!!) (besides cvRestoreMemStoragePos) + to reuse memory allocated for the storage - cvClearSeq,cvClearSet ... + do not free any memory. + A child storage returns all the blocks to the parent when it is cleared */ +CVAPI(void) cvClearMemStorage( CvMemStorage* storage ); + +/** Remember a storage "free memory" position */ +CVAPI(void) cvSaveMemStoragePos( const CvMemStorage* storage, CvMemStoragePos* pos ); + +/** Restore a storage "free memory" position */ +CVAPI(void) cvRestoreMemStoragePos( CvMemStorage* storage, CvMemStoragePos* pos ); + +/** Allocates continuous buffer of the specified size in the storage */ +CVAPI(void*) cvMemStorageAlloc( CvMemStorage* storage, size_t size ); + +/** Allocates string in memory storage */ +CVAPI(CvString) cvMemStorageAllocString( CvMemStorage* storage, const char* ptr, + int len CV_DEFAULT(-1) ); + +/** Creates new empty sequence that will reside in the specified storage */ +CVAPI(CvSeq*) cvCreateSeq( int seq_flags, size_t header_size, + size_t elem_size, CvMemStorage* storage ); + +/** Changes default size (granularity) of sequence blocks. + The default size is ~1Kbyte */ +CVAPI(void) cvSetSeqBlockSize( CvSeq* seq, int delta_elems ); + + +/** Adds new element to the end of sequence. Returns pointer to the element */ +CVAPI(schar*) cvSeqPush( CvSeq* seq, const void* element CV_DEFAULT(NULL)); + + +/** Adds new element to the beginning of sequence. Returns pointer to it */ +CVAPI(schar*) cvSeqPushFront( CvSeq* seq, const void* element CV_DEFAULT(NULL)); + + +/** Removes the last element from sequence and optionally saves it */ +CVAPI(void) cvSeqPop( CvSeq* seq, void* element CV_DEFAULT(NULL)); + + +/** Removes the first element from sequence and optioanally saves it */ +CVAPI(void) cvSeqPopFront( CvSeq* seq, void* element CV_DEFAULT(NULL)); + + +#define CV_FRONT 1 +#define CV_BACK 0 +/** Adds several new elements to the end of sequence */ +CVAPI(void) cvSeqPushMulti( CvSeq* seq, const void* elements, + int count, int in_front CV_DEFAULT(0) ); + +/** Removes several elements from the end of sequence and optionally saves them */ +CVAPI(void) cvSeqPopMulti( CvSeq* seq, void* elements, + int count, int in_front CV_DEFAULT(0) ); + +/** Inserts a new element in the middle of sequence. + cvSeqInsert(seq,0,elem) == cvSeqPushFront(seq,elem) */ +CVAPI(schar*) cvSeqInsert( CvSeq* seq, int before_index, + const void* element CV_DEFAULT(NULL)); + +/** Removes specified sequence element */ +CVAPI(void) cvSeqRemove( CvSeq* seq, int index ); + + +/** Removes all the elements from the sequence. The freed memory + can be reused later only by the same sequence unless cvClearMemStorage + or cvRestoreMemStoragePos is called */ +CVAPI(void) cvClearSeq( CvSeq* seq ); + + +/** Retrieves pointer to specified sequence element. + Negative indices are supported and mean counting from the end + (e.g -1 means the last sequence element) */ +CVAPI(schar*) cvGetSeqElem( const CvSeq* seq, int index ); + +/** Calculates index of the specified sequence element. + Returns -1 if element does not belong to the sequence */ +CVAPI(int) cvSeqElemIdx( const CvSeq* seq, const void* element, + CvSeqBlock** block CV_DEFAULT(NULL) ); + +/** Initializes sequence writer. The new elements will be added to the end of sequence */ +CVAPI(void) cvStartAppendToSeq( CvSeq* seq, CvSeqWriter* writer ); + + +/** Combination of cvCreateSeq and cvStartAppendToSeq */ +CVAPI(void) cvStartWriteSeq( int seq_flags, int header_size, + int elem_size, CvMemStorage* storage, + CvSeqWriter* writer ); + +/** Closes sequence writer, updates sequence header and returns pointer + to the resultant sequence + (which may be useful if the sequence was created using cvStartWriteSeq)) +*/ +CVAPI(CvSeq*) cvEndWriteSeq( CvSeqWriter* writer ); + + +/** Updates sequence header. May be useful to get access to some of previously + written elements via cvGetSeqElem or sequence reader */ +CVAPI(void) cvFlushSeqWriter( CvSeqWriter* writer ); + + +/** Initializes sequence reader. + The sequence can be read in forward or backward direction */ +CVAPI(void) cvStartReadSeq( const CvSeq* seq, CvSeqReader* reader, + int reverse CV_DEFAULT(0) ); + + +/** Returns current sequence reader position (currently observed sequence element) */ +CVAPI(int) cvGetSeqReaderPos( CvSeqReader* reader ); + + +/** Changes sequence reader position. It may seek to an absolute or + to relative to the current position */ +CVAPI(void) cvSetSeqReaderPos( CvSeqReader* reader, int index, + int is_relative CV_DEFAULT(0)); + +/** Copies sequence content to a continuous piece of memory */ +CVAPI(void*) cvCvtSeqToArray( const CvSeq* seq, void* elements, + CvSlice slice CV_DEFAULT(CV_WHOLE_SEQ) ); + +/** Creates sequence header for array. + After that all the operations on sequences that do not alter the content + can be applied to the resultant sequence */ +CVAPI(CvSeq*) cvMakeSeqHeaderForArray( int seq_type, int header_size, + int elem_size, void* elements, int total, + CvSeq* seq, CvSeqBlock* block ); + +/** Extracts sequence slice (with or without copying sequence elements) */ +CVAPI(CvSeq*) cvSeqSlice( const CvSeq* seq, CvSlice slice, + CvMemStorage* storage CV_DEFAULT(NULL), + int copy_data CV_DEFAULT(0)); + +CV_INLINE CvSeq* cvCloneSeq( const CvSeq* seq, CvMemStorage* storage CV_DEFAULT(NULL)) +{ + return cvSeqSlice( seq, CV_WHOLE_SEQ, storage, 1 ); +} + +/** Removes sequence slice */ +CVAPI(void) cvSeqRemoveSlice( CvSeq* seq, CvSlice slice ); + +/** Inserts a sequence or array into another sequence */ +CVAPI(void) cvSeqInsertSlice( CvSeq* seq, int before_index, const CvArr* from_arr ); + +/** a < b ? -1 : a > b ? 1 : 0 */ +typedef int (CV_CDECL* CvCmpFunc)(const void* a, const void* b, void* userdata ); + +/** Sorts sequence in-place given element comparison function */ +CVAPI(void) cvSeqSort( CvSeq* seq, CvCmpFunc func, void* userdata CV_DEFAULT(NULL) ); + +/** Finds element in a [sorted] sequence */ +CVAPI(schar*) cvSeqSearch( CvSeq* seq, const void* elem, CvCmpFunc func, + int is_sorted, int* elem_idx, + void* userdata CV_DEFAULT(NULL) ); + +/** Reverses order of sequence elements in-place */ +CVAPI(void) cvSeqInvert( CvSeq* seq ); + +/** Splits sequence into one or more equivalence classes using the specified criteria */ +CVAPI(int) cvSeqPartition( const CvSeq* seq, CvMemStorage* storage, + CvSeq** labels, CvCmpFunc is_equal, void* userdata ); + +/************ Internal sequence functions ************/ +CVAPI(void) cvChangeSeqBlock( void* reader, int direction ); +CVAPI(void) cvCreateSeqBlock( CvSeqWriter* writer ); + + +/** Creates a new set */ +CVAPI(CvSet*) cvCreateSet( int set_flags, int header_size, + int elem_size, CvMemStorage* storage ); + +/** Adds new element to the set and returns pointer to it */ +CVAPI(int) cvSetAdd( CvSet* set_header, CvSetElem* elem CV_DEFAULT(NULL), + CvSetElem** inserted_elem CV_DEFAULT(NULL) ); + +/** Fast variant of cvSetAdd */ +CV_INLINE CvSetElem* cvSetNew( CvSet* set_header ) +{ + CvSetElem* elem = set_header->free_elems; + if( elem ) + { + set_header->free_elems = elem->next_free; + elem->flags = elem->flags & CV_SET_ELEM_IDX_MASK; + set_header->active_count++; + } + else + cvSetAdd( set_header, NULL, &elem ); + return elem; +} + +/** Removes set element given its pointer */ +CV_INLINE void cvSetRemoveByPtr( CvSet* set_header, void* elem ) +{ + CvSetElem* _elem = (CvSetElem*)elem; + assert( _elem->flags >= 0 /*&& (elem->flags & CV_SET_ELEM_IDX_MASK) < set_header->total*/ ); + _elem->next_free = set_header->free_elems; + _elem->flags = (_elem->flags & CV_SET_ELEM_IDX_MASK) | CV_SET_ELEM_FREE_FLAG; + set_header->free_elems = _elem; + set_header->active_count--; +} + +/** Removes element from the set by its index */ +CVAPI(void) cvSetRemove( CvSet* set_header, int index ); + +/** Returns a set element by index. If the element doesn't belong to the set, + NULL is returned */ +CV_INLINE CvSetElem* cvGetSetElem( const CvSet* set_header, int idx ) +{ + CvSetElem* elem = (CvSetElem*)(void *)cvGetSeqElem( (CvSeq*)set_header, idx ); + return elem && CV_IS_SET_ELEM( elem ) ? elem : 0; +} + +/** Removes all the elements from the set */ +CVAPI(void) cvClearSet( CvSet* set_header ); + +/** Creates new graph */ +CVAPI(CvGraph*) cvCreateGraph( int graph_flags, int header_size, + int vtx_size, int edge_size, + CvMemStorage* storage ); + +/** Adds new vertex to the graph */ +CVAPI(int) cvGraphAddVtx( CvGraph* graph, const CvGraphVtx* vtx CV_DEFAULT(NULL), + CvGraphVtx** inserted_vtx CV_DEFAULT(NULL) ); + + +/** Removes vertex from the graph together with all incident edges */ +CVAPI(int) cvGraphRemoveVtx( CvGraph* graph, int index ); +CVAPI(int) cvGraphRemoveVtxByPtr( CvGraph* graph, CvGraphVtx* vtx ); + + +/** Link two vertices specifed by indices or pointers if they + are not connected or return pointer to already existing edge + connecting the vertices. + Functions return 1 if a new edge was created, 0 otherwise */ +CVAPI(int) cvGraphAddEdge( CvGraph* graph, + int start_idx, int end_idx, + const CvGraphEdge* edge CV_DEFAULT(NULL), + CvGraphEdge** inserted_edge CV_DEFAULT(NULL) ); + +CVAPI(int) cvGraphAddEdgeByPtr( CvGraph* graph, + CvGraphVtx* start_vtx, CvGraphVtx* end_vtx, + const CvGraphEdge* edge CV_DEFAULT(NULL), + CvGraphEdge** inserted_edge CV_DEFAULT(NULL) ); + +/** Remove edge connecting two vertices */ +CVAPI(void) cvGraphRemoveEdge( CvGraph* graph, int start_idx, int end_idx ); +CVAPI(void) cvGraphRemoveEdgeByPtr( CvGraph* graph, CvGraphVtx* start_vtx, + CvGraphVtx* end_vtx ); + +/** Find edge connecting two vertices */ +CVAPI(CvGraphEdge*) cvFindGraphEdge( const CvGraph* graph, int start_idx, int end_idx ); +CVAPI(CvGraphEdge*) cvFindGraphEdgeByPtr( const CvGraph* graph, + const CvGraphVtx* start_vtx, + const CvGraphVtx* end_vtx ); +#define cvGraphFindEdge cvFindGraphEdge +#define cvGraphFindEdgeByPtr cvFindGraphEdgeByPtr + +/** Remove all vertices and edges from the graph */ +CVAPI(void) cvClearGraph( CvGraph* graph ); + + +/** Count number of edges incident to the vertex */ +CVAPI(int) cvGraphVtxDegree( const CvGraph* graph, int vtx_idx ); +CVAPI(int) cvGraphVtxDegreeByPtr( const CvGraph* graph, const CvGraphVtx* vtx ); + + +/** Retrieves graph vertex by given index */ +#define cvGetGraphVtx( graph, idx ) (CvGraphVtx*)cvGetSetElem((CvSet*)(graph), (idx)) + +/** Retrieves index of a graph vertex given its pointer */ +#define cvGraphVtxIdx( graph, vtx ) ((vtx)->flags & CV_SET_ELEM_IDX_MASK) + +/** Retrieves index of a graph edge given its pointer */ +#define cvGraphEdgeIdx( graph, edge ) ((edge)->flags & CV_SET_ELEM_IDX_MASK) + +#define cvGraphGetVtxCount( graph ) ((graph)->active_count) +#define cvGraphGetEdgeCount( graph ) ((graph)->edges->active_count) + +#define CV_GRAPH_VERTEX 1 +#define CV_GRAPH_TREE_EDGE 2 +#define CV_GRAPH_BACK_EDGE 4 +#define CV_GRAPH_FORWARD_EDGE 8 +#define CV_GRAPH_CROSS_EDGE 16 +#define CV_GRAPH_ANY_EDGE 30 +#define CV_GRAPH_NEW_TREE 32 +#define CV_GRAPH_BACKTRACKING 64 +#define CV_GRAPH_OVER -1 + +#define CV_GRAPH_ALL_ITEMS -1 + +/** flags for graph vertices and edges */ +#define CV_GRAPH_ITEM_VISITED_FLAG (1 << 30) +#define CV_IS_GRAPH_VERTEX_VISITED(vtx) \ + (((CvGraphVtx*)(vtx))->flags & CV_GRAPH_ITEM_VISITED_FLAG) +#define CV_IS_GRAPH_EDGE_VISITED(edge) \ + (((CvGraphEdge*)(edge))->flags & CV_GRAPH_ITEM_VISITED_FLAG) +#define CV_GRAPH_SEARCH_TREE_NODE_FLAG (1 << 29) +#define CV_GRAPH_FORWARD_EDGE_FLAG (1 << 28) + +typedef struct CvGraphScanner +{ + CvGraphVtx* vtx; /* current graph vertex (or current edge origin) */ + CvGraphVtx* dst; /* current graph edge destination vertex */ + CvGraphEdge* edge; /* current edge */ + + CvGraph* graph; /* the graph */ + CvSeq* stack; /* the graph vertex stack */ + int index; /* the lower bound of certainly visited vertices */ + int mask; /* event mask */ +} +CvGraphScanner; + +/** Creates new graph scanner. */ +CVAPI(CvGraphScanner*) cvCreateGraphScanner( CvGraph* graph, + CvGraphVtx* vtx CV_DEFAULT(NULL), + int mask CV_DEFAULT(CV_GRAPH_ALL_ITEMS)); + +/** Releases graph scanner. */ +CVAPI(void) cvReleaseGraphScanner( CvGraphScanner** scanner ); + +/** Get next graph element */ +CVAPI(int) cvNextGraphItem( CvGraphScanner* scanner ); + +/** Creates a copy of graph */ +CVAPI(CvGraph*) cvCloneGraph( const CvGraph* graph, CvMemStorage* storage ); + + +/** Does look-up transformation. Elements of the source array + (that should be 8uC1 or 8sC1) are used as indexes in lutarr 256-element table */ +CVAPI(void) cvLUT( const CvArr* src, CvArr* dst, const CvArr* lut ); + + +/******************* Iteration through the sequence tree *****************/ +typedef struct CvTreeNodeIterator +{ + const void* node; + int level; + int max_level; +} +CvTreeNodeIterator; + +CVAPI(void) cvInitTreeNodeIterator( CvTreeNodeIterator* tree_iterator, + const void* first, int max_level ); +CVAPI(void*) cvNextTreeNode( CvTreeNodeIterator* tree_iterator ); +CVAPI(void*) cvPrevTreeNode( CvTreeNodeIterator* tree_iterator ); + +/** Inserts sequence into tree with specified "parent" sequence. + If parent is equal to frame (e.g. the most external contour), + then added contour will have null pointer to parent. */ +CVAPI(void) cvInsertNodeIntoTree( void* node, void* parent, void* frame ); + +/** Removes contour from tree (together with the contour children). */ +CVAPI(void) cvRemoveNodeFromTree( void* node, void* frame ); + +/** Gathers pointers to all the sequences, + accessible from the `first`, to the single sequence */ +CVAPI(CvSeq*) cvTreeToNodeSeq( const void* first, int header_size, + CvMemStorage* storage ); + +/** The function implements the K-means algorithm for clustering an array of sample + vectors in a specified number of classes */ +#define CV_KMEANS_USE_INITIAL_LABELS 1 +CVAPI(int) cvKMeans2( const CvArr* samples, int cluster_count, CvArr* labels, + CvTermCriteria termcrit, int attempts CV_DEFAULT(1), + CvRNG* rng CV_DEFAULT(0), int flags CV_DEFAULT(0), + CvArr* _centers CV_DEFAULT(0), double* compactness CV_DEFAULT(0) ); + +/****************************************************************************************\ +* System functions * +\****************************************************************************************/ + +/** Loads optimized functions from IPP, MKL etc. or switches back to pure C code */ +CVAPI(int) cvUseOptimized( int on_off ); + +typedef IplImage* (CV_STDCALL* Cv_iplCreateImageHeader) + (int,int,int,char*,char*,int,int,int,int,int, + IplROI*,IplImage*,void*,IplTileInfo*); +typedef void (CV_STDCALL* Cv_iplAllocateImageData)(IplImage*,int,int); +typedef void (CV_STDCALL* Cv_iplDeallocate)(IplImage*,int); +typedef IplROI* (CV_STDCALL* Cv_iplCreateROI)(int,int,int,int,int); +typedef IplImage* (CV_STDCALL* Cv_iplCloneImage)(const IplImage*); + +/** @brief Makes OpenCV use IPL functions for allocating IplImage and IplROI structures. + +Normally, the function is not called directly. Instead, a simple macro +CV_TURN_ON_IPL_COMPATIBILITY() is used that calls cvSetIPLAllocators and passes there pointers +to IPL allocation functions. : +@code + ... + CV_TURN_ON_IPL_COMPATIBILITY() + ... +@endcode +@param create_header pointer to a function, creating IPL image header. +@param allocate_data pointer to a function, allocating IPL image data. +@param deallocate pointer to a function, deallocating IPL image. +@param create_roi pointer to a function, creating IPL image ROI (i.e. Region of Interest). +@param clone_image pointer to a function, cloning an IPL image. + */ +CVAPI(void) cvSetIPLAllocators( Cv_iplCreateImageHeader create_header, + Cv_iplAllocateImageData allocate_data, + Cv_iplDeallocate deallocate, + Cv_iplCreateROI create_roi, + Cv_iplCloneImage clone_image ); + +#define CV_TURN_ON_IPL_COMPATIBILITY() \ + cvSetIPLAllocators( iplCreateImageHeader, iplAllocateImage, \ + iplDeallocate, iplCreateROI, iplCloneImage ) + +/****************************************************************************************\ +* Data Persistence * +\****************************************************************************************/ + +/********************************** High-level functions ********************************/ + +/** @brief Opens file storage for reading or writing data. + +The function opens file storage for reading or writing data. In the latter case, a new file is +created or an existing file is rewritten. The type of the read or written file is determined by the +filename extension: .xml for XML, .yml or .yaml for YAML and .json for JSON. + +At the same time, it also supports adding parameters like "example.xml?base64". The three ways +are the same: +@snippet samples/cpp/filestorage_base64.cpp suffix_in_file_name +@snippet samples/cpp/filestorage_base64.cpp flag_write_base64 +@snippet samples/cpp/filestorage_base64.cpp flag_write_and_flag_base64 + +The function returns a pointer to the CvFileStorage structure. +If the file cannot be opened then the function returns NULL. +@param filename Name of the file associated with the storage +@param memstorage Memory storage used for temporary data and for +: storing dynamic structures, such as CvSeq or CvGraph . If it is NULL, a temporary memory + storage is created and used. +@param flags Can be one of the following: +> - **CV_STORAGE_READ** the storage is open for reading +> - **CV_STORAGE_WRITE** the storage is open for writing + (use **CV_STORAGE_WRITE | CV_STORAGE_WRITE_BASE64** to write rawdata in Base64) +@param encoding + */ +CVAPI(CvFileStorage*) cvOpenFileStorage( const char* filename, CvMemStorage* memstorage, + int flags, const char* encoding CV_DEFAULT(NULL) ); + +/** @brief Releases file storage. + +The function closes the file associated with the storage and releases all the temporary structures. +It must be called after all I/O operations with the storage are finished. +@param fs Double pointer to the released file storage + */ +CVAPI(void) cvReleaseFileStorage( CvFileStorage** fs ); + +/** returns attribute value or 0 (NULL) if there is no such attribute */ +CVAPI(const char*) cvAttrValue( const CvAttrList* attr, const char* attr_name ); + +/** @brief Starts writing a new structure. + +The function starts writing a compound structure (collection) that can be a sequence or a map. After +all the structure fields, which can be scalars or structures, are written, cvEndWriteStruct should +be called. The function can be used to group some objects or to implement the write function for a +some user object (see CvTypeInfo). +@param fs File storage +@param name Name of the written structure. The structure can be accessed by this name when the +storage is read. +@param struct_flags A combination one of the following values: +- **CV_NODE_SEQ** the written structure is a sequence (see discussion of CvFileStorage ), + that is, its elements do not have a name. +- **CV_NODE_MAP** the written structure is a map (see discussion of CvFileStorage ), that + is, all its elements have names. +One and only one of the two above flags must be specified +- **CV_NODE_FLOW** the optional flag that makes sense only for YAML streams. It means that + the structure is written as a flow (not as a block), which is more compact. It is + recommended to use this flag for structures or arrays whose elements are all scalars. +@param type_name Optional parameter - the object type name. In + case of XML it is written as a type_id attribute of the structure opening tag. In the case of + YAML it is written after a colon following the structure name (see the example in + CvFileStorage description). In case of JSON it is written as a name/value pair. + Mainly it is used with user objects. When the storage is read, the + encoded type name is used to determine the object type (see CvTypeInfo and cvFindType ). +@param attributes This parameter is not used in the current implementation + */ +CVAPI(void) cvStartWriteStruct( CvFileStorage* fs, const char* name, + int struct_flags, const char* type_name CV_DEFAULT(NULL), + CvAttrList attributes CV_DEFAULT(cvAttrList())); + +/** @brief Finishes writing to a file node collection. +@param fs File storage +@sa cvStartWriteStruct. + */ +CVAPI(void) cvEndWriteStruct( CvFileStorage* fs ); + +/** @brief Writes an integer value. + +The function writes a single integer value (with or without a name) to the file storage. +@param fs File storage +@param name Name of the written value. Should be NULL if and only if the parent structure is a +sequence. +@param value The written value + */ +CVAPI(void) cvWriteInt( CvFileStorage* fs, const char* name, int value ); + +/** @brief Writes a floating-point value. + +The function writes a single floating-point value (with or without a name) to file storage. Special +values are encoded as follows: NaN (Not A Number) as .NaN, infinity as +.Inf or -.Inf. + +The following example shows how to use the low-level writing functions to store custom structures, +such as termination criteria, without registering a new type. : +@code + void write_termcriteria( CvFileStorage* fs, const char* struct_name, + CvTermCriteria* termcrit ) + { + cvStartWriteStruct( fs, struct_name, CV_NODE_MAP, NULL, cvAttrList(0,0)); + cvWriteComment( fs, "termination criteria", 1 ); // just a description + if( termcrit->type & CV_TERMCRIT_ITER ) + cvWriteInteger( fs, "max_iterations", termcrit->max_iter ); + if( termcrit->type & CV_TERMCRIT_EPS ) + cvWriteReal( fs, "accuracy", termcrit->epsilon ); + cvEndWriteStruct( fs ); + } +@endcode +@param fs File storage +@param name Name of the written value. Should be NULL if and only if the parent structure is a +sequence. +@param value The written value +*/ +CVAPI(void) cvWriteReal( CvFileStorage* fs, const char* name, double value ); + +/** @brief Writes a text string. + +The function writes a text string to file storage. +@param fs File storage +@param name Name of the written string . Should be NULL if and only if the parent structure is a +sequence. +@param str The written text string +@param quote If non-zero, the written string is put in quotes, regardless of whether they are +required. Otherwise, if the flag is zero, quotes are used only when they are required (e.g. when +the string starts with a digit or contains spaces). + */ +CVAPI(void) cvWriteString( CvFileStorage* fs, const char* name, + const char* str, int quote CV_DEFAULT(0) ); + +/** @brief Writes a comment. + +The function writes a comment into file storage. The comments are skipped when the storage is read. +@param fs File storage +@param comment The written comment, single-line or multi-line +@param eol_comment If non-zero, the function tries to put the comment at the end of current line. +If the flag is zero, if the comment is multi-line, or if it does not fit at the end of the current +line, the comment starts a new line. + */ +CVAPI(void) cvWriteComment( CvFileStorage* fs, const char* comment, + int eol_comment ); + +/** @brief Writes an object to file storage. + +The function writes an object to file storage. First, the appropriate type info is found using +cvTypeOf. Then, the write method associated with the type info is called. + +Attributes are used to customize the writing procedure. The standard types support the following +attributes (all the dt attributes have the same format as in cvWriteRawData): + +-# CvSeq + - **header_dt** description of user fields of the sequence header that follow CvSeq, or + CvChain (if the sequence is a Freeman chain) or CvContour (if the sequence is a contour or + point sequence) + - **dt** description of the sequence elements. + - **recursive** if the attribute is present and is not equal to "0" or "false", the whole + tree of sequences (contours) is stored. +-# CvGraph + - **header_dt** description of user fields of the graph header that follows CvGraph; + - **vertex_dt** description of user fields of graph vertices + - **edge_dt** description of user fields of graph edges (note that the edge weight is + always written, so there is no need to specify it explicitly) + +Below is the code that creates the YAML file shown in the CvFileStorage description: +@code + #include "cxcore.h" + + int main( int argc, char** argv ) + { + CvMat* mat = cvCreateMat( 3, 3, CV_32F ); + CvFileStorage* fs = cvOpenFileStorage( "example.yml", 0, CV_STORAGE_WRITE ); + + cvSetIdentity( mat ); + cvWrite( fs, "A", mat, cvAttrList(0,0) ); + + cvReleaseFileStorage( &fs ); + cvReleaseMat( &mat ); + return 0; + } +@endcode +@param fs File storage +@param name Name of the written object. Should be NULL if and only if the parent structure is a +sequence. +@param ptr Pointer to the object +@param attributes The attributes of the object. They are specific for each particular type (see +the discussion below). + */ +CVAPI(void) cvWrite( CvFileStorage* fs, const char* name, const void* ptr, + CvAttrList attributes CV_DEFAULT(cvAttrList())); + +/** @brief Starts the next stream. + +The function finishes the currently written stream and starts the next stream. In the case of XML +the file with multiple streams looks like this: +@code{.xml} + + + + + + + ... +@endcode +The YAML file will look like this: +@code{.yaml} + %YAML 1.0 + # stream #1 data + ... + --- + # stream #2 data +@endcode +This is useful for concatenating files or for resuming the writing process. +@param fs File storage + */ +CVAPI(void) cvStartNextStream( CvFileStorage* fs ); + +/** @brief Writes multiple numbers. + +The function writes an array, whose elements consist of single or multiple numbers. The function +call can be replaced with a loop containing a few cvWriteInt and cvWriteReal calls, but a single +call is more efficient. Note that because none of the elements have a name, they should be written +to a sequence rather than a map. +@param fs File storage +@param src Pointer to the written array +@param len Number of the array elements to write +@param dt Specification of each array element, see @ref format_spec "format specification" + */ +CVAPI(void) cvWriteRawData( CvFileStorage* fs, const void* src, + int len, const char* dt ); + +/** @brief Writes multiple numbers in Base64. + +If either CV_STORAGE_WRITE_BASE64 or cv::FileStorage::WRITE_BASE64 is used, +this function will be the same as cvWriteRawData. If neither, the main +difference is that it outputs a sequence in Base64 encoding rather than +in plain text. + +This function can only be used to write a sequence with a type "binary". + +Consider the following two examples where their output is the same: +@snippet samples/cpp/filestorage_base64.cpp without_base64_flag +and +@snippet samples/cpp/filestorage_base64.cpp with_write_base64_flag + +@param fs File storage +@param src Pointer to the written array +@param len Number of the array elements to write +@param dt Specification of each array element, see @ref format_spec "format specification" +*/ +CVAPI(void) cvWriteRawDataBase64( CvFileStorage* fs, const void* src, + int len, const char* dt ); + +/** @brief Returns a unique pointer for a given name. + +The function returns a unique pointer for each particular file node name. This pointer can be then +passed to the cvGetFileNode function that is faster than cvGetFileNodeByName because it compares +text strings by comparing pointers rather than the strings' content. + +Consider the following example where an array of points is encoded as a sequence of 2-entry maps: +@code + points: + - { x: 10, y: 10 } + - { x: 20, y: 20 } + - { x: 30, y: 30 } + # ... +@endcode +Then, it is possible to get hashed "x" and "y" pointers to speed up decoding of the points. : +@code + #include "cxcore.h" + + int main( int argc, char** argv ) + { + CvFileStorage* fs = cvOpenFileStorage( "points.yml", 0, CV_STORAGE_READ ); + CvStringHashNode* x_key = cvGetHashedNode( fs, "x", -1, 1 ); + CvStringHashNode* y_key = cvGetHashedNode( fs, "y", -1, 1 ); + CvFileNode* points = cvGetFileNodeByName( fs, 0, "points" ); + + if( CV_NODE_IS_SEQ(points->tag) ) + { + CvSeq* seq = points->data.seq; + int i, total = seq->total; + CvSeqReader reader; + cvStartReadSeq( seq, &reader, 0 ); + for( i = 0; i < total; i++ ) + { + CvFileNode* pt = (CvFileNode*)reader.ptr; + #if 1 // faster variant + CvFileNode* xnode = cvGetFileNode( fs, pt, x_key, 0 ); + CvFileNode* ynode = cvGetFileNode( fs, pt, y_key, 0 ); + assert( xnode && CV_NODE_IS_INT(xnode->tag) && + ynode && CV_NODE_IS_INT(ynode->tag)); + int x = xnode->data.i; // or x = cvReadInt( xnode, 0 ); + int y = ynode->data.i; // or y = cvReadInt( ynode, 0 ); + #elif 1 // slower variant; does not use x_key & y_key + CvFileNode* xnode = cvGetFileNodeByName( fs, pt, "x" ); + CvFileNode* ynode = cvGetFileNodeByName( fs, pt, "y" ); + assert( xnode && CV_NODE_IS_INT(xnode->tag) && + ynode && CV_NODE_IS_INT(ynode->tag)); + int x = xnode->data.i; // or x = cvReadInt( xnode, 0 ); + int y = ynode->data.i; // or y = cvReadInt( ynode, 0 ); + #else // the slowest yet the easiest to use variant + int x = cvReadIntByName( fs, pt, "x", 0 ); + int y = cvReadIntByName( fs, pt, "y", 0 ); + #endif + CV_NEXT_SEQ_ELEM( seq->elem_size, reader ); + printf(" + } + } + cvReleaseFileStorage( &fs ); + return 0; + } +@endcode +Please note that whatever method of accessing a map you are using, it is still much slower than +using plain sequences; for example, in the above example, it is more efficient to encode the points +as pairs of integers in a single numeric sequence. +@param fs File storage +@param name Literal node name +@param len Length of the name (if it is known apriori), or -1 if it needs to be calculated +@param create_missing Flag that specifies, whether an absent key should be added into the hash table +*/ +CVAPI(CvStringHashNode*) cvGetHashedKey( CvFileStorage* fs, const char* name, + int len CV_DEFAULT(-1), + int create_missing CV_DEFAULT(0)); + +/** @brief Retrieves one of the top-level nodes of the file storage. + +The function returns one of the top-level file nodes. The top-level nodes do not have a name, they +correspond to the streams that are stored one after another in the file storage. If the index is out +of range, the function returns a NULL pointer, so all the top-level nodes can be iterated by +subsequent calls to the function with stream_index=0,1,..., until the NULL pointer is returned. +This function can be used as a base for recursive traversal of the file storage. +@param fs File storage +@param stream_index Zero-based index of the stream. See cvStartNextStream . In most cases, +there is only one stream in the file; however, there can be several. + */ +CVAPI(CvFileNode*) cvGetRootFileNode( const CvFileStorage* fs, + int stream_index CV_DEFAULT(0) ); + +/** @brief Finds a node in a map or file storage. + +The function finds a file node. It is a faster version of cvGetFileNodeByName (see +cvGetHashedKey discussion). Also, the function can insert a new node, if it is not in the map yet. +@param fs File storage +@param map The parent map. If it is NULL, the function searches a top-level node. If both map and +key are NULLs, the function returns the root file node - a map that contains top-level nodes. +@param key Unique pointer to the node name, retrieved with cvGetHashedKey +@param create_missing Flag that specifies whether an absent node should be added to the map + */ +CVAPI(CvFileNode*) cvGetFileNode( CvFileStorage* fs, CvFileNode* map, + const CvStringHashNode* key, + int create_missing CV_DEFAULT(0) ); + +/** @brief Finds a node in a map or file storage. + +The function finds a file node by name. The node is searched either in map or, if the pointer is +NULL, among the top-level file storage nodes. Using this function for maps and cvGetSeqElem (or +sequence reader) for sequences, it is possible to navigate through the file storage. To speed up +multiple queries for a certain key (e.g., in the case of an array of structures) one may use a +combination of cvGetHashedKey and cvGetFileNode. +@param fs File storage +@param map The parent map. If it is NULL, the function searches in all the top-level nodes +(streams), starting with the first one. +@param name The file node name + */ +CVAPI(CvFileNode*) cvGetFileNodeByName( const CvFileStorage* fs, + const CvFileNode* map, + const char* name ); + +/** @brief Retrieves an integer value from a file node. + +The function returns an integer that is represented by the file node. If the file node is NULL, the +default_value is returned (thus, it is convenient to call the function right after cvGetFileNode +without checking for a NULL pointer). If the file node has type CV_NODE_INT, then node-\>data.i is +returned. If the file node has type CV_NODE_REAL, then node-\>data.f is converted to an integer +and returned. Otherwise the error is reported. +@param node File node +@param default_value The value that is returned if node is NULL + */ +CV_INLINE int cvReadInt( const CvFileNode* node, int default_value CV_DEFAULT(0) ) +{ + return !node ? default_value : + CV_NODE_IS_INT(node->tag) ? node->data.i : + CV_NODE_IS_REAL(node->tag) ? cvRound(node->data.f) : 0x7fffffff; +} + +/** @brief Finds a file node and returns its value. + +The function is a simple superposition of cvGetFileNodeByName and cvReadInt. +@param fs File storage +@param map The parent map. If it is NULL, the function searches a top-level node. +@param name The node name +@param default_value The value that is returned if the file node is not found + */ +CV_INLINE int cvReadIntByName( const CvFileStorage* fs, const CvFileNode* map, + const char* name, int default_value CV_DEFAULT(0) ) +{ + return cvReadInt( cvGetFileNodeByName( fs, map, name ), default_value ); +} + +/** @brief Retrieves a floating-point value from a file node. + +The function returns a floating-point value that is represented by the file node. If the file node +is NULL, the default_value is returned (thus, it is convenient to call the function right after +cvGetFileNode without checking for a NULL pointer). If the file node has type CV_NODE_REAL , +then node-\>data.f is returned. If the file node has type CV_NODE_INT , then node-:math:\>data.f +is converted to floating-point and returned. Otherwise the result is not determined. +@param node File node +@param default_value The value that is returned if node is NULL + */ +CV_INLINE double cvReadReal( const CvFileNode* node, double default_value CV_DEFAULT(0.) ) +{ + return !node ? default_value : + CV_NODE_IS_INT(node->tag) ? (double)node->data.i : + CV_NODE_IS_REAL(node->tag) ? node->data.f : 1e300; +} + +/** @brief Finds a file node and returns its value. + +The function is a simple superposition of cvGetFileNodeByName and cvReadReal . +@param fs File storage +@param map The parent map. If it is NULL, the function searches a top-level node. +@param name The node name +@param default_value The value that is returned if the file node is not found + */ +CV_INLINE double cvReadRealByName( const CvFileStorage* fs, const CvFileNode* map, + const char* name, double default_value CV_DEFAULT(0.) ) +{ + return cvReadReal( cvGetFileNodeByName( fs, map, name ), default_value ); +} + +/** @brief Retrieves a text string from a file node. + +The function returns a text string that is represented by the file node. If the file node is NULL, +the default_value is returned (thus, it is convenient to call the function right after +cvGetFileNode without checking for a NULL pointer). If the file node has type CV_NODE_STR , then +node-:math:\>data.str.ptr is returned. Otherwise the result is not determined. +@param node File node +@param default_value The value that is returned if node is NULL + */ +CV_INLINE const char* cvReadString( const CvFileNode* node, + const char* default_value CV_DEFAULT(NULL) ) +{ + return !node ? default_value : CV_NODE_IS_STRING(node->tag) ? node->data.str.ptr : 0; +} + +/** @brief Finds a file node by its name and returns its value. + +The function is a simple superposition of cvGetFileNodeByName and cvReadString . +@param fs File storage +@param map The parent map. If it is NULL, the function searches a top-level node. +@param name The node name +@param default_value The value that is returned if the file node is not found + */ +CV_INLINE const char* cvReadStringByName( const CvFileStorage* fs, const CvFileNode* map, + const char* name, const char* default_value CV_DEFAULT(NULL) ) +{ + return cvReadString( cvGetFileNodeByName( fs, map, name ), default_value ); +} + + +/** @brief Decodes an object and returns a pointer to it. + +The function decodes a user object (creates an object in a native representation from the file +storage subtree) and returns it. The object to be decoded must be an instance of a registered type +that supports the read method (see CvTypeInfo). The type of the object is determined by the type +name that is encoded in the file. If the object is a dynamic structure, it is created either in +memory storage and passed to cvOpenFileStorage or, if a NULL pointer was passed, in temporary +memory storage, which is released when cvReleaseFileStorage is called. Otherwise, if the object is +not a dynamic structure, it is created in a heap and should be released with a specialized function +or by using the generic cvRelease. +@param fs File storage +@param node The root object node +@param attributes Unused parameter + */ +CVAPI(void*) cvRead( CvFileStorage* fs, CvFileNode* node, + CvAttrList* attributes CV_DEFAULT(NULL)); + +/** @brief Finds an object by name and decodes it. + +The function is a simple superposition of cvGetFileNodeByName and cvRead. +@param fs File storage +@param map The parent map. If it is NULL, the function searches a top-level node. +@param name The node name +@param attributes Unused parameter + */ +CV_INLINE void* cvReadByName( CvFileStorage* fs, const CvFileNode* map, + const char* name, CvAttrList* attributes CV_DEFAULT(NULL) ) +{ + return cvRead( fs, cvGetFileNodeByName( fs, map, name ), attributes ); +} + + +/** @brief Initializes the file node sequence reader. + +The function initializes the sequence reader to read data from a file node. The initialized reader +can be then passed to cvReadRawDataSlice. +@param fs File storage +@param src The file node (a sequence) to read numbers from +@param reader Pointer to the sequence reader + */ +CVAPI(void) cvStartReadRawData( const CvFileStorage* fs, const CvFileNode* src, + CvSeqReader* reader ); + +/** @brief Initializes file node sequence reader. + +The function reads one or more elements from the file node, representing a sequence, to a +user-specified array. The total number of read sequence elements is a product of total and the +number of components in each array element. For example, if dt=2if, the function will read total\*3 +sequence elements. As with any sequence, some parts of the file node sequence can be skipped or read +repeatedly by repositioning the reader using cvSetSeqReaderPos. +@param fs File storage +@param reader The sequence reader. Initialize it with cvStartReadRawData . +@param count The number of elements to read +@param dst Pointer to the destination array +@param dt Specification of each array element. It has the same format as in cvWriteRawData . + */ +CVAPI(void) cvReadRawDataSlice( const CvFileStorage* fs, CvSeqReader* reader, + int count, void* dst, const char* dt ); + +/** @brief Reads multiple numbers. + +The function reads elements from a file node that represents a sequence of scalars. +@param fs File storage +@param src The file node (a sequence) to read numbers from +@param dst Pointer to the destination array +@param dt Specification of each array element. It has the same format as in cvWriteRawData . + */ +CVAPI(void) cvReadRawData( const CvFileStorage* fs, const CvFileNode* src, + void* dst, const char* dt ); + +/** @brief Writes a file node to another file storage. + +The function writes a copy of a file node to file storage. Possible applications of the function are +merging several file storages into one and conversion between XML, YAML and JSON formats. +@param fs Destination file storage +@param new_node_name New name of the file node in the destination file storage. To keep the +existing name, use cvcvGetFileNodeName +@param node The written node +@param embed If the written node is a collection and this parameter is not zero, no extra level of +hierarchy is created. Instead, all the elements of node are written into the currently written +structure. Of course, map elements can only be embedded into another map, and sequence elements +can only be embedded into another sequence. + */ +CVAPI(void) cvWriteFileNode( CvFileStorage* fs, const char* new_node_name, + const CvFileNode* node, int embed ); + +/** @brief Returns the name of a file node. + +The function returns the name of a file node or NULL, if the file node does not have a name or if +node is NULL. +@param node File node + */ +CVAPI(const char*) cvGetFileNodeName( const CvFileNode* node ); + +/*********************************** Adding own types ***********************************/ + +/** @brief Registers a new type. + +The function registers a new type, which is described by info . The function creates a copy of the +structure, so the user should delete it after calling the function. +@param info Type info structure + */ +CVAPI(void) cvRegisterType( const CvTypeInfo* info ); + +/** @brief Unregisters the type. + +The function unregisters a type with a specified name. If the name is unknown, it is possible to +locate the type info by an instance of the type using cvTypeOf or by iterating the type list, +starting from cvFirstType, and then calling cvUnregisterType(info-\>typeName). +@param type_name Name of an unregistered type + */ +CVAPI(void) cvUnregisterType( const char* type_name ); + +/** @brief Returns the beginning of a type list. + +The function returns the first type in the list of registered types. Navigation through the list can +be done via the prev and next fields of the CvTypeInfo structure. + */ +CVAPI(CvTypeInfo*) cvFirstType(void); + +/** @brief Finds a type by its name. + +The function finds a registered type by its name. It returns NULL if there is no type with the +specified name. +@param type_name Type name + */ +CVAPI(CvTypeInfo*) cvFindType( const char* type_name ); + +/** @brief Returns the type of an object. + +The function finds the type of a given object. It iterates through the list of registered types and +calls the is_instance function/method for every type info structure with that object until one of +them returns non-zero or until the whole list has been traversed. In the latter case, the function +returns NULL. +@param struct_ptr The object pointer + */ +CVAPI(CvTypeInfo*) cvTypeOf( const void* struct_ptr ); + +/** @brief Releases an object. + +The function finds the type of a given object and calls release with the double pointer. +@param struct_ptr Double pointer to the object + */ +CVAPI(void) cvRelease( void** struct_ptr ); + +/** @brief Makes a clone of an object. + +The function finds the type of a given object and calls clone with the passed object. Of course, if +you know the object type, for example, struct_ptr is CvMat\*, it is faster to call the specific +function, like cvCloneMat. +@param struct_ptr The object to clone + */ +CVAPI(void*) cvClone( const void* struct_ptr ); + +/** @brief Saves an object to a file. + +The function saves an object to a file. It provides a simple interface to cvWrite . +@param filename File name +@param struct_ptr Object to save +@param name Optional object name. If it is NULL, the name will be formed from filename . +@param comment Optional comment to put in the beginning of the file +@param attributes Optional attributes passed to cvWrite + */ +CVAPI(void) cvSave( const char* filename, const void* struct_ptr, + const char* name CV_DEFAULT(NULL), + const char* comment CV_DEFAULT(NULL), + CvAttrList attributes CV_DEFAULT(cvAttrList())); + +/** @brief Loads an object from a file. + +The function loads an object from a file. It basically reads the specified file, find the first +top-level node and calls cvRead for that node. If the file node does not have type information or +the type information can not be found by the type name, the function returns NULL. After the object +is loaded, the file storage is closed and all the temporary buffers are deleted. Thus, to load a +dynamic structure, such as a sequence, contour, or graph, one should pass a valid memory storage +destination to the function. +@param filename File name +@param memstorage Memory storage for dynamic structures, such as CvSeq or CvGraph . It is not used +for matrices or images. +@param name Optional object name. If it is NULL, the first top-level object in the storage will be +loaded. +@param real_name Optional output parameter that will contain the name of the loaded object +(useful if name=NULL ) + */ +CVAPI(void*) cvLoad( const char* filename, + CvMemStorage* memstorage CV_DEFAULT(NULL), + const char* name CV_DEFAULT(NULL), + const char** real_name CV_DEFAULT(NULL) ); + +/*********************************** Measuring Execution Time ***************************/ + +/** helper functions for RNG initialization and accurate time measurement: + uses internal clock counter on x86 */ +CVAPI(int64) cvGetTickCount( void ); +CVAPI(double) cvGetTickFrequency( void ); + +/*********************************** CPU capabilities ***********************************/ + +CVAPI(int) cvCheckHardwareSupport(int feature); + +/*********************************** Multi-Threading ************************************/ + +/** retrieve/set the number of threads used in OpenMP implementations */ +CVAPI(int) cvGetNumThreads( void ); +CVAPI(void) cvSetNumThreads( int threads CV_DEFAULT(0) ); +/** get index of the thread being executed */ +CVAPI(int) cvGetThreadNum( void ); + + +/********************************** Error Handling **************************************/ + +/** Get current OpenCV error status */ +CVAPI(int) cvGetErrStatus( void ); + +/** Sets error status silently */ +CVAPI(void) cvSetErrStatus( int status ); + +#define CV_ErrModeLeaf 0 /* Print error and exit program */ +#define CV_ErrModeParent 1 /* Print error and continue */ +#define CV_ErrModeSilent 2 /* Don't print and continue */ + +/** Retrives current error processing mode */ +CVAPI(int) cvGetErrMode( void ); + +/** Sets error processing mode, returns previously used mode */ +CVAPI(int) cvSetErrMode( int mode ); + +/** Sets error status and performs some additonal actions (displaying message box, + writing message to stderr, terminating application etc.) + depending on the current error mode */ +CVAPI(void) cvError( int status, const char* func_name, + const char* err_msg, const char* file_name, int line ); + +/** Retrieves textual description of the error given its code */ +CVAPI(const char*) cvErrorStr( int status ); + +/** Retrieves detailed information about the last error occured */ +CVAPI(int) cvGetErrInfo( const char** errcode_desc, const char** description, + const char** filename, int* line ); + +/** Maps IPP error codes to the counterparts from OpenCV */ +CVAPI(int) cvErrorFromIppStatus( int ipp_status ); + +typedef int (CV_CDECL *CvErrorCallback)( int status, const char* func_name, + const char* err_msg, const char* file_name, int line, void* userdata ); + +/** Assigns a new error-handling function */ +CVAPI(CvErrorCallback) cvRedirectError( CvErrorCallback error_handler, + void* userdata CV_DEFAULT(NULL), + void** prev_userdata CV_DEFAULT(NULL) ); + +/** Output nothing */ +CVAPI(int) cvNulDevReport( int status, const char* func_name, const char* err_msg, + const char* file_name, int line, void* userdata ); + +/** Output to console(fprintf(stderr,...)) */ +CVAPI(int) cvStdErrReport( int status, const char* func_name, const char* err_msg, + const char* file_name, int line, void* userdata ); + +/** Output to MessageBox(WIN32) */ +CVAPI(int) cvGuiBoxReport( int status, const char* func_name, const char* err_msg, + const char* file_name, int line, void* userdata ); + +#define OPENCV_ERROR(status,func,context) \ +cvError((status),(func),(context),__FILE__,__LINE__) + +#define OPENCV_ASSERT(expr,func,context) \ +{if (! (expr)) \ +{OPENCV_ERROR(CV_StsInternal,(func),(context));}} + +#define OPENCV_CALL( Func ) \ +{ \ +Func; \ +} + + +/** CV_FUNCNAME macro defines icvFuncName constant which is used by CV_ERROR macro */ +#ifdef CV_NO_FUNC_NAMES +#define CV_FUNCNAME( Name ) +#define cvFuncName "" +#else +#define CV_FUNCNAME( Name ) \ +static char cvFuncName[] = Name +#endif + + +/** + CV_ERROR macro unconditionally raises error with passed code and message. + After raising error, control will be transferred to the exit label. + */ +#define CV_ERROR( Code, Msg ) \ +{ \ + cvError( (Code), cvFuncName, Msg, __FILE__, __LINE__ ); \ + __CV_EXIT__; \ +} + +/** + CV_CHECK macro checks error status after CV (or IPL) + function call. If error detected, control will be transferred to the exit + label. + */ +#define CV_CHECK() \ +{ \ + if( cvGetErrStatus() < 0 ) \ + CV_ERROR( CV_StsBackTrace, "Inner function failed." ); \ +} + + +/** + CV_CALL macro calls CV (or IPL) function, checks error status and + signals a error if the function failed. Useful in "parent node" + error procesing mode + */ +#define CV_CALL( Func ) \ +{ \ + Func; \ + CV_CHECK(); \ +} + + +/** Runtime assertion macro */ +#define CV_ASSERT( Condition ) \ +{ \ + if( !(Condition) ) \ + CV_ERROR( CV_StsInternal, "Assertion: " #Condition " failed" ); \ +} + +#define __CV_BEGIN__ { +#define __CV_END__ goto exit; exit: ; } +#define __CV_EXIT__ goto exit + +/** @} core_c */ + +#ifdef __cplusplus +} // extern "C" +#endif + +#ifdef __cplusplus + +//! @addtogroup core_c_glue +//! @{ + +//! class for automatic module/RTTI data registration/unregistration +struct CV_EXPORTS CvType +{ + CvType( const char* type_name, + CvIsInstanceFunc is_instance, CvReleaseFunc release=0, + CvReadFunc read=0, CvWriteFunc write=0, CvCloneFunc clone=0 ); + ~CvType(); + CvTypeInfo* info; + + static CvTypeInfo* first; + static CvTypeInfo* last; +}; + +//! @} + +#include "opencv2/core/utility.hpp" + +namespace cv +{ + +//! @addtogroup core_c_glue +//! @{ + +/////////////////////////////////////////// glue /////////////////////////////////////////// + +//! converts array (CvMat or IplImage) to cv::Mat +CV_EXPORTS Mat cvarrToMat(const CvArr* arr, bool copyData=false, + bool allowND=true, int coiMode=0, + AutoBuffer* buf=0); + +static inline Mat cvarrToMatND(const CvArr* arr, bool copyData=false, int coiMode=0) +{ + return cvarrToMat(arr, copyData, true, coiMode); +} + + +//! extracts Channel of Interest from CvMat or IplImage and makes cv::Mat out of it. +CV_EXPORTS void extractImageCOI(const CvArr* arr, OutputArray coiimg, int coi=-1); +//! inserts single-channel cv::Mat into a multi-channel CvMat or IplImage +CV_EXPORTS void insertImageCOI(InputArray coiimg, CvArr* arr, int coi=-1); + + + +////// specialized implementations of DefaultDeleter::operator() for classic OpenCV types ////// + +template<> CV_EXPORTS void DefaultDeleter::operator ()(CvMat* obj) const; +template<> CV_EXPORTS void DefaultDeleter::operator ()(IplImage* obj) const; +template<> CV_EXPORTS void DefaultDeleter::operator ()(CvMatND* obj) const; +template<> CV_EXPORTS void DefaultDeleter::operator ()(CvSparseMat* obj) const; +template<> CV_EXPORTS void DefaultDeleter::operator ()(CvMemStorage* obj) const; + +////////////// convenient wrappers for operating old-style dynamic structures ////////////// + +template class SeqIterator; + +typedef Ptr MemStorage; + +/*! + Template Sequence Class derived from CvSeq + + The class provides more convenient access to sequence elements, + STL-style operations and iterators. + + \note The class is targeted for simple data types, + i.e. no constructors or destructors + are called for the sequence elements. +*/ +template class Seq +{ +public: + typedef SeqIterator<_Tp> iterator; + typedef SeqIterator<_Tp> const_iterator; + + //! the default constructor + Seq(); + //! the constructor for wrapping CvSeq structure. The real element type in CvSeq should match _Tp. + Seq(const CvSeq* seq); + //! creates the empty sequence that resides in the specified storage + Seq(MemStorage& storage, int headerSize = sizeof(CvSeq)); + //! returns read-write reference to the specified element + _Tp& operator [](int idx); + //! returns read-only reference to the specified element + const _Tp& operator[](int idx) const; + //! returns iterator pointing to the beginning of the sequence + SeqIterator<_Tp> begin() const; + //! returns iterator pointing to the element following the last sequence element + SeqIterator<_Tp> end() const; + //! returns the number of elements in the sequence + size_t size() const; + //! returns the type of sequence elements (CV_8UC1 ... CV_64FC(CV_CN_MAX) ...) + int type() const; + //! returns the depth of sequence elements (CV_8U ... CV_64F) + int depth() const; + //! returns the number of channels in each sequence element + int channels() const; + //! returns the size of each sequence element + size_t elemSize() const; + //! returns index of the specified sequence element + size_t index(const _Tp& elem) const; + //! appends the specified element to the end of the sequence + void push_back(const _Tp& elem); + //! appends the specified element to the front of the sequence + void push_front(const _Tp& elem); + //! appends zero or more elements to the end of the sequence + void push_back(const _Tp* elems, size_t count); + //! appends zero or more elements to the front of the sequence + void push_front(const _Tp* elems, size_t count); + //! inserts the specified element to the specified position + void insert(int idx, const _Tp& elem); + //! inserts zero or more elements to the specified position + void insert(int idx, const _Tp* elems, size_t count); + //! removes element at the specified position + void remove(int idx); + //! removes the specified subsequence + void remove(const Range& r); + + //! returns reference to the first sequence element + _Tp& front(); + //! returns read-only reference to the first sequence element + const _Tp& front() const; + //! returns reference to the last sequence element + _Tp& back(); + //! returns read-only reference to the last sequence element + const _Tp& back() const; + //! returns true iff the sequence contains no elements + bool empty() const; + + //! removes all the elements from the sequence + void clear(); + //! removes the first element from the sequence + void pop_front(); + //! removes the last element from the sequence + void pop_back(); + //! removes zero or more elements from the beginning of the sequence + void pop_front(_Tp* elems, size_t count); + //! removes zero or more elements from the end of the sequence + void pop_back(_Tp* elems, size_t count); + + //! copies the whole sequence or the sequence slice to the specified vector + void copyTo(std::vector<_Tp>& vec, const Range& range=Range::all()) const; + //! returns the vector containing all the sequence elements + operator std::vector<_Tp>() const; + + CvSeq* seq; +}; + + +/*! + STL-style Sequence Iterator inherited from the CvSeqReader structure +*/ +template class SeqIterator : public CvSeqReader +{ +public: + //! the default constructor + SeqIterator(); + //! the constructor setting the iterator to the beginning or to the end of the sequence + SeqIterator(const Seq<_Tp>& seq, bool seekEnd=false); + //! positions the iterator within the sequence + void seek(size_t pos); + //! reports the current iterator position + size_t tell() const; + //! returns reference to the current sequence element + _Tp& operator *(); + //! returns read-only reference to the current sequence element + const _Tp& operator *() const; + //! moves iterator to the next sequence element + SeqIterator& operator ++(); + //! moves iterator to the next sequence element + SeqIterator operator ++(int) const; + //! moves iterator to the previous sequence element + SeqIterator& operator --(); + //! moves iterator to the previous sequence element + SeqIterator operator --(int) const; + + //! moves iterator forward by the specified offset (possibly negative) + SeqIterator& operator +=(int); + //! moves iterator backward by the specified offset (possibly negative) + SeqIterator& operator -=(int); + + // this is index of the current element module seq->total*2 + // (to distinguish between 0 and seq->total) + int index; +}; + + + +// bridge C++ => C Seq API +CV_EXPORTS schar* seqPush( CvSeq* seq, const void* element=0); +CV_EXPORTS schar* seqPushFront( CvSeq* seq, const void* element=0); +CV_EXPORTS void seqPop( CvSeq* seq, void* element=0); +CV_EXPORTS void seqPopFront( CvSeq* seq, void* element=0); +CV_EXPORTS void seqPopMulti( CvSeq* seq, void* elements, + int count, int in_front=0 ); +CV_EXPORTS void seqRemove( CvSeq* seq, int index ); +CV_EXPORTS void clearSeq( CvSeq* seq ); +CV_EXPORTS schar* getSeqElem( const CvSeq* seq, int index ); +CV_EXPORTS void seqRemoveSlice( CvSeq* seq, CvSlice slice ); +CV_EXPORTS void seqInsertSlice( CvSeq* seq, int before_index, const CvArr* from_arr ); + +template inline Seq<_Tp>::Seq() : seq(0) {} +template inline Seq<_Tp>::Seq( const CvSeq* _seq ) : seq((CvSeq*)_seq) +{ + CV_Assert(!_seq || _seq->elem_size == sizeof(_Tp)); +} + +template inline Seq<_Tp>::Seq( MemStorage& storage, + int headerSize ) +{ + CV_Assert(headerSize >= (int)sizeof(CvSeq)); + seq = cvCreateSeq(DataType<_Tp>::type, headerSize, sizeof(_Tp), storage); +} + +template inline _Tp& Seq<_Tp>::operator [](int idx) +{ return *(_Tp*)getSeqElem(seq, idx); } + +template inline const _Tp& Seq<_Tp>::operator [](int idx) const +{ return *(_Tp*)getSeqElem(seq, idx); } + +template inline SeqIterator<_Tp> Seq<_Tp>::begin() const +{ return SeqIterator<_Tp>(*this); } + +template inline SeqIterator<_Tp> Seq<_Tp>::end() const +{ return SeqIterator<_Tp>(*this, true); } + +template inline size_t Seq<_Tp>::size() const +{ return seq ? seq->total : 0; } + +template inline int Seq<_Tp>::type() const +{ return seq ? CV_MAT_TYPE(seq->flags) : 0; } + +template inline int Seq<_Tp>::depth() const +{ return seq ? CV_MAT_DEPTH(seq->flags) : 0; } + +template inline int Seq<_Tp>::channels() const +{ return seq ? CV_MAT_CN(seq->flags) : 0; } + +template inline size_t Seq<_Tp>::elemSize() const +{ return seq ? seq->elem_size : 0; } + +template inline size_t Seq<_Tp>::index(const _Tp& elem) const +{ return cvSeqElemIdx(seq, &elem); } + +template inline void Seq<_Tp>::push_back(const _Tp& elem) +{ cvSeqPush(seq, &elem); } + +template inline void Seq<_Tp>::push_front(const _Tp& elem) +{ cvSeqPushFront(seq, &elem); } + +template inline void Seq<_Tp>::push_back(const _Tp* elem, size_t count) +{ cvSeqPushMulti(seq, elem, (int)count, 0); } + +template inline void Seq<_Tp>::push_front(const _Tp* elem, size_t count) +{ cvSeqPushMulti(seq, elem, (int)count, 1); } + +template inline _Tp& Seq<_Tp>::back() +{ return *(_Tp*)getSeqElem(seq, -1); } + +template inline const _Tp& Seq<_Tp>::back() const +{ return *(const _Tp*)getSeqElem(seq, -1); } + +template inline _Tp& Seq<_Tp>::front() +{ return *(_Tp*)getSeqElem(seq, 0); } + +template inline const _Tp& Seq<_Tp>::front() const +{ return *(const _Tp*)getSeqElem(seq, 0); } + +template inline bool Seq<_Tp>::empty() const +{ return !seq || seq->total == 0; } + +template inline void Seq<_Tp>::clear() +{ if(seq) clearSeq(seq); } + +template inline void Seq<_Tp>::pop_back() +{ seqPop(seq); } + +template inline void Seq<_Tp>::pop_front() +{ seqPopFront(seq); } + +template inline void Seq<_Tp>::pop_back(_Tp* elem, size_t count) +{ seqPopMulti(seq, elem, (int)count, 0); } + +template inline void Seq<_Tp>::pop_front(_Tp* elem, size_t count) +{ seqPopMulti(seq, elem, (int)count, 1); } + +template inline void Seq<_Tp>::insert(int idx, const _Tp& elem) +{ seqInsert(seq, idx, &elem); } + +template inline void Seq<_Tp>::insert(int idx, const _Tp* elems, size_t count) +{ + CvMat m = cvMat(1, count, DataType<_Tp>::type, elems); + seqInsertSlice(seq, idx, &m); +} + +template inline void Seq<_Tp>::remove(int idx) +{ seqRemove(seq, idx); } + +template inline void Seq<_Tp>::remove(const Range& r) +{ seqRemoveSlice(seq, cvSlice(r.start, r.end)); } + +template inline void Seq<_Tp>::copyTo(std::vector<_Tp>& vec, const Range& range) const +{ + size_t len = !seq ? 0 : range == Range::all() ? seq->total : range.end - range.start; + vec.resize(len); + if( seq && len ) + cvCvtSeqToArray(seq, &vec[0], range); +} + +template inline Seq<_Tp>::operator std::vector<_Tp>() const +{ + std::vector<_Tp> vec; + copyTo(vec); + return vec; +} + +template inline SeqIterator<_Tp>::SeqIterator() +{ memset(this, 0, sizeof(*this)); } + +template inline SeqIterator<_Tp>::SeqIterator(const Seq<_Tp>& _seq, bool seekEnd) +{ + cvStartReadSeq(_seq.seq, this); + index = seekEnd ? _seq.seq->total : 0; +} + +template inline void SeqIterator<_Tp>::seek(size_t pos) +{ + cvSetSeqReaderPos(this, (int)pos, false); + index = pos; +} + +template inline size_t SeqIterator<_Tp>::tell() const +{ return index; } + +template inline _Tp& SeqIterator<_Tp>::operator *() +{ return *(_Tp*)ptr; } + +template inline const _Tp& SeqIterator<_Tp>::operator *() const +{ return *(const _Tp*)ptr; } + +template inline SeqIterator<_Tp>& SeqIterator<_Tp>::operator ++() +{ + CV_NEXT_SEQ_ELEM(sizeof(_Tp), *this); + if( ++index >= seq->total*2 ) + index = 0; + return *this; +} + +template inline SeqIterator<_Tp> SeqIterator<_Tp>::operator ++(int) const +{ + SeqIterator<_Tp> it = *this; + ++*this; + return it; +} + +template inline SeqIterator<_Tp>& SeqIterator<_Tp>::operator --() +{ + CV_PREV_SEQ_ELEM(sizeof(_Tp), *this); + if( --index < 0 ) + index = seq->total*2-1; + return *this; +} + +template inline SeqIterator<_Tp> SeqIterator<_Tp>::operator --(int) const +{ + SeqIterator<_Tp> it = *this; + --*this; + return it; +} + +template inline SeqIterator<_Tp>& SeqIterator<_Tp>::operator +=(int delta) +{ + cvSetSeqReaderPos(this, delta, 1); + index += delta; + int n = seq->total*2; + if( index < 0 ) + index += n; + if( index >= n ) + index -= n; + return *this; +} + +template inline SeqIterator<_Tp>& SeqIterator<_Tp>::operator -=(int delta) +{ + return (*this += -delta); +} + +template inline ptrdiff_t operator - (const SeqIterator<_Tp>& a, + const SeqIterator<_Tp>& b) +{ + ptrdiff_t delta = a.index - b.index, n = a.seq->total; + if( delta > n || delta < -n ) + delta += delta < 0 ? n : -n; + return delta; +} + +template inline bool operator == (const SeqIterator<_Tp>& a, + const SeqIterator<_Tp>& b) +{ + return a.seq == b.seq && a.index == b.index; +} + +template inline bool operator != (const SeqIterator<_Tp>& a, + const SeqIterator<_Tp>& b) +{ + return !(a == b); +} + +//! @} + +} // cv + +#endif + +#endif diff --git a/thirdparty1/linux/include/opencv2/core/cuda.hpp b/thirdparty1/linux/include/opencv2/core/cuda.hpp new file mode 100644 index 0000000..c538392 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda.hpp @@ -0,0 +1,874 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_CUDA_HPP +#define OPENCV_CORE_CUDA_HPP + +#ifndef __cplusplus +# error cuda.hpp header must be compiled as C++ +#endif + +#include "opencv2/core.hpp" +#include "opencv2/core/cuda_types.hpp" + +/** + @defgroup cuda CUDA-accelerated Computer Vision + @{ + @defgroup cudacore Core part + @{ + @defgroup cudacore_init Initalization and Information + @defgroup cudacore_struct Data Structures + @} + @} + */ + +namespace cv { namespace cuda { + +//! @addtogroup cudacore_struct +//! @{ + +//=================================================================================== +// GpuMat +//=================================================================================== + +/** @brief Base storage class for GPU memory with reference counting. + +Its interface matches the Mat interface with the following limitations: + +- no arbitrary dimensions support (only 2D) +- no functions that return references to their data (because references on GPU are not valid for + CPU) +- no expression templates technique support + +Beware that the latter limitation may lead to overloaded matrix operators that cause memory +allocations. The GpuMat class is convertible to cuda::PtrStepSz and cuda::PtrStep so it can be +passed directly to the kernel. + +@note In contrast with Mat, in most cases GpuMat::isContinuous() == false . This means that rows are +aligned to a size depending on the hardware. Single-row GpuMat is always a continuous matrix. + +@note You are not recommended to leave static or global GpuMat variables allocated, that is, to rely +on its destructor. The destruction order of such variables and CUDA context is undefined. GPU memory +release function returns error if the CUDA context has been destroyed before. + +@sa Mat + */ +class CV_EXPORTS GpuMat +{ +public: + class CV_EXPORTS Allocator + { + public: + virtual ~Allocator() {} + + // allocator must fill data, step and refcount fields + virtual bool allocate(GpuMat* mat, int rows, int cols, size_t elemSize) = 0; + virtual void free(GpuMat* mat) = 0; + }; + + //! default allocator + static Allocator* defaultAllocator(); + static void setDefaultAllocator(Allocator* allocator); + + //! default constructor + explicit GpuMat(Allocator* allocator = defaultAllocator()); + + //! constructs GpuMat of the specified size and type + GpuMat(int rows, int cols, int type, Allocator* allocator = defaultAllocator()); + GpuMat(Size size, int type, Allocator* allocator = defaultAllocator()); + + //! constucts GpuMat and fills it with the specified value _s + GpuMat(int rows, int cols, int type, Scalar s, Allocator* allocator = defaultAllocator()); + GpuMat(Size size, int type, Scalar s, Allocator* allocator = defaultAllocator()); + + //! copy constructor + GpuMat(const GpuMat& m); + + //! constructor for GpuMat headers pointing to user-allocated data + GpuMat(int rows, int cols, int type, void* data, size_t step = Mat::AUTO_STEP); + GpuMat(Size size, int type, void* data, size_t step = Mat::AUTO_STEP); + + //! creates a GpuMat header for a part of the bigger matrix + GpuMat(const GpuMat& m, Range rowRange, Range colRange); + GpuMat(const GpuMat& m, Rect roi); + + //! builds GpuMat from host memory (Blocking call) + explicit GpuMat(InputArray arr, Allocator* allocator = defaultAllocator()); + + //! destructor - calls release() + ~GpuMat(); + + //! assignment operators + GpuMat& operator =(const GpuMat& m); + + //! allocates new GpuMat data unless the GpuMat already has specified size and type + void create(int rows, int cols, int type); + void create(Size size, int type); + + //! decreases reference counter, deallocate the data when reference counter reaches 0 + void release(); + + //! swaps with other smart pointer + void swap(GpuMat& mat); + + //! pefroms upload data to GpuMat (Blocking call) + void upload(InputArray arr); + + //! pefroms upload data to GpuMat (Non-Blocking call) + void upload(InputArray arr, Stream& stream); + + //! pefroms download data from device to host memory (Blocking call) + void download(OutputArray dst) const; + + //! pefroms download data from device to host memory (Non-Blocking call) + void download(OutputArray dst, Stream& stream) const; + + //! returns deep copy of the GpuMat, i.e. the data is copied + GpuMat clone() const; + + //! copies the GpuMat content to device memory (Blocking call) + void copyTo(OutputArray dst) const; + + //! copies the GpuMat content to device memory (Non-Blocking call) + void copyTo(OutputArray dst, Stream& stream) const; + + //! copies those GpuMat elements to "m" that are marked with non-zero mask elements (Blocking call) + void copyTo(OutputArray dst, InputArray mask) const; + + //! copies those GpuMat elements to "m" that are marked with non-zero mask elements (Non-Blocking call) + void copyTo(OutputArray dst, InputArray mask, Stream& stream) const; + + //! sets some of the GpuMat elements to s (Blocking call) + GpuMat& setTo(Scalar s); + + //! sets some of the GpuMat elements to s (Non-Blocking call) + GpuMat& setTo(Scalar s, Stream& stream); + + //! sets some of the GpuMat elements to s, according to the mask (Blocking call) + GpuMat& setTo(Scalar s, InputArray mask); + + //! sets some of the GpuMat elements to s, according to the mask (Non-Blocking call) + GpuMat& setTo(Scalar s, InputArray mask, Stream& stream); + + //! converts GpuMat to another datatype (Blocking call) + void convertTo(OutputArray dst, int rtype) const; + + //! converts GpuMat to another datatype (Non-Blocking call) + void convertTo(OutputArray dst, int rtype, Stream& stream) const; + + //! converts GpuMat to another datatype with scaling (Blocking call) + void convertTo(OutputArray dst, int rtype, double alpha, double beta = 0.0) const; + + //! converts GpuMat to another datatype with scaling (Non-Blocking call) + void convertTo(OutputArray dst, int rtype, double alpha, Stream& stream) const; + + //! converts GpuMat to another datatype with scaling (Non-Blocking call) + void convertTo(OutputArray dst, int rtype, double alpha, double beta, Stream& stream) const; + + void assignTo(GpuMat& m, int type=-1) const; + + //! returns pointer to y-th row + uchar* ptr(int y = 0); + const uchar* ptr(int y = 0) const; + + //! template version of the above method + template _Tp* ptr(int y = 0); + template const _Tp* ptr(int y = 0) const; + + template operator PtrStepSz<_Tp>() const; + template operator PtrStep<_Tp>() const; + + //! returns a new GpuMat header for the specified row + GpuMat row(int y) const; + + //! returns a new GpuMat header for the specified column + GpuMat col(int x) const; + + //! ... for the specified row span + GpuMat rowRange(int startrow, int endrow) const; + GpuMat rowRange(Range r) const; + + //! ... for the specified column span + GpuMat colRange(int startcol, int endcol) const; + GpuMat colRange(Range r) const; + + //! extracts a rectangular sub-GpuMat (this is a generalized form of row, rowRange etc.) + GpuMat operator ()(Range rowRange, Range colRange) const; + GpuMat operator ()(Rect roi) const; + + //! creates alternative GpuMat header for the same data, with different + //! number of channels and/or different number of rows + GpuMat reshape(int cn, int rows = 0) const; + + //! locates GpuMat header within a parent GpuMat + void locateROI(Size& wholeSize, Point& ofs) const; + + //! moves/resizes the current GpuMat ROI inside the parent GpuMat + GpuMat& adjustROI(int dtop, int dbottom, int dleft, int dright); + + //! returns true iff the GpuMat data is continuous + //! (i.e. when there are no gaps between successive rows) + bool isContinuous() const; + + //! returns element size in bytes + size_t elemSize() const; + + //! returns the size of element channel in bytes + size_t elemSize1() const; + + //! returns element type + int type() const; + + //! returns element type + int depth() const; + + //! returns number of channels + int channels() const; + + //! returns step/elemSize1() + size_t step1() const; + + //! returns GpuMat size : width == number of columns, height == number of rows + Size size() const; + + //! returns true if GpuMat data is NULL + bool empty() const; + + /*! includes several bit-fields: + - the magic signature + - continuity flag + - depth + - number of channels + */ + int flags; + + //! the number of rows and columns + int rows, cols; + + //! a distance between successive rows in bytes; includes the gap if any + size_t step; + + //! pointer to the data + uchar* data; + + //! pointer to the reference counter; + //! when GpuMat points to user-allocated data, the pointer is NULL + int* refcount; + + //! helper fields used in locateROI and adjustROI + uchar* datastart; + const uchar* dataend; + + //! allocator + Allocator* allocator; +}; + +/** @brief Creates a continuous matrix. + +@param rows Row count. +@param cols Column count. +@param type Type of the matrix. +@param arr Destination matrix. This parameter changes only if it has a proper type and area ( +\f$\texttt{rows} \times \texttt{cols}\f$ ). + +Matrix is called continuous if its elements are stored continuously, that is, without gaps at the +end of each row. + */ +CV_EXPORTS void createContinuous(int rows, int cols, int type, OutputArray arr); + +/** @brief Ensures that the size of a matrix is big enough and the matrix has a proper type. + +@param rows Minimum desired number of rows. +@param cols Minimum desired number of columns. +@param type Desired matrix type. +@param arr Destination matrix. + +The function does not reallocate memory if the matrix has proper attributes already. + */ +CV_EXPORTS void ensureSizeIsEnough(int rows, int cols, int type, OutputArray arr); + +//! BufferPool management (must be called before Stream creation) +CV_EXPORTS void setBufferPoolUsage(bool on); +CV_EXPORTS void setBufferPoolConfig(int deviceId, size_t stackSize, int stackCount); + +//=================================================================================== +// HostMem +//=================================================================================== + +/** @brief Class with reference counting wrapping special memory type allocation functions from CUDA. + +Its interface is also Mat-like but with additional memory type parameters. + +- **PAGE_LOCKED** sets a page locked memory type used commonly for fast and asynchronous + uploading/downloading data from/to GPU. +- **SHARED** specifies a zero copy memory allocation that enables mapping the host memory to GPU + address space, if supported. +- **WRITE_COMBINED** sets the write combined buffer that is not cached by CPU. Such buffers are + used to supply GPU with data when GPU only reads it. The advantage is a better CPU cache + utilization. + +@note Allocation size of such memory types is usually limited. For more details, see *CUDA 2.2 +Pinned Memory APIs* document or *CUDA C Programming Guide*. + */ +class CV_EXPORTS HostMem +{ +public: + enum AllocType { PAGE_LOCKED = 1, SHARED = 2, WRITE_COMBINED = 4 }; + + static MatAllocator* getAllocator(AllocType alloc_type = PAGE_LOCKED); + + explicit HostMem(AllocType alloc_type = PAGE_LOCKED); + + HostMem(const HostMem& m); + + HostMem(int rows, int cols, int type, AllocType alloc_type = PAGE_LOCKED); + HostMem(Size size, int type, AllocType alloc_type = PAGE_LOCKED); + + //! creates from host memory with coping data + explicit HostMem(InputArray arr, AllocType alloc_type = PAGE_LOCKED); + + ~HostMem(); + + HostMem& operator =(const HostMem& m); + + //! swaps with other smart pointer + void swap(HostMem& b); + + //! returns deep copy of the matrix, i.e. the data is copied + HostMem clone() const; + + //! allocates new matrix data unless the matrix already has specified size and type. + void create(int rows, int cols, int type); + void create(Size size, int type); + + //! creates alternative HostMem header for the same data, with different + //! number of channels and/or different number of rows + HostMem reshape(int cn, int rows = 0) const; + + //! decrements reference counter and released memory if needed. + void release(); + + //! returns matrix header with disabled reference counting for HostMem data. + Mat createMatHeader() const; + + /** @brief Maps CPU memory to GPU address space and creates the cuda::GpuMat header without reference counting + for it. + + This can be done only if memory was allocated with the SHARED flag and if it is supported by the + hardware. Laptops often share video and CPU memory, so address spaces can be mapped, which + eliminates an extra copy. + */ + GpuMat createGpuMatHeader() const; + + // Please see cv::Mat for descriptions + bool isContinuous() const; + size_t elemSize() const; + size_t elemSize1() const; + int type() const; + int depth() const; + int channels() const; + size_t step1() const; + Size size() const; + bool empty() const; + + // Please see cv::Mat for descriptions + int flags; + int rows, cols; + size_t step; + + uchar* data; + int* refcount; + + uchar* datastart; + const uchar* dataend; + + AllocType alloc_type; +}; + +/** @brief Page-locks the memory of matrix and maps it for the device(s). + +@param m Input matrix. + */ +CV_EXPORTS void registerPageLocked(Mat& m); + +/** @brief Unmaps the memory of matrix and makes it pageable again. + +@param m Input matrix. + */ +CV_EXPORTS void unregisterPageLocked(Mat& m); + +//=================================================================================== +// Stream +//=================================================================================== + +/** @brief This class encapsulates a queue of asynchronous calls. + +@note Currently, you may face problems if an operation is enqueued twice with different data. Some +functions use the constant GPU memory, and next call may update the memory before the previous one +has been finished. But calling different operations asynchronously is safe because each operation +has its own constant buffer. Memory copy/upload/download/set operations to the buffers you hold are +also safe. + +@note The Stream class is not thread-safe. Please use different Stream objects for different CPU threads. + +@code +void thread1() +{ + cv::cuda::Stream stream1; + cv::cuda::func1(..., stream1); +} + +void thread2() +{ + cv::cuda::Stream stream2; + cv::cuda::func2(..., stream2); +} +@endcode + +@note By default all CUDA routines are launched in Stream::Null() object, if the stream is not specified by user. +In multi-threading environment the stream objects must be passed explicitly (see previous note). + */ +class CV_EXPORTS Stream +{ + typedef void (Stream::*bool_type)() const; + void this_type_does_not_support_comparisons() const {} + +public: + typedef void (*StreamCallback)(int status, void* userData); + + //! creates a new asynchronous stream + Stream(); + + /** @brief Returns true if the current stream queue is finished. Otherwise, it returns false. + */ + bool queryIfComplete() const; + + /** @brief Blocks the current CPU thread until all operations in the stream are complete. + */ + void waitForCompletion(); + + /** @brief Makes a compute stream wait on an event. + */ + void waitEvent(const Event& event); + + /** @brief Adds a callback to be called on the host after all currently enqueued items in the stream have + completed. + + @note Callbacks must not make any CUDA API calls. Callbacks must not perform any synchronization + that may depend on outstanding device work or other callbacks that are not mandated to run earlier. + Callbacks without a mandated order (in independent streams) execute in undefined order and may be + serialized. + */ + void enqueueHostCallback(StreamCallback callback, void* userData); + + //! return Stream object for default CUDA stream + static Stream& Null(); + + //! returns true if stream object is not default (!= 0) + operator bool_type() const; + + class Impl; + +private: + Ptr impl_; + Stream(const Ptr& impl); + + friend struct StreamAccessor; + friend class BufferPool; + friend class DefaultDeviceInitializer; +}; + +class CV_EXPORTS Event +{ +public: + enum CreateFlags + { + DEFAULT = 0x00, /**< Default event flag */ + BLOCKING_SYNC = 0x01, /**< Event uses blocking synchronization */ + DISABLE_TIMING = 0x02, /**< Event will not record timing data */ + INTERPROCESS = 0x04 /**< Event is suitable for interprocess use. DisableTiming must be set */ + }; + + explicit Event(CreateFlags flags = DEFAULT); + + //! records an event + void record(Stream& stream = Stream::Null()); + + //! queries an event's status + bool queryIfComplete() const; + + //! waits for an event to complete + void waitForCompletion(); + + //! computes the elapsed time between events + static float elapsedTime(const Event& start, const Event& end); + + class Impl; + +private: + Ptr impl_; + Event(const Ptr& impl); + + friend struct EventAccessor; +}; + +//! @} cudacore_struct + +//=================================================================================== +// Initialization & Info +//=================================================================================== + +//! @addtogroup cudacore_init +//! @{ + +/** @brief Returns the number of installed CUDA-enabled devices. + +Use this function before any other CUDA functions calls. If OpenCV is compiled without CUDA support, +this function returns 0. + */ +CV_EXPORTS int getCudaEnabledDeviceCount(); + +/** @brief Sets a device and initializes it for the current thread. + +@param device System index of a CUDA device starting with 0. + +If the call of this function is omitted, a default device is initialized at the fist CUDA usage. + */ +CV_EXPORTS void setDevice(int device); + +/** @brief Returns the current device index set by cuda::setDevice or initialized by default. + */ +CV_EXPORTS int getDevice(); + +/** @brief Explicitly destroys and cleans up all resources associated with the current device in the current +process. + +Any subsequent API call to this device will reinitialize the device. + */ +CV_EXPORTS void resetDevice(); + +/** @brief Enumeration providing CUDA computing features. + */ +enum FeatureSet +{ + FEATURE_SET_COMPUTE_10 = 10, + FEATURE_SET_COMPUTE_11 = 11, + FEATURE_SET_COMPUTE_12 = 12, + FEATURE_SET_COMPUTE_13 = 13, + FEATURE_SET_COMPUTE_20 = 20, + FEATURE_SET_COMPUTE_21 = 21, + FEATURE_SET_COMPUTE_30 = 30, + FEATURE_SET_COMPUTE_32 = 32, + FEATURE_SET_COMPUTE_35 = 35, + FEATURE_SET_COMPUTE_50 = 50, + + GLOBAL_ATOMICS = FEATURE_SET_COMPUTE_11, + SHARED_ATOMICS = FEATURE_SET_COMPUTE_12, + NATIVE_DOUBLE = FEATURE_SET_COMPUTE_13, + WARP_SHUFFLE_FUNCTIONS = FEATURE_SET_COMPUTE_30, + DYNAMIC_PARALLELISM = FEATURE_SET_COMPUTE_35 +}; + +//! checks whether current device supports the given feature +CV_EXPORTS bool deviceSupports(FeatureSet feature_set); + +/** @brief Class providing a set of static methods to check what NVIDIA\* card architecture the CUDA module was +built for. + +According to the CUDA C Programming Guide Version 3.2: "PTX code produced for some specific compute +capability can always be compiled to binary code of greater or equal compute capability". + */ +class CV_EXPORTS TargetArchs +{ +public: + /** @brief The following method checks whether the module was built with the support of the given feature: + + @param feature_set Features to be checked. See :ocvcuda::FeatureSet. + */ + static bool builtWith(FeatureSet feature_set); + + /** @brief There is a set of methods to check whether the module contains intermediate (PTX) or binary CUDA + code for the given architecture(s): + + @param major Major compute capability version. + @param minor Minor compute capability version. + */ + static bool has(int major, int minor); + static bool hasPtx(int major, int minor); + static bool hasBin(int major, int minor); + + static bool hasEqualOrLessPtx(int major, int minor); + static bool hasEqualOrGreater(int major, int minor); + static bool hasEqualOrGreaterPtx(int major, int minor); + static bool hasEqualOrGreaterBin(int major, int minor); +}; + +/** @brief Class providing functionality for querying the specified GPU properties. + */ +class CV_EXPORTS DeviceInfo +{ +public: + //! creates DeviceInfo object for the current GPU + DeviceInfo(); + + /** @brief The constructors. + + @param device_id System index of the CUDA device starting with 0. + + Constructs the DeviceInfo object for the specified device. If device_id parameter is missed, it + constructs an object for the current device. + */ + DeviceInfo(int device_id); + + /** @brief Returns system index of the CUDA device starting with 0. + */ + int deviceID() const; + + //! ASCII string identifying device + const char* name() const; + + //! global memory available on device in bytes + size_t totalGlobalMem() const; + + //! shared memory available per block in bytes + size_t sharedMemPerBlock() const; + + //! 32-bit registers available per block + int regsPerBlock() const; + + //! warp size in threads + int warpSize() const; + + //! maximum pitch in bytes allowed by memory copies + size_t memPitch() const; + + //! maximum number of threads per block + int maxThreadsPerBlock() const; + + //! maximum size of each dimension of a block + Vec3i maxThreadsDim() const; + + //! maximum size of each dimension of a grid + Vec3i maxGridSize() const; + + //! clock frequency in kilohertz + int clockRate() const; + + //! constant memory available on device in bytes + size_t totalConstMem() const; + + //! major compute capability + int majorVersion() const; + + //! minor compute capability + int minorVersion() const; + + //! alignment requirement for textures + size_t textureAlignment() const; + + //! pitch alignment requirement for texture references bound to pitched memory + size_t texturePitchAlignment() const; + + //! number of multiprocessors on device + int multiProcessorCount() const; + + //! specified whether there is a run time limit on kernels + bool kernelExecTimeoutEnabled() const; + + //! device is integrated as opposed to discrete + bool integrated() const; + + //! device can map host memory with cudaHostAlloc/cudaHostGetDevicePointer + bool canMapHostMemory() const; + + enum ComputeMode + { + ComputeModeDefault, /**< default compute mode (Multiple threads can use cudaSetDevice with this device) */ + ComputeModeExclusive, /**< compute-exclusive-thread mode (Only one thread in one process will be able to use cudaSetDevice with this device) */ + ComputeModeProhibited, /**< compute-prohibited mode (No threads can use cudaSetDevice with this device) */ + ComputeModeExclusiveProcess /**< compute-exclusive-process mode (Many threads in one process will be able to use cudaSetDevice with this device) */ + }; + + //! compute mode + ComputeMode computeMode() const; + + //! maximum 1D texture size + int maxTexture1D() const; + + //! maximum 1D mipmapped texture size + int maxTexture1DMipmap() const; + + //! maximum size for 1D textures bound to linear memory + int maxTexture1DLinear() const; + + //! maximum 2D texture dimensions + Vec2i maxTexture2D() const; + + //! maximum 2D mipmapped texture dimensions + Vec2i maxTexture2DMipmap() const; + + //! maximum dimensions (width, height, pitch) for 2D textures bound to pitched memory + Vec3i maxTexture2DLinear() const; + + //! maximum 2D texture dimensions if texture gather operations have to be performed + Vec2i maxTexture2DGather() const; + + //! maximum 3D texture dimensions + Vec3i maxTexture3D() const; + + //! maximum Cubemap texture dimensions + int maxTextureCubemap() const; + + //! maximum 1D layered texture dimensions + Vec2i maxTexture1DLayered() const; + + //! maximum 2D layered texture dimensions + Vec3i maxTexture2DLayered() const; + + //! maximum Cubemap layered texture dimensions + Vec2i maxTextureCubemapLayered() const; + + //! maximum 1D surface size + int maxSurface1D() const; + + //! maximum 2D surface dimensions + Vec2i maxSurface2D() const; + + //! maximum 3D surface dimensions + Vec3i maxSurface3D() const; + + //! maximum 1D layered surface dimensions + Vec2i maxSurface1DLayered() const; + + //! maximum 2D layered surface dimensions + Vec3i maxSurface2DLayered() const; + + //! maximum Cubemap surface dimensions + int maxSurfaceCubemap() const; + + //! maximum Cubemap layered surface dimensions + Vec2i maxSurfaceCubemapLayered() const; + + //! alignment requirements for surfaces + size_t surfaceAlignment() const; + + //! device can possibly execute multiple kernels concurrently + bool concurrentKernels() const; + + //! device has ECC support enabled + bool ECCEnabled() const; + + //! PCI bus ID of the device + int pciBusID() const; + + //! PCI device ID of the device + int pciDeviceID() const; + + //! PCI domain ID of the device + int pciDomainID() const; + + //! true if device is a Tesla device using TCC driver, false otherwise + bool tccDriver() const; + + //! number of asynchronous engines + int asyncEngineCount() const; + + //! device shares a unified address space with the host + bool unifiedAddressing() const; + + //! peak memory clock frequency in kilohertz + int memoryClockRate() const; + + //! global memory bus width in bits + int memoryBusWidth() const; + + //! size of L2 cache in bytes + int l2CacheSize() const; + + //! maximum resident threads per multiprocessor + int maxThreadsPerMultiProcessor() const; + + //! gets free and total device memory + void queryMemory(size_t& totalMemory, size_t& freeMemory) const; + size_t freeMemory() const; + size_t totalMemory() const; + + /** @brief Provides information on CUDA feature support. + + @param feature_set Features to be checked. See cuda::FeatureSet. + + This function returns true if the device has the specified CUDA feature. Otherwise, it returns false + */ + bool supports(FeatureSet feature_set) const; + + /** @brief Checks the CUDA module and device compatibility. + + This function returns true if the CUDA module can be run on the specified device. Otherwise, it + returns false . + */ + bool isCompatible() const; + +private: + int device_id_; +}; + +CV_EXPORTS void printCudaDeviceInfo(int device); +CV_EXPORTS void printShortCudaDeviceInfo(int device); + +/** @brief Converts an array to half precision floating number. + +@param _src input array. +@param _dst output array. +@param stream Stream for the asynchronous version. +@sa convertFp16 +*/ +CV_EXPORTS void convertFp16(InputArray _src, OutputArray _dst, Stream& stream = Stream::Null()); + +//! @} cudacore_init + +}} // namespace cv { namespace cuda { + + +#include "opencv2/core/cuda.inl.hpp" + +#endif /* OPENCV_CORE_CUDA_HPP */ diff --git a/thirdparty1/linux/include/opencv2/core/cuda.inl.hpp b/thirdparty1/linux/include/opencv2/core/cuda.inl.hpp new file mode 100644 index 0000000..35ae2e4 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda.inl.hpp @@ -0,0 +1,631 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_CUDAINL_HPP +#define OPENCV_CORE_CUDAINL_HPP + +#include "opencv2/core/cuda.hpp" + +//! @cond IGNORED + +namespace cv { namespace cuda { + +//=================================================================================== +// GpuMat +//=================================================================================== + +inline +GpuMat::GpuMat(Allocator* allocator_) + : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_) +{} + +inline +GpuMat::GpuMat(int rows_, int cols_, int type_, Allocator* allocator_) + : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_) +{ + if (rows_ > 0 && cols_ > 0) + create(rows_, cols_, type_); +} + +inline +GpuMat::GpuMat(Size size_, int type_, Allocator* allocator_) + : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_) +{ + if (size_.height > 0 && size_.width > 0) + create(size_.height, size_.width, type_); +} + +inline +GpuMat::GpuMat(int rows_, int cols_, int type_, Scalar s_, Allocator* allocator_) + : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_) +{ + if (rows_ > 0 && cols_ > 0) + { + create(rows_, cols_, type_); + setTo(s_); + } +} + +inline +GpuMat::GpuMat(Size size_, int type_, Scalar s_, Allocator* allocator_) + : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_) +{ + if (size_.height > 0 && size_.width > 0) + { + create(size_.height, size_.width, type_); + setTo(s_); + } +} + +inline +GpuMat::GpuMat(const GpuMat& m) + : flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend), allocator(m.allocator) +{ + if (refcount) + CV_XADD(refcount, 1); +} + +inline +GpuMat::GpuMat(InputArray arr, Allocator* allocator_) : + flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), allocator(allocator_) +{ + upload(arr); +} + +inline +GpuMat::~GpuMat() +{ + release(); +} + +inline +GpuMat& GpuMat::operator =(const GpuMat& m) +{ + if (this != &m) + { + GpuMat temp(m); + swap(temp); + } + + return *this; +} + +inline +void GpuMat::create(Size size_, int type_) +{ + create(size_.height, size_.width, type_); +} + +inline +void GpuMat::swap(GpuMat& b) +{ + std::swap(flags, b.flags); + std::swap(rows, b.rows); + std::swap(cols, b.cols); + std::swap(step, b.step); + std::swap(data, b.data); + std::swap(datastart, b.datastart); + std::swap(dataend, b.dataend); + std::swap(refcount, b.refcount); + std::swap(allocator, b.allocator); +} + +inline +GpuMat GpuMat::clone() const +{ + GpuMat m; + copyTo(m); + return m; +} + +inline +void GpuMat::copyTo(OutputArray dst, InputArray mask) const +{ + copyTo(dst, mask, Stream::Null()); +} + +inline +GpuMat& GpuMat::setTo(Scalar s) +{ + return setTo(s, Stream::Null()); +} + +inline +GpuMat& GpuMat::setTo(Scalar s, InputArray mask) +{ + return setTo(s, mask, Stream::Null()); +} + +inline +void GpuMat::convertTo(OutputArray dst, int rtype) const +{ + convertTo(dst, rtype, Stream::Null()); +} + +inline +void GpuMat::convertTo(OutputArray dst, int rtype, double alpha, double beta) const +{ + convertTo(dst, rtype, alpha, beta, Stream::Null()); +} + +inline +void GpuMat::convertTo(OutputArray dst, int rtype, double alpha, Stream& stream) const +{ + convertTo(dst, rtype, alpha, 0.0, stream); +} + +inline +void GpuMat::assignTo(GpuMat& m, int _type) const +{ + if (_type < 0) + m = *this; + else + convertTo(m, _type); +} + +inline +uchar* GpuMat::ptr(int y) +{ + CV_DbgAssert( (unsigned)y < (unsigned)rows ); + return data + step * y; +} + +inline +const uchar* GpuMat::ptr(int y) const +{ + CV_DbgAssert( (unsigned)y < (unsigned)rows ); + return data + step * y; +} + +template inline +_Tp* GpuMat::ptr(int y) +{ + return (_Tp*)ptr(y); +} + +template inline +const _Tp* GpuMat::ptr(int y) const +{ + return (const _Tp*)ptr(y); +} + +template inline +GpuMat::operator PtrStepSz() const +{ + return PtrStepSz(rows, cols, (T*)data, step); +} + +template inline +GpuMat::operator PtrStep() const +{ + return PtrStep((T*)data, step); +} + +inline +GpuMat GpuMat::row(int y) const +{ + return GpuMat(*this, Range(y, y+1), Range::all()); +} + +inline +GpuMat GpuMat::col(int x) const +{ + return GpuMat(*this, Range::all(), Range(x, x+1)); +} + +inline +GpuMat GpuMat::rowRange(int startrow, int endrow) const +{ + return GpuMat(*this, Range(startrow, endrow), Range::all()); +} + +inline +GpuMat GpuMat::rowRange(Range r) const +{ + return GpuMat(*this, r, Range::all()); +} + +inline +GpuMat GpuMat::colRange(int startcol, int endcol) const +{ + return GpuMat(*this, Range::all(), Range(startcol, endcol)); +} + +inline +GpuMat GpuMat::colRange(Range r) const +{ + return GpuMat(*this, Range::all(), r); +} + +inline +GpuMat GpuMat::operator ()(Range rowRange_, Range colRange_) const +{ + return GpuMat(*this, rowRange_, colRange_); +} + +inline +GpuMat GpuMat::operator ()(Rect roi) const +{ + return GpuMat(*this, roi); +} + +inline +bool GpuMat::isContinuous() const +{ + return (flags & Mat::CONTINUOUS_FLAG) != 0; +} + +inline +size_t GpuMat::elemSize() const +{ + return CV_ELEM_SIZE(flags); +} + +inline +size_t GpuMat::elemSize1() const +{ + return CV_ELEM_SIZE1(flags); +} + +inline +int GpuMat::type() const +{ + return CV_MAT_TYPE(flags); +} + +inline +int GpuMat::depth() const +{ + return CV_MAT_DEPTH(flags); +} + +inline +int GpuMat::channels() const +{ + return CV_MAT_CN(flags); +} + +inline +size_t GpuMat::step1() const +{ + return step / elemSize1(); +} + +inline +Size GpuMat::size() const +{ + return Size(cols, rows); +} + +inline +bool GpuMat::empty() const +{ + return data == 0; +} + +static inline +GpuMat createContinuous(int rows, int cols, int type) +{ + GpuMat m; + createContinuous(rows, cols, type, m); + return m; +} + +static inline +void createContinuous(Size size, int type, OutputArray arr) +{ + createContinuous(size.height, size.width, type, arr); +} + +static inline +GpuMat createContinuous(Size size, int type) +{ + GpuMat m; + createContinuous(size, type, m); + return m; +} + +static inline +void ensureSizeIsEnough(Size size, int type, OutputArray arr) +{ + ensureSizeIsEnough(size.height, size.width, type, arr); +} + +static inline +void swap(GpuMat& a, GpuMat& b) +{ + a.swap(b); +} + +//=================================================================================== +// HostMem +//=================================================================================== + +inline +HostMem::HostMem(AllocType alloc_type_) + : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_) +{ +} + +inline +HostMem::HostMem(const HostMem& m) + : flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend), alloc_type(m.alloc_type) +{ + if( refcount ) + CV_XADD(refcount, 1); +} + +inline +HostMem::HostMem(int rows_, int cols_, int type_, AllocType alloc_type_) + : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_) +{ + if (rows_ > 0 && cols_ > 0) + create(rows_, cols_, type_); +} + +inline +HostMem::HostMem(Size size_, int type_, AllocType alloc_type_) + : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_) +{ + if (size_.height > 0 && size_.width > 0) + create(size_.height, size_.width, type_); +} + +inline +HostMem::HostMem(InputArray arr, AllocType alloc_type_) + : flags(0), rows(0), cols(0), step(0), data(0), refcount(0), datastart(0), dataend(0), alloc_type(alloc_type_) +{ + arr.getMat().copyTo(*this); +} + +inline +HostMem::~HostMem() +{ + release(); +} + +inline +HostMem& HostMem::operator =(const HostMem& m) +{ + if (this != &m) + { + HostMem temp(m); + swap(temp); + } + + return *this; +} + +inline +void HostMem::swap(HostMem& b) +{ + std::swap(flags, b.flags); + std::swap(rows, b.rows); + std::swap(cols, b.cols); + std::swap(step, b.step); + std::swap(data, b.data); + std::swap(datastart, b.datastart); + std::swap(dataend, b.dataend); + std::swap(refcount, b.refcount); + std::swap(alloc_type, b.alloc_type); +} + +inline +HostMem HostMem::clone() const +{ + HostMem m(size(), type(), alloc_type); + createMatHeader().copyTo(m); + return m; +} + +inline +void HostMem::create(Size size_, int type_) +{ + create(size_.height, size_.width, type_); +} + +inline +Mat HostMem::createMatHeader() const +{ + return Mat(size(), type(), data, step); +} + +inline +bool HostMem::isContinuous() const +{ + return (flags & Mat::CONTINUOUS_FLAG) != 0; +} + +inline +size_t HostMem::elemSize() const +{ + return CV_ELEM_SIZE(flags); +} + +inline +size_t HostMem::elemSize1() const +{ + return CV_ELEM_SIZE1(flags); +} + +inline +int HostMem::type() const +{ + return CV_MAT_TYPE(flags); +} + +inline +int HostMem::depth() const +{ + return CV_MAT_DEPTH(flags); +} + +inline +int HostMem::channels() const +{ + return CV_MAT_CN(flags); +} + +inline +size_t HostMem::step1() const +{ + return step / elemSize1(); +} + +inline +Size HostMem::size() const +{ + return Size(cols, rows); +} + +inline +bool HostMem::empty() const +{ + return data == 0; +} + +static inline +void swap(HostMem& a, HostMem& b) +{ + a.swap(b); +} + +//=================================================================================== +// Stream +//=================================================================================== + +inline +Stream::Stream(const Ptr& impl) + : impl_(impl) +{ +} + +//=================================================================================== +// Event +//=================================================================================== + +inline +Event::Event(const Ptr& impl) + : impl_(impl) +{ +} + +//=================================================================================== +// Initialization & Info +//=================================================================================== + +inline +bool TargetArchs::has(int major, int minor) +{ + return hasPtx(major, minor) || hasBin(major, minor); +} + +inline +bool TargetArchs::hasEqualOrGreater(int major, int minor) +{ + return hasEqualOrGreaterPtx(major, minor) || hasEqualOrGreaterBin(major, minor); +} + +inline +DeviceInfo::DeviceInfo() +{ + device_id_ = getDevice(); +} + +inline +DeviceInfo::DeviceInfo(int device_id) +{ + CV_Assert( device_id >= 0 && device_id < getCudaEnabledDeviceCount() ); + device_id_ = device_id; +} + +inline +int DeviceInfo::deviceID() const +{ + return device_id_; +} + +inline +size_t DeviceInfo::freeMemory() const +{ + size_t _totalMemory = 0, _freeMemory = 0; + queryMemory(_totalMemory, _freeMemory); + return _freeMemory; +} + +inline +size_t DeviceInfo::totalMemory() const +{ + size_t _totalMemory = 0, _freeMemory = 0; + queryMemory(_totalMemory, _freeMemory); + return _totalMemory; +} + +inline +bool DeviceInfo::supports(FeatureSet feature_set) const +{ + int version = majorVersion() * 10 + minorVersion(); + return version >= feature_set; +} + + +}} // namespace cv { namespace cuda { + +//=================================================================================== +// Mat +//=================================================================================== + +namespace cv { + +inline +Mat::Mat(const cuda::GpuMat& m) + : flags(0), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), datalimit(0), allocator(0), u(0), size(&rows) +{ + m.download(*this); +} + +} + +//! @endcond + +#endif // OPENCV_CORE_CUDAINL_HPP diff --git a/thirdparty1/linux/include/opencv2/core/cuda/block.hpp b/thirdparty1/linux/include/opencv2/core/cuda/block.hpp new file mode 100644 index 0000000..330cf1d --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda/block.hpp @@ -0,0 +1,211 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CUDA_DEVICE_BLOCK_HPP +#define OPENCV_CUDA_DEVICE_BLOCK_HPP + +/** @file + * @deprecated Use @ref cudev instead. + */ + +//! @cond IGNORED + +namespace cv { namespace cuda { namespace device +{ + struct Block + { + static __device__ __forceinline__ unsigned int id() + { + return blockIdx.x; + } + + static __device__ __forceinline__ unsigned int stride() + { + return blockDim.x * blockDim.y * blockDim.z; + } + + static __device__ __forceinline__ void sync() + { + __syncthreads(); + } + + static __device__ __forceinline__ int flattenedThreadId() + { + return threadIdx.z * blockDim.x * blockDim.y + threadIdx.y * blockDim.x + threadIdx.x; + } + + template + static __device__ __forceinline__ void fill(It beg, It end, const T& value) + { + int STRIDE = stride(); + It t = beg + flattenedThreadId(); + + for(; t < end; t += STRIDE) + *t = value; + } + + template + static __device__ __forceinline__ void yota(OutIt beg, OutIt end, T value) + { + int STRIDE = stride(); + int tid = flattenedThreadId(); + value += tid; + + for(OutIt t = beg + tid; t < end; t += STRIDE, value += STRIDE) + *t = value; + } + + template + static __device__ __forceinline__ void copy(InIt beg, InIt end, OutIt out) + { + int STRIDE = stride(); + InIt t = beg + flattenedThreadId(); + OutIt o = out + (t - beg); + + for(; t < end; t += STRIDE, o += STRIDE) + *o = *t; + } + + template + static __device__ __forceinline__ void transfrom(InIt beg, InIt end, OutIt out, UnOp op) + { + int STRIDE = stride(); + InIt t = beg + flattenedThreadId(); + OutIt o = out + (t - beg); + + for(; t < end; t += STRIDE, o += STRIDE) + *o = op(*t); + } + + template + static __device__ __forceinline__ void transfrom(InIt1 beg1, InIt1 end1, InIt2 beg2, OutIt out, BinOp op) + { + int STRIDE = stride(); + InIt1 t1 = beg1 + flattenedThreadId(); + InIt2 t2 = beg2 + flattenedThreadId(); + OutIt o = out + (t1 - beg1); + + for(; t1 < end1; t1 += STRIDE, t2 += STRIDE, o += STRIDE) + *o = op(*t1, *t2); + } + + template + static __device__ __forceinline__ void reduce(volatile T* buffer, BinOp op) + { + int tid = flattenedThreadId(); + T val = buffer[tid]; + + if (CTA_SIZE >= 1024) { if (tid < 512) buffer[tid] = val = op(val, buffer[tid + 512]); __syncthreads(); } + if (CTA_SIZE >= 512) { if (tid < 256) buffer[tid] = val = op(val, buffer[tid + 256]); __syncthreads(); } + if (CTA_SIZE >= 256) { if (tid < 128) buffer[tid] = val = op(val, buffer[tid + 128]); __syncthreads(); } + if (CTA_SIZE >= 128) { if (tid < 64) buffer[tid] = val = op(val, buffer[tid + 64]); __syncthreads(); } + + if (tid < 32) + { + if (CTA_SIZE >= 64) { buffer[tid] = val = op(val, buffer[tid + 32]); } + if (CTA_SIZE >= 32) { buffer[tid] = val = op(val, buffer[tid + 16]); } + if (CTA_SIZE >= 16) { buffer[tid] = val = op(val, buffer[tid + 8]); } + if (CTA_SIZE >= 8) { buffer[tid] = val = op(val, buffer[tid + 4]); } + if (CTA_SIZE >= 4) { buffer[tid] = val = op(val, buffer[tid + 2]); } + if (CTA_SIZE >= 2) { buffer[tid] = val = op(val, buffer[tid + 1]); } + } + } + + template + static __device__ __forceinline__ T reduce(volatile T* buffer, T init, BinOp op) + { + int tid = flattenedThreadId(); + T val = buffer[tid] = init; + __syncthreads(); + + if (CTA_SIZE >= 1024) { if (tid < 512) buffer[tid] = val = op(val, buffer[tid + 512]); __syncthreads(); } + if (CTA_SIZE >= 512) { if (tid < 256) buffer[tid] = val = op(val, buffer[tid + 256]); __syncthreads(); } + if (CTA_SIZE >= 256) { if (tid < 128) buffer[tid] = val = op(val, buffer[tid + 128]); __syncthreads(); } + if (CTA_SIZE >= 128) { if (tid < 64) buffer[tid] = val = op(val, buffer[tid + 64]); __syncthreads(); } + + if (tid < 32) + { + if (CTA_SIZE >= 64) { buffer[tid] = val = op(val, buffer[tid + 32]); } + if (CTA_SIZE >= 32) { buffer[tid] = val = op(val, buffer[tid + 16]); } + if (CTA_SIZE >= 16) { buffer[tid] = val = op(val, buffer[tid + 8]); } + if (CTA_SIZE >= 8) { buffer[tid] = val = op(val, buffer[tid + 4]); } + if (CTA_SIZE >= 4) { buffer[tid] = val = op(val, buffer[tid + 2]); } + if (CTA_SIZE >= 2) { buffer[tid] = val = op(val, buffer[tid + 1]); } + } + __syncthreads(); + return buffer[0]; + } + + template + static __device__ __forceinline__ void reduce_n(T* data, unsigned int n, BinOp op) + { + int ftid = flattenedThreadId(); + int sft = stride(); + + if (sft < n) + { + for (unsigned int i = sft + ftid; i < n; i += sft) + data[ftid] = op(data[ftid], data[i]); + + __syncthreads(); + + n = sft; + } + + while (n > 1) + { + unsigned int half = n/2; + + if (ftid < half) + data[ftid] = op(data[ftid], data[n - ftid - 1]); + + __syncthreads(); + + n = n - half; + } + } + }; +}}} + +//! @endcond + +#endif /* OPENCV_CUDA_DEVICE_BLOCK_HPP */ diff --git a/thirdparty1/linux/include/opencv2/core/cuda/border_interpolate.hpp b/thirdparty1/linux/include/opencv2/core/cuda/border_interpolate.hpp new file mode 100644 index 0000000..874f705 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda/border_interpolate.hpp @@ -0,0 +1,722 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CUDA_BORDER_INTERPOLATE_HPP +#define OPENCV_CUDA_BORDER_INTERPOLATE_HPP + +#include "saturate_cast.hpp" +#include "vec_traits.hpp" +#include "vec_math.hpp" + +/** @file + * @deprecated Use @ref cudev instead. + */ + +//! @cond IGNORED + +namespace cv { namespace cuda { namespace device +{ + ////////////////////////////////////////////////////////////// + // BrdConstant + + template struct BrdRowConstant + { + typedef D result_type; + + explicit __host__ __device__ __forceinline__ BrdRowConstant(int width_, const D& val_ = VecTraits::all(0)) : width(width_), val(val_) {} + + template __device__ __forceinline__ D at_low(int x, const T* data) const + { + return x >= 0 ? saturate_cast(data[x]) : val; + } + + template __device__ __forceinline__ D at_high(int x, const T* data) const + { + return x < width ? saturate_cast(data[x]) : val; + } + + template __device__ __forceinline__ D at(int x, const T* data) const + { + return (x >= 0 && x < width) ? saturate_cast(data[x]) : val; + } + + int width; + D val; + }; + + template struct BrdColConstant + { + typedef D result_type; + + explicit __host__ __device__ __forceinline__ BrdColConstant(int height_, const D& val_ = VecTraits::all(0)) : height(height_), val(val_) {} + + template __device__ __forceinline__ D at_low(int y, const T* data, size_t step) const + { + return y >= 0 ? saturate_cast(*(const T*)((const char*)data + y * step)) : val; + } + + template __device__ __forceinline__ D at_high(int y, const T* data, size_t step) const + { + return y < height ? saturate_cast(*(const T*)((const char*)data + y * step)) : val; + } + + template __device__ __forceinline__ D at(int y, const T* data, size_t step) const + { + return (y >= 0 && y < height) ? saturate_cast(*(const T*)((const char*)data + y * step)) : val; + } + + int height; + D val; + }; + + template struct BrdConstant + { + typedef D result_type; + + __host__ __device__ __forceinline__ BrdConstant(int height_, int width_, const D& val_ = VecTraits::all(0)) : height(height_), width(width_), val(val_) + { + } + + template __device__ __forceinline__ D at(int y, int x, const T* data, size_t step) const + { + return (x >= 0 && x < width && y >= 0 && y < height) ? saturate_cast(((const T*)((const uchar*)data + y * step))[x]) : val; + } + + template __device__ __forceinline__ D at(typename Ptr2D::index_type y, typename Ptr2D::index_type x, const Ptr2D& src) const + { + return (x >= 0 && x < width && y >= 0 && y < height) ? saturate_cast(src(y, x)) : val; + } + + int height; + int width; + D val; + }; + + ////////////////////////////////////////////////////////////// + // BrdReplicate + + template struct BrdRowReplicate + { + typedef D result_type; + + explicit __host__ __device__ __forceinline__ BrdRowReplicate(int width) : last_col(width - 1) {} + template __host__ __device__ __forceinline__ BrdRowReplicate(int width, U) : last_col(width - 1) {} + + __device__ __forceinline__ int idx_col_low(int x) const + { + return ::max(x, 0); + } + + __device__ __forceinline__ int idx_col_high(int x) const + { + return ::min(x, last_col); + } + + __device__ __forceinline__ int idx_col(int x) const + { + return idx_col_low(idx_col_high(x)); + } + + template __device__ __forceinline__ D at_low(int x, const T* data) const + { + return saturate_cast(data[idx_col_low(x)]); + } + + template __device__ __forceinline__ D at_high(int x, const T* data) const + { + return saturate_cast(data[idx_col_high(x)]); + } + + template __device__ __forceinline__ D at(int x, const T* data) const + { + return saturate_cast(data[idx_col(x)]); + } + + int last_col; + }; + + template struct BrdColReplicate + { + typedef D result_type; + + explicit __host__ __device__ __forceinline__ BrdColReplicate(int height) : last_row(height - 1) {} + template __host__ __device__ __forceinline__ BrdColReplicate(int height, U) : last_row(height - 1) {} + + __device__ __forceinline__ int idx_row_low(int y) const + { + return ::max(y, 0); + } + + __device__ __forceinline__ int idx_row_high(int y) const + { + return ::min(y, last_row); + } + + __device__ __forceinline__ int idx_row(int y) const + { + return idx_row_low(idx_row_high(y)); + } + + template __device__ __forceinline__ D at_low(int y, const T* data, size_t step) const + { + return saturate_cast(*(const T*)((const char*)data + idx_row_low(y) * step)); + } + + template __device__ __forceinline__ D at_high(int y, const T* data, size_t step) const + { + return saturate_cast(*(const T*)((const char*)data + idx_row_high(y) * step)); + } + + template __device__ __forceinline__ D at(int y, const T* data, size_t step) const + { + return saturate_cast(*(const T*)((const char*)data + idx_row(y) * step)); + } + + int last_row; + }; + + template struct BrdReplicate + { + typedef D result_type; + + __host__ __device__ __forceinline__ BrdReplicate(int height, int width) : last_row(height - 1), last_col(width - 1) {} + template __host__ __device__ __forceinline__ BrdReplicate(int height, int width, U) : last_row(height - 1), last_col(width - 1) {} + + __device__ __forceinline__ int idx_row_low(int y) const + { + return ::max(y, 0); + } + + __device__ __forceinline__ int idx_row_high(int y) const + { + return ::min(y, last_row); + } + + __device__ __forceinline__ int idx_row(int y) const + { + return idx_row_low(idx_row_high(y)); + } + + __device__ __forceinline__ int idx_col_low(int x) const + { + return ::max(x, 0); + } + + __device__ __forceinline__ int idx_col_high(int x) const + { + return ::min(x, last_col); + } + + __device__ __forceinline__ int idx_col(int x) const + { + return idx_col_low(idx_col_high(x)); + } + + template __device__ __forceinline__ D at(int y, int x, const T* data, size_t step) const + { + return saturate_cast(((const T*)((const char*)data + idx_row(y) * step))[idx_col(x)]); + } + + template __device__ __forceinline__ D at(typename Ptr2D::index_type y, typename Ptr2D::index_type x, const Ptr2D& src) const + { + return saturate_cast(src(idx_row(y), idx_col(x))); + } + + int last_row; + int last_col; + }; + + ////////////////////////////////////////////////////////////// + // BrdReflect101 + + template struct BrdRowReflect101 + { + typedef D result_type; + + explicit __host__ __device__ __forceinline__ BrdRowReflect101(int width) : last_col(width - 1) {} + template __host__ __device__ __forceinline__ BrdRowReflect101(int width, U) : last_col(width - 1) {} + + __device__ __forceinline__ int idx_col_low(int x) const + { + return ::abs(x) % (last_col + 1); + } + + __device__ __forceinline__ int idx_col_high(int x) const + { + return ::abs(last_col - ::abs(last_col - x)) % (last_col + 1); + } + + __device__ __forceinline__ int idx_col(int x) const + { + return idx_col_low(idx_col_high(x)); + } + + template __device__ __forceinline__ D at_low(int x, const T* data) const + { + return saturate_cast(data[idx_col_low(x)]); + } + + template __device__ __forceinline__ D at_high(int x, const T* data) const + { + return saturate_cast(data[idx_col_high(x)]); + } + + template __device__ __forceinline__ D at(int x, const T* data) const + { + return saturate_cast(data[idx_col(x)]); + } + + int last_col; + }; + + template struct BrdColReflect101 + { + typedef D result_type; + + explicit __host__ __device__ __forceinline__ BrdColReflect101(int height) : last_row(height - 1) {} + template __host__ __device__ __forceinline__ BrdColReflect101(int height, U) : last_row(height - 1) {} + + __device__ __forceinline__ int idx_row_low(int y) const + { + return ::abs(y) % (last_row + 1); + } + + __device__ __forceinline__ int idx_row_high(int y) const + { + return ::abs(last_row - ::abs(last_row - y)) % (last_row + 1); + } + + __device__ __forceinline__ int idx_row(int y) const + { + return idx_row_low(idx_row_high(y)); + } + + template __device__ __forceinline__ D at_low(int y, const T* data, size_t step) const + { + return saturate_cast(*(const D*)((const char*)data + idx_row_low(y) * step)); + } + + template __device__ __forceinline__ D at_high(int y, const T* data, size_t step) const + { + return saturate_cast(*(const D*)((const char*)data + idx_row_high(y) * step)); + } + + template __device__ __forceinline__ D at(int y, const T* data, size_t step) const + { + return saturate_cast(*(const D*)((const char*)data + idx_row(y) * step)); + } + + int last_row; + }; + + template struct BrdReflect101 + { + typedef D result_type; + + __host__ __device__ __forceinline__ BrdReflect101(int height, int width) : last_row(height - 1), last_col(width - 1) {} + template __host__ __device__ __forceinline__ BrdReflect101(int height, int width, U) : last_row(height - 1), last_col(width - 1) {} + + __device__ __forceinline__ int idx_row_low(int y) const + { + return ::abs(y) % (last_row + 1); + } + + __device__ __forceinline__ int idx_row_high(int y) const + { + return ::abs(last_row - ::abs(last_row - y)) % (last_row + 1); + } + + __device__ __forceinline__ int idx_row(int y) const + { + return idx_row_low(idx_row_high(y)); + } + + __device__ __forceinline__ int idx_col_low(int x) const + { + return ::abs(x) % (last_col + 1); + } + + __device__ __forceinline__ int idx_col_high(int x) const + { + return ::abs(last_col - ::abs(last_col - x)) % (last_col + 1); + } + + __device__ __forceinline__ int idx_col(int x) const + { + return idx_col_low(idx_col_high(x)); + } + + template __device__ __forceinline__ D at(int y, int x, const T* data, size_t step) const + { + return saturate_cast(((const T*)((const char*)data + idx_row(y) * step))[idx_col(x)]); + } + + template __device__ __forceinline__ D at(typename Ptr2D::index_type y, typename Ptr2D::index_type x, const Ptr2D& src) const + { + return saturate_cast(src(idx_row(y), idx_col(x))); + } + + int last_row; + int last_col; + }; + + ////////////////////////////////////////////////////////////// + // BrdReflect + + template struct BrdRowReflect + { + typedef D result_type; + + explicit __host__ __device__ __forceinline__ BrdRowReflect(int width) : last_col(width - 1) {} + template __host__ __device__ __forceinline__ BrdRowReflect(int width, U) : last_col(width - 1) {} + + __device__ __forceinline__ int idx_col_low(int x) const + { + return (::abs(x) - (x < 0)) % (last_col + 1); + } + + __device__ __forceinline__ int idx_col_high(int x) const + { + return ::abs(last_col - ::abs(last_col - x) + (x > last_col)) % (last_col + 1); + } + + __device__ __forceinline__ int idx_col(int x) const + { + return idx_col_high(::abs(x) - (x < 0)); + } + + template __device__ __forceinline__ D at_low(int x, const T* data) const + { + return saturate_cast(data[idx_col_low(x)]); + } + + template __device__ __forceinline__ D at_high(int x, const T* data) const + { + return saturate_cast(data[idx_col_high(x)]); + } + + template __device__ __forceinline__ D at(int x, const T* data) const + { + return saturate_cast(data[idx_col(x)]); + } + + int last_col; + }; + + template struct BrdColReflect + { + typedef D result_type; + + explicit __host__ __device__ __forceinline__ BrdColReflect(int height) : last_row(height - 1) {} + template __host__ __device__ __forceinline__ BrdColReflect(int height, U) : last_row(height - 1) {} + + __device__ __forceinline__ int idx_row_low(int y) const + { + return (::abs(y) - (y < 0)) % (last_row + 1); + } + + __device__ __forceinline__ int idx_row_high(int y) const + { + return ::abs(last_row - ::abs(last_row - y) + (y > last_row)) % (last_row + 1); + } + + __device__ __forceinline__ int idx_row(int y) const + { + return idx_row_high(::abs(y) - (y < 0)); + } + + template __device__ __forceinline__ D at_low(int y, const T* data, size_t step) const + { + return saturate_cast(*(const D*)((const char*)data + idx_row_low(y) * step)); + } + + template __device__ __forceinline__ D at_high(int y, const T* data, size_t step) const + { + return saturate_cast(*(const D*)((const char*)data + idx_row_high(y) * step)); + } + + template __device__ __forceinline__ D at(int y, const T* data, size_t step) const + { + return saturate_cast(*(const D*)((const char*)data + idx_row(y) * step)); + } + + int last_row; + }; + + template struct BrdReflect + { + typedef D result_type; + + __host__ __device__ __forceinline__ BrdReflect(int height, int width) : last_row(height - 1), last_col(width - 1) {} + template __host__ __device__ __forceinline__ BrdReflect(int height, int width, U) : last_row(height - 1), last_col(width - 1) {} + + __device__ __forceinline__ int idx_row_low(int y) const + { + return (::abs(y) - (y < 0)) % (last_row + 1); + } + + __device__ __forceinline__ int idx_row_high(int y) const + { + return /*::abs*/(last_row - ::abs(last_row - y) + (y > last_row)) /*% (last_row + 1)*/; + } + + __device__ __forceinline__ int idx_row(int y) const + { + return idx_row_low(idx_row_high(y)); + } + + __device__ __forceinline__ int idx_col_low(int x) const + { + return (::abs(x) - (x < 0)) % (last_col + 1); + } + + __device__ __forceinline__ int idx_col_high(int x) const + { + return (last_col - ::abs(last_col - x) + (x > last_col)); + } + + __device__ __forceinline__ int idx_col(int x) const + { + return idx_col_low(idx_col_high(x)); + } + + template __device__ __forceinline__ D at(int y, int x, const T* data, size_t step) const + { + return saturate_cast(((const T*)((const char*)data + idx_row(y) * step))[idx_col(x)]); + } + + template __device__ __forceinline__ D at(typename Ptr2D::index_type y, typename Ptr2D::index_type x, const Ptr2D& src) const + { + return saturate_cast(src(idx_row(y), idx_col(x))); + } + + int last_row; + int last_col; + }; + + ////////////////////////////////////////////////////////////// + // BrdWrap + + template struct BrdRowWrap + { + typedef D result_type; + + explicit __host__ __device__ __forceinline__ BrdRowWrap(int width_) : width(width_) {} + template __host__ __device__ __forceinline__ BrdRowWrap(int width_, U) : width(width_) {} + + __device__ __forceinline__ int idx_col_low(int x) const + { + return (x >= 0) * x + (x < 0) * (x - ((x - width + 1) / width) * width); + } + + __device__ __forceinline__ int idx_col_high(int x) const + { + return (x < width) * x + (x >= width) * (x % width); + } + + __device__ __forceinline__ int idx_col(int x) const + { + return idx_col_high(idx_col_low(x)); + } + + template __device__ __forceinline__ D at_low(int x, const T* data) const + { + return saturate_cast(data[idx_col_low(x)]); + } + + template __device__ __forceinline__ D at_high(int x, const T* data) const + { + return saturate_cast(data[idx_col_high(x)]); + } + + template __device__ __forceinline__ D at(int x, const T* data) const + { + return saturate_cast(data[idx_col(x)]); + } + + int width; + }; + + template struct BrdColWrap + { + typedef D result_type; + + explicit __host__ __device__ __forceinline__ BrdColWrap(int height_) : height(height_) {} + template __host__ __device__ __forceinline__ BrdColWrap(int height_, U) : height(height_) {} + + __device__ __forceinline__ int idx_row_low(int y) const + { + return (y >= 0) * y + (y < 0) * (y - ((y - height + 1) / height) * height); + } + + __device__ __forceinline__ int idx_row_high(int y) const + { + return (y < height) * y + (y >= height) * (y % height); + } + + __device__ __forceinline__ int idx_row(int y) const + { + return idx_row_high(idx_row_low(y)); + } + + template __device__ __forceinline__ D at_low(int y, const T* data, size_t step) const + { + return saturate_cast(*(const D*)((const char*)data + idx_row_low(y) * step)); + } + + template __device__ __forceinline__ D at_high(int y, const T* data, size_t step) const + { + return saturate_cast(*(const D*)((const char*)data + idx_row_high(y) * step)); + } + + template __device__ __forceinline__ D at(int y, const T* data, size_t step) const + { + return saturate_cast(*(const D*)((const char*)data + idx_row(y) * step)); + } + + int height; + }; + + template struct BrdWrap + { + typedef D result_type; + + __host__ __device__ __forceinline__ BrdWrap(int height_, int width_) : + height(height_), width(width_) + { + } + template + __host__ __device__ __forceinline__ BrdWrap(int height_, int width_, U) : + height(height_), width(width_) + { + } + + __device__ __forceinline__ int idx_row_low(int y) const + { + return (y >= 0) ? y : (y - ((y - height + 1) / height) * height); + } + + __device__ __forceinline__ int idx_row_high(int y) const + { + return (y < height) ? y : (y % height); + } + + __device__ __forceinline__ int idx_row(int y) const + { + return idx_row_high(idx_row_low(y)); + } + + __device__ __forceinline__ int idx_col_low(int x) const + { + return (x >= 0) ? x : (x - ((x - width + 1) / width) * width); + } + + __device__ __forceinline__ int idx_col_high(int x) const + { + return (x < width) ? x : (x % width); + } + + __device__ __forceinline__ int idx_col(int x) const + { + return idx_col_high(idx_col_low(x)); + } + + template __device__ __forceinline__ D at(int y, int x, const T* data, size_t step) const + { + return saturate_cast(((const T*)((const char*)data + idx_row(y) * step))[idx_col(x)]); + } + + template __device__ __forceinline__ D at(typename Ptr2D::index_type y, typename Ptr2D::index_type x, const Ptr2D& src) const + { + return saturate_cast(src(idx_row(y), idx_col(x))); + } + + int height; + int width; + }; + + ////////////////////////////////////////////////////////////// + // BorderReader + + template struct BorderReader + { + typedef typename B::result_type elem_type; + typedef typename Ptr2D::index_type index_type; + + __host__ __device__ __forceinline__ BorderReader(const Ptr2D& ptr_, const B& b_) : ptr(ptr_), b(b_) {} + + __device__ __forceinline__ elem_type operator ()(index_type y, index_type x) const + { + return b.at(y, x, ptr); + } + + Ptr2D ptr; + B b; + }; + + // under win32 there is some bug with templated types that passed as kernel parameters + // with this specialization all works fine + template struct BorderReader< Ptr2D, BrdConstant > + { + typedef typename BrdConstant::result_type elem_type; + typedef typename Ptr2D::index_type index_type; + + __host__ __device__ __forceinline__ BorderReader(const Ptr2D& src_, const BrdConstant& b) : + src(src_), height(b.height), width(b.width), val(b.val) + { + } + + __device__ __forceinline__ D operator ()(index_type y, index_type x) const + { + return (x >= 0 && x < width && y >= 0 && y < height) ? saturate_cast(src(y, x)) : val; + } + + Ptr2D src; + int height; + int width; + D val; + }; +}}} // namespace cv { namespace cuda { namespace cudev + +//! @endcond + +#endif // OPENCV_CUDA_BORDER_INTERPOLATE_HPP diff --git a/thirdparty1/linux/include/opencv2/core/cuda/color.hpp b/thirdparty1/linux/include/opencv2/core/cuda/color.hpp new file mode 100644 index 0000000..dcce280 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda/color.hpp @@ -0,0 +1,309 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CUDA_COLOR_HPP +#define OPENCV_CUDA_COLOR_HPP + +#include "detail/color_detail.hpp" + +/** @file + * @deprecated Use @ref cudev instead. + */ + +//! @cond IGNORED + +namespace cv { namespace cuda { namespace device +{ + // All OPENCV_CUDA_IMPLEMENT_*_TRAITS(ColorSpace1_to_ColorSpace2, ...) macros implements + // template class ColorSpace1_to_ColorSpace2_traits + // { + // typedef ... functor_type; + // static __host__ __device__ functor_type create_functor(); + // }; + + OPENCV_CUDA_IMPLEMENT_RGB2RGB_TRAITS(bgr_to_rgb, 3, 3, 2) + OPENCV_CUDA_IMPLEMENT_RGB2RGB_TRAITS(bgr_to_bgra, 3, 4, 0) + OPENCV_CUDA_IMPLEMENT_RGB2RGB_TRAITS(bgr_to_rgba, 3, 4, 2) + OPENCV_CUDA_IMPLEMENT_RGB2RGB_TRAITS(bgra_to_bgr, 4, 3, 0) + OPENCV_CUDA_IMPLEMENT_RGB2RGB_TRAITS(bgra_to_rgb, 4, 3, 2) + OPENCV_CUDA_IMPLEMENT_RGB2RGB_TRAITS(bgra_to_rgba, 4, 4, 2) + + #undef OPENCV_CUDA_IMPLEMENT_RGB2RGB_TRAITS + + OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(bgr_to_bgr555, 3, 0, 5) + OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(bgr_to_bgr565, 3, 0, 6) + OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(rgb_to_bgr555, 3, 2, 5) + OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(rgb_to_bgr565, 3, 2, 6) + OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(bgra_to_bgr555, 4, 0, 5) + OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(bgra_to_bgr565, 4, 0, 6) + OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(rgba_to_bgr555, 4, 2, 5) + OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(rgba_to_bgr565, 4, 2, 6) + + #undef OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS + + OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(bgr555_to_rgb, 3, 2, 5) + OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(bgr565_to_rgb, 3, 2, 6) + OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(bgr555_to_bgr, 3, 0, 5) + OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(bgr565_to_bgr, 3, 0, 6) + OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(bgr555_to_rgba, 4, 2, 5) + OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(bgr565_to_rgba, 4, 2, 6) + OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(bgr555_to_bgra, 4, 0, 5) + OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(bgr565_to_bgra, 4, 0, 6) + + #undef OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS + + OPENCV_CUDA_IMPLEMENT_GRAY2RGB_TRAITS(gray_to_bgr, 3) + OPENCV_CUDA_IMPLEMENT_GRAY2RGB_TRAITS(gray_to_bgra, 4) + + #undef OPENCV_CUDA_IMPLEMENT_GRAY2RGB_TRAITS + + OPENCV_CUDA_IMPLEMENT_GRAY2RGB5x5_TRAITS(gray_to_bgr555, 5) + OPENCV_CUDA_IMPLEMENT_GRAY2RGB5x5_TRAITS(gray_to_bgr565, 6) + + #undef OPENCV_CUDA_IMPLEMENT_GRAY2RGB5x5_TRAITS + + OPENCV_CUDA_IMPLEMENT_RGB5x52GRAY_TRAITS(bgr555_to_gray, 5) + OPENCV_CUDA_IMPLEMENT_RGB5x52GRAY_TRAITS(bgr565_to_gray, 6) + + #undef OPENCV_CUDA_IMPLEMENT_RGB5x52GRAY_TRAITS + + OPENCV_CUDA_IMPLEMENT_RGB2GRAY_TRAITS(rgb_to_gray, 3, 2) + OPENCV_CUDA_IMPLEMENT_RGB2GRAY_TRAITS(bgr_to_gray, 3, 0) + OPENCV_CUDA_IMPLEMENT_RGB2GRAY_TRAITS(rgba_to_gray, 4, 2) + OPENCV_CUDA_IMPLEMENT_RGB2GRAY_TRAITS(bgra_to_gray, 4, 0) + + #undef OPENCV_CUDA_IMPLEMENT_RGB2GRAY_TRAITS + + OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(rgb_to_yuv, 3, 3, 2) + OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(rgba_to_yuv, 4, 3, 2) + OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(rgb_to_yuv4, 3, 4, 2) + OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(rgba_to_yuv4, 4, 4, 2) + OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(bgr_to_yuv, 3, 3, 0) + OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(bgra_to_yuv, 4, 3, 0) + OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(bgr_to_yuv4, 3, 4, 0) + OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(bgra_to_yuv4, 4, 4, 0) + + #undef OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS + + OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(yuv_to_rgb, 3, 3, 2) + OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(yuv_to_rgba, 3, 4, 2) + OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(yuv4_to_rgb, 4, 3, 2) + OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(yuv4_to_rgba, 4, 4, 2) + OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(yuv_to_bgr, 3, 3, 0) + OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(yuv_to_bgra, 3, 4, 0) + OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(yuv4_to_bgr, 4, 3, 0) + OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(yuv4_to_bgra, 4, 4, 0) + + #undef OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS + + OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(rgb_to_YCrCb, 3, 3, 2) + OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(rgba_to_YCrCb, 4, 3, 2) + OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(rgb_to_YCrCb4, 3, 4, 2) + OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(rgba_to_YCrCb4, 4, 4, 2) + OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(bgr_to_YCrCb, 3, 3, 0) + OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(bgra_to_YCrCb, 4, 3, 0) + OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(bgr_to_YCrCb4, 3, 4, 0) + OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(bgra_to_YCrCb4, 4, 4, 0) + + #undef OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS + + OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(YCrCb_to_rgb, 3, 3, 2) + OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(YCrCb_to_rgba, 3, 4, 2) + OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(YCrCb4_to_rgb, 4, 3, 2) + OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(YCrCb4_to_rgba, 4, 4, 2) + OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(YCrCb_to_bgr, 3, 3, 0) + OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(YCrCb_to_bgra, 3, 4, 0) + OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(YCrCb4_to_bgr, 4, 3, 0) + OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(YCrCb4_to_bgra, 4, 4, 0) + + #undef OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS + + OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(rgb_to_xyz, 3, 3, 2) + OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(rgba_to_xyz, 4, 3, 2) + OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(rgb_to_xyz4, 3, 4, 2) + OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(rgba_to_xyz4, 4, 4, 2) + OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(bgr_to_xyz, 3, 3, 0) + OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(bgra_to_xyz, 4, 3, 0) + OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(bgr_to_xyz4, 3, 4, 0) + OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(bgra_to_xyz4, 4, 4, 0) + + #undef OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS + + OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(xyz_to_rgb, 3, 3, 2) + OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(xyz4_to_rgb, 4, 3, 2) + OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(xyz_to_rgba, 3, 4, 2) + OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(xyz4_to_rgba, 4, 4, 2) + OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(xyz_to_bgr, 3, 3, 0) + OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(xyz4_to_bgr, 4, 3, 0) + OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(xyz_to_bgra, 3, 4, 0) + OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(xyz4_to_bgra, 4, 4, 0) + + #undef OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS + + OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(rgb_to_hsv, 3, 3, 2) + OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(rgba_to_hsv, 4, 3, 2) + OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(rgb_to_hsv4, 3, 4, 2) + OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(rgba_to_hsv4, 4, 4, 2) + OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(bgr_to_hsv, 3, 3, 0) + OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(bgra_to_hsv, 4, 3, 0) + OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(bgr_to_hsv4, 3, 4, 0) + OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(bgra_to_hsv4, 4, 4, 0) + + #undef OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS + + OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(hsv_to_rgb, 3, 3, 2) + OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(hsv_to_rgba, 3, 4, 2) + OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(hsv4_to_rgb, 4, 3, 2) + OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(hsv4_to_rgba, 4, 4, 2) + OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(hsv_to_bgr, 3, 3, 0) + OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(hsv_to_bgra, 3, 4, 0) + OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(hsv4_to_bgr, 4, 3, 0) + OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(hsv4_to_bgra, 4, 4, 0) + + #undef OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS + + OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(rgb_to_hls, 3, 3, 2) + OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(rgba_to_hls, 4, 3, 2) + OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(rgb_to_hls4, 3, 4, 2) + OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(rgba_to_hls4, 4, 4, 2) + OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(bgr_to_hls, 3, 3, 0) + OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(bgra_to_hls, 4, 3, 0) + OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(bgr_to_hls4, 3, 4, 0) + OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(bgra_to_hls4, 4, 4, 0) + + #undef OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS + + OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(hls_to_rgb, 3, 3, 2) + OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(hls_to_rgba, 3, 4, 2) + OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(hls4_to_rgb, 4, 3, 2) + OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(hls4_to_rgba, 4, 4, 2) + OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(hls_to_bgr, 3, 3, 0) + OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(hls_to_bgra, 3, 4, 0) + OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(hls4_to_bgr, 4, 3, 0) + OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(hls4_to_bgra, 4, 4, 0) + + #undef OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS + + OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(rgb_to_lab, 3, 3, true, 2) + OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(rgba_to_lab, 4, 3, true, 2) + OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(rgb_to_lab4, 3, 4, true, 2) + OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(rgba_to_lab4, 4, 4, true, 2) + OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(bgr_to_lab, 3, 3, true, 0) + OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(bgra_to_lab, 4, 3, true, 0) + OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(bgr_to_lab4, 3, 4, true, 0) + OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(bgra_to_lab4, 4, 4, true, 0) + + OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(lrgb_to_lab, 3, 3, false, 2) + OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(lrgba_to_lab, 4, 3, false, 2) + OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(lrgb_to_lab4, 3, 4, false, 2) + OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(lrgba_to_lab4, 4, 4, false, 2) + OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(lbgr_to_lab, 3, 3, false, 0) + OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(lbgra_to_lab, 4, 3, false, 0) + OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(lbgr_to_lab4, 3, 4, false, 0) + OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(lbgra_to_lab4, 4, 4, false, 0) + + #undef OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS + + OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab_to_rgb, 3, 3, true, 2) + OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab4_to_rgb, 4, 3, true, 2) + OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab_to_rgba, 3, 4, true, 2) + OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab4_to_rgba, 4, 4, true, 2) + OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab_to_bgr, 3, 3, true, 0) + OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab4_to_bgr, 4, 3, true, 0) + OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab_to_bgra, 3, 4, true, 0) + OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab4_to_bgra, 4, 4, true, 0) + + OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab_to_lrgb, 3, 3, false, 2) + OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab4_to_lrgb, 4, 3, false, 2) + OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab_to_lrgba, 3, 4, false, 2) + OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab4_to_lrgba, 4, 4, false, 2) + OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab_to_lbgr, 3, 3, false, 0) + OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab4_to_lbgr, 4, 3, false, 0) + OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab_to_lbgra, 3, 4, false, 0) + OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(lab4_to_lbgra, 4, 4, false, 0) + + #undef OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS + + OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(rgb_to_luv, 3, 3, true, 2) + OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(rgba_to_luv, 4, 3, true, 2) + OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(rgb_to_luv4, 3, 4, true, 2) + OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(rgba_to_luv4, 4, 4, true, 2) + OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(bgr_to_luv, 3, 3, true, 0) + OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(bgra_to_luv, 4, 3, true, 0) + OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(bgr_to_luv4, 3, 4, true, 0) + OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(bgra_to_luv4, 4, 4, true, 0) + + OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(lrgb_to_luv, 3, 3, false, 2) + OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(lrgba_to_luv, 4, 3, false, 2) + OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(lrgb_to_luv4, 3, 4, false, 2) + OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(lrgba_to_luv4, 4, 4, false, 2) + OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(lbgr_to_luv, 3, 3, false, 0) + OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(lbgra_to_luv, 4, 3, false, 0) + OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(lbgr_to_luv4, 3, 4, false, 0) + OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(lbgra_to_luv4, 4, 4, false, 0) + + #undef OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS + + OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv_to_rgb, 3, 3, true, 2) + OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv4_to_rgb, 4, 3, true, 2) + OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv_to_rgba, 3, 4, true, 2) + OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv4_to_rgba, 4, 4, true, 2) + OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv_to_bgr, 3, 3, true, 0) + OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv4_to_bgr, 4, 3, true, 0) + OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv_to_bgra, 3, 4, true, 0) + OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv4_to_bgra, 4, 4, true, 0) + + OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv_to_lrgb, 3, 3, false, 2) + OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv4_to_lrgb, 4, 3, false, 2) + OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv_to_lrgba, 3, 4, false, 2) + OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv4_to_lrgba, 4, 4, false, 2) + OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv_to_lbgr, 3, 3, false, 0) + OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv4_to_lbgr, 4, 3, false, 0) + OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv_to_lbgra, 3, 4, false, 0) + OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(luv4_to_lbgra, 4, 4, false, 0) + + #undef OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS +}}} // namespace cv { namespace cuda { namespace cudev + +//! @endcond + +#endif // OPENCV_CUDA_COLOR_HPP diff --git a/thirdparty1/linux/include/opencv2/core/cuda/common.hpp b/thirdparty1/linux/include/opencv2/core/cuda/common.hpp new file mode 100644 index 0000000..14b1f3f --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda/common.hpp @@ -0,0 +1,109 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CUDA_COMMON_HPP +#define OPENCV_CUDA_COMMON_HPP + +#include +#include "opencv2/core/cuda_types.hpp" +#include "opencv2/core/cvdef.h" +#include "opencv2/core/base.hpp" + +/** @file + * @deprecated Use @ref cudev instead. + */ + +//! @cond IGNORED + +#ifndef CV_PI_F + #ifndef CV_PI + #define CV_PI_F 3.14159265f + #else + #define CV_PI_F ((float)CV_PI) + #endif +#endif + +namespace cv { namespace cuda { + static inline void checkCudaError(cudaError_t err, const char* file, const int line, const char* func) + { + if (cudaSuccess != err) + cv::error(cv::Error::GpuApiCallError, cudaGetErrorString(err), func, file, line); + } +}} + +#ifndef cudaSafeCall + #define cudaSafeCall(expr) cv::cuda::checkCudaError(expr, __FILE__, __LINE__, CV_Func) +#endif + +namespace cv { namespace cuda +{ + template static inline bool isAligned(const T* ptr, size_t size) + { + return reinterpret_cast(ptr) % size == 0; + } + + static inline bool isAligned(size_t step, size_t size) + { + return step % size == 0; + } +}} + +namespace cv { namespace cuda +{ + namespace device + { + __host__ __device__ __forceinline__ int divUp(int total, int grain) + { + return (total + grain - 1) / grain; + } + + template inline void bindTexture(const textureReference* tex, const PtrStepSz& img) + { + cudaChannelFormatDesc desc = cudaCreateChannelDesc(); + cudaSafeCall( cudaBindTexture2D(0, tex, img.ptr(), &desc, img.cols, img.rows, img.step) ); + } + } +}} + +//! @endcond + +#endif // OPENCV_CUDA_COMMON_HPP diff --git a/thirdparty1/linux/include/opencv2/core/cuda/datamov_utils.hpp b/thirdparty1/linux/include/opencv2/core/cuda/datamov_utils.hpp new file mode 100644 index 0000000..6820d0f --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda/datamov_utils.hpp @@ -0,0 +1,113 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CUDA_DATAMOV_UTILS_HPP +#define OPENCV_CUDA_DATAMOV_UTILS_HPP + +#include "common.hpp" + +/** @file + * @deprecated Use @ref cudev instead. + */ + +//! @cond IGNORED + +namespace cv { namespace cuda { namespace device +{ + #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 200 + + // for Fermi memory space is detected automatically + template struct ForceGlob + { + __device__ __forceinline__ static void Load(const T* ptr, int offset, T& val) { val = ptr[offset]; } + }; + + #else // __CUDA_ARCH__ >= 200 + + #if defined(_WIN64) || defined(__LP64__) + // 64-bit register modifier for inlined asm + #define OPENCV_CUDA_ASM_PTR "l" + #else + // 32-bit register modifier for inlined asm + #define OPENCV_CUDA_ASM_PTR "r" + #endif + + template struct ForceGlob; + + #define OPENCV_CUDA_DEFINE_FORCE_GLOB(base_type, ptx_type, reg_mod) \ + template <> struct ForceGlob \ + { \ + __device__ __forceinline__ static void Load(const base_type* ptr, int offset, base_type& val) \ + { \ + asm("ld.global."#ptx_type" %0, [%1];" : "="#reg_mod(val) : OPENCV_CUDA_ASM_PTR(ptr + offset)); \ + } \ + }; + + #define OPENCV_CUDA_DEFINE_FORCE_GLOB_B(base_type, ptx_type) \ + template <> struct ForceGlob \ + { \ + __device__ __forceinline__ static void Load(const base_type* ptr, int offset, base_type& val) \ + { \ + asm("ld.global."#ptx_type" %0, [%1];" : "=r"(*reinterpret_cast(&val)) : OPENCV_CUDA_ASM_PTR(ptr + offset)); \ + } \ + }; + + OPENCV_CUDA_DEFINE_FORCE_GLOB_B(uchar, u8) + OPENCV_CUDA_DEFINE_FORCE_GLOB_B(schar, s8) + OPENCV_CUDA_DEFINE_FORCE_GLOB_B(char, b8) + OPENCV_CUDA_DEFINE_FORCE_GLOB (ushort, u16, h) + OPENCV_CUDA_DEFINE_FORCE_GLOB (short, s16, h) + OPENCV_CUDA_DEFINE_FORCE_GLOB (uint, u32, r) + OPENCV_CUDA_DEFINE_FORCE_GLOB (int, s32, r) + OPENCV_CUDA_DEFINE_FORCE_GLOB (float, f32, f) + OPENCV_CUDA_DEFINE_FORCE_GLOB (double, f64, d) + + #undef OPENCV_CUDA_DEFINE_FORCE_GLOB + #undef OPENCV_CUDA_DEFINE_FORCE_GLOB_B + #undef OPENCV_CUDA_ASM_PTR + + #endif // __CUDA_ARCH__ >= 200 +}}} // namespace cv { namespace cuda { namespace cudev + +//! @endcond + +#endif // OPENCV_CUDA_DATAMOV_UTILS_HPP diff --git a/thirdparty1/linux/include/opencv2/core/cuda/detail/color_detail.hpp b/thirdparty1/linux/include/opencv2/core/cuda/detail/color_detail.hpp new file mode 100644 index 0000000..bfb4055 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda/detail/color_detail.hpp @@ -0,0 +1,1980 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CUDA_COLOR_DETAIL_HPP +#define OPENCV_CUDA_COLOR_DETAIL_HPP + +#include "../common.hpp" +#include "../vec_traits.hpp" +#include "../saturate_cast.hpp" +#include "../limits.hpp" +#include "../functional.hpp" + +//! @cond IGNORED + +namespace cv { namespace cuda { namespace device +{ + #ifndef CV_DESCALE + #define CV_DESCALE(x, n) (((x) + (1 << ((n)-1))) >> (n)) + #endif + + namespace color_detail + { + template struct ColorChannel + { + typedef float worktype_f; + static __device__ __forceinline__ T max() { return numeric_limits::max(); } + static __device__ __forceinline__ T half() { return (T)(max()/2 + 1); } + }; + + template<> struct ColorChannel + { + typedef float worktype_f; + static __device__ __forceinline__ float max() { return 1.f; } + static __device__ __forceinline__ float half() { return 0.5f; } + }; + + template static __device__ __forceinline__ void setAlpha(typename TypeVec::vec_type& vec, T val) + { + } + + template static __device__ __forceinline__ void setAlpha(typename TypeVec::vec_type& vec, T val) + { + vec.w = val; + } + + template static __device__ __forceinline__ T getAlpha(const typename TypeVec::vec_type& vec) + { + return ColorChannel::max(); + } + + template static __device__ __forceinline__ T getAlpha(const typename TypeVec::vec_type& vec) + { + return vec.w; + } + + enum + { + yuv_shift = 14, + xyz_shift = 12, + R2Y = 4899, + G2Y = 9617, + B2Y = 1868, + BLOCK_SIZE = 256 + }; + } + +////////////////// Various 3/4-channel to 3/4-channel RGB transformations ///////////////// + + namespace color_detail + { + template struct RGB2RGB + : unary_function::vec_type, typename TypeVec::vec_type> + { + __device__ typename TypeVec::vec_type operator()(const typename TypeVec::vec_type& src) const + { + typename TypeVec::vec_type dst; + + dst.x = (&src.x)[bidx]; + dst.y = src.y; + dst.z = (&src.x)[bidx^2]; + setAlpha(dst, getAlpha(src)); + + return dst; + } + + __host__ __device__ __forceinline__ RGB2RGB() {} + __host__ __device__ __forceinline__ RGB2RGB(const RGB2RGB&) {} + }; + + template <> struct RGB2RGB : unary_function + { + __device__ uint operator()(uint src) const + { + uint dst = 0; + + dst |= (0xffu & (src >> 16)); + dst |= (0xffu & (src >> 8)) << 8; + dst |= (0xffu & (src)) << 16; + dst |= (0xffu & (src >> 24)) << 24; + + return dst; + } + + __host__ __device__ __forceinline__ RGB2RGB() {} + __host__ __device__ __forceinline__ RGB2RGB(const RGB2RGB&) {} + }; + } + +#define OPENCV_CUDA_IMPLEMENT_RGB2RGB_TRAITS(name, scn, dcn, bidx) \ + template struct name ## _traits \ + { \ + typedef ::cv::cuda::device::color_detail::RGB2RGB functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; + +/////////// Transforming 16-bit (565 or 555) RGB to/from 24/32-bit (888[8]) RGB ////////// + + namespace color_detail + { + template struct RGB2RGB5x5Converter; + template struct RGB2RGB5x5Converter<6, bidx> + { + static __device__ __forceinline__ ushort cvt(const uchar3& src) + { + return (ushort)(((&src.x)[bidx] >> 3) | ((src.y & ~3) << 3) | (((&src.x)[bidx^2] & ~7) << 8)); + } + + static __device__ __forceinline__ ushort cvt(uint src) + { + uint b = 0xffu & (src >> (bidx * 8)); + uint g = 0xffu & (src >> 8); + uint r = 0xffu & (src >> ((bidx ^ 2) * 8)); + return (ushort)((b >> 3) | ((g & ~3) << 3) | ((r & ~7) << 8)); + } + }; + + template struct RGB2RGB5x5Converter<5, bidx> + { + static __device__ __forceinline__ ushort cvt(const uchar3& src) + { + return (ushort)(((&src.x)[bidx] >> 3) | ((src.y & ~7) << 2) | (((&src.x)[bidx^2] & ~7) << 7)); + } + + static __device__ __forceinline__ ushort cvt(uint src) + { + uint b = 0xffu & (src >> (bidx * 8)); + uint g = 0xffu & (src >> 8); + uint r = 0xffu & (src >> ((bidx ^ 2) * 8)); + uint a = 0xffu & (src >> 24); + return (ushort)((b >> 3) | ((g & ~7) << 2) | ((r & ~7) << 7) | (a * 0x8000)); + } + }; + + template struct RGB2RGB5x5; + + template struct RGB2RGB5x5<3, bidx,green_bits> : unary_function + { + __device__ __forceinline__ ushort operator()(const uchar3& src) const + { + return RGB2RGB5x5Converter::cvt(src); + } + + __host__ __device__ __forceinline__ RGB2RGB5x5() {} + __host__ __device__ __forceinline__ RGB2RGB5x5(const RGB2RGB5x5&) {} + }; + + template struct RGB2RGB5x5<4, bidx,green_bits> : unary_function + { + __device__ __forceinline__ ushort operator()(uint src) const + { + return RGB2RGB5x5Converter::cvt(src); + } + + __host__ __device__ __forceinline__ RGB2RGB5x5() {} + __host__ __device__ __forceinline__ RGB2RGB5x5(const RGB2RGB5x5&) {} + }; + } + +#define OPENCV_CUDA_IMPLEMENT_RGB2RGB5x5_TRAITS(name, scn, bidx, green_bits) \ + struct name ## _traits \ + { \ + typedef ::cv::cuda::device::color_detail::RGB2RGB5x5 functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; + + namespace color_detail + { + template struct RGB5x52RGBConverter; + + template struct RGB5x52RGBConverter<5, bidx> + { + static __device__ __forceinline__ void cvt(uint src, uchar3& dst) + { + (&dst.x)[bidx] = src << 3; + dst.y = (src >> 2) & ~7; + (&dst.x)[bidx ^ 2] = (src >> 7) & ~7; + } + + static __device__ __forceinline__ void cvt(uint src, uint& dst) + { + dst = 0; + + dst |= (0xffu & (src << 3)) << (bidx * 8); + dst |= (0xffu & ((src >> 2) & ~7)) << 8; + dst |= (0xffu & ((src >> 7) & ~7)) << ((bidx ^ 2) * 8); + dst |= ((src & 0x8000) * 0xffu) << 24; + } + }; + + template struct RGB5x52RGBConverter<6, bidx> + { + static __device__ __forceinline__ void cvt(uint src, uchar3& dst) + { + (&dst.x)[bidx] = src << 3; + dst.y = (src >> 3) & ~3; + (&dst.x)[bidx ^ 2] = (src >> 8) & ~7; + } + + static __device__ __forceinline__ void cvt(uint src, uint& dst) + { + dst = 0xffu << 24; + + dst |= (0xffu & (src << 3)) << (bidx * 8); + dst |= (0xffu &((src >> 3) & ~3)) << 8; + dst |= (0xffu & ((src >> 8) & ~7)) << ((bidx ^ 2) * 8); + } + }; + + template struct RGB5x52RGB; + + template struct RGB5x52RGB<3, bidx, green_bits> : unary_function + { + __device__ __forceinline__ uchar3 operator()(ushort src) const + { + uchar3 dst; + RGB5x52RGBConverter::cvt(src, dst); + return dst; + } + __host__ __device__ __forceinline__ RGB5x52RGB() {} + __host__ __device__ __forceinline__ RGB5x52RGB(const RGB5x52RGB&) {} + + }; + + template struct RGB5x52RGB<4, bidx, green_bits> : unary_function + { + __device__ __forceinline__ uint operator()(ushort src) const + { + uint dst; + RGB5x52RGBConverter::cvt(src, dst); + return dst; + } + __host__ __device__ __forceinline__ RGB5x52RGB() {} + __host__ __device__ __forceinline__ RGB5x52RGB(const RGB5x52RGB&) {} + }; + } + +#define OPENCV_CUDA_IMPLEMENT_RGB5x52RGB_TRAITS(name, dcn, bidx, green_bits) \ + struct name ## _traits \ + { \ + typedef ::cv::cuda::device::color_detail::RGB5x52RGB functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; + +///////////////////////////////// Grayscale to Color //////////////////////////////// + + namespace color_detail + { + template struct Gray2RGB : unary_function::vec_type> + { + __device__ __forceinline__ typename TypeVec::vec_type operator()(T src) const + { + typename TypeVec::vec_type dst; + + dst.z = dst.y = dst.x = src; + setAlpha(dst, ColorChannel::max()); + + return dst; + } + __host__ __device__ __forceinline__ Gray2RGB() {} + __host__ __device__ __forceinline__ Gray2RGB(const Gray2RGB&) {} + }; + + template <> struct Gray2RGB : unary_function + { + __device__ __forceinline__ uint operator()(uint src) const + { + uint dst = 0xffu << 24; + + dst |= src; + dst |= src << 8; + dst |= src << 16; + + return dst; + } + __host__ __device__ __forceinline__ Gray2RGB() {} + __host__ __device__ __forceinline__ Gray2RGB(const Gray2RGB&) {} + }; + } + +#define OPENCV_CUDA_IMPLEMENT_GRAY2RGB_TRAITS(name, dcn) \ + template struct name ## _traits \ + { \ + typedef ::cv::cuda::device::color_detail::Gray2RGB functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; + + namespace color_detail + { + template struct Gray2RGB5x5Converter; + template<> struct Gray2RGB5x5Converter<6> + { + static __device__ __forceinline__ ushort cvt(uint t) + { + return (ushort)((t >> 3) | ((t & ~3) << 3) | ((t & ~7) << 8)); + } + }; + + template<> struct Gray2RGB5x5Converter<5> + { + static __device__ __forceinline__ ushort cvt(uint t) + { + t >>= 3; + return (ushort)(t | (t << 5) | (t << 10)); + } + }; + + template struct Gray2RGB5x5 : unary_function + { + __device__ __forceinline__ ushort operator()(uint src) const + { + return Gray2RGB5x5Converter::cvt(src); + } + + __host__ __device__ __forceinline__ Gray2RGB5x5() {} + __host__ __device__ __forceinline__ Gray2RGB5x5(const Gray2RGB5x5&) {} + }; + } + +#define OPENCV_CUDA_IMPLEMENT_GRAY2RGB5x5_TRAITS(name, green_bits) \ + struct name ## _traits \ + { \ + typedef ::cv::cuda::device::color_detail::Gray2RGB5x5 functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; + +///////////////////////////////// Color to Grayscale //////////////////////////////// + + namespace color_detail + { + template struct RGB5x52GrayConverter; + template <> struct RGB5x52GrayConverter<6> + { + static __device__ __forceinline__ uchar cvt(uint t) + { + return (uchar)CV_DESCALE(((t << 3) & 0xf8) * B2Y + ((t >> 3) & 0xfc) * G2Y + ((t >> 8) & 0xf8) * R2Y, yuv_shift); + } + }; + + template <> struct RGB5x52GrayConverter<5> + { + static __device__ __forceinline__ uchar cvt(uint t) + { + return (uchar)CV_DESCALE(((t << 3) & 0xf8) * B2Y + ((t >> 2) & 0xf8) * G2Y + ((t >> 7) & 0xf8) * R2Y, yuv_shift); + } + }; + + template struct RGB5x52Gray : unary_function + { + __device__ __forceinline__ uchar operator()(uint src) const + { + return RGB5x52GrayConverter::cvt(src); + } + __host__ __device__ __forceinline__ RGB5x52Gray() {} + __host__ __device__ __forceinline__ RGB5x52Gray(const RGB5x52Gray&) {} + }; + } + +#define OPENCV_CUDA_IMPLEMENT_RGB5x52GRAY_TRAITS(name, green_bits) \ + struct name ## _traits \ + { \ + typedef ::cv::cuda::device::color_detail::RGB5x52Gray functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; + + namespace color_detail + { + template static __device__ __forceinline__ T RGB2GrayConvert(const T* src) + { + return (T)CV_DESCALE((unsigned)(src[bidx] * B2Y + src[1] * G2Y + src[bidx^2] * R2Y), yuv_shift); + } + + template static __device__ __forceinline__ uchar RGB2GrayConvert(uint src) + { + uint b = 0xffu & (src >> (bidx * 8)); + uint g = 0xffu & (src >> 8); + uint r = 0xffu & (src >> ((bidx ^ 2) * 8)); + return CV_DESCALE((uint)(b * B2Y + g * G2Y + r * R2Y), yuv_shift); + } + + template static __device__ __forceinline__ float RGB2GrayConvert(const float* src) + { + return src[bidx] * 0.114f + src[1] * 0.587f + src[bidx^2] * 0.299f; + } + + template struct RGB2Gray : unary_function::vec_type, T> + { + __device__ __forceinline__ T operator()(const typename TypeVec::vec_type& src) const + { + return RGB2GrayConvert(&src.x); + } + __host__ __device__ __forceinline__ RGB2Gray() {} + __host__ __device__ __forceinline__ RGB2Gray(const RGB2Gray&) {} + }; + + template struct RGB2Gray : unary_function + { + __device__ __forceinline__ uchar operator()(uint src) const + { + return RGB2GrayConvert(src); + } + __host__ __device__ __forceinline__ RGB2Gray() {} + __host__ __device__ __forceinline__ RGB2Gray(const RGB2Gray&) {} + }; + } + +#define OPENCV_CUDA_IMPLEMENT_RGB2GRAY_TRAITS(name, scn, bidx) \ + template struct name ## _traits \ + { \ + typedef ::cv::cuda::device::color_detail::RGB2Gray functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; + +///////////////////////////////////// RGB <-> YUV ////////////////////////////////////// + + namespace color_detail + { + __constant__ float c_RGB2YUVCoeffs_f[5] = { 0.114f, 0.587f, 0.299f, 0.492f, 0.877f }; + __constant__ int c_RGB2YUVCoeffs_i[5] = { B2Y, G2Y, R2Y, 8061, 14369 }; + + template static __device__ void RGB2YUVConvert(const T* src, D& dst) + { + const int delta = ColorChannel::half() * (1 << yuv_shift); + + const int Y = CV_DESCALE(src[0] * c_RGB2YUVCoeffs_i[bidx^2] + src[1] * c_RGB2YUVCoeffs_i[1] + src[2] * c_RGB2YUVCoeffs_i[bidx], yuv_shift); + const int Cr = CV_DESCALE((src[bidx^2] - Y) * c_RGB2YUVCoeffs_i[3] + delta, yuv_shift); + const int Cb = CV_DESCALE((src[bidx] - Y) * c_RGB2YUVCoeffs_i[4] + delta, yuv_shift); + + dst.x = saturate_cast(Y); + dst.y = saturate_cast(Cr); + dst.z = saturate_cast(Cb); + } + + template static __device__ __forceinline__ void RGB2YUVConvert(const float* src, D& dst) + { + dst.x = src[0] * c_RGB2YUVCoeffs_f[bidx^2] + src[1] * c_RGB2YUVCoeffs_f[1] + src[2] * c_RGB2YUVCoeffs_f[bidx]; + dst.y = (src[bidx^2] - dst.x) * c_RGB2YUVCoeffs_f[3] + ColorChannel::half(); + dst.z = (src[bidx] - dst.x) * c_RGB2YUVCoeffs_f[4] + ColorChannel::half(); + } + + template struct RGB2YUV + : unary_function::vec_type, typename TypeVec::vec_type> + { + __device__ __forceinline__ typename TypeVec::vec_type operator ()(const typename TypeVec::vec_type& src) const + { + typename TypeVec::vec_type dst; + RGB2YUVConvert(&src.x, dst); + return dst; + } + __host__ __device__ __forceinline__ RGB2YUV() {} + __host__ __device__ __forceinline__ RGB2YUV(const RGB2YUV&) {} + }; + } + +#define OPENCV_CUDA_IMPLEMENT_RGB2YUV_TRAITS(name, scn, dcn, bidx) \ + template struct name ## _traits \ + { \ + typedef ::cv::cuda::device::color_detail::RGB2YUV functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; + + namespace color_detail + { + __constant__ float c_YUV2RGBCoeffs_f[5] = { 2.032f, -0.395f, -0.581f, 1.140f }; + __constant__ int c_YUV2RGBCoeffs_i[5] = { 33292, -6472, -9519, 18678 }; + + template static __device__ void YUV2RGBConvert(const T& src, D* dst) + { + const int b = src.x + CV_DESCALE((src.z - ColorChannel::half()) * c_YUV2RGBCoeffs_i[3], yuv_shift); + + const int g = src.x + CV_DESCALE((src.z - ColorChannel::half()) * c_YUV2RGBCoeffs_i[2] + + (src.y - ColorChannel::half()) * c_YUV2RGBCoeffs_i[1], yuv_shift); + + const int r = src.x + CV_DESCALE((src.y - ColorChannel::half()) * c_YUV2RGBCoeffs_i[0], yuv_shift); + + dst[bidx] = saturate_cast(b); + dst[1] = saturate_cast(g); + dst[bidx^2] = saturate_cast(r); + } + + template static __device__ uint YUV2RGBConvert(uint src) + { + const int x = 0xff & (src); + const int y = 0xff & (src >> 8); + const int z = 0xff & (src >> 16); + + const int b = x + CV_DESCALE((z - ColorChannel::half()) * c_YUV2RGBCoeffs_i[3], yuv_shift); + + const int g = x + CV_DESCALE((z - ColorChannel::half()) * c_YUV2RGBCoeffs_i[2] + + (y - ColorChannel::half()) * c_YUV2RGBCoeffs_i[1], yuv_shift); + + const int r = x + CV_DESCALE((y - ColorChannel::half()) * c_YUV2RGBCoeffs_i[0], yuv_shift); + + uint dst = 0xffu << 24; + + dst |= saturate_cast(b) << (bidx * 8); + dst |= saturate_cast(g) << 8; + dst |= saturate_cast(r) << ((bidx ^ 2) * 8); + + return dst; + } + + template static __device__ __forceinline__ void YUV2RGBConvert(const T& src, float* dst) + { + dst[bidx] = src.x + (src.z - ColorChannel::half()) * c_YUV2RGBCoeffs_f[3]; + + dst[1] = src.x + (src.z - ColorChannel::half()) * c_YUV2RGBCoeffs_f[2] + + (src.y - ColorChannel::half()) * c_YUV2RGBCoeffs_f[1]; + + dst[bidx^2] = src.x + (src.y - ColorChannel::half()) * c_YUV2RGBCoeffs_f[0]; + } + + template struct YUV2RGB + : unary_function::vec_type, typename TypeVec::vec_type> + { + __device__ __forceinline__ typename TypeVec::vec_type operator ()(const typename TypeVec::vec_type& src) const + { + typename TypeVec::vec_type dst; + + YUV2RGBConvert(src, &dst.x); + setAlpha(dst, ColorChannel::max()); + + return dst; + } + __host__ __device__ __forceinline__ YUV2RGB() {} + __host__ __device__ __forceinline__ YUV2RGB(const YUV2RGB&) {} + }; + + template struct YUV2RGB : unary_function + { + __device__ __forceinline__ uint operator ()(uint src) const + { + return YUV2RGBConvert(src); + } + __host__ __device__ __forceinline__ YUV2RGB() {} + __host__ __device__ __forceinline__ YUV2RGB(const YUV2RGB&) {} + }; + } + +#define OPENCV_CUDA_IMPLEMENT_YUV2RGB_TRAITS(name, scn, dcn, bidx) \ + template struct name ## _traits \ + { \ + typedef ::cv::cuda::device::color_detail::YUV2RGB functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; + +///////////////////////////////////// RGB <-> YCrCb ////////////////////////////////////// + + namespace color_detail + { + __constant__ float c_RGB2YCrCbCoeffs_f[5] = {0.299f, 0.587f, 0.114f, 0.713f, 0.564f}; + __constant__ int c_RGB2YCrCbCoeffs_i[5] = {R2Y, G2Y, B2Y, 11682, 9241}; + + template static __device__ void RGB2YCrCbConvert(const T* src, D& dst) + { + const int delta = ColorChannel::half() * (1 << yuv_shift); + + const int Y = CV_DESCALE(src[0] * c_RGB2YCrCbCoeffs_i[bidx^2] + src[1] * c_RGB2YCrCbCoeffs_i[1] + src[2] * c_RGB2YCrCbCoeffs_i[bidx], yuv_shift); + const int Cr = CV_DESCALE((src[bidx^2] - Y) * c_RGB2YCrCbCoeffs_i[3] + delta, yuv_shift); + const int Cb = CV_DESCALE((src[bidx] - Y) * c_RGB2YCrCbCoeffs_i[4] + delta, yuv_shift); + + dst.x = saturate_cast(Y); + dst.y = saturate_cast(Cr); + dst.z = saturate_cast(Cb); + } + + template static __device__ uint RGB2YCrCbConvert(uint src) + { + const int delta = ColorChannel::half() * (1 << yuv_shift); + + const int Y = CV_DESCALE((0xffu & src) * c_RGB2YCrCbCoeffs_i[bidx^2] + (0xffu & (src >> 8)) * c_RGB2YCrCbCoeffs_i[1] + (0xffu & (src >> 16)) * c_RGB2YCrCbCoeffs_i[bidx], yuv_shift); + const int Cr = CV_DESCALE(((0xffu & (src >> ((bidx ^ 2) * 8))) - Y) * c_RGB2YCrCbCoeffs_i[3] + delta, yuv_shift); + const int Cb = CV_DESCALE(((0xffu & (src >> (bidx * 8))) - Y) * c_RGB2YCrCbCoeffs_i[4] + delta, yuv_shift); + + uint dst = 0; + + dst |= saturate_cast(Y); + dst |= saturate_cast(Cr) << 8; + dst |= saturate_cast(Cb) << 16; + + return dst; + } + + template static __device__ __forceinline__ void RGB2YCrCbConvert(const float* src, D& dst) + { + dst.x = src[0] * c_RGB2YCrCbCoeffs_f[bidx^2] + src[1] * c_RGB2YCrCbCoeffs_f[1] + src[2] * c_RGB2YCrCbCoeffs_f[bidx]; + dst.y = (src[bidx^2] - dst.x) * c_RGB2YCrCbCoeffs_f[3] + ColorChannel::half(); + dst.z = (src[bidx] - dst.x) * c_RGB2YCrCbCoeffs_f[4] + ColorChannel::half(); + } + + template struct RGB2YCrCb + : unary_function::vec_type, typename TypeVec::vec_type> + { + __device__ __forceinline__ typename TypeVec::vec_type operator ()(const typename TypeVec::vec_type& src) const + { + typename TypeVec::vec_type dst; + RGB2YCrCbConvert(&src.x, dst); + return dst; + } + __host__ __device__ __forceinline__ RGB2YCrCb() {} + __host__ __device__ __forceinline__ RGB2YCrCb(const RGB2YCrCb&) {} + }; + + template struct RGB2YCrCb : unary_function + { + __device__ __forceinline__ uint operator ()(uint src) const + { + return RGB2YCrCbConvert(src); + } + + __host__ __device__ __forceinline__ RGB2YCrCb() {} + __host__ __device__ __forceinline__ RGB2YCrCb(const RGB2YCrCb&) {} + }; + } + +#define OPENCV_CUDA_IMPLEMENT_RGB2YCrCb_TRAITS(name, scn, dcn, bidx) \ + template struct name ## _traits \ + { \ + typedef ::cv::cuda::device::color_detail::RGB2YCrCb functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; + + namespace color_detail + { + __constant__ float c_YCrCb2RGBCoeffs_f[5] = {1.403f, -0.714f, -0.344f, 1.773f}; + __constant__ int c_YCrCb2RGBCoeffs_i[5] = {22987, -11698, -5636, 29049}; + + template static __device__ void YCrCb2RGBConvert(const T& src, D* dst) + { + const int b = src.x + CV_DESCALE((src.z - ColorChannel::half()) * c_YCrCb2RGBCoeffs_i[3], yuv_shift); + const int g = src.x + CV_DESCALE((src.z - ColorChannel::half()) * c_YCrCb2RGBCoeffs_i[2] + (src.y - ColorChannel::half()) * c_YCrCb2RGBCoeffs_i[1], yuv_shift); + const int r = src.x + CV_DESCALE((src.y - ColorChannel::half()) * c_YCrCb2RGBCoeffs_i[0], yuv_shift); + + dst[bidx] = saturate_cast(b); + dst[1] = saturate_cast(g); + dst[bidx^2] = saturate_cast(r); + } + + template static __device__ uint YCrCb2RGBConvert(uint src) + { + const int x = 0xff & (src); + const int y = 0xff & (src >> 8); + const int z = 0xff & (src >> 16); + + const int b = x + CV_DESCALE((z - ColorChannel::half()) * c_YCrCb2RGBCoeffs_i[3], yuv_shift); + const int g = x + CV_DESCALE((z - ColorChannel::half()) * c_YCrCb2RGBCoeffs_i[2] + (y - ColorChannel::half()) * c_YCrCb2RGBCoeffs_i[1], yuv_shift); + const int r = x + CV_DESCALE((y - ColorChannel::half()) * c_YCrCb2RGBCoeffs_i[0], yuv_shift); + + uint dst = 0xffu << 24; + + dst |= saturate_cast(b) << (bidx * 8); + dst |= saturate_cast(g) << 8; + dst |= saturate_cast(r) << ((bidx ^ 2) * 8); + + return dst; + } + + template __device__ __forceinline__ void YCrCb2RGBConvert(const T& src, float* dst) + { + dst[bidx] = src.x + (src.z - ColorChannel::half()) * c_YCrCb2RGBCoeffs_f[3]; + dst[1] = src.x + (src.z - ColorChannel::half()) * c_YCrCb2RGBCoeffs_f[2] + (src.y - ColorChannel::half()) * c_YCrCb2RGBCoeffs_f[1]; + dst[bidx^2] = src.x + (src.y - ColorChannel::half()) * c_YCrCb2RGBCoeffs_f[0]; + } + + template struct YCrCb2RGB + : unary_function::vec_type, typename TypeVec::vec_type> + { + __device__ __forceinline__ typename TypeVec::vec_type operator ()(const typename TypeVec::vec_type& src) const + { + typename TypeVec::vec_type dst; + + YCrCb2RGBConvert(src, &dst.x); + setAlpha(dst, ColorChannel::max()); + + return dst; + } + __host__ __device__ __forceinline__ YCrCb2RGB() {} + __host__ __device__ __forceinline__ YCrCb2RGB(const YCrCb2RGB&) {} + }; + + template struct YCrCb2RGB : unary_function + { + __device__ __forceinline__ uint operator ()(uint src) const + { + return YCrCb2RGBConvert(src); + } + __host__ __device__ __forceinline__ YCrCb2RGB() {} + __host__ __device__ __forceinline__ YCrCb2RGB(const YCrCb2RGB&) {} + }; + } + +#define OPENCV_CUDA_IMPLEMENT_YCrCb2RGB_TRAITS(name, scn, dcn, bidx) \ + template struct name ## _traits \ + { \ + typedef ::cv::cuda::device::color_detail::YCrCb2RGB functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; + +////////////////////////////////////// RGB <-> XYZ /////////////////////////////////////// + + namespace color_detail + { + __constant__ float c_RGB2XYZ_D65f[9] = { 0.412453f, 0.357580f, 0.180423f, 0.212671f, 0.715160f, 0.072169f, 0.019334f, 0.119193f, 0.950227f }; + __constant__ int c_RGB2XYZ_D65i[9] = { 1689, 1465, 739, 871, 2929, 296, 79, 488, 3892 }; + + template static __device__ __forceinline__ void RGB2XYZConvert(const T* src, D& dst) + { + dst.z = saturate_cast(CV_DESCALE(src[bidx^2] * c_RGB2XYZ_D65i[6] + src[1] * c_RGB2XYZ_D65i[7] + src[bidx] * c_RGB2XYZ_D65i[8], xyz_shift)); + dst.x = saturate_cast(CV_DESCALE(src[bidx^2] * c_RGB2XYZ_D65i[0] + src[1] * c_RGB2XYZ_D65i[1] + src[bidx] * c_RGB2XYZ_D65i[2], xyz_shift)); + dst.y = saturate_cast(CV_DESCALE(src[bidx^2] * c_RGB2XYZ_D65i[3] + src[1] * c_RGB2XYZ_D65i[4] + src[bidx] * c_RGB2XYZ_D65i[5], xyz_shift)); + } + + template static __device__ __forceinline__ uint RGB2XYZConvert(uint src) + { + const uint b = 0xffu & (src >> (bidx * 8)); + const uint g = 0xffu & (src >> 8); + const uint r = 0xffu & (src >> ((bidx ^ 2) * 8)); + + const uint x = saturate_cast(CV_DESCALE(r * c_RGB2XYZ_D65i[0] + g * c_RGB2XYZ_D65i[1] + b * c_RGB2XYZ_D65i[2], xyz_shift)); + const uint y = saturate_cast(CV_DESCALE(r * c_RGB2XYZ_D65i[3] + g * c_RGB2XYZ_D65i[4] + b * c_RGB2XYZ_D65i[5], xyz_shift)); + const uint z = saturate_cast(CV_DESCALE(r * c_RGB2XYZ_D65i[6] + g * c_RGB2XYZ_D65i[7] + b * c_RGB2XYZ_D65i[8], xyz_shift)); + + uint dst = 0; + + dst |= x; + dst |= y << 8; + dst |= z << 16; + + return dst; + } + + template static __device__ __forceinline__ void RGB2XYZConvert(const float* src, D& dst) + { + dst.x = src[bidx^2] * c_RGB2XYZ_D65f[0] + src[1] * c_RGB2XYZ_D65f[1] + src[bidx] * c_RGB2XYZ_D65f[2]; + dst.y = src[bidx^2] * c_RGB2XYZ_D65f[3] + src[1] * c_RGB2XYZ_D65f[4] + src[bidx] * c_RGB2XYZ_D65f[5]; + dst.z = src[bidx^2] * c_RGB2XYZ_D65f[6] + src[1] * c_RGB2XYZ_D65f[7] + src[bidx] * c_RGB2XYZ_D65f[8]; + } + + template struct RGB2XYZ + : unary_function::vec_type, typename TypeVec::vec_type> + { + __device__ __forceinline__ typename TypeVec::vec_type operator()(const typename TypeVec::vec_type& src) const + { + typename TypeVec::vec_type dst; + + RGB2XYZConvert(&src.x, dst); + + return dst; + } + __host__ __device__ __forceinline__ RGB2XYZ() {} + __host__ __device__ __forceinline__ RGB2XYZ(const RGB2XYZ&) {} + }; + + template struct RGB2XYZ : unary_function + { + __device__ __forceinline__ uint operator()(uint src) const + { + return RGB2XYZConvert(src); + } + __host__ __device__ __forceinline__ RGB2XYZ() {} + __host__ __device__ __forceinline__ RGB2XYZ(const RGB2XYZ&) {} + }; + } + +#define OPENCV_CUDA_IMPLEMENT_RGB2XYZ_TRAITS(name, scn, dcn, bidx) \ + template struct name ## _traits \ + { \ + typedef ::cv::cuda::device::color_detail::RGB2XYZ functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; + + namespace color_detail + { + __constant__ float c_XYZ2sRGB_D65f[9] = { 3.240479f, -1.53715f, -0.498535f, -0.969256f, 1.875991f, 0.041556f, 0.055648f, -0.204043f, 1.057311f }; + __constant__ int c_XYZ2sRGB_D65i[9] = { 13273, -6296, -2042, -3970, 7684, 170, 228, -836, 4331 }; + + template static __device__ __forceinline__ void XYZ2RGBConvert(const T& src, D* dst) + { + dst[bidx^2] = saturate_cast(CV_DESCALE(src.x * c_XYZ2sRGB_D65i[0] + src.y * c_XYZ2sRGB_D65i[1] + src.z * c_XYZ2sRGB_D65i[2], xyz_shift)); + dst[1] = saturate_cast(CV_DESCALE(src.x * c_XYZ2sRGB_D65i[3] + src.y * c_XYZ2sRGB_D65i[4] + src.z * c_XYZ2sRGB_D65i[5], xyz_shift)); + dst[bidx] = saturate_cast(CV_DESCALE(src.x * c_XYZ2sRGB_D65i[6] + src.y * c_XYZ2sRGB_D65i[7] + src.z * c_XYZ2sRGB_D65i[8], xyz_shift)); + } + + template static __device__ __forceinline__ uint XYZ2RGBConvert(uint src) + { + const int x = 0xff & src; + const int y = 0xff & (src >> 8); + const int z = 0xff & (src >> 16); + + const uint r = saturate_cast(CV_DESCALE(x * c_XYZ2sRGB_D65i[0] + y * c_XYZ2sRGB_D65i[1] + z * c_XYZ2sRGB_D65i[2], xyz_shift)); + const uint g = saturate_cast(CV_DESCALE(x * c_XYZ2sRGB_D65i[3] + y * c_XYZ2sRGB_D65i[4] + z * c_XYZ2sRGB_D65i[5], xyz_shift)); + const uint b = saturate_cast(CV_DESCALE(x * c_XYZ2sRGB_D65i[6] + y * c_XYZ2sRGB_D65i[7] + z * c_XYZ2sRGB_D65i[8], xyz_shift)); + + uint dst = 0xffu << 24; + + dst |= b << (bidx * 8); + dst |= g << 8; + dst |= r << ((bidx ^ 2) * 8); + + return dst; + } + + template static __device__ __forceinline__ void XYZ2RGBConvert(const T& src, float* dst) + { + dst[bidx^2] = src.x * c_XYZ2sRGB_D65f[0] + src.y * c_XYZ2sRGB_D65f[1] + src.z * c_XYZ2sRGB_D65f[2]; + dst[1] = src.x * c_XYZ2sRGB_D65f[3] + src.y * c_XYZ2sRGB_D65f[4] + src.z * c_XYZ2sRGB_D65f[5]; + dst[bidx] = src.x * c_XYZ2sRGB_D65f[6] + src.y * c_XYZ2sRGB_D65f[7] + src.z * c_XYZ2sRGB_D65f[8]; + } + + template struct XYZ2RGB + : unary_function::vec_type, typename TypeVec::vec_type> + { + __device__ __forceinline__ typename TypeVec::vec_type operator()(const typename TypeVec::vec_type& src) const + { + typename TypeVec::vec_type dst; + + XYZ2RGBConvert(src, &dst.x); + setAlpha(dst, ColorChannel::max()); + + return dst; + } + __host__ __device__ __forceinline__ XYZ2RGB() {} + __host__ __device__ __forceinline__ XYZ2RGB(const XYZ2RGB&) {} + }; + + template struct XYZ2RGB : unary_function + { + __device__ __forceinline__ uint operator()(uint src) const + { + return XYZ2RGBConvert(src); + } + __host__ __device__ __forceinline__ XYZ2RGB() {} + __host__ __device__ __forceinline__ XYZ2RGB(const XYZ2RGB&) {} + }; + } + +#define OPENCV_CUDA_IMPLEMENT_XYZ2RGB_TRAITS(name, scn, dcn, bidx) \ + template struct name ## _traits \ + { \ + typedef ::cv::cuda::device::color_detail::XYZ2RGB functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; + +////////////////////////////////////// RGB <-> HSV /////////////////////////////////////// + + namespace color_detail + { + __constant__ int c_HsvDivTable [256] = {0, 1044480, 522240, 348160, 261120, 208896, 174080, 149211, 130560, 116053, 104448, 94953, 87040, 80345, 74606, 69632, 65280, 61440, 58027, 54973, 52224, 49737, 47476, 45412, 43520, 41779, 40172, 38684, 37303, 36017, 34816, 33693, 32640, 31651, 30720, 29842, 29013, 28229, 27486, 26782, 26112, 25475, 24869, 24290, 23738, 23211, 22706, 22223, 21760, 21316, 20890, 20480, 20086, 19707, 19342, 18991, 18651, 18324, 18008, 17703, 17408, 17123, 16846, 16579, 16320, 16069, 15825, 15589, 15360, 15137, 14921, 14711, 14507, 14308, 14115, 13926, 13743, 13565, 13391, 13221, 13056, 12895, 12738, 12584, 12434, 12288, 12145, 12006, 11869, 11736, 11605, 11478, 11353, 11231, 11111, 10995, 10880, 10768, 10658, 10550, 10445, 10341, 10240, 10141, 10043, 9947, 9854, 9761, 9671, 9582, 9495, 9410, 9326, 9243, 9162, 9082, 9004, 8927, 8852, 8777, 8704, 8632, 8561, 8492, 8423, 8356, 8290, 8224, 8160, 8097, 8034, 7973, 7913, 7853, 7795, 7737, 7680, 7624, 7569, 7514, 7461, 7408, 7355, 7304, 7253, 7203, 7154, 7105, 7057, 7010, 6963, 6917, 6872, 6827, 6782, 6739, 6695, 6653, 6611, 6569, 6528, 6487, 6447, 6408, 6369, 6330, 6292, 6254, 6217, 6180, 6144, 6108, 6073, 6037, 6003, 5968, 5935, 5901, 5868, 5835, 5803, 5771, 5739, 5708, 5677, 5646, 5615, 5585, 5556, 5526, 5497, 5468, 5440, 5412, 5384, 5356, 5329, 5302, 5275, 5249, 5222, 5196, 5171, 5145, 5120, 5095, 5070, 5046, 5022, 4998, 4974, 4950, 4927, 4904, 4881, 4858, 4836, 4813, 4791, 4769, 4748, 4726, 4705, 4684, 4663, 4642, 4622, 4601, 4581, 4561, 4541, 4522, 4502, 4483, 4464, 4445, 4426, 4407, 4389, 4370, 4352, 4334, 4316, 4298, 4281, 4263, 4246, 4229, 4212, 4195, 4178, 4161, 4145, 4128, 4112, 4096}; + __constant__ int c_HsvDivTable180[256] = {0, 122880, 61440, 40960, 30720, 24576, 20480, 17554, 15360, 13653, 12288, 11171, 10240, 9452, 8777, 8192, 7680, 7228, 6827, 6467, 6144, 5851, 5585, 5343, 5120, 4915, 4726, 4551, 4389, 4237, 4096, 3964, 3840, 3724, 3614, 3511, 3413, 3321, 3234, 3151, 3072, 2997, 2926, 2858, 2793, 2731, 2671, 2614, 2560, 2508, 2458, 2409, 2363, 2318, 2276, 2234, 2194, 2156, 2119, 2083, 2048, 2014, 1982, 1950, 1920, 1890, 1862, 1834, 1807, 1781, 1755, 1731, 1707, 1683, 1661, 1638, 1617, 1596, 1575, 1555, 1536, 1517, 1499, 1480, 1463, 1446, 1429, 1412, 1396, 1381, 1365, 1350, 1336, 1321, 1307, 1293, 1280, 1267, 1254, 1241, 1229, 1217, 1205, 1193, 1182, 1170, 1159, 1148, 1138, 1127, 1117, 1107, 1097, 1087, 1078, 1069, 1059, 1050, 1041, 1033, 1024, 1016, 1007, 999, 991, 983, 975, 968, 960, 953, 945, 938, 931, 924, 917, 910, 904, 897, 890, 884, 878, 871, 865, 859, 853, 847, 842, 836, 830, 825, 819, 814, 808, 803, 798, 793, 788, 783, 778, 773, 768, 763, 759, 754, 749, 745, 740, 736, 731, 727, 723, 719, 714, 710, 706, 702, 698, 694, 690, 686, 683, 679, 675, 671, 668, 664, 661, 657, 654, 650, 647, 643, 640, 637, 633, 630, 627, 624, 621, 617, 614, 611, 608, 605, 602, 599, 597, 594, 591, 588, 585, 582, 580, 577, 574, 572, 569, 566, 564, 561, 559, 556, 554, 551, 549, 546, 544, 541, 539, 537, 534, 532, 530, 527, 525, 523, 521, 518, 516, 514, 512, 510, 508, 506, 504, 502, 500, 497, 495, 493, 492, 490, 488, 486, 484, 482}; + __constant__ int c_HsvDivTable256[256] = {0, 174763, 87381, 58254, 43691, 34953, 29127, 24966, 21845, 19418, 17476, 15888, 14564, 13443, 12483, 11651, 10923, 10280, 9709, 9198, 8738, 8322, 7944, 7598, 7282, 6991, 6722, 6473, 6242, 6026, 5825, 5638, 5461, 5296, 5140, 4993, 4855, 4723, 4599, 4481, 4369, 4263, 4161, 4064, 3972, 3884, 3799, 3718, 3641, 3567, 3495, 3427, 3361, 3297, 3236, 3178, 3121, 3066, 3013, 2962, 2913, 2865, 2819, 2774, 2731, 2689, 2648, 2608, 2570, 2533, 2497, 2461, 2427, 2394, 2362, 2330, 2300, 2270, 2241, 2212, 2185, 2158, 2131, 2106, 2081, 2056, 2032, 2009, 1986, 1964, 1942, 1920, 1900, 1879, 1859, 1840, 1820, 1802, 1783, 1765, 1748, 1730, 1713, 1697, 1680, 1664, 1649, 1633, 1618, 1603, 1589, 1574, 1560, 1547, 1533, 1520, 1507, 1494, 1481, 1469, 1456, 1444, 1432, 1421, 1409, 1398, 1387, 1376, 1365, 1355, 1344, 1334, 1324, 1314, 1304, 1295, 1285, 1276, 1266, 1257, 1248, 1239, 1231, 1222, 1214, 1205, 1197, 1189, 1181, 1173, 1165, 1157, 1150, 1142, 1135, 1128, 1120, 1113, 1106, 1099, 1092, 1085, 1079, 1072, 1066, 1059, 1053, 1046, 1040, 1034, 1028, 1022, 1016, 1010, 1004, 999, 993, 987, 982, 976, 971, 966, 960, 955, 950, 945, 940, 935, 930, 925, 920, 915, 910, 906, 901, 896, 892, 887, 883, 878, 874, 869, 865, 861, 857, 853, 848, 844, 840, 836, 832, 828, 824, 820, 817, 813, 809, 805, 802, 798, 794, 791, 787, 784, 780, 777, 773, 770, 767, 763, 760, 757, 753, 750, 747, 744, 741, 737, 734, 731, 728, 725, 722, 719, 716, 713, 710, 708, 705, 702, 699, 696, 694, 691, 688, 685}; + + template static __device__ void RGB2HSVConvert(const uchar* src, D& dst) + { + const int hsv_shift = 12; + const int* hdiv_table = hr == 180 ? c_HsvDivTable180 : c_HsvDivTable256; + + int b = src[bidx], g = src[1], r = src[bidx^2]; + int h, s, v = b; + int vmin = b, diff; + int vr, vg; + + v = ::max(v, g); + v = ::max(v, r); + vmin = ::min(vmin, g); + vmin = ::min(vmin, r); + + diff = v - vmin; + vr = (v == r) * -1; + vg = (v == g) * -1; + + s = (diff * c_HsvDivTable[v] + (1 << (hsv_shift-1))) >> hsv_shift; + h = (vr & (g - b)) + (~vr & ((vg & (b - r + 2 * diff)) + ((~vg) & (r - g + 4 * diff)))); + h = (h * hdiv_table[diff] + (1 << (hsv_shift-1))) >> hsv_shift; + h += (h < 0) * hr; + + dst.x = saturate_cast(h); + dst.y = (uchar)s; + dst.z = (uchar)v; + } + + template static __device__ uint RGB2HSVConvert(uint src) + { + const int hsv_shift = 12; + const int* hdiv_table = hr == 180 ? c_HsvDivTable180 : c_HsvDivTable256; + + const int b = 0xff & (src >> (bidx * 8)); + const int g = 0xff & (src >> 8); + const int r = 0xff & (src >> ((bidx ^ 2) * 8)); + + int h, s, v = b; + int vmin = b, diff; + int vr, vg; + + v = ::max(v, g); + v = ::max(v, r); + vmin = ::min(vmin, g); + vmin = ::min(vmin, r); + + diff = v - vmin; + vr = (v == r) * -1; + vg = (v == g) * -1; + + s = (diff * c_HsvDivTable[v] + (1 << (hsv_shift-1))) >> hsv_shift; + h = (vr & (g - b)) + (~vr & ((vg & (b - r + 2 * diff)) + ((~vg) & (r - g + 4 * diff)))); + h = (h * hdiv_table[diff] + (1 << (hsv_shift-1))) >> hsv_shift; + h += (h < 0) * hr; + + uint dst = 0; + + dst |= saturate_cast(h); + dst |= (0xffu & s) << 8; + dst |= (0xffu & v) << 16; + + return dst; + } + + template static __device__ void RGB2HSVConvert(const float* src, D& dst) + { + const float hscale = hr * (1.f / 360.f); + + float b = src[bidx], g = src[1], r = src[bidx^2]; + float h, s, v; + + float vmin, diff; + + v = vmin = r; + v = fmax(v, g); + v = fmax(v, b); + vmin = fmin(vmin, g); + vmin = fmin(vmin, b); + + diff = v - vmin; + s = diff / (float)(::fabs(v) + numeric_limits::epsilon()); + diff = (float)(60. / (diff + numeric_limits::epsilon())); + + h = (v == r) * (g - b) * diff; + h += (v != r && v == g) * ((b - r) * diff + 120.f); + h += (v != r && v != g) * ((r - g) * diff + 240.f); + h += (h < 0) * 360.f; + + dst.x = h * hscale; + dst.y = s; + dst.z = v; + } + + template struct RGB2HSV + : unary_function::vec_type, typename TypeVec::vec_type> + { + __device__ __forceinline__ typename TypeVec::vec_type operator()(const typename TypeVec::vec_type& src) const + { + typename TypeVec::vec_type dst; + + RGB2HSVConvert(&src.x, dst); + + return dst; + } + __host__ __device__ __forceinline__ RGB2HSV() {} + __host__ __device__ __forceinline__ RGB2HSV(const RGB2HSV&) {} + }; + + template struct RGB2HSV : unary_function + { + __device__ __forceinline__ uint operator()(uint src) const + { + return RGB2HSVConvert(src); + } + __host__ __device__ __forceinline__ RGB2HSV() {} + __host__ __device__ __forceinline__ RGB2HSV(const RGB2HSV&) {} + }; + } + +#define OPENCV_CUDA_IMPLEMENT_RGB2HSV_TRAITS(name, scn, dcn, bidx) \ + template struct name ## _traits \ + { \ + typedef ::cv::cuda::device::color_detail::RGB2HSV functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; \ + template struct name ## _full_traits \ + { \ + typedef ::cv::cuda::device::color_detail::RGB2HSV functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; \ + template <> struct name ## _traits \ + { \ + typedef ::cv::cuda::device::color_detail::RGB2HSV functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; \ + template <> struct name ## _full_traits \ + { \ + typedef ::cv::cuda::device::color_detail::RGB2HSV functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; + + namespace color_detail + { + __constant__ int c_HsvSectorData[6][3] = { {1,3,0}, {1,0,2}, {3,0,1}, {0,2,1}, {0,1,3}, {2,1,0} }; + + template static __device__ void HSV2RGBConvert(const T& src, float* dst) + { + const float hscale = 6.f / hr; + + float h = src.x, s = src.y, v = src.z; + float b = v, g = v, r = v; + + if (s != 0) + { + h *= hscale; + + if( h < 0 ) + do h += 6; while( h < 0 ); + else if( h >= 6 ) + do h -= 6; while( h >= 6 ); + + int sector = __float2int_rd(h); + h -= sector; + + if ( (unsigned)sector >= 6u ) + { + sector = 0; + h = 0.f; + } + + float tab[4]; + tab[0] = v; + tab[1] = v * (1.f - s); + tab[2] = v * (1.f - s * h); + tab[3] = v * (1.f - s * (1.f - h)); + + b = tab[c_HsvSectorData[sector][0]]; + g = tab[c_HsvSectorData[sector][1]]; + r = tab[c_HsvSectorData[sector][2]]; + } + + dst[bidx] = b; + dst[1] = g; + dst[bidx^2] = r; + } + + template static __device__ void HSV2RGBConvert(const T& src, uchar* dst) + { + float3 buf; + + buf.x = src.x; + buf.y = src.y * (1.f / 255.f); + buf.z = src.z * (1.f / 255.f); + + HSV2RGBConvert(buf, &buf.x); + + dst[0] = saturate_cast(buf.x * 255.f); + dst[1] = saturate_cast(buf.y * 255.f); + dst[2] = saturate_cast(buf.z * 255.f); + } + + template static __device__ uint HSV2RGBConvert(uint src) + { + float3 buf; + + buf.x = src & 0xff; + buf.y = ((src >> 8) & 0xff) * (1.f/255.f); + buf.z = ((src >> 16) & 0xff) * (1.f/255.f); + + HSV2RGBConvert(buf, &buf.x); + + uint dst = 0xffu << 24; + + dst |= saturate_cast(buf.x * 255.f); + dst |= saturate_cast(buf.y * 255.f) << 8; + dst |= saturate_cast(buf.z * 255.f) << 16; + + return dst; + } + + template struct HSV2RGB + : unary_function::vec_type, typename TypeVec::vec_type> + { + __device__ __forceinline__ typename TypeVec::vec_type operator()(const typename TypeVec::vec_type& src) const + { + typename TypeVec::vec_type dst; + + HSV2RGBConvert(src, &dst.x); + setAlpha(dst, ColorChannel::max()); + + return dst; + } + __host__ __device__ __forceinline__ HSV2RGB() {} + __host__ __device__ __forceinline__ HSV2RGB(const HSV2RGB&) {} + }; + + template struct HSV2RGB : unary_function + { + __device__ __forceinline__ uint operator()(uint src) const + { + return HSV2RGBConvert(src); + } + __host__ __device__ __forceinline__ HSV2RGB() {} + __host__ __device__ __forceinline__ HSV2RGB(const HSV2RGB&) {} + }; + } + +#define OPENCV_CUDA_IMPLEMENT_HSV2RGB_TRAITS(name, scn, dcn, bidx) \ + template struct name ## _traits \ + { \ + typedef ::cv::cuda::device::color_detail::HSV2RGB functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; \ + template struct name ## _full_traits \ + { \ + typedef ::cv::cuda::device::color_detail::HSV2RGB functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; \ + template <> struct name ## _traits \ + { \ + typedef ::cv::cuda::device::color_detail::HSV2RGB functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; \ + template <> struct name ## _full_traits \ + { \ + typedef ::cv::cuda::device::color_detail::HSV2RGB functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; + +/////////////////////////////////////// RGB <-> HLS //////////////////////////////////////// + + namespace color_detail + { + template static __device__ void RGB2HLSConvert(const float* src, D& dst) + { + const float hscale = hr * (1.f / 360.f); + + float b = src[bidx], g = src[1], r = src[bidx^2]; + float h = 0.f, s = 0.f, l; + float vmin, vmax, diff; + + vmax = vmin = r; + vmax = fmax(vmax, g); + vmax = fmax(vmax, b); + vmin = fmin(vmin, g); + vmin = fmin(vmin, b); + + diff = vmax - vmin; + l = (vmax + vmin) * 0.5f; + + if (diff > numeric_limits::epsilon()) + { + s = (l < 0.5f) * diff / (vmax + vmin); + s += (l >= 0.5f) * diff / (2.0f - vmax - vmin); + + diff = 60.f / diff; + + h = (vmax == r) * (g - b) * diff; + h += (vmax != r && vmax == g) * ((b - r) * diff + 120.f); + h += (vmax != r && vmax != g) * ((r - g) * diff + 240.f); + h += (h < 0.f) * 360.f; + } + + dst.x = h * hscale; + dst.y = l; + dst.z = s; + } + + template static __device__ void RGB2HLSConvert(const uchar* src, D& dst) + { + float3 buf; + + buf.x = src[0] * (1.f / 255.f); + buf.y = src[1] * (1.f / 255.f); + buf.z = src[2] * (1.f / 255.f); + + RGB2HLSConvert(&buf.x, buf); + + dst.x = saturate_cast(buf.x); + dst.y = saturate_cast(buf.y*255.f); + dst.z = saturate_cast(buf.z*255.f); + } + + template static __device__ uint RGB2HLSConvert(uint src) + { + float3 buf; + + buf.x = (0xff & src) * (1.f / 255.f); + buf.y = (0xff & (src >> 8)) * (1.f / 255.f); + buf.z = (0xff & (src >> 16)) * (1.f / 255.f); + + RGB2HLSConvert(&buf.x, buf); + + uint dst = 0xffu << 24; + + dst |= saturate_cast(buf.x); + dst |= saturate_cast(buf.y * 255.f) << 8; + dst |= saturate_cast(buf.z * 255.f) << 16; + + return dst; + } + + template struct RGB2HLS + : unary_function::vec_type, typename TypeVec::vec_type> + { + __device__ __forceinline__ typename TypeVec::vec_type operator()(const typename TypeVec::vec_type& src) const + { + typename TypeVec::vec_type dst; + + RGB2HLSConvert(&src.x, dst); + + return dst; + } + __host__ __device__ __forceinline__ RGB2HLS() {} + __host__ __device__ __forceinline__ RGB2HLS(const RGB2HLS&) {} + }; + + template struct RGB2HLS : unary_function + { + __device__ __forceinline__ uint operator()(uint src) const + { + return RGB2HLSConvert(src); + } + __host__ __device__ __forceinline__ RGB2HLS() {} + __host__ __device__ __forceinline__ RGB2HLS(const RGB2HLS&) {} + }; + } + +#define OPENCV_CUDA_IMPLEMENT_RGB2HLS_TRAITS(name, scn, dcn, bidx) \ + template struct name ## _traits \ + { \ + typedef ::cv::cuda::device::color_detail::RGB2HLS functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; \ + template struct name ## _full_traits \ + { \ + typedef ::cv::cuda::device::color_detail::RGB2HLS functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; \ + template <> struct name ## _traits \ + { \ + typedef ::cv::cuda::device::color_detail::RGB2HLS functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; \ + template <> struct name ## _full_traits \ + { \ + typedef ::cv::cuda::device::color_detail::RGB2HLS functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; + + namespace color_detail + { + __constant__ int c_HlsSectorData[6][3] = { {1,3,0}, {1,0,2}, {3,0,1}, {0,2,1}, {0,1,3}, {2,1,0} }; + + template static __device__ void HLS2RGBConvert(const T& src, float* dst) + { + const float hscale = 6.0f / hr; + + float h = src.x, l = src.y, s = src.z; + float b = l, g = l, r = l; + + if (s != 0) + { + float p2 = (l <= 0.5f) * l * (1 + s); + p2 += (l > 0.5f) * (l + s - l * s); + float p1 = 2 * l - p2; + + h *= hscale; + + if( h < 0 ) + do h += 6; while( h < 0 ); + else if( h >= 6 ) + do h -= 6; while( h >= 6 ); + + int sector; + sector = __float2int_rd(h); + + h -= sector; + + float tab[4]; + tab[0] = p2; + tab[1] = p1; + tab[2] = p1 + (p2 - p1) * (1 - h); + tab[3] = p1 + (p2 - p1) * h; + + b = tab[c_HlsSectorData[sector][0]]; + g = tab[c_HlsSectorData[sector][1]]; + r = tab[c_HlsSectorData[sector][2]]; + } + + dst[bidx] = b; + dst[1] = g; + dst[bidx^2] = r; + } + + template static __device__ void HLS2RGBConvert(const T& src, uchar* dst) + { + float3 buf; + + buf.x = src.x; + buf.y = src.y * (1.f / 255.f); + buf.z = src.z * (1.f / 255.f); + + HLS2RGBConvert(buf, &buf.x); + + dst[0] = saturate_cast(buf.x * 255.f); + dst[1] = saturate_cast(buf.y * 255.f); + dst[2] = saturate_cast(buf.z * 255.f); + } + + template static __device__ uint HLS2RGBConvert(uint src) + { + float3 buf; + + buf.x = 0xff & src; + buf.y = (0xff & (src >> 8)) * (1.f / 255.f); + buf.z = (0xff & (src >> 16)) * (1.f / 255.f); + + HLS2RGBConvert(buf, &buf.x); + + uint dst = 0xffu << 24; + + dst |= saturate_cast(buf.x * 255.f); + dst |= saturate_cast(buf.y * 255.f) << 8; + dst |= saturate_cast(buf.z * 255.f) << 16; + + return dst; + } + + template struct HLS2RGB + : unary_function::vec_type, typename TypeVec::vec_type> + { + __device__ __forceinline__ typename TypeVec::vec_type operator()(const typename TypeVec::vec_type& src) const + { + typename TypeVec::vec_type dst; + + HLS2RGBConvert(src, &dst.x); + setAlpha(dst, ColorChannel::max()); + + return dst; + } + __host__ __device__ __forceinline__ HLS2RGB() {} + __host__ __device__ __forceinline__ HLS2RGB(const HLS2RGB&) {} + }; + + template struct HLS2RGB : unary_function + { + __device__ __forceinline__ uint operator()(uint src) const + { + return HLS2RGBConvert(src); + } + __host__ __device__ __forceinline__ HLS2RGB() {} + __host__ __device__ __forceinline__ HLS2RGB(const HLS2RGB&) {} + }; + } + +#define OPENCV_CUDA_IMPLEMENT_HLS2RGB_TRAITS(name, scn, dcn, bidx) \ + template struct name ## _traits \ + { \ + typedef ::cv::cuda::device::color_detail::HLS2RGB functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; \ + template struct name ## _full_traits \ + { \ + typedef ::cv::cuda::device::color_detail::HLS2RGB functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; \ + template <> struct name ## _traits \ + { \ + typedef ::cv::cuda::device::color_detail::HLS2RGB functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; \ + template <> struct name ## _full_traits \ + { \ + typedef ::cv::cuda::device::color_detail::HLS2RGB functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; + +///////////////////////////////////// RGB <-> Lab ///////////////////////////////////// + + namespace color_detail + { + enum + { + LAB_CBRT_TAB_SIZE = 1024, + GAMMA_TAB_SIZE = 1024, + lab_shift = xyz_shift, + gamma_shift = 3, + lab_shift2 = (lab_shift + gamma_shift), + LAB_CBRT_TAB_SIZE_B = (256 * 3 / 2 * (1 << gamma_shift)) + }; + + __constant__ ushort c_sRGBGammaTab_b[] = {0,1,1,2,2,3,4,4,5,6,6,7,8,8,9,10,11,11,12,13,14,15,16,17,19,20,21,22,24,25,26,28,29,31,33,34,36,38,40,41,43,45,47,49,51,54,56,58,60,63,65,68,70,73,75,78,81,83,86,89,92,95,98,101,105,108,111,115,118,121,125,129,132,136,140,144,147,151,155,160,164,168,172,176,181,185,190,194,199,204,209,213,218,223,228,233,239,244,249,255,260,265,271,277,282,288,294,300,306,312,318,324,331,337,343,350,356,363,370,376,383,390,397,404,411,418,426,433,440,448,455,463,471,478,486,494,502,510,518,527,535,543,552,560,569,578,586,595,604,613,622,631,641,650,659,669,678,688,698,707,717,727,737,747,757,768,778,788,799,809,820,831,842,852,863,875,886,897,908,920,931,943,954,966,978,990,1002,1014,1026,1038,1050,1063,1075,1088,1101,1113,1126,1139,1152,1165,1178,1192,1205,1218,1232,1245,1259,1273,1287,1301,1315,1329,1343,1357,1372,1386,1401,1415,1430,1445,1460,1475,1490,1505,1521,1536,1551,1567,1583,1598,1614,1630,1646,1662,1678,1695,1711,1728,1744,1761,1778,1794,1811,1828,1846,1863,1880,1897,1915,1933,1950,1968,1986,2004,2022,2040}; + + __device__ __forceinline__ int LabCbrt_b(int i) + { + float x = i * (1.f / (255.f * (1 << gamma_shift))); + return (1 << lab_shift2) * (x < 0.008856f ? x * 7.787f + 0.13793103448275862f : ::cbrtf(x)); + } + + template + __device__ __forceinline__ void RGB2LabConvert_b(const T& src, D& dst) + { + const int Lscale = (116 * 255 + 50) / 100; + const int Lshift = -((16 * 255 * (1 << lab_shift2) + 50) / 100); + + int B = blueIdx == 0 ? src.x : src.z; + int G = src.y; + int R = blueIdx == 0 ? src.z : src.x; + + if (srgb) + { + B = c_sRGBGammaTab_b[B]; + G = c_sRGBGammaTab_b[G]; + R = c_sRGBGammaTab_b[R]; + } + else + { + B <<= 3; + G <<= 3; + R <<= 3; + } + + int fX = LabCbrt_b(CV_DESCALE(B * 778 + G * 1541 + R * 1777, lab_shift)); + int fY = LabCbrt_b(CV_DESCALE(B * 296 + G * 2929 + R * 871, lab_shift)); + int fZ = LabCbrt_b(CV_DESCALE(B * 3575 + G * 448 + R * 73, lab_shift)); + + int L = CV_DESCALE(Lscale * fY + Lshift, lab_shift2); + int a = CV_DESCALE(500 * (fX - fY) + 128 * (1 << lab_shift2), lab_shift2); + int b = CV_DESCALE(200 * (fY - fZ) + 128 * (1 << lab_shift2), lab_shift2); + + dst.x = saturate_cast(L); + dst.y = saturate_cast(a); + dst.z = saturate_cast(b); + } + + __device__ __forceinline__ float splineInterpolate(float x, const float* tab, int n) + { + int ix = ::min(::max(int(x), 0), n-1); + x -= ix; + tab += ix * 4; + return ((tab[3] * x + tab[2]) * x + tab[1]) * x + tab[0]; + } + + __constant__ float c_sRGBGammaTab[] = {0,7.55853e-05,0.,-7.51331e-13,7.55853e-05,7.55853e-05,-2.25399e-12,3.75665e-12,0.000151171,7.55853e-05,9.01597e-12,-6.99932e-12,0.000226756,7.55853e-05,-1.1982e-11,2.41277e-12,0.000302341,7.55853e-05,-4.74369e-12,1.19001e-11,0.000377927,7.55853e-05,3.09568e-11,-2.09095e-11,0.000453512,7.55853e-05,-3.17718e-11,1.35303e-11,0.000529097,7.55853e-05,8.81905e-12,-4.10782e-12,0.000604683,7.55853e-05,-3.50439e-12,2.90097e-12,0.000680268,7.55853e-05,5.19852e-12,-7.49607e-12,0.000755853,7.55853e-05,-1.72897e-11,2.70833e-11,0.000831439,7.55854e-05,6.39602e-11,-4.26295e-11,0.000907024,7.55854e-05,-6.39282e-11,2.70193e-11,0.000982609,7.55853e-05,1.71298e-11,-7.24017e-12,0.00105819,7.55853e-05,-4.59077e-12,1.94137e-12,0.00113378,7.55853e-05,1.23333e-12,-5.25291e-13,0.00120937,7.55853e-05,-3.42545e-13,1.59799e-13,0.00128495,7.55853e-05,1.36852e-13,-1.13904e-13,0.00136054,7.55853e-05,-2.04861e-13,2.95818e-13,0.00143612,7.55853e-05,6.82594e-13,-1.06937e-12,0.00151171,7.55853e-05,-2.52551e-12,3.98166e-12,0.00158729,7.55853e-05,9.41946e-12,-1.48573e-11,0.00166288,7.55853e-05,-3.51523e-11,5.54474e-11,0.00173846,7.55854e-05,1.3119e-10,-9.0517e-11,0.00181405,7.55854e-05,-1.40361e-10,7.37899e-11,0.00188963,7.55853e-05,8.10085e-11,-8.82272e-11,0.00196522,7.55852e-05,-1.83673e-10,1.62704e-10,0.0020408,7.55853e-05,3.04438e-10,-2.13341e-10,0.00211639,7.55853e-05,-3.35586e-10,2.25e-10,0.00219197,7.55853e-05,3.39414e-10,-2.20997e-10,0.00226756,7.55853e-05,-3.23576e-10,1.93326e-10,0.00234315,7.55853e-05,2.564e-10,-8.66446e-11,0.00241873,7.55855e-05,-3.53328e-12,-7.9578e-11,0.00249432,7.55853e-05,-2.42267e-10,1.72126e-10,0.0025699,7.55853e-05,2.74111e-10,-1.43265e-10,0.00264549,7.55854e-05,-1.55683e-10,-6.47292e-11,0.00272107,7.55849e-05,-3.4987e-10,8.67842e-10,0.00279666,7.55868e-05,2.25366e-09,-3.8723e-09,0.00287224,7.55797e-05,-9.36325e-09,1.5087e-08,0.00294783,7.56063e-05,3.58978e-08,-5.69415e-08,0.00302341,7.55072e-05,-1.34927e-07,2.13144e-07,0.003099,7.58768e-05,5.04507e-07,1.38713e-07,0.00317552,7.7302e-05,9.20646e-07,-1.55186e-07,0.00325359,7.86777e-05,4.55087e-07,4.26813e-08,0.00333276,7.97159e-05,5.83131e-07,-1.06495e-08,0.00341305,8.08502e-05,5.51182e-07,3.87467e-09,0.00349446,8.19642e-05,5.62806e-07,-1.92586e-10,0.00357698,8.30892e-05,5.62228e-07,1.0866e-09,0.00366063,8.4217e-05,5.65488e-07,5.02818e-10,0.00374542,8.53494e-05,5.66997e-07,8.60211e-10,0.00383133,8.6486e-05,5.69577e-07,7.13044e-10,0.00391839,8.76273e-05,5.71716e-07,4.78527e-10,0.00400659,8.87722e-05,5.73152e-07,1.09818e-09,0.00409594,8.99218e-05,5.76447e-07,2.50964e-10,0.00418644,9.10754e-05,5.772e-07,1.15762e-09,0.00427809,9.22333e-05,5.80672e-07,2.40865e-10,0.0043709,9.33954e-05,5.81395e-07,1.13854e-09,0.00446488,9.45616e-05,5.84811e-07,3.27267e-10,0.00456003,9.57322e-05,5.85792e-07,8.1197e-10,0.00465635,9.69062e-05,5.88228e-07,6.15823e-10,0.00475384,9.80845e-05,5.90076e-07,9.15747e-10,0.00485252,9.92674e-05,5.92823e-07,3.778e-10,0.00495238,0.000100454,5.93956e-07,8.32623e-10,0.00505343,0.000101645,5.96454e-07,4.82695e-10,0.00515567,0.000102839,5.97902e-07,9.61904e-10,0.00525911,0.000104038,6.00788e-07,3.26281e-10,0.00536375,0.00010524,6.01767e-07,9.926e-10,0.00546959,0.000106447,6.04745e-07,3.59933e-10,0.00557664,0.000107657,6.05824e-07,8.2728e-10,0.0056849,0.000108871,6.08306e-07,5.21898e-10,0.00579438,0.00011009,6.09872e-07,8.10492e-10,0.00590508,0.000111312,6.12303e-07,4.27046e-10,0.00601701,0.000112538,6.13585e-07,7.40878e-10,0.00613016,0.000113767,6.15807e-07,8.00469e-10,0.00624454,0.000115001,6.18209e-07,2.48178e-10,0.00636016,0.000116238,6.18953e-07,1.00073e-09,0.00647702,0.000117479,6.21955e-07,4.05654e-10,0.00659512,0.000118724,6.23172e-07,6.36192e-10,0.00671447,0.000119973,6.25081e-07,7.74927e-10,0.00683507,0.000121225,6.27406e-07,4.54975e-10,0.00695692,0.000122481,6.28771e-07,6.64841e-10,0.00708003,0.000123741,6.30765e-07,6.10972e-10,0.00720441,0.000125004,6.32598e-07,6.16543e-10,0.00733004,0.000126271,6.34448e-07,6.48204e-10,0.00745695,0.000127542,6.36392e-07,5.15835e-10,0.00758513,0.000128816,6.3794e-07,5.48103e-10,0.00771458,0.000130094,6.39584e-07,1.01706e-09,0.00784532,0.000131376,6.42635e-07,4.0283e-11,0.00797734,0.000132661,6.42756e-07,6.84471e-10,0.00811064,0.000133949,6.4481e-07,9.47144e-10,0.00824524,0.000135241,6.47651e-07,1.83472e-10,0.00838112,0.000136537,6.48201e-07,1.11296e-09,0.00851831,0.000137837,6.5154e-07,2.13163e-11,0.0086568,0.00013914,6.51604e-07,6.64462e-10,0.00879659,0.000140445,6.53598e-07,1.04613e-09,0.00893769,0.000141756,6.56736e-07,-1.92377e-10,0.0090801,0.000143069,6.56159e-07,1.58601e-09,0.00922383,0.000144386,6.60917e-07,-5.63754e-10,0.00936888,0.000145706,6.59226e-07,1.60033e-09,0.00951524,0.000147029,6.64027e-07,-2.49543e-10,0.00966294,0.000148356,6.63278e-07,1.26043e-09,0.00981196,0.000149687,6.67059e-07,-1.35572e-10,0.00996231,0.00015102,6.66653e-07,1.14458e-09,0.010114,0.000152357,6.70086e-07,2.13864e-10,0.010267,0.000153698,6.70728e-07,7.93856e-10,0.0104214,0.000155042,6.73109e-07,3.36077e-10,0.0105771,0.000156389,6.74118e-07,6.55765e-10,0.0107342,0.000157739,6.76085e-07,7.66211e-10,0.0108926,0.000159094,6.78384e-07,4.66116e-12,0.0110524,0.000160451,6.78398e-07,1.07775e-09,0.0112135,0.000161811,6.81631e-07,3.41023e-10,0.011376,0.000163175,6.82654e-07,3.5205e-10,0.0115398,0.000164541,6.8371e-07,1.04473e-09,0.0117051,0.000165912,6.86844e-07,1.25757e-10,0.0118717,0.000167286,6.87222e-07,3.14818e-10,0.0120396,0.000168661,6.88166e-07,1.40886e-09,0.012209,0.000170042,6.92393e-07,-3.62244e-10,0.0123797,0.000171425,6.91306e-07,9.71397e-10,0.0125518,0.000172811,6.9422e-07,2.02003e-10,0.0127253,0.0001742,6.94826e-07,1.01448e-09,0.0129002,0.000175593,6.97869e-07,3.96653e-10,0.0130765,0.00017699,6.99059e-07,1.92927e-10,0.0132542,0.000178388,6.99638e-07,6.94305e-10,0.0134333,0.00017979,7.01721e-07,7.55108e-10,0.0136138,0.000181195,7.03986e-07,1.05918e-11,0.0137957,0.000182603,7.04018e-07,1.06513e-09,0.013979,0.000184015,7.07214e-07,3.85512e-10,0.0141637,0.00018543,7.0837e-07,1.86769e-10,0.0143499,0.000186848,7.0893e-07,7.30116e-10,0.0145374,0.000188268,7.11121e-07,6.17983e-10,0.0147264,0.000189692,7.12975e-07,5.23282e-10,0.0149168,0.000191119,7.14545e-07,8.28398e-11,0.0151087,0.000192549,7.14793e-07,1.0081e-09,0.0153019,0.000193981,7.17817e-07,5.41244e-10,0.0154966,0.000195418,7.19441e-07,-3.7907e-10,0.0156928,0.000196856,7.18304e-07,1.90641e-09,0.0158903,0.000198298,7.24023e-07,-7.27387e-10,0.0160893,0.000199744,7.21841e-07,1.00317e-09,0.0162898,0.000201191,7.24851e-07,4.39949e-10,0.0164917,0.000202642,7.2617e-07,9.6234e-10,0.0166951,0.000204097,7.29057e-07,-5.64019e-10,0.0168999,0.000205554,7.27365e-07,1.29374e-09,0.0171062,0.000207012,7.31247e-07,9.77025e-10,0.017314,0.000208478,7.34178e-07,-1.47651e-09,0.0175232,0.000209942,7.29748e-07,3.06636e-09,0.0177338,0.00021141,7.38947e-07,-1.47573e-09,0.017946,0.000212884,7.3452e-07,9.7386e-10,0.0181596,0.000214356,7.37442e-07,1.30562e-09,0.0183747,0.000215835,7.41358e-07,-6.08376e-10,0.0185913,0.000217315,7.39533e-07,1.12785e-09,0.0188093,0.000218798,7.42917e-07,-1.77711e-10,0.0190289,0.000220283,7.42384e-07,1.44562e-09,0.0192499,0.000221772,7.46721e-07,-1.68825e-11,0.0194724,0.000223266,7.4667e-07,4.84533e-10,0.0196964,0.000224761,7.48124e-07,-5.85298e-11,0.0199219,0.000226257,7.47948e-07,1.61217e-09,0.0201489,0.000227757,7.52785e-07,-8.02136e-10,0.0203775,0.00022926,7.50378e-07,1.59637e-09,0.0206075,0.000230766,7.55167e-07,4.47168e-12,0.020839,0.000232276,7.55181e-07,2.48387e-10,0.021072,0.000233787,7.55926e-07,8.6474e-10,0.0213066,0.000235302,7.5852e-07,1.78299e-11,0.0215426,0.000236819,7.58573e-07,9.26567e-10,0.0217802,0.000238339,7.61353e-07,1.34529e-12,0.0220193,0.000239862,7.61357e-07,9.30659e-10,0.0222599,0.000241387,7.64149e-07,1.34529e-12,0.0225021,0.000242915,7.64153e-07,9.26567e-10,0.0227458,0.000244447,7.66933e-07,1.76215e-11,0.022991,0.00024598,7.66986e-07,8.65536e-10,0.0232377,0.000247517,7.69582e-07,2.45677e-10,0.023486,0.000249057,7.70319e-07,1.44193e-11,0.0237358,0.000250598,7.70363e-07,1.55918e-09,0.0239872,0.000252143,7.7504e-07,-6.63173e-10,0.0242401,0.000253691,7.73051e-07,1.09357e-09,0.0244946,0.000255241,7.76331e-07,1.41919e-11,0.0247506,0.000256793,7.76374e-07,7.12248e-10,0.0250082,0.000258348,7.78511e-07,8.62049e-10,0.0252673,0.000259908,7.81097e-07,-4.35061e-10,0.025528,0.000261469,7.79792e-07,8.7825e-10,0.0257902,0.000263031,7.82426e-07,6.47181e-10,0.0260541,0.000264598,7.84368e-07,2.58448e-10,0.0263194,0.000266167,7.85143e-07,1.81558e-10,0.0265864,0.000267738,7.85688e-07,8.78041e-10,0.0268549,0.000269312,7.88322e-07,3.15102e-11,0.027125,0.000270889,7.88417e-07,8.58525e-10,0.0273967,0.000272468,7.90992e-07,2.59812e-10,0.02767,0.000274051,7.91772e-07,-3.5224e-11,0.0279448,0.000275634,7.91666e-07,1.74377e-09,0.0282212,0.000277223,7.96897e-07,-1.35196e-09,0.0284992,0.000278813,7.92841e-07,1.80141e-09,0.0287788,0.000280404,7.98246e-07,-2.65629e-10,0.0290601,0.000281999,7.97449e-07,1.12374e-09,0.0293428,0.000283598,8.0082e-07,-5.04106e-10,0.0296272,0.000285198,7.99308e-07,8.92764e-10,0.0299132,0.000286799,8.01986e-07,6.58379e-10,0.0302008,0.000288405,8.03961e-07,1.98971e-10,0.0304901,0.000290014,8.04558e-07,4.08382e-10,0.0307809,0.000291624,8.05783e-07,3.01839e-11,0.0310733,0.000293236,8.05874e-07,1.33343e-09,0.0313673,0.000294851,8.09874e-07,2.2419e-10,0.031663,0.000296472,8.10547e-07,-3.67606e-10,0.0319603,0.000298092,8.09444e-07,1.24624e-09,0.0322592,0.000299714,8.13182e-07,-8.92025e-10,0.0325597,0.000301338,8.10506e-07,2.32183e-09,0.0328619,0.000302966,8.17472e-07,-9.44719e-10,0.0331657,0.000304598,8.14638e-07,1.45703e-09,0.0334711,0.000306232,8.19009e-07,-1.15805e-09,0.0337781,0.000307866,8.15535e-07,3.17507e-09,0.0340868,0.000309507,8.2506e-07,-4.09161e-09,0.0343971,0.000311145,8.12785e-07,5.74079e-09,0.0347091,0.000312788,8.30007e-07,-3.97034e-09,0.0350227,0.000314436,8.18096e-07,2.68985e-09,0.035338,0.00031608,8.26166e-07,6.61676e-10,0.0356549,0.000317734,8.28151e-07,-1.61123e-09,0.0359734,0.000319386,8.23317e-07,2.05786e-09,0.0362936,0.000321038,8.29491e-07,8.30388e-10,0.0366155,0.0003227,8.31982e-07,-1.65424e-09,0.036939,0.000324359,8.27019e-07,2.06129e-09,0.0372642,0.000326019,8.33203e-07,8.59719e-10,0.0375911,0.000327688,8.35782e-07,-1.77488e-09,0.0379196,0.000329354,8.30458e-07,2.51464e-09,0.0382498,0.000331023,8.38002e-07,-8.33135e-10,0.0385817,0.000332696,8.35502e-07,8.17825e-10,0.0389152,0.00033437,8.37956e-07,1.28718e-09,0.0392504,0.00033605,8.41817e-07,-2.2413e-09,0.0395873,0.000337727,8.35093e-07,3.95265e-09,0.0399258,0.000339409,8.46951e-07,-2.39332e-09,0.0402661,0.000341095,8.39771e-07,1.89533e-09,0.040608,0.000342781,8.45457e-07,-1.46271e-09,0.0409517,0.000344467,8.41069e-07,3.95554e-09,0.041297,0.000346161,8.52936e-07,-3.18369e-09,0.041644,0.000347857,8.43385e-07,1.32873e-09,0.0419927,0.000349548,8.47371e-07,1.59402e-09,0.0423431,0.000351248,8.52153e-07,-2.54336e-10,0.0426952,0.000352951,8.5139e-07,-5.76676e-10,0.043049,0.000354652,8.4966e-07,2.56114e-09,0.0434045,0.000356359,8.57343e-07,-2.21744e-09,0.0437617,0.000358067,8.50691e-07,2.58344e-09,0.0441206,0.000359776,8.58441e-07,-6.65826e-10,0.0444813,0.000361491,8.56444e-07,7.99218e-11,0.0448436,0.000363204,8.56684e-07,3.46063e-10,0.0452077,0.000364919,8.57722e-07,2.26116e-09,0.0455734,0.000366641,8.64505e-07,-1.94005e-09,0.045941,0.000368364,8.58685e-07,1.77384e-09,0.0463102,0.000370087,8.64007e-07,-1.43005e-09,0.0466811,0.000371811,8.59717e-07,3.94634e-09,0.0470538,0.000373542,8.71556e-07,-3.17946e-09,0.0474282,0.000375276,8.62017e-07,1.32104e-09,0.0478043,0.000377003,8.6598e-07,1.62045e-09,0.0481822,0.00037874,8.70842e-07,-3.52297e-10,0.0485618,0.000380481,8.69785e-07,-2.11211e-10,0.0489432,0.00038222,8.69151e-07,1.19716e-09,0.0493263,0.000383962,8.72743e-07,-8.52026e-10,0.0497111,0.000385705,8.70187e-07,2.21092e-09,0.0500977,0.000387452,8.76819e-07,-5.41339e-10,0.050486,0.000389204,8.75195e-07,-4.5361e-11,0.0508761,0.000390954,8.75059e-07,7.22669e-10,0.0512679,0.000392706,8.77227e-07,8.79936e-10,0.0516615,0.000394463,8.79867e-07,-5.17048e-10,0.0520568,0.000396222,8.78316e-07,1.18833e-09,0.0524539,0.000397982,8.81881e-07,-5.11022e-10,0.0528528,0.000399744,8.80348e-07,8.55683e-10,0.0532534,0.000401507,8.82915e-07,8.13562e-10,0.0536558,0.000403276,8.85356e-07,-3.84603e-10,0.05406,0.000405045,8.84202e-07,7.24962e-10,0.0544659,0.000406816,8.86377e-07,1.20986e-09,0.0548736,0.000408592,8.90006e-07,-1.83896e-09,0.0552831,0.000410367,8.84489e-07,2.42071e-09,0.0556944,0.000412143,8.91751e-07,-3.93413e-10,0.0561074,0.000413925,8.90571e-07,-8.46967e-10,0.0565222,0.000415704,8.8803e-07,3.78122e-09,0.0569388,0.000417491,8.99374e-07,-3.1021e-09,0.0573572,0.000419281,8.90068e-07,1.17658e-09,0.0577774,0.000421064,8.93597e-07,2.12117e-09,0.0581993,0.000422858,8.99961e-07,-2.21068e-09,0.0586231,0.000424651,8.93329e-07,2.9961e-09,0.0590486,0.000426447,9.02317e-07,-2.32311e-09,0.059476,0.000428244,8.95348e-07,2.57122e-09,0.0599051,0.000430043,9.03062e-07,-5.11098e-10,0.0603361,0.000431847,9.01528e-07,-5.27166e-10,0.0607688,0.000433649,8.99947e-07,2.61984e-09,0.0612034,0.000435457,9.07806e-07,-2.50141e-09,0.0616397,0.000437265,9.00302e-07,3.66045e-09,0.0620779,0.000439076,9.11283e-07,-4.68977e-09,0.0625179,0.000440885,8.97214e-07,7.64783e-09,0.0629597,0.000442702,9.20158e-07,-7.27499e-09,0.0634033,0.000444521,8.98333e-07,6.55113e-09,0.0638487,0.000446337,9.17986e-07,-4.02844e-09,0.0642959,0.000448161,9.05901e-07,2.11196e-09,0.064745,0.000449979,9.12236e-07,3.03125e-09,0.0651959,0.000451813,9.2133e-07,-6.78648e-09,0.0656486,0.000453635,9.00971e-07,9.21375e-09,0.0661032,0.000455464,9.28612e-07,-7.71684e-09,0.0665596,0.000457299,9.05462e-07,6.7522e-09,0.0670178,0.00045913,9.25718e-07,-4.3907e-09,0.0674778,0.000460968,9.12546e-07,3.36e-09,0.0679397,0.000462803,9.22626e-07,-1.59876e-09,0.0684034,0.000464644,9.1783e-07,3.0351e-09,0.068869,0.000466488,9.26935e-07,-3.09101e-09,0.0693364,0.000468333,9.17662e-07,1.8785e-09,0.0698057,0.000470174,9.23298e-07,3.02733e-09,0.0702768,0.00047203,9.3238e-07,-6.53722e-09,0.0707497,0.000473875,9.12768e-07,8.22054e-09,0.0712245,0.000475725,9.37429e-07,-3.99325e-09,0.0717012,0.000477588,9.2545e-07,3.01839e-10,0.0721797,0.00047944,9.26355e-07,2.78597e-09,0.0726601,0.000481301,9.34713e-07,-3.99507e-09,0.0731423,0.000483158,9.22728e-07,5.7435e-09,0.0736264,0.000485021,9.39958e-07,-4.07776e-09,0.0741123,0.000486888,9.27725e-07,3.11695e-09,0.0746002,0.000488753,9.37076e-07,-9.39394e-10,0.0750898,0.000490625,9.34258e-07,6.4055e-10,0.0755814,0.000492495,9.3618e-07,-1.62265e-09,0.0760748,0.000494363,9.31312e-07,5.84995e-09,0.0765701,0.000496243,9.48861e-07,-6.87601e-09,0.0770673,0.00049812,9.28233e-07,6.75296e-09,0.0775664,0.000499997,9.48492e-07,-5.23467e-09,0.0780673,0.000501878,9.32788e-07,6.73523e-09,0.0785701,0.000503764,9.52994e-07,-6.80514e-09,0.0790748,0.000505649,9.32578e-07,5.5842e-09,0.0795814,0.000507531,9.49331e-07,-6.30583e-10,0.0800899,0.000509428,9.47439e-07,-3.0618e-09,0.0806003,0.000511314,9.38254e-07,5.4273e-09,0.0811125,0.000513206,9.54536e-07,-3.74627e-09,0.0816267,0.000515104,9.43297e-07,2.10713e-09,0.0821427,0.000516997,9.49618e-07,2.76839e-09,0.0826607,0.000518905,9.57924e-07,-5.73006e-09,0.0831805,0.000520803,9.40733e-07,5.25072e-09,0.0837023,0.0005227,9.56486e-07,-3.71718e-10,0.084226,0.000524612,9.5537e-07,-3.76404e-09,0.0847515,0.000526512,9.44078e-07,7.97735e-09,0.085279,0.000528424,9.6801e-07,-5.79367e-09,0.0858084,0.000530343,9.50629e-07,2.96268e-10,0.0863397,0.000532245,9.51518e-07,4.6086e-09,0.0868729,0.000534162,9.65344e-07,-3.82947e-09,0.087408,0.000536081,9.53856e-07,3.25861e-09,0.087945,0.000537998,9.63631e-07,-1.7543e-09,0.088484,0.00053992,9.58368e-07,3.75849e-09,0.0890249,0.000541848,9.69644e-07,-5.82891e-09,0.0895677,0.00054377,9.52157e-07,4.65593e-09,0.0901124,0.000545688,9.66125e-07,2.10643e-09,0.0906591,0.000547627,9.72444e-07,-5.63099e-09,0.0912077,0.000549555,9.55551e-07,5.51627e-09,0.0917582,0.000551483,9.721e-07,-1.53292e-09,0.0923106,0.000553422,9.67501e-07,6.15311e-10,0.092865,0.000555359,9.69347e-07,-9.28291e-10,0.0934213,0.000557295,9.66562e-07,3.09774e-09,0.0939796,0.000559237,9.75856e-07,-4.01186e-09,0.0945398,0.000561177,9.6382e-07,5.49892e-09,0.095102,0.000563121,9.80317e-07,-3.08258e-09,0.0956661,0.000565073,9.71069e-07,-6.19176e-10,0.0962321,0.000567013,9.69212e-07,5.55932e-09,0.0968001,0.000568968,9.8589e-07,-6.71704e-09,0.09737,0.00057092,9.65738e-07,6.40762e-09,0.0979419,0.00057287,9.84961e-07,-4.0122e-09,0.0985158,0.000574828,9.72925e-07,2.19059e-09,0.0990916,0.000576781,9.79496e-07,2.70048e-09,0.0996693,0.000578748,9.87598e-07,-5.54193e-09,0.100249,0.000580706,9.70972e-07,4.56597e-09,0.100831,0.000582662,9.8467e-07,2.17923e-09,0.101414,0.000584638,9.91208e-07,-5.83232e-09,0.102,0.000586603,9.73711e-07,6.24884e-09,0.102588,0.000588569,9.92457e-07,-4.26178e-09,0.103177,0.000590541,9.79672e-07,3.34781e-09,0.103769,0.00059251,9.89715e-07,-1.67904e-09,0.104362,0.000594485,9.84678e-07,3.36839e-09,0.104958,0.000596464,9.94783e-07,-4.34397e-09,0.105555,0.000598441,9.81751e-07,6.55696e-09,0.106155,0.000600424,1.00142e-06,-6.98272e-09,0.106756,0.000602406,9.80474e-07,6.4728e-09,0.107359,0.000604386,9.99893e-07,-4.00742e-09,0.107965,0.000606374,9.8787e-07,2.10654e-09,0.108572,0.000608356,9.9419e-07,3.0318e-09,0.109181,0.000610353,1.00329e-06,-6.7832e-09,0.109793,0.00061234,9.82936e-07,9.1998e-09,0.110406,0.000614333,1.01054e-06,-7.6642e-09,0.111021,0.000616331,9.87543e-07,6.55579e-09,0.111639,0.000618326,1.00721e-06,-3.65791e-09,0.112258,0.000620329,9.96236e-07,6.25467e-10,0.112879,0.000622324,9.98113e-07,1.15593e-09,0.113503,0.000624323,1.00158e-06,2.20158e-09,0.114128,0.000626333,1.00819e-06,-2.51191e-09,0.114755,0.000628342,1.00065e-06,3.95517e-10,0.115385,0.000630345,1.00184e-06,9.29807e-10,0.116016,0.000632351,1.00463e-06,3.33599e-09,0.116649,0.00063437,1.01463e-06,-6.82329e-09,0.117285,0.000636379,9.94163e-07,9.05595e-09,0.117922,0.000638395,1.02133e-06,-7.04862e-09,0.118562,0.000640416,1.00019e-06,4.23737e-09,0.119203,0.000642429,1.0129e-06,-2.45033e-09,0.119847,0.000644448,1.00555e-06,5.56395e-09,0.120492,0.000646475,1.02224e-06,-4.9043e-09,0.121139,0.000648505,1.00753e-06,-8.47952e-10,0.121789,0.000650518,1.00498e-06,8.29622e-09,0.122441,0.000652553,1.02987e-06,-9.98538e-09,0.123094,0.000654582,9.99914e-07,9.2936e-09,0.12375,0.00065661,1.02779e-06,-4.83707e-09,0.124407,0.000658651,1.01328e-06,2.60411e-09,0.125067,0.000660685,1.0211e-06,-5.57945e-09,0.125729,0.000662711,1.00436e-06,1.22631e-08,0.126392,0.000664756,1.04115e-06,-1.36704e-08,0.127058,0.000666798,1.00014e-06,1.26161e-08,0.127726,0.000668836,1.03798e-06,-6.99155e-09,0.128396,0.000670891,1.01701e-06,4.48836e-10,0.129068,0.000672926,1.01836e-06,5.19606e-09,0.129742,0.000674978,1.03394e-06,-6.3319e-09,0.130418,0.000677027,1.01495e-06,5.2305e-09,0.131096,0.000679073,1.03064e-06,3.11123e-10,0.131776,0.000681135,1.03157e-06,-6.47511e-09,0.132458,0.000683179,1.01215e-06,1.06882e-08,0.133142,0.000685235,1.04421e-06,-6.47519e-09,0.133829,0.000687304,1.02479e-06,3.11237e-10,0.134517,0.000689355,1.02572e-06,5.23035e-09,0.135207,0.000691422,1.04141e-06,-6.3316e-09,0.1359,0.000693486,1.02242e-06,5.19484e-09,0.136594,0.000695546,1.038e-06,4.53497e-10,0.137291,0.000697623,1.03936e-06,-7.00891e-09,0.137989,0.000699681,1.01834e-06,1.2681e-08,0.13869,0.000701756,1.05638e-06,-1.39128e-08,0.139393,0.000703827,1.01464e-06,1.31679e-08,0.140098,0.000705896,1.05414e-06,-8.95659e-09,0.140805,0.000707977,1.02727e-06,7.75742e-09,0.141514,0.000710055,1.05055e-06,-7.17182e-09,0.142225,0.000712135,1.02903e-06,6.02862e-09,0.142938,0.000714211,1.04712e-06,-2.04163e-09,0.143653,0.000716299,1.04099e-06,2.13792e-09,0.144371,0.000718387,1.04741e-06,-6.51009e-09,0.14509,0.000720462,1.02787e-06,9.00123e-09,0.145812,0.000722545,1.05488e-06,3.07523e-10,0.146535,0.000724656,1.0558e-06,-1.02312e-08,0.147261,0.000726737,1.02511e-06,1.0815e-08,0.147989,0.000728819,1.05755e-06,-3.22681e-09,0.148719,0.000730925,1.04787e-06,2.09244e-09,0.14945,0.000733027,1.05415e-06,-5.143e-09,0.150185,0.00073512,1.03872e-06,3.57844e-09,0.150921,0.000737208,1.04946e-06,5.73027e-09,0.151659,0.000739324,1.06665e-06,-1.15983e-08,0.152399,0.000741423,1.03185e-06,1.08605e-08,0.153142,0.000743519,1.06443e-06,-2.04106e-09,0.153886,0.000745642,1.05831e-06,-2.69642e-09,0.154633,0.00074775,1.05022e-06,-2.07425e-09,0.155382,0.000749844,1.044e-06,1.09934e-08,0.156133,0.000751965,1.07698e-06,-1.20972e-08,0.156886,0.000754083,1.04069e-06,7.59288e-09,0.157641,0.000756187,1.06347e-06,-3.37305e-09,0.158398,0.000758304,1.05335e-06,5.89921e-09,0.159158,0.000760428,1.07104e-06,-5.32248e-09,0.159919,0.000762554,1.05508e-06,4.8927e-10,0.160683,0.000764666,1.05654e-06,3.36547e-09,0.161448,0.000766789,1.06664e-06,9.50081e-10,0.162216,0.000768925,1.06949e-06,-7.16568e-09,0.162986,0.000771043,1.04799e-06,1.28114e-08,0.163758,0.000773177,1.08643e-06,-1.42774e-08,0.164533,0.000775307,1.0436e-06,1.44956e-08,0.165309,0.000777438,1.08708e-06,-1.39025e-08,0.166087,0.00077957,1.04538e-06,1.13118e-08,0.166868,0.000781695,1.07931e-06,-1.54224e-09,0.167651,0.000783849,1.07468e-06,-5.14312e-09,0.168436,0.000785983,1.05925e-06,7.21381e-09,0.169223,0.000788123,1.0809e-06,-8.81096e-09,0.170012,0.000790259,1.05446e-06,1.31289e-08,0.170803,0.000792407,1.09385e-06,-1.39022e-08,0.171597,0.000794553,1.05214e-06,1.26775e-08,0.172392,0.000796695,1.09018e-06,-7.00557e-09,0.17319,0.000798855,1.06916e-06,4.43796e-10,0.17399,0.000800994,1.07049e-06,5.23031e-09,0.174792,0.000803151,1.08618e-06,-6.46397e-09,0.175596,0.000805304,1.06679e-06,5.72444e-09,0.176403,0.000807455,1.08396e-06,-1.53254e-09,0.177211,0.000809618,1.07937e-06,4.05673e-10,0.178022,0.000811778,1.08058e-06,-9.01916e-11,0.178835,0.000813939,1.08031e-06,-4.49821e-11,0.17965,0.000816099,1.08018e-06,2.70234e-10,0.180467,0.00081826,1.08099e-06,-1.03603e-09,0.181286,0.000820419,1.07788e-06,3.87392e-09,0.182108,0.000822587,1.0895e-06,4.41522e-10,0.182932,0.000824767,1.09083e-06,-5.63997e-09,0.183758,0.000826932,1.07391e-06,7.21707e-09,0.184586,0.000829101,1.09556e-06,-8.32718e-09,0.185416,0.000831267,1.07058e-06,1.11907e-08,0.186248,0.000833442,1.10415e-06,-6.63336e-09,0.187083,0.00083563,1.08425e-06,4.41484e-10,0.187919,0.0008378,1.08557e-06,4.86754e-09,0.188758,0.000839986,1.10017e-06,-5.01041e-09,0.189599,0.000842171,1.08514e-06,2.72811e-10,0.190443,0.000844342,1.08596e-06,3.91916e-09,0.191288,0.000846526,1.09772e-06,-1.04819e-09,0.192136,0.000848718,1.09457e-06,2.73531e-10,0.192985,0.000850908,1.0954e-06,-4.58916e-11,0.193837,0.000853099,1.09526e-06,-9.01158e-11,0.194692,0.000855289,1.09499e-06,4.06506e-10,0.195548,0.00085748,1.09621e-06,-1.53595e-09,0.196407,0.000859668,1.0916e-06,5.73717e-09,0.197267,0.000861869,1.10881e-06,-6.51164e-09,0.19813,0.000864067,1.08928e-06,5.40831e-09,0.198995,0.000866261,1.1055e-06,-2.20401e-10,0.199863,0.000868472,1.10484e-06,-4.52652e-09,0.200732,0.000870668,1.09126e-06,3.42508e-09,0.201604,0.000872861,1.10153e-06,5.72762e-09,0.202478,0.000875081,1.11872e-06,-1.14344e-08,0.203354,0.000877284,1.08441e-06,1.02076e-08,0.204233,0.000879484,1.11504e-06,4.06355e-10,0.205113,0.000881715,1.11626e-06,-1.18329e-08,0.205996,0.000883912,1.08076e-06,1.71227e-08,0.206881,0.000886125,1.13213e-06,-1.19546e-08,0.207768,0.000888353,1.09626e-06,8.93465e-10,0.208658,0.000890548,1.09894e-06,8.38062e-09,0.209549,0.000892771,1.12408e-06,-4.61353e-09,0.210443,0.000895006,1.11024e-06,-4.82756e-09,0.211339,0.000897212,1.09576e-06,9.02245e-09,0.212238,0.00089943,1.12283e-06,-1.45997e-09,0.213138,0.000901672,1.11845e-06,-3.18255e-09,0.214041,0.000903899,1.1089e-06,-7.11073e-10,0.214946,0.000906115,1.10677e-06,6.02692e-09,0.215853,0.000908346,1.12485e-06,-8.49548e-09,0.216763,0.00091057,1.09936e-06,1.30537e-08,0.217675,0.000912808,1.13852e-06,-1.3917e-08,0.218588,0.000915044,1.09677e-06,1.28121e-08,0.219505,0.000917276,1.13521e-06,-7.5288e-09,0.220423,0.000919523,1.11262e-06,2.40205e-09,0.221344,0.000921756,1.11983e-06,-2.07941e-09,0.222267,0.000923989,1.11359e-06,5.91551e-09,0.223192,0.000926234,1.13134e-06,-6.68149e-09,0.224119,0.000928477,1.11129e-06,5.90929e-09,0.225049,0.000930717,1.12902e-06,-2.05436e-09,0.22598,0.000932969,1.12286e-06,2.30807e-09,0.226915,0.000935222,1.12978e-06,-7.17796e-09,0.227851,0.00093746,1.10825e-06,1.15028e-08,0.228789,0.000939711,1.14276e-06,-9.03083e-09,0.22973,0.000941969,1.11566e-06,9.71932e-09,0.230673,0.00094423,1.14482e-06,-1.49452e-08,0.231619,0.000946474,1.09998e-06,2.02591e-08,0.232566,0.000948735,1.16076e-06,-2.13879e-08,0.233516,0.000950993,1.0966e-06,2.05888e-08,0.234468,0.000953247,1.15837e-06,-1.62642e-08,0.235423,0.000955515,1.10957e-06,1.46658e-08,0.236379,0.000957779,1.15357e-06,-1.25966e-08,0.237338,0.000960048,1.11578e-06,5.91793e-09,0.238299,0.000962297,1.13353e-06,3.82602e-09,0.239263,0.000964576,1.14501e-06,-6.3208e-09,0.240229,0.000966847,1.12605e-06,6.55613e-09,0.241197,0.000969119,1.14572e-06,-5.00268e-09,0.242167,0.000971395,1.13071e-06,-1.44659e-09,0.243139,0.000973652,1.12637e-06,1.07891e-08,0.244114,0.000975937,1.15874e-06,-1.19073e-08,0.245091,0.000978219,1.12302e-06,7.03782e-09,0.246071,0.000980486,1.14413e-06,-1.34276e-09,0.247052,0.00098277,1.1401e-06,-1.66669e-09,0.248036,0.000985046,1.1351e-06,8.00935e-09,0.249022,0.00098734,1.15913e-06,-1.54694e-08,0.250011,0.000989612,1.11272e-06,2.4066e-08,0.251002,0.000991909,1.18492e-06,-2.11901e-08,0.251995,0.000994215,1.12135e-06,1.08973e-09,0.25299,0.000996461,1.12462e-06,1.68311e-08,0.253988,0.000998761,1.17511e-06,-8.8094e-09,0.254987,0.00100109,1.14868e-06,-1.13958e-08,0.25599,0.00100335,1.1145e-06,2.45902e-08,0.256994,0.00100565,1.18827e-06,-2.73603e-08,0.258001,0.00100795,1.10618e-06,2.52464e-08,0.25901,0.00101023,1.18192e-06,-1.40207e-08,0.260021,0.00101256,1.13986e-06,1.03387e-09,0.261035,0.00101484,1.14296e-06,9.8853e-09,0.262051,0.00101715,1.17262e-06,-1.07726e-08,0.263069,0.00101947,1.1403e-06,3.40272e-09,0.26409,0.00102176,1.15051e-06,-2.83827e-09,0.265113,0.00102405,1.142e-06,7.95039e-09,0.266138,0.00102636,1.16585e-06,8.39047e-10,0.267166,0.00102869,1.16836e-06,-1.13066e-08,0.268196,0.00103099,1.13444e-06,1.4585e-08,0.269228,0.00103331,1.1782e-06,-1.72314e-08,0.270262,0.00103561,1.1265e-06,2.45382e-08,0.271299,0.00103794,1.20012e-06,-2.13166e-08,0.272338,0.00104028,1.13617e-06,1.12364e-09,0.273379,0.00104255,1.13954e-06,1.68221e-08,0.274423,0.00104488,1.19001e-06,-8.80736e-09,0.275469,0.00104723,1.16358e-06,-1.13948e-08,0.276518,0.00104953,1.1294e-06,2.45839e-08,0.277568,0.00105186,1.20315e-06,-2.73361e-08,0.278621,0.00105418,1.12114e-06,2.51559e-08,0.279677,0.0010565,1.19661e-06,-1.36832e-08,0.280734,0.00105885,1.15556e-06,-2.25706e-10,0.281794,0.00106116,1.15488e-06,1.45862e-08,0.282857,0.00106352,1.19864e-06,-2.83167e-08,0.283921,0.00106583,1.11369e-06,3.90759e-08,0.284988,0.00106817,1.23092e-06,-3.85801e-08,0.286058,0.00107052,1.11518e-06,2.58375e-08,0.287129,0.00107283,1.19269e-06,-5.16498e-09,0.288203,0.0010752,1.1772e-06,-5.17768e-09,0.28928,0.00107754,1.16167e-06,-3.92671e-09,0.290358,0.00107985,1.14988e-06,2.08846e-08,0.29144,0.00108221,1.21254e-06,-2.00072e-08,0.292523,0.00108458,1.15252e-06,-4.60659e-10,0.293609,0.00108688,1.15114e-06,2.18499e-08,0.294697,0.00108925,1.21669e-06,-2.73343e-08,0.295787,0.0010916,1.13468e-06,2.78826e-08,0.29688,0.00109395,1.21833e-06,-2.45915e-08,0.297975,0.00109632,1.14456e-06,1.08787e-08,0.299073,0.00109864,1.17719e-06,1.08788e-08,0.300172,0.00110102,1.20983e-06,-2.45915e-08,0.301275,0.00110337,1.13605e-06,2.78828e-08,0.302379,0.00110573,1.2197e-06,-2.73348e-08,0.303486,0.00110808,1.1377e-06,2.18518e-08,0.304595,0.00111042,1.20325e-06,-4.67556e-10,0.305707,0.00111283,1.20185e-06,-1.99816e-08,0.306821,0.00111517,1.14191e-06,2.07891e-08,0.307937,0.00111752,1.20427e-06,-3.57026e-09,0.309056,0.00111992,1.19356e-06,-6.50797e-09,0.310177,0.00112228,1.17404e-06,-2.00165e-10,0.3113,0.00112463,1.17344e-06,7.30874e-09,0.312426,0.001127,1.19536e-06,7.67424e-10,0.313554,0.00112939,1.19767e-06,-1.03784e-08,0.314685,0.00113176,1.16653e-06,1.09437e-08,0.315818,0.00113412,1.19936e-06,-3.59406e-09,0.316953,0.00113651,1.18858e-06,3.43251e-09,0.318091,0.0011389,1.19888e-06,-1.0136e-08,0.319231,0.00114127,1.16847e-06,7.30915e-09,0.320374,0.00114363,1.1904e-06,1.07018e-08,0.321518,0.00114604,1.2225e-06,-2.03137e-08,0.322666,0.00114842,1.16156e-06,1.09484e-08,0.323815,0.00115078,1.19441e-06,6.32224e-09,0.324967,0.00115319,1.21337e-06,-6.43509e-09,0.326122,0.00115559,1.19407e-06,-1.03842e-08,0.327278,0.00115795,1.16291e-06,1.81697e-08,0.328438,0.00116033,1.21742e-06,-2.6901e-09,0.329599,0.00116276,1.20935e-06,-7.40939e-09,0.330763,0.00116515,1.18713e-06,2.52533e-09,0.331929,0.00116754,1.1947e-06,-2.69191e-09,0.333098,0.00116992,1.18663e-06,8.24218e-09,0.334269,0.00117232,1.21135e-06,-4.74377e-10,0.335443,0.00117474,1.20993e-06,-6.34471e-09,0.336619,0.00117714,1.1909e-06,-3.94922e-09,0.337797,0.00117951,1.17905e-06,2.21417e-08,0.338978,0.00118193,1.24547e-06,-2.50128e-08,0.340161,0.00118435,1.17043e-06,1.8305e-08,0.341346,0.00118674,1.22535e-06,-1.84048e-08,0.342534,0.00118914,1.17013e-06,2.55121e-08,0.343725,0.00119156,1.24667e-06,-2.40389e-08,0.344917,0.00119398,1.17455e-06,1.10389e-08,0.346113,0.00119636,1.20767e-06,9.68574e-09,0.34731,0.0011988,1.23673e-06,-1.99797e-08,0.34851,0.00120122,1.17679e-06,1.06284e-08,0.349713,0.0012036,1.20867e-06,7.26868e-09,0.350917,0.00120604,1.23048e-06,-9.90072e-09,0.352125,0.00120847,1.20078e-06,2.53177e-09,0.353334,0.00121088,1.20837e-06,-2.26199e-10,0.354546,0.0012133,1.20769e-06,-1.62705e-09,0.355761,0.00121571,1.20281e-06,6.73435e-09,0.356978,0.00121813,1.22302e-06,4.49207e-09,0.358197,0.00122059,1.23649e-06,-2.47027e-08,0.359419,0.00122299,1.16238e-06,3.47142e-08,0.360643,0.00122542,1.26653e-06,-2.47472e-08,0.36187,0.00122788,1.19229e-06,4.66965e-09,0.363099,0.00123028,1.20629e-06,6.06872e-09,0.36433,0.00123271,1.2245e-06,8.57729e-10,0.365564,0.00123516,1.22707e-06,-9.49952e-09,0.366801,0.00123759,1.19858e-06,7.33792e-09,0.36804,0.00124001,1.22059e-06,9.95025e-09,0.369281,0.00124248,1.25044e-06,-1.73366e-08,0.370525,0.00124493,1.19843e-06,-2.08464e-10,0.371771,0.00124732,1.1978e-06,1.81704e-08,0.373019,0.00124977,1.25232e-06,-1.28683e-08,0.37427,0.00125224,1.21371e-06,3.50042e-09,0.375524,0.00125468,1.22421e-06,-1.1335e-09,0.37678,0.00125712,1.22081e-06,1.03345e-09,0.378038,0.00125957,1.22391e-06,-3.00023e-09,0.379299,0.00126201,1.21491e-06,1.09676e-08,0.380562,0.00126447,1.24781e-06,-1.10676e-08,0.381828,0.00126693,1.21461e-06,3.50042e-09,0.383096,0.00126937,1.22511e-06,-2.93403e-09,0.384366,0.00127181,1.21631e-06,8.23574e-09,0.385639,0.00127427,1.24102e-06,-2.06607e-10,0.386915,0.00127675,1.2404e-06,-7.40935e-09,0.388193,0.00127921,1.21817e-06,4.1761e-11,0.389473,0.00128165,1.21829e-06,7.24223e-09,0.390756,0.0012841,1.24002e-06,7.91564e-10,0.392042,0.00128659,1.2424e-06,-1.04086e-08,0.393329,0.00128904,1.21117e-06,1.10405e-08,0.39462,0.0012915,1.24429e-06,-3.951e-09,0.395912,0.00129397,1.23244e-06,4.7634e-09,0.397208,0.00129645,1.24673e-06,-1.51025e-08,0.398505,0.0012989,1.20142e-06,2.58443e-08,0.399805,0.00130138,1.27895e-06,-2.86702e-08,0.401108,0.00130385,1.19294e-06,2.92318e-08,0.402413,0.00130632,1.28064e-06,-2.86524e-08,0.403721,0.0013088,1.19468e-06,2.57731e-08,0.405031,0.00131127,1.272e-06,-1.48355e-08,0.406343,0.00131377,1.2275e-06,3.76652e-09,0.407658,0.00131623,1.23879e-06,-2.30784e-10,0.408976,0.00131871,1.2381e-06,-2.84331e-09,0.410296,0.00132118,1.22957e-06,1.16041e-08,0.411618,0.00132367,1.26438e-06,-1.37708e-08,0.412943,0.00132616,1.22307e-06,1.36768e-08,0.41427,0.00132865,1.2641e-06,-1.1134e-08,0.4156,0.00133114,1.2307e-06,1.05714e-09,0.416933,0.00133361,1.23387e-06,6.90538e-09,0.418267,0.00133609,1.25459e-06,1.12372e-09,0.419605,0.00133861,1.25796e-06,-1.14002e-08,0.420945,0.00134109,1.22376e-06,1.46747e-08,0.422287,0.00134358,1.26778e-06,-1.7496e-08,0.423632,0.00134606,1.21529e-06,2.5507e-08,0.424979,0.00134857,1.29182e-06,-2.49272e-08,0.426329,0.00135108,1.21703e-06,1.45972e-08,0.427681,0.00135356,1.26083e-06,-3.65935e-09,0.429036,0.00135607,1.24985e-06,4.00178e-11,0.430393,0.00135857,1.24997e-06,3.49917e-09,0.431753,0.00136108,1.26047e-06,-1.40366e-08,0.433116,0.00136356,1.21836e-06,2.28448e-08,0.43448,0.00136606,1.28689e-06,-1.77378e-08,0.435848,0.00136858,1.23368e-06,1.83043e-08,0.437218,0.0013711,1.28859e-06,-2.56769e-08,0.43859,0.0013736,1.21156e-06,2.47987e-08,0.439965,0.0013761,1.28595e-06,-1.39133e-08,0.441342,0.00137863,1.24421e-06,1.05202e-09,0.442722,0.00138112,1.24737e-06,9.70507e-09,0.444104,0.00138365,1.27649e-06,-1.00698e-08,0.445489,0.00138617,1.24628e-06,7.72123e-10,0.446877,0.00138867,1.24859e-06,6.98132e-09,0.448267,0.00139118,1.26954e-06,1.10477e-09,0.449659,0.00139373,1.27285e-06,-1.14003e-08,0.451054,0.00139624,1.23865e-06,1.4694e-08,0.452452,0.00139876,1.28273e-06,-1.75734e-08,0.453852,0.00140127,1.23001e-06,2.5797e-08,0.455254,0.00140381,1.3074e-06,-2.60097e-08,0.456659,0.00140635,1.22937e-06,1.86371e-08,0.458067,0.00140886,1.28529e-06,-1.8736e-08,0.459477,0.00141137,1.22908e-06,2.65048e-08,0.46089,0.00141391,1.30859e-06,-2.76784e-08,0.462305,0.00141645,1.22556e-06,2.46043e-08,0.463722,0.00141897,1.29937e-06,-1.11341e-08,0.465143,0.00142154,1.26597e-06,-9.87033e-09,0.466565,0.00142404,1.23636e-06,2.08131e-08,0.467991,0.00142657,1.2988e-06,-1.37773e-08,0.469419,0.00142913,1.25746e-06,4.49378e-09,0.470849,0.00143166,1.27094e-06,-4.19781e-09,0.472282,0.00143419,1.25835e-06,1.22975e-08,0.473717,0.00143674,1.29524e-06,-1.51902e-08,0.475155,0.00143929,1.24967e-06,1.86608e-08,0.476596,0.00144184,1.30566e-06,-2.96506e-08,0.478039,0.00144436,1.2167e-06,4.03368e-08,0.479485,0.00144692,1.33771e-06,-4.22896e-08,0.480933,0.00144947,1.21085e-06,3.94148e-08,0.482384,0.00145201,1.32909e-06,-2.59626e-08,0.483837,0.00145459,1.2512e-06,4.83124e-09,0.485293,0.0014571,1.2657e-06,6.63757e-09,0.486751,0.00145966,1.28561e-06,-1.57911e-09,0.488212,0.00146222,1.28087e-06,-3.21468e-10,0.489676,0.00146478,1.27991e-06,2.86517e-09,0.491142,0.00146735,1.2885e-06,-1.11392e-08,0.49261,0.00146989,1.25508e-06,1.18893e-08,0.494081,0.00147244,1.29075e-06,-6.61574e-09,0.495555,0.001475,1.27091e-06,1.45736e-08,0.497031,0.00147759,1.31463e-06,-2.18759e-08,0.49851,0.00148015,1.249e-06,1.33252e-08,0.499992,0.00148269,1.28897e-06,-1.62277e-09,0.501476,0.00148526,1.28411e-06,-6.83421e-09,0.502962,0.00148781,1.2636e-06,2.89596e-08,0.504451,0.00149042,1.35048e-06,-4.93997e-08,0.505943,0.00149298,1.20228e-06,4.94299e-08,0.507437,0.00149553,1.35057e-06,-2.91107e-08,0.508934,0.00149814,1.26324e-06,7.40848e-09,0.510434,0.00150069,1.28547e-06,-5.23187e-10,0.511936,0.00150326,1.2839e-06,-5.31585e-09,0.51344,0.00150581,1.26795e-06,2.17866e-08,0.514947,0.00150841,1.33331e-06,-2.22257e-08,0.516457,0.00151101,1.26663e-06,7.51178e-09,0.517969,0.00151357,1.28917e-06,-7.82128e-09,0.519484,0.00151613,1.2657e-06,2.37733e-08,0.521002,0.00151873,1.33702e-06,-2.76674e-08,0.522522,0.00152132,1.25402e-06,2.72917e-08,0.524044,0.00152391,1.3359e-06,-2.18949e-08,0.525569,0.00152652,1.27021e-06,6.83372e-10,0.527097,0.00152906,1.27226e-06,1.91613e-08,0.528628,0.00153166,1.32974e-06,-1.77241e-08,0.53016,0.00153427,1.27657e-06,-7.86963e-09,0.531696,0.0015368,1.25296e-06,4.92027e-08,0.533234,0.00153945,1.40057e-06,-6.9732e-08,0.534775,0.00154204,1.19138e-06,5.09114e-08,0.536318,0.00154458,1.34411e-06,-1.4704e-08,0.537864,0.00154722,1.3e-06,7.9048e-09,0.539413,0.00154984,1.32371e-06,-1.69152e-08,0.540964,0.00155244,1.27297e-06,1.51355e-10,0.542517,0.00155499,1.27342e-06,1.63099e-08,0.544074,0.00155758,1.32235e-06,-5.78647e-09,0.545633,0.00156021,1.30499e-06,6.83599e-09,0.547194,0.00156284,1.3255e-06,-2.15575e-08,0.548758,0.00156543,1.26083e-06,1.97892e-08,0.550325,0.00156801,1.32019e-06,2.00525e-09,0.551894,0.00157065,1.32621e-06,-2.78103e-08,0.553466,0.00157322,1.24278e-06,4.96314e-08,0.555041,0.00157586,1.39167e-06,-5.1506e-08,0.556618,0.00157849,1.23716e-06,3.71835e-08,0.558198,0.00158107,1.34871e-06,-3.76233e-08,0.55978,0.00158366,1.23584e-06,5.37052e-08,0.561365,0.00158629,1.39695e-06,-5.79884e-08,0.562953,0.00158891,1.22299e-06,5.90392e-08,0.564543,0.00159153,1.4001e-06,-5.89592e-08,0.566136,0.00159416,1.22323e-06,5.7588e-08,0.567731,0.00159678,1.39599e-06,-5.21835e-08,0.569329,0.00159941,1.23944e-06,3.19369e-08,0.57093,0.00160199,1.33525e-06,-1.59594e-08,0.572533,0.00160461,1.28737e-06,3.19006e-08,0.574139,0.00160728,1.38307e-06,-5.20383e-08,0.575748,0.00160989,1.22696e-06,5.70431e-08,0.577359,0.00161251,1.39809e-06,-5.69247e-08,0.578973,0.00161514,1.22731e-06,5.14463e-08,0.580589,0.00161775,1.38165e-06,-2.9651e-08,0.582208,0.00162042,1.2927e-06,7.55339e-09,0.58383,0.00162303,1.31536e-06,-5.62636e-10,0.585455,0.00162566,1.31367e-06,-5.30281e-09,0.587081,0.00162827,1.29776e-06,2.17738e-08,0.588711,0.00163093,1.36309e-06,-2.21875e-08,0.590343,0.00163359,1.29652e-06,7.37164e-09,0.591978,0.00163621,1.31864e-06,-7.29907e-09,0.593616,0.00163882,1.29674e-06,2.18247e-08,0.595256,0.00164148,1.36221e-06,-2.03952e-08,0.596899,0.00164414,1.30103e-06,1.51241e-10,0.598544,0.00164675,1.30148e-06,1.97902e-08,0.600192,0.00164941,1.36085e-06,-1.97074e-08,0.601843,0.00165207,1.30173e-06,-5.65175e-10,0.603496,0.00165467,1.30004e-06,2.1968e-08,0.605152,0.00165734,1.36594e-06,-2.77024e-08,0.606811,0.00165999,1.28283e-06,2.92369e-08,0.608472,0.00166264,1.37054e-06,-2.96407e-08,0.610136,0.00166529,1.28162e-06,2.97215e-08,0.611803,0.00166795,1.37079e-06,-2.96408e-08,0.613472,0.0016706,1.28186e-06,2.92371e-08,0.615144,0.00167325,1.36957e-06,-2.77031e-08,0.616819,0.00167591,1.28647e-06,2.19708e-08,0.618496,0.00167855,1.35238e-06,-5.75407e-10,0.620176,0.00168125,1.35065e-06,-1.9669e-08,0.621858,0.00168389,1.29164e-06,1.96468e-08,0.623544,0.00168653,1.35058e-06,6.86403e-10,0.625232,0.00168924,1.35264e-06,-2.23924e-08,0.626922,0.00169187,1.28547e-06,2.92788e-08,0.628615,0.00169453,1.3733e-06,-3.51181e-08,0.630311,0.00169717,1.26795e-06,5.15889e-08,0.63201,0.00169987,1.42272e-06,-5.2028e-08,0.633711,0.00170255,1.26663e-06,3.73139e-08,0.635415,0.0017052,1.37857e-06,-3.76227e-08,0.637121,0.00170784,1.2657e-06,5.35722e-08,0.63883,0.00171054,1.42642e-06,-5.74567e-08,0.640542,0.00171322,1.25405e-06,5.70456e-08,0.642257,0.0017159,1.42519e-06,-5.15163e-08,0.643974,0.00171859,1.27064e-06,2.98103e-08,0.645694,0.00172122,1.36007e-06,-8.12016e-09,0.647417,0.00172392,1.33571e-06,2.67039e-09,0.649142,0.0017266,1.34372e-06,-2.56152e-09,0.65087,0.00172928,1.33604e-06,7.57571e-09,0.6526,0.00173197,1.35876e-06,-2.77413e-08,0.654334,0.00173461,1.27554e-06,4.3785e-08,0.65607,0.00173729,1.40689e-06,-2.81896e-08,0.657808,0.00174002,1.32233e-06,9.36893e-09,0.65955,0.00174269,1.35043e-06,-9.28617e-09,0.661294,0.00174536,1.32257e-06,2.77757e-08,0.66304,0.00174809,1.4059e-06,-4.2212e-08,0.66479,0.00175078,1.27926e-06,2.1863e-08,0.666542,0.0017534,1.34485e-06,1.43648e-08,0.668297,0.00175613,1.38795e-06,-1.97177e-08,0.670054,0.00175885,1.3288e-06,4.90115e-09,0.671814,0.00176152,1.3435e-06,1.13232e-10,0.673577,0.00176421,1.34384e-06,-5.3542e-09,0.675343,0.00176688,1.32778e-06,2.13035e-08,0.677111,0.0017696,1.39169e-06,-2.02553e-08,0.678882,0.00177232,1.33092e-06,1.13005e-10,0.680656,0.00177499,1.33126e-06,1.98031e-08,0.682432,0.00177771,1.39067e-06,-1.97211e-08,0.684211,0.00178043,1.33151e-06,-5.2349e-10,0.685993,0.00178309,1.32994e-06,2.18151e-08,0.687777,0.00178582,1.39538e-06,-2.71325e-08,0.689564,0.00178853,1.31398e-06,2.71101e-08,0.691354,0.00179124,1.39531e-06,-2.17035e-08,0.693147,0.00179396,1.3302e-06,9.92865e-11,0.694942,0.00179662,1.3305e-06,2.13063e-08,0.69674,0.00179935,1.39442e-06,-2.57198e-08,0.698541,0.00180206,1.31726e-06,2.19682e-08,0.700344,0.00180476,1.38317e-06,-2.54852e-09,0.70215,0.00180752,1.37552e-06,-1.17741e-08,0.703959,0.00181023,1.3402e-06,-9.95999e-09,0.705771,0.00181288,1.31032e-06,5.16141e-08,0.707585,0.00181566,1.46516e-06,-7.72869e-08,0.709402,0.00181836,1.2333e-06,7.87197e-08,0.711222,0.00182106,1.46946e-06,-5.87781e-08,0.713044,0.00182382,1.29312e-06,3.71834e-08,0.714869,0.00182652,1.40467e-06,-3.03511e-08,0.716697,0.00182924,1.31362e-06,2.46161e-08,0.718528,0.00183194,1.38747e-06,-8.5087e-09,0.720361,0.00183469,1.36194e-06,9.41892e-09,0.722197,0.00183744,1.3902e-06,-2.91671e-08,0.724036,0.00184014,1.3027e-06,4.76448e-08,0.725878,0.00184288,1.44563e-06,-4.22028e-08,0.727722,0.00184565,1.31902e-06,1.95682e-09,0.729569,0.00184829,1.3249e-06,3.43754e-08,0.731419,0.00185104,1.42802e-06,-2.0249e-08,0.733271,0.00185384,1.36727e-06,-1.29838e-08,0.735126,0.00185654,1.32832e-06,1.25794e-08,0.736984,0.00185923,1.36606e-06,2.22711e-08,0.738845,0.00186203,1.43287e-06,-4.20594e-08,0.740708,0.00186477,1.3067e-06,2.67571e-08,0.742574,0.00186746,1.38697e-06,-5.36424e-09,0.744443,0.00187022,1.37087e-06,-5.30023e-09,0.746315,0.00187295,1.35497e-06,2.65653e-08,0.748189,0.00187574,1.43467e-06,-4.13564e-08,0.750066,0.00187848,1.3106e-06,1.9651e-08,0.751946,0.00188116,1.36955e-06,2.23572e-08,0.753828,0.00188397,1.43663e-06,-4.9475e-08,0.755714,0.00188669,1.2882e-06,5.63335e-08,0.757602,0.00188944,1.4572e-06,-5.66499e-08,0.759493,0.00189218,1.28725e-06,5.10567e-08,0.761386,0.00189491,1.44042e-06,-2.83677e-08,0.763283,0.00189771,1.35532e-06,2.80962e-09,0.765182,0.00190042,1.36375e-06,1.71293e-08,0.767083,0.0019032,1.41513e-06,-1.17221e-08,0.768988,0.001906,1.37997e-06,-2.98453e-08,0.770895,0.00190867,1.29043e-06,7.14987e-08,0.772805,0.00191146,1.50493e-06,-7.73354e-08,0.774718,0.00191424,1.27292e-06,5.90292e-08,0.776634,0.00191697,1.45001e-06,-3.9572e-08,0.778552,0.00191975,1.33129e-06,3.9654e-08,0.780473,0.00192253,1.45026e-06,-5.94395e-08,0.782397,0.00192525,1.27194e-06,7.88945e-08,0.784324,0.00192803,1.50862e-06,-7.73249e-08,0.786253,0.00193082,1.27665e-06,5.15913e-08,0.788185,0.00193352,1.43142e-06,-9.83099e-09,0.79012,0.00193636,1.40193e-06,-1.22672e-08,0.792058,0.00193912,1.36513e-06,-7.05275e-10,0.793999,0.00194185,1.36301e-06,1.50883e-08,0.795942,0.00194462,1.40828e-06,-4.33147e-11,0.797888,0.00194744,1.40815e-06,-1.49151e-08,0.799837,0.00195021,1.3634e-06,9.93244e-11,0.801788,0.00195294,1.3637e-06,1.45179e-08,0.803743,0.00195571,1.40725e-06,1.43363e-09,0.8057,0.00195853,1.41155e-06,-2.02525e-08,0.80766,0.00196129,1.35079e-06,1.99718e-08,0.809622,0.00196405,1.41071e-06,-3.01649e-11,0.811588,0.00196687,1.41062e-06,-1.9851e-08,0.813556,0.00196964,1.35107e-06,1.98296e-08,0.815527,0.0019724,1.41056e-06,1.37485e-10,0.817501,0.00197522,1.41097e-06,-2.03796e-08,0.819477,0.00197798,1.34983e-06,2.17763e-08,0.821457,0.00198074,1.41516e-06,-7.12085e-09,0.823439,0.00198355,1.3938e-06,6.70707e-09,0.825424,0.00198636,1.41392e-06,-1.97074e-08,0.827412,0.00198913,1.35479e-06,1.25179e-08,0.829402,0.00199188,1.39235e-06,2.92405e-08,0.831396,0.00199475,1.48007e-06,-6.98755e-08,0.833392,0.0019975,1.27044e-06,7.14477e-08,0.835391,0.00200026,1.48479e-06,-3.71014e-08,0.837392,0.00200311,1.37348e-06,1.73533e-08,0.839397,0.00200591,1.42554e-06,-3.23118e-08,0.841404,0.00200867,1.32861e-06,5.2289e-08,0.843414,0.00201148,1.48547e-06,-5.76348e-08,0.845427,0.00201428,1.31257e-06,5.9041e-08,0.847443,0.00201708,1.48969e-06,-5.93197e-08,0.849461,0.00201988,1.31173e-06,5.90289e-08,0.851482,0.00202268,1.48882e-06,-5.75864e-08,0.853507,0.00202549,1.31606e-06,5.21075e-08,0.855533,0.00202828,1.47238e-06,-3.16344e-08,0.857563,0.00203113,1.37748e-06,1.48257e-08,0.859596,0.00203393,1.42196e-06,-2.76684e-08,0.861631,0.00203669,1.33895e-06,3.62433e-08,0.863669,0.00203947,1.44768e-06,1.90463e-09,0.86571,0.00204237,1.45339e-06,-4.38617e-08,0.867754,0.00204515,1.32181e-06,5.43328e-08,0.8698,0.00204796,1.48481e-06,-5.42603e-08,0.87185,0.00205076,1.32203e-06,4.34989e-08,0.873902,0.00205354,1.45252e-06,-5.26029e-10,0.875957,0.00205644,1.45095e-06,-4.13949e-08,0.878015,0.00205922,1.32676e-06,4.68962e-08,0.880075,0.00206201,1.46745e-06,-2.69807e-08,0.882139,0.00206487,1.38651e-06,1.42181e-09,0.884205,0.00206764,1.39077e-06,2.12935e-08,0.886274,0.00207049,1.45465e-06,-2.69912e-08,0.888346,0.00207332,1.37368e-06,2.70664e-08,0.890421,0.00207615,1.45488e-06,-2.16698e-08,0.892498,0.00207899,1.38987e-06,8.14756e-12,0.894579,0.00208177,1.38989e-06,2.16371e-08,0.896662,0.00208462,1.45481e-06,-2.6952e-08,0.898748,0.00208744,1.37395e-06,2.65663e-08,0.900837,0.00209027,1.45365e-06,-1.97084e-08,0.902928,0.00209312,1.39452e-06,-7.33731e-09,0.905023,0.00209589,1.37251e-06,4.90578e-08,0.90712,0.00209878,1.51968e-06,-6.96845e-08,0.90922,0.00210161,1.31063e-06,5.08664e-08,0.911323,0.00210438,1.46323e-06,-1.45717e-08,0.913429,0.00210727,1.41952e-06,7.42038e-09,0.915538,0.00211013,1.44178e-06,-1.51097e-08,0.917649,0.00211297,1.39645e-06,-6.58618e-09,0.919764,0.00211574,1.37669e-06,4.14545e-08,0.921881,0.00211862,1.50105e-06,-4.00222e-08,0.924001,0.0021215,1.38099e-06,-5.7518e-10,0.926124,0.00212426,1.37926e-06,4.23229e-08,0.92825,0.00212714,1.50623e-06,-4.9507e-08,0.930378,0.00213001,1.35771e-06,3.64958e-08,0.93251,0.00213283,1.4672e-06,-3.68713e-08,0.934644,0.00213566,1.35658e-06,5.13848e-08,0.936781,0.00213852,1.51074e-06,-4.94585e-08,0.938921,0.0021414,1.36236e-06,2.72399e-08,0.941064,0.0021442,1.44408e-06,1.0372e-10,0.943209,0.00214709,1.44439e-06,-2.76547e-08,0.945358,0.0021499,1.36143e-06,5.09106e-08,0.947509,0.00215277,1.51416e-06,-5.67784e-08,0.949663,0.00215563,1.34382e-06,5.69935e-08,0.95182,0.00215849,1.5148e-06,-5.19861e-08,0.95398,0.00216136,1.35885e-06,3.17417e-08,0.956143,0.00216418,1.45407e-06,-1.53758e-08,0.958309,0.00216704,1.40794e-06,2.97615e-08,0.960477,0.00216994,1.49723e-06,-4.40657e-08,0.962649,0.00217281,1.36503e-06,2.72919e-08,0.964823,0.00217562,1.44691e-06,-5.49729e-09,0.967,0.0021785,1.43041e-06,-5.30273e-09,0.96918,0.00218134,1.41451e-06,2.67084e-08,0.971363,0.00218425,1.49463e-06,-4.19265e-08,0.973548,0.00218711,1.36885e-06,2.17881e-08,0.975737,0.00218992,1.43422e-06,1.43789e-08,0.977928,0.00219283,1.47735e-06,-1.96989e-08,0.980122,0.00219572,1.41826e-06,4.81221e-09,0.98232,0.00219857,1.43269e-06,4.50048e-10,0.98452,0.00220144,1.43404e-06,-6.61237e-09,0.986722,0.00220429,1.41421e-06,2.59993e-08,0.988928,0.0022072,1.4922e-06,-3.77803e-08,0.991137,0.00221007,1.37886e-06,5.9127e-09,0.993348,0.00221284,1.3966e-06,1.33339e-07,0.995563,0.00221604,1.79662e-06,-5.98872e-07,0.99778,0.00222015,0.,0.}; + + template + __device__ __forceinline__ void RGB2LabConvert_f(const T& src, D& dst) + { + const float _1_3 = 1.0f / 3.0f; + const float _a = 16.0f / 116.0f; + + float B = blueIdx == 0 ? src.x : src.z; + float G = src.y; + float R = blueIdx == 0 ? src.z : src.x; + + if (srgb) + { + B = splineInterpolate(B * GAMMA_TAB_SIZE, c_sRGBGammaTab, GAMMA_TAB_SIZE); + G = splineInterpolate(G * GAMMA_TAB_SIZE, c_sRGBGammaTab, GAMMA_TAB_SIZE); + R = splineInterpolate(R * GAMMA_TAB_SIZE, c_sRGBGammaTab, GAMMA_TAB_SIZE); + } + + float X = B * 0.189828f + G * 0.376219f + R * 0.433953f; + float Y = B * 0.072169f + G * 0.715160f + R * 0.212671f; + float Z = B * 0.872766f + G * 0.109477f + R * 0.017758f; + + float FX = X > 0.008856f ? ::powf(X, _1_3) : (7.787f * X + _a); + float FY = Y > 0.008856f ? ::powf(Y, _1_3) : (7.787f * Y + _a); + float FZ = Z > 0.008856f ? ::powf(Z, _1_3) : (7.787f * Z + _a); + + float L = Y > 0.008856f ? (116.f * FY - 16.f) : (903.3f * Y); + float a = 500.f * (FX - FY); + float b = 200.f * (FY - FZ); + + dst.x = L; + dst.y = a; + dst.z = b; + } + + template struct RGB2Lab; + template + struct RGB2Lab + : unary_function::vec_type, typename TypeVec::vec_type> + { + __device__ __forceinline__ typename TypeVec::vec_type operator ()(const typename TypeVec::vec_type& src) const + { + typename TypeVec::vec_type dst; + + RGB2LabConvert_b(src, dst); + + return dst; + } + __host__ __device__ __forceinline__ RGB2Lab() {} + __host__ __device__ __forceinline__ RGB2Lab(const RGB2Lab&) {} + }; + template + struct RGB2Lab + : unary_function::vec_type, typename TypeVec::vec_type> + { + __device__ __forceinline__ typename TypeVec::vec_type operator ()(const typename TypeVec::vec_type& src) const + { + typename TypeVec::vec_type dst; + + RGB2LabConvert_f(src, dst); + + return dst; + } + __host__ __device__ __forceinline__ RGB2Lab() {} + __host__ __device__ __forceinline__ RGB2Lab(const RGB2Lab&) {} + }; + } + +#define OPENCV_CUDA_IMPLEMENT_RGB2Lab_TRAITS(name, scn, dcn, srgb, blueIdx) \ + template struct name ## _traits \ + { \ + typedef ::cv::cuda::device::color_detail::RGB2Lab functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; + + namespace color_detail + { + __constant__ float c_sRGBInvGammaTab[] = {0,0.0126255,0.,-8.33961e-06,0.0126172,0.0126005,-2.50188e-05,4.1698e-05,0.0252344,0.0126756,0.000100075,-0.000158451,0.0378516,0.0124004,-0.000375277,-0.000207393,0.0496693,0.0110276,-0.000997456,0.00016837,0.0598678,0.00953783,-0.000492346,2.07235e-05,0.068934,0.00861531,-0.000430176,3.62876e-05,0.0771554,0.00786382,-0.000321313,1.87625e-05,0.0847167,0.00727748,-0.000265025,1.53594e-05,0.0917445,0.00679351,-0.000218947,1.10545e-05,0.0983301,0.00638877,-0.000185784,8.66984e-06,0.104542,0.00604322,-0.000159774,6.82996e-06,0.110432,0.00574416,-0.000139284,5.51008e-06,0.116042,0.00548212,-0.000122754,4.52322e-06,0.121406,0.00525018,-0.000109184,3.75557e-06,0.126551,0.00504308,-9.79177e-05,3.17134e-06,0.131499,0.00485676,-8.84037e-05,2.68469e-06,0.13627,0.004688,-8.03496e-05,2.31725e-06,0.14088,0.00453426,-7.33978e-05,2.00868e-06,0.145343,0.00439349,-6.73718e-05,1.74775e-06,0.149671,0.00426399,-6.21286e-05,1.53547e-06,0.153875,0.00414434,-5.75222e-05,1.364e-06,0.157963,0.00403338,-5.34301e-05,1.20416e-06,0.161944,0.00393014,-4.98177e-05,1.09114e-06,0.165825,0.00383377,-4.65443e-05,9.57987e-07,0.169613,0.00374356,-4.36703e-05,8.88359e-07,0.173314,0.00365888,-4.10052e-05,7.7849e-07,0.176933,0.00357921,-3.86697e-05,7.36254e-07,0.180474,0.00350408,-3.6461e-05,6.42534e-07,0.183942,0.00343308,-3.45334e-05,6.12614e-07,0.187342,0.00336586,-3.26955e-05,5.42894e-07,0.190675,0.00330209,-3.10669e-05,5.08967e-07,0.193947,0.00324149,-2.954e-05,4.75977e-07,0.197159,0.00318383,-2.8112e-05,4.18343e-07,0.200315,0.00312887,-2.6857e-05,4.13651e-07,0.203418,0.00307639,-2.5616e-05,3.70847e-07,0.206469,0.00302627,-2.45035e-05,3.3813e-07,0.209471,0.00297828,-2.34891e-05,3.32999e-07,0.212426,0.0029323,-2.24901e-05,2.96826e-07,0.215336,0.00288821,-2.15996e-05,2.82736e-07,0.218203,0.00284586,-2.07514e-05,2.70961e-07,0.221029,0.00280517,-1.99385e-05,2.42744e-07,0.223814,0.00276602,-1.92103e-05,2.33277e-07,0.226561,0.0027283,-1.85105e-05,2.2486e-07,0.229271,0.00269195,-1.78359e-05,2.08383e-07,0.231945,0.00265691,-1.72108e-05,1.93305e-07,0.234585,0.00262307,-1.66308e-05,1.80687e-07,0.237192,0.00259035,-1.60888e-05,1.86632e-07,0.239766,0.00255873,-1.55289e-05,1.60569e-07,0.24231,0.00252815,-1.50472e-05,1.54566e-07,0.244823,0.00249852,-1.45835e-05,1.59939e-07,0.247307,0.00246983,-1.41037e-05,1.29549e-07,0.249763,0.00244202,-1.3715e-05,1.41429e-07,0.252191,0.00241501,-1.32907e-05,1.39198e-07,0.254593,0.00238885,-1.28731e-05,1.06444e-07,0.256969,0.00236342,-1.25538e-05,1.2048e-07,0.25932,0.00233867,-1.21924e-05,1.26892e-07,0.261647,0.00231467,-1.18117e-05,8.72084e-08,0.26395,0.00229131,-1.15501e-05,1.20323e-07,0.26623,0.00226857,-1.11891e-05,8.71514e-08,0.268487,0.00224645,-1.09276e-05,9.73165e-08,0.270723,0.00222489,-1.06357e-05,8.98259e-08,0.272937,0.00220389,-1.03662e-05,7.98218e-08,0.275131,0.00218339,-1.01267e-05,9.75254e-08,0.277304,0.00216343,-9.83416e-06,6.65195e-08,0.279458,0.00214396,-9.63461e-06,8.34313e-08,0.281592,0.00212494,-9.38431e-06,7.65919e-08,0.283708,0.00210641,-9.15454e-06,5.7236e-08,0.285805,0.00208827,-8.98283e-06,8.18939e-08,0.287885,0.00207055,-8.73715e-06,6.2224e-08,0.289946,0.00205326,-8.55047e-06,5.66388e-08,0.291991,0.00203633,-8.38056e-06,6.88491e-08,0.294019,0.00201978,-8.17401e-06,5.53955e-08,0.296031,0.00200359,-8.00782e-06,6.71971e-08,0.298027,0.00198778,-7.80623e-06,3.34439e-08,0.300007,0.00197227,-7.7059e-06,6.7248e-08,0.301971,0.00195706,-7.50416e-06,5.51915e-08,0.303921,0.00194221,-7.33858e-06,3.98124e-08,0.305856,0.00192766,-7.21915e-06,5.37795e-08,0.307776,0.00191338,-7.05781e-06,4.30919e-08,0.309683,0.00189939,-6.92853e-06,4.20744e-08,0.311575,0.00188566,-6.80231e-06,5.68321e-08,0.313454,0.00187223,-6.63181e-06,2.86195e-08,0.31532,0.00185905,-6.54595e-06,3.73075e-08,0.317172,0.00184607,-6.43403e-06,6.05684e-08,0.319012,0.00183338,-6.25233e-06,1.84426e-08,0.320839,0.00182094,-6.197e-06,4.44757e-08,0.322654,0.00180867,-6.06357e-06,4.20729e-08,0.324456,0.00179667,-5.93735e-06,2.56511e-08,0.326247,0.00178488,-5.8604e-06,3.41368e-08,0.328026,0.00177326,-5.75799e-06,4.64177e-08,0.329794,0.00176188,-5.61874e-06,1.86107e-08,0.33155,0.0017507,-5.5629e-06,2.81511e-08,0.333295,0.00173966,-5.47845e-06,4.75987e-08,0.335029,0.00172884,-5.33565e-06,1.98726e-08,0.336753,0.00171823,-5.27604e-06,2.19226e-08,0.338466,0.00170775,-5.21027e-06,4.14483e-08,0.340169,0.00169745,-5.08592e-06,2.09017e-08,0.341861,0.00168734,-5.02322e-06,2.39561e-08,0.343543,0.00167737,-4.95135e-06,3.22852e-08,0.345216,0.00166756,-4.85449e-06,2.57173e-08,0.346878,0.00165793,-4.77734e-06,1.38569e-08,0.348532,0.00164841,-4.73577e-06,3.80634e-08,0.350175,0.00163906,-4.62158e-06,1.27043e-08,0.35181,0.00162985,-4.58347e-06,3.03279e-08,0.353435,0.00162078,-4.49249e-06,1.49961e-08,0.355051,0.00161184,-4.4475e-06,2.88977e-08,0.356659,0.00160303,-4.3608e-06,1.84241e-08,0.358257,0.00159436,-4.30553e-06,1.6616e-08,0.359848,0.0015858,-4.25568e-06,3.43218e-08,0.361429,0.00157739,-4.15272e-06,-4.89172e-09,0.363002,0.00156907,-4.16739e-06,4.48498e-08,0.364567,0.00156087,-4.03284e-06,4.30676e-09,0.366124,0.00155282,-4.01992e-06,2.73303e-08,0.367673,0.00154486,-3.93793e-06,5.58036e-09,0.369214,0.001537,-3.92119e-06,3.97554e-08,0.370747,0.00152928,-3.80193e-06,-1.55904e-08,0.372272,0.00152163,-3.8487e-06,5.24081e-08,0.37379,0.00151409,-3.69147e-06,-1.52272e-08,0.375301,0.00150666,-3.73715e-06,3.83028e-08,0.376804,0.0014993,-3.62225e-06,1.10278e-08,0.378299,0.00149209,-3.58916e-06,6.99326e-09,0.379788,0.00148493,-3.56818e-06,2.06038e-08,0.381269,0.00147786,-3.50637e-06,2.98009e-08,0.382744,0.00147093,-3.41697e-06,-2.05978e-08,0.384211,0.00146404,-3.47876e-06,5.25899e-08,0.385672,0.00145724,-3.32099e-06,-1.09471e-08,0.387126,0.00145056,-3.35383e-06,2.10009e-08,0.388573,0.00144392,-3.29083e-06,1.63501e-08,0.390014,0.00143739,-3.24178e-06,3.00641e-09,0.391448,0.00143091,-3.23276e-06,3.12282e-08,0.392875,0.00142454,-3.13908e-06,-8.70932e-09,0.394297,0.00141824,-3.16521e-06,3.34114e-08,0.395712,0.00141201,-3.06497e-06,-5.72754e-09,0.397121,0.00140586,-3.08215e-06,1.9301e-08,0.398524,0.00139975,-3.02425e-06,1.7931e-08,0.39992,0.00139376,-2.97046e-06,-1.61822e-09,0.401311,0.00138781,-2.97531e-06,1.83442e-08,0.402696,0.00138192,-2.92028e-06,1.76485e-08,0.404075,0.00137613,-2.86733e-06,4.68617e-10,0.405448,0.00137039,-2.86593e-06,1.02794e-08,0.406816,0.00136469,-2.83509e-06,1.80179e-08,0.408178,0.00135908,-2.78104e-06,7.05594e-09,0.409534,0.00135354,-2.75987e-06,1.33633e-08,0.410885,0.00134806,-2.71978e-06,-9.04568e-10,0.41223,0.00134261,-2.72249e-06,2.0057e-08,0.41357,0.00133723,-2.66232e-06,1.00841e-08,0.414905,0.00133194,-2.63207e-06,-7.88835e-10,0.416234,0.00132667,-2.63444e-06,2.28734e-08,0.417558,0.00132147,-2.56582e-06,-1.29785e-09,0.418877,0.00131633,-2.56971e-06,1.21205e-08,0.420191,0.00131123,-2.53335e-06,1.24202e-08,0.421499,0.0013062,-2.49609e-06,-2.19681e-09,0.422803,0.0013012,-2.50268e-06,2.61696e-08,0.424102,0.00129628,-2.42417e-06,-1.30747e-08,0.425396,0.00129139,-2.46339e-06,2.6129e-08,0.426685,0.00128654,-2.38501e-06,-2.03454e-09,0.427969,0.00128176,-2.39111e-06,1.18115e-08,0.429248,0.00127702,-2.35567e-06,1.43932e-08,0.430523,0.00127235,-2.31249e-06,-9.77965e-09,0.431793,0.00126769,-2.34183e-06,2.47253e-08,0.433058,0.00126308,-2.26766e-06,2.85278e-10,0.434319,0.00125855,-2.2668e-06,3.93614e-09,0.435575,0.00125403,-2.25499e-06,1.37722e-08,0.436827,0.00124956,-2.21368e-06,5.79803e-10,0.438074,0.00124513,-2.21194e-06,1.37112e-08,0.439317,0.00124075,-2.1708e-06,4.17973e-09,0.440556,0.00123642,-2.15826e-06,-6.27703e-10,0.44179,0.0012321,-2.16015e-06,2.81332e-08,0.44302,0.00122787,-2.07575e-06,-2.24985e-08,0.444246,0.00122365,-2.14324e-06,3.20586e-08,0.445467,0.00121946,-2.04707e-06,-1.6329e-08,0.446685,0.00121532,-2.09605e-06,3.32573e-08,0.447898,0.00121122,-1.99628e-06,-2.72927e-08,0.449107,0.00120715,-2.07816e-06,4.6111e-08,0.450312,0.00120313,-1.93983e-06,-3.79416e-08,0.451514,0.00119914,-2.05365e-06,4.60507e-08,0.452711,0.00119517,-1.9155e-06,-2.7052e-08,0.453904,0.00119126,-1.99666e-06,3.23551e-08,0.455093,0.00118736,-1.89959e-06,-1.29613e-08,0.456279,0.00118352,-1.93848e-06,1.94905e-08,0.45746,0.0011797,-1.88e-06,-5.39588e-09,0.458638,0.00117593,-1.89619e-06,2.09282e-09,0.459812,0.00117214,-1.88991e-06,2.68267e-08,0.460982,0.00116844,-1.80943e-06,-1.99925e-08,0.462149,0.00116476,-1.86941e-06,2.3341e-08,0.463312,0.00116109,-1.79939e-06,-1.37674e-08,0.464471,0.00115745,-1.84069e-06,3.17287e-08,0.465627,0.00115387,-1.7455e-06,-2.37407e-08,0.466779,0.00115031,-1.81673e-06,3.34315e-08,0.467927,0.00114677,-1.71643e-06,-2.05786e-08,0.469073,0.00114328,-1.77817e-06,1.90802e-08,0.470214,0.00113978,-1.72093e-06,3.86247e-09,0.471352,0.00113635,-1.70934e-06,-4.72759e-09,0.472487,0.00113292,-1.72352e-06,1.50478e-08,0.473618,0.00112951,-1.67838e-06,4.14108e-09,0.474746,0.00112617,-1.66595e-06,-1.80986e-09,0.47587,0.00112283,-1.67138e-06,3.09816e-09,0.476991,0.0011195,-1.66209e-06,1.92198e-08,0.478109,0.00111623,-1.60443e-06,-2.03726e-08,0.479224,0.00111296,-1.66555e-06,3.2468e-08,0.480335,0.00110973,-1.56814e-06,-2.00922e-08,0.481443,0.00110653,-1.62842e-06,1.80983e-08,0.482548,0.00110333,-1.57413e-06,7.30362e-09,0.48365,0.0011002,-1.55221e-06,-1.75107e-08,0.484749,0.00109705,-1.60475e-06,3.29373e-08,0.485844,0.00109393,-1.50594e-06,-2.48315e-08,0.486937,0.00109085,-1.58043e-06,3.65865e-08,0.488026,0.0010878,-1.47067e-06,-3.21078e-08,0.489112,0.00108476,-1.56699e-06,3.22397e-08,0.490195,0.00108172,-1.47027e-06,-7.44391e-09,0.491276,0.00107876,-1.49261e-06,-2.46428e-09,0.492353,0.00107577,-1.5e-06,1.73011e-08,0.493427,0.00107282,-1.4481e-06,-7.13552e-09,0.494499,0.0010699,-1.4695e-06,1.1241e-08,0.495567,0.001067,-1.43578e-06,-8.02637e-09,0.496633,0.0010641,-1.45986e-06,2.08645e-08,0.497695,0.00106124,-1.39726e-06,-1.58271e-08,0.498755,0.0010584,-1.44475e-06,1.26415e-08,0.499812,0.00105555,-1.40682e-06,2.48655e-08,0.500866,0.00105281,-1.33222e-06,-5.24988e-08,0.501918,0.00104999,-1.48972e-06,6.59206e-08,0.502966,0.00104721,-1.29196e-06,-3.237e-08,0.504012,0.00104453,-1.38907e-06,3.95479e-09,0.505055,0.00104176,-1.3772e-06,1.65509e-08,0.506096,0.00103905,-1.32755e-06,-1.05539e-08,0.507133,0.00103637,-1.35921e-06,2.56648e-08,0.508168,0.00103373,-1.28222e-06,-3.25007e-08,0.509201,0.00103106,-1.37972e-06,4.47336e-08,0.51023,0.00102844,-1.24552e-06,-2.72245e-08,0.511258,0.00102587,-1.32719e-06,4.55952e-09,0.512282,0.00102323,-1.31352e-06,8.98645e-09,0.513304,0.00102063,-1.28656e-06,1.90992e-08,0.514323,0.00101811,-1.22926e-06,-2.57786e-08,0.51534,0.00101557,-1.30659e-06,2.44104e-08,0.516355,0.00101303,-1.23336e-06,-1.22581e-08,0.517366,0.00101053,-1.27014e-06,2.4622e-08,0.518376,0.00100806,-1.19627e-06,-2.66253e-08,0.519383,0.00100559,-1.27615e-06,2.22744e-08,0.520387,0.00100311,-1.20932e-06,-2.8679e-09,0.521389,0.00100068,-1.21793e-06,-1.08029e-08,0.522388,0.000998211,-1.25034e-06,4.60795e-08,0.523385,0.000995849,-1.1121e-06,-5.4306e-08,0.52438,0.000993462,-1.27502e-06,5.19354e-08,0.525372,0.000991067,-1.11921e-06,-3.42262e-08,0.526362,0.000988726,-1.22189e-06,2.53646e-08,0.52735,0.000986359,-1.14579e-06,-7.62782e-09,0.528335,0.000984044,-1.16868e-06,5.14668e-09,0.529318,0.000981722,-1.15324e-06,-1.29589e-08,0.530298,0.000979377,-1.19211e-06,4.66888e-08,0.531276,0.000977133,-1.05205e-06,-5.45868e-08,0.532252,0.000974865,-1.21581e-06,5.24495e-08,0.533226,0.000972591,-1.05846e-06,-3.60019e-08,0.534198,0.000970366,-1.16647e-06,3.19537e-08,0.535167,0.000968129,-1.07061e-06,-3.2208e-08,0.536134,0.000965891,-1.16723e-06,3.72738e-08,0.537099,0.000963668,-1.05541e-06,2.32205e-09,0.538061,0.000961564,-1.04844e-06,-4.65618e-08,0.539022,0.000959328,-1.18813e-06,6.47159e-08,0.53998,0.000957146,-9.93979e-07,-3.3488e-08,0.540936,0.000955057,-1.09444e-06,9.63166e-09,0.54189,0.000952897,-1.06555e-06,-5.03871e-09,0.542842,0.000950751,-1.08066e-06,1.05232e-08,0.543792,0.000948621,-1.04909e-06,2.25503e-08,0.544739,0.000946591,-9.81444e-07,-4.11195e-08,0.545685,0.000944504,-1.1048e-06,2.27182e-08,0.546628,0.000942363,-1.03665e-06,9.85146e-09,0.54757,0.000940319,-1.00709e-06,-2.51938e-09,0.548509,0.000938297,-1.01465e-06,2.25858e-10,0.549446,0.000936269,-1.01397e-06,1.61598e-09,0.550381,0.000934246,-1.00913e-06,-6.68983e-09,0.551315,0.000932207,-1.0292e-06,2.51434e-08,0.552246,0.000930224,-9.53765e-07,-3.42793e-08,0.553175,0.000928214,-1.0566e-06,5.23688e-08,0.554102,0.000926258,-8.99497e-07,-5.59865e-08,0.555028,0.000924291,-1.06746e-06,5.23679e-08,0.555951,0.000922313,-9.10352e-07,-3.42763e-08,0.556872,0.00092039,-1.01318e-06,2.51326e-08,0.557792,0.000918439,-9.37783e-07,-6.64954e-09,0.558709,0.000916543,-9.57732e-07,1.46554e-09,0.559625,0.000914632,-9.53335e-07,7.87281e-10,0.560538,0.000912728,-9.50973e-07,-4.61466e-09,0.56145,0.000910812,-9.64817e-07,1.76713e-08,0.56236,0.000908935,-9.11804e-07,-6.46564e-09,0.563268,0.000907092,-9.312e-07,8.19121e-09,0.564174,0.000905255,-9.06627e-07,-2.62992e-08,0.565078,0.000903362,-9.85524e-07,3.74007e-08,0.565981,0.000901504,-8.73322e-07,-4.0942e-09,0.566882,0.000899745,-8.85605e-07,-2.1024e-08,0.56778,0.00089791,-9.48677e-07,2.85854e-08,0.568677,0.000896099,-8.62921e-07,-3.3713e-08,0.569573,0.000894272,-9.64059e-07,4.6662e-08,0.570466,0.000892484,-8.24073e-07,-3.37258e-08,0.571358,0.000890734,-9.25251e-07,2.86365e-08,0.572247,0.00088897,-8.39341e-07,-2.12155e-08,0.573135,0.000887227,-9.02988e-07,-3.37913e-09,0.574022,0.000885411,-9.13125e-07,3.47319e-08,0.574906,0.000883689,-8.08929e-07,-1.63394e-08,0.575789,0.000882022,-8.57947e-07,-2.8979e-08,0.57667,0.00088022,-9.44885e-07,7.26509e-08,0.57755,0.000878548,-7.26932e-07,-8.28106e-08,0.578427,0.000876845,-9.75364e-07,7.97774e-08,0.579303,0.000875134,-7.36032e-07,-5.74849e-08,0.580178,0.00087349,-9.08486e-07,3.09529e-08,0.58105,0.000871765,-8.15628e-07,-6.72206e-09,0.581921,0.000870114,-8.35794e-07,-4.06451e-09,0.582791,0.00086843,-8.47987e-07,2.29799e-08,0.583658,0.000866803,-7.79048e-07,-2.82503e-08,0.584524,0.00086516,-8.63799e-07,3.04167e-08,0.585388,0.000863524,-7.72548e-07,-3.38119e-08,0.586251,0.000861877,-8.73984e-07,4.52264e-08,0.587112,0.000860265,-7.38305e-07,-2.78842e-08,0.587972,0.000858705,-8.21958e-07,6.70567e-09,0.58883,0.000857081,-8.01841e-07,1.06161e-09,0.589686,0.000855481,-7.98656e-07,-1.09521e-08,0.590541,0.00085385,-8.31512e-07,4.27468e-08,0.591394,0.000852316,-7.03272e-07,-4.08257e-08,0.592245,0.000850787,-8.25749e-07,1.34677e-09,0.593095,0.000849139,-8.21709e-07,3.54387e-08,0.593944,0.000847602,-7.15393e-07,-2.38924e-08,0.59479,0.0008461,-7.8707e-07,5.26143e-10,0.595636,0.000844527,-7.85491e-07,2.17879e-08,0.596479,0.000843021,-7.20127e-07,-2.80733e-08,0.597322,0.000841497,-8.04347e-07,3.09005e-08,0.598162,0.000839981,-7.11646e-07,-3.5924e-08,0.599002,0.00083845,-8.19418e-07,5.3191e-08,0.599839,0.000836971,-6.59845e-07,-5.76307e-08,0.600676,0.000835478,-8.32737e-07,5.81227e-08,0.60151,0.000833987,-6.58369e-07,-5.56507e-08,0.602344,0.000832503,-8.25321e-07,4.52706e-08,0.603175,0.000830988,-6.89509e-07,-6.22236e-09,0.604006,0.000829591,-7.08176e-07,-2.03811e-08,0.604834,0.000828113,-7.6932e-07,2.8142e-08,0.605662,0.000826659,-6.84894e-07,-3.25822e-08,0.606488,0.000825191,-7.8264e-07,4.25823e-08,0.607312,0.000823754,-6.54893e-07,-1.85376e-08,0.608135,0.000822389,-7.10506e-07,-2.80365e-08,0.608957,0.000820883,-7.94616e-07,7.1079e-08,0.609777,0.000819507,-5.81379e-07,-7.74655e-08,0.610596,0.000818112,-8.13775e-07,5.9969e-08,0.611413,0.000816665,-6.33868e-07,-4.32013e-08,0.612229,0.000815267,-7.63472e-07,5.32313e-08,0.613044,0.0008139,-6.03778e-07,-5.05148e-08,0.613857,0.000812541,-7.55323e-07,2.96187e-08,0.614669,0.000811119,-6.66466e-07,-8.35545e-09,0.615479,0.000809761,-6.91533e-07,3.80301e-09,0.616288,0.00080839,-6.80124e-07,-6.85666e-09,0.617096,0.000807009,-7.00694e-07,2.36237e-08,0.617903,0.000805678,-6.29822e-07,-2.80336e-08,0.618708,0.000804334,-7.13923e-07,2.8906e-08,0.619511,0.000802993,-6.27205e-07,-2.79859e-08,0.620314,0.000801655,-7.11163e-07,2.34329e-08,0.621114,0.000800303,-6.40864e-07,-6.14108e-09,0.621914,0.000799003,-6.59287e-07,1.13151e-09,0.622712,0.000797688,-6.55893e-07,1.61507e-09,0.62351,0.000796381,-6.51048e-07,-7.59186e-09,0.624305,0.000795056,-6.73823e-07,2.87524e-08,0.6251,0.000793794,-5.87566e-07,-4.7813e-08,0.625893,0.000792476,-7.31005e-07,4.32901e-08,0.626685,0.000791144,-6.01135e-07,-6.13814e-09,0.627475,0.000789923,-6.19549e-07,-1.87376e-08,0.628264,0.000788628,-6.75762e-07,2.14837e-08,0.629052,0.000787341,-6.11311e-07,-7.59265e-09,0.629839,0.000786095,-6.34089e-07,8.88692e-09,0.630625,0.000784854,-6.07428e-07,-2.7955e-08,0.631409,0.000783555,-6.91293e-07,4.33285e-08,0.632192,0.000782302,-5.61307e-07,-2.61497e-08,0.632973,0.000781101,-6.39757e-07,1.6658e-09,0.633754,0.000779827,-6.34759e-07,1.94866e-08,0.634533,0.000778616,-5.76299e-07,-2.00076e-08,0.635311,0.000777403,-6.36322e-07,9.39091e-10,0.636088,0.000776133,-6.33505e-07,1.62512e-08,0.636863,0.000774915,-5.84751e-07,-6.33937e-09,0.637638,0.000773726,-6.03769e-07,9.10609e-09,0.638411,0.000772546,-5.76451e-07,-3.00849e-08,0.639183,0.000771303,-6.66706e-07,5.1629e-08,0.639953,0.000770125,-5.11819e-07,-5.7222e-08,0.640723,0.000768929,-6.83485e-07,5.80497e-08,0.641491,0.000767736,-5.09336e-07,-5.57674e-08,0.642259,0.000766551,-6.76638e-07,4.58105e-08,0.643024,0.000765335,-5.39206e-07,-8.26541e-09,0.643789,0.000764231,-5.64002e-07,-1.27488e-08,0.644553,0.000763065,-6.02249e-07,-3.44168e-10,0.645315,0.00076186,-6.03281e-07,1.41254e-08,0.646077,0.000760695,-5.60905e-07,3.44727e-09,0.646837,0.000759584,-5.50563e-07,-2.79144e-08,0.647596,0.000758399,-6.34307e-07,4.86057e-08,0.648354,0.000757276,-4.88489e-07,-4.72989e-08,0.64911,0.000756158,-6.30386e-07,2.13807e-08,0.649866,0.000754961,-5.66244e-07,2.13808e-08,0.65062,0.000753893,-5.02102e-07,-4.7299e-08,0.651374,0.000752746,-6.43999e-07,4.86059e-08,0.652126,0.000751604,-4.98181e-07,-2.79154e-08,0.652877,0.000750524,-5.81927e-07,3.45089e-09,0.653627,0.000749371,-5.71575e-07,1.41119e-08,0.654376,0.00074827,-5.29239e-07,-2.93748e-10,0.655123,0.00074721,-5.3012e-07,-1.29368e-08,0.65587,0.000746111,-5.68931e-07,-7.56355e-09,0.656616,0.000744951,-5.91621e-07,4.3191e-08,0.65736,0.000743897,-4.62048e-07,-4.59911e-08,0.658103,0.000742835,-6.00022e-07,2.15642e-08,0.658846,0.0007417,-5.35329e-07,1.93389e-08,0.659587,0.000740687,-4.77312e-07,-3.93152e-08,0.660327,0.000739615,-5.95258e-07,1.87126e-08,0.661066,0.00073848,-5.3912e-07,2.40695e-08,0.661804,0.000737474,-4.66912e-07,-5.53859e-08,0.662541,0.000736374,-6.33069e-07,7.82648e-08,0.663277,0.000735343,-3.98275e-07,-7.88593e-08,0.664012,0.00073431,-6.34853e-07,5.83585e-08,0.664745,0.000733215,-4.59777e-07,-3.53656e-08,0.665478,0.000732189,-5.65874e-07,2.34994e-08,0.66621,0.000731128,-4.95376e-07,9.72743e-10,0.66694,0.00073014,-4.92458e-07,-2.73903e-08,0.66767,0.000729073,-5.74629e-07,4.89839e-08,0.668398,0.000728071,-4.27677e-07,-4.93359e-08,0.669126,0.000727068,-5.75685e-07,2.91504e-08,0.669853,0.000726004,-4.88234e-07,-7.66109e-09,0.670578,0.000725004,-5.11217e-07,1.49392e-09,0.671303,0.000723986,-5.06735e-07,1.68533e-09,0.672026,0.000722978,-5.01679e-07,-8.23525e-09,0.672749,0.00072195,-5.26385e-07,3.12556e-08,0.67347,0.000720991,-4.32618e-07,-5.71825e-08,0.674191,0.000719954,-6.04166e-07,7.8265e-08,0.67491,0.00071898,-3.69371e-07,-7.70634e-08,0.675628,0.00071801,-6.00561e-07,5.11747e-08,0.676346,0.000716963,-4.47037e-07,-8.42615e-09,0.677062,0.000716044,-4.72315e-07,-1.747e-08,0.677778,0.000715046,-5.24725e-07,1.87015e-08,0.678493,0.000714053,-4.68621e-07,2.26856e-09,0.679206,0.000713123,-4.61815e-07,-2.77758e-08,0.679919,0.000712116,-5.45142e-07,4.92298e-08,0.68063,0.000711173,-3.97453e-07,-4.99339e-08,0.681341,0.000710228,-5.47255e-07,3.12967e-08,0.682051,0.000709228,-4.53365e-07,-1.56481e-08,0.68276,0.000708274,-5.00309e-07,3.12958e-08,0.683467,0.000707367,-4.06422e-07,-4.99303e-08,0.684174,0.000706405,-5.56213e-07,4.9216e-08,0.68488,0.00070544,-4.08565e-07,-2.77245e-08,0.685585,0.00070454,-4.91738e-07,2.07748e-09,0.686289,0.000703562,-4.85506e-07,1.94146e-08,0.686992,0.00070265,-4.27262e-07,-2.01314e-08,0.687695,0.000701735,-4.87656e-07,1.50616e-09,0.688396,0.000700764,-4.83137e-07,1.41067e-08,0.689096,0.00069984,-4.40817e-07,1.67168e-09,0.689795,0.000698963,-4.35802e-07,-2.07934e-08,0.690494,0.000698029,-4.98182e-07,2.18972e-08,0.691192,0.000697099,-4.32491e-07,-7.19092e-09,0.691888,0.000696212,-4.54064e-07,6.86642e-09,0.692584,0.000695325,-4.33464e-07,-2.02747e-08,0.693279,0.000694397,-4.94288e-07,1.46279e-08,0.693973,0.000693452,-4.50405e-07,2.13678e-08,0.694666,0.000692616,-3.86301e-07,-4.04945e-08,0.695358,0.000691721,-5.07785e-07,2.14009e-08,0.696049,0.00069077,-4.43582e-07,1.44955e-08,0.69674,0.000689926,-4.00096e-07,-1.97783e-08,0.697429,0.000689067,-4.5943e-07,5.01296e-09,0.698118,0.000688163,-4.44392e-07,-2.73521e-10,0.698805,0.000687273,-4.45212e-07,-3.91893e-09,0.699492,0.000686371,-4.56969e-07,1.59493e-08,0.700178,0.000685505,-4.09121e-07,-2.73351e-10,0.700863,0.000684686,-4.09941e-07,-1.4856e-08,0.701548,0.000683822,-4.54509e-07,9.25979e-11,0.702231,0.000682913,-4.54231e-07,1.44855e-08,0.702913,0.000682048,-4.10775e-07,1.56992e-09,0.703595,0.000681231,-4.06065e-07,-2.07652e-08,0.704276,0.000680357,-4.68361e-07,2.18864e-08,0.704956,0.000679486,-4.02701e-07,-7.17595e-09,0.705635,0.000678659,-4.24229e-07,6.81748e-09,0.706313,0.000677831,-4.03777e-07,-2.0094e-08,0.70699,0.000676963,-4.64059e-07,1.39538e-08,0.707667,0.000676077,-4.22197e-07,2.38835e-08,0.708343,0.000675304,-3.50547e-07,-4.98831e-08,0.709018,0.000674453,-5.00196e-07,5.64395e-08,0.709692,0.000673622,-3.30878e-07,-5.66657e-08,0.710365,0.00067279,-5.00875e-07,5.1014e-08,0.711037,0.000671942,-3.47833e-07,-2.81809e-08,0.711709,0.000671161,-4.32376e-07,2.10513e-09,0.712379,0.000670303,-4.2606e-07,1.97604e-08,0.713049,0.00066951,-3.66779e-07,-2.15422e-08,0.713718,0.000668712,-4.31406e-07,6.8038e-09,0.714387,0.000667869,-4.10994e-07,-5.67295e-09,0.715054,0.00066703,-4.28013e-07,1.5888e-08,0.715721,0.000666222,-3.80349e-07,1.72576e-09,0.716387,0.000665467,-3.75172e-07,-2.27911e-08,0.717052,0.000664648,-4.43545e-07,2.9834e-08,0.717716,0.00066385,-3.54043e-07,-3.69401e-08,0.718379,0.000663031,-4.64864e-07,5.83219e-08,0.719042,0.000662277,-2.89898e-07,-7.71382e-08,0.719704,0.000661465,-5.21313e-07,7.14171e-08,0.720365,0.000660637,-3.07061e-07,-2.97161e-08,0.721025,0.000659934,-3.96209e-07,-1.21575e-08,0.721685,0.000659105,-4.32682e-07,1.87412e-08,0.722343,0.000658296,-3.76458e-07,-3.2029e-09,0.723001,0.000657533,-3.86067e-07,-5.9296e-09,0.723659,0.000656743,-4.03856e-07,2.69213e-08,0.724315,0.000656016,-3.23092e-07,-4.21511e-08,0.724971,0.000655244,-4.49545e-07,2.24737e-08,0.725625,0.000654412,-3.82124e-07,1.18611e-08,0.726279,0.000653683,-3.46541e-07,-1.03132e-08,0.726933,0.000652959,-3.7748e-07,-3.02128e-08,0.727585,0.000652114,-4.68119e-07,7.15597e-08,0.728237,0.000651392,-2.5344e-07,-7.72119e-08,0.728888,0.000650654,-4.85075e-07,5.8474e-08,0.729538,0.000649859,-3.09654e-07,-3.74746e-08,0.730188,0.000649127,-4.22077e-07,3.18197e-08,0.730837,0.000648379,-3.26618e-07,-3.01997e-08,0.731485,0.000647635,-4.17217e-07,2.93747e-08,0.732132,0.000646888,-3.29093e-07,-2.76943e-08,0.732778,0.000646147,-4.12176e-07,2.17979e-08,0.733424,0.000645388,-3.46783e-07,1.07292e-10,0.734069,0.000644695,-3.46461e-07,-2.22271e-08,0.734713,0.000643935,-4.13142e-07,2.91963e-08,0.735357,0.000643197,-3.25553e-07,-3.49536e-08,0.736,0.000642441,-4.30414e-07,5.10133e-08,0.736642,0.000641733,-2.77374e-07,-4.98904e-08,0.737283,0.000641028,-4.27045e-07,2.93392e-08,0.737924,0.000640262,-3.39028e-07,-7.86156e-09,0.738564,0.000639561,-3.62612e-07,2.10703e-09,0.739203,0.000638842,-3.56291e-07,-5.6653e-10,0.739842,0.000638128,-3.57991e-07,1.59086e-10,0.740479,0.000637412,-3.57513e-07,-6.98321e-11,0.741116,0.000636697,-3.57723e-07,1.20214e-10,0.741753,0.000635982,-3.57362e-07,-4.10987e-10,0.742388,0.000635266,-3.58595e-07,1.5237e-09,0.743023,0.000634553,-3.54024e-07,-5.68376e-09,0.743657,0.000633828,-3.71075e-07,2.12113e-08,0.744291,0.00063315,-3.07441e-07,-1.95569e-08,0.744924,0.000632476,-3.66112e-07,-2.58816e-09,0.745556,0.000631736,-3.73877e-07,2.99096e-08,0.746187,0.000631078,-2.84148e-07,-5.74454e-08,0.746818,0.000630337,-4.56484e-07,8.06629e-08,0.747448,0.000629666,-2.14496e-07,-8.63922e-08,0.748077,0.000628978,-4.73672e-07,8.60918e-08,0.748706,0.000628289,-2.15397e-07,-7.91613e-08,0.749334,0.000627621,-4.5288e-07,5.17393e-08,0.749961,0.00062687,-2.97663e-07,-8.58662e-09,0.750588,0.000626249,-3.23422e-07,-1.73928e-08,0.751214,0.00062555,-3.75601e-07,1.85532e-08,0.751839,0.000624855,-3.19941e-07,2.78479e-09,0.752463,0.000624223,-3.11587e-07,-2.96923e-08,0.753087,0.000623511,-4.00664e-07,5.63799e-08,0.75371,0.000622879,-2.31524e-07,-7.66179e-08,0.754333,0.000622186,-4.61378e-07,7.12778e-08,0.754955,0.000621477,-2.47545e-07,-2.96794e-08,0.755576,0.000620893,-3.36583e-07,-1.21648e-08,0.756196,0.000620183,-3.73077e-07,1.87339e-08,0.756816,0.000619493,-3.16875e-07,-3.16622e-09,0.757435,0.00061885,-3.26374e-07,-6.0691e-09,0.758054,0.000618179,-3.44581e-07,2.74426e-08,0.758672,0.000617572,-2.62254e-07,-4.40968e-08,0.759289,0.000616915,-3.94544e-07,2.97352e-08,0.759906,0.000616215,-3.05338e-07,-1.52393e-08,0.760522,0.000615559,-3.51056e-07,3.12221e-08,0.761137,0.000614951,-2.5739e-07,-5.00443e-08,0.761751,0.000614286,-4.07523e-07,4.9746e-08,0.762365,0.00061362,-2.58285e-07,-2.97303e-08,0.762979,0.000613014,-3.47476e-07,9.57079e-09,0.763591,0.000612348,-3.18764e-07,-8.55287e-09,0.764203,0.000611685,-3.44422e-07,2.46407e-08,0.764815,0.00061107,-2.705e-07,-3.04053e-08,0.765426,0.000610437,-3.61716e-07,3.73759e-08,0.766036,0.000609826,-2.49589e-07,-5.94935e-08,0.766645,0.000609149,-4.28069e-07,8.13889e-08,0.767254,0.000608537,-1.83902e-07,-8.72483e-08,0.767862,0.000607907,-4.45647e-07,8.87901e-08,0.76847,0.000607282,-1.79277e-07,-8.90983e-08,0.769077,0.000606656,-4.46572e-07,8.87892e-08,0.769683,0.000606029,-1.80204e-07,-8.72446e-08,0.770289,0.000605407,-4.41938e-07,8.13752e-08,0.770894,0.000604768,-1.97812e-07,-5.94423e-08,0.771498,0.000604194,-3.76139e-07,3.71848e-08,0.772102,0.000603553,-2.64585e-07,-2.96922e-08,0.772705,0.000602935,-3.53661e-07,2.19793e-08,0.773308,0.000602293,-2.87723e-07,1.37955e-09,0.77391,0.000601722,-2.83585e-07,-2.74976e-08,0.774512,0.000601072,-3.66077e-07,4.9006e-08,0.775112,0.000600487,-2.19059e-07,-4.93171e-08,0.775712,0.000599901,-3.67011e-07,2.90531e-08,0.776312,0.000599254,-2.79851e-07,-7.29081e-09,0.776911,0.000598673,-3.01724e-07,1.10077e-10,0.777509,0.00059807,-3.01393e-07,6.85053e-09,0.778107,0.000597487,-2.80842e-07,-2.75123e-08,0.778704,0.000596843,-3.63379e-07,4.35939e-08,0.779301,0.000596247,-2.32597e-07,-2.7654e-08,0.779897,0.000595699,-3.15559e-07,7.41741e-09,0.780492,0.00059509,-2.93307e-07,-2.01562e-09,0.781087,0.000594497,-2.99354e-07,6.45059e-10,0.781681,0.000593901,-2.97418e-07,-5.64635e-10,0.782275,0.000593304,-2.99112e-07,1.61347e-09,0.782868,0.000592711,-2.94272e-07,-5.88926e-09,0.78346,0.000592105,-3.1194e-07,2.19436e-08,0.784052,0.000591546,-2.46109e-07,-2.22805e-08,0.784643,0.000590987,-3.1295e-07,7.57368e-09,0.785234,0.000590384,-2.90229e-07,-8.01428e-09,0.785824,0.00058978,-3.14272e-07,2.44834e-08,0.786414,0.000589225,-2.40822e-07,-3.03148e-08,0.787003,0.000588652,-3.31766e-07,3.7171e-08,0.787591,0.0005881,-2.20253e-07,-5.87646e-08,0.788179,0.000587483,-3.96547e-07,7.86782e-08,0.788766,0.000586926,-1.60512e-07,-7.71342e-08,0.789353,0.000586374,-3.91915e-07,5.10444e-08,0.789939,0.000585743,-2.38782e-07,-7.83422e-09,0.790524,0.000585242,-2.62284e-07,-1.97076e-08,0.791109,0.000584658,-3.21407e-07,2.70598e-08,0.791693,0.000584097,-2.40228e-07,-2.89269e-08,0.792277,0.000583529,-3.27008e-07,2.90431e-08,0.792861,0.000582963,-2.39879e-07,-2.76409e-08,0.793443,0.0005824,-3.22802e-07,2.1916e-08,0.794025,0.00058182,-2.57054e-07,-4.18368e-10,0.794607,0.000581305,-2.58309e-07,-2.02425e-08,0.795188,0.000580727,-3.19036e-07,2.17838e-08,0.795768,0.000580155,-2.53685e-07,-7.28814e-09,0.796348,0.000579625,-2.75549e-07,7.36871e-09,0.796928,0.000579096,-2.53443e-07,-2.21867e-08,0.797506,0.000578523,-3.20003e-07,2.17736e-08,0.798085,0.000577948,-2.54683e-07,-5.30296e-09,0.798662,0.000577423,-2.70592e-07,-5.61698e-10,0.799239,0.00057688,-2.72277e-07,7.54977e-09,0.799816,0.000576358,-2.49627e-07,-2.96374e-08,0.800392,0.00057577,-3.38539e-07,5.1395e-08,0.800968,0.000575247,-1.84354e-07,-5.67335e-08,0.801543,0.000574708,-3.54555e-07,5.63297e-08,0.802117,0.000574168,-1.85566e-07,-4.93759e-08,0.802691,0.000573649,-3.33693e-07,2.19646e-08,0.803264,0.000573047,-2.678e-07,2.1122e-08,0.803837,0.000572575,-2.04433e-07,-4.68482e-08,0.804409,0.000572026,-3.44978e-07,4.70613e-08,0.804981,0.000571477,-2.03794e-07,-2.21877e-08,0.805552,0.000571003,-2.70357e-07,-1.79153e-08,0.806123,0.000570408,-3.24103e-07,3.42443e-08,0.806693,0.000569863,-2.2137e-07,1.47556e-10,0.807263,0.000569421,-2.20928e-07,-3.48345e-08,0.807832,0.000568874,-3.25431e-07,1.99812e-08,0.808401,0.000568283,-2.65487e-07,1.45143e-08,0.808969,0.000567796,-2.21945e-07,-1.84338e-08,0.809536,0.000567297,-2.77246e-07,-3.83608e-10,0.810103,0.000566741,-2.78397e-07,1.99683e-08,0.81067,0.000566244,-2.18492e-07,-1.98848e-08,0.811236,0.000565747,-2.78146e-07,-3.38976e-11,0.811801,0.000565191,-2.78248e-07,2.00204e-08,0.812366,0.000564695,-2.18187e-07,-2.04429e-08,0.812931,0.000564197,-2.79516e-07,2.1467e-09,0.813495,0.000563644,-2.73076e-07,1.18561e-08,0.814058,0.000563134,-2.37507e-07,1.00334e-08,0.814621,0.000562689,-2.07407e-07,-5.19898e-08,0.815183,0.000562118,-3.63376e-07,7.87163e-08,0.815745,0.000561627,-1.27227e-07,-8.40616e-08,0.816306,0.000561121,-3.79412e-07,7.87163e-08,0.816867,0.000560598,-1.43263e-07,-5.19898e-08,0.817428,0.000560156,-2.99233e-07,1.00335e-08,0.817988,0.000559587,-2.69132e-07,1.18559e-08,0.818547,0.000559085,-2.33564e-07,2.14764e-09,0.819106,0.000558624,-2.27122e-07,-2.04464e-08,0.819664,0.000558108,-2.88461e-07,2.00334e-08,0.820222,0.000557591,-2.28361e-07,-8.24277e-11,0.820779,0.000557135,-2.28608e-07,-1.97037e-08,0.821336,0.000556618,-2.87719e-07,1.92925e-08,0.821893,0.000556101,-2.29841e-07,2.13831e-09,0.822448,0.000555647,-2.23427e-07,-2.78458e-08,0.823004,0.000555117,-3.06964e-07,4.96402e-08,0.823559,0.000554652,-1.58043e-07,-5.15058e-08,0.824113,0.000554181,-3.12561e-07,3.71737e-08,0.824667,0.000553668,-2.0104e-07,-3.75844e-08,0.82522,0.000553153,-3.13793e-07,5.35592e-08,0.825773,0.000552686,-1.53115e-07,-5.74431e-08,0.826326,0.000552207,-3.25444e-07,5.7004e-08,0.826878,0.000551728,-1.54433e-07,-5.13635e-08,0.827429,0.000551265,-3.08523e-07,2.92406e-08,0.82798,0.000550735,-2.20801e-07,-5.99424e-09,0.828531,0.000550276,-2.38784e-07,-5.26363e-09,0.829081,0.000549782,-2.54575e-07,2.70488e-08,0.82963,0.000549354,-1.73429e-07,-4.33268e-08,0.83018,0.000548878,-3.03409e-07,2.7049e-08,0.830728,0.000548352,-2.22262e-07,-5.26461e-09,0.831276,0.000547892,-2.38056e-07,-5.99057e-09,0.831824,0.000547397,-2.56027e-07,2.92269e-08,0.832371,0.000546973,-1.68347e-07,-5.13125e-08,0.832918,0.000546482,-3.22284e-07,5.68139e-08,0.833464,0.000546008,-1.51843e-07,-5.67336e-08,0.83401,0.000545534,-3.22043e-07,5.09113e-08,0.834555,0.000545043,-1.6931e-07,-2.77022e-08,0.8351,0.000544621,-2.52416e-07,2.92924e-10,0.835644,0.000544117,-2.51537e-07,2.65305e-08,0.836188,0.000543694,-1.71946e-07,-4.68105e-08,0.836732,0.00054321,-3.12377e-07,4.15021e-08,0.837275,0.000542709,-1.87871e-07,1.13355e-11,0.837817,0.000542334,-1.87837e-07,-4.15474e-08,0.838359,0.000541833,-3.12479e-07,4.69691e-08,0.838901,0.000541349,-1.71572e-07,-2.71196e-08,0.839442,0.000540925,-2.52931e-07,1.90462e-09,0.839983,0.000540425,-2.47217e-07,1.95011e-08,0.840523,0.000539989,-1.88713e-07,-2.03045e-08,0.841063,0.00053955,-2.49627e-07,2.11216e-09,0.841602,0.000539057,-2.4329e-07,1.18558e-08,0.842141,0.000538606,-2.07723e-07,1.00691e-08,0.842679,0.000538221,-1.77516e-07,-5.21324e-08,0.843217,0.00053771,-3.33913e-07,7.92513e-08,0.843755,0.00053728,-9.6159e-08,-8.60587e-08,0.844292,0.000536829,-3.54335e-07,8.61696e-08,0.844828,0.000536379,-9.58263e-08,-7.98057e-08,0.845364,0.000535948,-3.35243e-07,5.42394e-08,0.8459,0.00053544,-1.72525e-07,-1.79426e-08,0.846435,0.000535041,-2.26353e-07,1.75308e-08,0.84697,0.000534641,-1.73761e-07,-5.21806e-08,0.847505,0.000534137,-3.30302e-07,7.19824e-08,0.848038,0.000533692,-1.14355e-07,-5.69349e-08,0.848572,0.000533293,-2.8516e-07,3.65479e-08,0.849105,0.000532832,-1.75516e-07,-2.96519e-08,0.849638,0.000532392,-2.64472e-07,2.2455e-08,0.85017,0.000531931,-1.97107e-07,-5.63451e-10,0.850702,0.000531535,-1.98797e-07,-2.02011e-08,0.851233,0.000531077,-2.59401e-07,2.17634e-08,0.851764,0.000530623,-1.94111e-07,-7.24794e-09,0.852294,0.000530213,-2.15854e-07,7.22832e-09,0.852824,0.000529803,-1.94169e-07,-2.16653e-08,0.853354,0.00052935,-2.59165e-07,1.98283e-08,0.853883,0.000528891,-1.9968e-07,1.95678e-09,0.854412,0.000528497,-1.9381e-07,-2.76554e-08,0.85494,0.000528027,-2.76776e-07,4.90603e-08,0.855468,0.00052762,-1.29596e-07,-4.93764e-08,0.855995,0.000527213,-2.77725e-07,2.92361e-08,0.856522,0.000526745,-1.90016e-07,-7.96341e-09,0.857049,0.000526341,-2.13907e-07,2.61752e-09,0.857575,0.000525922,-2.06054e-07,-2.50665e-09,0.8581,0.000525502,-2.13574e-07,7.40906e-09,0.858626,0.000525097,-1.91347e-07,-2.71296e-08,0.859151,0.000524633,-2.72736e-07,4.15048e-08,0.859675,0.000524212,-1.48221e-07,-1.96802e-08,0.860199,0.000523856,-2.07262e-07,-2.23886e-08,0.860723,0.000523375,-2.74428e-07,4.96299e-08,0.861246,0.000522975,-1.25538e-07,-5.69216e-08,0.861769,0.000522553,-2.96303e-07,5.88473e-08,0.862291,0.000522137,-1.19761e-07,-5.92584e-08,0.862813,0.00052172,-2.97536e-07,5.8977e-08,0.863334,0.000521301,-1.20605e-07,-5.74403e-08,0.863855,0.000520888,-2.92926e-07,5.15751e-08,0.864376,0.000520457,-1.38201e-07,-2.96506e-08,0.864896,0.000520091,-2.27153e-07,7.42277e-09,0.865416,0.000519659,-2.04885e-07,-4.05057e-11,0.865936,0.00051925,-2.05006e-07,-7.26074e-09,0.866455,0.000518818,-2.26788e-07,2.90835e-08,0.866973,0.000518451,-1.39538e-07,-4.94686e-08,0.867492,0.000518024,-2.87944e-07,4.95814e-08,0.868009,0.000517597,-1.39199e-07,-2.96479e-08,0.868527,0.000517229,-2.28143e-07,9.40539e-09,0.869044,0.000516801,-1.99927e-07,-7.9737e-09,0.86956,0.000516378,-2.23848e-07,2.24894e-08,0.870077,0.000515997,-1.5638e-07,-2.23793e-08,0.870592,0.000515617,-2.23517e-07,7.42302e-09,0.871108,0.000515193,-2.01248e-07,-7.31283e-09,0.871623,0.000514768,-2.23187e-07,2.18283e-08,0.872137,0.000514387,-1.57702e-07,-2.03959e-08,0.872652,0.000514011,-2.1889e-07,1.50711e-10,0.873165,0.000513573,-2.18437e-07,1.97931e-08,0.873679,0.000513196,-1.59058e-07,-1.97183e-08,0.874192,0.000512819,-2.18213e-07,-5.24324e-10,0.874704,0.000512381,-2.19786e-07,2.18156e-08,0.875217,0.000512007,-1.54339e-07,-2.71336e-08,0.875728,0.000511616,-2.3574e-07,2.71141e-08,0.87624,0.000511226,-1.54398e-07,-2.17182e-08,0.876751,0.000510852,-2.19552e-07,1.54131e-10,0.877262,0.000510414,-2.1909e-07,2.11017e-08,0.877772,0.000510039,-1.55785e-07,-2.49562e-08,0.878282,0.000509652,-2.30654e-07,1.91183e-08,0.878791,0.000509248,-1.73299e-07,8.08751e-09,0.8793,0.000508926,-1.49036e-07,-5.14684e-08,0.879809,0.000508474,-3.03441e-07,7.85766e-08,0.880317,0.000508103,-6.77112e-08,-8.40242e-08,0.880825,0.000507715,-3.19784e-07,7.87063e-08,0.881333,0.000507312,-8.36649e-08,-5.19871e-08,0.88184,0.000506988,-2.39626e-07,1.00327e-08,0.882346,0.000506539,-2.09528e-07,1.18562e-08,0.882853,0.000506156,-1.73959e-07,2.14703e-09,0.883359,0.000505814,-1.67518e-07,-2.04444e-08,0.883864,0.000505418,-2.28851e-07,2.00258e-08,0.88437,0.00050502,-1.68774e-07,-5.42855e-11,0.884874,0.000504682,-1.68937e-07,-1.98087e-08,0.885379,0.000504285,-2.28363e-07,1.96842e-08,0.885883,0.000503887,-1.6931e-07,6.76342e-10,0.886387,0.000503551,-1.67281e-07,-2.23896e-08,0.88689,0.000503149,-2.3445e-07,2.92774e-08,0.887393,0.000502768,-1.46618e-07,-3.51152e-08,0.887896,0.00050237,-2.51963e-07,5.15787e-08,0.888398,0.00050202,-9.72271e-08,-5.19903e-08,0.8889,0.00050167,-2.53198e-07,3.71732e-08,0.889401,0.000501275,-1.41678e-07,-3.70978e-08,0.889902,0.00050088,-2.52972e-07,5.16132e-08,0.890403,0.000500529,-9.81321e-08,-5.01459e-08,0.890903,0.000500183,-2.4857e-07,2.9761e-08,0.891403,0.000499775,-1.59287e-07,-9.29351e-09,0.891903,0.000499428,-1.87167e-07,7.41301e-09,0.892402,0.000499076,-1.64928e-07,-2.03585e-08,0.892901,0.000498685,-2.26004e-07,1.44165e-08,0.893399,0.000498276,-1.82754e-07,2.22974e-08,0.893898,0.000497978,-1.15862e-07,-4.40013e-08,0.894395,0.000497614,-2.47866e-07,3.44985e-08,0.894893,0.000497222,-1.44371e-07,-3.43882e-08,0.89539,0.00049683,-2.47535e-07,4.34497e-08,0.895886,0.000496465,-1.17186e-07,-2.02012e-08,0.896383,0.00049617,-1.7779e-07,-2.22497e-08,0.896879,0.000495748,-2.44539e-07,4.95952e-08,0.897374,0.000495408,-9.57532e-08,-5.69217e-08,0.89787,0.000495045,-2.66518e-07,5.88823e-08,0.898364,0.000494689,-8.98713e-08,-5.93983e-08,0.898859,0.000494331,-2.68066e-07,5.95017e-08,0.899353,0.000493973,-8.95613e-08,-5.9399e-08,0.899847,0.000493616,-2.67758e-07,5.8885e-08,0.90034,0.000493257,-9.11033e-08,-5.69317e-08,0.900833,0.000492904,-2.61898e-07,4.96326e-08,0.901326,0.000492529,-1.13001e-07,-2.23893e-08,0.901819,0.000492236,-1.80169e-07,-1.968e-08,0.902311,0.000491817,-2.39209e-07,4.15047e-08,0.902802,0.000491463,-1.14694e-07,-2.71296e-08,0.903293,0.000491152,-1.96083e-07,7.409e-09,0.903784,0.000490782,-1.73856e-07,-2.50645e-09,0.904275,0.000490427,-1.81376e-07,2.61679e-09,0.904765,0.000490072,-1.73525e-07,-7.96072e-09,0.905255,0.000489701,-1.97407e-07,2.92261e-08,0.905745,0.000489394,-1.09729e-07,-4.93389e-08,0.906234,0.000489027,-2.57746e-07,4.89204e-08,0.906723,0.000488658,-1.10985e-07,-2.71333e-08,0.907211,0.000488354,-1.92385e-07,8.30861e-12,0.907699,0.00048797,-1.9236e-07,2.71001e-08,0.908187,0.000487666,-1.1106e-07,-4.88041e-08,0.908675,0.000487298,-2.57472e-07,4.89069e-08,0.909162,0.000486929,-1.10751e-07,-2.76143e-08,0.909649,0.000486625,-1.93594e-07,1.9457e-09,0.910135,0.000486244,-1.87757e-07,1.98315e-08,0.910621,0.000485928,-1.28262e-07,-2.16671e-08,0.911107,0.000485606,-1.93264e-07,7.23216e-09,0.911592,0.000485241,-1.71567e-07,-7.26152e-09,0.912077,0.000484877,-1.93352e-07,2.18139e-08,0.912562,0.000484555,-1.2791e-07,-2.03895e-08,0.913047,0.000484238,-1.89078e-07,1.39494e-10,0.913531,0.000483861,-1.8866e-07,1.98315e-08,0.914014,0.000483543,-1.29165e-07,-1.98609e-08,0.914498,0.000483225,-1.88748e-07,7.39912e-12,0.914981,0.000482847,-1.88726e-07,1.98313e-08,0.915463,0.000482529,-1.29232e-07,-1.9728e-08,0.915946,0.000482212,-1.88416e-07,-5.24035e-10,0.916428,0.000481833,-1.89988e-07,2.18241e-08,0.916909,0.000481519,-1.24516e-07,-2.71679e-08,0.917391,0.000481188,-2.06019e-07,2.72427e-08,0.917872,0.000480858,-1.24291e-07,-2.21985e-08,0.918353,0.000480543,-1.90886e-07,1.94644e-09,0.918833,0.000480167,-1.85047e-07,1.44127e-08,0.919313,0.00047984,-1.41809e-07,7.39438e-12,0.919793,0.000479556,-1.41787e-07,-1.44423e-08,0.920272,0.000479229,-1.85114e-07,-1.84291e-09,0.920751,0.000478854,-1.90642e-07,2.18139e-08,0.92123,0.000478538,-1.25201e-07,-2.58081e-08,0.921708,0.00047821,-2.02625e-07,2.18139e-08,0.922186,0.00047787,-1.37183e-07,-1.84291e-09,0.922664,0.00047759,-1.42712e-07,-1.44423e-08,0.923141,0.000477262,-1.86039e-07,7.34701e-12,0.923618,0.00047689,-1.86017e-07,1.44129e-08,0.924095,0.000476561,-1.42778e-07,1.94572e-09,0.924572,0.000476281,-1.36941e-07,-2.21958e-08,0.925048,0.000475941,-2.03528e-07,2.72327e-08,0.925523,0.000475615,-1.2183e-07,-2.71304e-08,0.925999,0.00047529,-2.03221e-07,2.16843e-08,0.926474,0.000474949,-1.38168e-07,-2.16005e-12,0.926949,0.000474672,-1.38175e-07,-2.16756e-08,0.927423,0.000474331,-2.03202e-07,2.71001e-08,0.927897,0.000474006,-1.21902e-07,-2.71201e-08,0.928371,0.000473681,-2.03262e-07,2.17757e-08,0.928845,0.00047334,-1.37935e-07,-3.78028e-10,0.929318,0.000473063,-1.39069e-07,-2.02636e-08,0.929791,0.000472724,-1.9986e-07,2.18276e-08,0.930263,0.000472389,-1.34377e-07,-7.44231e-09,0.930736,0.000472098,-1.56704e-07,7.94165e-09,0.931208,0.000471809,-1.32879e-07,-2.43243e-08,0.931679,0.00047147,-2.05851e-07,2.97508e-08,0.932151,0.000471148,-1.16599e-07,-3.50742e-08,0.932622,0.000470809,-2.21822e-07,5.09414e-08,0.933092,0.000470518,-6.89976e-08,-4.94821e-08,0.933563,0.000470232,-2.17444e-07,2.77775e-08,0.934033,0.00046988,-1.34111e-07,-2.02351e-09,0.934502,0.000469606,-1.40182e-07,-1.96835e-08,0.934972,0.000469267,-1.99232e-07,2.11529e-08,0.935441,0.000468932,-1.35774e-07,-5.32332e-09,0.93591,0.000468644,-1.51743e-07,1.40413e-10,0.936378,0.000468341,-1.51322e-07,4.76166e-09,0.936846,0.000468053,-1.37037e-07,-1.9187e-08,0.937314,0.000467721,-1.94598e-07,1.23819e-08,0.937782,0.000467369,-1.57453e-07,2.92642e-08,0.938249,0.000467142,-6.96601e-08,-6.98342e-08,0.938716,0.000466793,-2.79163e-07,7.12586e-08,0.939183,0.000466449,-6.53869e-08,-3.63863e-08,0.939649,0.000466209,-1.74546e-07,1.46818e-08,0.940115,0.000465904,-1.305e-07,-2.2341e-08,0.940581,0.000465576,-1.97523e-07,1.50774e-08,0.941046,0.000465226,-1.52291e-07,2.16359e-08,0.941511,0.000464986,-8.73832e-08,-4.20162e-08,0.941976,0.000464685,-2.13432e-07,2.72198e-08,0.942441,0.00046434,-1.31773e-07,-7.2581e-09,0.942905,0.000464055,-1.53547e-07,1.81263e-09,0.943369,0.000463753,-1.48109e-07,7.58386e-12,0.943832,0.000463457,-1.48086e-07,-1.84298e-09,0.944296,0.000463155,-1.53615e-07,7.36433e-09,0.944759,0.00046287,-1.31522e-07,-2.76143e-08,0.945221,0.000462524,-2.14365e-07,4.34883e-08,0.945684,0.000462226,-8.39003e-08,-2.71297e-08,0.946146,0.000461977,-1.65289e-07,5.42595e-09,0.946608,0.000461662,-1.49012e-07,5.42593e-09,0.947069,0.000461381,-1.32734e-07,-2.71297e-08,0.94753,0.000461034,-2.14123e-07,4.34881e-08,0.947991,0.000460736,-8.36585e-08,-2.76134e-08,0.948452,0.000460486,-1.66499e-07,7.36083e-09,0.948912,0.000460175,-1.44416e-07,-1.82993e-09,0.949372,0.000459881,-1.49906e-07,-4.11073e-11,0.949832,0.000459581,-1.50029e-07,1.99434e-09,0.950291,0.000459287,-1.44046e-07,-7.93627e-09,0.950751,0.000458975,-1.67855e-07,2.97507e-08,0.951209,0.000458728,-7.86029e-08,-5.1462e-08,0.951668,0.000458417,-2.32989e-07,5.6888e-08,0.952126,0.000458121,-6.2325e-08,-5.68806e-08,0.952584,0.000457826,-2.32967e-07,5.14251e-08,0.953042,0.000457514,-7.86914e-08,-2.96107e-08,0.953499,0.000457268,-1.67523e-07,7.41296e-09,0.953956,0.000456955,-1.45285e-07,-4.11262e-11,0.954413,0.000456665,-1.45408e-07,-7.24847e-09,0.95487,0.000456352,-1.67153e-07,2.9035e-08,0.955326,0.000456105,-8.00484e-08,-4.92869e-08,0.955782,0.000455797,-2.27909e-07,4.89032e-08,0.956238,0.000455488,-8.11994e-08,-2.71166e-08,0.956693,0.000455244,-1.62549e-07,-4.13678e-11,0.957148,0.000454919,-1.62673e-07,2.72821e-08,0.957603,0.000454675,-8.0827e-08,-4.94824e-08,0.958057,0.000454365,-2.29274e-07,5.14382e-08,0.958512,0.000454061,-7.49597e-08,-3.7061e-08,0.958965,0.0004538,-1.86143e-07,3.72013e-08,0.959419,0.000453539,-7.45389e-08,-5.21396e-08,0.959873,0.000453234,-2.30958e-07,5.21476e-08,0.960326,0.000452928,-7.45146e-08,-3.72416e-08,0.960778,0.000452667,-1.8624e-07,3.72143e-08,0.961231,0.000452407,-7.45967e-08,-5.20109e-08,0.961683,0.000452101,-2.30629e-07,5.16199e-08,0.962135,0.000451795,-7.57696e-08,-3.52595e-08,0.962587,0.000451538,-1.81548e-07,2.98133e-08,0.963038,0.000451264,-9.2108e-08,-2.43892e-08,0.963489,0.000451007,-1.65276e-07,8.13892e-09,0.96394,0.000450701,-1.40859e-07,-8.16647e-09,0.964391,0.000450394,-1.65358e-07,2.45269e-08,0.964841,0.000450137,-9.17775e-08,-3.03367e-08,0.965291,0.000449863,-1.82787e-07,3.7215e-08,0.965741,0.000449609,-7.11424e-08,-5.89188e-08,0.96619,0.00044929,-2.47899e-07,7.92509e-08,0.966639,0.000449032,-1.01462e-08,-7.92707e-08,0.967088,0.000448773,-2.47958e-07,5.90181e-08,0.967537,0.000448455,-7.0904e-08,-3.75925e-08,0.967985,0.0004482,-1.83681e-07,3.17471e-08,0.968433,0.000447928,-8.84401e-08,-2.97913e-08,0.968881,0.000447662,-1.77814e-07,2.78133e-08,0.969329,0.000447389,-9.4374e-08,-2.18572e-08,0.969776,0.000447135,-1.59946e-07,1.10134e-11,0.970223,0.000446815,-1.59913e-07,2.18132e-08,0.97067,0.000446561,-9.44732e-08,-2.76591e-08,0.971116,0.000446289,-1.7745e-07,2.92185e-08,0.971562,0.000446022,-8.97948e-08,-2.96104e-08,0.972008,0.000445753,-1.78626e-07,2.96185e-08,0.972454,0.000445485,-8.97706e-08,-2.92588e-08,0.972899,0.000445218,-1.77547e-07,2.78123e-08,0.973344,0.000444946,-9.41103e-08,-2.23856e-08,0.973789,0.000444691,-1.61267e-07,2.12559e-09,0.974233,0.000444374,-1.5489e-07,1.38833e-08,0.974678,0.000444106,-1.13241e-07,1.94591e-09,0.975122,0.000443886,-1.07403e-07,-2.16669e-08,0.975565,0.000443606,-1.72404e-07,2.5117e-08,0.976009,0.000443336,-9.70526e-08,-1.91963e-08,0.976452,0.000443085,-1.54642e-07,-7.93627e-09,0.976895,0.000442752,-1.7845e-07,5.09414e-08,0.977338,0.000442548,-2.56262e-08,-7.66201e-08,0.97778,0.000442266,-2.55486e-07,7.67249e-08,0.978222,0.000441986,-2.53118e-08,-5.14655e-08,0.978664,0.000441781,-1.79708e-07,9.92773e-09,0.979106,0.000441451,-1.49925e-07,1.17546e-08,0.979547,0.000441186,-1.14661e-07,2.65868e-09,0.979988,0.000440965,-1.06685e-07,-2.23893e-08,0.980429,0.000440684,-1.73853e-07,2.72939e-08,0.980869,0.000440419,-9.19716e-08,-2.71816e-08,0.98131,0.000440153,-1.73516e-07,2.18278e-08,0.98175,0.000439872,-1.08033e-07,-5.24833e-10,0.982189,0.000439654,-1.09607e-07,-1.97284e-08,0.982629,0.000439376,-1.68793e-07,1.98339e-08,0.983068,0.000439097,-1.09291e-07,-2.62901e-12,0.983507,0.000438879,-1.09299e-07,-1.98234e-08,0.983946,0.000438601,-1.68769e-07,1.96916e-08,0.984384,0.000438322,-1.09694e-07,6.6157e-10,0.984823,0.000438105,-1.0771e-07,-2.23379e-08,0.985261,0.000437823,-1.74723e-07,2.90855e-08,0.985698,0.00043756,-8.74669e-08,-3.43992e-08,0.986136,0.000437282,-1.90665e-07,4.89068e-08,0.986573,0.000437048,-4.39442e-08,-4.20188e-08,0.98701,0.000436834,-1.7e-07,-4.11073e-11,0.987446,0.000436494,-1.70124e-07,4.21832e-08,0.987883,0.00043628,-4.35742e-08,-4.94824e-08,0.988319,0.000436044,-1.92021e-07,3.6537e-08,0.988755,0.00043577,-8.24102e-08,-3.70611e-08,0.989191,0.000435494,-1.93593e-07,5.21026e-08,0.989626,0.000435263,-3.72855e-08,-5.21402e-08,0.990061,0.000435032,-1.93706e-07,3.7249e-08,0.990496,0.000434756,-8.19592e-08,-3.72512e-08,0.990931,0.000434481,-1.93713e-07,5.21511e-08,0.991365,0.00043425,-3.72595e-08,-5.21439e-08,0.991799,0.000434019,-1.93691e-07,3.72152e-08,0.992233,0.000433743,-8.20456e-08,-3.71123e-08,0.992667,0.000433468,-1.93382e-07,5.16292e-08,0.9931,0.000433236,-3.84947e-08,-5.01953e-08,0.993533,0.000433008,-1.89081e-07,2.99427e-08,0.993966,0.00043272,-9.92525e-08,-9.9708e-09,0.994399,0.000432491,-1.29165e-07,9.94051e-09,0.994831,0.000432263,-9.93434e-08,-2.97912e-08,0.995263,0.000431975,-1.88717e-07,4.96198e-08,0.995695,0.000431746,-3.98578e-08,-4.94785e-08,0.996127,0.000431518,-1.88293e-07,2.9085e-08,0.996558,0.000431229,-1.01038e-07,-7.25675e-09,0.996989,0.000431005,-1.22809e-07,-5.79945e-11,0.99742,0.000430759,-1.22983e-07,7.48873e-09,0.997851,0.000430536,-1.00516e-07,-2.98969e-08,0.998281,0.000430245,-1.90207e-07,5.24942e-08,0.998711,0.000430022,-3.27246e-08,-6.08706e-08,0.999141,0.000429774,-2.15336e-07,7.17788e-08,0.999571,0.000429392,0.,0.}; + + template + __device__ __forceinline__ void Lab2RGBConvert_f(const T& src, D& dst) + { + const float lThresh = 0.008856f * 903.3f; + const float fThresh = 7.787f * 0.008856f + 16.0f / 116.0f; + + float Y, fy; + + if (src.x <= lThresh) + { + Y = src.x / 903.3f; + fy = 7.787f * Y + 16.0f / 116.0f; + } + else + { + fy = (src.x + 16.0f) / 116.0f; + Y = fy * fy * fy; + } + + float X = src.y / 500.0f + fy; + float Z = fy - src.z / 200.0f; + + if (X <= fThresh) + X = (X - 16.0f / 116.0f) / 7.787f; + else + X = X * X * X; + + if (Z <= fThresh) + Z = (Z - 16.0f / 116.0f) / 7.787f; + else + Z = Z * Z * Z; + + float B = 0.052891f * X - 0.204043f * Y + 1.151152f * Z; + float G = -0.921235f * X + 1.875991f * Y + 0.045244f * Z; + float R = 3.079933f * X - 1.537150f * Y - 0.542782f * Z; + + if (srgb) + { + B = splineInterpolate(B * GAMMA_TAB_SIZE, c_sRGBInvGammaTab, GAMMA_TAB_SIZE); + G = splineInterpolate(G * GAMMA_TAB_SIZE, c_sRGBInvGammaTab, GAMMA_TAB_SIZE); + R = splineInterpolate(R * GAMMA_TAB_SIZE, c_sRGBInvGammaTab, GAMMA_TAB_SIZE); + } + + dst.x = blueIdx == 0 ? B : R; + dst.y = G; + dst.z = blueIdx == 0 ? R : B; + setAlpha(dst, ColorChannel::max()); + } + + template + __device__ __forceinline__ void Lab2RGBConvert_b(const T& src, D& dst) + { + float3 srcf, dstf; + + srcf.x = src.x * (100.f / 255.f); + srcf.y = src.y - 128; + srcf.z = src.z - 128; + + Lab2RGBConvert_f(srcf, dstf); + + dst.x = saturate_cast(dstf.x * 255.f); + dst.y = saturate_cast(dstf.y * 255.f); + dst.z = saturate_cast(dstf.z * 255.f); + setAlpha(dst, ColorChannel::max()); + } + + template struct Lab2RGB; + template + struct Lab2RGB + : unary_function::vec_type, typename TypeVec::vec_type> + { + __device__ __forceinline__ typename TypeVec::vec_type operator ()(const typename TypeVec::vec_type& src) const + { + typename TypeVec::vec_type dst; + + Lab2RGBConvert_b(src, dst); + + return dst; + } + __host__ __device__ __forceinline__ Lab2RGB() {} + __host__ __device__ __forceinline__ Lab2RGB(const Lab2RGB&) {} + }; + template + struct Lab2RGB + : unary_function::vec_type, typename TypeVec::vec_type> + { + __device__ __forceinline__ typename TypeVec::vec_type operator ()(const typename TypeVec::vec_type& src) const + { + typename TypeVec::vec_type dst; + + Lab2RGBConvert_f(src, dst); + + return dst; + } + __host__ __device__ __forceinline__ Lab2RGB() {} + __host__ __device__ __forceinline__ Lab2RGB(const Lab2RGB&) {} + }; + } + +#define OPENCV_CUDA_IMPLEMENT_Lab2RGB_TRAITS(name, scn, dcn, srgb, blueIdx) \ + template struct name ## _traits \ + { \ + typedef ::cv::cuda::device::color_detail::Lab2RGB functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; + +///////////////////////////////////// RGB <-> Luv ///////////////////////////////////// + + namespace color_detail + { + __constant__ float c_LabCbrtTab[] = {0.137931,0.0114066,0.,1.18859e-07,0.149338,0.011407,3.56578e-07,-5.79396e-07,0.160745,0.0114059,-1.38161e-06,2.16892e-06,0.172151,0.0114097,5.12516e-06,-8.0814e-06,0.183558,0.0113957,-1.9119e-05,3.01567e-05,0.194965,0.0114479,7.13509e-05,-0.000112545,0.206371,0.011253,-0.000266285,-0.000106493,0.217252,0.0104009,-0.000585765,7.32149e-05,0.22714,0.00944906,-0.00036612,1.21917e-05,0.236235,0.0087534,-0.000329545,2.01753e-05,0.244679,0.00815483,-0.000269019,1.24435e-05,0.252577,0.00765412,-0.000231689,1.05618e-05,0.26001,0.00722243,-0.000200003,8.26662e-06,0.267041,0.00684723,-0.000175203,6.76746e-06,0.27372,0.00651712,-0.000154901,5.61192e-06,0.280088,0.00622416,-0.000138065,4.67009e-06,0.286179,0.00596204,-0.000124055,3.99012e-06,0.292021,0.0057259,-0.000112085,3.36032e-06,0.297638,0.00551181,-0.000102004,2.95338e-06,0.30305,0.00531666,-9.31435e-05,2.52875e-06,0.308277,0.00513796,-8.55572e-05,2.22022e-06,0.313331,0.00497351,-7.88966e-05,1.97163e-06,0.318228,0.00482163,-7.29817e-05,1.7248e-06,0.322978,0.00468084,-6.78073e-05,1.55998e-06,0.327593,0.0045499,-6.31274e-05,1.36343e-06,0.332081,0.00442774,-5.90371e-05,1.27136e-06,0.336451,0.00431348,-5.5223e-05,1.09111e-06,0.34071,0.00420631,-5.19496e-05,1.0399e-06,0.344866,0.00410553,-4.88299e-05,9.18347e-07,0.348923,0.00401062,-4.60749e-05,8.29942e-07,0.352889,0.00392096,-4.35851e-05,7.98478e-07,0.356767,0.00383619,-4.11896e-05,6.84917e-07,0.360562,0.00375586,-3.91349e-05,6.63976e-07,0.36428,0.00367959,-3.7143e-05,5.93086e-07,0.367923,0.00360708,-3.53637e-05,5.6976e-07,0.371495,0.00353806,-3.36544e-05,4.95533e-07,0.375,0.00347224,-3.21678e-05,4.87951e-07,0.378441,0.00340937,-3.0704e-05,4.4349e-07,0.38182,0.00334929,-2.93735e-05,4.20297e-07,0.38514,0.0032918,-2.81126e-05,3.7872e-07,0.388404,0.00323671,-2.69764e-05,3.596e-07,0.391614,0.00318384,-2.58976e-05,3.5845e-07,0.394772,0.00313312,-2.48223e-05,2.92765e-07,0.397881,0.00308435,-2.3944e-05,3.18232e-07,0.400942,0.00303742,-2.29893e-05,2.82046e-07,0.403957,0.00299229,-2.21432e-05,2.52315e-07,0.406927,0.00294876,-2.13862e-05,2.58416e-07,0.409855,0.00290676,-2.0611e-05,2.33939e-07,0.412741,0.00286624,-1.99092e-05,2.36342e-07,0.415587,0.00282713,-1.92001e-05,1.916e-07,0.418396,0.00278931,-1.86253e-05,2.1915e-07,0.421167,0.00275271,-1.79679e-05,1.83498e-07,0.423901,0.00271733,-1.74174e-05,1.79343e-07,0.426602,0.00268303,-1.68794e-05,1.72013e-07,0.429268,0.00264979,-1.63633e-05,1.75686e-07,0.431901,0.00261759,-1.58363e-05,1.3852e-07,0.434503,0.00258633,-1.54207e-05,1.64304e-07,0.437074,0.00255598,-1.49278e-05,1.28136e-07,0.439616,0.00252651,-1.45434e-05,1.57618e-07,0.442128,0.0024979,-1.40705e-05,1.0566e-07,0.444612,0.00247007,-1.37535e-05,1.34998e-07,0.447068,0.00244297,-1.33485e-05,1.29207e-07,0.449498,0.00241666,-1.29609e-05,9.32347e-08,0.451902,0.00239102,-1.26812e-05,1.23703e-07,0.45428,0.00236603,-1.23101e-05,9.74072e-08,0.456634,0.0023417,-1.20179e-05,1.12518e-07,0.458964,0.002318,-1.16803e-05,7.83681e-08,0.46127,0.00229488,-1.14452e-05,1.10452e-07,0.463554,0.00227232,-1.11139e-05,7.58719e-08,0.465815,0.00225032,-1.08863e-05,9.2699e-08,0.468055,0.00222882,-1.06082e-05,8.97738e-08,0.470273,0.00220788,-1.03388e-05,5.4845e-08,0.47247,0.00218736,-1.01743e-05,1.0808e-07,0.474648,0.00216734,-9.85007e-06,4.9277e-08,0.476805,0.00214779,-9.70224e-06,8.22408e-08,0.478943,0.00212863,-9.45551e-06,6.87942e-08,0.481063,0.00210993,-9.24913e-06,5.98144e-08,0.483163,0.00209161,-9.06969e-06,7.93789e-08,0.485246,0.00207371,-8.83155e-06,3.99032e-08,0.487311,0.00205616,-8.71184e-06,8.88325e-08,0.489358,0.002039,-8.44534e-06,2.20004e-08,0.491389,0.00202218,-8.37934e-06,9.13872e-08,0.493403,0.0020057,-8.10518e-06,2.96829e-08,0.495401,0.00198957,-8.01613e-06,5.81028e-08,0.497382,0.00197372,-7.84183e-06,6.5731e-08,0.499348,0.00195823,-7.64463e-06,3.66019e-08,0.501299,0.00194305,-7.53483e-06,2.62811e-08,0.503234,0.00192806,-7.45598e-06,9.66907e-08,0.505155,0.00191344,-7.16591e-06,4.18928e-09,0.507061,0.00189912,-7.15334e-06,6.53665e-08,0.508953,0.00188501,-6.95724e-06,3.23686e-08,0.510831,0.00187119,-6.86014e-06,4.35774e-08,0.512696,0.0018576,-6.72941e-06,3.17406e-08,0.514547,0.00184424,-6.63418e-06,6.78785e-08,0.516384,0.00183117,-6.43055e-06,-5.23126e-09,0.518209,0.0018183,-6.44624e-06,7.22562e-08,0.520021,0.00180562,-6.22947e-06,1.42292e-08,0.52182,0.0017932,-6.18679e-06,4.9641e-08,0.523607,0.00178098,-6.03786e-06,2.56259e-08,0.525382,0.00176898,-5.96099e-06,2.66696e-08,0.527145,0.00175714,-5.88098e-06,4.65094e-08,0.528897,0.00174552,-5.74145e-06,2.57114e-08,0.530637,0.00173411,-5.66431e-06,2.94588e-08,0.532365,0.00172287,-5.57594e-06,3.52667e-08,0.534082,0.00171182,-5.47014e-06,8.28868e-09,0.535789,0.00170091,-5.44527e-06,5.07871e-08,0.537484,0.00169017,-5.29291e-06,2.69817e-08,0.539169,0.00167967,-5.21197e-06,2.01009e-08,0.540844,0.0016693,-5.15166e-06,1.18237e-08,0.542508,0.00165903,-5.11619e-06,5.18135e-08,0.544162,0.00164896,-4.96075e-06,1.9341e-08,0.545806,0.00163909,-4.90273e-06,-9.96867e-09,0.54744,0.00162926,-4.93263e-06,8.01382e-08,0.549064,0.00161963,-4.69222e-06,-1.25601e-08,0.550679,0.00161021,-4.7299e-06,2.97067e-08,0.552285,0.00160084,-4.64078e-06,1.29426e-08,0.553881,0.0015916,-4.60195e-06,3.77327e-08,0.555468,0.00158251,-4.48875e-06,1.49412e-08,0.557046,0.00157357,-4.44393e-06,2.17118e-08,0.558615,0.00156475,-4.3788e-06,1.74206e-08,0.560176,0.00155605,-4.32653e-06,2.78152e-08,0.561727,0.00154748,-4.24309e-06,-9.47239e-09,0.563271,0.00153896,-4.27151e-06,6.9679e-08,0.564805,0.00153063,-4.06247e-06,-3.08246e-08,0.566332,0.00152241,-4.15494e-06,5.36188e-08,0.56785,0.00151426,-3.99409e-06,-4.83594e-09,0.56936,0.00150626,-4.00859e-06,2.53293e-08,0.570863,0.00149832,-3.93261e-06,2.27286e-08,0.572357,0.00149052,-3.86442e-06,2.96541e-09,0.573844,0.0014828,-3.85552e-06,2.50147e-08,0.575323,0.00147516,-3.78048e-06,1.61842e-08,0.576794,0.00146765,-3.73193e-06,2.94582e-08,0.578258,0.00146028,-3.64355e-06,-1.48076e-08,0.579715,0.00145295,-3.68798e-06,2.97724e-08,0.581164,0.00144566,-3.59866e-06,1.49272e-08,0.582606,0.00143851,-3.55388e-06,2.97285e-08,0.584041,0.00143149,-3.46469e-06,-1.46323e-08,0.585469,0.00142451,-3.50859e-06,2.88004e-08,0.58689,0.00141758,-3.42219e-06,1.864e-08,0.588304,0.00141079,-3.36627e-06,1.58482e-08,0.589712,0.00140411,-3.31872e-06,-2.24279e-08,0.591112,0.00139741,-3.38601e-06,7.38639e-08,0.592507,0.00139085,-3.16441e-06,-3.46088e-08,0.593894,0.00138442,-3.26824e-06,4.96675e-09,0.595275,0.0013779,-3.25334e-06,7.4346e-08,0.59665,0.00137162,-3.0303e-06,-6.39319e-08,0.598019,0.00136536,-3.2221e-06,6.21725e-08,0.599381,0.00135911,-3.03558e-06,-5.94423e-09,0.600737,0.00135302,-3.05341e-06,2.12091e-08,0.602087,0.00134697,-2.98979e-06,-1.92876e-08,0.603431,0.00134094,-3.04765e-06,5.5941e-08,0.604769,0.00133501,-2.87983e-06,-2.56622e-08,0.606101,0.00132917,-2.95681e-06,4.67078e-08,0.607427,0.0013234,-2.81669e-06,-4.19592e-08,0.608748,0.00131764,-2.94257e-06,6.15243e-08,0.610062,0.00131194,-2.75799e-06,-2.53244e-08,0.611372,0.00130635,-2.83397e-06,3.97739e-08,0.612675,0.0013008,-2.71465e-06,-1.45618e-08,0.613973,0.00129533,-2.75833e-06,1.84733e-08,0.615266,0.00128986,-2.70291e-06,2.73606e-10,0.616553,0.00128446,-2.70209e-06,4.00367e-08,0.617835,0.00127918,-2.58198e-06,-4.12113e-08,0.619111,0.00127389,-2.70561e-06,6.52039e-08,0.620383,0.00126867,-2.51e-06,-4.07901e-08,0.621649,0.00126353,-2.63237e-06,3.83516e-08,0.62291,0.00125838,-2.51732e-06,6.59315e-09,0.624166,0.00125337,-2.49754e-06,-5.11939e-09,0.625416,0.00124836,-2.5129e-06,1.38846e-08,0.626662,0.00124337,-2.47124e-06,9.18514e-09,0.627903,0.00123846,-2.44369e-06,8.97952e-09,0.629139,0.0012336,-2.41675e-06,1.45012e-08,0.63037,0.00122881,-2.37325e-06,-7.37949e-09,0.631597,0.00122404,-2.39538e-06,1.50169e-08,0.632818,0.00121929,-2.35033e-06,6.91648e-09,0.634035,0.00121461,-2.32958e-06,1.69219e-08,0.635248,0.00121,-2.27882e-06,-1.49997e-08,0.636455,0.0012054,-2.32382e-06,4.30769e-08,0.637659,0.00120088,-2.19459e-06,-3.80986e-08,0.638857,0.00119638,-2.30888e-06,4.97134e-08,0.640051,0.00119191,-2.15974e-06,-4.15463e-08,0.641241,0.00118747,-2.28438e-06,5.68667e-08,0.642426,0.00118307,-2.11378e-06,-7.10641e-09,0.643607,0.00117882,-2.1351e-06,-2.8441e-08,0.644784,0.00117446,-2.22042e-06,6.12658e-08,0.645956,0.00117021,-2.03663e-06,-3.78083e-08,0.647124,0.00116602,-2.15005e-06,3.03627e-08,0.648288,0.00116181,-2.05896e-06,-2.40379e-08,0.649448,0.00115762,-2.13108e-06,6.57887e-08,0.650603,0.00115356,-1.93371e-06,-6.03028e-08,0.651755,0.00114951,-2.11462e-06,5.62134e-08,0.652902,0.00114545,-1.94598e-06,-4.53417e-08,0.654046,0.00114142,-2.082e-06,6.55489e-08,0.655185,0.00113745,-1.88536e-06,-3.80396e-08,0.656321,0.00113357,-1.99948e-06,2.70049e-08,0.657452,0.00112965,-1.91846e-06,-1.03755e-08,0.65858,0.00112578,-1.94959e-06,1.44973e-08,0.659704,0.00112192,-1.9061e-06,1.1991e-08,0.660824,0.00111815,-1.87012e-06,-2.85634e-09,0.66194,0.0011144,-1.87869e-06,-5.65782e-10,0.663053,0.00111064,-1.88039e-06,5.11947e-09,0.664162,0.0011069,-1.86503e-06,3.96924e-08,0.665267,0.00110328,-1.74595e-06,-4.46795e-08,0.666368,0.00109966,-1.87999e-06,1.98161e-08,0.667466,0.00109596,-1.82054e-06,2.502e-08,0.66856,0.00109239,-1.74548e-06,-6.86593e-10,0.669651,0.0010889,-1.74754e-06,-2.22739e-08,0.670738,0.00108534,-1.81437e-06,3.01776e-08,0.671821,0.0010818,-1.72383e-06,2.07732e-08,0.672902,0.00107841,-1.66151e-06,-5.36658e-08,0.673978,0.00107493,-1.82251e-06,7.46802e-08,0.675051,0.00107151,-1.59847e-06,-6.62411e-08,0.676121,0.00106811,-1.79719e-06,7.10748e-08,0.677188,0.00106473,-1.58397e-06,-3.92441e-08,0.678251,0.00106145,-1.7017e-06,2.62973e-08,0.679311,0.00105812,-1.62281e-06,-6.34035e-09,0.680367,0.00105486,-1.64183e-06,-9.36249e-10,0.68142,0.00105157,-1.64464e-06,1.00854e-08,0.68247,0.00104831,-1.61438e-06,2.01995e-08,0.683517,0.00104514,-1.55378e-06,-3.1279e-08,0.68456,0.00104194,-1.64762e-06,4.53114e-08,0.685601,0.00103878,-1.51169e-06,-3.07573e-08,0.686638,0.00103567,-1.60396e-06,1.81133e-08,0.687672,0.00103251,-1.54962e-06,1.79085e-08,0.688703,0.00102947,-1.49589e-06,-3.01428e-08,0.689731,0.00102639,-1.58632e-06,4.30583e-08,0.690756,0.00102334,-1.45715e-06,-2.28814e-08,0.691778,0.00102036,-1.52579e-06,-1.11373e-08,0.692797,0.00101727,-1.5592e-06,6.74305e-08,0.693812,0.00101436,-1.35691e-06,-7.97709e-08,0.694825,0.0010114,-1.59622e-06,7.28391e-08,0.695835,0.00100843,-1.37771e-06,-3.27715e-08,0.696842,0.00100558,-1.47602e-06,-1.35807e-09,0.697846,0.00100262,-1.48009e-06,3.82037e-08,0.698847,0.000999775,-1.36548e-06,-3.22474e-08,0.699846,0.000996948,-1.46223e-06,3.11809e-08,0.700841,0.000994117,-1.36868e-06,-3.28714e-08,0.701834,0.000991281,-1.4673e-06,4.07001e-08,0.702824,0.000988468,-1.3452e-06,-1.07197e-08,0.703811,0.000985746,-1.37736e-06,2.17866e-09,0.704795,0.000982998,-1.37082e-06,2.00521e-09,0.705777,0.000980262,-1.3648e-06,-1.01996e-08,0.706756,0.000977502,-1.3954e-06,3.87931e-08,0.707732,0.000974827,-1.27902e-06,-2.57632e-08,0.708706,0.000972192,-1.35631e-06,4.65513e-09,0.709676,0.000969493,-1.34235e-06,7.14257e-09,0.710645,0.00096683,-1.32092e-06,2.63791e-08,0.71161,0.000964267,-1.24178e-06,-5.30543e-08,0.712573,0.000961625,-1.40095e-06,6.66289e-08,0.713533,0.000959023,-1.20106e-06,-3.46474e-08,0.714491,0.000956517,-1.305e-06,1.23559e-08,0.715446,0.000953944,-1.26793e-06,-1.47763e-08,0.716399,0.000951364,-1.31226e-06,4.67494e-08,0.717349,0.000948879,-1.17201e-06,-5.3012e-08,0.718297,0.000946376,-1.33105e-06,4.60894e-08,0.719242,0.000943852,-1.19278e-06,-1.21366e-08,0.720185,0.00094143,-1.22919e-06,2.45673e-09,0.721125,0.000938979,-1.22182e-06,2.30966e-09,0.722063,0.000936543,-1.21489e-06,-1.16954e-08,0.722998,0.000934078,-1.24998e-06,4.44718e-08,0.723931,0.000931711,-1.11656e-06,-4.69823e-08,0.724861,0.000929337,-1.25751e-06,2.4248e-08,0.725789,0.000926895,-1.18477e-06,9.5949e-09,0.726715,0.000924554,-1.15598e-06,-3.02286e-09,0.727638,0.000922233,-1.16505e-06,2.49649e-09,0.72856,0.00091991,-1.15756e-06,-6.96321e-09,0.729478,0.000917575,-1.17845e-06,2.53564e-08,0.730395,0.000915294,-1.10238e-06,-3.48578e-08,0.731309,0.000912984,-1.20695e-06,5.44704e-08,0.732221,0.000910734,-1.04354e-06,-6.38144e-08,0.73313,0.000908455,-1.23499e-06,8.15781e-08,0.734038,0.00090623,-9.90253e-07,-8.3684e-08,0.734943,0.000903999,-1.2413e-06,7.43441e-08,0.735846,0.000901739,-1.01827e-06,-3.48787e-08,0.736746,0.000899598,-1.12291e-06,5.56596e-09,0.737645,0.000897369,-1.10621e-06,1.26148e-08,0.738541,0.000895194,-1.06837e-06,3.57935e-09,0.739435,0.000893068,-1.05763e-06,-2.69322e-08,0.740327,0.000890872,-1.13842e-06,4.45448e-08,0.741217,0.000888729,-1.00479e-06,-3.20376e-08,0.742105,0.000886623,-1.1009e-06,2.40011e-08,0.74299,0.000884493,-1.0289e-06,-4.36209e-09,0.743874,0.000882422,-1.04199e-06,-6.55268e-09,0.744755,0.000880319,-1.06164e-06,3.05728e-08,0.745634,0.000878287,-9.69926e-07,-5.61338e-08,0.746512,0.000876179,-1.13833e-06,7.4753e-08,0.747387,0.000874127,-9.14068e-07,-6.40644e-08,0.74826,0.000872106,-1.10626e-06,6.22955e-08,0.749131,0.000870081,-9.19375e-07,-6.59083e-08,0.75,0.000868044,-1.1171e-06,8.21284e-08,0.750867,0.000866056,-8.70714e-07,-8.37915e-08,0.751732,0.000864064,-1.12209e-06,7.42237e-08,0.752595,0.000862042,-8.99418e-07,-3.42894e-08,0.753456,0.00086014,-1.00229e-06,3.32955e-09,0.754315,0.000858146,-9.92297e-07,2.09712e-08,0.755173,0.000856224,-9.29384e-07,-2.76096e-08,0.756028,0.000854282,-1.01221e-06,2.98627e-08,0.756881,0.000852348,-9.22625e-07,-3.22365e-08,0.757733,0.000850406,-1.01933e-06,3.94786e-08,0.758582,0.000848485,-9.00898e-07,-6.46833e-09,0.75943,0.000846664,-9.20303e-07,-1.36052e-08,0.760275,0.000844783,-9.61119e-07,1.28447e-09,0.761119,0.000842864,-9.57266e-07,8.4674e-09,0.761961,0.000840975,-9.31864e-07,2.44506e-08,0.762801,0.000839185,-8.58512e-07,-4.6665e-08,0.763639,0.000837328,-9.98507e-07,4.30001e-08,0.764476,0.00083546,-8.69507e-07,-6.12609e-09,0.76531,0.000833703,-8.87885e-07,-1.84959e-08,0.766143,0.000831871,-9.43372e-07,2.05052e-08,0.766974,0.000830046,-8.81857e-07,-3.92026e-09,0.767803,0.000828271,-8.93618e-07,-4.82426e-09,0.768631,0.000826469,-9.0809e-07,2.32172e-08,0.769456,0.000824722,-8.38439e-07,-2.84401e-08,0.77028,0.00082296,-9.23759e-07,3.09386e-08,0.771102,0.000821205,-8.30943e-07,-3.57099e-08,0.771922,0.000819436,-9.38073e-07,5.22963e-08,0.772741,0.000817717,-7.81184e-07,-5.42658e-08,0.773558,0.000815992,-9.43981e-07,4.55579e-08,0.774373,0.000814241,-8.07308e-07,-8.75656e-09,0.775186,0.0008126,-8.33578e-07,-1.05315e-08,0.775998,0.000810901,-8.65172e-07,-8.72188e-09,0.776808,0.000809145,-8.91338e-07,4.54191e-08,0.777616,0.000807498,-7.5508e-07,-5.37454e-08,0.778423,0.000805827,-9.16317e-07,5.03532e-08,0.779228,0.000804145,-7.65257e-07,-2.84584e-08,0.780031,0.000802529,-8.50632e-07,3.87579e-09,0.780833,0.00080084,-8.39005e-07,1.29552e-08,0.781633,0.0007992,-8.00139e-07,3.90804e-09,0.782432,0.000797612,-7.88415e-07,-2.85874e-08,0.783228,0.000795949,-8.74177e-07,5.0837e-08,0.784023,0.000794353,-7.21666e-07,-5.55513e-08,0.784817,0.000792743,-8.8832e-07,5.21587e-08,0.785609,0.000791123,-7.31844e-07,-3.38744e-08,0.786399,0.000789558,-8.33467e-07,2.37342e-08,0.787188,0.000787962,-7.62264e-07,-1.45775e-09,0.787975,0.000786433,-7.66638e-07,-1.79034e-08,0.788761,0.000784846,-8.20348e-07,1.34665e-08,0.789545,0.000783246,-7.79948e-07,2.3642e-08,0.790327,0.000781757,-7.09022e-07,-4.84297e-08,0.791108,0.000780194,-8.54311e-07,5.08674e-08,0.791888,0.000778638,-7.01709e-07,-3.58303e-08,0.792666,0.000777127,-8.092e-07,3.28493e-08,0.793442,0.000775607,-7.10652e-07,-3.59624e-08,0.794217,0.000774078,-8.1854e-07,5.13959e-08,0.79499,0.000772595,-6.64352e-07,-5.04121e-08,0.795762,0.000771115,-8.15588e-07,3.10431e-08,0.796532,0.000769577,-7.22459e-07,-1.41557e-08,0.797301,0.00076809,-7.64926e-07,2.55795e-08,0.798069,0.000766636,-6.88187e-07,-2.85578e-08,0.798835,0.000765174,-7.73861e-07,2.90472e-08,0.799599,0.000763714,-6.86719e-07,-2.80262e-08,0.800362,0.000762256,-7.70798e-07,2.34531e-08,0.801123,0.000760785,-7.00438e-07,-6.18144e-09,0.801884,0.000759366,-7.18983e-07,1.27263e-09,0.802642,0.000757931,-7.15165e-07,1.09101e-09,0.803399,0.000756504,-7.11892e-07,-5.63675e-09,0.804155,0.000755064,-7.28802e-07,2.14559e-08,0.80491,0.00075367,-6.64434e-07,-2.05821e-08,0.805663,0.00075228,-7.26181e-07,1.26812e-09,0.806414,0.000750831,-7.22377e-07,1.55097e-08,0.807164,0.000749433,-6.75848e-07,-3.70216e-09,0.807913,0.00074807,-6.86954e-07,-7.0105e-10,0.80866,0.000746694,-6.89057e-07,6.5063e-09,0.809406,0.000745336,-6.69538e-07,-2.53242e-08,0.810151,0.000743921,-7.45511e-07,3.51858e-08,0.810894,0.000742535,-6.39953e-07,3.79034e-09,0.811636,0.000741267,-6.28582e-07,-5.03471e-08,0.812377,0.000739858,-7.79624e-07,7.83886e-08,0.813116,0.000738534,-5.44458e-07,-8.43935e-08,0.813854,0.000737192,-7.97638e-07,8.03714e-08,0.81459,0.000735838,-5.56524e-07,-5.82784e-08,0.815325,0.00073455,-7.31359e-07,3.35329e-08,0.816059,0.000733188,-6.3076e-07,-1.62486e-08,0.816792,0.000731878,-6.79506e-07,3.14614e-08,0.817523,0.000730613,-5.85122e-07,-4.99925e-08,0.818253,0.000729293,-7.35099e-07,4.92994e-08,0.818982,0.000727971,-5.87201e-07,-2.79959e-08,0.819709,0.000726712,-6.71189e-07,3.07959e-09,0.820435,0.000725379,-6.6195e-07,1.56777e-08,0.82116,0.000724102,-6.14917e-07,-6.18564e-09,0.821883,0.000722854,-6.33474e-07,9.06488e-09,0.822606,0.000721614,-6.06279e-07,-3.00739e-08,0.823327,0.000720311,-6.96501e-07,5.16262e-08,0.824046,0.000719073,-5.41623e-07,-5.72214e-08,0.824765,0.000717818,-7.13287e-07,5.80503e-08,0.825482,0.000716566,-5.39136e-07,-5.57703e-08,0.826198,0.00071532,-7.06447e-07,4.58215e-08,0.826912,0.000714045,-5.68983e-07,-8.30636e-09,0.827626,0.000712882,-5.93902e-07,-1.25961e-08,0.828338,0.000711656,-6.3169e-07,-9.13985e-10,0.829049,0.00071039,-6.34432e-07,1.62519e-08,0.829759,0.00070917,-5.85676e-07,-4.48904e-09,0.830468,0.000707985,-5.99143e-07,1.70418e-09,0.831175,0.000706792,-5.9403e-07,-2.32768e-09,0.831881,0.000705597,-6.01014e-07,7.60648e-09,0.832586,0.000704418,-5.78194e-07,-2.80982e-08,0.83329,0.000703177,-6.62489e-07,4.51817e-08,0.833993,0.000701988,-5.26944e-07,-3.34192e-08,0.834694,0.000700834,-6.27201e-07,2.88904e-08,0.835394,0.000699666,-5.4053e-07,-2.25378e-08,0.836093,0.000698517,-6.08143e-07,1.65589e-09,0.836791,0.000697306,-6.03176e-07,1.59142e-08,0.837488,0.000696147,-5.55433e-07,-5.70801e-09,0.838184,0.000695019,-5.72557e-07,6.91792e-09,0.838878,0.000693895,-5.51803e-07,-2.19637e-08,0.839571,0.000692725,-6.17694e-07,2.13321e-08,0.840263,0.000691554,-5.53698e-07,-3.75996e-09,0.840954,0.000690435,-5.64978e-07,-6.29219e-09,0.841644,0.000689287,-5.83855e-07,2.89287e-08,0.842333,0.000688206,-4.97068e-07,-4.98181e-08,0.843021,0.000687062,-6.46523e-07,5.11344e-08,0.843707,0.000685922,-4.9312e-07,-3.55102e-08,0.844393,0.00068483,-5.9965e-07,3.13019e-08,0.845077,0.000683724,-5.05745e-07,-3.00925e-08,0.84576,0.000682622,-5.96022e-07,2.94636e-08,0.846442,0.000681519,-5.07631e-07,-2.81572e-08,0.847123,0.000680419,-5.92103e-07,2.35606e-08,0.847803,0.000679306,-5.21421e-07,-6.48045e-09,0.848482,0.000678243,-5.40863e-07,2.36124e-09,0.849159,0.000677169,-5.33779e-07,-2.96461e-09,0.849836,0.000676092,-5.42673e-07,9.49728e-09,0.850512,0.000675035,-5.14181e-07,-3.50245e-08,0.851186,0.000673902,-6.19254e-07,7.09959e-08,0.851859,0.000672876,-4.06267e-07,-7.01453e-08,0.852532,0.000671853,-6.16703e-07,3.07714e-08,0.853203,0.000670712,-5.24388e-07,6.66423e-09,0.853873,0.000669684,-5.04396e-07,2.17629e-09,0.854542,0.000668681,-4.97867e-07,-1.53693e-08,0.855211,0.000667639,-5.43975e-07,-3.03752e-10,0.855878,0.000666551,-5.44886e-07,1.65844e-08,0.856544,0.000665511,-4.95133e-07,-6.42907e-09,0.857209,0.000664501,-5.1442e-07,9.13195e-09,0.857873,0.0006635,-4.87024e-07,-3.00987e-08,0.858536,0.000662435,-5.7732e-07,5.16584e-08,0.859198,0.000661436,-4.22345e-07,-5.73255e-08,0.859859,0.000660419,-5.94322e-07,5.84343e-08,0.860518,0.000659406,-4.19019e-07,-5.72022e-08,0.861177,0.000658396,-5.90626e-07,5.11653e-08,0.861835,0.000657368,-4.3713e-07,-2.82495e-08,0.862492,0.000656409,-5.21878e-07,2.22788e-09,0.863148,0.000655372,-5.15195e-07,1.9338e-08,0.863803,0.0006544,-4.5718e-07,-1.99754e-08,0.864457,0.000653425,-5.17107e-07,9.59024e-10,0.86511,0.000652394,-5.1423e-07,1.61393e-08,0.865762,0.000651414,-4.65812e-07,-5.91149e-09,0.866413,0.000650465,-4.83546e-07,7.50665e-09,0.867063,0.00064952,-4.61026e-07,-2.4115e-08,0.867712,0.000648526,-5.33371e-07,2.93486e-08,0.86836,0.000647547,-4.45325e-07,-3.36748e-08,0.869007,0.000646555,-5.4635e-07,4.57461e-08,0.869653,0.0006456,-4.09112e-07,-3.01002e-08,0.870298,0.000644691,-4.99412e-07,1.50501e-08,0.870942,0.000643738,-4.54262e-07,-3.01002e-08,0.871585,0.000642739,-5.44563e-07,4.57461e-08,0.872228,0.000641787,-4.07324e-07,-3.36748e-08,0.872869,0.000640871,-5.08349e-07,2.93486e-08,0.873509,0.000639943,-4.20303e-07,-2.4115e-08,0.874149,0.00063903,-4.92648e-07,7.50655e-09,0.874787,0.000638067,-4.70128e-07,-5.91126e-09,0.875425,0.000637109,-4.87862e-07,1.61385e-08,0.876062,0.000636182,-4.39447e-07,9.61961e-10,0.876697,0.000635306,-4.36561e-07,-1.99863e-08,0.877332,0.000634373,-4.9652e-07,1.93785e-08,0.877966,0.000633438,-4.38384e-07,2.07697e-09,0.878599,0.000632567,-4.32153e-07,-2.76864e-08,0.879231,0.00063162,-5.15212e-07,4.90641e-08,0.879862,0.000630737,-3.6802e-07,-4.93606e-08,0.880493,0.000629852,-5.16102e-07,2.9169e-08,0.881122,0.000628908,-4.28595e-07,-7.71083e-09,0.881751,0.000628027,-4.51727e-07,1.6744e-09,0.882378,0.000627129,-4.46704e-07,1.01317e-09,0.883005,0.000626239,-4.43665e-07,-5.72703e-09,0.883631,0.000625334,-4.60846e-07,2.1895e-08,0.884255,0.000624478,-3.95161e-07,-2.22481e-08,0.88488,0.000623621,-4.61905e-07,7.4928e-09,0.885503,0.00062272,-4.39427e-07,-7.72306e-09,0.886125,0.000621818,-4.62596e-07,2.33995e-08,0.886746,0.000620963,-3.92398e-07,-2.62704e-08,0.887367,0.000620099,-4.71209e-07,2.20775e-08,0.887987,0.000619223,-4.04976e-07,-2.43496e-09,0.888605,0.000618406,-4.12281e-07,-1.23377e-08,0.889223,0.000617544,-4.49294e-07,-7.81876e-09,0.88984,0.000616622,-4.72751e-07,4.36128e-08,0.890457,0.000615807,-3.41912e-07,-4.7423e-08,0.891072,0.000614981,-4.84181e-07,2.68698e-08,0.891687,0.000614093,-4.03572e-07,-4.51384e-10,0.8923,0.000613285,-4.04926e-07,-2.50643e-08,0.892913,0.0006124,-4.80119e-07,4.11038e-08,0.893525,0.000611563,-3.56808e-07,-2.01414e-08,0.894136,0.000610789,-4.17232e-07,-2.01426e-08,0.894747,0.000609894,-4.7766e-07,4.11073e-08,0.895356,0.000609062,-3.54338e-07,-2.50773e-08,0.895965,0.000608278,-4.2957e-07,-4.02954e-10,0.896573,0.000607418,-4.30779e-07,2.66891e-08,0.89718,0.000606636,-3.50711e-07,-4.67489e-08,0.897786,0.000605795,-4.90958e-07,4.10972e-08,0.898391,0.000604936,-3.67666e-07,1.56948e-09,0.898996,0.000604205,-3.62958e-07,-4.73751e-08,0.8996,0.000603337,-5.05083e-07,6.87214e-08,0.900202,0.000602533,-2.98919e-07,-4.86966e-08,0.900805,0.000601789,-4.45009e-07,6.85589e-09,0.901406,0.00060092,-4.24441e-07,2.1273e-08,0.902007,0.000600135,-3.60622e-07,-3.23434e-08,0.902606,0.000599317,-4.57652e-07,4.84959e-08,0.903205,0.000598547,-3.12164e-07,-4.24309e-08,0.903803,0.000597795,-4.39457e-07,2.01844e-09,0.904401,0.000596922,-4.33402e-07,3.43571e-08,0.904997,0.000596159,-3.30331e-07,-2.02374e-08,0.905593,0.000595437,-3.91043e-07,-1.30123e-08,0.906188,0.000594616,-4.3008e-07,1.26819e-08,0.906782,0.000593794,-3.92034e-07,2.18894e-08,0.907376,0.000593076,-3.26366e-07,-4.06349e-08,0.907968,0.000592301,-4.4827e-07,2.1441e-08,0.90856,0.000591469,-3.83947e-07,1.44754e-08,0.909151,0.000590744,-3.40521e-07,-1.97379e-08,0.909742,0.000590004,-3.99735e-07,4.87161e-09,0.910331,0.000589219,-3.8512e-07,2.51532e-10,0.91092,0.00058845,-3.84366e-07,-5.87776e-09,0.911508,0.000587663,-4.01999e-07,2.32595e-08,0.912096,0.000586929,-3.3222e-07,-2.75554e-08,0.912682,0.000586182,-4.14887e-07,2.73573e-08,0.913268,0.000585434,-3.32815e-07,-2.22692e-08,0.913853,0.000584702,-3.99622e-07,2.11486e-09,0.914437,0.000583909,-3.93278e-07,1.38098e-08,0.915021,0.000583164,-3.51848e-07,2.25042e-09,0.915604,0.000582467,-3.45097e-07,-2.28115e-08,0.916186,0.000581708,-4.13531e-07,2.93911e-08,0.916767,0.000580969,-3.25358e-07,-3.51481e-08,0.917348,0.000580213,-4.30803e-07,5.15967e-08,0.917928,0.000579506,-2.76012e-07,-5.20296e-08,0.918507,0.000578798,-4.32101e-07,3.73124e-08,0.919085,0.000578046,-3.20164e-07,-3.76154e-08,0.919663,0.000577293,-4.3301e-07,5.35447e-08,0.92024,0.000576587,-2.72376e-07,-5.7354e-08,0.920816,0.000575871,-4.44438e-07,5.66621e-08,0.921391,0.000575152,-2.74452e-07,-5.00851e-08,0.921966,0.000574453,-4.24707e-07,2.4469e-08,0.92254,0.000573677,-3.513e-07,1.18138e-08,0.923114,0.000573009,-3.15859e-07,-1.21195e-08,0.923686,0.000572341,-3.52217e-07,-2.29403e-08,0.924258,0.000571568,-4.21038e-07,4.4276e-08,0.924829,0.000570859,-2.8821e-07,-3.49546e-08,0.9254,0.000570178,-3.93074e-07,3.59377e-08,0.92597,0.000569499,-2.85261e-07,-4.91915e-08,0.926539,0.000568781,-4.32835e-07,4.16189e-08,0.927107,0.00056804,-3.07979e-07,1.92523e-09,0.927675,0.00056743,-3.02203e-07,-4.93198e-08,0.928242,0.000566678,-4.50162e-07,7.61447e-08,0.928809,0.000566006,-2.21728e-07,-7.6445e-08,0.929374,0.000565333,-4.51063e-07,5.08216e-08,0.929939,0.000564583,-2.98599e-07,-7.63212e-09,0.930503,0.000563963,-3.21495e-07,-2.02931e-08,0.931067,0.000563259,-3.82374e-07,2.92001e-08,0.93163,0.000562582,-2.94774e-07,-3.69025e-08,0.932192,0.000561882,-4.05482e-07,5.88053e-08,0.932754,0.000561247,-2.29066e-07,-7.91094e-08,0.933315,0.000560552,-4.66394e-07,7.88184e-08,0.933875,0.000559856,-2.29939e-07,-5.73501e-08,0.934434,0.000559224,-4.01989e-07,3.13727e-08,0.934993,0.000558514,-3.07871e-07,-8.53611e-09,0.935551,0.000557873,-3.33479e-07,2.77175e-09,0.936109,0.000557214,-3.25164e-07,-2.55091e-09,0.936666,0.000556556,-3.32817e-07,7.43188e-09,0.937222,0.000555913,-3.10521e-07,-2.71766e-08,0.937778,0.00055521,-3.92051e-07,4.167e-08,0.938333,0.000554551,-2.67041e-07,-2.02941e-08,0.938887,0.000553956,-3.27923e-07,-2.00984e-08,0.93944,0.00055324,-3.88218e-07,4.10828e-08,0.939993,0.000552587,-2.6497e-07,-2.50237e-08,0.940546,0.000551982,-3.40041e-07,-5.92583e-10,0.941097,0.0005513,-3.41819e-07,2.7394e-08,0.941648,0.000550698,-2.59637e-07,-4.93788e-08,0.942199,0.000550031,-4.07773e-07,5.09119e-08,0.942748,0.000549368,-2.55038e-07,-3.50595e-08,0.943297,0.000548753,-3.60216e-07,2.97214e-08,0.943846,0.000548122,-2.71052e-07,-2.42215e-08,0.944394,0.000547507,-3.43716e-07,7.55985e-09,0.944941,0.000546842,-3.21037e-07,-6.01796e-09,0.945487,0.000546182,-3.3909e-07,1.65119e-08,0.946033,0.000545553,-2.89555e-07,-4.2498e-10,0.946578,0.000544973,-2.9083e-07,-1.4812e-08,0.947123,0.000544347,-3.35266e-07,6.83068e-11,0.947667,0.000543676,-3.35061e-07,1.45388e-08,0.94821,0.00054305,-2.91444e-07,1.38123e-09,0.948753,0.000542471,-2.87301e-07,-2.00637e-08,0.949295,0.000541836,-3.47492e-07,1.92688e-08,0.949837,0.000541199,-2.89685e-07,2.59298e-09,0.950378,0.000540628,-2.81906e-07,-2.96407e-08,0.950918,0.000539975,-3.70829e-07,5.63652e-08,0.951458,0.000539402,-2.01733e-07,-7.66107e-08,0.951997,0.000538769,-4.31565e-07,7.12638e-08,0.952535,0.00053812,-2.17774e-07,-2.96305e-08,0.953073,0.000537595,-3.06665e-07,-1.23464e-08,0.95361,0.000536945,-3.43704e-07,1.94114e-08,0.954147,0.000536316,-2.8547e-07,-5.69451e-09,0.954683,0.000535728,-3.02554e-07,3.36666e-09,0.955219,0.000535133,-2.92454e-07,-7.77208e-09,0.955753,0.000534525,-3.1577e-07,2.77216e-08,0.956288,0.000533976,-2.32605e-07,-4.35097e-08,0.956821,0.00053338,-3.63134e-07,2.7108e-08,0.957354,0.000532735,-2.8181e-07,-5.31772e-09,0.957887,0.000532156,-2.97764e-07,-5.83718e-09,0.958419,0.000531543,-3.15275e-07,2.86664e-08,0.95895,0.000530998,-2.29276e-07,-4.9224e-08,0.959481,0.000530392,-3.76948e-07,4.90201e-08,0.960011,0.000529785,-2.29887e-07,-2.76471e-08,0.96054,0.000529243,-3.12829e-07,1.96385e-09,0.961069,0.000528623,-3.06937e-07,1.97917e-08,0.961598,0.000528068,-2.47562e-07,-2.15261e-08,0.962125,0.000527508,-3.1214e-07,6.70795e-09,0.962653,0.000526904,-2.92016e-07,-5.30573e-09,0.963179,0.000526304,-3.07934e-07,1.4515e-08,0.963705,0.000525732,-2.64389e-07,6.85048e-09,0.964231,0.000525224,-2.43837e-07,-4.19169e-08,0.964756,0.00052461,-3.69588e-07,4.1608e-08,0.96528,0.000523996,-2.44764e-07,-5.30598e-09,0.965804,0.000523491,-2.60682e-07,-2.03841e-08,0.966327,0.000522908,-3.21834e-07,2.72378e-08,0.966849,0.000522346,-2.40121e-07,-2.89625e-08,0.967371,0.000521779,-3.27008e-07,2.90075e-08,0.967893,0.000521212,-2.39986e-07,-2.74629e-08,0.968414,0.00052065,-3.22374e-07,2.12396e-08,0.968934,0.000520069,-2.58656e-07,2.10922e-09,0.969454,0.000519558,-2.52328e-07,-2.96765e-08,0.969973,0.000518964,-3.41357e-07,5.6992e-08,0.970492,0.000518452,-1.70382e-07,-7.90821e-08,0.97101,0.000517874,-4.07628e-07,8.05224e-08,0.971528,0.000517301,-1.66061e-07,-6.41937e-08,0.972045,0.000516776,-3.58642e-07,5.70429e-08,0.972561,0.00051623,-1.87513e-07,-4.47686e-08,0.973077,0.00051572,-3.21819e-07,2.82237e-09,0.973593,0.000515085,-3.13352e-07,3.34792e-08,0.974108,0.000514559,-2.12914e-07,-1.75298e-08,0.974622,0.000514081,-2.65503e-07,-2.29648e-08,0.975136,0.000513481,-3.34398e-07,4.97843e-08,0.975649,0.000512961,-1.85045e-07,-5.6963e-08,0.976162,0.00051242,-3.55934e-07,5.88585e-08,0.976674,0.000511885,-1.79359e-07,-5.92616e-08,0.977185,0.000511348,-3.57143e-07,5.89785e-08,0.977696,0.000510811,-1.80208e-07,-5.74433e-08,0.978207,0.000510278,-3.52538e-07,5.15854e-08,0.978717,0.000509728,-1.97781e-07,-2.9689e-08,0.979226,0.000509243,-2.86848e-07,7.56591e-09,0.979735,0.000508692,-2.64151e-07,-5.74649e-10,0.980244,0.000508162,-2.65875e-07,-5.26732e-09,0.980752,0.000507615,-2.81677e-07,2.16439e-08,0.981259,0.000507116,-2.16745e-07,-2.17037e-08,0.981766,0.000506618,-2.81856e-07,5.56636e-09,0.982272,0.000506071,-2.65157e-07,-5.61689e-10,0.982778,0.000505539,-2.66842e-07,-3.31963e-09,0.983283,0.000504995,-2.76801e-07,1.38402e-08,0.983788,0.000504483,-2.3528e-07,7.56339e-09,0.984292,0.000504035,-2.1259e-07,-4.40938e-08,0.984796,0.000503478,-3.44871e-07,4.96026e-08,0.985299,0.000502937,-1.96064e-07,-3.51071e-08,0.985802,0.000502439,-3.01385e-07,3.12212e-08,0.986304,0.00050193,-2.07721e-07,-3.0173e-08,0.986806,0.000501424,-2.9824e-07,2.9866e-08,0.987307,0.000500917,-2.08642e-07,-2.96865e-08,0.987808,0.000500411,-2.97702e-07,2.92753e-08,0.988308,0.000499903,-2.09876e-07,-2.78101e-08,0.988807,0.0004994,-2.93306e-07,2.23604e-08,0.989307,0.000498881,-2.26225e-07,-2.02681e-09,0.989805,0.000498422,-2.32305e-07,-1.42531e-08,0.990303,0.000497915,-2.75065e-07,-5.65232e-10,0.990801,0.000497363,-2.76761e-07,1.65141e-08,0.991298,0.000496859,-2.27218e-07,-5.88639e-09,0.991795,0.000496387,-2.44878e-07,7.0315e-09,0.992291,0.000495918,-2.23783e-07,-2.22396e-08,0.992787,0.000495404,-2.90502e-07,2.23224e-08,0.993282,0.00049489,-2.23535e-07,-7.44543e-09,0.993776,0.000494421,-2.45871e-07,7.45924e-09,0.994271,0.000493951,-2.23493e-07,-2.23915e-08,0.994764,0.000493437,-2.90668e-07,2.25021e-08,0.995257,0.000492923,-2.23161e-07,-8.01218e-09,0.99575,0.000492453,-2.47198e-07,9.54669e-09,0.996242,0.000491987,-2.18558e-07,-3.01746e-08,0.996734,0.000491459,-3.09082e-07,5.1547e-08,0.997225,0.000490996,-1.54441e-07,-5.68039e-08,0.997716,0.000490517,-3.24853e-07,5.64594e-08,0.998206,0.000490036,-1.55474e-07,-4.98245e-08,0.998696,0.000489576,-3.04948e-07,2.36292e-08,0.999186,0.000489037,-2.3406e-07,1.49121e-08,0.999674,0.000488613,-1.89324e-07,-2.3673e-08,1.00016,0.000488164,-2.60343e-07,2.01754e-08,1.00065,0.000487704,-1.99816e-07,-5.70288e-08,1.00114,0.000487133,-3.70903e-07,8.87303e-08,1.00162,0.000486657,-1.04712e-07,-5.94737e-08,1.00211,0.000486269,-2.83133e-07,2.99553e-08,1.0026,0.000485793,-1.93267e-07,-6.03474e-08,1.00308,0.000485225,-3.74309e-07,9.2225e-08,1.00357,0.000484754,-9.76345e-08,-7.0134e-08,1.00405,0.000484348,-3.08036e-07,6.91016e-08,1.00454,0.000483939,-1.00731e-07,-8.70633e-08,1.00502,0.000483476,-3.61921e-07,4.07328e-08,1.0055,0.000482875,-2.39723e-07,4.33413e-08,1.00599,0.000482525,-1.09699e-07,-9.48886e-08,1.00647,0.000482021,-3.94365e-07,9.77947e-08,1.00695,0.000481526,-1.00981e-07,-5.78713e-08,1.00743,0.00048115,-2.74595e-07,1.44814e-08,1.00791,0.000480645,-2.31151e-07,-5.42665e-11,1.00839,0.000480182,-2.31314e-07,-1.42643e-08,1.00887,0.000479677,-2.74106e-07,5.71115e-08,1.00935,0.0004793,-1.02772e-07,-9.49724e-08,1.00983,0.000478809,-3.87689e-07,8.43596e-08,1.01031,0.000478287,-1.3461e-07,-4.04755e-09,1.01079,0.000478006,-1.46753e-07,-6.81694e-08,1.01127,0.000477508,-3.51261e-07,3.83067e-08,1.01174,0.00047692,-2.36341e-07,3.41521e-08,1.01222,0.00047655,-1.33885e-07,-5.57058e-08,1.0127,0.000476115,-3.01002e-07,6.94616e-08,1.01317,0.000475721,-9.26174e-08,-1.02931e-07,1.01365,0.000475227,-4.01412e-07,1.03846e-07,1.01412,0.000474736,-8.98751e-08,-7.40321e-08,1.0146,0.000474334,-3.11971e-07,7.30735e-08,1.01507,0.00047393,-9.27508e-08,-9.90527e-08,1.01554,0.000473447,-3.89909e-07,8.47188e-08,1.01602,0.000472921,-1.35753e-07,-1.40381e-09,1.01649,0.000472645,-1.39964e-07,-7.91035e-08,1.01696,0.000472128,-3.77275e-07,7.93993e-08,1.01744,0.000471612,-1.39077e-07,-7.52607e-11,1.01791,0.000471334,-1.39302e-07,-7.90983e-08,1.01838,0.000470818,-3.76597e-07,7.80499e-08,1.01885,0.000470299,-1.42448e-07,5.31733e-09,1.01932,0.00047003,-1.26496e-07,-9.93193e-08,1.01979,0.000469479,-4.24453e-07,1.53541e-07,1.02026,0.00046909,3.617e-08,-1.57217e-07,1.02073,0.000468691,-4.35482e-07,1.177e-07,1.02119,0.000468173,-8.23808e-08,-7.51659e-08,1.02166,0.000467783,-3.07878e-07,6.37538e-08,1.02213,0.000467358,-1.16617e-07,-6.064e-08,1.0226,0.000466943,-2.98537e-07,5.9597e-08,1.02306,0.000466525,-1.19746e-07,-5.85386e-08,1.02353,0.00046611,-2.95362e-07,5.53482e-08,1.024,0.000465685,-1.29317e-07,-4.36449e-08,1.02446,0.000465296,-2.60252e-07,2.20268e-11,1.02493,0.000464775,-2.60186e-07,4.35568e-08,1.02539,0.000464386,-1.29516e-07,-5.50398e-08,1.02586,0.000463961,-2.94635e-07,5.73932e-08,1.02632,0.000463544,-1.22456e-07,-5.53236e-08,1.02678,0.000463133,-2.88426e-07,4.46921e-08,1.02725,0.000462691,-1.5435e-07,-4.23534e-09,1.02771,0.000462369,-1.67056e-07,-2.77507e-08,1.02817,0.000461952,-2.50308e-07,-3.97101e-09,1.02863,0.000461439,-2.62221e-07,4.36348e-08,1.02909,0.000461046,-1.31317e-07,-5.13589e-08,1.02955,0.000460629,-2.85394e-07,4.25913e-08,1.03001,0.000460186,-1.5762e-07,2.0285e-10,1.03047,0.000459871,-1.57011e-07,-4.34027e-08,1.03093,0.000459427,-2.87219e-07,5.41987e-08,1.03139,0.000459015,-1.24623e-07,-5.4183e-08,1.03185,0.000458604,-2.87172e-07,4.33239e-08,1.03231,0.000458159,-1.572e-07,9.65817e-11,1.03277,0.000457845,-1.56911e-07,-4.37103e-08,1.03323,0.0004574,-2.88041e-07,5.55351e-08,1.03368,0.000456991,-1.21436e-07,-5.9221e-08,1.03414,0.00045657,-2.99099e-07,6.21394e-08,1.0346,0.000456158,-1.1268e-07,-7.01275e-08,1.03505,0.000455723,-3.23063e-07,9.91614e-08,1.03551,0.000455374,-2.55788e-08,-8.80996e-08,1.03596,0.000455058,-2.89878e-07,1.48184e-08,1.03642,0.000454523,-2.45422e-07,2.88258e-08,1.03687,0.000454119,-1.58945e-07,-1.09125e-08,1.03733,0.000453768,-1.91682e-07,1.48241e-08,1.03778,0.000453429,-1.4721e-07,-4.83838e-08,1.03823,0.00045299,-2.92361e-07,5.95019e-08,1.03869,0.000452584,-1.13856e-07,-7.04146e-08,1.03914,0.000452145,-3.25099e-07,1.02947e-07,1.03959,0.000451803,-1.62583e-08,-1.02955e-07,1.04004,0.000451462,-3.25123e-07,7.04544e-08,1.04049,0.000451023,-1.1376e-07,-5.96534e-08,1.04094,0.000450616,-2.9272e-07,4.89499e-08,1.04139,0.000450178,-1.45871e-07,-1.69369e-08,1.04184,0.000449835,-1.96681e-07,1.87977e-08,1.04229,0.000449498,-1.40288e-07,-5.82539e-08,1.04274,0.000449043,-3.1505e-07,9.50087e-08,1.04319,0.000448698,-3.00238e-08,-8.33623e-08,1.04364,0.000448388,-2.80111e-07,2.20363e-11,1.04409,0.000447828,-2.80045e-07,8.32742e-08,1.04454,0.000447517,-3.02221e-08,-9.47002e-08,1.04498,0.000447173,-3.14323e-07,5.7108e-08,1.04543,0.000446716,-1.42999e-07,-1.45225e-08,1.04588,0.000446386,-1.86566e-07,9.82022e-10,1.04632,0.000446016,-1.8362e-07,1.05944e-08,1.04677,0.00044568,-1.51837e-07,-4.33597e-08,1.04721,0.000445247,-2.81916e-07,4.36352e-08,1.04766,0.000444814,-1.51011e-07,-1.19717e-08,1.0481,0.000444476,-1.86926e-07,4.25158e-09,1.04855,0.000444115,-1.74171e-07,-5.03461e-09,1.04899,0.000443751,-1.89275e-07,1.58868e-08,1.04944,0.00044342,-1.41614e-07,-5.85127e-08,1.04988,0.000442961,-3.17152e-07,9.89548e-08,1.05032,0.000442624,-2.0288e-08,-9.88878e-08,1.05076,0.000442287,-3.16951e-07,5.81779e-08,1.05121,0.000441827,-1.42418e-07,-1.46144e-08,1.05165,0.000441499,-1.86261e-07,2.79892e-10,1.05209,0.000441127,-1.85421e-07,1.34949e-08,1.05253,0.000440797,-1.44937e-07,-5.42594e-08,1.05297,0.000440344,-3.07715e-07,8.43335e-08,1.05341,0.000439982,-5.47146e-08,-4.46558e-08,1.05385,0.000439738,-1.88682e-07,-2.49193e-08,1.05429,0.000439286,-2.6344e-07,2.5124e-08,1.05473,0.000438835,-1.88068e-07,4.36328e-08,1.05517,0.000438589,-5.71699e-08,-8.04459e-08,1.05561,0.000438234,-2.98508e-07,3.97324e-08,1.05605,0.000437756,-1.79311e-07,4.07258e-08,1.05648,0.000437519,-5.71332e-08,-8.34263e-08,1.05692,0.000437155,-3.07412e-07,5.45608e-08,1.05736,0.000436704,-1.4373e-07,-1.56078e-08,1.05779,0.000436369,-1.90553e-07,7.87043e-09,1.05823,0.000436012,-1.66942e-07,-1.58739e-08,1.05867,0.00043563,-2.14563e-07,5.56251e-08,1.0591,0.000435368,-4.76881e-08,-8.74172e-08,1.05954,0.000435011,-3.0994e-07,5.56251e-08,1.05997,0.000434558,-1.43064e-07,-1.58739e-08,1.06041,0.000434224,-1.90686e-07,7.87042e-09,1.06084,0.000433866,-1.67075e-07,-1.56078e-08,1.06127,0.000433485,-2.13898e-07,5.45609e-08,1.06171,0.000433221,-5.02157e-08,-8.34263e-08,1.06214,0.00043287,-3.00495e-07,4.07258e-08,1.06257,0.000432391,-1.78317e-07,3.97325e-08,1.063,0.000432154,-5.91198e-08,-8.04464e-08,1.06344,0.000431794,-3.00459e-07,4.36347e-08,1.06387,0.000431324,-1.69555e-07,2.5117e-08,1.0643,0.000431061,-9.42041e-08,-2.48934e-08,1.06473,0.000430798,-1.68884e-07,-4.47527e-08,1.06516,0.000430326,-3.03142e-07,8.46951e-08,1.06559,0.000429973,-4.90573e-08,-5.56089e-08,1.06602,0.000429708,-2.15884e-07,1.85314e-08,1.06645,0.000429332,-1.6029e-07,-1.85166e-08,1.06688,0.000428956,-2.1584e-07,5.5535e-08,1.06731,0.000428691,-4.92347e-08,-8.44142e-08,1.06774,0.000428339,-3.02477e-07,4.37032e-08,1.06816,0.000427865,-1.71368e-07,2.88107e-08,1.06859,0.000427609,-8.49356e-08,-3.97367e-08,1.06902,0.00042732,-2.04146e-07,1.09267e-08,1.06945,0.000426945,-1.71365e-07,-3.97023e-09,1.06987,0.00042659,-1.83276e-07,4.9542e-09,1.0703,0.000426238,-1.68414e-07,-1.58466e-08,1.07073,0.000425854,-2.15953e-07,5.84321e-08,1.07115,0.000425597,-4.0657e-08,-9.86725e-08,1.07158,0.00042522,-3.36674e-07,9.78392e-08,1.072,0.00042484,-4.31568e-08,-5.42658e-08,1.07243,0.000424591,-2.05954e-07,1.45377e-11,1.07285,0.000424179,-2.0591e-07,5.42076e-08,1.07328,0.00042393,-4.32877e-08,-9.76357e-08,1.0737,0.00042355,-3.36195e-07,9.79165e-08,1.07412,0.000423172,-4.24451e-08,-5.56118e-08,1.07455,0.00042292,-2.09281e-07,5.32143e-09,1.07497,0.000422518,-1.93316e-07,3.43261e-08,1.07539,0.000422234,-9.0338e-08,-2.34165e-08,1.07581,0.000421983,-1.60588e-07,-5.98692e-08,1.07623,0.000421482,-3.40195e-07,1.43684e-07,1.07666,0.000421233,9.08574e-08,-1.5724e-07,1.07708,0.000420943,-3.80862e-07,1.27647e-07,1.0775,0.000420564,2.0791e-09,-1.1493e-07,1.07792,0.000420223,-3.4271e-07,9.36534e-08,1.07834,0.000419819,-6.17499e-08,-2.12653e-08,1.07876,0.000419632,-1.25546e-07,-8.59219e-09,1.07918,0.000419355,-1.51322e-07,-6.35752e-08,1.0796,0.000418861,-3.42048e-07,1.43684e-07,1.08002,0.000418608,8.90034e-08,-1.53532e-07,1.08043,0.000418326,-3.71593e-07,1.12817e-07,1.08085,0.000417921,-3.31414e-08,-5.93184e-08,1.08127,0.000417677,-2.11097e-07,5.24697e-09,1.08169,0.00041727,-1.95356e-07,3.83305e-08,1.0821,0.000416995,-8.03642e-08,-3.93597e-08,1.08252,0.000416716,-1.98443e-07,-1.0094e-10,1.08294,0.000416319,-1.98746e-07,3.97635e-08,1.08335,0.00041604,-7.94557e-08,-3.97437e-08,1.08377,0.000415762,-1.98687e-07,1.94215e-12,1.08419,0.000415365,-1.98681e-07,3.97359e-08,1.0846,0.000415087,-7.94732e-08,-3.97362e-08,1.08502,0.000414809,-1.98682e-07,-4.31063e-13,1.08543,0.000414411,-1.98683e-07,3.97379e-08,1.08584,0.000414133,-7.94694e-08,-3.97418e-08,1.08626,0.000413855,-1.98695e-07,2.00563e-11,1.08667,0.000413458,-1.98635e-07,3.96616e-08,1.08709,0.000413179,-7.965e-08,-3.9457e-08,1.0875,0.000412902,-1.98021e-07,-1.04281e-09,1.08791,0.000412502,-2.01149e-07,4.36282e-08,1.08832,0.000412231,-7.02648e-08,-5.42608e-08,1.08874,0.000411928,-2.33047e-07,5.42057e-08,1.08915,0.000411624,-7.04301e-08,-4.33527e-08,1.08956,0.000411353,-2.00488e-07,-4.07378e-12,1.08997,0.000410952,-2.005e-07,4.3369e-08,1.09038,0.000410681,-7.03934e-08,-5.42627e-08,1.09079,0.000410378,-2.33182e-07,5.44726e-08,1.0912,0.000410075,-6.97637e-08,-4.44186e-08,1.09161,0.000409802,-2.03019e-07,3.99235e-09,1.09202,0.000409408,-1.91042e-07,2.84491e-08,1.09243,0.000409111,-1.05695e-07,1.42043e-09,1.09284,0.000408904,-1.01434e-07,-3.41308e-08,1.09325,0.000408599,-2.03826e-07,1.58937e-08,1.09366,0.000408239,-1.56145e-07,-2.94438e-08,1.09406,0.000407838,-2.44476e-07,1.01881e-07,1.09447,0.000407655,6.11676e-08,-1.39663e-07,1.09488,0.000407358,-3.57822e-07,9.91432e-08,1.09529,0.00040694,-6.03921e-08,-1.84912e-08,1.09569,0.000406764,-1.15866e-07,-2.51785e-08,1.0961,0.000406457,-1.91401e-07,-4.03115e-12,1.09651,0.000406074,-1.91413e-07,2.51947e-08,1.09691,0.000405767,-1.15829e-07,1.84346e-08,1.09732,0.00040559,-6.05254e-08,-9.89332e-08,1.09772,0.000405172,-3.57325e-07,1.3888e-07,1.09813,0.000404874,5.93136e-08,-9.8957e-08,1.09853,0.000404696,-2.37557e-07,1.853e-08,1.09894,0.000404277,-1.81968e-07,2.48372e-08,1.09934,0.000403987,-1.07456e-07,1.33047e-09,1.09975,0.000403776,-1.03465e-07,-3.01591e-08,1.10015,0.000403479,-1.93942e-07,9.66054e-11,1.10055,0.000403091,-1.93652e-07,2.97727e-08,1.10096,0.000402793,-1.04334e-07,2.19273e-11,1.10136,0.000402585,-1.04268e-07,-2.98604e-08,1.10176,0.000402287,-1.93849e-07,2.10325e-10,1.10216,0.0004019,-1.93218e-07,2.90191e-08,1.10256,0.0004016,-1.06161e-07,2.92264e-09,1.10297,0.000401397,-9.73931e-08,-4.07096e-08,1.10337,0.00040108,-2.19522e-07,4.07067e-08,1.10377,0.000400763,-9.7402e-08,-2.90783e-09,1.10417,0.000400559,-1.06126e-07,-2.90754e-08,1.10457,0.00040026,-1.93352e-07,9.00021e-14,1.10497,0.000399873,-1.93351e-07,2.9075e-08,1.10537,0.000399574,-1.06126e-07,2.90902e-09,1.10577,0.00039937,-9.73992e-08,-4.07111e-08,1.10617,0.000399053,-2.19533e-07,4.07262e-08,1.10657,0.000398736,-9.73541e-08,-2.98424e-09,1.10697,0.000398533,-1.06307e-07,-2.87892e-08,1.10736,0.000398234,-1.92674e-07,-1.06824e-09,1.10776,0.000397845,-1.95879e-07,3.30622e-08,1.10816,0.000397552,-9.66926e-08,-1.19712e-08,1.10856,0.000397323,-1.32606e-07,1.48225e-08,1.10895,0.000397102,-8.81387e-08,-4.73187e-08,1.10935,0.000396784,-2.30095e-07,5.52429e-08,1.10975,0.00039649,-6.4366e-08,-5.44437e-08,1.11014,0.000396198,-2.27697e-07,4.33226e-08,1.11054,0.000395872,-9.77293e-08,3.62656e-10,1.11094,0.000395678,-9.66414e-08,-4.47732e-08,1.11133,0.00039535,-2.30961e-07,5.95208e-08,1.11173,0.000395067,-5.23985e-08,-7.41008e-08,1.11212,0.00039474,-2.74701e-07,1.17673e-07,1.11252,0.000394543,7.83181e-08,-1.58172e-07,1.11291,0.000394225,-3.96199e-07,1.57389e-07,1.1133,0.000393905,7.59679e-08,-1.13756e-07,1.1137,0.000393716,-2.653e-07,5.92165e-08,1.11409,0.000393363,-8.76507e-08,-3.90074e-09,1.11449,0.000393176,-9.93529e-08,-4.36136e-08,1.11488,0.000392846,-2.30194e-07,5.91457e-08,1.11527,0.000392563,-5.27564e-08,-7.376e-08,1.11566,0.000392237,-2.74037e-07,1.16685e-07,1.11606,0.000392039,7.60189e-08,-1.54562e-07,1.11645,0.000391727,-3.87667e-07,1.43935e-07,1.11684,0.000391384,4.4137e-08,-6.35487e-08,1.11723,0.000391281,-1.46509e-07,-8.94896e-09,1.11762,0.000390961,-1.73356e-07,-1.98647e-08,1.11801,0.000390555,-2.3295e-07,8.8408e-08,1.1184,0.000390354,3.22736e-08,-9.53486e-08,1.11879,0.000390133,-2.53772e-07,5.45677e-08,1.11918,0.000389789,-9.0069e-08,-3.71296e-09,1.11957,0.000389598,-1.01208e-07,-3.97159e-08,1.11996,0.000389276,-2.20355e-07,4.33671e-08,1.12035,0.000388966,-9.02542e-08,-1.45431e-08,1.12074,0.000388741,-1.33883e-07,1.48052e-08,1.12113,0.000388518,-8.94678e-08,-4.46778e-08,1.12152,0.000388205,-2.23501e-07,4.46966e-08,1.12191,0.000387892,-8.94114e-08,-1.48992e-08,1.12229,0.000387669,-1.34109e-07,1.49003e-08,1.12268,0.000387445,-8.94082e-08,-4.47019e-08,1.12307,0.000387132,-2.23514e-07,4.4698e-08,1.12345,0.000386819,-8.942e-08,-1.48806e-08,1.12384,0.000386596,-1.34062e-07,1.48245e-08,1.12423,0.000386372,-8.95885e-08,-4.44172e-08,1.12461,0.00038606,-2.2284e-07,4.36351e-08,1.125,0.000385745,-9.19348e-08,-1.09139e-08,1.12539,0.000385528,-1.24677e-07,2.05584e-11,1.12577,0.000385279,-1.24615e-07,1.08317e-08,1.12616,0.000385062,-9.21198e-08,-4.33473e-08,1.12654,0.000384748,-2.22162e-07,4.33481e-08,1.12693,0.000384434,-9.21174e-08,-1.08356e-08,1.12731,0.000384217,-1.24624e-07,-5.50907e-12,1.12769,0.000383968,-1.24641e-07,1.08577e-08,1.12808,0.000383751,-9.20679e-08,-4.34252e-08,1.12846,0.000383437,-2.22343e-07,4.36337e-08,1.12884,0.000383123,-9.14422e-08,-1.19005e-08,1.12923,0.000382904,-1.27144e-07,3.96813e-09,1.12961,0.000382662,-1.15239e-07,-3.97207e-09,1.12999,0.000382419,-1.27155e-07,1.19201e-08,1.13038,0.000382201,-9.1395e-08,-4.37085e-08,1.13076,0.000381887,-2.2252e-07,4.37046e-08,1.13114,0.000381573,-9.14068e-08,-1.19005e-08,1.13152,0.000381355,-1.27108e-07,3.89734e-09,1.1319,0.000381112,-1.15416e-07,-3.68887e-09,1.13228,0.00038087,-1.26483e-07,1.08582e-08,1.13266,0.00038065,-9.39083e-08,-3.97438e-08,1.13304,0.000380343,-2.1314e-07,2.89076e-08,1.13342,0.000380003,-1.26417e-07,4.33225e-08,1.1338,0.00037988,3.55072e-09,-8.29883e-08,1.13418,0.000379638,-2.45414e-07,5.0212e-08,1.13456,0.000379298,-9.47781e-08,1.34964e-09,1.13494,0.000379113,-9.07292e-08,-5.56105e-08,1.13532,0.000378764,-2.57561e-07,1.01883e-07,1.1357,0.000378555,4.80889e-08,-1.13504e-07,1.13608,0.000378311,-2.92423e-07,1.13713e-07,1.13646,0.000378067,4.87176e-08,-1.02931e-07,1.13683,0.000377856,-2.60076e-07,5.95923e-08,1.13721,0.000377514,-8.12988e-08,-1.62288e-08,1.13759,0.000377303,-1.29985e-07,5.32278e-09,1.13797,0.000377059,-1.14017e-07,-5.06237e-09,1.13834,0.000376816,-1.29204e-07,1.49267e-08,1.13872,0.000376602,-8.44237e-08,-5.46444e-08,1.1391,0.000376269,-2.48357e-07,8.44417e-08,1.13947,0.000376026,4.96815e-09,-4.47039e-08,1.13985,0.000375902,-1.29143e-07,-2.48355e-08,1.14023,0.000375569,-2.0365e-07,2.48368e-08,1.1406,0.000375236,-1.2914e-07,4.46977e-08,1.14098,0.000375112,4.95341e-09,-8.44184e-08,1.14135,0.000374869,-2.48302e-07,5.45572e-08,1.14173,0.000374536,-8.463e-08,-1.46013e-08,1.1421,0.000374323,-1.28434e-07,3.8478e-09,1.14247,0.000374077,-1.1689e-07,-7.89941e-10,1.14285,0.000373841,-1.1926e-07,-6.88042e-10,1.14322,0.0003736,-1.21324e-07,3.54213e-09,1.1436,0.000373368,-1.10698e-07,-1.34805e-08,1.14397,0.000373107,-1.51139e-07,5.03798e-08,1.14434,0.000372767,0.,0.}; + + template + __device__ __forceinline__ void RGB2LuvConvert_f(const T& src, D& dst) + { + const float _d = 1.f / (0.950456f + 15 + 1.088754f * 3); + const float _un = 13 * (4 * 0.950456f * _d); + const float _vn = 13 * (9 * _d); + + float B = blueIdx == 0 ? src.x : src.z; + float G = src.y; + float R = blueIdx == 0 ? src.z : src.x; + + if (srgb) + { + B = splineInterpolate(B * GAMMA_TAB_SIZE, c_sRGBGammaTab, GAMMA_TAB_SIZE); + G = splineInterpolate(G * GAMMA_TAB_SIZE, c_sRGBGammaTab, GAMMA_TAB_SIZE); + R = splineInterpolate(R * GAMMA_TAB_SIZE, c_sRGBGammaTab, GAMMA_TAB_SIZE); + } + + float X = R * 0.412453f + G * 0.357580f + B * 0.180423f; + float Y = R * 0.212671f + G * 0.715160f + B * 0.072169f; + float Z = R * 0.019334f + G * 0.119193f + B * 0.950227f; + + float L = splineInterpolate(Y * (LAB_CBRT_TAB_SIZE / 1.5f), c_LabCbrtTab, LAB_CBRT_TAB_SIZE); + L = 116.f * L - 16.f; + + const float d = (4 * 13) / ::fmaxf(X + 15 * Y + 3 * Z, numeric_limits::epsilon()); + float u = L * (X * d - _un); + float v = L * ((9 * 0.25f) * Y * d - _vn); + + dst.x = L; + dst.y = u; + dst.z = v; + } + + template + __device__ __forceinline__ void RGB2LuvConvert_b(const T& src, D& dst) + { + float3 srcf, dstf; + + srcf.x = src.x * (1.f / 255.f); + srcf.y = src.y * (1.f / 255.f); + srcf.z = src.z * (1.f / 255.f); + + RGB2LuvConvert_f(srcf, dstf); + + dst.x = saturate_cast(dstf.x * 2.55f); + dst.y = saturate_cast(dstf.y * 0.72033898305084743f + 96.525423728813564f); + dst.z = saturate_cast(dstf.z * 0.9732824427480916f + 136.259541984732824f); + } + + template struct RGB2Luv; + template + struct RGB2Luv + : unary_function::vec_type, typename TypeVec::vec_type> + { + __device__ __forceinline__ typename TypeVec::vec_type operator ()(const typename TypeVec::vec_type& src) const + { + typename TypeVec::vec_type dst; + + RGB2LuvConvert_b(src, dst); + + return dst; + } + __host__ __device__ __forceinline__ RGB2Luv() {} + __host__ __device__ __forceinline__ RGB2Luv(const RGB2Luv&) {} + }; + template + struct RGB2Luv + : unary_function::vec_type, typename TypeVec::vec_type> + { + __device__ __forceinline__ typename TypeVec::vec_type operator ()(const typename TypeVec::vec_type& src) const + { + typename TypeVec::vec_type dst; + + RGB2LuvConvert_f(src, dst); + + return dst; + } + __host__ __device__ __forceinline__ RGB2Luv() {} + __host__ __device__ __forceinline__ RGB2Luv(const RGB2Luv&) {} + }; + } + +#define OPENCV_CUDA_IMPLEMENT_RGB2Luv_TRAITS(name, scn, dcn, srgb, blueIdx) \ + template struct name ## _traits \ + { \ + typedef ::cv::cuda::device::color_detail::RGB2Luv functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; + + namespace color_detail + { + template + __device__ __forceinline__ void Luv2RGBConvert_f(const T& src, D& dst) + { + const float _d = 1.f / (0.950456f + 15 + 1.088754f * 3); + const float _un = 4 * 0.950456f * _d; + const float _vn = 9 * _d; + + float L = src.x; + float u = src.y; + float v = src.z; + + float Y = (L + 16.f) * (1.f / 116.f); + Y = Y * Y * Y; + + float d = (1.f / 13.f) / L; + u = u * d + _un; + v = v * d + _vn; + + float iv = 1.f / v; + float X = 2.25f * u * Y * iv; + float Z = (12 - 3 * u - 20 * v) * Y * 0.25f * iv; + + float B = 0.055648f * X - 0.204043f * Y + 1.057311f * Z; + float G = -0.969256f * X + 1.875991f * Y + 0.041556f * Z; + float R = 3.240479f * X - 1.537150f * Y - 0.498535f * Z; + + if (srgb) + { + B = splineInterpolate(B * GAMMA_TAB_SIZE, c_sRGBInvGammaTab, GAMMA_TAB_SIZE); + G = splineInterpolate(G * GAMMA_TAB_SIZE, c_sRGBInvGammaTab, GAMMA_TAB_SIZE); + R = splineInterpolate(R * GAMMA_TAB_SIZE, c_sRGBInvGammaTab, GAMMA_TAB_SIZE); + } + + dst.x = blueIdx == 0 ? B : R; + dst.y = G; + dst.z = blueIdx == 0 ? R : B; + setAlpha(dst, ColorChannel::max()); + } + + template + __device__ __forceinline__ void Luv2RGBConvert_b(const T& src, D& dst) + { + float3 srcf, dstf; + + srcf.x = src.x * (100.f / 255.f); + srcf.y = src.y * 1.388235294117647f - 134.f; + srcf.z = src.z * 1.027450980392157f - 140.f; + + Luv2RGBConvert_f(srcf, dstf); + + dst.x = saturate_cast(dstf.x * 255.f); + dst.y = saturate_cast(dstf.y * 255.f); + dst.z = saturate_cast(dstf.z * 255.f); + setAlpha(dst, ColorChannel::max()); + } + + template struct Luv2RGB; + template + struct Luv2RGB + : unary_function::vec_type, typename TypeVec::vec_type> + { + __device__ __forceinline__ typename TypeVec::vec_type operator ()(const typename TypeVec::vec_type& src) const + { + typename TypeVec::vec_type dst; + + Luv2RGBConvert_b(src, dst); + + return dst; + } + __host__ __device__ __forceinline__ Luv2RGB() {} + __host__ __device__ __forceinline__ Luv2RGB(const Luv2RGB&) {} + }; + template + struct Luv2RGB + : unary_function::vec_type, typename TypeVec::vec_type> + { + __device__ __forceinline__ typename TypeVec::vec_type operator ()(const typename TypeVec::vec_type& src) const + { + typename TypeVec::vec_type dst; + + Luv2RGBConvert_f(src, dst); + + return dst; + } + __host__ __device__ __forceinline__ Luv2RGB() {} + __host__ __device__ __forceinline__ Luv2RGB(const Luv2RGB&) {} + }; + } + +#define OPENCV_CUDA_IMPLEMENT_Luv2RGB_TRAITS(name, scn, dcn, srgb, blueIdx) \ + template struct name ## _traits \ + { \ + typedef ::cv::cuda::device::color_detail::Luv2RGB functor_type; \ + static __host__ __device__ __forceinline__ functor_type create_functor() \ + { \ + return functor_type(); \ + } \ + }; + + #undef CV_DESCALE + +}}} // namespace cv { namespace cuda { namespace cudev + +//! @endcond + +#endif // OPENCV_CUDA_COLOR_DETAIL_HPP diff --git a/thirdparty1/linux/include/opencv2/core/cuda/detail/reduce.hpp b/thirdparty1/linux/include/opencv2/core/cuda/detail/reduce.hpp new file mode 100644 index 0000000..ff82c3c --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda/detail/reduce.hpp @@ -0,0 +1,365 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CUDA_REDUCE_DETAIL_HPP +#define OPENCV_CUDA_REDUCE_DETAIL_HPP + +#include +#include "../warp.hpp" +#include "../warp_shuffle.hpp" + +//! @cond IGNORED + +namespace cv { namespace cuda { namespace device +{ + namespace reduce_detail + { + template struct GetType; + template struct GetType + { + typedef T type; + }; + template struct GetType + { + typedef T type; + }; + template struct GetType + { + typedef T type; + }; + + template + struct For + { + template + static __device__ void loadToSmem(const PointerTuple& smem, const ValTuple& val, unsigned int tid) + { + thrust::get(smem)[tid] = thrust::get(val); + + For::loadToSmem(smem, val, tid); + } + template + static __device__ void loadFromSmem(const PointerTuple& smem, const ValTuple& val, unsigned int tid) + { + thrust::get(val) = thrust::get(smem)[tid]; + + For::loadFromSmem(smem, val, tid); + } + + template + static __device__ void merge(const PointerTuple& smem, const ValTuple& val, unsigned int tid, unsigned int delta, const OpTuple& op) + { + typename GetType::type>::type reg = thrust::get(smem)[tid + delta]; + thrust::get(smem)[tid] = thrust::get(val) = thrust::get(op)(thrust::get(val), reg); + + For::merge(smem, val, tid, delta, op); + } + template + static __device__ void mergeShfl(const ValTuple& val, unsigned int delta, unsigned int width, const OpTuple& op) + { + typename GetType::type>::type reg = shfl_down(thrust::get(val), delta, width); + thrust::get(val) = thrust::get(op)(thrust::get(val), reg); + + For::mergeShfl(val, delta, width, op); + } + }; + template + struct For + { + template + static __device__ void loadToSmem(const PointerTuple&, const ValTuple&, unsigned int) + { + } + template + static __device__ void loadFromSmem(const PointerTuple&, const ValTuple&, unsigned int) + { + } + + template + static __device__ void merge(const PointerTuple&, const ValTuple&, unsigned int, unsigned int, const OpTuple&) + { + } + template + static __device__ void mergeShfl(const ValTuple&, unsigned int, unsigned int, const OpTuple&) + { + } + }; + + template + __device__ __forceinline__ void loadToSmem(volatile T* smem, T& val, unsigned int tid) + { + smem[tid] = val; + } + template + __device__ __forceinline__ void loadFromSmem(volatile T* smem, T& val, unsigned int tid) + { + val = smem[tid]; + } + template + __device__ __forceinline__ void loadToSmem(const thrust::tuple& smem, + const thrust::tuple& val, + unsigned int tid) + { + For<0, thrust::tuple_size >::value>::loadToSmem(smem, val, tid); + } + template + __device__ __forceinline__ void loadFromSmem(const thrust::tuple& smem, + const thrust::tuple& val, + unsigned int tid) + { + For<0, thrust::tuple_size >::value>::loadFromSmem(smem, val, tid); + } + + template + __device__ __forceinline__ void merge(volatile T* smem, T& val, unsigned int tid, unsigned int delta, const Op& op) + { + T reg = smem[tid + delta]; + smem[tid] = val = op(val, reg); + } + template + __device__ __forceinline__ void mergeShfl(T& val, unsigned int delta, unsigned int width, const Op& op) + { + T reg = shfl_down(val, delta, width); + val = op(val, reg); + } + template + __device__ __forceinline__ void merge(const thrust::tuple& smem, + const thrust::tuple& val, + unsigned int tid, + unsigned int delta, + const thrust::tuple& op) + { + For<0, thrust::tuple_size >::value>::merge(smem, val, tid, delta, op); + } + template + __device__ __forceinline__ void mergeShfl(const thrust::tuple& val, + unsigned int delta, + unsigned int width, + const thrust::tuple& op) + { + For<0, thrust::tuple_size >::value>::mergeShfl(val, delta, width, op); + } + + template struct Generic + { + template + static __device__ void reduce(Pointer smem, Reference val, unsigned int tid, Op op) + { + loadToSmem(smem, val, tid); + if (N >= 32) + __syncthreads(); + + if (N >= 2048) + { + if (tid < 1024) + merge(smem, val, tid, 1024, op); + + __syncthreads(); + } + if (N >= 1024) + { + if (tid < 512) + merge(smem, val, tid, 512, op); + + __syncthreads(); + } + if (N >= 512) + { + if (tid < 256) + merge(smem, val, tid, 256, op); + + __syncthreads(); + } + if (N >= 256) + { + if (tid < 128) + merge(smem, val, tid, 128, op); + + __syncthreads(); + } + if (N >= 128) + { + if (tid < 64) + merge(smem, val, tid, 64, op); + + __syncthreads(); + } + if (N >= 64) + { + if (tid < 32) + merge(smem, val, tid, 32, op); + } + + if (tid < 16) + { + merge(smem, val, tid, 16, op); + merge(smem, val, tid, 8, op); + merge(smem, val, tid, 4, op); + merge(smem, val, tid, 2, op); + merge(smem, val, tid, 1, op); + } + } + }; + + template + struct Unroll + { + static __device__ void loopShfl(Reference val, Op op, unsigned int N) + { + mergeShfl(val, I, N, op); + Unroll::loopShfl(val, op, N); + } + static __device__ void loop(Pointer smem, Reference val, unsigned int tid, Op op) + { + merge(smem, val, tid, I, op); + Unroll::loop(smem, val, tid, op); + } + }; + template + struct Unroll<0, Pointer, Reference, Op> + { + static __device__ void loopShfl(Reference, Op, unsigned int) + { + } + static __device__ void loop(Pointer, Reference, unsigned int, Op) + { + } + }; + + template struct WarpOptimized + { + template + static __device__ void reduce(Pointer smem, Reference val, unsigned int tid, Op op) + { + #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 300 + (void) smem; + (void) tid; + + Unroll::loopShfl(val, op, N); + #else + loadToSmem(smem, val, tid); + + if (tid < N / 2) + Unroll::loop(smem, val, tid, op); + #endif + } + }; + + template struct GenericOptimized32 + { + enum { M = N / 32 }; + + template + static __device__ void reduce(Pointer smem, Reference val, unsigned int tid, Op op) + { + const unsigned int laneId = Warp::laneId(); + + #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 300 + Unroll<16, Pointer, Reference, Op>::loopShfl(val, op, warpSize); + + if (laneId == 0) + loadToSmem(smem, val, tid / 32); + #else + loadToSmem(smem, val, tid); + + if (laneId < 16) + Unroll<16, Pointer, Reference, Op>::loop(smem, val, tid, op); + + __syncthreads(); + + if (laneId == 0) + loadToSmem(smem, val, tid / 32); + #endif + + __syncthreads(); + + loadFromSmem(smem, val, tid); + + if (tid < 32) + { + #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 300 + Unroll::loopShfl(val, op, M); + #else + Unroll::loop(smem, val, tid, op); + #endif + } + } + }; + + template struct StaticIf; + template struct StaticIf + { + typedef T1 type; + }; + template struct StaticIf + { + typedef T2 type; + }; + + template struct IsPowerOf2 + { + enum { value = ((N != 0) && !(N & (N - 1))) }; + }; + + template struct Dispatcher + { + typedef typename StaticIf< + (N <= 32) && IsPowerOf2::value, + WarpOptimized, + typename StaticIf< + (N <= 1024) && IsPowerOf2::value, + GenericOptimized32, + Generic + >::type + >::type reductor; + }; + } +}}} + +//! @endcond + +#endif // OPENCV_CUDA_REDUCE_DETAIL_HPP diff --git a/thirdparty1/linux/include/opencv2/core/cuda/detail/reduce_key_val.hpp b/thirdparty1/linux/include/opencv2/core/cuda/detail/reduce_key_val.hpp new file mode 100644 index 0000000..6a537c9 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda/detail/reduce_key_val.hpp @@ -0,0 +1,502 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CUDA_PRED_VAL_REDUCE_DETAIL_HPP +#define OPENCV_CUDA_PRED_VAL_REDUCE_DETAIL_HPP + +#include +#include "../warp.hpp" +#include "../warp_shuffle.hpp" + +//! @cond IGNORED + +namespace cv { namespace cuda { namespace device +{ + namespace reduce_key_val_detail + { + template struct GetType; + template struct GetType + { + typedef T type; + }; + template struct GetType + { + typedef T type; + }; + template struct GetType + { + typedef T type; + }; + + template + struct For + { + template + static __device__ void loadToSmem(const PointerTuple& smem, const ReferenceTuple& data, unsigned int tid) + { + thrust::get(smem)[tid] = thrust::get(data); + + For::loadToSmem(smem, data, tid); + } + template + static __device__ void loadFromSmem(const PointerTuple& smem, const ReferenceTuple& data, unsigned int tid) + { + thrust::get(data) = thrust::get(smem)[tid]; + + For::loadFromSmem(smem, data, tid); + } + + template + static __device__ void copyShfl(const ReferenceTuple& val, unsigned int delta, int width) + { + thrust::get(val) = shfl_down(thrust::get(val), delta, width); + + For::copyShfl(val, delta, width); + } + template + static __device__ void copy(const PointerTuple& svals, const ReferenceTuple& val, unsigned int tid, unsigned int delta) + { + thrust::get(svals)[tid] = thrust::get(val) = thrust::get(svals)[tid + delta]; + + For::copy(svals, val, tid, delta); + } + + template + static __device__ void mergeShfl(const KeyReferenceTuple& key, const ValReferenceTuple& val, const CmpTuple& cmp, unsigned int delta, int width) + { + typename GetType::type>::type reg = shfl_down(thrust::get(key), delta, width); + + if (thrust::get(cmp)(reg, thrust::get(key))) + { + thrust::get(key) = reg; + thrust::get(val) = shfl_down(thrust::get(val), delta, width); + } + + For::mergeShfl(key, val, cmp, delta, width); + } + template + static __device__ void merge(const KeyPointerTuple& skeys, const KeyReferenceTuple& key, + const ValPointerTuple& svals, const ValReferenceTuple& val, + const CmpTuple& cmp, + unsigned int tid, unsigned int delta) + { + typename GetType::type>::type reg = thrust::get(skeys)[tid + delta]; + + if (thrust::get(cmp)(reg, thrust::get(key))) + { + thrust::get(skeys)[tid] = thrust::get(key) = reg; + thrust::get(svals)[tid] = thrust::get(val) = thrust::get(svals)[tid + delta]; + } + + For::merge(skeys, key, svals, val, cmp, tid, delta); + } + }; + template + struct For + { + template + static __device__ void loadToSmem(const PointerTuple&, const ReferenceTuple&, unsigned int) + { + } + template + static __device__ void loadFromSmem(const PointerTuple&, const ReferenceTuple&, unsigned int) + { + } + + template + static __device__ void copyShfl(const ReferenceTuple&, unsigned int, int) + { + } + template + static __device__ void copy(const PointerTuple&, const ReferenceTuple&, unsigned int, unsigned int) + { + } + + template + static __device__ void mergeShfl(const KeyReferenceTuple&, const ValReferenceTuple&, const CmpTuple&, unsigned int, int) + { + } + template + static __device__ void merge(const KeyPointerTuple&, const KeyReferenceTuple&, + const ValPointerTuple&, const ValReferenceTuple&, + const CmpTuple&, + unsigned int, unsigned int) + { + } + }; + + ////////////////////////////////////////////////////// + // loadToSmem + + template + __device__ __forceinline__ void loadToSmem(volatile T* smem, T& data, unsigned int tid) + { + smem[tid] = data; + } + template + __device__ __forceinline__ void loadFromSmem(volatile T* smem, T& data, unsigned int tid) + { + data = smem[tid]; + } + template + __device__ __forceinline__ void loadToSmem(const thrust::tuple& smem, + const thrust::tuple& data, + unsigned int tid) + { + For<0, thrust::tuple_size >::value>::loadToSmem(smem, data, tid); + } + template + __device__ __forceinline__ void loadFromSmem(const thrust::tuple& smem, + const thrust::tuple& data, + unsigned int tid) + { + For<0, thrust::tuple_size >::value>::loadFromSmem(smem, data, tid); + } + + ////////////////////////////////////////////////////// + // copyVals + + template + __device__ __forceinline__ void copyValsShfl(V& val, unsigned int delta, int width) + { + val = shfl_down(val, delta, width); + } + template + __device__ __forceinline__ void copyVals(volatile V* svals, V& val, unsigned int tid, unsigned int delta) + { + svals[tid] = val = svals[tid + delta]; + } + template + __device__ __forceinline__ void copyValsShfl(const thrust::tuple& val, + unsigned int delta, + int width) + { + For<0, thrust::tuple_size >::value>::copyShfl(val, delta, width); + } + template + __device__ __forceinline__ void copyVals(const thrust::tuple& svals, + const thrust::tuple& val, + unsigned int tid, unsigned int delta) + { + For<0, thrust::tuple_size >::value>::copy(svals, val, tid, delta); + } + + ////////////////////////////////////////////////////// + // merge + + template + __device__ __forceinline__ void mergeShfl(K& key, V& val, const Cmp& cmp, unsigned int delta, int width) + { + K reg = shfl_down(key, delta, width); + + if (cmp(reg, key)) + { + key = reg; + copyValsShfl(val, delta, width); + } + } + template + __device__ __forceinline__ void merge(volatile K* skeys, K& key, volatile V* svals, V& val, const Cmp& cmp, unsigned int tid, unsigned int delta) + { + K reg = skeys[tid + delta]; + + if (cmp(reg, key)) + { + skeys[tid] = key = reg; + copyVals(svals, val, tid, delta); + } + } + template + __device__ __forceinline__ void mergeShfl(K& key, + const thrust::tuple& val, + const Cmp& cmp, + unsigned int delta, int width) + { + K reg = shfl_down(key, delta, width); + + if (cmp(reg, key)) + { + key = reg; + copyValsShfl(val, delta, width); + } + } + template + __device__ __forceinline__ void merge(volatile K* skeys, K& key, + const thrust::tuple& svals, + const thrust::tuple& val, + const Cmp& cmp, unsigned int tid, unsigned int delta) + { + K reg = skeys[tid + delta]; + + if (cmp(reg, key)) + { + skeys[tid] = key = reg; + copyVals(svals, val, tid, delta); + } + } + template + __device__ __forceinline__ void mergeShfl(const thrust::tuple& key, + const thrust::tuple& val, + const thrust::tuple& cmp, + unsigned int delta, int width) + { + For<0, thrust::tuple_size >::value>::mergeShfl(key, val, cmp, delta, width); + } + template + __device__ __forceinline__ void merge(const thrust::tuple& skeys, + const thrust::tuple& key, + const thrust::tuple& svals, + const thrust::tuple& val, + const thrust::tuple& cmp, + unsigned int tid, unsigned int delta) + { + For<0, thrust::tuple_size >::value>::merge(skeys, key, svals, val, cmp, tid, delta); + } + + ////////////////////////////////////////////////////// + // Generic + + template struct Generic + { + template + static __device__ void reduce(KP skeys, KR key, VP svals, VR val, unsigned int tid, Cmp cmp) + { + loadToSmem(skeys, key, tid); + loadValsToSmem(svals, val, tid); + if (N >= 32) + __syncthreads(); + + if (N >= 2048) + { + if (tid < 1024) + merge(skeys, key, svals, val, cmp, tid, 1024); + + __syncthreads(); + } + if (N >= 1024) + { + if (tid < 512) + merge(skeys, key, svals, val, cmp, tid, 512); + + __syncthreads(); + } + if (N >= 512) + { + if (tid < 256) + merge(skeys, key, svals, val, cmp, tid, 256); + + __syncthreads(); + } + if (N >= 256) + { + if (tid < 128) + merge(skeys, key, svals, val, cmp, tid, 128); + + __syncthreads(); + } + if (N >= 128) + { + if (tid < 64) + merge(skeys, key, svals, val, cmp, tid, 64); + + __syncthreads(); + } + if (N >= 64) + { + if (tid < 32) + merge(skeys, key, svals, val, cmp, tid, 32); + } + + if (tid < 16) + { + merge(skeys, key, svals, val, cmp, tid, 16); + merge(skeys, key, svals, val, cmp, tid, 8); + merge(skeys, key, svals, val, cmp, tid, 4); + merge(skeys, key, svals, val, cmp, tid, 2); + merge(skeys, key, svals, val, cmp, tid, 1); + } + } + }; + + template + struct Unroll + { + static __device__ void loopShfl(KR key, VR val, Cmp cmp, unsigned int N) + { + mergeShfl(key, val, cmp, I, N); + Unroll::loopShfl(key, val, cmp, N); + } + static __device__ void loop(KP skeys, KR key, VP svals, VR val, unsigned int tid, Cmp cmp) + { + merge(skeys, key, svals, val, cmp, tid, I); + Unroll::loop(skeys, key, svals, val, tid, cmp); + } + }; + template + struct Unroll<0, KP, KR, VP, VR, Cmp> + { + static __device__ void loopShfl(KR, VR, Cmp, unsigned int) + { + } + static __device__ void loop(KP, KR, VP, VR, unsigned int, Cmp) + { + } + }; + + template struct WarpOptimized + { + template + static __device__ void reduce(KP skeys, KR key, VP svals, VR val, unsigned int tid, Cmp cmp) + { + #if 0 // __CUDA_ARCH__ >= 300 + (void) skeys; + (void) svals; + (void) tid; + + Unroll::loopShfl(key, val, cmp, N); + #else + loadToSmem(skeys, key, tid); + loadToSmem(svals, val, tid); + + if (tid < N / 2) + Unroll::loop(skeys, key, svals, val, tid, cmp); + #endif + } + }; + + template struct GenericOptimized32 + { + enum { M = N / 32 }; + + template + static __device__ void reduce(KP skeys, KR key, VP svals, VR val, unsigned int tid, Cmp cmp) + { + const unsigned int laneId = Warp::laneId(); + + #if 0 // __CUDA_ARCH__ >= 300 + Unroll<16, KP, KR, VP, VR, Cmp>::loopShfl(key, val, cmp, warpSize); + + if (laneId == 0) + { + loadToSmem(skeys, key, tid / 32); + loadToSmem(svals, val, tid / 32); + } + #else + loadToSmem(skeys, key, tid); + loadToSmem(svals, val, tid); + + if (laneId < 16) + Unroll<16, KP, KR, VP, VR, Cmp>::loop(skeys, key, svals, val, tid, cmp); + + __syncthreads(); + + if (laneId == 0) + { + loadToSmem(skeys, key, tid / 32); + loadToSmem(svals, val, tid / 32); + } + #endif + + __syncthreads(); + + loadFromSmem(skeys, key, tid); + + if (tid < 32) + { + #if 0 // __CUDA_ARCH__ >= 300 + loadFromSmem(svals, val, tid); + + Unroll::loopShfl(key, val, cmp, M); + #else + Unroll::loop(skeys, key, svals, val, tid, cmp); + #endif + } + } + }; + + template struct StaticIf; + template struct StaticIf + { + typedef T1 type; + }; + template struct StaticIf + { + typedef T2 type; + }; + + template struct IsPowerOf2 + { + enum { value = ((N != 0) && !(N & (N - 1))) }; + }; + + template struct Dispatcher + { + typedef typename StaticIf< + (N <= 32) && IsPowerOf2::value, + WarpOptimized, + typename StaticIf< + (N <= 1024) && IsPowerOf2::value, + GenericOptimized32, + Generic + >::type + >::type reductor; + }; + } +}}} + +//! @endcond + +#endif // OPENCV_CUDA_PRED_VAL_REDUCE_DETAIL_HPP diff --git a/thirdparty1/linux/include/opencv2/core/cuda/detail/transform_detail.hpp b/thirdparty1/linux/include/opencv2/core/cuda/detail/transform_detail.hpp new file mode 100644 index 0000000..3b72b03 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda/detail/transform_detail.hpp @@ -0,0 +1,399 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CUDA_TRANSFORM_DETAIL_HPP +#define OPENCV_CUDA_TRANSFORM_DETAIL_HPP + +#include "../common.hpp" +#include "../vec_traits.hpp" +#include "../functional.hpp" + +//! @cond IGNORED + +namespace cv { namespace cuda { namespace device +{ + namespace transform_detail + { + //! Read Write Traits + + template struct UnaryReadWriteTraits + { + typedef typename TypeVec::vec_type read_type; + typedef typename TypeVec::vec_type write_type; + }; + + template struct BinaryReadWriteTraits + { + typedef typename TypeVec::vec_type read_type1; + typedef typename TypeVec::vec_type read_type2; + typedef typename TypeVec::vec_type write_type; + }; + + //! Transform kernels + + template struct OpUnroller; + template <> struct OpUnroller<1> + { + template + static __device__ __forceinline__ void unroll(const T& src, D& dst, const Mask& mask, UnOp& op, int x_shifted, int y) + { + if (mask(y, x_shifted)) + dst.x = op(src.x); + } + + template + static __device__ __forceinline__ void unroll(const T1& src1, const T2& src2, D& dst, const Mask& mask, BinOp& op, int x_shifted, int y) + { + if (mask(y, x_shifted)) + dst.x = op(src1.x, src2.x); + } + }; + template <> struct OpUnroller<2> + { + template + static __device__ __forceinline__ void unroll(const T& src, D& dst, const Mask& mask, UnOp& op, int x_shifted, int y) + { + if (mask(y, x_shifted)) + dst.x = op(src.x); + if (mask(y, x_shifted + 1)) + dst.y = op(src.y); + } + + template + static __device__ __forceinline__ void unroll(const T1& src1, const T2& src2, D& dst, const Mask& mask, BinOp& op, int x_shifted, int y) + { + if (mask(y, x_shifted)) + dst.x = op(src1.x, src2.x); + if (mask(y, x_shifted + 1)) + dst.y = op(src1.y, src2.y); + } + }; + template <> struct OpUnroller<3> + { + template + static __device__ __forceinline__ void unroll(const T& src, D& dst, const Mask& mask, const UnOp& op, int x_shifted, int y) + { + if (mask(y, x_shifted)) + dst.x = op(src.x); + if (mask(y, x_shifted + 1)) + dst.y = op(src.y); + if (mask(y, x_shifted + 2)) + dst.z = op(src.z); + } + + template + static __device__ __forceinline__ void unroll(const T1& src1, const T2& src2, D& dst, const Mask& mask, const BinOp& op, int x_shifted, int y) + { + if (mask(y, x_shifted)) + dst.x = op(src1.x, src2.x); + if (mask(y, x_shifted + 1)) + dst.y = op(src1.y, src2.y); + if (mask(y, x_shifted + 2)) + dst.z = op(src1.z, src2.z); + } + }; + template <> struct OpUnroller<4> + { + template + static __device__ __forceinline__ void unroll(const T& src, D& dst, const Mask& mask, const UnOp& op, int x_shifted, int y) + { + if (mask(y, x_shifted)) + dst.x = op(src.x); + if (mask(y, x_shifted + 1)) + dst.y = op(src.y); + if (mask(y, x_shifted + 2)) + dst.z = op(src.z); + if (mask(y, x_shifted + 3)) + dst.w = op(src.w); + } + + template + static __device__ __forceinline__ void unroll(const T1& src1, const T2& src2, D& dst, const Mask& mask, const BinOp& op, int x_shifted, int y) + { + if (mask(y, x_shifted)) + dst.x = op(src1.x, src2.x); + if (mask(y, x_shifted + 1)) + dst.y = op(src1.y, src2.y); + if (mask(y, x_shifted + 2)) + dst.z = op(src1.z, src2.z); + if (mask(y, x_shifted + 3)) + dst.w = op(src1.w, src2.w); + } + }; + template <> struct OpUnroller<8> + { + template + static __device__ __forceinline__ void unroll(const T& src, D& dst, const Mask& mask, const UnOp& op, int x_shifted, int y) + { + if (mask(y, x_shifted)) + dst.a0 = op(src.a0); + if (mask(y, x_shifted + 1)) + dst.a1 = op(src.a1); + if (mask(y, x_shifted + 2)) + dst.a2 = op(src.a2); + if (mask(y, x_shifted + 3)) + dst.a3 = op(src.a3); + if (mask(y, x_shifted + 4)) + dst.a4 = op(src.a4); + if (mask(y, x_shifted + 5)) + dst.a5 = op(src.a5); + if (mask(y, x_shifted + 6)) + dst.a6 = op(src.a6); + if (mask(y, x_shifted + 7)) + dst.a7 = op(src.a7); + } + + template + static __device__ __forceinline__ void unroll(const T1& src1, const T2& src2, D& dst, const Mask& mask, const BinOp& op, int x_shifted, int y) + { + if (mask(y, x_shifted)) + dst.a0 = op(src1.a0, src2.a0); + if (mask(y, x_shifted + 1)) + dst.a1 = op(src1.a1, src2.a1); + if (mask(y, x_shifted + 2)) + dst.a2 = op(src1.a2, src2.a2); + if (mask(y, x_shifted + 3)) + dst.a3 = op(src1.a3, src2.a3); + if (mask(y, x_shifted + 4)) + dst.a4 = op(src1.a4, src2.a4); + if (mask(y, x_shifted + 5)) + dst.a5 = op(src1.a5, src2.a5); + if (mask(y, x_shifted + 6)) + dst.a6 = op(src1.a6, src2.a6); + if (mask(y, x_shifted + 7)) + dst.a7 = op(src1.a7, src2.a7); + } + }; + + template + static __global__ void transformSmart(const PtrStepSz src_, PtrStep dst_, const Mask mask, const UnOp op) + { + typedef TransformFunctorTraits ft; + typedef typename UnaryReadWriteTraits::read_type read_type; + typedef typename UnaryReadWriteTraits::write_type write_type; + + const int x = threadIdx.x + blockIdx.x * blockDim.x; + const int y = threadIdx.y + blockIdx.y * blockDim.y; + const int x_shifted = x * ft::smart_shift; + + if (y < src_.rows) + { + const T* src = src_.ptr(y); + D* dst = dst_.ptr(y); + + if (x_shifted + ft::smart_shift - 1 < src_.cols) + { + const read_type src_n_el = ((const read_type*)src)[x]; + write_type dst_n_el = ((const write_type*)dst)[x]; + + OpUnroller::unroll(src_n_el, dst_n_el, mask, op, x_shifted, y); + + ((write_type*)dst)[x] = dst_n_el; + } + else + { + for (int real_x = x_shifted; real_x < src_.cols; ++real_x) + { + if (mask(y, real_x)) + dst[real_x] = op(src[real_x]); + } + } + } + } + + template + __global__ static void transformSimple(const PtrStepSz src, PtrStep dst, const Mask mask, const UnOp op) + { + const int x = blockDim.x * blockIdx.x + threadIdx.x; + const int y = blockDim.y * blockIdx.y + threadIdx.y; + + if (x < src.cols && y < src.rows && mask(y, x)) + { + dst.ptr(y)[x] = op(src.ptr(y)[x]); + } + } + + template + static __global__ void transformSmart(const PtrStepSz src1_, const PtrStep src2_, PtrStep dst_, + const Mask mask, const BinOp op) + { + typedef TransformFunctorTraits ft; + typedef typename BinaryReadWriteTraits::read_type1 read_type1; + typedef typename BinaryReadWriteTraits::read_type2 read_type2; + typedef typename BinaryReadWriteTraits::write_type write_type; + + const int x = threadIdx.x + blockIdx.x * blockDim.x; + const int y = threadIdx.y + blockIdx.y * blockDim.y; + const int x_shifted = x * ft::smart_shift; + + if (y < src1_.rows) + { + const T1* src1 = src1_.ptr(y); + const T2* src2 = src2_.ptr(y); + D* dst = dst_.ptr(y); + + if (x_shifted + ft::smart_shift - 1 < src1_.cols) + { + const read_type1 src1_n_el = ((const read_type1*)src1)[x]; + const read_type2 src2_n_el = ((const read_type2*)src2)[x]; + write_type dst_n_el = ((const write_type*)dst)[x]; + + OpUnroller::unroll(src1_n_el, src2_n_el, dst_n_el, mask, op, x_shifted, y); + + ((write_type*)dst)[x] = dst_n_el; + } + else + { + for (int real_x = x_shifted; real_x < src1_.cols; ++real_x) + { + if (mask(y, real_x)) + dst[real_x] = op(src1[real_x], src2[real_x]); + } + } + } + } + + template + static __global__ void transformSimple(const PtrStepSz src1, const PtrStep src2, PtrStep dst, + const Mask mask, const BinOp op) + { + const int x = blockDim.x * blockIdx.x + threadIdx.x; + const int y = blockDim.y * blockIdx.y + threadIdx.y; + + if (x < src1.cols && y < src1.rows && mask(y, x)) + { + const T1 src1_data = src1.ptr(y)[x]; + const T2 src2_data = src2.ptr(y)[x]; + dst.ptr(y)[x] = op(src1_data, src2_data); + } + } + + template struct TransformDispatcher; + template<> struct TransformDispatcher + { + template + static void call(PtrStepSz src, PtrStepSz dst, UnOp op, Mask mask, cudaStream_t stream) + { + typedef TransformFunctorTraits ft; + + const dim3 threads(ft::simple_block_dim_x, ft::simple_block_dim_y, 1); + const dim3 grid(divUp(src.cols, threads.x), divUp(src.rows, threads.y), 1); + + transformSimple<<>>(src, dst, mask, op); + cudaSafeCall( cudaGetLastError() ); + + if (stream == 0) + cudaSafeCall( cudaDeviceSynchronize() ); + } + + template + static void call(PtrStepSz src1, PtrStepSz src2, PtrStepSz dst, BinOp op, Mask mask, cudaStream_t stream) + { + typedef TransformFunctorTraits ft; + + const dim3 threads(ft::simple_block_dim_x, ft::simple_block_dim_y, 1); + const dim3 grid(divUp(src1.cols, threads.x), divUp(src1.rows, threads.y), 1); + + transformSimple<<>>(src1, src2, dst, mask, op); + cudaSafeCall( cudaGetLastError() ); + + if (stream == 0) + cudaSafeCall( cudaDeviceSynchronize() ); + } + }; + template<> struct TransformDispatcher + { + template + static void call(PtrStepSz src, PtrStepSz dst, UnOp op, Mask mask, cudaStream_t stream) + { + typedef TransformFunctorTraits ft; + + CV_StaticAssert(ft::smart_shift != 1, ""); + + if (!isAligned(src.data, ft::smart_shift * sizeof(T)) || !isAligned(src.step, ft::smart_shift * sizeof(T)) || + !isAligned(dst.data, ft::smart_shift * sizeof(D)) || !isAligned(dst.step, ft::smart_shift * sizeof(D))) + { + TransformDispatcher::call(src, dst, op, mask, stream); + return; + } + + const dim3 threads(ft::smart_block_dim_x, ft::smart_block_dim_y, 1); + const dim3 grid(divUp(src.cols, threads.x * ft::smart_shift), divUp(src.rows, threads.y), 1); + + transformSmart<<>>(src, dst, mask, op); + cudaSafeCall( cudaGetLastError() ); + + if (stream == 0) + cudaSafeCall( cudaDeviceSynchronize() ); + } + + template + static void call(PtrStepSz src1, PtrStepSz src2, PtrStepSz dst, BinOp op, Mask mask, cudaStream_t stream) + { + typedef TransformFunctorTraits ft; + + CV_StaticAssert(ft::smart_shift != 1, ""); + + if (!isAligned(src1.data, ft::smart_shift * sizeof(T1)) || !isAligned(src1.step, ft::smart_shift * sizeof(T1)) || + !isAligned(src2.data, ft::smart_shift * sizeof(T2)) || !isAligned(src2.step, ft::smart_shift * sizeof(T2)) || + !isAligned(dst.data, ft::smart_shift * sizeof(D)) || !isAligned(dst.step, ft::smart_shift * sizeof(D))) + { + TransformDispatcher::call(src1, src2, dst, op, mask, stream); + return; + } + + const dim3 threads(ft::smart_block_dim_x, ft::smart_block_dim_y, 1); + const dim3 grid(divUp(src1.cols, threads.x * ft::smart_shift), divUp(src1.rows, threads.y), 1); + + transformSmart<<>>(src1, src2, dst, mask, op); + cudaSafeCall( cudaGetLastError() ); + + if (stream == 0) + cudaSafeCall( cudaDeviceSynchronize() ); + } + }; + } // namespace transform_detail +}}} // namespace cv { namespace cuda { namespace cudev + +//! @endcond + +#endif // OPENCV_CUDA_TRANSFORM_DETAIL_HPP diff --git a/thirdparty1/linux/include/opencv2/core/cuda/detail/type_traits_detail.hpp b/thirdparty1/linux/include/opencv2/core/cuda/detail/type_traits_detail.hpp new file mode 100644 index 0000000..a78bd2c --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda/detail/type_traits_detail.hpp @@ -0,0 +1,191 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CUDA_TYPE_TRAITS_DETAIL_HPP +#define OPENCV_CUDA_TYPE_TRAITS_DETAIL_HPP + +#include "../common.hpp" +#include "../vec_traits.hpp" + +//! @cond IGNORED + +namespace cv { namespace cuda { namespace device +{ + namespace type_traits_detail + { + template struct Select { typedef T1 type; }; + template struct Select { typedef T2 type; }; + + template struct IsSignedIntergral { enum {value = 0}; }; + template <> struct IsSignedIntergral { enum {value = 1}; }; + template <> struct IsSignedIntergral { enum {value = 1}; }; + template <> struct IsSignedIntergral { enum {value = 1}; }; + template <> struct IsSignedIntergral { enum {value = 1}; }; + template <> struct IsSignedIntergral { enum {value = 1}; }; + template <> struct IsSignedIntergral { enum {value = 1}; }; + + template struct IsUnsignedIntegral { enum {value = 0}; }; + template <> struct IsUnsignedIntegral { enum {value = 1}; }; + template <> struct IsUnsignedIntegral { enum {value = 1}; }; + template <> struct IsUnsignedIntegral { enum {value = 1}; }; + template <> struct IsUnsignedIntegral { enum {value = 1}; }; + template <> struct IsUnsignedIntegral { enum {value = 1}; }; + template <> struct IsUnsignedIntegral { enum {value = 1}; }; + + template struct IsIntegral { enum {value = IsSignedIntergral::value || IsUnsignedIntegral::value}; }; + template <> struct IsIntegral { enum {value = 1}; }; + template <> struct IsIntegral { enum {value = 1}; }; + + template struct IsFloat { enum {value = 0}; }; + template <> struct IsFloat { enum {value = 1}; }; + template <> struct IsFloat { enum {value = 1}; }; + + template struct IsVec { enum {value = 0}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + template <> struct IsVec { enum {value = 1}; }; + + template struct AddParameterType { typedef const U& type; }; + template struct AddParameterType { typedef U& type; }; + template <> struct AddParameterType { typedef void type; }; + + template struct ReferenceTraits + { + enum { value = false }; + typedef U type; + }; + template struct ReferenceTraits + { + enum { value = true }; + typedef U type; + }; + + template struct PointerTraits + { + enum { value = false }; + typedef void type; + }; + template struct PointerTraits + { + enum { value = true }; + typedef U type; + }; + template struct PointerTraits + { + enum { value = true }; + typedef U type; + }; + + template struct UnConst + { + typedef U type; + enum { value = 0 }; + }; + template struct UnConst + { + typedef U type; + enum { value = 1 }; + }; + template struct UnConst + { + typedef U& type; + enum { value = 1 }; + }; + + template struct UnVolatile + { + typedef U type; + enum { value = 0 }; + }; + template struct UnVolatile + { + typedef U type; + enum { value = 1 }; + }; + template struct UnVolatile + { + typedef U& type; + enum { value = 1 }; + }; + } // namespace type_traits_detail +}}} // namespace cv { namespace cuda { namespace cudev + +//! @endcond + +#endif // OPENCV_CUDA_TYPE_TRAITS_DETAIL_HPP diff --git a/thirdparty1/linux/include/opencv2/core/cuda/detail/vec_distance_detail.hpp b/thirdparty1/linux/include/opencv2/core/cuda/detail/vec_distance_detail.hpp new file mode 100644 index 0000000..8283a99 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda/detail/vec_distance_detail.hpp @@ -0,0 +1,121 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CUDA_VEC_DISTANCE_DETAIL_HPP +#define OPENCV_CUDA_VEC_DISTANCE_DETAIL_HPP + +#include "../datamov_utils.hpp" + +//! @cond IGNORED + +namespace cv { namespace cuda { namespace device +{ + namespace vec_distance_detail + { + template struct UnrollVecDiffCached + { + template + static __device__ void calcCheck(const T1* vecCached, const T2* vecGlob, int len, Dist& dist, int ind) + { + if (ind < len) + { + T1 val1 = *vecCached++; + + T2 val2; + ForceGlob::Load(vecGlob, ind, val2); + + dist.reduceIter(val1, val2); + + UnrollVecDiffCached::calcCheck(vecCached, vecGlob, len, dist, ind + THREAD_DIM); + } + } + + template + static __device__ void calcWithoutCheck(const T1* vecCached, const T2* vecGlob, Dist& dist) + { + T1 val1 = *vecCached++; + + T2 val2; + ForceGlob::Load(vecGlob, 0, val2); + vecGlob += THREAD_DIM; + + dist.reduceIter(val1, val2); + + UnrollVecDiffCached::calcWithoutCheck(vecCached, vecGlob, dist); + } + }; + template struct UnrollVecDiffCached + { + template + static __device__ __forceinline__ void calcCheck(const T1*, const T2*, int, Dist&, int) + { + } + + template + static __device__ __forceinline__ void calcWithoutCheck(const T1*, const T2*, Dist&) + { + } + }; + + template struct VecDiffCachedCalculator; + template struct VecDiffCachedCalculator + { + template + static __device__ __forceinline__ void calc(const T1* vecCached, const T2* vecGlob, int len, Dist& dist, int tid) + { + UnrollVecDiffCached::calcCheck(vecCached, vecGlob, len, dist, tid); + } + }; + template struct VecDiffCachedCalculator + { + template + static __device__ __forceinline__ void calc(const T1* vecCached, const T2* vecGlob, int len, Dist& dist, int tid) + { + UnrollVecDiffCached::calcWithoutCheck(vecCached, vecGlob + tid, dist); + } + }; + } // namespace vec_distance_detail +}}} // namespace cv { namespace cuda { namespace cudev + +//! @endcond + +#endif // OPENCV_CUDA_VEC_DISTANCE_DETAIL_HPP diff --git a/thirdparty1/linux/include/opencv2/core/cuda/dynamic_smem.hpp b/thirdparty1/linux/include/opencv2/core/cuda/dynamic_smem.hpp new file mode 100644 index 0000000..42570c6 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda/dynamic_smem.hpp @@ -0,0 +1,88 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CUDA_DYNAMIC_SMEM_HPP +#define OPENCV_CUDA_DYNAMIC_SMEM_HPP + +/** @file + * @deprecated Use @ref cudev instead. + */ + +//! @cond IGNORED + +namespace cv { namespace cuda { namespace device +{ + template struct DynamicSharedMem + { + __device__ __forceinline__ operator T*() + { + extern __shared__ int __smem[]; + return (T*)__smem; + } + + __device__ __forceinline__ operator const T*() const + { + extern __shared__ int __smem[]; + return (T*)__smem; + } + }; + + // specialize for double to avoid unaligned memory access compile errors + template<> struct DynamicSharedMem + { + __device__ __forceinline__ operator double*() + { + extern __shared__ double __smem_d[]; + return (double*)__smem_d; + } + + __device__ __forceinline__ operator const double*() const + { + extern __shared__ double __smem_d[]; + return (double*)__smem_d; + } + }; +}}} + +//! @endcond + +#endif // OPENCV_CUDA_DYNAMIC_SMEM_HPP diff --git a/thirdparty1/linux/include/opencv2/core/cuda/emulation.hpp b/thirdparty1/linux/include/opencv2/core/cuda/emulation.hpp new file mode 100644 index 0000000..d346865 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda/emulation.hpp @@ -0,0 +1,269 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CUDA_EMULATION_HPP_ +#define OPENCV_CUDA_EMULATION_HPP_ + +#include "common.hpp" +#include "warp_reduce.hpp" + +/** @file + * @deprecated Use @ref cudev instead. + */ + +//! @cond IGNORED + +namespace cv { namespace cuda { namespace device +{ + struct Emulation + { + + static __device__ __forceinline__ int syncthreadsOr(int pred) + { +#if defined (__CUDA_ARCH__) && (__CUDA_ARCH__ < 200) + // just campilation stab + return 0; +#else + return __syncthreads_or(pred); +#endif + } + + template + static __forceinline__ __device__ int Ballot(int predicate) + { +#if defined (__CUDA_ARCH__) && (__CUDA_ARCH__ >= 200) + return __ballot(predicate); +#else + __shared__ volatile int cta_buffer[CTA_SIZE]; + + int tid = threadIdx.x; + cta_buffer[tid] = predicate ? (1 << (tid & 31)) : 0; + return warp_reduce(cta_buffer); +#endif + } + + struct smem + { + enum { TAG_MASK = (1U << ( (sizeof(unsigned int) << 3) - 5U)) - 1U }; + + template + static __device__ __forceinline__ T atomicInc(T* address, T val) + { +#if defined (__CUDA_ARCH__) && (__CUDA_ARCH__ < 120) + T count; + unsigned int tag = threadIdx.x << ( (sizeof(unsigned int) << 3) - 5U); + do + { + count = *address & TAG_MASK; + count = tag | (count + 1); + *address = count; + } while (*address != count); + + return (count & TAG_MASK) - 1; +#else + return ::atomicInc(address, val); +#endif + } + + template + static __device__ __forceinline__ T atomicAdd(T* address, T val) + { +#if defined (__CUDA_ARCH__) && (__CUDA_ARCH__ < 120) + T count; + unsigned int tag = threadIdx.x << ( (sizeof(unsigned int) << 3) - 5U); + do + { + count = *address & TAG_MASK; + count = tag | (count + val); + *address = count; + } while (*address != count); + + return (count & TAG_MASK) - val; +#else + return ::atomicAdd(address, val); +#endif + } + + template + static __device__ __forceinline__ T atomicMin(T* address, T val) + { +#if defined (__CUDA_ARCH__) && (__CUDA_ARCH__ < 120) + T count = ::min(*address, val); + do + { + *address = count; + } while (*address > count); + + return count; +#else + return ::atomicMin(address, val); +#endif + } + }; // struct cmem + + struct glob + { + static __device__ __forceinline__ int atomicAdd(int* address, int val) + { + return ::atomicAdd(address, val); + } + static __device__ __forceinline__ unsigned int atomicAdd(unsigned int* address, unsigned int val) + { + return ::atomicAdd(address, val); + } + static __device__ __forceinline__ float atomicAdd(float* address, float val) + { + #if __CUDA_ARCH__ >= 200 + return ::atomicAdd(address, val); + #else + int* address_as_i = (int*) address; + int old = *address_as_i, assumed; + do { + assumed = old; + old = ::atomicCAS(address_as_i, assumed, + __float_as_int(val + __int_as_float(assumed))); + } while (assumed != old); + return __int_as_float(old); + #endif + } + static __device__ __forceinline__ double atomicAdd(double* address, double val) + { + #if __CUDA_ARCH__ >= 130 + unsigned long long int* address_as_ull = (unsigned long long int*) address; + unsigned long long int old = *address_as_ull, assumed; + do { + assumed = old; + old = ::atomicCAS(address_as_ull, assumed, + __double_as_longlong(val + __longlong_as_double(assumed))); + } while (assumed != old); + return __longlong_as_double(old); + #else + (void) address; + (void) val; + return 0.0; + #endif + } + + static __device__ __forceinline__ int atomicMin(int* address, int val) + { + return ::atomicMin(address, val); + } + static __device__ __forceinline__ float atomicMin(float* address, float val) + { + #if __CUDA_ARCH__ >= 120 + int* address_as_i = (int*) address; + int old = *address_as_i, assumed; + do { + assumed = old; + old = ::atomicCAS(address_as_i, assumed, + __float_as_int(::fminf(val, __int_as_float(assumed)))); + } while (assumed != old); + return __int_as_float(old); + #else + (void) address; + (void) val; + return 0.0f; + #endif + } + static __device__ __forceinline__ double atomicMin(double* address, double val) + { + #if __CUDA_ARCH__ >= 130 + unsigned long long int* address_as_ull = (unsigned long long int*) address; + unsigned long long int old = *address_as_ull, assumed; + do { + assumed = old; + old = ::atomicCAS(address_as_ull, assumed, + __double_as_longlong(::fmin(val, __longlong_as_double(assumed)))); + } while (assumed != old); + return __longlong_as_double(old); + #else + (void) address; + (void) val; + return 0.0; + #endif + } + + static __device__ __forceinline__ int atomicMax(int* address, int val) + { + return ::atomicMax(address, val); + } + static __device__ __forceinline__ float atomicMax(float* address, float val) + { + #if __CUDA_ARCH__ >= 120 + int* address_as_i = (int*) address; + int old = *address_as_i, assumed; + do { + assumed = old; + old = ::atomicCAS(address_as_i, assumed, + __float_as_int(::fmaxf(val, __int_as_float(assumed)))); + } while (assumed != old); + return __int_as_float(old); + #else + (void) address; + (void) val; + return 0.0f; + #endif + } + static __device__ __forceinline__ double atomicMax(double* address, double val) + { + #if __CUDA_ARCH__ >= 130 + unsigned long long int* address_as_ull = (unsigned long long int*) address; + unsigned long long int old = *address_as_ull, assumed; + do { + assumed = old; + old = ::atomicCAS(address_as_ull, assumed, + __double_as_longlong(::fmax(val, __longlong_as_double(assumed)))); + } while (assumed != old); + return __longlong_as_double(old); + #else + (void) address; + (void) val; + return 0.0; + #endif + } + }; + }; //struct Emulation +}}} // namespace cv { namespace cuda { namespace cudev + +//! @endcond + +#endif /* OPENCV_CUDA_EMULATION_HPP_ */ diff --git a/thirdparty1/linux/include/opencv2/core/cuda/filters.hpp b/thirdparty1/linux/include/opencv2/core/cuda/filters.hpp new file mode 100644 index 0000000..c2e24dd --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda/filters.hpp @@ -0,0 +1,286 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CUDA_FILTERS_HPP +#define OPENCV_CUDA_FILTERS_HPP + +#include "saturate_cast.hpp" +#include "vec_traits.hpp" +#include "vec_math.hpp" +#include "type_traits.hpp" + +/** @file + * @deprecated Use @ref cudev instead. + */ + +//! @cond IGNORED + +namespace cv { namespace cuda { namespace device +{ + template struct PointFilter + { + typedef typename Ptr2D::elem_type elem_type; + typedef float index_type; + + explicit __host__ __device__ __forceinline__ PointFilter(const Ptr2D& src_, float fx = 0.f, float fy = 0.f) + : src(src_) + { + (void)fx; + (void)fy; + } + + __device__ __forceinline__ elem_type operator ()(float y, float x) const + { + return src(__float2int_rz(y), __float2int_rz(x)); + } + + Ptr2D src; + }; + + template struct LinearFilter + { + typedef typename Ptr2D::elem_type elem_type; + typedef float index_type; + + explicit __host__ __device__ __forceinline__ LinearFilter(const Ptr2D& src_, float fx = 0.f, float fy = 0.f) + : src(src_) + { + (void)fx; + (void)fy; + } + __device__ __forceinline__ elem_type operator ()(float y, float x) const + { + typedef typename TypeVec::cn>::vec_type work_type; + + work_type out = VecTraits::all(0); + + const int x1 = __float2int_rd(x); + const int y1 = __float2int_rd(y); + const int x2 = x1 + 1; + const int y2 = y1 + 1; + + elem_type src_reg = src(y1, x1); + out = out + src_reg * ((x2 - x) * (y2 - y)); + + src_reg = src(y1, x2); + out = out + src_reg * ((x - x1) * (y2 - y)); + + src_reg = src(y2, x1); + out = out + src_reg * ((x2 - x) * (y - y1)); + + src_reg = src(y2, x2); + out = out + src_reg * ((x - x1) * (y - y1)); + + return saturate_cast(out); + } + + Ptr2D src; + }; + + template struct CubicFilter + { + typedef typename Ptr2D::elem_type elem_type; + typedef float index_type; + typedef typename TypeVec::cn>::vec_type work_type; + + explicit __host__ __device__ __forceinline__ CubicFilter(const Ptr2D& src_, float fx = 0.f, float fy = 0.f) + : src(src_) + { + (void)fx; + (void)fy; + } + + static __device__ __forceinline__ float bicubicCoeff(float x_) + { + float x = fabsf(x_); + if (x <= 1.0f) + { + return x * x * (1.5f * x - 2.5f) + 1.0f; + } + else if (x < 2.0f) + { + return x * (x * (-0.5f * x + 2.5f) - 4.0f) + 2.0f; + } + else + { + return 0.0f; + } + } + + __device__ elem_type operator ()(float y, float x) const + { + const float xmin = ::ceilf(x - 2.0f); + const float xmax = ::floorf(x + 2.0f); + + const float ymin = ::ceilf(y - 2.0f); + const float ymax = ::floorf(y + 2.0f); + + work_type sum = VecTraits::all(0); + float wsum = 0.0f; + + for (float cy = ymin; cy <= ymax; cy += 1.0f) + { + for (float cx = xmin; cx <= xmax; cx += 1.0f) + { + const float w = bicubicCoeff(x - cx) * bicubicCoeff(y - cy); + sum = sum + w * src(__float2int_rd(cy), __float2int_rd(cx)); + wsum += w; + } + } + + work_type res = (!wsum)? VecTraits::all(0) : sum / wsum; + + return saturate_cast(res); + } + + Ptr2D src; + }; + // for integer scaling + template struct IntegerAreaFilter + { + typedef typename Ptr2D::elem_type elem_type; + typedef float index_type; + + explicit __host__ __device__ __forceinline__ IntegerAreaFilter(const Ptr2D& src_, float scale_x_, float scale_y_) + : src(src_), scale_x(scale_x_), scale_y(scale_y_), scale(1.f / (scale_x * scale_y)) {} + + __device__ __forceinline__ elem_type operator ()(float y, float x) const + { + float fsx1 = x * scale_x; + float fsx2 = fsx1 + scale_x; + + int sx1 = __float2int_ru(fsx1); + int sx2 = __float2int_rd(fsx2); + + float fsy1 = y * scale_y; + float fsy2 = fsy1 + scale_y; + + int sy1 = __float2int_ru(fsy1); + int sy2 = __float2int_rd(fsy2); + + typedef typename TypeVec::cn>::vec_type work_type; + work_type out = VecTraits::all(0.f); + + for(int dy = sy1; dy < sy2; ++dy) + for(int dx = sx1; dx < sx2; ++dx) + { + out = out + src(dy, dx) * scale; + } + + return saturate_cast(out); + } + + Ptr2D src; + float scale_x, scale_y ,scale; + }; + + template struct AreaFilter + { + typedef typename Ptr2D::elem_type elem_type; + typedef float index_type; + + explicit __host__ __device__ __forceinline__ AreaFilter(const Ptr2D& src_, float scale_x_, float scale_y_) + : src(src_), scale_x(scale_x_), scale_y(scale_y_){} + + __device__ __forceinline__ elem_type operator ()(float y, float x) const + { + float fsx1 = x * scale_x; + float fsx2 = fsx1 + scale_x; + + int sx1 = __float2int_ru(fsx1); + int sx2 = __float2int_rd(fsx2); + + float fsy1 = y * scale_y; + float fsy2 = fsy1 + scale_y; + + int sy1 = __float2int_ru(fsy1); + int sy2 = __float2int_rd(fsy2); + + float scale = 1.f / (fminf(scale_x, src.width - fsx1) * fminf(scale_y, src.height - fsy1)); + + typedef typename TypeVec::cn>::vec_type work_type; + work_type out = VecTraits::all(0.f); + + for (int dy = sy1; dy < sy2; ++dy) + { + for (int dx = sx1; dx < sx2; ++dx) + out = out + src(dy, dx) * scale; + + if (sx1 > fsx1) + out = out + src(dy, (sx1 -1) ) * ((sx1 - fsx1) * scale); + + if (sx2 < fsx2) + out = out + src(dy, sx2) * ((fsx2 -sx2) * scale); + } + + if (sy1 > fsy1) + for (int dx = sx1; dx < sx2; ++dx) + out = out + src( (sy1 - 1) , dx) * ((sy1 -fsy1) * scale); + + if (sy2 < fsy2) + for (int dx = sx1; dx < sx2; ++dx) + out = out + src(sy2, dx) * ((fsy2 -sy2) * scale); + + if ((sy1 > fsy1) && (sx1 > fsx1)) + out = out + src( (sy1 - 1) , (sx1 - 1)) * ((sy1 -fsy1) * (sx1 -fsx1) * scale); + + if ((sy1 > fsy1) && (sx2 < fsx2)) + out = out + src( (sy1 - 1) , sx2) * ((sy1 -fsy1) * (fsx2 -sx2) * scale); + + if ((sy2 < fsy2) && (sx2 < fsx2)) + out = out + src(sy2, sx2) * ((fsy2 -sy2) * (fsx2 -sx2) * scale); + + if ((sy2 < fsy2) && (sx1 > fsx1)) + out = out + src(sy2, (sx1 - 1)) * ((fsy2 -sy2) * (sx1 -fsx1) * scale); + + return saturate_cast(out); + } + + Ptr2D src; + float scale_x, scale_y; + int width, haight; + }; +}}} // namespace cv { namespace cuda { namespace cudev + +//! @endcond + +#endif // OPENCV_CUDA_FILTERS_HPP diff --git a/thirdparty1/linux/include/opencv2/core/cuda/funcattrib.hpp b/thirdparty1/linux/include/opencv2/core/cuda/funcattrib.hpp new file mode 100644 index 0000000..f582080 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda/funcattrib.hpp @@ -0,0 +1,79 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CUDA_DEVICE_FUNCATTRIB_HPP +#define OPENCV_CUDA_DEVICE_FUNCATTRIB_HPP + +#include + +/** @file + * @deprecated Use @ref cudev instead. + */ + +//! @cond IGNORED + +namespace cv { namespace cuda { namespace device +{ + template + void printFuncAttrib(Func& func) + { + + cudaFuncAttributes attrs; + cudaFuncGetAttributes(&attrs, func); + + printf("=== Function stats ===\n"); + printf("Name: \n"); + printf("sharedSizeBytes = %d\n", attrs.sharedSizeBytes); + printf("constSizeBytes = %d\n", attrs.constSizeBytes); + printf("localSizeBytes = %d\n", attrs.localSizeBytes); + printf("maxThreadsPerBlock = %d\n", attrs.maxThreadsPerBlock); + printf("numRegs = %d\n", attrs.numRegs); + printf("ptxVersion = %d\n", attrs.ptxVersion); + printf("binaryVersion = %d\n", attrs.binaryVersion); + printf("\n"); + fflush(stdout); + } +}}} // namespace cv { namespace cuda { namespace cudev + +//! @endcond + +#endif /* OPENCV_CUDA_DEVICE_FUNCATTRIB_HPP */ diff --git a/thirdparty1/linux/include/opencv2/core/cuda/functional.hpp b/thirdparty1/linux/include/opencv2/core/cuda/functional.hpp new file mode 100644 index 0000000..5b8a7eb --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda/functional.hpp @@ -0,0 +1,797 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CUDA_FUNCTIONAL_HPP +#define OPENCV_CUDA_FUNCTIONAL_HPP + +#include +#include "saturate_cast.hpp" +#include "vec_traits.hpp" +#include "type_traits.hpp" +#include "device_functions.h" + +/** @file + * @deprecated Use @ref cudev instead. + */ + +//! @cond IGNORED + +namespace cv { namespace cuda { namespace device +{ + // Function Objects + template struct unary_function : public std::unary_function {}; + template struct binary_function : public std::binary_function {}; + + // Arithmetic Operations + template struct plus : binary_function + { + __device__ __forceinline__ T operator ()(typename TypeTraits::ParameterType a, + typename TypeTraits::ParameterType b) const + { + return a + b; + } + __host__ __device__ __forceinline__ plus() {} + __host__ __device__ __forceinline__ plus(const plus&) {} + }; + + template struct minus : binary_function + { + __device__ __forceinline__ T operator ()(typename TypeTraits::ParameterType a, + typename TypeTraits::ParameterType b) const + { + return a - b; + } + __host__ __device__ __forceinline__ minus() {} + __host__ __device__ __forceinline__ minus(const minus&) {} + }; + + template struct multiplies : binary_function + { + __device__ __forceinline__ T operator ()(typename TypeTraits::ParameterType a, + typename TypeTraits::ParameterType b) const + { + return a * b; + } + __host__ __device__ __forceinline__ multiplies() {} + __host__ __device__ __forceinline__ multiplies(const multiplies&) {} + }; + + template struct divides : binary_function + { + __device__ __forceinline__ T operator ()(typename TypeTraits::ParameterType a, + typename TypeTraits::ParameterType b) const + { + return a / b; + } + __host__ __device__ __forceinline__ divides() {} + __host__ __device__ __forceinline__ divides(const divides&) {} + }; + + template struct modulus : binary_function + { + __device__ __forceinline__ T operator ()(typename TypeTraits::ParameterType a, + typename TypeTraits::ParameterType b) const + { + return a % b; + } + __host__ __device__ __forceinline__ modulus() {} + __host__ __device__ __forceinline__ modulus(const modulus&) {} + }; + + template struct negate : unary_function + { + __device__ __forceinline__ T operator ()(typename TypeTraits::ParameterType a) const + { + return -a; + } + __host__ __device__ __forceinline__ negate() {} + __host__ __device__ __forceinline__ negate(const negate&) {} + }; + + // Comparison Operations + template struct equal_to : binary_function + { + __device__ __forceinline__ bool operator ()(typename TypeTraits::ParameterType a, + typename TypeTraits::ParameterType b) const + { + return a == b; + } + __host__ __device__ __forceinline__ equal_to() {} + __host__ __device__ __forceinline__ equal_to(const equal_to&) {} + }; + + template struct not_equal_to : binary_function + { + __device__ __forceinline__ bool operator ()(typename TypeTraits::ParameterType a, + typename TypeTraits::ParameterType b) const + { + return a != b; + } + __host__ __device__ __forceinline__ not_equal_to() {} + __host__ __device__ __forceinline__ not_equal_to(const not_equal_to&) {} + }; + + template struct greater : binary_function + { + __device__ __forceinline__ bool operator ()(typename TypeTraits::ParameterType a, + typename TypeTraits::ParameterType b) const + { + return a > b; + } + __host__ __device__ __forceinline__ greater() {} + __host__ __device__ __forceinline__ greater(const greater&) {} + }; + + template struct less : binary_function + { + __device__ __forceinline__ bool operator ()(typename TypeTraits::ParameterType a, + typename TypeTraits::ParameterType b) const + { + return a < b; + } + __host__ __device__ __forceinline__ less() {} + __host__ __device__ __forceinline__ less(const less&) {} + }; + + template struct greater_equal : binary_function + { + __device__ __forceinline__ bool operator ()(typename TypeTraits::ParameterType a, + typename TypeTraits::ParameterType b) const + { + return a >= b; + } + __host__ __device__ __forceinline__ greater_equal() {} + __host__ __device__ __forceinline__ greater_equal(const greater_equal&) {} + }; + + template struct less_equal : binary_function + { + __device__ __forceinline__ bool operator ()(typename TypeTraits::ParameterType a, + typename TypeTraits::ParameterType b) const + { + return a <= b; + } + __host__ __device__ __forceinline__ less_equal() {} + __host__ __device__ __forceinline__ less_equal(const less_equal&) {} + }; + + // Logical Operations + template struct logical_and : binary_function + { + __device__ __forceinline__ bool operator ()(typename TypeTraits::ParameterType a, + typename TypeTraits::ParameterType b) const + { + return a && b; + } + __host__ __device__ __forceinline__ logical_and() {} + __host__ __device__ __forceinline__ logical_and(const logical_and&) {} + }; + + template struct logical_or : binary_function + { + __device__ __forceinline__ bool operator ()(typename TypeTraits::ParameterType a, + typename TypeTraits::ParameterType b) const + { + return a || b; + } + __host__ __device__ __forceinline__ logical_or() {} + __host__ __device__ __forceinline__ logical_or(const logical_or&) {} + }; + + template struct logical_not : unary_function + { + __device__ __forceinline__ bool operator ()(typename TypeTraits::ParameterType a) const + { + return !a; + } + __host__ __device__ __forceinline__ logical_not() {} + __host__ __device__ __forceinline__ logical_not(const logical_not&) {} + }; + + // Bitwise Operations + template struct bit_and : binary_function + { + __device__ __forceinline__ T operator ()(typename TypeTraits::ParameterType a, + typename TypeTraits::ParameterType b) const + { + return a & b; + } + __host__ __device__ __forceinline__ bit_and() {} + __host__ __device__ __forceinline__ bit_and(const bit_and&) {} + }; + + template struct bit_or : binary_function + { + __device__ __forceinline__ T operator ()(typename TypeTraits::ParameterType a, + typename TypeTraits::ParameterType b) const + { + return a | b; + } + __host__ __device__ __forceinline__ bit_or() {} + __host__ __device__ __forceinline__ bit_or(const bit_or&) {} + }; + + template struct bit_xor : binary_function + { + __device__ __forceinline__ T operator ()(typename TypeTraits::ParameterType a, + typename TypeTraits::ParameterType b) const + { + return a ^ b; + } + __host__ __device__ __forceinline__ bit_xor() {} + __host__ __device__ __forceinline__ bit_xor(const bit_xor&) {} + }; + + template struct bit_not : unary_function + { + __device__ __forceinline__ T operator ()(typename TypeTraits::ParameterType v) const + { + return ~v; + } + __host__ __device__ __forceinline__ bit_not() {} + __host__ __device__ __forceinline__ bit_not(const bit_not&) {} + }; + + // Generalized Identity Operations + template struct identity : unary_function + { + __device__ __forceinline__ typename TypeTraits::ParameterType operator()(typename TypeTraits::ParameterType x) const + { + return x; + } + __host__ __device__ __forceinline__ identity() {} + __host__ __device__ __forceinline__ identity(const identity&) {} + }; + + template struct project1st : binary_function + { + __device__ __forceinline__ typename TypeTraits::ParameterType operator()(typename TypeTraits::ParameterType lhs, typename TypeTraits::ParameterType rhs) const + { + return lhs; + } + __host__ __device__ __forceinline__ project1st() {} + __host__ __device__ __forceinline__ project1st(const project1st&) {} + }; + + template struct project2nd : binary_function + { + __device__ __forceinline__ typename TypeTraits::ParameterType operator()(typename TypeTraits::ParameterType lhs, typename TypeTraits::ParameterType rhs) const + { + return rhs; + } + __host__ __device__ __forceinline__ project2nd() {} + __host__ __device__ __forceinline__ project2nd(const project2nd&) {} + }; + + // Min/Max Operations + +#define OPENCV_CUDA_IMPLEMENT_MINMAX(name, type, op) \ + template <> struct name : binary_function \ + { \ + __device__ __forceinline__ type operator()(type lhs, type rhs) const {return op(lhs, rhs);} \ + __host__ __device__ __forceinline__ name() {}\ + __host__ __device__ __forceinline__ name(const name&) {}\ + }; + + template struct maximum : binary_function + { + __device__ __forceinline__ T operator()(typename TypeTraits::ParameterType lhs, typename TypeTraits::ParameterType rhs) const + { + return max(lhs, rhs); + } + __host__ __device__ __forceinline__ maximum() {} + __host__ __device__ __forceinline__ maximum(const maximum&) {} + }; + + OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, uchar, ::max) + OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, schar, ::max) + OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, char, ::max) + OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, ushort, ::max) + OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, short, ::max) + OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, int, ::max) + OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, uint, ::max) + OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, float, ::fmax) + OPENCV_CUDA_IMPLEMENT_MINMAX(maximum, double, ::fmax) + + template struct minimum : binary_function + { + __device__ __forceinline__ T operator()(typename TypeTraits::ParameterType lhs, typename TypeTraits::ParameterType rhs) const + { + return min(lhs, rhs); + } + __host__ __device__ __forceinline__ minimum() {} + __host__ __device__ __forceinline__ minimum(const minimum&) {} + }; + + OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, uchar, ::min) + OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, schar, ::min) + OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, char, ::min) + OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, ushort, ::min) + OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, short, ::min) + OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, int, ::min) + OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, uint, ::min) + OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, float, ::fmin) + OPENCV_CUDA_IMPLEMENT_MINMAX(minimum, double, ::fmin) + +#undef OPENCV_CUDA_IMPLEMENT_MINMAX + + // Math functions + + template struct abs_func : unary_function + { + __device__ __forceinline__ T operator ()(typename TypeTraits::ParameterType x) const + { + return abs(x); + } + + __host__ __device__ __forceinline__ abs_func() {} + __host__ __device__ __forceinline__ abs_func(const abs_func&) {} + }; + template <> struct abs_func : unary_function + { + __device__ __forceinline__ unsigned char operator ()(unsigned char x) const + { + return x; + } + + __host__ __device__ __forceinline__ abs_func() {} + __host__ __device__ __forceinline__ abs_func(const abs_func&) {} + }; + template <> struct abs_func : unary_function + { + __device__ __forceinline__ signed char operator ()(signed char x) const + { + return ::abs((int)x); + } + + __host__ __device__ __forceinline__ abs_func() {} + __host__ __device__ __forceinline__ abs_func(const abs_func&) {} + }; + template <> struct abs_func : unary_function + { + __device__ __forceinline__ char operator ()(char x) const + { + return ::abs((int)x); + } + + __host__ __device__ __forceinline__ abs_func() {} + __host__ __device__ __forceinline__ abs_func(const abs_func&) {} + }; + template <> struct abs_func : unary_function + { + __device__ __forceinline__ unsigned short operator ()(unsigned short x) const + { + return x; + } + + __host__ __device__ __forceinline__ abs_func() {} + __host__ __device__ __forceinline__ abs_func(const abs_func&) {} + }; + template <> struct abs_func : unary_function + { + __device__ __forceinline__ short operator ()(short x) const + { + return ::abs((int)x); + } + + __host__ __device__ __forceinline__ abs_func() {} + __host__ __device__ __forceinline__ abs_func(const abs_func&) {} + }; + template <> struct abs_func : unary_function + { + __device__ __forceinline__ unsigned int operator ()(unsigned int x) const + { + return x; + } + + __host__ __device__ __forceinline__ abs_func() {} + __host__ __device__ __forceinline__ abs_func(const abs_func&) {} + }; + template <> struct abs_func : unary_function + { + __device__ __forceinline__ int operator ()(int x) const + { + return ::abs(x); + } + + __host__ __device__ __forceinline__ abs_func() {} + __host__ __device__ __forceinline__ abs_func(const abs_func&) {} + }; + template <> struct abs_func : unary_function + { + __device__ __forceinline__ float operator ()(float x) const + { + return ::fabsf(x); + } + + __host__ __device__ __forceinline__ abs_func() {} + __host__ __device__ __forceinline__ abs_func(const abs_func&) {} + }; + template <> struct abs_func : unary_function + { + __device__ __forceinline__ double operator ()(double x) const + { + return ::fabs(x); + } + + __host__ __device__ __forceinline__ abs_func() {} + __host__ __device__ __forceinline__ abs_func(const abs_func&) {} + }; + +#define OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(name, func) \ + template struct name ## _func : unary_function \ + { \ + __device__ __forceinline__ float operator ()(typename TypeTraits::ParameterType v) const \ + { \ + return func ## f(v); \ + } \ + __host__ __device__ __forceinline__ name ## _func() {} \ + __host__ __device__ __forceinline__ name ## _func(const name ## _func&) {} \ + }; \ + template <> struct name ## _func : unary_function \ + { \ + __device__ __forceinline__ double operator ()(double v) const \ + { \ + return func(v); \ + } \ + __host__ __device__ __forceinline__ name ## _func() {} \ + __host__ __device__ __forceinline__ name ## _func(const name ## _func&) {} \ + }; + +#define OPENCV_CUDA_IMPLEMENT_BIN_FUNCTOR(name, func) \ + template struct name ## _func : binary_function \ + { \ + __device__ __forceinline__ float operator ()(typename TypeTraits::ParameterType v1, typename TypeTraits::ParameterType v2) const \ + { \ + return func ## f(v1, v2); \ + } \ + __host__ __device__ __forceinline__ name ## _func() {} \ + __host__ __device__ __forceinline__ name ## _func(const name ## _func&) {} \ + }; \ + template <> struct name ## _func : binary_function \ + { \ + __device__ __forceinline__ double operator ()(double v1, double v2) const \ + { \ + return func(v1, v2); \ + } \ + __host__ __device__ __forceinline__ name ## _func() {} \ + __host__ __device__ __forceinline__ name ## _func(const name ## _func&) {} \ + }; + + OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(sqrt, ::sqrt) + OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(exp, ::exp) + OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(exp2, ::exp2) + OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(exp10, ::exp10) + OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(log, ::log) + OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(log2, ::log2) + OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(log10, ::log10) + OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(sin, ::sin) + OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(cos, ::cos) + OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(tan, ::tan) + OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(asin, ::asin) + OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(acos, ::acos) + OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(atan, ::atan) + OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(sinh, ::sinh) + OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(cosh, ::cosh) + OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(tanh, ::tanh) + OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(asinh, ::asinh) + OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(acosh, ::acosh) + OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR(atanh, ::atanh) + + OPENCV_CUDA_IMPLEMENT_BIN_FUNCTOR(hypot, ::hypot) + OPENCV_CUDA_IMPLEMENT_BIN_FUNCTOR(atan2, ::atan2) + OPENCV_CUDA_IMPLEMENT_BIN_FUNCTOR(pow, ::pow) + + #undef OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR + #undef OPENCV_CUDA_IMPLEMENT_UN_FUNCTOR_NO_DOUBLE + #undef OPENCV_CUDA_IMPLEMENT_BIN_FUNCTOR + + template struct hypot_sqr_func : binary_function + { + __device__ __forceinline__ T operator ()(typename TypeTraits::ParameterType src1, typename TypeTraits::ParameterType src2) const + { + return src1 * src1 + src2 * src2; + } + __host__ __device__ __forceinline__ hypot_sqr_func() {} + __host__ __device__ __forceinline__ hypot_sqr_func(const hypot_sqr_func&) {} + }; + + // Saturate Cast Functor + template struct saturate_cast_func : unary_function + { + __device__ __forceinline__ D operator ()(typename TypeTraits::ParameterType v) const + { + return saturate_cast(v); + } + __host__ __device__ __forceinline__ saturate_cast_func() {} + __host__ __device__ __forceinline__ saturate_cast_func(const saturate_cast_func&) {} + }; + + // Threshold Functors + template struct thresh_binary_func : unary_function + { + __host__ __device__ __forceinline__ thresh_binary_func(T thresh_, T maxVal_) : thresh(thresh_), maxVal(maxVal_) {} + + __device__ __forceinline__ T operator()(typename TypeTraits::ParameterType src) const + { + return (src > thresh) * maxVal; + } + + __host__ __device__ __forceinline__ thresh_binary_func() {} + __host__ __device__ __forceinline__ thresh_binary_func(const thresh_binary_func& other) + : thresh(other.thresh), maxVal(other.maxVal) {} + + T thresh; + T maxVal; + }; + + template struct thresh_binary_inv_func : unary_function + { + __host__ __device__ __forceinline__ thresh_binary_inv_func(T thresh_, T maxVal_) : thresh(thresh_), maxVal(maxVal_) {} + + __device__ __forceinline__ T operator()(typename TypeTraits::ParameterType src) const + { + return (src <= thresh) * maxVal; + } + + __host__ __device__ __forceinline__ thresh_binary_inv_func() {} + __host__ __device__ __forceinline__ thresh_binary_inv_func(const thresh_binary_inv_func& other) + : thresh(other.thresh), maxVal(other.maxVal) {} + + T thresh; + T maxVal; + }; + + template struct thresh_trunc_func : unary_function + { + explicit __host__ __device__ __forceinline__ thresh_trunc_func(T thresh_, T maxVal_ = 0) : thresh(thresh_) {(void)maxVal_;} + + __device__ __forceinline__ T operator()(typename TypeTraits::ParameterType src) const + { + return minimum()(src, thresh); + } + + __host__ __device__ __forceinline__ thresh_trunc_func() {} + __host__ __device__ __forceinline__ thresh_trunc_func(const thresh_trunc_func& other) + : thresh(other.thresh) {} + + T thresh; + }; + + template struct thresh_to_zero_func : unary_function + { + explicit __host__ __device__ __forceinline__ thresh_to_zero_func(T thresh_, T maxVal_ = 0) : thresh(thresh_) {(void)maxVal_;} + + __device__ __forceinline__ T operator()(typename TypeTraits::ParameterType src) const + { + return (src > thresh) * src; + } + + __host__ __device__ __forceinline__ thresh_to_zero_func() {} + __host__ __device__ __forceinline__ thresh_to_zero_func(const thresh_to_zero_func& other) + : thresh(other.thresh) {} + + T thresh; + }; + + template struct thresh_to_zero_inv_func : unary_function + { + explicit __host__ __device__ __forceinline__ thresh_to_zero_inv_func(T thresh_, T maxVal_ = 0) : thresh(thresh_) {(void)maxVal_;} + + __device__ __forceinline__ T operator()(typename TypeTraits::ParameterType src) const + { + return (src <= thresh) * src; + } + + __host__ __device__ __forceinline__ thresh_to_zero_inv_func() {} + __host__ __device__ __forceinline__ thresh_to_zero_inv_func(const thresh_to_zero_inv_func& other) + : thresh(other.thresh) {} + + T thresh; + }; + + // Function Object Adaptors + template struct unary_negate : unary_function + { + explicit __host__ __device__ __forceinline__ unary_negate(const Predicate& p) : pred(p) {} + + __device__ __forceinline__ bool operator()(typename TypeTraits::ParameterType x) const + { + return !pred(x); + } + + __host__ __device__ __forceinline__ unary_negate() {} + __host__ __device__ __forceinline__ unary_negate(const unary_negate& other) : pred(other.pred) {} + + Predicate pred; + }; + + template __host__ __device__ __forceinline__ unary_negate not1(const Predicate& pred) + { + return unary_negate(pred); + } + + template struct binary_negate : binary_function + { + explicit __host__ __device__ __forceinline__ binary_negate(const Predicate& p) : pred(p) {} + + __device__ __forceinline__ bool operator()(typename TypeTraits::ParameterType x, + typename TypeTraits::ParameterType y) const + { + return !pred(x,y); + } + + __host__ __device__ __forceinline__ binary_negate() {} + __host__ __device__ __forceinline__ binary_negate(const binary_negate& other) : pred(other.pred) {} + + Predicate pred; + }; + + template __host__ __device__ __forceinline__ binary_negate not2(const BinaryPredicate& pred) + { + return binary_negate(pred); + } + + template struct binder1st : unary_function + { + __host__ __device__ __forceinline__ binder1st(const Op& op_, const typename Op::first_argument_type& arg1_) : op(op_), arg1(arg1_) {} + + __device__ __forceinline__ typename Op::result_type operator ()(typename TypeTraits::ParameterType a) const + { + return op(arg1, a); + } + + __host__ __device__ __forceinline__ binder1st() {} + __host__ __device__ __forceinline__ binder1st(const binder1st& other) : op(other.op), arg1(other.arg1) {} + + Op op; + typename Op::first_argument_type arg1; + }; + + template __host__ __device__ __forceinline__ binder1st bind1st(const Op& op, const T& x) + { + return binder1st(op, typename Op::first_argument_type(x)); + } + + template struct binder2nd : unary_function + { + __host__ __device__ __forceinline__ binder2nd(const Op& op_, const typename Op::second_argument_type& arg2_) : op(op_), arg2(arg2_) {} + + __forceinline__ __device__ typename Op::result_type operator ()(typename TypeTraits::ParameterType a) const + { + return op(a, arg2); + } + + __host__ __device__ __forceinline__ binder2nd() {} + __host__ __device__ __forceinline__ binder2nd(const binder2nd& other) : op(other.op), arg2(other.arg2) {} + + Op op; + typename Op::second_argument_type arg2; + }; + + template __host__ __device__ __forceinline__ binder2nd bind2nd(const Op& op, const T& x) + { + return binder2nd(op, typename Op::second_argument_type(x)); + } + + // Functor Traits + template struct IsUnaryFunction + { + typedef char Yes; + struct No {Yes a[2];}; + + template static Yes check(unary_function); + static No check(...); + + static F makeF(); + + enum { value = (sizeof(check(makeF())) == sizeof(Yes)) }; + }; + + template struct IsBinaryFunction + { + typedef char Yes; + struct No {Yes a[2];}; + + template static Yes check(binary_function); + static No check(...); + + static F makeF(); + + enum { value = (sizeof(check(makeF())) == sizeof(Yes)) }; + }; + + namespace functional_detail + { + template struct UnOpShift { enum { shift = 1 }; }; + template struct UnOpShift { enum { shift = 4 }; }; + template struct UnOpShift { enum { shift = 2 }; }; + + template struct DefaultUnaryShift + { + enum { shift = UnOpShift::shift }; + }; + + template struct BinOpShift { enum { shift = 1 }; }; + template struct BinOpShift { enum { shift = 4 }; }; + template struct BinOpShift { enum { shift = 2 }; }; + + template struct DefaultBinaryShift + { + enum { shift = BinOpShift::shift }; + }; + + template ::value> struct ShiftDispatcher; + template struct ShiftDispatcher + { + enum { shift = DefaultUnaryShift::shift }; + }; + template struct ShiftDispatcher + { + enum { shift = DefaultBinaryShift::shift }; + }; + } + + template struct DefaultTransformShift + { + enum { shift = functional_detail::ShiftDispatcher::shift }; + }; + + template struct DefaultTransformFunctorTraits + { + enum { simple_block_dim_x = 16 }; + enum { simple_block_dim_y = 16 }; + + enum { smart_block_dim_x = 16 }; + enum { smart_block_dim_y = 16 }; + enum { smart_shift = DefaultTransformShift::shift }; + }; + + template struct TransformFunctorTraits : DefaultTransformFunctorTraits {}; + +#define OPENCV_CUDA_TRANSFORM_FUNCTOR_TRAITS(type) \ + template <> struct TransformFunctorTraits< type > : DefaultTransformFunctorTraits< type > +}}} // namespace cv { namespace cuda { namespace cudev + +//! @endcond + +#endif // OPENCV_CUDA_FUNCTIONAL_HPP diff --git a/thirdparty1/linux/include/opencv2/core/cuda/limits.hpp b/thirdparty1/linux/include/opencv2/core/cuda/limits.hpp new file mode 100644 index 0000000..7e15ed6 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda/limits.hpp @@ -0,0 +1,128 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CUDA_LIMITS_HPP +#define OPENCV_CUDA_LIMITS_HPP + +#include +#include +#include "common.hpp" + +/** @file + * @deprecated Use @ref cudev instead. + */ + +//! @cond IGNORED + +namespace cv { namespace cuda { namespace device +{ +template struct numeric_limits; + +template <> struct numeric_limits +{ + __device__ __forceinline__ static bool min() { return false; } + __device__ __forceinline__ static bool max() { return true; } + static const bool is_signed = false; +}; + +template <> struct numeric_limits +{ + __device__ __forceinline__ static signed char min() { return SCHAR_MIN; } + __device__ __forceinline__ static signed char max() { return SCHAR_MAX; } + static const bool is_signed = true; +}; + +template <> struct numeric_limits +{ + __device__ __forceinline__ static unsigned char min() { return 0; } + __device__ __forceinline__ static unsigned char max() { return UCHAR_MAX; } + static const bool is_signed = false; +}; + +template <> struct numeric_limits +{ + __device__ __forceinline__ static short min() { return SHRT_MIN; } + __device__ __forceinline__ static short max() { return SHRT_MAX; } + static const bool is_signed = true; +}; + +template <> struct numeric_limits +{ + __device__ __forceinline__ static unsigned short min() { return 0; } + __device__ __forceinline__ static unsigned short max() { return USHRT_MAX; } + static const bool is_signed = false; +}; + +template <> struct numeric_limits +{ + __device__ __forceinline__ static int min() { return INT_MIN; } + __device__ __forceinline__ static int max() { return INT_MAX; } + static const bool is_signed = true; +}; + +template <> struct numeric_limits +{ + __device__ __forceinline__ static unsigned int min() { return 0; } + __device__ __forceinline__ static unsigned int max() { return UINT_MAX; } + static const bool is_signed = false; +}; + +template <> struct numeric_limits +{ + __device__ __forceinline__ static float min() { return FLT_MIN; } + __device__ __forceinline__ static float max() { return FLT_MAX; } + __device__ __forceinline__ static float epsilon() { return FLT_EPSILON; } + static const bool is_signed = true; +}; + +template <> struct numeric_limits +{ + __device__ __forceinline__ static double min() { return DBL_MIN; } + __device__ __forceinline__ static double max() { return DBL_MAX; } + __device__ __forceinline__ static double epsilon() { return DBL_EPSILON; } + static const bool is_signed = true; +}; +}}} // namespace cv { namespace cuda { namespace cudev { + +//! @endcond + +#endif // OPENCV_CUDA_LIMITS_HPP diff --git a/thirdparty1/linux/include/opencv2/core/cuda/reduce.hpp b/thirdparty1/linux/include/opencv2/core/cuda/reduce.hpp new file mode 100644 index 0000000..5de3650 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda/reduce.hpp @@ -0,0 +1,209 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CUDA_REDUCE_HPP +#define OPENCV_CUDA_REDUCE_HPP + +#ifndef THRUST_DEBUG // eliminate -Wundef warning +#define THRUST_DEBUG 0 +#endif + +#include +#include "detail/reduce.hpp" +#include "detail/reduce_key_val.hpp" + +/** @file + * @deprecated Use @ref cudev instead. + */ + +//! @cond IGNORED + +namespace cv { namespace cuda { namespace device +{ + template + __device__ __forceinline__ void reduce(volatile T* smem, T& val, unsigned int tid, const Op& op) + { + reduce_detail::Dispatcher::reductor::template reduce(smem, val, tid, op); + } + template + __device__ __forceinline__ void reduce(const thrust::tuple& smem, + const thrust::tuple& val, + unsigned int tid, + const thrust::tuple& op) + { + reduce_detail::Dispatcher::reductor::template reduce< + const thrust::tuple&, + const thrust::tuple&, + const thrust::tuple&>(smem, val, tid, op); + } + + template + __device__ __forceinline__ void reduceKeyVal(volatile K* skeys, K& key, volatile V* svals, V& val, unsigned int tid, const Cmp& cmp) + { + reduce_key_val_detail::Dispatcher::reductor::template reduce(skeys, key, svals, val, tid, cmp); + } + template + __device__ __forceinline__ void reduceKeyVal(volatile K* skeys, K& key, + const thrust::tuple& svals, + const thrust::tuple& val, + unsigned int tid, const Cmp& cmp) + { + reduce_key_val_detail::Dispatcher::reductor::template reduce&, + const thrust::tuple&, + const Cmp&>(skeys, key, svals, val, tid, cmp); + } + template + __device__ __forceinline__ void reduceKeyVal(const thrust::tuple& skeys, + const thrust::tuple& key, + const thrust::tuple& svals, + const thrust::tuple& val, + unsigned int tid, + const thrust::tuple& cmp) + { + reduce_key_val_detail::Dispatcher::reductor::template reduce< + const thrust::tuple&, + const thrust::tuple&, + const thrust::tuple&, + const thrust::tuple&, + const thrust::tuple& + >(skeys, key, svals, val, tid, cmp); + } + + // smem_tuple + + template + __device__ __forceinline__ + thrust::tuple + smem_tuple(T0* t0) + { + return thrust::make_tuple((volatile T0*) t0); + } + + template + __device__ __forceinline__ + thrust::tuple + smem_tuple(T0* t0, T1* t1) + { + return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1); + } + + template + __device__ __forceinline__ + thrust::tuple + smem_tuple(T0* t0, T1* t1, T2* t2) + { + return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2); + } + + template + __device__ __forceinline__ + thrust::tuple + smem_tuple(T0* t0, T1* t1, T2* t2, T3* t3) + { + return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2, (volatile T3*) t3); + } + + template + __device__ __forceinline__ + thrust::tuple + smem_tuple(T0* t0, T1* t1, T2* t2, T3* t3, T4* t4) + { + return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2, (volatile T3*) t3, (volatile T4*) t4); + } + + template + __device__ __forceinline__ + thrust::tuple + smem_tuple(T0* t0, T1* t1, T2* t2, T3* t3, T4* t4, T5* t5) + { + return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2, (volatile T3*) t3, (volatile T4*) t4, (volatile T5*) t5); + } + + template + __device__ __forceinline__ + thrust::tuple + smem_tuple(T0* t0, T1* t1, T2* t2, T3* t3, T4* t4, T5* t5, T6* t6) + { + return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2, (volatile T3*) t3, (volatile T4*) t4, (volatile T5*) t5, (volatile T6*) t6); + } + + template + __device__ __forceinline__ + thrust::tuple + smem_tuple(T0* t0, T1* t1, T2* t2, T3* t3, T4* t4, T5* t5, T6* t6, T7* t7) + { + return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2, (volatile T3*) t3, (volatile T4*) t4, (volatile T5*) t5, (volatile T6*) t6, (volatile T7*) t7); + } + + template + __device__ __forceinline__ + thrust::tuple + smem_tuple(T0* t0, T1* t1, T2* t2, T3* t3, T4* t4, T5* t5, T6* t6, T7* t7, T8* t8) + { + return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2, (volatile T3*) t3, (volatile T4*) t4, (volatile T5*) t5, (volatile T6*) t6, (volatile T7*) t7, (volatile T8*) t8); + } + + template + __device__ __forceinline__ + thrust::tuple + smem_tuple(T0* t0, T1* t1, T2* t2, T3* t3, T4* t4, T5* t5, T6* t6, T7* t7, T8* t8, T9* t9) + { + return thrust::make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2, (volatile T3*) t3, (volatile T4*) t4, (volatile T5*) t5, (volatile T6*) t6, (volatile T7*) t7, (volatile T8*) t8, (volatile T9*) t9); + } +}}} + +//! @endcond + +#endif // OPENCV_CUDA_REDUCE_HPP diff --git a/thirdparty1/linux/include/opencv2/core/cuda/saturate_cast.hpp b/thirdparty1/linux/include/opencv2/core/cuda/saturate_cast.hpp new file mode 100644 index 0000000..c3a3d1c --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda/saturate_cast.hpp @@ -0,0 +1,292 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CUDA_SATURATE_CAST_HPP +#define OPENCV_CUDA_SATURATE_CAST_HPP + +#include "common.hpp" + +/** @file + * @deprecated Use @ref cudev instead. + */ + +//! @cond IGNORED + +namespace cv { namespace cuda { namespace device +{ + template __device__ __forceinline__ _Tp saturate_cast(uchar v) { return _Tp(v); } + template __device__ __forceinline__ _Tp saturate_cast(schar v) { return _Tp(v); } + template __device__ __forceinline__ _Tp saturate_cast(ushort v) { return _Tp(v); } + template __device__ __forceinline__ _Tp saturate_cast(short v) { return _Tp(v); } + template __device__ __forceinline__ _Tp saturate_cast(uint v) { return _Tp(v); } + template __device__ __forceinline__ _Tp saturate_cast(int v) { return _Tp(v); } + template __device__ __forceinline__ _Tp saturate_cast(float v) { return _Tp(v); } + template __device__ __forceinline__ _Tp saturate_cast(double v) { return _Tp(v); } + + template<> __device__ __forceinline__ uchar saturate_cast(schar v) + { + uint res = 0; + int vi = v; + asm("cvt.sat.u8.s8 %0, %1;" : "=r"(res) : "r"(vi)); + return res; + } + template<> __device__ __forceinline__ uchar saturate_cast(short v) + { + uint res = 0; + asm("cvt.sat.u8.s16 %0, %1;" : "=r"(res) : "h"(v)); + return res; + } + template<> __device__ __forceinline__ uchar saturate_cast(ushort v) + { + uint res = 0; + asm("cvt.sat.u8.u16 %0, %1;" : "=r"(res) : "h"(v)); + return res; + } + template<> __device__ __forceinline__ uchar saturate_cast(int v) + { + uint res = 0; + asm("cvt.sat.u8.s32 %0, %1;" : "=r"(res) : "r"(v)); + return res; + } + template<> __device__ __forceinline__ uchar saturate_cast(uint v) + { + uint res = 0; + asm("cvt.sat.u8.u32 %0, %1;" : "=r"(res) : "r"(v)); + return res; + } + template<> __device__ __forceinline__ uchar saturate_cast(float v) + { + uint res = 0; + asm("cvt.rni.sat.u8.f32 %0, %1;" : "=r"(res) : "f"(v)); + return res; + } + template<> __device__ __forceinline__ uchar saturate_cast(double v) + { + #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 130 + uint res = 0; + asm("cvt.rni.sat.u8.f64 %0, %1;" : "=r"(res) : "d"(v)); + return res; + #else + return saturate_cast((float)v); + #endif + } + + template<> __device__ __forceinline__ schar saturate_cast(uchar v) + { + uint res = 0; + uint vi = v; + asm("cvt.sat.s8.u8 %0, %1;" : "=r"(res) : "r"(vi)); + return res; + } + template<> __device__ __forceinline__ schar saturate_cast(short v) + { + uint res = 0; + asm("cvt.sat.s8.s16 %0, %1;" : "=r"(res) : "h"(v)); + return res; + } + template<> __device__ __forceinline__ schar saturate_cast(ushort v) + { + uint res = 0; + asm("cvt.sat.s8.u16 %0, %1;" : "=r"(res) : "h"(v)); + return res; + } + template<> __device__ __forceinline__ schar saturate_cast(int v) + { + uint res = 0; + asm("cvt.sat.s8.s32 %0, %1;" : "=r"(res) : "r"(v)); + return res; + } + template<> __device__ __forceinline__ schar saturate_cast(uint v) + { + uint res = 0; + asm("cvt.sat.s8.u32 %0, %1;" : "=r"(res) : "r"(v)); + return res; + } + template<> __device__ __forceinline__ schar saturate_cast(float v) + { + uint res = 0; + asm("cvt.rni.sat.s8.f32 %0, %1;" : "=r"(res) : "f"(v)); + return res; + } + template<> __device__ __forceinline__ schar saturate_cast(double v) + { + #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 130 + uint res = 0; + asm("cvt.rni.sat.s8.f64 %0, %1;" : "=r"(res) : "d"(v)); + return res; + #else + return saturate_cast((float)v); + #endif + } + + template<> __device__ __forceinline__ ushort saturate_cast(schar v) + { + ushort res = 0; + int vi = v; + asm("cvt.sat.u16.s8 %0, %1;" : "=h"(res) : "r"(vi)); + return res; + } + template<> __device__ __forceinline__ ushort saturate_cast(short v) + { + ushort res = 0; + asm("cvt.sat.u16.s16 %0, %1;" : "=h"(res) : "h"(v)); + return res; + } + template<> __device__ __forceinline__ ushort saturate_cast(int v) + { + ushort res = 0; + asm("cvt.sat.u16.s32 %0, %1;" : "=h"(res) : "r"(v)); + return res; + } + template<> __device__ __forceinline__ ushort saturate_cast(uint v) + { + ushort res = 0; + asm("cvt.sat.u16.u32 %0, %1;" : "=h"(res) : "r"(v)); + return res; + } + template<> __device__ __forceinline__ ushort saturate_cast(float v) + { + ushort res = 0; + asm("cvt.rni.sat.u16.f32 %0, %1;" : "=h"(res) : "f"(v)); + return res; + } + template<> __device__ __forceinline__ ushort saturate_cast(double v) + { + #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 130 + ushort res = 0; + asm("cvt.rni.sat.u16.f64 %0, %1;" : "=h"(res) : "d"(v)); + return res; + #else + return saturate_cast((float)v); + #endif + } + + template<> __device__ __forceinline__ short saturate_cast(ushort v) + { + short res = 0; + asm("cvt.sat.s16.u16 %0, %1;" : "=h"(res) : "h"(v)); + return res; + } + template<> __device__ __forceinline__ short saturate_cast(int v) + { + short res = 0; + asm("cvt.sat.s16.s32 %0, %1;" : "=h"(res) : "r"(v)); + return res; + } + template<> __device__ __forceinline__ short saturate_cast(uint v) + { + short res = 0; + asm("cvt.sat.s16.u32 %0, %1;" : "=h"(res) : "r"(v)); + return res; + } + template<> __device__ __forceinline__ short saturate_cast(float v) + { + short res = 0; + asm("cvt.rni.sat.s16.f32 %0, %1;" : "=h"(res) : "f"(v)); + return res; + } + template<> __device__ __forceinline__ short saturate_cast(double v) + { + #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 130 + short res = 0; + asm("cvt.rni.sat.s16.f64 %0, %1;" : "=h"(res) : "d"(v)); + return res; + #else + return saturate_cast((float)v); + #endif + } + + template<> __device__ __forceinline__ int saturate_cast(uint v) + { + int res = 0; + asm("cvt.sat.s32.u32 %0, %1;" : "=r"(res) : "r"(v)); + return res; + } + template<> __device__ __forceinline__ int saturate_cast(float v) + { + return __float2int_rn(v); + } + template<> __device__ __forceinline__ int saturate_cast(double v) + { + #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 130 + return __double2int_rn(v); + #else + return saturate_cast((float)v); + #endif + } + + template<> __device__ __forceinline__ uint saturate_cast(schar v) + { + uint res = 0; + int vi = v; + asm("cvt.sat.u32.s8 %0, %1;" : "=r"(res) : "r"(vi)); + return res; + } + template<> __device__ __forceinline__ uint saturate_cast(short v) + { + uint res = 0; + asm("cvt.sat.u32.s16 %0, %1;" : "=r"(res) : "h"(v)); + return res; + } + template<> __device__ __forceinline__ uint saturate_cast(int v) + { + uint res = 0; + asm("cvt.sat.u32.s32 %0, %1;" : "=r"(res) : "r"(v)); + return res; + } + template<> __device__ __forceinline__ uint saturate_cast(float v) + { + return __float2uint_rn(v); + } + template<> __device__ __forceinline__ uint saturate_cast(double v) + { + #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 130 + return __double2uint_rn(v); + #else + return saturate_cast((float)v); + #endif + } +}}} + +//! @endcond + +#endif /* OPENCV_CUDA_SATURATE_CAST_HPP */ diff --git a/thirdparty1/linux/include/opencv2/core/cuda/scan.hpp b/thirdparty1/linux/include/opencv2/core/cuda/scan.hpp new file mode 100644 index 0000000..e07ee65 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda/scan.hpp @@ -0,0 +1,258 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CUDA_SCAN_HPP +#define OPENCV_CUDA_SCAN_HPP + +#include "opencv2/core/cuda/common.hpp" +#include "opencv2/core/cuda/utility.hpp" +#include "opencv2/core/cuda/warp.hpp" +#include "opencv2/core/cuda/warp_shuffle.hpp" + +/** @file + * @deprecated Use @ref cudev instead. + */ + +//! @cond IGNORED + +namespace cv { namespace cuda { namespace device +{ + enum ScanKind { EXCLUSIVE = 0, INCLUSIVE = 1 }; + + template struct WarpScan + { + __device__ __forceinline__ WarpScan() {} + __device__ __forceinline__ WarpScan(const WarpScan& other) { (void)other; } + + __device__ __forceinline__ T operator()( volatile T *ptr , const unsigned int idx) + { + const unsigned int lane = idx & 31; + F op; + + if ( lane >= 1) ptr [idx ] = op(ptr [idx - 1], ptr [idx]); + if ( lane >= 2) ptr [idx ] = op(ptr [idx - 2], ptr [idx]); + if ( lane >= 4) ptr [idx ] = op(ptr [idx - 4], ptr [idx]); + if ( lane >= 8) ptr [idx ] = op(ptr [idx - 8], ptr [idx]); + if ( lane >= 16) ptr [idx ] = op(ptr [idx - 16], ptr [idx]); + + if( Kind == INCLUSIVE ) + return ptr [idx]; + else + return (lane > 0) ? ptr [idx - 1] : 0; + } + + __device__ __forceinline__ unsigned int index(const unsigned int tid) + { + return tid; + } + + __device__ __forceinline__ void init(volatile T *ptr){} + + static const int warp_offset = 0; + + typedef WarpScan merge; + }; + + template struct WarpScanNoComp + { + __device__ __forceinline__ WarpScanNoComp() {} + __device__ __forceinline__ WarpScanNoComp(const WarpScanNoComp& other) { (void)other; } + + __device__ __forceinline__ T operator()( volatile T *ptr , const unsigned int idx) + { + const unsigned int lane = threadIdx.x & 31; + F op; + + ptr [idx ] = op(ptr [idx - 1], ptr [idx]); + ptr [idx ] = op(ptr [idx - 2], ptr [idx]); + ptr [idx ] = op(ptr [idx - 4], ptr [idx]); + ptr [idx ] = op(ptr [idx - 8], ptr [idx]); + ptr [idx ] = op(ptr [idx - 16], ptr [idx]); + + if( Kind == INCLUSIVE ) + return ptr [idx]; + else + return (lane > 0) ? ptr [idx - 1] : 0; + } + + __device__ __forceinline__ unsigned int index(const unsigned int tid) + { + return (tid >> warp_log) * warp_smem_stride + 16 + (tid & warp_mask); + } + + __device__ __forceinline__ void init(volatile T *ptr) + { + ptr[threadIdx.x] = 0; + } + + static const int warp_smem_stride = 32 + 16 + 1; + static const int warp_offset = 16; + static const int warp_log = 5; + static const int warp_mask = 31; + + typedef WarpScanNoComp merge; + }; + + template struct BlockScan + { + __device__ __forceinline__ BlockScan() {} + __device__ __forceinline__ BlockScan(const BlockScan& other) { (void)other; } + + __device__ __forceinline__ T operator()(volatile T *ptr) + { + const unsigned int tid = threadIdx.x; + const unsigned int lane = tid & warp_mask; + const unsigned int warp = tid >> warp_log; + + Sc scan; + typename Sc::merge merge_scan; + const unsigned int idx = scan.index(tid); + + T val = scan(ptr, idx); + __syncthreads (); + + if( warp == 0) + scan.init(ptr); + __syncthreads (); + + if( lane == 31 ) + ptr [scan.warp_offset + warp ] = (Kind == INCLUSIVE) ? val : ptr [idx]; + __syncthreads (); + + if( warp == 0 ) + merge_scan(ptr, idx); + __syncthreads(); + + if ( warp > 0) + val = ptr [scan.warp_offset + warp - 1] + val; + __syncthreads (); + + ptr[idx] = val; + __syncthreads (); + + return val ; + } + + static const int warp_log = 5; + static const int warp_mask = 31; + }; + + template + __device__ T warpScanInclusive(T idata, volatile T* s_Data, unsigned int tid) + { + #if __CUDA_ARCH__ >= 300 + const unsigned int laneId = cv::cuda::device::Warp::laneId(); + + // scan on shuffl functions + #pragma unroll + for (int i = 1; i <= (OPENCV_CUDA_WARP_SIZE / 2); i *= 2) + { + const T n = cv::cuda::device::shfl_up(idata, i); + if (laneId >= i) + idata += n; + } + + return idata; + #else + unsigned int pos = 2 * tid - (tid & (OPENCV_CUDA_WARP_SIZE - 1)); + s_Data[pos] = 0; + pos += OPENCV_CUDA_WARP_SIZE; + s_Data[pos] = idata; + + s_Data[pos] += s_Data[pos - 1]; + s_Data[pos] += s_Data[pos - 2]; + s_Data[pos] += s_Data[pos - 4]; + s_Data[pos] += s_Data[pos - 8]; + s_Data[pos] += s_Data[pos - 16]; + + return s_Data[pos]; + #endif + } + + template + __device__ __forceinline__ T warpScanExclusive(T idata, volatile T* s_Data, unsigned int tid) + { + return warpScanInclusive(idata, s_Data, tid) - idata; + } + + template + __device__ T blockScanInclusive(T idata, volatile T* s_Data, unsigned int tid) + { + if (tiNumScanThreads > OPENCV_CUDA_WARP_SIZE) + { + //Bottom-level inclusive warp scan + T warpResult = warpScanInclusive(idata, s_Data, tid); + + //Save top elements of each warp for exclusive warp scan + //sync to wait for warp scans to complete (because s_Data is being overwritten) + __syncthreads(); + if ((tid & (OPENCV_CUDA_WARP_SIZE - 1)) == (OPENCV_CUDA_WARP_SIZE - 1)) + { + s_Data[tid >> OPENCV_CUDA_LOG_WARP_SIZE] = warpResult; + } + + //wait for warp scans to complete + __syncthreads(); + + if (tid < (tiNumScanThreads / OPENCV_CUDA_WARP_SIZE) ) + { + //grab top warp elements + T val = s_Data[tid]; + //calculate exclusive scan and write back to shared memory + s_Data[tid] = warpScanExclusive(val, s_Data, tid); + } + + //return updated warp scans with exclusive scan results + __syncthreads(); + + return warpResult + s_Data[tid >> OPENCV_CUDA_LOG_WARP_SIZE]; + } + else + { + return warpScanInclusive(idata, s_Data, tid); + } + } +}}} + +//! @endcond + +#endif // OPENCV_CUDA_SCAN_HPP diff --git a/thirdparty1/linux/include/opencv2/core/cuda/simd_functions.hpp b/thirdparty1/linux/include/opencv2/core/cuda/simd_functions.hpp new file mode 100644 index 0000000..3d8c2e0 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda/simd_functions.hpp @@ -0,0 +1,869 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +/* + * Copyright (c) 2013 NVIDIA Corporation. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * + * Redistributions in binary form must reproduce the above copyright notice, + * this list of conditions and the following disclaimer in the documentation + * and/or other materials provided with the distribution. + * + * Neither the name of NVIDIA Corporation nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE + * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + */ + +#ifndef OPENCV_CUDA_SIMD_FUNCTIONS_HPP +#define OPENCV_CUDA_SIMD_FUNCTIONS_HPP + +#include "common.hpp" + +/** @file + * @deprecated Use @ref cudev instead. + */ + +//! @cond IGNORED + +namespace cv { namespace cuda { namespace device +{ + // 2 + + static __device__ __forceinline__ unsigned int vadd2(unsigned int a, unsigned int b) + { + unsigned int r = 0; + + #if __CUDA_ARCH__ >= 300 + asm("vadd2.u32.u32.u32.sat %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #elif __CUDA_ARCH__ >= 200 + asm("vadd.u32.u32.u32.sat %0.h0, %1.h0, %2.h0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + asm("vadd.u32.u32.u32.sat %0.h1, %1.h1, %2.h1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #else + unsigned int s; + s = a ^ b; // sum bits + r = a + b; // actual sum + s = s ^ r; // determine carry-ins for each bit position + s = s & 0x00010000; // carry-in to high word (= carry-out from low word) + r = r - s; // subtract out carry-out from low word + #endif + + return r; + } + + static __device__ __forceinline__ unsigned int vsub2(unsigned int a, unsigned int b) + { + unsigned int r = 0; + + #if __CUDA_ARCH__ >= 300 + asm("vsub2.u32.u32.u32.sat %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #elif __CUDA_ARCH__ >= 200 + asm("vsub.u32.u32.u32.sat %0.h0, %1.h0, %2.h0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + asm("vsub.u32.u32.u32.sat %0.h1, %1.h1, %2.h1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #else + unsigned int s; + s = a ^ b; // sum bits + r = a - b; // actual sum + s = s ^ r; // determine carry-ins for each bit position + s = s & 0x00010000; // borrow to high word + r = r + s; // compensate for borrow from low word + #endif + + return r; + } + + static __device__ __forceinline__ unsigned int vabsdiff2(unsigned int a, unsigned int b) + { + unsigned int r = 0; + + #if __CUDA_ARCH__ >= 300 + asm("vabsdiff2.u32.u32.u32.sat %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #elif __CUDA_ARCH__ >= 200 + asm("vabsdiff.u32.u32.u32.sat %0.h0, %1.h0, %2.h0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + asm("vabsdiff.u32.u32.u32.sat %0.h1, %1.h1, %2.h1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #else + unsigned int s, t, u, v; + s = a & 0x0000ffff; // extract low halfword + r = b & 0x0000ffff; // extract low halfword + u = ::max(r, s); // maximum of low halfwords + v = ::min(r, s); // minimum of low halfwords + s = a & 0xffff0000; // extract high halfword + r = b & 0xffff0000; // extract high halfword + t = ::max(r, s); // maximum of high halfwords + s = ::min(r, s); // minimum of high halfwords + r = u | t; // maximum of both halfwords + s = v | s; // minimum of both halfwords + r = r - s; // |a - b| = max(a,b) - min(a,b); + #endif + + return r; + } + + static __device__ __forceinline__ unsigned int vavg2(unsigned int a, unsigned int b) + { + unsigned int r, s; + + // HAKMEM #23: a + b = 2 * (a & b) + (a ^ b) ==> + // (a + b) / 2 = (a & b) + ((a ^ b) >> 1) + s = a ^ b; + r = a & b; + s = s & 0xfffefffe; // ensure shift doesn't cross halfword boundaries + s = s >> 1; + s = r + s; + + return s; + } + + static __device__ __forceinline__ unsigned int vavrg2(unsigned int a, unsigned int b) + { + unsigned int r = 0; + + #if __CUDA_ARCH__ >= 300 + asm("vavrg2.u32.u32.u32 %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #else + // HAKMEM #23: a + b = 2 * (a | b) - (a ^ b) ==> + // (a + b + 1) / 2 = (a | b) - ((a ^ b) >> 1) + unsigned int s; + s = a ^ b; + r = a | b; + s = s & 0xfffefffe; // ensure shift doesn't cross half-word boundaries + s = s >> 1; + r = r - s; + #endif + + return r; + } + + static __device__ __forceinline__ unsigned int vseteq2(unsigned int a, unsigned int b) + { + unsigned int r = 0; + + #if __CUDA_ARCH__ >= 300 + asm("vset2.u32.u32.eq %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #else + // inspired by Alan Mycroft's null-byte detection algorithm: + // null_byte(x) = ((x - 0x01010101) & (~x & 0x80808080)) + unsigned int c; + r = a ^ b; // 0x0000 if a == b + c = r | 0x80008000; // set msbs, to catch carry out + r = r ^ c; // extract msbs, msb = 1 if r < 0x8000 + c = c - 0x00010001; // msb = 0, if r was 0x0000 or 0x8000 + c = r & ~c; // msb = 1, if r was 0x0000 + r = c >> 15; // convert to bool + #endif + + return r; + } + + static __device__ __forceinline__ unsigned int vcmpeq2(unsigned int a, unsigned int b) + { + unsigned int r, c; + + #if __CUDA_ARCH__ >= 300 + r = vseteq2(a, b); + c = r << 16; // convert bool + r = c - r; // into mask + #else + // inspired by Alan Mycroft's null-byte detection algorithm: + // null_byte(x) = ((x - 0x01010101) & (~x & 0x80808080)) + r = a ^ b; // 0x0000 if a == b + c = r | 0x80008000; // set msbs, to catch carry out + r = r ^ c; // extract msbs, msb = 1 if r < 0x8000 + c = c - 0x00010001; // msb = 0, if r was 0x0000 or 0x8000 + c = r & ~c; // msb = 1, if r was 0x0000 + r = c >> 15; // convert + r = c - r; // msbs to + r = c | r; // mask + #endif + + return r; + } + + static __device__ __forceinline__ unsigned int vsetge2(unsigned int a, unsigned int b) + { + unsigned int r = 0; + + #if __CUDA_ARCH__ >= 300 + asm("vset2.u32.u32.ge %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #else + unsigned int c; + asm("not.b32 %0, %0;" : "+r"(b)); + c = vavrg2(a, b); // (a + ~b + 1) / 2 = (a - b) / 2 + c = c & 0x80008000; // msb = carry-outs + r = c >> 15; // convert to bool + #endif + + return r; + } + + static __device__ __forceinline__ unsigned int vcmpge2(unsigned int a, unsigned int b) + { + unsigned int r, c; + + #if __CUDA_ARCH__ >= 300 + r = vsetge2(a, b); + c = r << 16; // convert bool + r = c - r; // into mask + #else + asm("not.b32 %0, %0;" : "+r"(b)); + c = vavrg2(a, b); // (a + ~b + 1) / 2 = (a - b) / 2 + c = c & 0x80008000; // msb = carry-outs + r = c >> 15; // convert + r = c - r; // msbs to + r = c | r; // mask + #endif + + return r; + } + + static __device__ __forceinline__ unsigned int vsetgt2(unsigned int a, unsigned int b) + { + unsigned int r = 0; + + #if __CUDA_ARCH__ >= 300 + asm("vset2.u32.u32.gt %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #else + unsigned int c; + asm("not.b32 %0, %0;" : "+r"(b)); + c = vavg2(a, b); // (a + ~b) / 2 = (a - b) / 2 [rounded down] + c = c & 0x80008000; // msbs = carry-outs + r = c >> 15; // convert to bool + #endif + + return r; + } + + static __device__ __forceinline__ unsigned int vcmpgt2(unsigned int a, unsigned int b) + { + unsigned int r, c; + + #if __CUDA_ARCH__ >= 300 + r = vsetgt2(a, b); + c = r << 16; // convert bool + r = c - r; // into mask + #else + asm("not.b32 %0, %0;" : "+r"(b)); + c = vavg2(a, b); // (a + ~b) / 2 = (a - b) / 2 [rounded down] + c = c & 0x80008000; // msbs = carry-outs + r = c >> 15; // convert + r = c - r; // msbs to + r = c | r; // mask + #endif + + return r; + } + + static __device__ __forceinline__ unsigned int vsetle2(unsigned int a, unsigned int b) + { + unsigned int r = 0; + + #if __CUDA_ARCH__ >= 300 + asm("vset2.u32.u32.le %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #else + unsigned int c; + asm("not.b32 %0, %0;" : "+r"(a)); + c = vavrg2(a, b); // (b + ~a + 1) / 2 = (b - a) / 2 + c = c & 0x80008000; // msb = carry-outs + r = c >> 15; // convert to bool + #endif + + return r; + } + + static __device__ __forceinline__ unsigned int vcmple2(unsigned int a, unsigned int b) + { + unsigned int r, c; + + #if __CUDA_ARCH__ >= 300 + r = vsetle2(a, b); + c = r << 16; // convert bool + r = c - r; // into mask + #else + asm("not.b32 %0, %0;" : "+r"(a)); + c = vavrg2(a, b); // (b + ~a + 1) / 2 = (b - a) / 2 + c = c & 0x80008000; // msb = carry-outs + r = c >> 15; // convert + r = c - r; // msbs to + r = c | r; // mask + #endif + + return r; + } + + static __device__ __forceinline__ unsigned int vsetlt2(unsigned int a, unsigned int b) + { + unsigned int r = 0; + + #if __CUDA_ARCH__ >= 300 + asm("vset2.u32.u32.lt %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #else + unsigned int c; + asm("not.b32 %0, %0;" : "+r"(a)); + c = vavg2(a, b); // (b + ~a) / 2 = (b - a) / 2 [rounded down] + c = c & 0x80008000; // msb = carry-outs + r = c >> 15; // convert to bool + #endif + + return r; + } + + static __device__ __forceinline__ unsigned int vcmplt2(unsigned int a, unsigned int b) + { + unsigned int r, c; + + #if __CUDA_ARCH__ >= 300 + r = vsetlt2(a, b); + c = r << 16; // convert bool + r = c - r; // into mask + #else + asm("not.b32 %0, %0;" : "+r"(a)); + c = vavg2(a, b); // (b + ~a) / 2 = (b - a) / 2 [rounded down] + c = c & 0x80008000; // msb = carry-outs + r = c >> 15; // convert + r = c - r; // msbs to + r = c | r; // mask + #endif + + return r; + } + + static __device__ __forceinline__ unsigned int vsetne2(unsigned int a, unsigned int b) + { + unsigned int r = 0; + + #if __CUDA_ARCH__ >= 300 + asm ("vset2.u32.u32.ne %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #else + // inspired by Alan Mycroft's null-byte detection algorithm: + // null_byte(x) = ((x - 0x01010101) & (~x & 0x80808080)) + unsigned int c; + r = a ^ b; // 0x0000 if a == b + c = r | 0x80008000; // set msbs, to catch carry out + c = c - 0x00010001; // msb = 0, if r was 0x0000 or 0x8000 + c = r | c; // msb = 1, if r was not 0x0000 + c = c & 0x80008000; // extract msbs + r = c >> 15; // convert to bool + #endif + + return r; + } + + static __device__ __forceinline__ unsigned int vcmpne2(unsigned int a, unsigned int b) + { + unsigned int r, c; + + #if __CUDA_ARCH__ >= 300 + r = vsetne2(a, b); + c = r << 16; // convert bool + r = c - r; // into mask + #else + // inspired by Alan Mycroft's null-byte detection algorithm: + // null_byte(x) = ((x - 0x01010101) & (~x & 0x80808080)) + r = a ^ b; // 0x0000 if a == b + c = r | 0x80008000; // set msbs, to catch carry out + c = c - 0x00010001; // msb = 0, if r was 0x0000 or 0x8000 + c = r | c; // msb = 1, if r was not 0x0000 + c = c & 0x80008000; // extract msbs + r = c >> 15; // convert + r = c - r; // msbs to + r = c | r; // mask + #endif + + return r; + } + + static __device__ __forceinline__ unsigned int vmax2(unsigned int a, unsigned int b) + { + unsigned int r = 0; + + #if __CUDA_ARCH__ >= 300 + asm("vmax2.u32.u32.u32 %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #elif __CUDA_ARCH__ >= 200 + asm("vmax.u32.u32.u32 %0.h0, %1.h0, %2.h0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + asm("vmax.u32.u32.u32 %0.h1, %1.h1, %2.h1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #else + unsigned int s, t, u; + r = a & 0x0000ffff; // extract low halfword + s = b & 0x0000ffff; // extract low halfword + t = ::max(r, s); // maximum of low halfwords + r = a & 0xffff0000; // extract high halfword + s = b & 0xffff0000; // extract high halfword + u = ::max(r, s); // maximum of high halfwords + r = t | u; // combine halfword maximums + #endif + + return r; + } + + static __device__ __forceinline__ unsigned int vmin2(unsigned int a, unsigned int b) + { + unsigned int r = 0; + + #if __CUDA_ARCH__ >= 300 + asm("vmin2.u32.u32.u32 %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #elif __CUDA_ARCH__ >= 200 + asm("vmin.u32.u32.u32 %0.h0, %1.h0, %2.h0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + asm("vmin.u32.u32.u32 %0.h1, %1.h1, %2.h1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #else + unsigned int s, t, u; + r = a & 0x0000ffff; // extract low halfword + s = b & 0x0000ffff; // extract low halfword + t = ::min(r, s); // minimum of low halfwords + r = a & 0xffff0000; // extract high halfword + s = b & 0xffff0000; // extract high halfword + u = ::min(r, s); // minimum of high halfwords + r = t | u; // combine halfword minimums + #endif + + return r; + } + + // 4 + + static __device__ __forceinline__ unsigned int vadd4(unsigned int a, unsigned int b) + { + unsigned int r = 0; + + #if __CUDA_ARCH__ >= 300 + asm("vadd4.u32.u32.u32.sat %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #elif __CUDA_ARCH__ >= 200 + asm("vadd.u32.u32.u32.sat %0.b0, %1.b0, %2.b0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + asm("vadd.u32.u32.u32.sat %0.b1, %1.b1, %2.b1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + asm("vadd.u32.u32.u32.sat %0.b2, %1.b2, %2.b2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + asm("vadd.u32.u32.u32.sat %0.b3, %1.b3, %2.b3, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #else + unsigned int s, t; + s = a ^ b; // sum bits + r = a & 0x7f7f7f7f; // clear msbs + t = b & 0x7f7f7f7f; // clear msbs + s = s & 0x80808080; // msb sum bits + r = r + t; // add without msbs, record carry-out in msbs + r = r ^ s; // sum of msb sum and carry-in bits, w/o carry-out + #endif /* __CUDA_ARCH__ >= 300 */ + + return r; + } + + static __device__ __forceinline__ unsigned int vsub4(unsigned int a, unsigned int b) + { + unsigned int r = 0; + + #if __CUDA_ARCH__ >= 300 + asm("vsub4.u32.u32.u32.sat %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #elif __CUDA_ARCH__ >= 200 + asm("vsub.u32.u32.u32.sat %0.b0, %1.b0, %2.b0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + asm("vsub.u32.u32.u32.sat %0.b1, %1.b1, %2.b1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + asm("vsub.u32.u32.u32.sat %0.b2, %1.b2, %2.b2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + asm("vsub.u32.u32.u32.sat %0.b3, %1.b3, %2.b3, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #else + unsigned int s, t; + s = a ^ ~b; // inverted sum bits + r = a | 0x80808080; // set msbs + t = b & 0x7f7f7f7f; // clear msbs + s = s & 0x80808080; // inverted msb sum bits + r = r - t; // subtract w/o msbs, record inverted borrows in msb + r = r ^ s; // combine inverted msb sum bits and borrows + #endif + + return r; + } + + static __device__ __forceinline__ unsigned int vavg4(unsigned int a, unsigned int b) + { + unsigned int r, s; + + // HAKMEM #23: a + b = 2 * (a & b) + (a ^ b) ==> + // (a + b) / 2 = (a & b) + ((a ^ b) >> 1) + s = a ^ b; + r = a & b; + s = s & 0xfefefefe; // ensure following shift doesn't cross byte boundaries + s = s >> 1; + s = r + s; + + return s; + } + + static __device__ __forceinline__ unsigned int vavrg4(unsigned int a, unsigned int b) + { + unsigned int r = 0; + + #if __CUDA_ARCH__ >= 300 + asm("vavrg4.u32.u32.u32 %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #else + // HAKMEM #23: a + b = 2 * (a | b) - (a ^ b) ==> + // (a + b + 1) / 2 = (a | b) - ((a ^ b) >> 1) + unsigned int c; + c = a ^ b; + r = a | b; + c = c & 0xfefefefe; // ensure following shift doesn't cross byte boundaries + c = c >> 1; + r = r - c; + #endif + + return r; + } + + static __device__ __forceinline__ unsigned int vseteq4(unsigned int a, unsigned int b) + { + unsigned int r = 0; + + #if __CUDA_ARCH__ >= 300 + asm("vset4.u32.u32.eq %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #else + // inspired by Alan Mycroft's null-byte detection algorithm: + // null_byte(x) = ((x - 0x01010101) & (~x & 0x80808080)) + unsigned int c; + r = a ^ b; // 0x00 if a == b + c = r | 0x80808080; // set msbs, to catch carry out + r = r ^ c; // extract msbs, msb = 1 if r < 0x80 + c = c - 0x01010101; // msb = 0, if r was 0x00 or 0x80 + c = r & ~c; // msb = 1, if r was 0x00 + r = c >> 7; // convert to bool + #endif + + return r; + } + + static __device__ __forceinline__ unsigned int vcmpeq4(unsigned int a, unsigned int b) + { + unsigned int r, t; + + #if __CUDA_ARCH__ >= 300 + r = vseteq4(a, b); + t = r << 8; // convert bool + r = t - r; // to mask + #else + // inspired by Alan Mycroft's null-byte detection algorithm: + // null_byte(x) = ((x - 0x01010101) & (~x & 0x80808080)) + t = a ^ b; // 0x00 if a == b + r = t | 0x80808080; // set msbs, to catch carry out + t = t ^ r; // extract msbs, msb = 1 if t < 0x80 + r = r - 0x01010101; // msb = 0, if t was 0x00 or 0x80 + r = t & ~r; // msb = 1, if t was 0x00 + t = r >> 7; // build mask + t = r - t; // from + r = t | r; // msbs + #endif + + return r; + } + + static __device__ __forceinline__ unsigned int vsetle4(unsigned int a, unsigned int b) + { + unsigned int r = 0; + + #if __CUDA_ARCH__ >= 300 + asm("vset4.u32.u32.le %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #else + unsigned int c; + asm("not.b32 %0, %0;" : "+r"(a)); + c = vavrg4(a, b); // (b + ~a + 1) / 2 = (b - a) / 2 + c = c & 0x80808080; // msb = carry-outs + r = c >> 7; // convert to bool + #endif + + return r; + } + + static __device__ __forceinline__ unsigned int vcmple4(unsigned int a, unsigned int b) + { + unsigned int r, c; + + #if __CUDA_ARCH__ >= 300 + r = vsetle4(a, b); + c = r << 8; // convert bool + r = c - r; // to mask + #else + asm("not.b32 %0, %0;" : "+r"(a)); + c = vavrg4(a, b); // (b + ~a + 1) / 2 = (b - a) / 2 + c = c & 0x80808080; // msbs = carry-outs + r = c >> 7; // convert + r = c - r; // msbs to + r = c | r; // mask + #endif + + return r; + } + + static __device__ __forceinline__ unsigned int vsetlt4(unsigned int a, unsigned int b) + { + unsigned int r = 0; + + #if __CUDA_ARCH__ >= 300 + asm("vset4.u32.u32.lt %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #else + unsigned int c; + asm("not.b32 %0, %0;" : "+r"(a)); + c = vavg4(a, b); // (b + ~a) / 2 = (b - a) / 2 [rounded down] + c = c & 0x80808080; // msb = carry-outs + r = c >> 7; // convert to bool + #endif + + return r; + } + + static __device__ __forceinline__ unsigned int vcmplt4(unsigned int a, unsigned int b) + { + unsigned int r, c; + + #if __CUDA_ARCH__ >= 300 + r = vsetlt4(a, b); + c = r << 8; // convert bool + r = c - r; // to mask + #else + asm("not.b32 %0, %0;" : "+r"(a)); + c = vavg4(a, b); // (b + ~a) / 2 = (b - a) / 2 [rounded down] + c = c & 0x80808080; // msbs = carry-outs + r = c >> 7; // convert + r = c - r; // msbs to + r = c | r; // mask + #endif + + return r; + } + + static __device__ __forceinline__ unsigned int vsetge4(unsigned int a, unsigned int b) + { + unsigned int r = 0; + + #if __CUDA_ARCH__ >= 300 + asm("vset4.u32.u32.ge %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #else + unsigned int c; + asm("not.b32 %0, %0;" : "+r"(b)); + c = vavrg4(a, b); // (a + ~b + 1) / 2 = (a - b) / 2 + c = c & 0x80808080; // msb = carry-outs + r = c >> 7; // convert to bool + #endif + + return r; + } + + static __device__ __forceinline__ unsigned int vcmpge4(unsigned int a, unsigned int b) + { + unsigned int r, s; + + #if __CUDA_ARCH__ >= 300 + r = vsetge4(a, b); + s = r << 8; // convert bool + r = s - r; // to mask + #else + asm ("not.b32 %0,%0;" : "+r"(b)); + r = vavrg4 (a, b); // (a + ~b + 1) / 2 = (a - b) / 2 + r = r & 0x80808080; // msb = carry-outs + s = r >> 7; // build mask + s = r - s; // from + r = s | r; // msbs + #endif + + return r; + } + + static __device__ __forceinline__ unsigned int vsetgt4(unsigned int a, unsigned int b) + { + unsigned int r = 0; + + #if __CUDA_ARCH__ >= 300 + asm("vset4.u32.u32.gt %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #else + unsigned int c; + asm("not.b32 %0, %0;" : "+r"(b)); + c = vavg4(a, b); // (a + ~b) / 2 = (a - b) / 2 [rounded down] + c = c & 0x80808080; // msb = carry-outs + r = c >> 7; // convert to bool + #endif + + return r; + } + + static __device__ __forceinline__ unsigned int vcmpgt4(unsigned int a, unsigned int b) + { + unsigned int r, c; + + #if __CUDA_ARCH__ >= 300 + r = vsetgt4(a, b); + c = r << 8; // convert bool + r = c - r; // to mask + #else + asm("not.b32 %0, %0;" : "+r"(b)); + c = vavg4(a, b); // (a + ~b) / 2 = (a - b) / 2 [rounded down] + c = c & 0x80808080; // msb = carry-outs + r = c >> 7; // convert + r = c - r; // msbs to + r = c | r; // mask + #endif + + return r; + } + + static __device__ __forceinline__ unsigned int vsetne4(unsigned int a, unsigned int b) + { + unsigned int r = 0; + + #if __CUDA_ARCH__ >= 300 + asm("vset4.u32.u32.ne %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #else + // inspired by Alan Mycroft's null-byte detection algorithm: + // null_byte(x) = ((x - 0x01010101) & (~x & 0x80808080)) + unsigned int c; + r = a ^ b; // 0x00 if a == b + c = r | 0x80808080; // set msbs, to catch carry out + c = c - 0x01010101; // msb = 0, if r was 0x00 or 0x80 + c = r | c; // msb = 1, if r was not 0x00 + c = c & 0x80808080; // extract msbs + r = c >> 7; // convert to bool + #endif + + return r; + } + + static __device__ __forceinline__ unsigned int vcmpne4(unsigned int a, unsigned int b) + { + unsigned int r, c; + + #if __CUDA_ARCH__ >= 300 + r = vsetne4(a, b); + c = r << 8; // convert bool + r = c - r; // to mask + #else + // inspired by Alan Mycroft's null-byte detection algorithm: + // null_byte(x) = ((x - 0x01010101) & (~x & 0x80808080)) + r = a ^ b; // 0x00 if a == b + c = r | 0x80808080; // set msbs, to catch carry out + c = c - 0x01010101; // msb = 0, if r was 0x00 or 0x80 + c = r | c; // msb = 1, if r was not 0x00 + c = c & 0x80808080; // extract msbs + r = c >> 7; // convert + r = c - r; // msbs to + r = c | r; // mask + #endif + + return r; + } + + static __device__ __forceinline__ unsigned int vabsdiff4(unsigned int a, unsigned int b) + { + unsigned int r = 0; + + #if __CUDA_ARCH__ >= 300 + asm("vabsdiff4.u32.u32.u32.sat %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #elif __CUDA_ARCH__ >= 200 + asm("vabsdiff.u32.u32.u32.sat %0.b0, %1.b0, %2.b0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + asm("vabsdiff.u32.u32.u32.sat %0.b1, %1.b1, %2.b1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + asm("vabsdiff.u32.u32.u32.sat %0.b2, %1.b2, %2.b2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + asm("vabsdiff.u32.u32.u32.sat %0.b3, %1.b3, %2.b3, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #else + unsigned int s; + s = vcmpge4(a, b); // mask = 0xff if a >= b + r = a ^ b; // + s = (r & s) ^ b; // select a when a >= b, else select b => max(a,b) + r = s ^ r; // select a when b >= a, else select b => min(a,b) + r = s - r; // |a - b| = max(a,b) - min(a,b); + #endif + + return r; + } + + static __device__ __forceinline__ unsigned int vmax4(unsigned int a, unsigned int b) + { + unsigned int r = 0; + + #if __CUDA_ARCH__ >= 300 + asm("vmax4.u32.u32.u32 %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #elif __CUDA_ARCH__ >= 200 + asm("vmax.u32.u32.u32 %0.b0, %1.b0, %2.b0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + asm("vmax.u32.u32.u32 %0.b1, %1.b1, %2.b1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + asm("vmax.u32.u32.u32 %0.b2, %1.b2, %2.b2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + asm("vmax.u32.u32.u32 %0.b3, %1.b3, %2.b3, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #else + unsigned int s; + s = vcmpge4(a, b); // mask = 0xff if a >= b + r = a & s; // select a when b >= a + s = b & ~s; // select b when b < a + r = r | s; // combine byte selections + #endif + + return r; // byte-wise unsigned maximum + } + + static __device__ __forceinline__ unsigned int vmin4(unsigned int a, unsigned int b) + { + unsigned int r = 0; + + #if __CUDA_ARCH__ >= 300 + asm("vmin4.u32.u32.u32 %0, %1, %2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #elif __CUDA_ARCH__ >= 200 + asm("vmin.u32.u32.u32 %0.b0, %1.b0, %2.b0, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + asm("vmin.u32.u32.u32 %0.b1, %1.b1, %2.b1, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + asm("vmin.u32.u32.u32 %0.b2, %1.b2, %2.b2, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + asm("vmin.u32.u32.u32 %0.b3, %1.b3, %2.b3, %3;" : "=r"(r) : "r"(a), "r"(b), "r"(r)); + #else + unsigned int s; + s = vcmpge4(b, a); // mask = 0xff if a >= b + r = a & s; // select a when b >= a + s = b & ~s; // select b when b < a + r = r | s; // combine byte selections + #endif + + return r; + } +}}} + +//! @endcond + +#endif // OPENCV_CUDA_SIMD_FUNCTIONS_HPP diff --git a/thirdparty1/linux/include/opencv2/core/cuda/transform.hpp b/thirdparty1/linux/include/opencv2/core/cuda/transform.hpp new file mode 100644 index 0000000..42aa6ea --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda/transform.hpp @@ -0,0 +1,75 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CUDA_TRANSFORM_HPP +#define OPENCV_CUDA_TRANSFORM_HPP + +#include "common.hpp" +#include "utility.hpp" +#include "detail/transform_detail.hpp" + +/** @file + * @deprecated Use @ref cudev instead. + */ + +//! @cond IGNORED + +namespace cv { namespace cuda { namespace device +{ + template + static inline void transform(PtrStepSz src, PtrStepSz dst, UnOp op, const Mask& mask, cudaStream_t stream) + { + typedef TransformFunctorTraits ft; + transform_detail::TransformDispatcher::cn == 1 && VecTraits::cn == 1 && ft::smart_shift != 1>::call(src, dst, op, mask, stream); + } + + template + static inline void transform(PtrStepSz src1, PtrStepSz src2, PtrStepSz dst, BinOp op, const Mask& mask, cudaStream_t stream) + { + typedef TransformFunctorTraits ft; + transform_detail::TransformDispatcher::cn == 1 && VecTraits::cn == 1 && VecTraits::cn == 1 && ft::smart_shift != 1>::call(src1, src2, dst, op, mask, stream); + } +}}} + +//! @endcond + +#endif // OPENCV_CUDA_TRANSFORM_HPP diff --git a/thirdparty1/linux/include/opencv2/core/cuda/type_traits.hpp b/thirdparty1/linux/include/opencv2/core/cuda/type_traits.hpp new file mode 100644 index 0000000..8b7a3fd --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda/type_traits.hpp @@ -0,0 +1,90 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CUDA_TYPE_TRAITS_HPP +#define OPENCV_CUDA_TYPE_TRAITS_HPP + +#include "detail/type_traits_detail.hpp" + +/** @file + * @deprecated Use @ref cudev instead. + */ + +//! @cond IGNORED + +namespace cv { namespace cuda { namespace device +{ + template struct IsSimpleParameter + { + enum {value = type_traits_detail::IsIntegral::value || type_traits_detail::IsFloat::value || + type_traits_detail::PointerTraits::type>::value}; + }; + + template struct TypeTraits + { + typedef typename type_traits_detail::UnConst::type NonConstType; + typedef typename type_traits_detail::UnVolatile::type NonVolatileType; + typedef typename type_traits_detail::UnVolatile::type>::type UnqualifiedType; + typedef typename type_traits_detail::PointerTraits::type PointeeType; + typedef typename type_traits_detail::ReferenceTraits::type ReferredType; + + enum { isConst = type_traits_detail::UnConst::value }; + enum { isVolatile = type_traits_detail::UnVolatile::value }; + + enum { isReference = type_traits_detail::ReferenceTraits::value }; + enum { isPointer = type_traits_detail::PointerTraits::type>::value }; + + enum { isUnsignedInt = type_traits_detail::IsUnsignedIntegral::value }; + enum { isSignedInt = type_traits_detail::IsSignedIntergral::value }; + enum { isIntegral = type_traits_detail::IsIntegral::value }; + enum { isFloat = type_traits_detail::IsFloat::value }; + enum { isArith = isIntegral || isFloat }; + enum { isVec = type_traits_detail::IsVec::value }; + + typedef typename type_traits_detail::Select::value, + T, typename type_traits_detail::AddParameterType::type>::type ParameterType; + }; +}}} + +//! @endcond + +#endif // OPENCV_CUDA_TYPE_TRAITS_HPP diff --git a/thirdparty1/linux/include/opencv2/core/cuda/utility.hpp b/thirdparty1/linux/include/opencv2/core/cuda/utility.hpp new file mode 100644 index 0000000..7f5db48 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda/utility.hpp @@ -0,0 +1,230 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CUDA_UTILITY_HPP +#define OPENCV_CUDA_UTILITY_HPP + +#include "saturate_cast.hpp" +#include "datamov_utils.hpp" + +/** @file + * @deprecated Use @ref cudev instead. + */ + +//! @cond IGNORED + +namespace cv { namespace cuda { namespace device +{ + struct CV_EXPORTS ThrustAllocator + { + typedef uchar value_type; + virtual ~ThrustAllocator(); + virtual __device__ __host__ uchar* allocate(size_t numBytes) = 0; + virtual __device__ __host__ void deallocate(uchar* ptr, size_t numBytes) = 0; + static ThrustAllocator& getAllocator(); + static void setAllocator(ThrustAllocator* allocator); + }; + #define OPENCV_CUDA_LOG_WARP_SIZE (5) + #define OPENCV_CUDA_WARP_SIZE (1 << OPENCV_CUDA_LOG_WARP_SIZE) + #define OPENCV_CUDA_LOG_MEM_BANKS ((__CUDA_ARCH__ >= 200) ? 5 : 4) // 32 banks on fermi, 16 on tesla + #define OPENCV_CUDA_MEM_BANKS (1 << OPENCV_CUDA_LOG_MEM_BANKS) + + /////////////////////////////////////////////////////////////////////////////// + // swap + + template void __device__ __host__ __forceinline__ swap(T& a, T& b) + { + const T temp = a; + a = b; + b = temp; + } + + /////////////////////////////////////////////////////////////////////////////// + // Mask Reader + + struct SingleMask + { + explicit __host__ __device__ __forceinline__ SingleMask(PtrStepb mask_) : mask(mask_) {} + __host__ __device__ __forceinline__ SingleMask(const SingleMask& mask_): mask(mask_.mask){} + + __device__ __forceinline__ bool operator()(int y, int x) const + { + return mask.ptr(y)[x] != 0; + } + + PtrStepb mask; + }; + + struct SingleMaskChannels + { + __host__ __device__ __forceinline__ SingleMaskChannels(PtrStepb mask_, int channels_) + : mask(mask_), channels(channels_) {} + __host__ __device__ __forceinline__ SingleMaskChannels(const SingleMaskChannels& mask_) + :mask(mask_.mask), channels(mask_.channels){} + + __device__ __forceinline__ bool operator()(int y, int x) const + { + return mask.ptr(y)[x / channels] != 0; + } + + PtrStepb mask; + int channels; + }; + + struct MaskCollection + { + explicit __host__ __device__ __forceinline__ MaskCollection(PtrStepb* maskCollection_) + : maskCollection(maskCollection_) {} + + __device__ __forceinline__ MaskCollection(const MaskCollection& masks_) + : maskCollection(masks_.maskCollection), curMask(masks_.curMask){} + + __device__ __forceinline__ void next() + { + curMask = *maskCollection++; + } + __device__ __forceinline__ void setMask(int z) + { + curMask = maskCollection[z]; + } + + __device__ __forceinline__ bool operator()(int y, int x) const + { + uchar val; + return curMask.data == 0 || (ForceGlob::Load(curMask.ptr(y), x, val), (val != 0)); + } + + const PtrStepb* maskCollection; + PtrStepb curMask; + }; + + struct WithOutMask + { + __host__ __device__ __forceinline__ WithOutMask(){} + __host__ __device__ __forceinline__ WithOutMask(const WithOutMask&){} + + __device__ __forceinline__ void next() const + { + } + __device__ __forceinline__ void setMask(int) const + { + } + + __device__ __forceinline__ bool operator()(int, int) const + { + return true; + } + + __device__ __forceinline__ bool operator()(int, int, int) const + { + return true; + } + + static __device__ __forceinline__ bool check(int, int) + { + return true; + } + + static __device__ __forceinline__ bool check(int, int, int) + { + return true; + } + }; + + /////////////////////////////////////////////////////////////////////////////// + // Solve linear system + + // solve 2x2 linear system Ax=b + template __device__ __forceinline__ bool solve2x2(const T A[2][2], const T b[2], T x[2]) + { + T det = A[0][0] * A[1][1] - A[1][0] * A[0][1]; + + if (det != 0) + { + double invdet = 1.0 / det; + + x[0] = saturate_cast(invdet * (b[0] * A[1][1] - b[1] * A[0][1])); + + x[1] = saturate_cast(invdet * (A[0][0] * b[1] - A[1][0] * b[0])); + + return true; + } + + return false; + } + + // solve 3x3 linear system Ax=b + template __device__ __forceinline__ bool solve3x3(const T A[3][3], const T b[3], T x[3]) + { + T det = A[0][0] * (A[1][1] * A[2][2] - A[1][2] * A[2][1]) + - A[0][1] * (A[1][0] * A[2][2] - A[1][2] * A[2][0]) + + A[0][2] * (A[1][0] * A[2][1] - A[1][1] * A[2][0]); + + if (det != 0) + { + double invdet = 1.0 / det; + + x[0] = saturate_cast(invdet * + (b[0] * (A[1][1] * A[2][2] - A[1][2] * A[2][1]) - + A[0][1] * (b[1] * A[2][2] - A[1][2] * b[2] ) + + A[0][2] * (b[1] * A[2][1] - A[1][1] * b[2] ))); + + x[1] = saturate_cast(invdet * + (A[0][0] * (b[1] * A[2][2] - A[1][2] * b[2] ) - + b[0] * (A[1][0] * A[2][2] - A[1][2] * A[2][0]) + + A[0][2] * (A[1][0] * b[2] - b[1] * A[2][0]))); + + x[2] = saturate_cast(invdet * + (A[0][0] * (A[1][1] * b[2] - b[1] * A[2][1]) - + A[0][1] * (A[1][0] * b[2] - b[1] * A[2][0]) + + b[0] * (A[1][0] * A[2][1] - A[1][1] * A[2][0]))); + + return true; + } + + return false; + } +}}} // namespace cv { namespace cuda { namespace cudev + +//! @endcond + +#endif // OPENCV_CUDA_UTILITY_HPP diff --git a/thirdparty1/linux/include/opencv2/core/cuda/vec_distance.hpp b/thirdparty1/linux/include/opencv2/core/cuda/vec_distance.hpp new file mode 100644 index 0000000..ef6e510 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda/vec_distance.hpp @@ -0,0 +1,232 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CUDA_VEC_DISTANCE_HPP +#define OPENCV_CUDA_VEC_DISTANCE_HPP + +#include "reduce.hpp" +#include "functional.hpp" +#include "detail/vec_distance_detail.hpp" + +/** @file + * @deprecated Use @ref cudev instead. + */ + +//! @cond IGNORED + +namespace cv { namespace cuda { namespace device +{ + template struct L1Dist + { + typedef int value_type; + typedef int result_type; + + __device__ __forceinline__ L1Dist() : mySum(0) {} + + __device__ __forceinline__ void reduceIter(int val1, int val2) + { + mySum = __sad(val1, val2, mySum); + } + + template __device__ __forceinline__ void reduceAll(int* smem, int tid) + { + reduce(smem, mySum, tid, plus()); + } + + __device__ __forceinline__ operator int() const + { + return mySum; + } + + int mySum; + }; + template <> struct L1Dist + { + typedef float value_type; + typedef float result_type; + + __device__ __forceinline__ L1Dist() : mySum(0.0f) {} + + __device__ __forceinline__ void reduceIter(float val1, float val2) + { + mySum += ::fabs(val1 - val2); + } + + template __device__ __forceinline__ void reduceAll(float* smem, int tid) + { + reduce(smem, mySum, tid, plus()); + } + + __device__ __forceinline__ operator float() const + { + return mySum; + } + + float mySum; + }; + + struct L2Dist + { + typedef float value_type; + typedef float result_type; + + __device__ __forceinline__ L2Dist() : mySum(0.0f) {} + + __device__ __forceinline__ void reduceIter(float val1, float val2) + { + float reg = val1 - val2; + mySum += reg * reg; + } + + template __device__ __forceinline__ void reduceAll(float* smem, int tid) + { + reduce(smem, mySum, tid, plus()); + } + + __device__ __forceinline__ operator float() const + { + return sqrtf(mySum); + } + + float mySum; + }; + + struct HammingDist + { + typedef int value_type; + typedef int result_type; + + __device__ __forceinline__ HammingDist() : mySum(0) {} + + __device__ __forceinline__ void reduceIter(int val1, int val2) + { + mySum += __popc(val1 ^ val2); + } + + template __device__ __forceinline__ void reduceAll(int* smem, int tid) + { + reduce(smem, mySum, tid, plus()); + } + + __device__ __forceinline__ operator int() const + { + return mySum; + } + + int mySum; + }; + + // calc distance between two vectors in global memory + template + __device__ void calcVecDiffGlobal(const T1* vec1, const T2* vec2, int len, Dist& dist, typename Dist::result_type* smem, int tid) + { + for (int i = tid; i < len; i += THREAD_DIM) + { + T1 val1; + ForceGlob::Load(vec1, i, val1); + + T2 val2; + ForceGlob::Load(vec2, i, val2); + + dist.reduceIter(val1, val2); + } + + dist.reduceAll(smem, tid); + } + + // calc distance between two vectors, first vector is cached in register or shared memory, second vector is in global memory + template + __device__ __forceinline__ void calcVecDiffCached(const T1* vecCached, const T2* vecGlob, int len, Dist& dist, typename Dist::result_type* smem, int tid) + { + vec_distance_detail::VecDiffCachedCalculator::calc(vecCached, vecGlob, len, dist, tid); + + dist.reduceAll(smem, tid); + } + + // calc distance between two vectors in global memory + template struct VecDiffGlobal + { + explicit __device__ __forceinline__ VecDiffGlobal(const T1* vec1_, int = 0, void* = 0, int = 0, int = 0) + { + vec1 = vec1_; + } + + template + __device__ __forceinline__ void calc(const T2* vec2, int len, Dist& dist, typename Dist::result_type* smem, int tid) const + { + calcVecDiffGlobal(vec1, vec2, len, dist, smem, tid); + } + + const T1* vec1; + }; + + // calc distance between two vectors, first vector is cached in register memory, second vector is in global memory + template struct VecDiffCachedRegister + { + template __device__ __forceinline__ VecDiffCachedRegister(const T1* vec1, int len, U* smem, int glob_tid, int tid) + { + if (glob_tid < len) + smem[glob_tid] = vec1[glob_tid]; + __syncthreads(); + + U* vec1ValsPtr = vec1Vals; + + #pragma unroll + for (int i = tid; i < MAX_LEN; i += THREAD_DIM) + *vec1ValsPtr++ = smem[i]; + + __syncthreads(); + } + + template + __device__ __forceinline__ void calc(const T2* vec2, int len, Dist& dist, typename Dist::result_type* smem, int tid) const + { + calcVecDiffCached(vec1Vals, vec2, len, dist, smem, tid); + } + + U vec1Vals[MAX_LEN / THREAD_DIM]; + }; +}}} // namespace cv { namespace cuda { namespace cudev + +//! @endcond + +#endif // OPENCV_CUDA_VEC_DISTANCE_HPP diff --git a/thirdparty1/linux/include/opencv2/core/cuda/vec_math.hpp b/thirdparty1/linux/include/opencv2/core/cuda/vec_math.hpp new file mode 100644 index 0000000..9085b92 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda/vec_math.hpp @@ -0,0 +1,930 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CUDA_VECMATH_HPP +#define OPENCV_CUDA_VECMATH_HPP + +#include "vec_traits.hpp" +#include "saturate_cast.hpp" + +/** @file + * @deprecated Use @ref cudev instead. + */ + +//! @cond IGNORED + +namespace cv { namespace cuda { namespace device +{ + +// saturate_cast + +namespace vec_math_detail +{ + template struct SatCastHelper; + template struct SatCastHelper<1, VecD> + { + template static __device__ __forceinline__ VecD cast(const VecS& v) + { + typedef typename VecTraits::elem_type D; + return VecTraits::make(saturate_cast(v.x)); + } + }; + template struct SatCastHelper<2, VecD> + { + template static __device__ __forceinline__ VecD cast(const VecS& v) + { + typedef typename VecTraits::elem_type D; + return VecTraits::make(saturate_cast(v.x), saturate_cast(v.y)); + } + }; + template struct SatCastHelper<3, VecD> + { + template static __device__ __forceinline__ VecD cast(const VecS& v) + { + typedef typename VecTraits::elem_type D; + return VecTraits::make(saturate_cast(v.x), saturate_cast(v.y), saturate_cast(v.z)); + } + }; + template struct SatCastHelper<4, VecD> + { + template static __device__ __forceinline__ VecD cast(const VecS& v) + { + typedef typename VecTraits::elem_type D; + return VecTraits::make(saturate_cast(v.x), saturate_cast(v.y), saturate_cast(v.z), saturate_cast(v.w)); + } + }; + + template static __device__ __forceinline__ VecD saturate_cast_helper(const VecS& v) + { + return SatCastHelper::cn, VecD>::cast(v); + } +} + +template static __device__ __forceinline__ T saturate_cast(const uchar1& v) {return vec_math_detail::saturate_cast_helper(v);} +template static __device__ __forceinline__ T saturate_cast(const char1& v) {return vec_math_detail::saturate_cast_helper(v);} +template static __device__ __forceinline__ T saturate_cast(const ushort1& v) {return vec_math_detail::saturate_cast_helper(v);} +template static __device__ __forceinline__ T saturate_cast(const short1& v) {return vec_math_detail::saturate_cast_helper(v);} +template static __device__ __forceinline__ T saturate_cast(const uint1& v) {return vec_math_detail::saturate_cast_helper(v);} +template static __device__ __forceinline__ T saturate_cast(const int1& v) {return vec_math_detail::saturate_cast_helper(v);} +template static __device__ __forceinline__ T saturate_cast(const float1& v) {return vec_math_detail::saturate_cast_helper(v);} +template static __device__ __forceinline__ T saturate_cast(const double1& v) {return vec_math_detail::saturate_cast_helper(v);} + +template static __device__ __forceinline__ T saturate_cast(const uchar2& v) {return vec_math_detail::saturate_cast_helper(v);} +template static __device__ __forceinline__ T saturate_cast(const char2& v) {return vec_math_detail::saturate_cast_helper(v);} +template static __device__ __forceinline__ T saturate_cast(const ushort2& v) {return vec_math_detail::saturate_cast_helper(v);} +template static __device__ __forceinline__ T saturate_cast(const short2& v) {return vec_math_detail::saturate_cast_helper(v);} +template static __device__ __forceinline__ T saturate_cast(const uint2& v) {return vec_math_detail::saturate_cast_helper(v);} +template static __device__ __forceinline__ T saturate_cast(const int2& v) {return vec_math_detail::saturate_cast_helper(v);} +template static __device__ __forceinline__ T saturate_cast(const float2& v) {return vec_math_detail::saturate_cast_helper(v);} +template static __device__ __forceinline__ T saturate_cast(const double2& v) {return vec_math_detail::saturate_cast_helper(v);} + +template static __device__ __forceinline__ T saturate_cast(const uchar3& v) {return vec_math_detail::saturate_cast_helper(v);} +template static __device__ __forceinline__ T saturate_cast(const char3& v) {return vec_math_detail::saturate_cast_helper(v);} +template static __device__ __forceinline__ T saturate_cast(const ushort3& v) {return vec_math_detail::saturate_cast_helper(v);} +template static __device__ __forceinline__ T saturate_cast(const short3& v) {return vec_math_detail::saturate_cast_helper(v);} +template static __device__ __forceinline__ T saturate_cast(const uint3& v) {return vec_math_detail::saturate_cast_helper(v);} +template static __device__ __forceinline__ T saturate_cast(const int3& v) {return vec_math_detail::saturate_cast_helper(v);} +template static __device__ __forceinline__ T saturate_cast(const float3& v) {return vec_math_detail::saturate_cast_helper(v);} +template static __device__ __forceinline__ T saturate_cast(const double3& v) {return vec_math_detail::saturate_cast_helper(v);} + +template static __device__ __forceinline__ T saturate_cast(const uchar4& v) {return vec_math_detail::saturate_cast_helper(v);} +template static __device__ __forceinline__ T saturate_cast(const char4& v) {return vec_math_detail::saturate_cast_helper(v);} +template static __device__ __forceinline__ T saturate_cast(const ushort4& v) {return vec_math_detail::saturate_cast_helper(v);} +template static __device__ __forceinline__ T saturate_cast(const short4& v) {return vec_math_detail::saturate_cast_helper(v);} +template static __device__ __forceinline__ T saturate_cast(const uint4& v) {return vec_math_detail::saturate_cast_helper(v);} +template static __device__ __forceinline__ T saturate_cast(const int4& v) {return vec_math_detail::saturate_cast_helper(v);} +template static __device__ __forceinline__ T saturate_cast(const float4& v) {return vec_math_detail::saturate_cast_helper(v);} +template static __device__ __forceinline__ T saturate_cast(const double4& v) {return vec_math_detail::saturate_cast_helper(v);} + +// unary operators + +#define CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(op, input_type, output_type) \ + __device__ __forceinline__ output_type ## 1 operator op(const input_type ## 1 & a) \ + { \ + return VecTraits::make(op (a.x)); \ + } \ + __device__ __forceinline__ output_type ## 2 operator op(const input_type ## 2 & a) \ + { \ + return VecTraits::make(op (a.x), op (a.y)); \ + } \ + __device__ __forceinline__ output_type ## 3 operator op(const input_type ## 3 & a) \ + { \ + return VecTraits::make(op (a.x), op (a.y), op (a.z)); \ + } \ + __device__ __forceinline__ output_type ## 4 operator op(const input_type ## 4 & a) \ + { \ + return VecTraits::make(op (a.x), op (a.y), op (a.z), op (a.w)); \ + } + +CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(-, char, char) +CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(-, short, short) +CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(-, int, int) +CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(-, float, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(-, double, double) + +CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(!, uchar, uchar) +CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(!, char, uchar) +CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(!, ushort, uchar) +CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(!, short, uchar) +CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(!, int, uchar) +CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(!, uint, uchar) +CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(!, float, uchar) +CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(!, double, uchar) + +CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(~, uchar, uchar) +CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(~, char, char) +CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(~, ushort, ushort) +CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(~, short, short) +CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(~, int, int) +CV_CUDEV_IMPLEMENT_VEC_UNARY_OP(~, uint, uint) + +#undef CV_CUDEV_IMPLEMENT_VEC_UNARY_OP + +// unary functions + +#define CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(func_name, func, input_type, output_type) \ + __device__ __forceinline__ output_type ## 1 func_name(const input_type ## 1 & a) \ + { \ + return VecTraits::make(func (a.x)); \ + } \ + __device__ __forceinline__ output_type ## 2 func_name(const input_type ## 2 & a) \ + { \ + return VecTraits::make(func (a.x), func (a.y)); \ + } \ + __device__ __forceinline__ output_type ## 3 func_name(const input_type ## 3 & a) \ + { \ + return VecTraits::make(func (a.x), func (a.y), func (a.z)); \ + } \ + __device__ __forceinline__ output_type ## 4 func_name(const input_type ## 4 & a) \ + { \ + return VecTraits::make(func (a.x), func (a.y), func (a.z), func (a.w)); \ + } + +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(abs, /*::abs*/, uchar, uchar) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(abs, ::abs, char, char) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(abs, /*::abs*/, ushort, ushort) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(abs, ::abs, short, short) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(abs, ::abs, int, int) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(abs, /*::abs*/, uint, uint) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(abs, ::fabsf, float, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(abs, ::fabs, double, double) + +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sqrt, ::sqrtf, uchar, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sqrt, ::sqrtf, char, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sqrt, ::sqrtf, ushort, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sqrt, ::sqrtf, short, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sqrt, ::sqrtf, int, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sqrt, ::sqrtf, uint, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sqrt, ::sqrtf, float, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sqrt, ::sqrt, double, double) + +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp, ::expf, uchar, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp, ::expf, char, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp, ::expf, ushort, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp, ::expf, short, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp, ::expf, int, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp, ::expf, uint, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp, ::expf, float, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp, ::exp, double, double) + +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp2, ::exp2f, uchar, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp2, ::exp2f, char, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp2, ::exp2f, ushort, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp2, ::exp2f, short, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp2, ::exp2f, int, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp2, ::exp2f, uint, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp2, ::exp2f, float, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp2, ::exp2, double, double) + +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp10, ::exp10f, uchar, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp10, ::exp10f, char, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp10, ::exp10f, ushort, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp10, ::exp10f, short, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp10, ::exp10f, int, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp10, ::exp10f, uint, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp10, ::exp10f, float, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(exp10, ::exp10, double, double) + +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log, ::logf, uchar, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log, ::logf, char, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log, ::logf, ushort, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log, ::logf, short, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log, ::logf, int, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log, ::logf, uint, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log, ::logf, float, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log, ::log, double, double) + +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log2, ::log2f, uchar, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log2, ::log2f, char, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log2, ::log2f, ushort, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log2, ::log2f, short, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log2, ::log2f, int, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log2, ::log2f, uint, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log2, ::log2f, float, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log2, ::log2, double, double) + +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log10, ::log10f, uchar, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log10, ::log10f, char, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log10, ::log10f, ushort, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log10, ::log10f, short, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log10, ::log10f, int, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log10, ::log10f, uint, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log10, ::log10f, float, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(log10, ::log10, double, double) + +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sin, ::sinf, uchar, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sin, ::sinf, char, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sin, ::sinf, ushort, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sin, ::sinf, short, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sin, ::sinf, int, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sin, ::sinf, uint, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sin, ::sinf, float, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sin, ::sin, double, double) + +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(cos, ::cosf, uchar, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(cos, ::cosf, char, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(cos, ::cosf, ushort, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(cos, ::cosf, short, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(cos, ::cosf, int, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(cos, ::cosf, uint, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(cos, ::cosf, float, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(cos, ::cos, double, double) + +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(tan, ::tanf, uchar, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(tan, ::tanf, char, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(tan, ::tanf, ushort, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(tan, ::tanf, short, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(tan, ::tanf, int, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(tan, ::tanf, uint, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(tan, ::tanf, float, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(tan, ::tan, double, double) + +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(asin, ::asinf, uchar, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(asin, ::asinf, char, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(asin, ::asinf, ushort, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(asin, ::asinf, short, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(asin, ::asinf, int, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(asin, ::asinf, uint, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(asin, ::asinf, float, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(asin, ::asin, double, double) + +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(acos, ::acosf, uchar, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(acos, ::acosf, char, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(acos, ::acosf, ushort, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(acos, ::acosf, short, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(acos, ::acosf, int, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(acos, ::acosf, uint, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(acos, ::acosf, float, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(acos, ::acos, double, double) + +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(atan, ::atanf, uchar, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(atan, ::atanf, char, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(atan, ::atanf, ushort, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(atan, ::atanf, short, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(atan, ::atanf, int, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(atan, ::atanf, uint, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(atan, ::atanf, float, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(atan, ::atan, double, double) + +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sinh, ::sinhf, uchar, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sinh, ::sinhf, char, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sinh, ::sinhf, ushort, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sinh, ::sinhf, short, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sinh, ::sinhf, int, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sinh, ::sinhf, uint, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sinh, ::sinhf, float, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(sinh, ::sinh, double, double) + +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(cosh, ::coshf, uchar, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(cosh, ::coshf, char, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(cosh, ::coshf, ushort, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(cosh, ::coshf, short, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(cosh, ::coshf, int, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(cosh, ::coshf, uint, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(cosh, ::coshf, float, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(cosh, ::cosh, double, double) + +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(tanh, ::tanhf, uchar, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(tanh, ::tanhf, char, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(tanh, ::tanhf, ushort, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(tanh, ::tanhf, short, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(tanh, ::tanhf, int, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(tanh, ::tanhf, uint, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(tanh, ::tanhf, float, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(tanh, ::tanh, double, double) + +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(asinh, ::asinhf, uchar, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(asinh, ::asinhf, char, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(asinh, ::asinhf, ushort, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(asinh, ::asinhf, short, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(asinh, ::asinhf, int, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(asinh, ::asinhf, uint, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(asinh, ::asinhf, float, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(asinh, ::asinh, double, double) + +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(acosh, ::acoshf, uchar, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(acosh, ::acoshf, char, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(acosh, ::acoshf, ushort, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(acosh, ::acoshf, short, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(acosh, ::acoshf, int, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(acosh, ::acoshf, uint, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(acosh, ::acoshf, float, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(acosh, ::acosh, double, double) + +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(atanh, ::atanhf, uchar, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(atanh, ::atanhf, char, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(atanh, ::atanhf, ushort, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(atanh, ::atanhf, short, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(atanh, ::atanhf, int, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(atanh, ::atanhf, uint, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(atanh, ::atanhf, float, float) +CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC(atanh, ::atanh, double, double) + +#undef CV_CUDEV_IMPLEMENT_VEC_UNARY_FUNC + +// binary operators (vec & vec) + +#define CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(op, input_type, output_type) \ + __device__ __forceinline__ output_type ## 1 operator op(const input_type ## 1 & a, const input_type ## 1 & b) \ + { \ + return VecTraits::make(a.x op b.x); \ + } \ + __device__ __forceinline__ output_type ## 2 operator op(const input_type ## 2 & a, const input_type ## 2 & b) \ + { \ + return VecTraits::make(a.x op b.x, a.y op b.y); \ + } \ + __device__ __forceinline__ output_type ## 3 operator op(const input_type ## 3 & a, const input_type ## 3 & b) \ + { \ + return VecTraits::make(a.x op b.x, a.y op b.y, a.z op b.z); \ + } \ + __device__ __forceinline__ output_type ## 4 operator op(const input_type ## 4 & a, const input_type ## 4 & b) \ + { \ + return VecTraits::make(a.x op b.x, a.y op b.y, a.z op b.z, a.w op b.w); \ + } + +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(+, uchar, int) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(+, char, int) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(+, ushort, int) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(+, short, int) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(+, int, int) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(+, uint, uint) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(+, float, float) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(+, double, double) + +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(-, uchar, int) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(-, char, int) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(-, ushort, int) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(-, short, int) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(-, int, int) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(-, uint, uint) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(-, float, float) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(-, double, double) + +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(*, uchar, int) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(*, char, int) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(*, ushort, int) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(*, short, int) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(*, int, int) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(*, uint, uint) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(*, float, float) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(*, double, double) + +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(/, uchar, int) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(/, char, int) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(/, ushort, int) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(/, short, int) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(/, int, int) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(/, uint, uint) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(/, float, float) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(/, double, double) + +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(==, uchar, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(==, char, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(==, ushort, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(==, short, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(==, int, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(==, uint, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(==, float, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(==, double, uchar) + +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(!=, uchar, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(!=, char, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(!=, ushort, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(!=, short, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(!=, int, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(!=, uint, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(!=, float, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(!=, double, uchar) + +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(>, uchar, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(>, char, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(>, ushort, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(>, short, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(>, int, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(>, uint, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(>, float, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(>, double, uchar) + +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(<, uchar, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(<, char, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(<, ushort, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(<, short, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(<, int, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(<, uint, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(<, float, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(<, double, uchar) + +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(>=, uchar, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(>=, char, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(>=, ushort, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(>=, short, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(>=, int, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(>=, uint, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(>=, float, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(>=, double, uchar) + +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(<=, uchar, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(<=, char, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(<=, ushort, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(<=, short, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(<=, int, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(<=, uint, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(<=, float, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(<=, double, uchar) + +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(&&, uchar, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(&&, char, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(&&, ushort, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(&&, short, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(&&, int, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(&&, uint, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(&&, float, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(&&, double, uchar) + +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(||, uchar, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(||, char, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(||, ushort, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(||, short, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(||, int, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(||, uint, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(||, float, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(||, double, uchar) + +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(&, uchar, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(&, char, char) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(&, ushort, ushort) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(&, short, short) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(&, int, int) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(&, uint, uint) + +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(|, uchar, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(|, char, char) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(|, ushort, ushort) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(|, short, short) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(|, int, int) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(|, uint, uint) + +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(^, uchar, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(^, char, char) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(^, ushort, ushort) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(^, short, short) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(^, int, int) +CV_CUDEV_IMPLEMENT_VEC_BINARY_OP(^, uint, uint) + +#undef CV_CUDEV_IMPLEMENT_VEC_BINARY_OP + +// binary operators (vec & scalar) + +#define CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(op, input_type, scalar_type, output_type) \ + __device__ __forceinline__ output_type ## 1 operator op(const input_type ## 1 & a, scalar_type s) \ + { \ + return VecTraits::make(a.x op s); \ + } \ + __device__ __forceinline__ output_type ## 1 operator op(scalar_type s, const input_type ## 1 & b) \ + { \ + return VecTraits::make(s op b.x); \ + } \ + __device__ __forceinline__ output_type ## 2 operator op(const input_type ## 2 & a, scalar_type s) \ + { \ + return VecTraits::make(a.x op s, a.y op s); \ + } \ + __device__ __forceinline__ output_type ## 2 operator op(scalar_type s, const input_type ## 2 & b) \ + { \ + return VecTraits::make(s op b.x, s op b.y); \ + } \ + __device__ __forceinline__ output_type ## 3 operator op(const input_type ## 3 & a, scalar_type s) \ + { \ + return VecTraits::make(a.x op s, a.y op s, a.z op s); \ + } \ + __device__ __forceinline__ output_type ## 3 operator op(scalar_type s, const input_type ## 3 & b) \ + { \ + return VecTraits::make(s op b.x, s op b.y, s op b.z); \ + } \ + __device__ __forceinline__ output_type ## 4 operator op(const input_type ## 4 & a, scalar_type s) \ + { \ + return VecTraits::make(a.x op s, a.y op s, a.z op s, a.w op s); \ + } \ + __device__ __forceinline__ output_type ## 4 operator op(scalar_type s, const input_type ## 4 & b) \ + { \ + return VecTraits::make(s op b.x, s op b.y, s op b.z, s op b.w); \ + } + +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, uchar, int, int) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, uchar, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, uchar, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, char, int, int) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, char, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, char, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, ushort, int, int) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, ushort, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, ushort, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, short, int, int) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, short, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, short, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, int, int, int) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, int, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, int, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, uint, uint, uint) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, uint, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, uint, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, float, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, float, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(+, double, double, double) + +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, uchar, int, int) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, uchar, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, uchar, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, char, int, int) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, char, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, char, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, ushort, int, int) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, ushort, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, ushort, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, short, int, int) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, short, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, short, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, int, int, int) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, int, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, int, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, uint, uint, uint) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, uint, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, uint, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, float, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, float, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(-, double, double, double) + +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, uchar, int, int) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, uchar, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, uchar, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, char, int, int) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, char, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, char, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, ushort, int, int) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, ushort, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, ushort, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, short, int, int) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, short, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, short, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, int, int, int) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, int, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, int, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, uint, uint, uint) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, uint, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, uint, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, float, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, float, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(*, double, double, double) + +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, uchar, int, int) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, uchar, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, uchar, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, char, int, int) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, char, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, char, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, ushort, int, int) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, ushort, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, ushort, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, short, int, int) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, short, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, short, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, int, int, int) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, int, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, int, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, uint, uint, uint) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, uint, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, uint, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, float, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, float, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(/, double, double, double) + +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(==, uchar, uchar, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(==, char, char, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(==, ushort, ushort, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(==, short, short, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(==, int, int, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(==, uint, uint, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(==, float, float, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(==, double, double, uchar) + +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(!=, uchar, uchar, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(!=, char, char, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(!=, ushort, ushort, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(!=, short, short, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(!=, int, int, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(!=, uint, uint, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(!=, float, float, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(!=, double, double, uchar) + +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(>, uchar, uchar, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(>, char, char, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(>, ushort, ushort, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(>, short, short, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(>, int, int, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(>, uint, uint, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(>, float, float, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(>, double, double, uchar) + +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(<, uchar, uchar, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(<, char, char, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(<, ushort, ushort, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(<, short, short, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(<, int, int, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(<, uint, uint, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(<, float, float, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(<, double, double, uchar) + +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(>=, uchar, uchar, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(>=, char, char, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(>=, ushort, ushort, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(>=, short, short, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(>=, int, int, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(>=, uint, uint, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(>=, float, float, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(>=, double, double, uchar) + +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(<=, uchar, uchar, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(<=, char, char, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(<=, ushort, ushort, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(<=, short, short, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(<=, int, int, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(<=, uint, uint, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(<=, float, float, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(<=, double, double, uchar) + +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(&&, uchar, uchar, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(&&, char, char, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(&&, ushort, ushort, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(&&, short, short, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(&&, int, int, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(&&, uint, uint, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(&&, float, float, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(&&, double, double, uchar) + +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(||, uchar, uchar, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(||, char, char, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(||, ushort, ushort, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(||, short, short, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(||, int, int, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(||, uint, uint, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(||, float, float, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(||, double, double, uchar) + +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(&, uchar, uchar, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(&, char, char, char) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(&, ushort, ushort, ushort) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(&, short, short, short) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(&, int, int, int) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(&, uint, uint, uint) + +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(|, uchar, uchar, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(|, char, char, char) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(|, ushort, ushort, ushort) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(|, short, short, short) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(|, int, int, int) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(|, uint, uint, uint) + +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(^, uchar, uchar, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(^, char, char, char) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(^, ushort, ushort, ushort) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(^, short, short, short) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(^, int, int, int) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP(^, uint, uint, uint) + +#undef CV_CUDEV_IMPLEMENT_SCALAR_BINARY_OP + +// binary function (vec & vec) + +#define CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(func_name, func, input_type, output_type) \ + __device__ __forceinline__ output_type ## 1 func_name(const input_type ## 1 & a, const input_type ## 1 & b) \ + { \ + return VecTraits::make(func (a.x, b.x)); \ + } \ + __device__ __forceinline__ output_type ## 2 func_name(const input_type ## 2 & a, const input_type ## 2 & b) \ + { \ + return VecTraits::make(func (a.x, b.x), func (a.y, b.y)); \ + } \ + __device__ __forceinline__ output_type ## 3 func_name(const input_type ## 3 & a, const input_type ## 3 & b) \ + { \ + return VecTraits::make(func (a.x, b.x), func (a.y, b.y), func (a.z, b.z)); \ + } \ + __device__ __forceinline__ output_type ## 4 func_name(const input_type ## 4 & a, const input_type ## 4 & b) \ + { \ + return VecTraits::make(func (a.x, b.x), func (a.y, b.y), func (a.z, b.z), func (a.w, b.w)); \ + } + +CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(max, ::max, uchar, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(max, ::max, char, char) +CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(max, ::max, ushort, ushort) +CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(max, ::max, short, short) +CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(max, ::max, uint, uint) +CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(max, ::max, int, int) +CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(max, ::fmaxf, float, float) +CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(max, ::fmax, double, double) + +CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(min, ::min, uchar, uchar) +CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(min, ::min, char, char) +CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(min, ::min, ushort, ushort) +CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(min, ::min, short, short) +CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(min, ::min, uint, uint) +CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(min, ::min, int, int) +CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(min, ::fminf, float, float) +CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(min, ::fmin, double, double) + +CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(hypot, ::hypotf, uchar, float) +CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(hypot, ::hypotf, char, float) +CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(hypot, ::hypotf, ushort, float) +CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(hypot, ::hypotf, short, float) +CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(hypot, ::hypotf, uint, float) +CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(hypot, ::hypotf, int, float) +CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(hypot, ::hypotf, float, float) +CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(hypot, ::hypot, double, double) + +CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(atan2, ::atan2f, uchar, float) +CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(atan2, ::atan2f, char, float) +CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(atan2, ::atan2f, ushort, float) +CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(atan2, ::atan2f, short, float) +CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(atan2, ::atan2f, uint, float) +CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(atan2, ::atan2f, int, float) +CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(atan2, ::atan2f, float, float) +CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC(atan2, ::atan2, double, double) + +#undef CV_CUDEV_IMPLEMENT_VEC_BINARY_FUNC + +// binary function (vec & scalar) + +#define CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(func_name, func, input_type, scalar_type, output_type) \ + __device__ __forceinline__ output_type ## 1 func_name(const input_type ## 1 & a, scalar_type s) \ + { \ + return VecTraits::make(func ((output_type) a.x, (output_type) s)); \ + } \ + __device__ __forceinline__ output_type ## 1 func_name(scalar_type s, const input_type ## 1 & b) \ + { \ + return VecTraits::make(func ((output_type) s, (output_type) b.x)); \ + } \ + __device__ __forceinline__ output_type ## 2 func_name(const input_type ## 2 & a, scalar_type s) \ + { \ + return VecTraits::make(func ((output_type) a.x, (output_type) s), func ((output_type) a.y, (output_type) s)); \ + } \ + __device__ __forceinline__ output_type ## 2 func_name(scalar_type s, const input_type ## 2 & b) \ + { \ + return VecTraits::make(func ((output_type) s, (output_type) b.x), func ((output_type) s, (output_type) b.y)); \ + } \ + __device__ __forceinline__ output_type ## 3 func_name(const input_type ## 3 & a, scalar_type s) \ + { \ + return VecTraits::make(func ((output_type) a.x, (output_type) s), func ((output_type) a.y, (output_type) s), func ((output_type) a.z, (output_type) s)); \ + } \ + __device__ __forceinline__ output_type ## 3 func_name(scalar_type s, const input_type ## 3 & b) \ + { \ + return VecTraits::make(func ((output_type) s, (output_type) b.x), func ((output_type) s, (output_type) b.y), func ((output_type) s, (output_type) b.z)); \ + } \ + __device__ __forceinline__ output_type ## 4 func_name(const input_type ## 4 & a, scalar_type s) \ + { \ + return VecTraits::make(func ((output_type) a.x, (output_type) s), func ((output_type) a.y, (output_type) s), func ((output_type) a.z, (output_type) s), func ((output_type) a.w, (output_type) s)); \ + } \ + __device__ __forceinline__ output_type ## 4 func_name(scalar_type s, const input_type ## 4 & b) \ + { \ + return VecTraits::make(func ((output_type) s, (output_type) b.x), func ((output_type) s, (output_type) b.y), func ((output_type) s, (output_type) b.z), func ((output_type) s, (output_type) b.w)); \ + } + +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::max, uchar, uchar, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::fmaxf, uchar, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::fmax, uchar, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::max, char, char, char) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::fmaxf, char, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::fmax, char, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::max, ushort, ushort, ushort) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::fmaxf, ushort, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::fmax, ushort, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::max, short, short, short) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::fmaxf, short, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::fmax, short, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::max, uint, uint, uint) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::fmaxf, uint, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::fmax, uint, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::max, int, int, int) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::fmaxf, int, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::fmax, int, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::fmaxf, float, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::fmax, float, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(max, ::fmax, double, double, double) + +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::min, uchar, uchar, uchar) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::fminf, uchar, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::fmin, uchar, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::min, char, char, char) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::fminf, char, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::fmin, char, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::min, ushort, ushort, ushort) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::fminf, ushort, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::fmin, ushort, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::min, short, short, short) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::fminf, short, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::fmin, short, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::min, uint, uint, uint) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::fminf, uint, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::fmin, uint, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::min, int, int, int) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::fminf, int, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::fmin, int, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::fminf, float, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::fmin, float, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(min, ::fmin, double, double, double) + +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(hypot, ::hypotf, uchar, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(hypot, ::hypot, uchar, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(hypot, ::hypotf, char, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(hypot, ::hypot, char, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(hypot, ::hypotf, ushort, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(hypot, ::hypot, ushort, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(hypot, ::hypotf, short, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(hypot, ::hypot, short, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(hypot, ::hypotf, uint, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(hypot, ::hypot, uint, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(hypot, ::hypotf, int, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(hypot, ::hypot, int, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(hypot, ::hypotf, float, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(hypot, ::hypot, float, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(hypot, ::hypot, double, double, double) + +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(atan2, ::atan2f, uchar, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(atan2, ::atan2, uchar, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(atan2, ::atan2f, char, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(atan2, ::atan2, char, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(atan2, ::atan2f, ushort, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(atan2, ::atan2, ushort, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(atan2, ::atan2f, short, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(atan2, ::atan2, short, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(atan2, ::atan2f, uint, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(atan2, ::atan2, uint, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(atan2, ::atan2f, int, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(atan2, ::atan2, int, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(atan2, ::atan2f, float, float, float) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(atan2, ::atan2, float, double, double) +CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(atan2, ::atan2, double, double, double) + +#undef CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC + +}}} // namespace cv { namespace cuda { namespace device + +//! @endcond + +#endif // OPENCV_CUDA_VECMATH_HPP diff --git a/thirdparty1/linux/include/opencv2/core/cuda/vec_traits.hpp b/thirdparty1/linux/include/opencv2/core/cuda/vec_traits.hpp new file mode 100644 index 0000000..b5ff281 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda/vec_traits.hpp @@ -0,0 +1,288 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CUDA_VEC_TRAITS_HPP +#define OPENCV_CUDA_VEC_TRAITS_HPP + +#include "common.hpp" + +/** @file + * @deprecated Use @ref cudev instead. + */ + +//! @cond IGNORED + +namespace cv { namespace cuda { namespace device +{ + template struct TypeVec; + + struct __align__(8) uchar8 + { + uchar a0, a1, a2, a3, a4, a5, a6, a7; + }; + static __host__ __device__ __forceinline__ uchar8 make_uchar8(uchar a0, uchar a1, uchar a2, uchar a3, uchar a4, uchar a5, uchar a6, uchar a7) + { + uchar8 val = {a0, a1, a2, a3, a4, a5, a6, a7}; + return val; + } + struct __align__(8) char8 + { + schar a0, a1, a2, a3, a4, a5, a6, a7; + }; + static __host__ __device__ __forceinline__ char8 make_char8(schar a0, schar a1, schar a2, schar a3, schar a4, schar a5, schar a6, schar a7) + { + char8 val = {a0, a1, a2, a3, a4, a5, a6, a7}; + return val; + } + struct __align__(16) ushort8 + { + ushort a0, a1, a2, a3, a4, a5, a6, a7; + }; + static __host__ __device__ __forceinline__ ushort8 make_ushort8(ushort a0, ushort a1, ushort a2, ushort a3, ushort a4, ushort a5, ushort a6, ushort a7) + { + ushort8 val = {a0, a1, a2, a3, a4, a5, a6, a7}; + return val; + } + struct __align__(16) short8 + { + short a0, a1, a2, a3, a4, a5, a6, a7; + }; + static __host__ __device__ __forceinline__ short8 make_short8(short a0, short a1, short a2, short a3, short a4, short a5, short a6, short a7) + { + short8 val = {a0, a1, a2, a3, a4, a5, a6, a7}; + return val; + } + struct __align__(32) uint8 + { + uint a0, a1, a2, a3, a4, a5, a6, a7; + }; + static __host__ __device__ __forceinline__ uint8 make_uint8(uint a0, uint a1, uint a2, uint a3, uint a4, uint a5, uint a6, uint a7) + { + uint8 val = {a0, a1, a2, a3, a4, a5, a6, a7}; + return val; + } + struct __align__(32) int8 + { + int a0, a1, a2, a3, a4, a5, a6, a7; + }; + static __host__ __device__ __forceinline__ int8 make_int8(int a0, int a1, int a2, int a3, int a4, int a5, int a6, int a7) + { + int8 val = {a0, a1, a2, a3, a4, a5, a6, a7}; + return val; + } + struct __align__(32) float8 + { + float a0, a1, a2, a3, a4, a5, a6, a7; + }; + static __host__ __device__ __forceinline__ float8 make_float8(float a0, float a1, float a2, float a3, float a4, float a5, float a6, float a7) + { + float8 val = {a0, a1, a2, a3, a4, a5, a6, a7}; + return val; + } + struct double8 + { + double a0, a1, a2, a3, a4, a5, a6, a7; + }; + static __host__ __device__ __forceinline__ double8 make_double8(double a0, double a1, double a2, double a3, double a4, double a5, double a6, double a7) + { + double8 val = {a0, a1, a2, a3, a4, a5, a6, a7}; + return val; + } + +#define OPENCV_CUDA_IMPLEMENT_TYPE_VEC(type) \ + template<> struct TypeVec { typedef type vec_type; }; \ + template<> struct TypeVec { typedef type ## 1 vec_type; }; \ + template<> struct TypeVec { typedef type ## 2 vec_type; }; \ + template<> struct TypeVec { typedef type ## 2 vec_type; }; \ + template<> struct TypeVec { typedef type ## 3 vec_type; }; \ + template<> struct TypeVec { typedef type ## 3 vec_type; }; \ + template<> struct TypeVec { typedef type ## 4 vec_type; }; \ + template<> struct TypeVec { typedef type ## 4 vec_type; }; \ + template<> struct TypeVec { typedef type ## 8 vec_type; }; \ + template<> struct TypeVec { typedef type ## 8 vec_type; }; + + OPENCV_CUDA_IMPLEMENT_TYPE_VEC(uchar) + OPENCV_CUDA_IMPLEMENT_TYPE_VEC(char) + OPENCV_CUDA_IMPLEMENT_TYPE_VEC(ushort) + OPENCV_CUDA_IMPLEMENT_TYPE_VEC(short) + OPENCV_CUDA_IMPLEMENT_TYPE_VEC(int) + OPENCV_CUDA_IMPLEMENT_TYPE_VEC(uint) + OPENCV_CUDA_IMPLEMENT_TYPE_VEC(float) + OPENCV_CUDA_IMPLEMENT_TYPE_VEC(double) + + #undef OPENCV_CUDA_IMPLEMENT_TYPE_VEC + + template<> struct TypeVec { typedef schar vec_type; }; + template<> struct TypeVec { typedef char2 vec_type; }; + template<> struct TypeVec { typedef char3 vec_type; }; + template<> struct TypeVec { typedef char4 vec_type; }; + template<> struct TypeVec { typedef char8 vec_type; }; + + template<> struct TypeVec { typedef uchar vec_type; }; + template<> struct TypeVec { typedef uchar2 vec_type; }; + template<> struct TypeVec { typedef uchar3 vec_type; }; + template<> struct TypeVec { typedef uchar4 vec_type; }; + template<> struct TypeVec { typedef uchar8 vec_type; }; + + template struct VecTraits; + +#define OPENCV_CUDA_IMPLEMENT_VEC_TRAITS(type) \ + template<> struct VecTraits \ + { \ + typedef type elem_type; \ + enum {cn=1}; \ + static __device__ __host__ __forceinline__ type all(type v) {return v;} \ + static __device__ __host__ __forceinline__ type make(type x) {return x;} \ + static __device__ __host__ __forceinline__ type make(const type* v) {return *v;} \ + }; \ + template<> struct VecTraits \ + { \ + typedef type elem_type; \ + enum {cn=1}; \ + static __device__ __host__ __forceinline__ type ## 1 all(type v) {return make_ ## type ## 1(v);} \ + static __device__ __host__ __forceinline__ type ## 1 make(type x) {return make_ ## type ## 1(x);} \ + static __device__ __host__ __forceinline__ type ## 1 make(const type* v) {return make_ ## type ## 1(*v);} \ + }; \ + template<> struct VecTraits \ + { \ + typedef type elem_type; \ + enum {cn=2}; \ + static __device__ __host__ __forceinline__ type ## 2 all(type v) {return make_ ## type ## 2(v, v);} \ + static __device__ __host__ __forceinline__ type ## 2 make(type x, type y) {return make_ ## type ## 2(x, y);} \ + static __device__ __host__ __forceinline__ type ## 2 make(const type* v) {return make_ ## type ## 2(v[0], v[1]);} \ + }; \ + template<> struct VecTraits \ + { \ + typedef type elem_type; \ + enum {cn=3}; \ + static __device__ __host__ __forceinline__ type ## 3 all(type v) {return make_ ## type ## 3(v, v, v);} \ + static __device__ __host__ __forceinline__ type ## 3 make(type x, type y, type z) {return make_ ## type ## 3(x, y, z);} \ + static __device__ __host__ __forceinline__ type ## 3 make(const type* v) {return make_ ## type ## 3(v[0], v[1], v[2]);} \ + }; \ + template<> struct VecTraits \ + { \ + typedef type elem_type; \ + enum {cn=4}; \ + static __device__ __host__ __forceinline__ type ## 4 all(type v) {return make_ ## type ## 4(v, v, v, v);} \ + static __device__ __host__ __forceinline__ type ## 4 make(type x, type y, type z, type w) {return make_ ## type ## 4(x, y, z, w);} \ + static __device__ __host__ __forceinline__ type ## 4 make(const type* v) {return make_ ## type ## 4(v[0], v[1], v[2], v[3]);} \ + }; \ + template<> struct VecTraits \ + { \ + typedef type elem_type; \ + enum {cn=8}; \ + static __device__ __host__ __forceinline__ type ## 8 all(type v) {return make_ ## type ## 8(v, v, v, v, v, v, v, v);} \ + static __device__ __host__ __forceinline__ type ## 8 make(type a0, type a1, type a2, type a3, type a4, type a5, type a6, type a7) {return make_ ## type ## 8(a0, a1, a2, a3, a4, a5, a6, a7);} \ + static __device__ __host__ __forceinline__ type ## 8 make(const type* v) {return make_ ## type ## 8(v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]);} \ + }; + + OPENCV_CUDA_IMPLEMENT_VEC_TRAITS(uchar) + OPENCV_CUDA_IMPLEMENT_VEC_TRAITS(ushort) + OPENCV_CUDA_IMPLEMENT_VEC_TRAITS(short) + OPENCV_CUDA_IMPLEMENT_VEC_TRAITS(int) + OPENCV_CUDA_IMPLEMENT_VEC_TRAITS(uint) + OPENCV_CUDA_IMPLEMENT_VEC_TRAITS(float) + OPENCV_CUDA_IMPLEMENT_VEC_TRAITS(double) + + #undef OPENCV_CUDA_IMPLEMENT_VEC_TRAITS + + template<> struct VecTraits + { + typedef char elem_type; + enum {cn=1}; + static __device__ __host__ __forceinline__ char all(char v) {return v;} + static __device__ __host__ __forceinline__ char make(char x) {return x;} + static __device__ __host__ __forceinline__ char make(const char* x) {return *x;} + }; + template<> struct VecTraits + { + typedef schar elem_type; + enum {cn=1}; + static __device__ __host__ __forceinline__ schar all(schar v) {return v;} + static __device__ __host__ __forceinline__ schar make(schar x) {return x;} + static __device__ __host__ __forceinline__ schar make(const schar* x) {return *x;} + }; + template<> struct VecTraits + { + typedef schar elem_type; + enum {cn=1}; + static __device__ __host__ __forceinline__ char1 all(schar v) {return make_char1(v);} + static __device__ __host__ __forceinline__ char1 make(schar x) {return make_char1(x);} + static __device__ __host__ __forceinline__ char1 make(const schar* v) {return make_char1(v[0]);} + }; + template<> struct VecTraits + { + typedef schar elem_type; + enum {cn=2}; + static __device__ __host__ __forceinline__ char2 all(schar v) {return make_char2(v, v);} + static __device__ __host__ __forceinline__ char2 make(schar x, schar y) {return make_char2(x, y);} + static __device__ __host__ __forceinline__ char2 make(const schar* v) {return make_char2(v[0], v[1]);} + }; + template<> struct VecTraits + { + typedef schar elem_type; + enum {cn=3}; + static __device__ __host__ __forceinline__ char3 all(schar v) {return make_char3(v, v, v);} + static __device__ __host__ __forceinline__ char3 make(schar x, schar y, schar z) {return make_char3(x, y, z);} + static __device__ __host__ __forceinline__ char3 make(const schar* v) {return make_char3(v[0], v[1], v[2]);} + }; + template<> struct VecTraits + { + typedef schar elem_type; + enum {cn=4}; + static __device__ __host__ __forceinline__ char4 all(schar v) {return make_char4(v, v, v, v);} + static __device__ __host__ __forceinline__ char4 make(schar x, schar y, schar z, schar w) {return make_char4(x, y, z, w);} + static __device__ __host__ __forceinline__ char4 make(const schar* v) {return make_char4(v[0], v[1], v[2], v[3]);} + }; + template<> struct VecTraits + { + typedef schar elem_type; + enum {cn=8}; + static __device__ __host__ __forceinline__ char8 all(schar v) {return make_char8(v, v, v, v, v, v, v, v);} + static __device__ __host__ __forceinline__ char8 make(schar a0, schar a1, schar a2, schar a3, schar a4, schar a5, schar a6, schar a7) {return make_char8(a0, a1, a2, a3, a4, a5, a6, a7);} + static __device__ __host__ __forceinline__ char8 make(const schar* v) {return make_char8(v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]);} + }; +}}} // namespace cv { namespace cuda { namespace cudev + +//! @endcond + +#endif // OPENCV_CUDA_VEC_TRAITS_HPP diff --git a/thirdparty1/linux/include/opencv2/core/cuda/warp.hpp b/thirdparty1/linux/include/opencv2/core/cuda/warp.hpp new file mode 100644 index 0000000..ae1f8ea --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda/warp.hpp @@ -0,0 +1,139 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CUDA_DEVICE_WARP_HPP +#define OPENCV_CUDA_DEVICE_WARP_HPP + +/** @file + * @deprecated Use @ref cudev instead. + */ + +//! @cond IGNORED + +namespace cv { namespace cuda { namespace device +{ + struct Warp + { + enum + { + LOG_WARP_SIZE = 5, + WARP_SIZE = 1 << LOG_WARP_SIZE, + STRIDE = WARP_SIZE + }; + + /** \brief Returns the warp lane ID of the calling thread. */ + static __device__ __forceinline__ unsigned int laneId() + { + unsigned int ret; + asm("mov.u32 %0, %laneid;" : "=r"(ret) ); + return ret; + } + + template + static __device__ __forceinline__ void fill(It beg, It end, const T& value) + { + for(It t = beg + laneId(); t < end; t += STRIDE) + *t = value; + } + + template + static __device__ __forceinline__ OutIt copy(InIt beg, InIt end, OutIt out) + { + for(InIt t = beg + laneId(); t < end; t += STRIDE, out += STRIDE) + *out = *t; + return out; + } + + template + static __device__ __forceinline__ OutIt transform(InIt beg, InIt end, OutIt out, UnOp op) + { + for(InIt t = beg + laneId(); t < end; t += STRIDE, out += STRIDE) + *out = op(*t); + return out; + } + + template + static __device__ __forceinline__ OutIt transform(InIt1 beg1, InIt1 end1, InIt2 beg2, OutIt out, BinOp op) + { + unsigned int lane = laneId(); + + InIt1 t1 = beg1 + lane; + InIt2 t2 = beg2 + lane; + for(; t1 < end1; t1 += STRIDE, t2 += STRIDE, out += STRIDE) + *out = op(*t1, *t2); + return out; + } + + template + static __device__ __forceinline__ T reduce(volatile T *ptr, BinOp op) + { + const unsigned int lane = laneId(); + + if (lane < 16) + { + T partial = ptr[lane]; + + ptr[lane] = partial = op(partial, ptr[lane + 16]); + ptr[lane] = partial = op(partial, ptr[lane + 8]); + ptr[lane] = partial = op(partial, ptr[lane + 4]); + ptr[lane] = partial = op(partial, ptr[lane + 2]); + ptr[lane] = partial = op(partial, ptr[lane + 1]); + } + + return *ptr; + } + + template + static __device__ __forceinline__ void yota(OutIt beg, OutIt end, T value) + { + unsigned int lane = laneId(); + value += lane; + + for(OutIt t = beg + lane; t < end; t += STRIDE, value += STRIDE) + *t = value; + } + }; +}}} // namespace cv { namespace cuda { namespace cudev + +//! @endcond + +#endif /* OPENCV_CUDA_DEVICE_WARP_HPP */ diff --git a/thirdparty1/linux/include/opencv2/core/cuda/warp_reduce.hpp b/thirdparty1/linux/include/opencv2/core/cuda/warp_reduce.hpp new file mode 100644 index 0000000..530303d --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda/warp_reduce.hpp @@ -0,0 +1,76 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CUDA_WARP_REDUCE_HPP__ +#define OPENCV_CUDA_WARP_REDUCE_HPP__ + +/** @file + * @deprecated Use @ref cudev instead. + */ + +//! @cond IGNORED + +namespace cv { namespace cuda { namespace device +{ + template + __device__ __forceinline__ T warp_reduce(volatile T *ptr , const unsigned int tid = threadIdx.x) + { + const unsigned int lane = tid & 31; // index of thread in warp (0..31) + + if (lane < 16) + { + T partial = ptr[tid]; + + ptr[tid] = partial = partial + ptr[tid + 16]; + ptr[tid] = partial = partial + ptr[tid + 8]; + ptr[tid] = partial = partial + ptr[tid + 4]; + ptr[tid] = partial = partial + ptr[tid + 2]; + ptr[tid] = partial = partial + ptr[tid + 1]; + } + + return ptr[tid - lane]; + } +}}} // namespace cv { namespace cuda { namespace cudev { + +//! @endcond + +#endif /* OPENCV_CUDA_WARP_REDUCE_HPP__ */ diff --git a/thirdparty1/linux/include/opencv2/core/cuda/warp_shuffle.hpp b/thirdparty1/linux/include/opencv2/core/cuda/warp_shuffle.hpp new file mode 100644 index 0000000..14a9a4d --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda/warp_shuffle.hpp @@ -0,0 +1,153 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CUDA_WARP_SHUFFLE_HPP +#define OPENCV_CUDA_WARP_SHUFFLE_HPP + +/** @file + * @deprecated Use @ref cudev instead. + */ + +//! @cond IGNORED + +namespace cv { namespace cuda { namespace device +{ + template + __device__ __forceinline__ T shfl(T val, int srcLane, int width = warpSize) + { + #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 300 + return __shfl(val, srcLane, width); + #else + return T(); + #endif + } + __device__ __forceinline__ unsigned int shfl(unsigned int val, int srcLane, int width = warpSize) + { + #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 300 + return (unsigned int) __shfl((int) val, srcLane, width); + #else + return 0; + #endif + } + __device__ __forceinline__ double shfl(double val, int srcLane, int width = warpSize) + { + #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 300 + int lo = __double2loint(val); + int hi = __double2hiint(val); + + lo = __shfl(lo, srcLane, width); + hi = __shfl(hi, srcLane, width); + + return __hiloint2double(hi, lo); + #else + return 0.0; + #endif + } + + template + __device__ __forceinline__ T shfl_down(T val, unsigned int delta, int width = warpSize) + { + #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 300 + return __shfl_down(val, delta, width); + #else + return T(); + #endif + } + __device__ __forceinline__ unsigned int shfl_down(unsigned int val, unsigned int delta, int width = warpSize) + { + #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 300 + return (unsigned int) __shfl_down((int) val, delta, width); + #else + return 0; + #endif + } + __device__ __forceinline__ double shfl_down(double val, unsigned int delta, int width = warpSize) + { + #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 300 + int lo = __double2loint(val); + int hi = __double2hiint(val); + + lo = __shfl_down(lo, delta, width); + hi = __shfl_down(hi, delta, width); + + return __hiloint2double(hi, lo); + #else + return 0.0; + #endif + } + + template + __device__ __forceinline__ T shfl_up(T val, unsigned int delta, int width = warpSize) + { + #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 300 + return __shfl_up(val, delta, width); + #else + return T(); + #endif + } + __device__ __forceinline__ unsigned int shfl_up(unsigned int val, unsigned int delta, int width = warpSize) + { + #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 300 + return (unsigned int) __shfl_up((int) val, delta, width); + #else + return 0; + #endif + } + __device__ __forceinline__ double shfl_up(double val, unsigned int delta, int width = warpSize) + { + #if defined __CUDA_ARCH__ && __CUDA_ARCH__ >= 300 + int lo = __double2loint(val); + int hi = __double2hiint(val); + + lo = __shfl_up(lo, delta, width); + hi = __shfl_up(hi, delta, width); + + return __hiloint2double(hi, lo); + #else + return 0.0; + #endif + } +}}} + +//! @endcond + +#endif // OPENCV_CUDA_WARP_SHUFFLE_HPP diff --git a/thirdparty1/linux/include/opencv2/core/cuda_stream_accessor.hpp b/thirdparty1/linux/include/opencv2/core/cuda_stream_accessor.hpp new file mode 100644 index 0000000..deaf356 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda_stream_accessor.hpp @@ -0,0 +1,86 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_CUDA_STREAM_ACCESSOR_HPP +#define OPENCV_CORE_CUDA_STREAM_ACCESSOR_HPP + +#ifndef __cplusplus +# error cuda_stream_accessor.hpp header must be compiled as C++ +#endif + +/** @file cuda_stream_accessor.hpp + * This is only header file that depends on CUDA Runtime API. All other headers are independent. + */ + +#include +#include "opencv2/core/cuda.hpp" + +namespace cv +{ + namespace cuda + { + +//! @addtogroup cudacore_struct +//! @{ + + /** @brief Class that enables getting cudaStream_t from cuda::Stream + */ + struct StreamAccessor + { + CV_EXPORTS static cudaStream_t getStream(const Stream& stream); + CV_EXPORTS static Stream wrapStream(cudaStream_t stream); + }; + + /** @brief Class that enables getting cudaEvent_t from cuda::Event + */ + struct EventAccessor + { + CV_EXPORTS static cudaEvent_t getEvent(const Event& event); + CV_EXPORTS static Event wrapEvent(cudaEvent_t event); + }; + +//! @} + + } +} + +#endif /* OPENCV_CORE_CUDA_STREAM_ACCESSOR_HPP */ diff --git a/thirdparty1/linux/include/opencv2/core/cuda_types.hpp b/thirdparty1/linux/include/opencv2/core/cuda_types.hpp new file mode 100644 index 0000000..f13a847 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cuda_types.hpp @@ -0,0 +1,135 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_CUDA_TYPES_HPP +#define OPENCV_CORE_CUDA_TYPES_HPP + +#ifndef __cplusplus +# error cuda_types.hpp header must be compiled as C++ +#endif + +/** @file + * @deprecated Use @ref cudev instead. + */ + +//! @cond IGNORED + +#ifdef __CUDACC__ + #define __CV_CUDA_HOST_DEVICE__ __host__ __device__ __forceinline__ +#else + #define __CV_CUDA_HOST_DEVICE__ +#endif + +namespace cv +{ + namespace cuda + { + + // Simple lightweight structures that encapsulates information about an image on device. + // It is intended to pass to nvcc-compiled code. GpuMat depends on headers that nvcc can't compile + + template struct DevPtr + { + typedef T elem_type; + typedef int index_type; + + enum { elem_size = sizeof(elem_type) }; + + T* data; + + __CV_CUDA_HOST_DEVICE__ DevPtr() : data(0) {} + __CV_CUDA_HOST_DEVICE__ DevPtr(T* data_) : data(data_) {} + + __CV_CUDA_HOST_DEVICE__ size_t elemSize() const { return elem_size; } + __CV_CUDA_HOST_DEVICE__ operator T*() { return data; } + __CV_CUDA_HOST_DEVICE__ operator const T*() const { return data; } + }; + + template struct PtrSz : public DevPtr + { + __CV_CUDA_HOST_DEVICE__ PtrSz() : size(0) {} + __CV_CUDA_HOST_DEVICE__ PtrSz(T* data_, size_t size_) : DevPtr(data_), size(size_) {} + + size_t size; + }; + + template struct PtrStep : public DevPtr + { + __CV_CUDA_HOST_DEVICE__ PtrStep() : step(0) {} + __CV_CUDA_HOST_DEVICE__ PtrStep(T* data_, size_t step_) : DevPtr(data_), step(step_) {} + + size_t step; + + __CV_CUDA_HOST_DEVICE__ T* ptr(int y = 0) { return ( T*)( ( char*)DevPtr::data + y * step); } + __CV_CUDA_HOST_DEVICE__ const T* ptr(int y = 0) const { return (const T*)( (const char*)DevPtr::data + y * step); } + + __CV_CUDA_HOST_DEVICE__ T& operator ()(int y, int x) { return ptr(y)[x]; } + __CV_CUDA_HOST_DEVICE__ const T& operator ()(int y, int x) const { return ptr(y)[x]; } + }; + + template struct PtrStepSz : public PtrStep + { + __CV_CUDA_HOST_DEVICE__ PtrStepSz() : cols(0), rows(0) {} + __CV_CUDA_HOST_DEVICE__ PtrStepSz(int rows_, int cols_, T* data_, size_t step_) + : PtrStep(data_, step_), cols(cols_), rows(rows_) {} + + template + explicit PtrStepSz(const PtrStepSz& d) : PtrStep((T*)d.data, d.step), cols(d.cols), rows(d.rows){} + + int cols; + int rows; + }; + + typedef PtrStepSz PtrStepSzb; + typedef PtrStepSz PtrStepSzf; + typedef PtrStepSz PtrStepSzi; + + typedef PtrStep PtrStepb; + typedef PtrStep PtrStepf; + typedef PtrStep PtrStepi; + + } +} + +//! @endcond + +#endif /* OPENCV_CORE_CUDA_TYPES_HPP */ diff --git a/thirdparty1/linux/include/opencv2/core/cvdef.h b/thirdparty1/linux/include/opencv2/core/cvdef.h new file mode 100644 index 0000000..699b166 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cvdef.h @@ -0,0 +1,481 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2015, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_CVDEF_H +#define OPENCV_CORE_CVDEF_H + +//! @addtogroup core_utils +//! @{ + +#if !defined _CRT_SECURE_NO_DEPRECATE && defined _MSC_VER && _MSC_VER > 1300 +# define _CRT_SECURE_NO_DEPRECATE /* to avoid multiple Visual Studio warnings */ +#endif + +// undef problematic defines sometimes defined by system headers (windows.h in particular) +#undef small +#undef min +#undef max +#undef abs +#undef Complex + +#if !defined _CRT_SECURE_NO_DEPRECATE && defined _MSC_VER && _MSC_VER > 1300 +# define _CRT_SECURE_NO_DEPRECATE /* to avoid multiple Visual Studio warnings */ +#endif + +#include +#include "opencv2/core/hal/interface.h" + +#if defined __ICL +# define CV_ICC __ICL +#elif defined __ICC +# define CV_ICC __ICC +#elif defined __ECL +# define CV_ICC __ECL +#elif defined __ECC +# define CV_ICC __ECC +#elif defined __INTEL_COMPILER +# define CV_ICC __INTEL_COMPILER +#endif + +#ifndef CV_INLINE +# if defined __cplusplus +# define CV_INLINE static inline +# elif defined _MSC_VER +# define CV_INLINE __inline +# else +# define CV_INLINE static +# endif +#endif + +#if defined CV_ICC && !defined CV_ENABLE_UNROLLED +# define CV_ENABLE_UNROLLED 0 +#else +# define CV_ENABLE_UNROLLED 1 +#endif + +#ifdef __GNUC__ +# define CV_DECL_ALIGNED(x) __attribute__ ((aligned (x))) +#elif defined _MSC_VER +# define CV_DECL_ALIGNED(x) __declspec(align(x)) +#else +# define CV_DECL_ALIGNED(x) +#endif + +/* CPU features and intrinsics support */ +#define CV_CPU_NONE 0 +#define CV_CPU_MMX 1 +#define CV_CPU_SSE 2 +#define CV_CPU_SSE2 3 +#define CV_CPU_SSE3 4 +#define CV_CPU_SSSE3 5 +#define CV_CPU_SSE4_1 6 +#define CV_CPU_SSE4_2 7 +#define CV_CPU_POPCNT 8 +#define CV_CPU_FP16 9 +#define CV_CPU_AVX 10 +#define CV_CPU_AVX2 11 +#define CV_CPU_FMA3 12 + +#define CV_CPU_AVX_512F 13 +#define CV_CPU_AVX_512BW 14 +#define CV_CPU_AVX_512CD 15 +#define CV_CPU_AVX_512DQ 16 +#define CV_CPU_AVX_512ER 17 +#define CV_CPU_AVX_512IFMA512 18 +#define CV_CPU_AVX_512PF 19 +#define CV_CPU_AVX_512VBMI 20 +#define CV_CPU_AVX_512VL 21 + +#define CV_CPU_NEON 100 + +// when adding to this list remember to update the following enum +#define CV_HARDWARE_MAX_FEATURE 255 + +/** @brief Available CPU features. +*/ +enum CpuFeatures { + CPU_MMX = 1, + CPU_SSE = 2, + CPU_SSE2 = 3, + CPU_SSE3 = 4, + CPU_SSSE3 = 5, + CPU_SSE4_1 = 6, + CPU_SSE4_2 = 7, + CPU_POPCNT = 8, + CPU_FP16 = 9, + CPU_AVX = 10, + CPU_AVX2 = 11, + CPU_FMA3 = 12, + + CPU_AVX_512F = 13, + CPU_AVX_512BW = 14, + CPU_AVX_512CD = 15, + CPU_AVX_512DQ = 16, + CPU_AVX_512ER = 17, + CPU_AVX_512IFMA512 = 18, + CPU_AVX_512PF = 19, + CPU_AVX_512VBMI = 20, + CPU_AVX_512VL = 21, + + CPU_NEON = 100 +}; + +// do not include SSE/AVX/NEON headers for NVCC compiler +#ifndef __CUDACC__ + +#if defined __SSE2__ || defined _M_X64 || (defined _M_IX86_FP && _M_IX86_FP >= 2) +# include +# define CV_MMX 1 +# define CV_SSE 1 +# define CV_SSE2 1 +# if defined __SSE3__ || (defined _MSC_VER && _MSC_VER >= 1500) +# include +# define CV_SSE3 1 +# endif +# if defined __SSSE3__ || (defined _MSC_VER && _MSC_VER >= 1500) +# include +# define CV_SSSE3 1 +# endif +# if defined __SSE4_1__ || (defined _MSC_VER && _MSC_VER >= 1500) +# include +# define CV_SSE4_1 1 +# endif +# if defined __SSE4_2__ || (defined _MSC_VER && _MSC_VER >= 1500) +# include +# define CV_SSE4_2 1 +# endif +# if defined __POPCNT__ || (defined _MSC_VER && _MSC_VER >= 1500) +# ifdef _MSC_VER +# include +# else +# include +# endif +# define CV_POPCNT 1 +# endif +# if defined __AVX__ || (defined _MSC_VER && _MSC_VER >= 1600 && 0) +// MS Visual Studio 2010 (2012?) has no macro pre-defined to identify the use of /arch:AVX +// See: http://connect.microsoft.com/VisualStudio/feedback/details/605858/arch-avx-should-define-a-predefined-macro-in-x64-and-set-a-unique-value-for-m-ix86-fp-in-win32 +# include +# define CV_AVX 1 +# if defined(_XCR_XFEATURE_ENABLED_MASK) +# define __xgetbv() _xgetbv(_XCR_XFEATURE_ENABLED_MASK) +# else +# define __xgetbv() 0 +# endif +# endif +# if defined __AVX2__ || (defined _MSC_VER && _MSC_VER >= 1800 && 0) +# include +# define CV_AVX2 1 +# if defined __FMA__ +# define CV_FMA3 1 +# endif +# endif +#endif + +#if (defined WIN32 || defined _WIN32) && defined(_M_ARM) +# include +# include +# define CV_NEON 1 +# define CPU_HAS_NEON_FEATURE (true) +#elif defined(__ARM_NEON__) || (defined (__ARM_NEON) && defined(__aarch64__)) +# include +# define CV_NEON 1 +#endif + +#if defined __GNUC__ && defined __arm__ && (defined __ARM_PCS_VFP || defined __ARM_VFPV3__ || defined __ARM_NEON__) && !defined __SOFTFP__ +# define CV_VFP 1 +#endif + +#endif // __CUDACC__ + +#ifndef CV_POPCNT +#define CV_POPCNT 0 +#endif +#ifndef CV_MMX +# define CV_MMX 0 +#endif +#ifndef CV_SSE +# define CV_SSE 0 +#endif +#ifndef CV_SSE2 +# define CV_SSE2 0 +#endif +#ifndef CV_SSE3 +# define CV_SSE3 0 +#endif +#ifndef CV_SSSE3 +# define CV_SSSE3 0 +#endif +#ifndef CV_SSE4_1 +# define CV_SSE4_1 0 +#endif +#ifndef CV_SSE4_2 +# define CV_SSE4_2 0 +#endif +#ifndef CV_AVX +# define CV_AVX 0 +#endif +#ifndef CV_AVX2 +# define CV_AVX2 0 +#endif +#ifndef CV_FMA3 +# define CV_FMA3 0 +#endif +#ifndef CV_AVX_512F +# define CV_AVX_512F 0 +#endif +#ifndef CV_AVX_512BW +# define CV_AVX_512BW 0 +#endif +#ifndef CV_AVX_512CD +# define CV_AVX_512CD 0 +#endif +#ifndef CV_AVX_512DQ +# define CV_AVX_512DQ 0 +#endif +#ifndef CV_AVX_512ER +# define CV_AVX_512ER 0 +#endif +#ifndef CV_AVX_512IFMA512 +# define CV_AVX_512IFMA512 0 +#endif +#ifndef CV_AVX_512PF +# define CV_AVX_512PF 0 +#endif +#ifndef CV_AVX_512VBMI +# define CV_AVX_512VBMI 0 +#endif +#ifndef CV_AVX_512VL +# define CV_AVX_512VL 0 +#endif + +#ifndef CV_NEON +# define CV_NEON 0 +#endif + +#ifndef CV_VFP +# define CV_VFP 0 +#endif + +/* fundamental constants */ +#define CV_PI 3.1415926535897932384626433832795 +#define CV_2PI 6.283185307179586476925286766559 +#define CV_LOG2 0.69314718055994530941723212145818 + +#if defined __ARM_FP16_FORMAT_IEEE \ + && !defined __CUDACC__ +# define CV_FP16_TYPE 1 +#else +# define CV_FP16_TYPE 0 +#endif + +typedef union Cv16suf +{ + short i; +#if CV_FP16_TYPE + __fp16 h; +#endif + struct _fp16Format + { + unsigned int significand : 10; + unsigned int exponent : 5; + unsigned int sign : 1; + } fmt; +} +Cv16suf; + +typedef union Cv32suf +{ + int i; + unsigned u; + float f; + struct _fp32Format + { + unsigned int significand : 23; + unsigned int exponent : 8; + unsigned int sign : 1; + } fmt; +} +Cv32suf; + +typedef union Cv64suf +{ + int64 i; + uint64 u; + double f; +} +Cv64suf; + +#define OPENCV_ABI_COMPATIBILITY 300 + +#ifdef __OPENCV_BUILD +# define DISABLE_OPENCV_24_COMPATIBILITY +#endif + +#if (defined WIN32 || defined _WIN32 || defined WINCE || defined __CYGWIN__) && defined CVAPI_EXPORTS +# define CV_EXPORTS __declspec(dllexport) +#elif defined __GNUC__ && __GNUC__ >= 4 +# define CV_EXPORTS __attribute__ ((visibility ("default"))) +#else +# define CV_EXPORTS +#endif + +#ifndef CV_EXTERN_C +# ifdef __cplusplus +# define CV_EXTERN_C extern "C" +# else +# define CV_EXTERN_C +# endif +#endif + +/* special informative macros for wrapper generators */ +#define CV_EXPORTS_W CV_EXPORTS +#define CV_EXPORTS_W_SIMPLE CV_EXPORTS +#define CV_EXPORTS_AS(synonym) CV_EXPORTS +#define CV_EXPORTS_W_MAP CV_EXPORTS +#define CV_IN_OUT +#define CV_OUT +#define CV_PROP +#define CV_PROP_RW +#define CV_WRAP +#define CV_WRAP_AS(synonym) + +/****************************************************************************************\ +* Matrix type (Mat) * +\****************************************************************************************/ + +#define CV_MAT_CN_MASK ((CV_CN_MAX - 1) << CV_CN_SHIFT) +#define CV_MAT_CN(flags) ((((flags) & CV_MAT_CN_MASK) >> CV_CN_SHIFT) + 1) +#define CV_MAT_TYPE_MASK (CV_DEPTH_MAX*CV_CN_MAX - 1) +#define CV_MAT_TYPE(flags) ((flags) & CV_MAT_TYPE_MASK) +#define CV_MAT_CONT_FLAG_SHIFT 14 +#define CV_MAT_CONT_FLAG (1 << CV_MAT_CONT_FLAG_SHIFT) +#define CV_IS_MAT_CONT(flags) ((flags) & CV_MAT_CONT_FLAG) +#define CV_IS_CONT_MAT CV_IS_MAT_CONT +#define CV_SUBMAT_FLAG_SHIFT 15 +#define CV_SUBMAT_FLAG (1 << CV_SUBMAT_FLAG_SHIFT) +#define CV_IS_SUBMAT(flags) ((flags) & CV_MAT_SUBMAT_FLAG) + +/** Size of each channel item, + 0x124489 = 1000 0100 0100 0010 0010 0001 0001 ~ array of sizeof(arr_type_elem) */ +#define CV_ELEM_SIZE1(type) \ + ((((sizeof(size_t)<<28)|0x8442211) >> CV_MAT_DEPTH(type)*4) & 15) + +/** 0x3a50 = 11 10 10 01 01 00 00 ~ array of log2(sizeof(arr_type_elem)) */ +#define CV_ELEM_SIZE(type) \ + (CV_MAT_CN(type) << ((((sizeof(size_t)/4+1)*16384|0x3a50) >> CV_MAT_DEPTH(type)*2) & 3)) + +#ifndef MIN +# define MIN(a,b) ((a) > (b) ? (b) : (a)) +#endif + +#ifndef MAX +# define MAX(a,b) ((a) < (b) ? (b) : (a)) +#endif + +/****************************************************************************************\ +* exchange-add operation for atomic operations on reference counters * +\****************************************************************************************/ + +#ifdef CV_XADD + // allow to use user-defined macro +#elif defined __GNUC__ +# if defined __clang__ && __clang_major__ >= 3 && !defined __ANDROID__ && !defined __EMSCRIPTEN__ && !defined(__CUDACC__) +# ifdef __ATOMIC_ACQ_REL +# define CV_XADD(addr, delta) __c11_atomic_fetch_add((_Atomic(int)*)(addr), delta, __ATOMIC_ACQ_REL) +# else +# define CV_XADD(addr, delta) __atomic_fetch_add((_Atomic(int)*)(addr), delta, 4) +# endif +# else +# if defined __ATOMIC_ACQ_REL && !defined __clang__ + // version for gcc >= 4.7 +# define CV_XADD(addr, delta) (int)__atomic_fetch_add((unsigned*)(addr), (unsigned)(delta), __ATOMIC_ACQ_REL) +# else +# define CV_XADD(addr, delta) (int)__sync_fetch_and_add((unsigned*)(addr), (unsigned)(delta)) +# endif +# endif +#elif defined _MSC_VER && !defined RC_INVOKED +# include +# define CV_XADD(addr, delta) (int)_InterlockedExchangeAdd((long volatile*)addr, delta) +#else + CV_INLINE CV_XADD(int* addr, int delta) { int tmp = *addr; *addr += delta; return tmp; } +#endif + + +/****************************************************************************************\ +* CV_NORETURN attribute * +\****************************************************************************************/ + +#ifndef CV_NORETURN +# if defined(__GNUC__) +# define CV_NORETURN __attribute__((__noreturn__)) +# elif defined(_MSC_VER) && (_MSC_VER >= 1300) +# define CV_NORETURN __declspec(noreturn) +# else +# define CV_NORETURN /* nothing by default */ +# endif +#endif + + +/****************************************************************************************\ +* C++ Move semantics * +\****************************************************************************************/ + +#ifndef CV_CXX_MOVE_SEMANTICS +# if __cplusplus >= 201103L || defined(__GXX_EXPERIMENTAL_CXX0X__) || defined(_MSC_VER) && _MSC_VER >= 1600 +# define CV_CXX_MOVE_SEMANTICS 1 +# elif defined(__clang) +# if __has_feature(cxx_rvalue_references) +# define CV_CXX_MOVE_SEMANTICS 1 +# endif +# endif +#else +# if CV_CXX_MOVE_SEMANTICS == 0 +# undef CV_CXX_MOVE_SEMANTICS +# endif +#endif + +//! @} + +#endif // OPENCV_CORE_CVDEF_H diff --git a/thirdparty1/linux/include/opencv2/core/cvstd.hpp b/thirdparty1/linux/include/opencv2/core/cvstd.hpp new file mode 100644 index 0000000..2d40bd0 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cvstd.hpp @@ -0,0 +1,1066 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_CVSTD_HPP +#define OPENCV_CORE_CVSTD_HPP + +#ifndef __cplusplus +# error cvstd.hpp header must be compiled as C++ +#endif + +#include "opencv2/core/cvdef.h" + +#include +#include +#include + +#ifndef OPENCV_NOSTL +# include +#endif + +// import useful primitives from stl +#ifndef OPENCV_NOSTL_TRANSITIONAL +# include +# include +# include //for abs(int) +# include + +namespace cv +{ + static inline uchar abs(uchar a) { return a; } + static inline ushort abs(ushort a) { return a; } + static inline unsigned abs(unsigned a) { return a; } + static inline uint64 abs(uint64 a) { return a; } + + using std::min; + using std::max; + using std::abs; + using std::swap; + using std::sqrt; + using std::exp; + using std::pow; + using std::log; +} + +#else +namespace cv +{ + template static inline T min(T a, T b) { return a < b ? a : b; } + template static inline T max(T a, T b) { return a > b ? a : b; } + template static inline T abs(T a) { return a < 0 ? -a : a; } + template static inline void swap(T& a, T& b) { T tmp = a; a = b; b = tmp; } + + template<> inline uchar abs(uchar a) { return a; } + template<> inline ushort abs(ushort a) { return a; } + template<> inline unsigned abs(unsigned a) { return a; } + template<> inline uint64 abs(uint64 a) { return a; } +} +#endif + +namespace cv { + +//! @addtogroup core_utils +//! @{ + +//////////////////////////// memory management functions //////////////////////////// + +/** @brief Allocates an aligned memory buffer. + +The function allocates the buffer of the specified size and returns it. When the buffer size is 16 +bytes or more, the returned buffer is aligned to 16 bytes. +@param bufSize Allocated buffer size. + */ +CV_EXPORTS void* fastMalloc(size_t bufSize); + +/** @brief Deallocates a memory buffer. + +The function deallocates the buffer allocated with fastMalloc . If NULL pointer is passed, the +function does nothing. C version of the function clears the pointer *pptr* to avoid problems with +double memory deallocation. +@param ptr Pointer to the allocated buffer. + */ +CV_EXPORTS void fastFree(void* ptr); + +/*! + The STL-compilant memory Allocator based on cv::fastMalloc() and cv::fastFree() +*/ +template class Allocator +{ +public: + typedef _Tp value_type; + typedef value_type* pointer; + typedef const value_type* const_pointer; + typedef value_type& reference; + typedef const value_type& const_reference; + typedef size_t size_type; + typedef ptrdiff_t difference_type; + template class rebind { typedef Allocator other; }; + + explicit Allocator() {} + ~Allocator() {} + explicit Allocator(Allocator const&) {} + template + explicit Allocator(Allocator const&) {} + + // address + pointer address(reference r) { return &r; } + const_pointer address(const_reference r) { return &r; } + + pointer allocate(size_type count, const void* =0) { return reinterpret_cast(fastMalloc(count * sizeof (_Tp))); } + void deallocate(pointer p, size_type) { fastFree(p); } + + void construct(pointer p, const _Tp& v) { new(static_cast(p)) _Tp(v); } + void destroy(pointer p) { p->~_Tp(); } + + size_type max_size() const { return cv::max(static_cast<_Tp>(-1)/sizeof(_Tp), 1); } +}; + +//! @} core_utils + +//! @cond IGNORED + +namespace detail +{ + +// Metafunction to avoid taking a reference to void. +template +struct RefOrVoid { typedef T& type; }; + +template<> +struct RefOrVoid{ typedef void type; }; + +template<> +struct RefOrVoid{ typedef const void type; }; + +template<> +struct RefOrVoid{ typedef volatile void type; }; + +template<> +struct RefOrVoid{ typedef const volatile void type; }; + +// This class would be private to Ptr, if it didn't have to be a non-template. +struct PtrOwner; + +} + +template +struct DefaultDeleter +{ + void operator () (Y* p) const; +}; + +//! @endcond + +//! @addtogroup core_basic +//! @{ + +/** @brief Template class for smart pointers with shared ownership + +A Ptr\ pretends to be a pointer to an object of type T. Unlike an ordinary pointer, however, the +object will be automatically cleaned up once all Ptr instances pointing to it are destroyed. + +Ptr is similar to boost::shared_ptr that is part of the Boost library +() and std::shared_ptr from +the [C++11](http://en.wikipedia.org/wiki/C++11) standard. + +This class provides the following advantages: +- Default constructor, copy constructor, and assignment operator for an arbitrary C++ class or C + structure. For some objects, like files, windows, mutexes, sockets, and others, a copy + constructor or an assignment operator are difficult to define. For some other objects, like + complex classifiers in OpenCV, copy constructors are absent and not easy to implement. Finally, + some of complex OpenCV and your own data structures may be written in C. However, copy + constructors and default constructors can simplify programming a lot. Besides, they are often + required (for example, by STL containers). By using a Ptr to such an object instead of the + object itself, you automatically get all of the necessary constructors and the assignment + operator. +- *O(1)* complexity of the above-mentioned operations. While some structures, like std::vector, + provide a copy constructor and an assignment operator, the operations may take a considerable + amount of time if the data structures are large. But if the structures are put into a Ptr, the + overhead is small and independent of the data size. +- Automatic and customizable cleanup, even for C structures. See the example below with FILE\*. +- Heterogeneous collections of objects. The standard STL and most other C++ and OpenCV containers + can store only objects of the same type and the same size. The classical solution to store + objects of different types in the same container is to store pointers to the base class (Base\*) + instead but then you lose the automatic memory management. Again, by using Ptr\ instead + of raw pointers, you can solve the problem. + +A Ptr is said to *own* a pointer - that is, for each Ptr there is a pointer that will be deleted +once all Ptr instances that own it are destroyed. The owned pointer may be null, in which case +nothing is deleted. Each Ptr also *stores* a pointer. The stored pointer is the pointer the Ptr +pretends to be; that is, the one you get when you use Ptr::get or the conversion to T\*. It's +usually the same as the owned pointer, but if you use casts or the general shared-ownership +constructor, the two may diverge: the Ptr will still own the original pointer, but will itself point +to something else. + +The owned pointer is treated as a black box. The only thing Ptr needs to know about it is how to +delete it. This knowledge is encapsulated in the *deleter* - an auxiliary object that is associated +with the owned pointer and shared between all Ptr instances that own it. The default deleter is an +instance of DefaultDeleter, which uses the standard C++ delete operator; as such it will work with +any pointer allocated with the standard new operator. + +However, if the pointer must be deleted in a different way, you must specify a custom deleter upon +Ptr construction. A deleter is simply a callable object that accepts the pointer as its sole +argument. For example, if you want to wrap FILE, you may do so as follows: +@code + Ptr f(fopen("myfile.txt", "w"), fclose); + if(!f) throw ...; + fprintf(f, ....); + ... + // the file will be closed automatically by f's destructor. +@endcode +Alternatively, if you want all pointers of a particular type to be deleted the same way, you can +specialize DefaultDeleter::operator() for that type, like this: +@code + namespace cv { + template<> void DefaultDeleter::operator ()(FILE * obj) const + { + fclose(obj); + } + } +@endcode +For convenience, the following types from the OpenCV C API already have such a specialization that +calls the appropriate release function: +- CvCapture +- CvFileStorage +- CvHaarClassifierCascade +- CvMat +- CvMatND +- CvMemStorage +- CvSparseMat +- CvVideoWriter +- IplImage +@note The shared ownership mechanism is implemented with reference counting. As such, cyclic +ownership (e.g. when object a contains a Ptr to object b, which contains a Ptr to object a) will +lead to all involved objects never being cleaned up. Avoid such situations. +@note It is safe to concurrently read (but not write) a Ptr instance from multiple threads and +therefore it is normally safe to use it in multi-threaded applications. The same is true for Mat and +other C++ OpenCV classes that use internal reference counts. +*/ +template +struct Ptr +{ + /** Generic programming support. */ + typedef T element_type; + + /** The default constructor creates a null Ptr - one that owns and stores a null pointer. + */ + Ptr(); + + /** + If p is null, these are equivalent to the default constructor. + Otherwise, these constructors assume ownership of p - that is, the created Ptr owns and stores p + and assumes it is the sole owner of it. Don't use them if p is already owned by another Ptr, or + else p will get deleted twice. + With the first constructor, DefaultDeleter\() becomes the associated deleter (so p will + eventually be deleted with the standard delete operator). Y must be a complete type at the point + of invocation. + With the second constructor, d becomes the associated deleter. + Y\* must be convertible to T\*. + @param p Pointer to own. + @note It is often easier to use makePtr instead. + */ + template +#ifdef DISABLE_OPENCV_24_COMPATIBILITY + explicit +#endif + Ptr(Y* p); + + /** @overload + @param d Deleter to use for the owned pointer. + @param p Pointer to own. + */ + template + Ptr(Y* p, D d); + + /** + These constructors create a Ptr that shares ownership with another Ptr - that is, own the same + pointer as o. + With the first two, the same pointer is stored, as well; for the second, Y\* must be convertible + to T\*. + With the third, p is stored, and Y may be any type. This constructor allows to have completely + unrelated owned and stored pointers, and should be used with care to avoid confusion. A relatively + benign use is to create a non-owning Ptr, like this: + @code + ptr = Ptr(Ptr(), dont_delete_me); // owns nothing; will not delete the pointer. + @endcode + @param o Ptr to share ownership with. + */ + Ptr(const Ptr& o); + + /** @overload + @param o Ptr to share ownership with. + */ + template + Ptr(const Ptr& o); + + /** @overload + @param o Ptr to share ownership with. + @param p Pointer to store. + */ + template + Ptr(const Ptr& o, T* p); + + /** The destructor is equivalent to calling Ptr::release. */ + ~Ptr(); + + /** + Assignment replaces the current Ptr instance with one that owns and stores same pointers as o and + then destroys the old instance. + @param o Ptr to share ownership with. + */ + Ptr& operator = (const Ptr& o); + + /** @overload */ + template + Ptr& operator = (const Ptr& o); + + /** If no other Ptr instance owns the owned pointer, deletes it with the associated deleter. Then sets + both the owned and the stored pointers to NULL. + */ + void release(); + + /** + `ptr.reset(...)` is equivalent to `ptr = Ptr(...)`. + @param p Pointer to own. + */ + template + void reset(Y* p); + + /** @overload + @param d Deleter to use for the owned pointer. + @param p Pointer to own. + */ + template + void reset(Y* p, D d); + + /** + Swaps the owned and stored pointers (and deleters, if any) of this and o. + @param o Ptr to swap with. + */ + void swap(Ptr& o); + + /** Returns the stored pointer. */ + T* get() const; + + /** Ordinary pointer emulation. */ + typename detail::RefOrVoid::type operator * () const; + + /** Ordinary pointer emulation. */ + T* operator -> () const; + + /** Equivalent to get(). */ + operator T* () const; + + /** ptr.empty() is equivalent to `!ptr.get()`. */ + bool empty() const; + + /** Returns a Ptr that owns the same pointer as this, and stores the same + pointer as this, except converted via static_cast to Y*. + */ + template + Ptr staticCast() const; + + /** Ditto for const_cast. */ + template + Ptr constCast() const; + + /** Ditto for dynamic_cast. */ + template + Ptr dynamicCast() const; + +#ifdef CV_CXX_MOVE_SEMANTICS + Ptr(Ptr&& o); + Ptr& operator = (Ptr&& o); +#endif + +private: + detail::PtrOwner* owner; + T* stored; + + template + friend struct Ptr; // have to do this for the cross-type copy constructor +}; + +/** Equivalent to ptr1.swap(ptr2). Provided to help write generic algorithms. */ +template +void swap(Ptr& ptr1, Ptr& ptr2); + +/** Return whether ptr1.get() and ptr2.get() are equal and not equal, respectively. */ +template +bool operator == (const Ptr& ptr1, const Ptr& ptr2); +template +bool operator != (const Ptr& ptr1, const Ptr& ptr2); + +/** `makePtr(...)` is equivalent to `Ptr(new T(...))`. It is shorter than the latter, and it's +marginally safer than using a constructor or Ptr::reset, since it ensures that the owned pointer +is new and thus not owned by any other Ptr instance. +Unfortunately, perfect forwarding is impossible to implement in C++03, and so makePtr is limited +to constructors of T that have up to 10 arguments, none of which are non-const references. + */ +template +Ptr makePtr(); +/** @overload */ +template +Ptr makePtr(const A1& a1); +/** @overload */ +template +Ptr makePtr(const A1& a1, const A2& a2); +/** @overload */ +template +Ptr makePtr(const A1& a1, const A2& a2, const A3& a3); +/** @overload */ +template +Ptr makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4); +/** @overload */ +template +Ptr makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5); +/** @overload */ +template +Ptr makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6); +/** @overload */ +template +Ptr makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7); +/** @overload */ +template +Ptr makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8); +/** @overload */ +template +Ptr makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9); +/** @overload */ +template +Ptr makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9, const A10& a10); + +//////////////////////////////// string class //////////////////////////////// + +class CV_EXPORTS FileNode; //for string constructor from FileNode + +class CV_EXPORTS String +{ +public: + typedef char value_type; + typedef char& reference; + typedef const char& const_reference; + typedef char* pointer; + typedef const char* const_pointer; + typedef ptrdiff_t difference_type; + typedef size_t size_type; + typedef char* iterator; + typedef const char* const_iterator; + + static const size_t npos = size_t(-1); + + explicit String(); + String(const String& str); + String(const String& str, size_t pos, size_t len = npos); + String(const char* s); + String(const char* s, size_t n); + String(size_t n, char c); + String(const char* first, const char* last); + template String(Iterator first, Iterator last); + explicit String(const FileNode& fn); + ~String(); + + String& operator=(const String& str); + String& operator=(const char* s); + String& operator=(char c); + + String& operator+=(const String& str); + String& operator+=(const char* s); + String& operator+=(char c); + + size_t size() const; + size_t length() const; + + char operator[](size_t idx) const; + char operator[](int idx) const; + + const char* begin() const; + const char* end() const; + + const char* c_str() const; + + bool empty() const; + void clear(); + + int compare(const char* s) const; + int compare(const String& str) const; + + void swap(String& str); + String substr(size_t pos = 0, size_t len = npos) const; + + size_t find(const char* s, size_t pos, size_t n) const; + size_t find(char c, size_t pos = 0) const; + size_t find(const String& str, size_t pos = 0) const; + size_t find(const char* s, size_t pos = 0) const; + + size_t rfind(const char* s, size_t pos, size_t n) const; + size_t rfind(char c, size_t pos = npos) const; + size_t rfind(const String& str, size_t pos = npos) const; + size_t rfind(const char* s, size_t pos = npos) const; + + size_t find_first_of(const char* s, size_t pos, size_t n) const; + size_t find_first_of(char c, size_t pos = 0) const; + size_t find_first_of(const String& str, size_t pos = 0) const; + size_t find_first_of(const char* s, size_t pos = 0) const; + + size_t find_last_of(const char* s, size_t pos, size_t n) const; + size_t find_last_of(char c, size_t pos = npos) const; + size_t find_last_of(const String& str, size_t pos = npos) const; + size_t find_last_of(const char* s, size_t pos = npos) const; + + friend String operator+ (const String& lhs, const String& rhs); + friend String operator+ (const String& lhs, const char* rhs); + friend String operator+ (const char* lhs, const String& rhs); + friend String operator+ (const String& lhs, char rhs); + friend String operator+ (char lhs, const String& rhs); + + String toLowerCase() const; + +#ifndef OPENCV_NOSTL + String(const std::string& str); + String(const std::string& str, size_t pos, size_t len = npos); + String& operator=(const std::string& str); + String& operator+=(const std::string& str); + operator std::string() const; + + friend String operator+ (const String& lhs, const std::string& rhs); + friend String operator+ (const std::string& lhs, const String& rhs); +#endif + +private: + char* cstr_; + size_t len_; + + char* allocate(size_t len); // len without trailing 0 + void deallocate(); + + String(int); // disabled and invalid. Catch invalid usages like, commandLineParser.has(0) problem +}; + +//! @} core_basic + +////////////////////////// cv::String implementation ///////////////////////// + +//! @cond IGNORED + +inline +String::String() + : cstr_(0), len_(0) +{} + +inline +String::String(const String& str) + : cstr_(str.cstr_), len_(str.len_) +{ + if (cstr_) + CV_XADD(((int*)cstr_)-1, 1); +} + +inline +String::String(const String& str, size_t pos, size_t len) + : cstr_(0), len_(0) +{ + pos = min(pos, str.len_); + len = min(str.len_ - pos, len); + if (!len) return; + if (len == str.len_) + { + CV_XADD(((int*)str.cstr_)-1, 1); + cstr_ = str.cstr_; + len_ = str.len_; + return; + } + memcpy(allocate(len), str.cstr_ + pos, len); +} + +inline +String::String(const char* s) + : cstr_(0), len_(0) +{ + if (!s) return; + size_t len = strlen(s); + memcpy(allocate(len), s, len); +} + +inline +String::String(const char* s, size_t n) + : cstr_(0), len_(0) +{ + if (!n) return; + memcpy(allocate(n), s, n); +} + +inline +String::String(size_t n, char c) + : cstr_(0), len_(0) +{ + memset(allocate(n), c, n); +} + +inline +String::String(const char* first, const char* last) + : cstr_(0), len_(0) +{ + size_t len = (size_t)(last - first); + memcpy(allocate(len), first, len); +} + +template inline +String::String(Iterator first, Iterator last) + : cstr_(0), len_(0) +{ + size_t len = (size_t)(last - first); + char* str = allocate(len); + while (first != last) + { + *str++ = *first; + ++first; + } +} + +inline +String::~String() +{ + deallocate(); +} + +inline +String& String::operator=(const String& str) +{ + if (&str == this) return *this; + + deallocate(); + if (str.cstr_) CV_XADD(((int*)str.cstr_)-1, 1); + cstr_ = str.cstr_; + len_ = str.len_; + return *this; +} + +inline +String& String::operator=(const char* s) +{ + deallocate(); + if (!s) return *this; + size_t len = strlen(s); + memcpy(allocate(len), s, len); + return *this; +} + +inline +String& String::operator=(char c) +{ + deallocate(); + allocate(1)[0] = c; + return *this; +} + +inline +String& String::operator+=(const String& str) +{ + *this = *this + str; + return *this; +} + +inline +String& String::operator+=(const char* s) +{ + *this = *this + s; + return *this; +} + +inline +String& String::operator+=(char c) +{ + *this = *this + c; + return *this; +} + +inline +size_t String::size() const +{ + return len_; +} + +inline +size_t String::length() const +{ + return len_; +} + +inline +char String::operator[](size_t idx) const +{ + return cstr_[idx]; +} + +inline +char String::operator[](int idx) const +{ + return cstr_[idx]; +} + +inline +const char* String::begin() const +{ + return cstr_; +} + +inline +const char* String::end() const +{ + return len_ ? cstr_ + 1 : 0; +} + +inline +bool String::empty() const +{ + return len_ == 0; +} + +inline +const char* String::c_str() const +{ + return cstr_ ? cstr_ : ""; +} + +inline +void String::swap(String& str) +{ + cv::swap(cstr_, str.cstr_); + cv::swap(len_, str.len_); +} + +inline +void String::clear() +{ + deallocate(); +} + +inline +int String::compare(const char* s) const +{ + if (cstr_ == s) return 0; + return strcmp(c_str(), s); +} + +inline +int String::compare(const String& str) const +{ + if (cstr_ == str.cstr_) return 0; + return strcmp(c_str(), str.c_str()); +} + +inline +String String::substr(size_t pos, size_t len) const +{ + return String(*this, pos, len); +} + +inline +size_t String::find(const char* s, size_t pos, size_t n) const +{ + if (n == 0 || pos + n > len_) return npos; + const char* lmax = cstr_ + len_ - n; + for (const char* i = cstr_ + pos; i <= lmax; ++i) + { + size_t j = 0; + while (j < n && s[j] == i[j]) ++j; + if (j == n) return (size_t)(i - cstr_); + } + return npos; +} + +inline +size_t String::find(char c, size_t pos) const +{ + return find(&c, pos, 1); +} + +inline +size_t String::find(const String& str, size_t pos) const +{ + return find(str.c_str(), pos, str.len_); +} + +inline +size_t String::find(const char* s, size_t pos) const +{ + if (pos >= len_ || !s[0]) return npos; + const char* lmax = cstr_ + len_; + for (const char* i = cstr_ + pos; i < lmax; ++i) + { + size_t j = 0; + while (s[j] && s[j] == i[j]) + { if(i + j >= lmax) return npos; + ++j; + } + if (!s[j]) return (size_t)(i - cstr_); + } + return npos; +} + +inline +size_t String::rfind(const char* s, size_t pos, size_t n) const +{ + if (n > len_) return npos; + if (pos > len_ - n) pos = len_ - n; + for (const char* i = cstr_ + pos; i >= cstr_; --i) + { + size_t j = 0; + while (j < n && s[j] == i[j]) ++j; + if (j == n) return (size_t)(i - cstr_); + } + return npos; +} + +inline +size_t String::rfind(char c, size_t pos) const +{ + return rfind(&c, pos, 1); +} + +inline +size_t String::rfind(const String& str, size_t pos) const +{ + return rfind(str.c_str(), pos, str.len_); +} + +inline +size_t String::rfind(const char* s, size_t pos) const +{ + return rfind(s, pos, strlen(s)); +} + +inline +size_t String::find_first_of(const char* s, size_t pos, size_t n) const +{ + if (n == 0 || pos + n > len_) return npos; + const char* lmax = cstr_ + len_; + for (const char* i = cstr_ + pos; i < lmax; ++i) + { + for (size_t j = 0; j < n; ++j) + if (s[j] == *i) + return (size_t)(i - cstr_); + } + return npos; +} + +inline +size_t String::find_first_of(char c, size_t pos) const +{ + return find_first_of(&c, pos, 1); +} + +inline +size_t String::find_first_of(const String& str, size_t pos) const +{ + return find_first_of(str.c_str(), pos, str.len_); +} + +inline +size_t String::find_first_of(const char* s, size_t pos) const +{ + if (len_ == 0) return npos; + if (pos >= len_ || !s[0]) return npos; + const char* lmax = cstr_ + len_; + for (const char* i = cstr_ + pos; i < lmax; ++i) + { + for (size_t j = 0; s[j]; ++j) + if (s[j] == *i) + return (size_t)(i - cstr_); + } + return npos; +} + +inline +size_t String::find_last_of(const char* s, size_t pos, size_t n) const +{ + if (len_ == 0) return npos; + if (pos >= len_) pos = len_ - 1; + for (const char* i = cstr_ + pos; i >= cstr_; --i) + { + for (size_t j = 0; j < n; ++j) + if (s[j] == *i) + return (size_t)(i - cstr_); + } + return npos; +} + +inline +size_t String::find_last_of(char c, size_t pos) const +{ + return find_last_of(&c, pos, 1); +} + +inline +size_t String::find_last_of(const String& str, size_t pos) const +{ + return find_last_of(str.c_str(), pos, str.len_); +} + +inline +size_t String::find_last_of(const char* s, size_t pos) const +{ + if (len_ == 0) return npos; + if (pos >= len_) pos = len_ - 1; + for (const char* i = cstr_ + pos; i >= cstr_; --i) + { + for (size_t j = 0; s[j]; ++j) + if (s[j] == *i) + return (size_t)(i - cstr_); + } + return npos; +} + +inline +String String::toLowerCase() const +{ + String res(cstr_, len_); + + for (size_t i = 0; i < len_; ++i) + res.cstr_[i] = (char) ::tolower(cstr_[i]); + + return res; +} + +//! @endcond + +// ************************* cv::String non-member functions ************************* + +//! @relates cv::String +//! @{ + +inline +String operator + (const String& lhs, const String& rhs) +{ + String s; + s.allocate(lhs.len_ + rhs.len_); + memcpy(s.cstr_, lhs.cstr_, lhs.len_); + memcpy(s.cstr_ + lhs.len_, rhs.cstr_, rhs.len_); + return s; +} + +inline +String operator + (const String& lhs, const char* rhs) +{ + String s; + size_t rhslen = strlen(rhs); + s.allocate(lhs.len_ + rhslen); + memcpy(s.cstr_, lhs.cstr_, lhs.len_); + memcpy(s.cstr_ + lhs.len_, rhs, rhslen); + return s; +} + +inline +String operator + (const char* lhs, const String& rhs) +{ + String s; + size_t lhslen = strlen(lhs); + s.allocate(lhslen + rhs.len_); + memcpy(s.cstr_, lhs, lhslen); + memcpy(s.cstr_ + lhslen, rhs.cstr_, rhs.len_); + return s; +} + +inline +String operator + (const String& lhs, char rhs) +{ + String s; + s.allocate(lhs.len_ + 1); + memcpy(s.cstr_, lhs.cstr_, lhs.len_); + s.cstr_[lhs.len_] = rhs; + return s; +} + +inline +String operator + (char lhs, const String& rhs) +{ + String s; + s.allocate(rhs.len_ + 1); + s.cstr_[0] = lhs; + memcpy(s.cstr_ + 1, rhs.cstr_, rhs.len_); + return s; +} + +static inline bool operator== (const String& lhs, const String& rhs) { return 0 == lhs.compare(rhs); } +static inline bool operator== (const char* lhs, const String& rhs) { return 0 == rhs.compare(lhs); } +static inline bool operator== (const String& lhs, const char* rhs) { return 0 == lhs.compare(rhs); } +static inline bool operator!= (const String& lhs, const String& rhs) { return 0 != lhs.compare(rhs); } +static inline bool operator!= (const char* lhs, const String& rhs) { return 0 != rhs.compare(lhs); } +static inline bool operator!= (const String& lhs, const char* rhs) { return 0 != lhs.compare(rhs); } +static inline bool operator< (const String& lhs, const String& rhs) { return lhs.compare(rhs) < 0; } +static inline bool operator< (const char* lhs, const String& rhs) { return rhs.compare(lhs) > 0; } +static inline bool operator< (const String& lhs, const char* rhs) { return lhs.compare(rhs) < 0; } +static inline bool operator<= (const String& lhs, const String& rhs) { return lhs.compare(rhs) <= 0; } +static inline bool operator<= (const char* lhs, const String& rhs) { return rhs.compare(lhs) >= 0; } +static inline bool operator<= (const String& lhs, const char* rhs) { return lhs.compare(rhs) <= 0; } +static inline bool operator> (const String& lhs, const String& rhs) { return lhs.compare(rhs) > 0; } +static inline bool operator> (const char* lhs, const String& rhs) { return rhs.compare(lhs) < 0; } +static inline bool operator> (const String& lhs, const char* rhs) { return lhs.compare(rhs) > 0; } +static inline bool operator>= (const String& lhs, const String& rhs) { return lhs.compare(rhs) >= 0; } +static inline bool operator>= (const char* lhs, const String& rhs) { return rhs.compare(lhs) <= 0; } +static inline bool operator>= (const String& lhs, const char* rhs) { return lhs.compare(rhs) >= 0; } + +//! @} relates cv::String + +} // cv + +#ifndef OPENCV_NOSTL_TRANSITIONAL +namespace std +{ + static inline void swap(cv::String& a, cv::String& b) { a.swap(b); } +} +#else +namespace cv +{ + template<> inline + void swap(cv::String& a, cv::String& b) + { + a.swap(b); + } +} +#endif + +#include "opencv2/core/ptr.inl.hpp" + +#endif //OPENCV_CORE_CVSTD_HPP diff --git a/thirdparty1/linux/include/opencv2/core/cvstd.inl.hpp b/thirdparty1/linux/include/opencv2/core/cvstd.inl.hpp new file mode 100644 index 0000000..876def8 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/cvstd.inl.hpp @@ -0,0 +1,267 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_CVSTDINL_HPP +#define OPENCV_CORE_CVSTDINL_HPP + +#ifndef OPENCV_NOSTL +# include +# include +#endif + +//! @cond IGNORED + +namespace cv +{ +#ifndef OPENCV_NOSTL + +template class DataType< std::complex<_Tp> > +{ +public: + typedef std::complex<_Tp> value_type; + typedef value_type work_type; + typedef _Tp channel_type; + + enum { generic_type = 0, + depth = DataType::depth, + channels = 2, + fmt = DataType::fmt + ((channels - 1) << 8), + type = CV_MAKETYPE(depth, channels) }; + + typedef Vec vec_type; +}; + +inline +String::String(const std::string& str) + : cstr_(0), len_(0) +{ + if (!str.empty()) + { + size_t len = str.size(); + memcpy(allocate(len), str.c_str(), len); + } +} + +inline +String::String(const std::string& str, size_t pos, size_t len) + : cstr_(0), len_(0) +{ + size_t strlen = str.size(); + pos = min(pos, strlen); + len = min(strlen - pos, len); + if (!len) return; + memcpy(allocate(len), str.c_str() + pos, len); +} + +inline +String& String::operator = (const std::string& str) +{ + deallocate(); + if (!str.empty()) + { + size_t len = str.size(); + memcpy(allocate(len), str.c_str(), len); + } + return *this; +} + +inline +String& String::operator += (const std::string& str) +{ + *this = *this + str; + return *this; +} + +inline +String::operator std::string() const +{ + return std::string(cstr_, len_); +} + +inline +String operator + (const String& lhs, const std::string& rhs) +{ + String s; + size_t rhslen = rhs.size(); + s.allocate(lhs.len_ + rhslen); + memcpy(s.cstr_, lhs.cstr_, lhs.len_); + memcpy(s.cstr_ + lhs.len_, rhs.c_str(), rhslen); + return s; +} + +inline +String operator + (const std::string& lhs, const String& rhs) +{ + String s; + size_t lhslen = lhs.size(); + s.allocate(lhslen + rhs.len_); + memcpy(s.cstr_, lhs.c_str(), lhslen); + memcpy(s.cstr_ + lhslen, rhs.cstr_, rhs.len_); + return s; +} + +inline +FileNode::operator std::string() const +{ + String value; + read(*this, value, value); + return value; +} + +template<> inline +void operator >> (const FileNode& n, std::string& value) +{ + String val; + read(n, val, val); + value = val; +} + +template<> inline +FileStorage& operator << (FileStorage& fs, const std::string& value) +{ + return fs << cv::String(value); +} + +static inline +std::ostream& operator << (std::ostream& os, const String& str) +{ + return os << str.c_str(); +} + +static inline +std::ostream& operator << (std::ostream& out, Ptr fmtd) +{ + fmtd->reset(); + for(const char* str = fmtd->next(); str; str = fmtd->next()) + out << str; + return out; +} + +static inline +std::ostream& operator << (std::ostream& out, const Mat& mtx) +{ + return out << Formatter::get()->format(mtx); +} + +template static inline +std::ostream& operator << (std::ostream& out, const std::vector >& vec) +{ + return out << Formatter::get()->format(Mat(vec)); +} + + +template static inline +std::ostream& operator << (std::ostream& out, const std::vector >& vec) +{ + return out << Formatter::get()->format(Mat(vec)); +} + + +template static inline +std::ostream& operator << (std::ostream& out, const Matx<_Tp, m, n>& matx) +{ + return out << Formatter::get()->format(Mat(matx)); +} + +template static inline +std::ostream& operator << (std::ostream& out, const Point_<_Tp>& p) +{ + out << "[" << p.x << ", " << p.y << "]"; + return out; +} + +template static inline +std::ostream& operator << (std::ostream& out, const Point3_<_Tp>& p) +{ + out << "[" << p.x << ", " << p.y << ", " << p.z << "]"; + return out; +} + +template static inline +std::ostream& operator << (std::ostream& out, const Vec<_Tp, n>& vec) +{ + out << "["; +#ifdef _MSC_VER +#pragma warning( push ) +#pragma warning( disable: 4127 ) +#endif + if(Vec<_Tp, n>::depth < CV_32F) +#ifdef _MSC_VER +#pragma warning( pop ) +#endif + { + for (int i = 0; i < n - 1; ++i) { + out << (int)vec[i] << ", "; + } + out << (int)vec[n-1] << "]"; + } + else + { + for (int i = 0; i < n - 1; ++i) { + out << vec[i] << ", "; + } + out << vec[n-1] << "]"; + } + + return out; +} + +template static inline +std::ostream& operator << (std::ostream& out, const Size_<_Tp>& size) +{ + return out << "[" << size.width << " x " << size.height << "]"; +} + +template static inline +std::ostream& operator << (std::ostream& out, const Rect_<_Tp>& rect) +{ + return out << "[" << rect.width << " x " << rect.height << " from (" << rect.x << ", " << rect.y << ")]"; +} + + +#endif // OPENCV_NOSTL +} // cv + +//! @endcond + +#endif // OPENCV_CORE_CVSTDINL_HPP diff --git a/thirdparty1/linux/include/opencv2/core/directx.hpp b/thirdparty1/linux/include/opencv2/core/directx.hpp new file mode 100644 index 0000000..056a85a --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/directx.hpp @@ -0,0 +1,184 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors as is and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the copyright holders or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_DIRECTX_HPP +#define OPENCV_CORE_DIRECTX_HPP + +#include "mat.hpp" +#include "ocl.hpp" + +#if !defined(__d3d11_h__) +struct ID3D11Device; +struct ID3D11Texture2D; +#endif + +#if !defined(__d3d10_h__) +struct ID3D10Device; +struct ID3D10Texture2D; +#endif + +#if !defined(_D3D9_H_) +struct IDirect3DDevice9; +struct IDirect3DDevice9Ex; +struct IDirect3DSurface9; +#endif + + +namespace cv { namespace directx { + +namespace ocl { +using namespace cv::ocl; + +//! @addtogroup core_directx +// This section describes OpenCL and DirectX interoperability. +// +// To enable DirectX support, configure OpenCV using CMake with WITH_DIRECTX=ON . Note, DirectX is +// supported only on Windows. +// +// To use OpenCL functionality you should first initialize OpenCL context from DirectX resource. +// +//! @{ + +// TODO static functions in the Context class +//! @brief Creates OpenCL context from D3D11 device +// +//! @param pD3D11Device - pointer to D3D11 device +//! @return Returns reference to OpenCL Context +CV_EXPORTS Context& initializeContextFromD3D11Device(ID3D11Device* pD3D11Device); + +//! @brief Creates OpenCL context from D3D10 device +// +//! @param pD3D10Device - pointer to D3D10 device +//! @return Returns reference to OpenCL Context +CV_EXPORTS Context& initializeContextFromD3D10Device(ID3D10Device* pD3D10Device); + +//! @brief Creates OpenCL context from Direct3DDevice9Ex device +// +//! @param pDirect3DDevice9Ex - pointer to Direct3DDevice9Ex device +//! @return Returns reference to OpenCL Context +CV_EXPORTS Context& initializeContextFromDirect3DDevice9Ex(IDirect3DDevice9Ex* pDirect3DDevice9Ex); + +//! @brief Creates OpenCL context from Direct3DDevice9 device +// +//! @param pDirect3DDevice9 - pointer to Direct3Device9 device +//! @return Returns reference to OpenCL Context +CV_EXPORTS Context& initializeContextFromDirect3DDevice9(IDirect3DDevice9* pDirect3DDevice9); + +//! @} + +} // namespace cv::directx::ocl + +//! @addtogroup core_directx +//! @{ + +//! @brief Converts InputArray to ID3D11Texture2D. If destination texture format is DXGI_FORMAT_NV12 then +//! input UMat expected to be in BGR format and data will be downsampled and color-converted to NV12. +// +//! @note Note: Destination texture must be allocated by application. Function does memory copy from src to +//! pD3D11Texture2D +// +//! @param src - source InputArray +//! @param pD3D11Texture2D - destination D3D11 texture +CV_EXPORTS void convertToD3D11Texture2D(InputArray src, ID3D11Texture2D* pD3D11Texture2D); + +//! @brief Converts ID3D11Texture2D to OutputArray. If input texture format is DXGI_FORMAT_NV12 then +//! data will be upsampled and color-converted to BGR format. +// +//! @note Note: Destination matrix will be re-allocated if it has not enough memory to match texture size. +//! function does memory copy from pD3D11Texture2D to dst +// +//! @param pD3D11Texture2D - source D3D11 texture +//! @param dst - destination OutputArray +CV_EXPORTS void convertFromD3D11Texture2D(ID3D11Texture2D* pD3D11Texture2D, OutputArray dst); + +//! @brief Converts InputArray to ID3D10Texture2D +// +//! @note Note: function does memory copy from src to +//! pD3D10Texture2D +// +//! @param src - source InputArray +//! @param pD3D10Texture2D - destination D3D10 texture +CV_EXPORTS void convertToD3D10Texture2D(InputArray src, ID3D10Texture2D* pD3D10Texture2D); + +//! @brief Converts ID3D10Texture2D to OutputArray +// +//! @note Note: function does memory copy from pD3D10Texture2D +//! to dst +// +//! @param pD3D10Texture2D - source D3D10 texture +//! @param dst - destination OutputArray +CV_EXPORTS void convertFromD3D10Texture2D(ID3D10Texture2D* pD3D10Texture2D, OutputArray dst); + +//! @brief Converts InputArray to IDirect3DSurface9 +// +//! @note Note: function does memory copy from src to +//! pDirect3DSurface9 +// +//! @param src - source InputArray +//! @param pDirect3DSurface9 - destination D3D10 texture +//! @param surfaceSharedHandle - shared handle +CV_EXPORTS void convertToDirect3DSurface9(InputArray src, IDirect3DSurface9* pDirect3DSurface9, void* surfaceSharedHandle = NULL); + +//! @brief Converts IDirect3DSurface9 to OutputArray +// +//! @note Note: function does memory copy from pDirect3DSurface9 +//! to dst +// +//! @param pDirect3DSurface9 - source D3D10 texture +//! @param dst - destination OutputArray +//! @param surfaceSharedHandle - shared handle +CV_EXPORTS void convertFromDirect3DSurface9(IDirect3DSurface9* pDirect3DSurface9, OutputArray dst, void* surfaceSharedHandle = NULL); + +//! @brief Get OpenCV type from DirectX type +//! @param iDXGI_FORMAT - enum DXGI_FORMAT for D3D10/D3D11 +//! @return OpenCV type or -1 if there is no equivalent +CV_EXPORTS int getTypeFromDXGI_FORMAT(const int iDXGI_FORMAT); // enum DXGI_FORMAT for D3D10/D3D11 + +//! @brief Get OpenCV type from DirectX type +//! @param iD3DFORMAT - enum D3DTYPE for D3D9 +//! @return OpenCV type or -1 if there is no equivalent +CV_EXPORTS int getTypeFromD3DFORMAT(const int iD3DFORMAT); // enum D3DTYPE for D3D9 + +//! @} + +} } // namespace cv::directx + +#endif // OPENCV_CORE_DIRECTX_HPP diff --git a/thirdparty1/linux/include/opencv2/core/eigen.hpp b/thirdparty1/linux/include/opencv2/core/eigen.hpp new file mode 100644 index 0000000..c2f1ee6 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/eigen.hpp @@ -0,0 +1,280 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + + +#ifndef OPENCV_CORE_EIGEN_HPP +#define OPENCV_CORE_EIGEN_HPP + +#include "opencv2/core.hpp" + +#if defined _MSC_VER && _MSC_VER >= 1200 +#pragma warning( disable: 4714 ) //__forceinline is not inlined +#pragma warning( disable: 4127 ) //conditional expression is constant +#pragma warning( disable: 4244 ) //conversion from '__int64' to 'int', possible loss of data +#endif + +namespace cv +{ + +//! @addtogroup core_eigen +//! @{ + +template static inline +void eigen2cv( const Eigen::Matrix<_Tp, _rows, _cols, _options, _maxRows, _maxCols>& src, Mat& dst ) +{ + if( !(src.Flags & Eigen::RowMajorBit) ) + { + Mat _src(src.cols(), src.rows(), DataType<_Tp>::type, + (void*)src.data(), src.stride()*sizeof(_Tp)); + transpose(_src, dst); + } + else + { + Mat _src(src.rows(), src.cols(), DataType<_Tp>::type, + (void*)src.data(), src.stride()*sizeof(_Tp)); + _src.copyTo(dst); + } +} + +// Matx case +template static inline +void eigen2cv( const Eigen::Matrix<_Tp, _rows, _cols, _options, _maxRows, _maxCols>& src, + Matx<_Tp, _rows, _cols>& dst ) +{ + if( !(src.Flags & Eigen::RowMajorBit) ) + { + dst = Matx<_Tp, _cols, _rows>(static_cast(src.data())).t(); + } + else + { + dst = Matx<_Tp, _rows, _cols>(static_cast(src.data())); + } +} + +template static inline +void cv2eigen( const Mat& src, + Eigen::Matrix<_Tp, _rows, _cols, _options, _maxRows, _maxCols>& dst ) +{ + CV_DbgAssert(src.rows == _rows && src.cols == _cols); + if( !(dst.Flags & Eigen::RowMajorBit) ) + { + const Mat _dst(src.cols, src.rows, DataType<_Tp>::type, + dst.data(), (size_t)(dst.stride()*sizeof(_Tp))); + if( src.type() == _dst.type() ) + transpose(src, _dst); + else if( src.cols == src.rows ) + { + src.convertTo(_dst, _dst.type()); + transpose(_dst, _dst); + } + else + Mat(src.t()).convertTo(_dst, _dst.type()); + } + else + { + const Mat _dst(src.rows, src.cols, DataType<_Tp>::type, + dst.data(), (size_t)(dst.stride()*sizeof(_Tp))); + src.convertTo(_dst, _dst.type()); + } +} + +// Matx case +template static inline +void cv2eigen( const Matx<_Tp, _rows, _cols>& src, + Eigen::Matrix<_Tp, _rows, _cols, _options, _maxRows, _maxCols>& dst ) +{ + if( !(dst.Flags & Eigen::RowMajorBit) ) + { + const Mat _dst(_cols, _rows, DataType<_Tp>::type, + dst.data(), (size_t)(dst.stride()*sizeof(_Tp))); + transpose(src, _dst); + } + else + { + const Mat _dst(_rows, _cols, DataType<_Tp>::type, + dst.data(), (size_t)(dst.stride()*sizeof(_Tp))); + Mat(src).copyTo(_dst); + } +} + +template static inline +void cv2eigen( const Mat& src, + Eigen::Matrix<_Tp, Eigen::Dynamic, Eigen::Dynamic>& dst ) +{ + dst.resize(src.rows, src.cols); + if( !(dst.Flags & Eigen::RowMajorBit) ) + { + const Mat _dst(src.cols, src.rows, DataType<_Tp>::type, + dst.data(), (size_t)(dst.stride()*sizeof(_Tp))); + if( src.type() == _dst.type() ) + transpose(src, _dst); + else if( src.cols == src.rows ) + { + src.convertTo(_dst, _dst.type()); + transpose(_dst, _dst); + } + else + Mat(src.t()).convertTo(_dst, _dst.type()); + } + else + { + const Mat _dst(src.rows, src.cols, DataType<_Tp>::type, + dst.data(), (size_t)(dst.stride()*sizeof(_Tp))); + src.convertTo(_dst, _dst.type()); + } +} + +// Matx case +template static inline +void cv2eigen( const Matx<_Tp, _rows, _cols>& src, + Eigen::Matrix<_Tp, Eigen::Dynamic, Eigen::Dynamic>& dst ) +{ + dst.resize(_rows, _cols); + if( !(dst.Flags & Eigen::RowMajorBit) ) + { + const Mat _dst(_cols, _rows, DataType<_Tp>::type, + dst.data(), (size_t)(dst.stride()*sizeof(_Tp))); + transpose(src, _dst); + } + else + { + const Mat _dst(_rows, _cols, DataType<_Tp>::type, + dst.data(), (size_t)(dst.stride()*sizeof(_Tp))); + Mat(src).copyTo(_dst); + } +} + +template static inline +void cv2eigen( const Mat& src, + Eigen::Matrix<_Tp, Eigen::Dynamic, 1>& dst ) +{ + CV_Assert(src.cols == 1); + dst.resize(src.rows); + + if( !(dst.Flags & Eigen::RowMajorBit) ) + { + const Mat _dst(src.cols, src.rows, DataType<_Tp>::type, + dst.data(), (size_t)(dst.stride()*sizeof(_Tp))); + if( src.type() == _dst.type() ) + transpose(src, _dst); + else + Mat(src.t()).convertTo(_dst, _dst.type()); + } + else + { + const Mat _dst(src.rows, src.cols, DataType<_Tp>::type, + dst.data(), (size_t)(dst.stride()*sizeof(_Tp))); + src.convertTo(_dst, _dst.type()); + } +} + +// Matx case +template static inline +void cv2eigen( const Matx<_Tp, _rows, 1>& src, + Eigen::Matrix<_Tp, Eigen::Dynamic, 1>& dst ) +{ + dst.resize(_rows); + + if( !(dst.Flags & Eigen::RowMajorBit) ) + { + const Mat _dst(1, _rows, DataType<_Tp>::type, + dst.data(), (size_t)(dst.stride()*sizeof(_Tp))); + transpose(src, _dst); + } + else + { + const Mat _dst(_rows, 1, DataType<_Tp>::type, + dst.data(), (size_t)(dst.stride()*sizeof(_Tp))); + src.copyTo(_dst); + } +} + + +template static inline +void cv2eigen( const Mat& src, + Eigen::Matrix<_Tp, 1, Eigen::Dynamic>& dst ) +{ + CV_Assert(src.rows == 1); + dst.resize(src.cols); + if( !(dst.Flags & Eigen::RowMajorBit) ) + { + const Mat _dst(src.cols, src.rows, DataType<_Tp>::type, + dst.data(), (size_t)(dst.stride()*sizeof(_Tp))); + if( src.type() == _dst.type() ) + transpose(src, _dst); + else + Mat(src.t()).convertTo(_dst, _dst.type()); + } + else + { + const Mat _dst(src.rows, src.cols, DataType<_Tp>::type, + dst.data(), (size_t)(dst.stride()*sizeof(_Tp))); + src.convertTo(_dst, _dst.type()); + } +} + +//Matx +template static inline +void cv2eigen( const Matx<_Tp, 1, _cols>& src, + Eigen::Matrix<_Tp, 1, Eigen::Dynamic>& dst ) +{ + dst.resize(_cols); + if( !(dst.Flags & Eigen::RowMajorBit) ) + { + const Mat _dst(_cols, 1, DataType<_Tp>::type, + dst.data(), (size_t)(dst.stride()*sizeof(_Tp))); + transpose(src, _dst); + } + else + { + const Mat _dst(1, _cols, DataType<_Tp>::type, + dst.data(), (size_t)(dst.stride()*sizeof(_Tp))); + Mat(src).copyTo(_dst); + } +} + +//! @} + +} // cv + +#endif diff --git a/thirdparty1/linux/include/opencv2/core/fast_math.hpp b/thirdparty1/linux/include/opencv2/core/fast_math.hpp new file mode 100644 index 0000000..c76936a --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/fast_math.hpp @@ -0,0 +1,303 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2015, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_FAST_MATH_HPP +#define OPENCV_CORE_FAST_MATH_HPP + +#include "opencv2/core/cvdef.h" + +//! @addtogroup core_utils +//! @{ + +/****************************************************************************************\ +* fast math * +\****************************************************************************************/ + +#if defined __BORLANDC__ +# include +#elif defined __cplusplus +# include +#else +# include +#endif + +#ifdef HAVE_TEGRA_OPTIMIZATION +# include "tegra_round.hpp" +#endif + +#if CV_VFP + // 1. general scheme + #define ARM_ROUND(_value, _asm_string) \ + int res; \ + float temp; \ + (void)temp; \ + asm(_asm_string : [res] "=r" (res), [temp] "=w" (temp) : [value] "w" (_value)); \ + return res + // 2. version for double + #ifdef __clang__ + #define ARM_ROUND_DBL(value) ARM_ROUND(value, "vcvtr.s32.f64 %[temp], %[value] \n vmov %[res], %[temp]") + #else + #define ARM_ROUND_DBL(value) ARM_ROUND(value, "vcvtr.s32.f64 %[temp], %P[value] \n vmov %[res], %[temp]") + #endif + // 3. version for float + #define ARM_ROUND_FLT(value) ARM_ROUND(value, "vcvtr.s32.f32 %[temp], %[value]\n vmov %[res], %[temp]") +#endif // CV_VFP + +/** @brief Rounds floating-point number to the nearest integer + + @param value floating-point number. If the value is outside of INT_MIN ... INT_MAX range, the + result is not defined. + */ +CV_INLINE int +cvRound( double value ) +{ +#if ((defined _MSC_VER && defined _M_X64) || (defined __GNUC__ && defined __x86_64__ \ + && defined __SSE2__ && !defined __APPLE__)) && !defined(__CUDACC__) + __m128d t = _mm_set_sd( value ); + return _mm_cvtsd_si32(t); +#elif defined _MSC_VER && defined _M_IX86 + int t; + __asm + { + fld value; + fistp t; + } + return t; +#elif ((defined _MSC_VER && defined _M_ARM) || defined CV_ICC || \ + defined __GNUC__) && defined HAVE_TEGRA_OPTIMIZATION + TEGRA_ROUND_DBL(value); +#elif defined CV_ICC || defined __GNUC__ +# if CV_VFP + ARM_ROUND_DBL(value); +# else + return (int)lrint(value); +# endif +#else + /* it's ok if round does not comply with IEEE754 standard; + the tests should allow +/-1 difference when the tested functions use round */ + return (int)(value + (value >= 0 ? 0.5 : -0.5)); +#endif +} + + +/** @brief Rounds floating-point number to the nearest integer not larger than the original. + + The function computes an integer i such that: + \f[i \le \texttt{value} < i+1\f] + @param value floating-point number. If the value is outside of INT_MIN ... INT_MAX range, the + result is not defined. + */ +CV_INLINE int cvFloor( double value ) +{ +#if (defined _MSC_VER && defined _M_X64 || (defined __GNUC__ && defined __SSE2__ && !defined __APPLE__)) && !defined(__CUDACC__) + __m128d t = _mm_set_sd( value ); + int i = _mm_cvtsd_si32(t); + return i - _mm_movemask_pd(_mm_cmplt_sd(t, _mm_cvtsi32_sd(t,i))); +#elif defined __GNUC__ + int i = (int)value; + return i - (i > value); +#else + int i = cvRound(value); + float diff = (float)(value - i); + return i - (diff < 0); +#endif +} + +/** @brief Rounds floating-point number to the nearest integer not smaller than the original. + + The function computes an integer i such that: + \f[i \le \texttt{value} < i+1\f] + @param value floating-point number. If the value is outside of INT_MIN ... INT_MAX range, the + result is not defined. + */ +CV_INLINE int cvCeil( double value ) +{ +#if (defined _MSC_VER && defined _M_X64 || (defined __GNUC__ && defined __SSE2__&& !defined __APPLE__)) && !defined(__CUDACC__) + __m128d t = _mm_set_sd( value ); + int i = _mm_cvtsd_si32(t); + return i + _mm_movemask_pd(_mm_cmplt_sd(_mm_cvtsi32_sd(t,i), t)); +#elif defined __GNUC__ + int i = (int)value; + return i + (i < value); +#else + int i = cvRound(value); + float diff = (float)(i - value); + return i + (diff < 0); +#endif +} + +/** @brief Determines if the argument is Not A Number. + + @param value The input floating-point value + + The function returns 1 if the argument is Not A Number (as defined by IEEE754 standard), 0 + otherwise. */ +CV_INLINE int cvIsNaN( double value ) +{ + Cv64suf ieee754; + ieee754.f = value; + return ((unsigned)(ieee754.u >> 32) & 0x7fffffff) + + ((unsigned)ieee754.u != 0) > 0x7ff00000; +} + +/** @brief Determines if the argument is Infinity. + + @param value The input floating-point value + + The function returns 1 if the argument is a plus or minus infinity (as defined by IEEE754 standard) + and 0 otherwise. */ +CV_INLINE int cvIsInf( double value ) +{ + Cv64suf ieee754; + ieee754.f = value; + return ((unsigned)(ieee754.u >> 32) & 0x7fffffff) == 0x7ff00000 && + (unsigned)ieee754.u == 0; +} + +#ifdef __cplusplus + +/** @overload */ +CV_INLINE int cvRound(float value) +{ +#if ((defined _MSC_VER && defined _M_X64) || (defined __GNUC__ && defined __x86_64__ && \ + defined __SSE2__ && !defined __APPLE__)) && !defined(__CUDACC__) + __m128 t = _mm_set_ss( value ); + return _mm_cvtss_si32(t); +#elif defined _MSC_VER && defined _M_IX86 + int t; + __asm + { + fld value; + fistp t; + } + return t; +#elif ((defined _MSC_VER && defined _M_ARM) || defined CV_ICC || \ + defined __GNUC__) && defined HAVE_TEGRA_OPTIMIZATION + TEGRA_ROUND_FLT(value); +#elif defined CV_ICC || defined __GNUC__ +# if CV_VFP + ARM_ROUND_FLT(value); +# else + return (int)lrintf(value); +# endif +#else + /* it's ok if round does not comply with IEEE754 standard; + the tests should allow +/-1 difference when the tested functions use round */ + return (int)(value + (value >= 0 ? 0.5f : -0.5f)); +#endif +} + +/** @overload */ +CV_INLINE int cvRound( int value ) +{ + return value; +} + +/** @overload */ +CV_INLINE int cvFloor( float value ) +{ +#if (defined _MSC_VER && defined _M_X64 || (defined __GNUC__ && defined __SSE2__ && !defined __APPLE__)) && !defined(__CUDACC__) + __m128 t = _mm_set_ss( value ); + int i = _mm_cvtss_si32(t); + return i - _mm_movemask_ps(_mm_cmplt_ss(t, _mm_cvtsi32_ss(t,i))); +#elif defined __GNUC__ + int i = (int)value; + return i - (i > value); +#else + int i = cvRound(value); + float diff = (float)(value - i); + return i - (diff < 0); +#endif +} + +/** @overload */ +CV_INLINE int cvFloor( int value ) +{ + return value; +} + +/** @overload */ +CV_INLINE int cvCeil( float value ) +{ +#if (defined _MSC_VER && defined _M_X64 || (defined __GNUC__ && defined __SSE2__&& !defined __APPLE__)) && !defined(__CUDACC__) + __m128 t = _mm_set_ss( value ); + int i = _mm_cvtss_si32(t); + return i + _mm_movemask_ps(_mm_cmplt_ss(_mm_cvtsi32_ss(t,i), t)); +#elif defined __GNUC__ + int i = (int)value; + return i + (i < value); +#else + int i = cvRound(value); + float diff = (float)(i - value); + return i + (diff < 0); +#endif +} + +/** @overload */ +CV_INLINE int cvCeil( int value ) +{ + return value; +} + +/** @overload */ +CV_INLINE int cvIsNaN( float value ) +{ + Cv32suf ieee754; + ieee754.f = value; + return (ieee754.u & 0x7fffffff) > 0x7f800000; +} + +/** @overload */ +CV_INLINE int cvIsInf( float value ) +{ + Cv32suf ieee754; + ieee754.f = value; + return (ieee754.u & 0x7fffffff) == 0x7f800000; +} + +#endif // __cplusplus + +//! @} core_utils + +#endif diff --git a/thirdparty1/linux/include/opencv2/core/hal/hal.hpp b/thirdparty1/linux/include/opencv2/core/hal/hal.hpp new file mode 100644 index 0000000..68900ec --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/hal/hal.hpp @@ -0,0 +1,250 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2015, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_HAL_HPP +#define OPENCV_HAL_HPP + +#include "opencv2/core/cvdef.h" +#include "opencv2/core/cvstd.hpp" +#include "opencv2/core/hal/interface.h" + +namespace cv { namespace hal { + +//! @addtogroup core_hal_functions +//! @{ + +CV_EXPORTS int normHamming(const uchar* a, int n); +CV_EXPORTS int normHamming(const uchar* a, const uchar* b, int n); + +CV_EXPORTS int normHamming(const uchar* a, int n, int cellSize); +CV_EXPORTS int normHamming(const uchar* a, const uchar* b, int n, int cellSize); + +CV_EXPORTS int LU32f(float* A, size_t astep, int m, float* b, size_t bstep, int n); +CV_EXPORTS int LU64f(double* A, size_t astep, int m, double* b, size_t bstep, int n); +CV_EXPORTS bool Cholesky32f(float* A, size_t astep, int m, float* b, size_t bstep, int n); +CV_EXPORTS bool Cholesky64f(double* A, size_t astep, int m, double* b, size_t bstep, int n); +CV_EXPORTS void SVD32f(float* At, size_t astep, float* W, float* U, size_t ustep, float* Vt, size_t vstep, int m, int n, int flags); +CV_EXPORTS void SVD64f(double* At, size_t astep, double* W, double* U, size_t ustep, double* Vt, size_t vstep, int m, int n, int flags); +CV_EXPORTS int QR32f(float* A, size_t astep, int m, int n, int k, float* b, size_t bstep, float* hFactors); +CV_EXPORTS int QR64f(double* A, size_t astep, int m, int n, int k, double* b, size_t bstep, double* hFactors); + +CV_EXPORTS void gemm32f(const float* src1, size_t src1_step, const float* src2, size_t src2_step, + float alpha, const float* src3, size_t src3_step, float beta, float* dst, size_t dst_step, + int m_a, int n_a, int n_d, int flags); +CV_EXPORTS void gemm64f(const double* src1, size_t src1_step, const double* src2, size_t src2_step, + double alpha, const double* src3, size_t src3_step, double beta, double* dst, size_t dst_step, + int m_a, int n_a, int n_d, int flags); +CV_EXPORTS void gemm32fc(const float* src1, size_t src1_step, const float* src2, size_t src2_step, + float alpha, const float* src3, size_t src3_step, float beta, float* dst, size_t dst_step, + int m_a, int n_a, int n_d, int flags); +CV_EXPORTS void gemm64fc(const double* src1, size_t src1_step, const double* src2, size_t src2_step, + double alpha, const double* src3, size_t src3_step, double beta, double* dst, size_t dst_step, + int m_a, int n_a, int n_d, int flags); + +CV_EXPORTS int normL1_(const uchar* a, const uchar* b, int n); +CV_EXPORTS float normL1_(const float* a, const float* b, int n); +CV_EXPORTS float normL2Sqr_(const float* a, const float* b, int n); + +CV_EXPORTS void exp32f(const float* src, float* dst, int n); +CV_EXPORTS void exp64f(const double* src, double* dst, int n); +CV_EXPORTS void log32f(const float* src, float* dst, int n); +CV_EXPORTS void log64f(const double* src, double* dst, int n); + +CV_EXPORTS void fastAtan32f(const float* y, const float* x, float* dst, int n, bool angleInDegrees); +CV_EXPORTS void fastAtan64f(const double* y, const double* x, double* dst, int n, bool angleInDegrees); +CV_EXPORTS void magnitude32f(const float* x, const float* y, float* dst, int n); +CV_EXPORTS void magnitude64f(const double* x, const double* y, double* dst, int n); +CV_EXPORTS void sqrt32f(const float* src, float* dst, int len); +CV_EXPORTS void sqrt64f(const double* src, double* dst, int len); +CV_EXPORTS void invSqrt32f(const float* src, float* dst, int len); +CV_EXPORTS void invSqrt64f(const double* src, double* dst, int len); + +CV_EXPORTS void split8u(const uchar* src, uchar** dst, int len, int cn ); +CV_EXPORTS void split16u(const ushort* src, ushort** dst, int len, int cn ); +CV_EXPORTS void split32s(const int* src, int** dst, int len, int cn ); +CV_EXPORTS void split64s(const int64* src, int64** dst, int len, int cn ); + +CV_EXPORTS void merge8u(const uchar** src, uchar* dst, int len, int cn ); +CV_EXPORTS void merge16u(const ushort** src, ushort* dst, int len, int cn ); +CV_EXPORTS void merge32s(const int** src, int* dst, int len, int cn ); +CV_EXPORTS void merge64s(const int64** src, int64* dst, int len, int cn ); + +CV_EXPORTS void add8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void add8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void add16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void add16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void add32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void add32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void add64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, int width, int height, void* ); + +CV_EXPORTS void sub8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void sub8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void sub16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void sub16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void sub32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void sub32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void sub64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, int width, int height, void* ); + +CV_EXPORTS void max8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void max8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void max16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void max16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void max32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void max32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void max64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, int width, int height, void* ); + +CV_EXPORTS void min8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void min8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void min16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void min16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void min32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void min32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void min64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, int width, int height, void* ); + +CV_EXPORTS void absdiff8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void absdiff8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void absdiff16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void absdiff16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void absdiff32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void absdiff32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void absdiff64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, int width, int height, void* ); + +CV_EXPORTS void and8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void or8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void xor8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* ); +CV_EXPORTS void not8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* ); + +CV_EXPORTS void cmp8u(const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* _cmpop); +CV_EXPORTS void cmp8s(const schar* src1, size_t step1, const schar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* _cmpop); +CV_EXPORTS void cmp16u(const ushort* src1, size_t step1, const ushort* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* _cmpop); +CV_EXPORTS void cmp16s(const short* src1, size_t step1, const short* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* _cmpop); +CV_EXPORTS void cmp32s(const int* src1, size_t step1, const int* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* _cmpop); +CV_EXPORTS void cmp32f(const float* src1, size_t step1, const float* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* _cmpop); +CV_EXPORTS void cmp64f(const double* src1, size_t step1, const double* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* _cmpop); + +CV_EXPORTS void mul8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void mul8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void mul16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void mul16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void mul32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void mul32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void mul64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, int width, int height, void* scale); + +CV_EXPORTS void div8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void div8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void div16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void div16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void div32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void div32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void div64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, int width, int height, void* scale); + +CV_EXPORTS void recip8u( const uchar *, size_t, const uchar * src2, size_t step2, uchar* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void recip8s( const schar *, size_t, const schar * src2, size_t step2, schar* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void recip16u( const ushort *, size_t, const ushort * src2, size_t step2, ushort* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void recip16s( const short *, size_t, const short * src2, size_t step2, short* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void recip32s( const int *, size_t, const int * src2, size_t step2, int* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void recip32f( const float *, size_t, const float * src2, size_t step2, float* dst, size_t step, int width, int height, void* scale); +CV_EXPORTS void recip64f( const double *, size_t, const double * src2, size_t step2, double* dst, size_t step, int width, int height, void* scale); + +CV_EXPORTS void addWeighted8u( const uchar* src1, size_t step1, const uchar* src2, size_t step2, uchar* dst, size_t step, int width, int height, void* _scalars ); +CV_EXPORTS void addWeighted8s( const schar* src1, size_t step1, const schar* src2, size_t step2, schar* dst, size_t step, int width, int height, void* scalars ); +CV_EXPORTS void addWeighted16u( const ushort* src1, size_t step1, const ushort* src2, size_t step2, ushort* dst, size_t step, int width, int height, void* scalars ); +CV_EXPORTS void addWeighted16s( const short* src1, size_t step1, const short* src2, size_t step2, short* dst, size_t step, int width, int height, void* scalars ); +CV_EXPORTS void addWeighted32s( const int* src1, size_t step1, const int* src2, size_t step2, int* dst, size_t step, int width, int height, void* scalars ); +CV_EXPORTS void addWeighted32f( const float* src1, size_t step1, const float* src2, size_t step2, float* dst, size_t step, int width, int height, void* scalars ); +CV_EXPORTS void addWeighted64f( const double* src1, size_t step1, const double* src2, size_t step2, double* dst, size_t step, int width, int height, void* scalars ); + +struct CV_EXPORTS DFT1D +{ + static Ptr create(int len, int count, int depth, int flags, bool * useBuffer = 0); + virtual void apply(const uchar *src, uchar *dst) = 0; + virtual ~DFT1D() {} +}; + +struct CV_EXPORTS DFT2D +{ + static Ptr create(int width, int height, int depth, + int src_channels, int dst_channels, + int flags, int nonzero_rows = 0); + virtual void apply(const uchar *src_data, size_t src_step, uchar *dst_data, size_t dst_step) = 0; + virtual ~DFT2D() {} +}; + +struct CV_EXPORTS DCT2D +{ + static Ptr create(int width, int height, int depth, int flags); + virtual void apply(const uchar *src_data, size_t src_step, uchar *dst_data, size_t dst_step) = 0; + virtual ~DCT2D() {} +}; + +//! @} core_hal + +//============================================================================= +// for binary compatibility with 3.0 + +//! @cond IGNORED + +CV_EXPORTS int LU(float* A, size_t astep, int m, float* b, size_t bstep, int n); +CV_EXPORTS int LU(double* A, size_t astep, int m, double* b, size_t bstep, int n); +CV_EXPORTS bool Cholesky(float* A, size_t astep, int m, float* b, size_t bstep, int n); +CV_EXPORTS bool Cholesky(double* A, size_t astep, int m, double* b, size_t bstep, int n); + +CV_EXPORTS void exp(const float* src, float* dst, int n); +CV_EXPORTS void exp(const double* src, double* dst, int n); +CV_EXPORTS void log(const float* src, float* dst, int n); +CV_EXPORTS void log(const double* src, double* dst, int n); + +CV_EXPORTS void fastAtan2(const float* y, const float* x, float* dst, int n, bool angleInDegrees); +CV_EXPORTS void magnitude(const float* x, const float* y, float* dst, int n); +CV_EXPORTS void magnitude(const double* x, const double* y, double* dst, int n); +CV_EXPORTS void sqrt(const float* src, float* dst, int len); +CV_EXPORTS void sqrt(const double* src, double* dst, int len); +CV_EXPORTS void invSqrt(const float* src, float* dst, int len); +CV_EXPORTS void invSqrt(const double* src, double* dst, int len); + +//! @endcond + +}} //cv::hal + +#endif //OPENCV_HAL_HPP diff --git a/thirdparty1/linux/include/opencv2/core/hal/interface.h b/thirdparty1/linux/include/opencv2/core/hal/interface.h new file mode 100644 index 0000000..4a97e65 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/hal/interface.h @@ -0,0 +1,178 @@ +#ifndef OPENCV_CORE_HAL_INTERFACE_H +#define OPENCV_CORE_HAL_INTERFACE_H + +//! @addtogroup core_hal_interface +//! @{ + +//! @name Return codes +//! @{ +#define CV_HAL_ERROR_OK 0 +#define CV_HAL_ERROR_NOT_IMPLEMENTED 1 +#define CV_HAL_ERROR_UNKNOWN -1 +//! @} + +#ifdef __cplusplus +#include +#else +#include +#include +#endif + +//! @name Data types +//! primitive types +//! - schar - signed 1 byte integer +//! - uchar - unsigned 1 byte integer +//! - short - signed 2 byte integer +//! - ushort - unsigned 2 byte integer +//! - int - signed 4 byte integer +//! - uint - unsigned 4 byte integer +//! - int64 - signed 8 byte integer +//! - uint64 - unsigned 8 byte integer +//! @{ +#if !defined _MSC_VER && !defined __BORLANDC__ +# if defined __cplusplus && __cplusplus >= 201103L && !defined __APPLE__ +# include + typedef std::uint32_t uint; +# else +# include + typedef uint32_t uint; +# endif +#else + typedef unsigned uint; +#endif + +typedef signed char schar; + +#ifndef __IPL_H__ + typedef unsigned char uchar; + typedef unsigned short ushort; +#endif + +#if defined _MSC_VER || defined __BORLANDC__ + typedef __int64 int64; + typedef unsigned __int64 uint64; +# define CV_BIG_INT(n) n##I64 +# define CV_BIG_UINT(n) n##UI64 +#else + typedef int64_t int64; + typedef uint64_t uint64; +# define CV_BIG_INT(n) n##LL +# define CV_BIG_UINT(n) n##ULL +#endif + +#define CV_CN_MAX 512 +#define CV_CN_SHIFT 3 +#define CV_DEPTH_MAX (1 << CV_CN_SHIFT) + +#define CV_8U 0 +#define CV_8S 1 +#define CV_16U 2 +#define CV_16S 3 +#define CV_32S 4 +#define CV_32F 5 +#define CV_64F 6 +#define CV_USRTYPE1 7 + +#define CV_MAT_DEPTH_MASK (CV_DEPTH_MAX - 1) +#define CV_MAT_DEPTH(flags) ((flags) & CV_MAT_DEPTH_MASK) + +#define CV_MAKETYPE(depth,cn) (CV_MAT_DEPTH(depth) + (((cn)-1) << CV_CN_SHIFT)) +#define CV_MAKE_TYPE CV_MAKETYPE + +#define CV_8UC1 CV_MAKETYPE(CV_8U,1) +#define CV_8UC2 CV_MAKETYPE(CV_8U,2) +#define CV_8UC3 CV_MAKETYPE(CV_8U,3) +#define CV_8UC4 CV_MAKETYPE(CV_8U,4) +#define CV_8UC(n) CV_MAKETYPE(CV_8U,(n)) + +#define CV_8SC1 CV_MAKETYPE(CV_8S,1) +#define CV_8SC2 CV_MAKETYPE(CV_8S,2) +#define CV_8SC3 CV_MAKETYPE(CV_8S,3) +#define CV_8SC4 CV_MAKETYPE(CV_8S,4) +#define CV_8SC(n) CV_MAKETYPE(CV_8S,(n)) + +#define CV_16UC1 CV_MAKETYPE(CV_16U,1) +#define CV_16UC2 CV_MAKETYPE(CV_16U,2) +#define CV_16UC3 CV_MAKETYPE(CV_16U,3) +#define CV_16UC4 CV_MAKETYPE(CV_16U,4) +#define CV_16UC(n) CV_MAKETYPE(CV_16U,(n)) + +#define CV_16SC1 CV_MAKETYPE(CV_16S,1) +#define CV_16SC2 CV_MAKETYPE(CV_16S,2) +#define CV_16SC3 CV_MAKETYPE(CV_16S,3) +#define CV_16SC4 CV_MAKETYPE(CV_16S,4) +#define CV_16SC(n) CV_MAKETYPE(CV_16S,(n)) + +#define CV_32SC1 CV_MAKETYPE(CV_32S,1) +#define CV_32SC2 CV_MAKETYPE(CV_32S,2) +#define CV_32SC3 CV_MAKETYPE(CV_32S,3) +#define CV_32SC4 CV_MAKETYPE(CV_32S,4) +#define CV_32SC(n) CV_MAKETYPE(CV_32S,(n)) + +#define CV_32FC1 CV_MAKETYPE(CV_32F,1) +#define CV_32FC2 CV_MAKETYPE(CV_32F,2) +#define CV_32FC3 CV_MAKETYPE(CV_32F,3) +#define CV_32FC4 CV_MAKETYPE(CV_32F,4) +#define CV_32FC(n) CV_MAKETYPE(CV_32F,(n)) + +#define CV_64FC1 CV_MAKETYPE(CV_64F,1) +#define CV_64FC2 CV_MAKETYPE(CV_64F,2) +#define CV_64FC3 CV_MAKETYPE(CV_64F,3) +#define CV_64FC4 CV_MAKETYPE(CV_64F,4) +#define CV_64FC(n) CV_MAKETYPE(CV_64F,(n)) +//! @} + +//! @name Comparison operation +//! @sa cv::CmpTypes +//! @{ +#define CV_HAL_CMP_EQ 0 +#define CV_HAL_CMP_GT 1 +#define CV_HAL_CMP_GE 2 +#define CV_HAL_CMP_LT 3 +#define CV_HAL_CMP_LE 4 +#define CV_HAL_CMP_NE 5 +//! @} + +//! @name Border processing modes +//! @sa cv::BorderTypes +//! @{ +#define CV_HAL_BORDER_CONSTANT 0 +#define CV_HAL_BORDER_REPLICATE 1 +#define CV_HAL_BORDER_REFLECT 2 +#define CV_HAL_BORDER_WRAP 3 +#define CV_HAL_BORDER_REFLECT_101 4 +#define CV_HAL_BORDER_TRANSPARENT 5 +#define CV_HAL_BORDER_ISOLATED 16 +//! @} + +//! @name DFT flags +//! @{ +#define CV_HAL_DFT_INVERSE 1 +#define CV_HAL_DFT_SCALE 2 +#define CV_HAL_DFT_ROWS 4 +#define CV_HAL_DFT_COMPLEX_OUTPUT 16 +#define CV_HAL_DFT_REAL_OUTPUT 32 +#define CV_HAL_DFT_TWO_STAGE 64 +#define CV_HAL_DFT_STAGE_COLS 128 +#define CV_HAL_DFT_IS_CONTINUOUS 512 +#define CV_HAL_DFT_IS_INPLACE 1024 +//! @} + +//! @name SVD flags +//! @{ +#define CV_HAL_SVD_NO_UV 1 +#define CV_HAL_SVD_SHORT_UV 2 +#define CV_HAL_SVD_MODIFY_A 4 +#define CV_HAL_SVD_FULL_UV 8 +//! @} + +//! @name Gemm flags +//! @{ +#define CV_HAL_GEMM_1_T 1 +#define CV_HAL_GEMM_2_T 2 +#define CV_HAL_GEMM_3_T 4 +//! @} + +//! @} + +#endif diff --git a/thirdparty1/linux/include/opencv2/core/hal/intrin.hpp b/thirdparty1/linux/include/opencv2/core/hal/intrin.hpp new file mode 100644 index 0000000..34075e3 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/hal/intrin.hpp @@ -0,0 +1,414 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2015, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_HAL_INTRIN_HPP +#define OPENCV_HAL_INTRIN_HPP + +#include +#include +#include +#include "opencv2/core/cvdef.h" + +#define OPENCV_HAL_ADD(a, b) ((a) + (b)) +#define OPENCV_HAL_AND(a, b) ((a) & (b)) +#define OPENCV_HAL_NOP(a) (a) +#define OPENCV_HAL_1ST(a, b) (a) + +// unlike HAL API, which is in cv::hal, +// we put intrinsics into cv namespace to make its +// access from within opencv code more accessible +namespace cv { + +//! @addtogroup core_hal_intrin +//! @{ + +//! @cond IGNORED +template struct V_TypeTraits +{ + typedef _Tp int_type; + typedef _Tp uint_type; + typedef _Tp abs_type; + typedef _Tp sum_type; + + enum { delta = 0, shift = 0 }; + + static int_type reinterpret_int(_Tp x) { return x; } + static uint_type reinterpet_uint(_Tp x) { return x; } + static _Tp reinterpret_from_int(int_type x) { return (_Tp)x; } +}; + +template<> struct V_TypeTraits +{ + typedef uchar value_type; + typedef schar int_type; + typedef uchar uint_type; + typedef uchar abs_type; + typedef int sum_type; + + typedef ushort w_type; + typedef unsigned q_type; + + enum { delta = 128, shift = 8 }; + + static int_type reinterpret_int(value_type x) { return (int_type)x; } + static uint_type reinterpret_uint(value_type x) { return (uint_type)x; } + static value_type reinterpret_from_int(int_type x) { return (value_type)x; } +}; + +template<> struct V_TypeTraits +{ + typedef schar value_type; + typedef schar int_type; + typedef uchar uint_type; + typedef uchar abs_type; + typedef int sum_type; + + typedef short w_type; + typedef int q_type; + + enum { delta = 128, shift = 8 }; + + static int_type reinterpret_int(value_type x) { return (int_type)x; } + static uint_type reinterpret_uint(value_type x) { return (uint_type)x; } + static value_type reinterpret_from_int(int_type x) { return (value_type)x; } +}; + +template<> struct V_TypeTraits +{ + typedef ushort value_type; + typedef short int_type; + typedef ushort uint_type; + typedef ushort abs_type; + typedef int sum_type; + + typedef unsigned w_type; + typedef uchar nu_type; + + enum { delta = 32768, shift = 16 }; + + static int_type reinterpret_int(value_type x) { return (int_type)x; } + static uint_type reinterpret_uint(value_type x) { return (uint_type)x; } + static value_type reinterpret_from_int(int_type x) { return (value_type)x; } +}; + +template<> struct V_TypeTraits +{ + typedef short value_type; + typedef short int_type; + typedef ushort uint_type; + typedef ushort abs_type; + typedef int sum_type; + + typedef int w_type; + typedef uchar nu_type; + typedef schar n_type; + + enum { delta = 128, shift = 8 }; + + static int_type reinterpret_int(value_type x) { return (int_type)x; } + static uint_type reinterpret_uint(value_type x) { return (uint_type)x; } + static value_type reinterpret_from_int(int_type x) { return (value_type)x; } +}; + +template<> struct V_TypeTraits +{ + typedef unsigned value_type; + typedef int int_type; + typedef unsigned uint_type; + typedef unsigned abs_type; + typedef unsigned sum_type; + + typedef uint64 w_type; + typedef ushort nu_type; + + static int_type reinterpret_int(value_type x) { return (int_type)x; } + static uint_type reinterpret_uint(value_type x) { return (uint_type)x; } + static value_type reinterpret_from_int(int_type x) { return (value_type)x; } +}; + +template<> struct V_TypeTraits +{ + typedef int value_type; + typedef int int_type; + typedef unsigned uint_type; + typedef unsigned abs_type; + typedef int sum_type; + + typedef int64 w_type; + typedef short n_type; + typedef ushort nu_type; + + static int_type reinterpret_int(value_type x) { return (int_type)x; } + static uint_type reinterpret_uint(value_type x) { return (uint_type)x; } + static value_type reinterpret_from_int(int_type x) { return (value_type)x; } +}; + +template<> struct V_TypeTraits +{ + typedef uint64 value_type; + typedef int64 int_type; + typedef uint64 uint_type; + typedef uint64 abs_type; + typedef uint64 sum_type; + + typedef unsigned nu_type; + + static int_type reinterpret_int(value_type x) { return (int_type)x; } + static uint_type reinterpret_uint(value_type x) { return (uint_type)x; } + static value_type reinterpret_from_int(int_type x) { return (value_type)x; } +}; + +template<> struct V_TypeTraits +{ + typedef int64 value_type; + typedef int64 int_type; + typedef uint64 uint_type; + typedef uint64 abs_type; + typedef int64 sum_type; + + typedef int nu_type; + + static int_type reinterpret_int(value_type x) { return (int_type)x; } + static uint_type reinterpret_uint(value_type x) { return (uint_type)x; } + static value_type reinterpret_from_int(int_type x) { return (value_type)x; } +}; + + +template<> struct V_TypeTraits +{ + typedef float value_type; + typedef int int_type; + typedef unsigned uint_type; + typedef float abs_type; + typedef float sum_type; + + typedef double w_type; + + static int_type reinterpret_int(value_type x) + { + Cv32suf u; + u.f = x; + return u.i; + } + static uint_type reinterpet_uint(value_type x) + { + Cv32suf u; + u.f = x; + return u.u; + } + static value_type reinterpret_from_int(int_type x) + { + Cv32suf u; + u.i = x; + return u.f; + } +}; + +template<> struct V_TypeTraits +{ + typedef double value_type; + typedef int64 int_type; + typedef uint64 uint_type; + typedef double abs_type; + typedef double sum_type; + static int_type reinterpret_int(value_type x) + { + Cv64suf u; + u.f = x; + return u.i; + } + static uint_type reinterpet_uint(value_type x) + { + Cv64suf u; + u.f = x; + return u.u; + } + static value_type reinterpret_from_int(int_type x) + { + Cv64suf u; + u.i = x; + return u.f; + } +}; + +template struct V_SIMD128Traits +{ + enum { nlanes = 16 / sizeof(T) }; +}; + +//! @endcond + +//! @} + +} + +#ifdef CV_DOXYGEN +# undef CV_SSE2 +# undef CV_NEON +#endif + +#if CV_SSE2 + +#include "opencv2/core/hal/intrin_sse.hpp" + +#elif CV_NEON + +#include "opencv2/core/hal/intrin_neon.hpp" + +#else + +#include "opencv2/core/hal/intrin_cpp.hpp" + +#endif + +//! @addtogroup core_hal_intrin +//! @{ + +#ifndef CV_SIMD128 +//! Set to 1 if current compiler supports vector extensions (NEON or SSE is enabled) +#define CV_SIMD128 0 +#endif + +#ifndef CV_SIMD128_64F +//! Set to 1 if current intrinsics implementation supports 64-bit float vectors +#define CV_SIMD128_64F 0 +#endif + +//! @} + +//================================================================================================== + +//! @cond IGNORED + +namespace cv { + +template struct V_RegTrait128; + +template <> struct V_RegTrait128 { + typedef v_uint8x16 reg; + typedef v_uint16x8 w_reg; + typedef v_uint32x4 q_reg; + typedef v_uint8x16 u_reg; + static v_uint8x16 zero() { return v_setzero_u8(); } + static v_uint8x16 all(uchar val) { return v_setall_u8(val); } +}; + +template <> struct V_RegTrait128 { + typedef v_int8x16 reg; + typedef v_int16x8 w_reg; + typedef v_int32x4 q_reg; + typedef v_uint8x16 u_reg; + static v_int8x16 zero() { return v_setzero_s8(); } + static v_int8x16 all(schar val) { return v_setall_s8(val); } +}; + +template <> struct V_RegTrait128 { + typedef v_uint16x8 reg; + typedef v_uint32x4 w_reg; + typedef v_int16x8 int_reg; + typedef v_uint16x8 u_reg; + static v_uint16x8 zero() { return v_setzero_u16(); } + static v_uint16x8 all(ushort val) { return v_setall_u16(val); } +}; + +template <> struct V_RegTrait128 { + typedef v_int16x8 reg; + typedef v_int32x4 w_reg; + typedef v_uint16x8 u_reg; + static v_int16x8 zero() { return v_setzero_s16(); } + static v_int16x8 all(short val) { return v_setall_s16(val); } +}; + +template <> struct V_RegTrait128 { + typedef v_uint32x4 reg; + typedef v_uint64x2 w_reg; + typedef v_int32x4 int_reg; + typedef v_uint32x4 u_reg; + static v_uint32x4 zero() { return v_setzero_u32(); } + static v_uint32x4 all(unsigned val) { return v_setall_u32(val); } +}; + +template <> struct V_RegTrait128 { + typedef v_int32x4 reg; + typedef v_int64x2 w_reg; + typedef v_uint32x4 u_reg; + static v_int32x4 zero() { return v_setzero_s32(); } + static v_int32x4 all(int val) { return v_setall_s32(val); } +}; + +template <> struct V_RegTrait128 { + typedef v_uint64x2 reg; + static v_uint64x2 zero() { return v_setzero_u64(); } + static v_uint64x2 all(uint64 val) { return v_setall_u64(val); } +}; + +template <> struct V_RegTrait128 { + typedef v_int64x2 reg; + static v_int64x2 zero() { return v_setzero_s64(); } + static v_int64x2 all(int64 val) { return v_setall_s64(val); } +}; + +template <> struct V_RegTrait128 { + typedef v_float32x4 reg; + typedef v_int32x4 int_reg; + typedef v_float32x4 u_reg; + static v_float32x4 zero() { return v_setzero_f32(); } + static v_float32x4 all(float val) { return v_setall_f32(val); } +}; + +#if CV_SIMD128_64F +template <> struct V_RegTrait128 { + typedef v_float64x2 reg; + typedef v_int32x4 int_reg; + typedef v_float64x2 u_reg; + static v_float64x2 zero() { return v_setzero_f64(); } + static v_float64x2 all(double val) { return v_setall_f64(val); } +}; +#endif + +} // cv:: + +//! @endcond + +#endif diff --git a/thirdparty1/linux/include/opencv2/core/hal/intrin_cpp.hpp b/thirdparty1/linux/include/opencv2/core/hal/intrin_cpp.hpp new file mode 100644 index 0000000..93ca397 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/hal/intrin_cpp.hpp @@ -0,0 +1,1790 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2015, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_HAL_INTRIN_CPP_HPP +#define OPENCV_HAL_INTRIN_CPP_HPP + +#include +#include +#include +#include "opencv2/core/saturate.hpp" + +namespace cv +{ + +/** @addtogroup core_hal_intrin + +"Universal intrinsics" is a types and functions set intended to simplify vectorization of code on +different platforms. Currently there are two supported SIMD extensions: __SSE/SSE2__ on x86 +architectures and __NEON__ on ARM architectures, both allow working with 128 bit registers +containing packed values of different types. In case when there is no SIMD extension available +during compilation, fallback C++ implementation of intrinsics will be chosen and code will work as +expected although it could be slower. + +### Types + +There are several types representing 128-bit register as a vector of packed values, each type is +implemented as a structure based on a one SIMD register. + +- cv::v_uint8x16 and cv::v_int8x16: sixteen 8-bit integer values (unsigned/signed) - char +- cv::v_uint16x8 and cv::v_int16x8: eight 16-bit integer values (unsigned/signed) - short +- cv::v_uint32x4 and cv::v_int32x4: four 32-bit integer values (unsgined/signed) - int +- cv::v_uint64x2 and cv::v_int64x2: two 64-bit integer values (unsigned/signed) - int64 +- cv::v_float32x4: four 32-bit floating point values (signed) - float +- cv::v_float64x2: two 64-bit floating point valies (signed) - double + +@note +cv::v_float64x2 is not implemented in NEON variant, if you want to use this type, don't forget to +check the CV_SIMD128_64F preprocessor definition: +@code +#if CV_SIMD128_64F +//... +#endif +@endcode + +### Load and store operations + +These operations allow to set contents of the register explicitly or by loading it from some memory +block and to save contents of the register to memory block. + +- Constructors: +@ref v_reg::v_reg(const _Tp *ptr) "from memory", +@ref v_reg::v_reg(_Tp s0, _Tp s1) "from two values", ... +- Other create methods: +@ref v_setall_s8, @ref v_setall_u8, ..., +@ref v_setzero_u8, @ref v_setzero_s8, ... +- Memory operations: +@ref v_load, @ref v_load_aligned, @ref v_load_halves, +@ref v_store, @ref v_store_aligned, +@ref v_store_high, @ref v_store_low + +### Value reordering + +These operations allow to reorder or recombine elements in one or multiple vectors. + +- Interleave, deinterleave (2, 3 and 4 channels): @ref v_load_deinterleave, @ref v_store_interleave +- Expand: @ref v_load_expand, @ref v_load_expand_q, @ref v_expand +- Pack: @ref v_pack, @ref v_pack_u, @ref v_rshr_pack, @ref v_rshr_pack_u, +@ref v_pack_store, @ref v_pack_u_store, @ref v_rshr_pack_store, @ref v_rshr_pack_u_store +- Recombine: @ref v_zip, @ref v_recombine, @ref v_combine_low, @ref v_combine_high +- Extract: @ref v_extract + + +### Arithmetic, bitwise and comparison operations + +Element-wise binary and unary operations. + +- Arithmetics: +@ref operator +(const v_reg &a, const v_reg &b) "+", +@ref operator -(const v_reg &a, const v_reg &b) "-", +@ref operator *(const v_reg &a, const v_reg &b) "*", +@ref operator /(const v_reg &a, const v_reg &b) "/", +@ref v_mul_expand + +- Non-saturating arithmetics: @ref v_add_wrap, @ref v_sub_wrap + +- Bitwise shifts: +@ref operator <<(const v_reg &a, int s) "<<", +@ref operator >>(const v_reg &a, int s) ">>", +@ref v_shl, @ref v_shr + +- Bitwise logic: +@ref operator&(const v_reg &a, const v_reg &b) "&", +@ref operator |(const v_reg &a, const v_reg &b) "|", +@ref operator ^(const v_reg &a, const v_reg &b) "^", +@ref operator ~(const v_reg &a) "~" + +- Comparison: +@ref operator >(const v_reg &a, const v_reg &b) ">", +@ref operator >=(const v_reg &a, const v_reg &b) ">=", +@ref operator <(const v_reg &a, const v_reg &b) "<", +@ref operator <=(const v_reg &a, const v_reg &b) "<=", +@ref operator==(const v_reg &a, const v_reg &b) "==", +@ref operator !=(const v_reg &a, const v_reg &b) "!=" + +- min/max: @ref v_min, @ref v_max + +### Reduce and mask + +Most of these operations return only one value. + +- Reduce: @ref v_reduce_min, @ref v_reduce_max, @ref v_reduce_sum +- Mask: @ref v_signmask, @ref v_check_all, @ref v_check_any, @ref v_select + +### Other math + +- Some frequent operations: @ref v_sqrt, @ref v_invsqrt, @ref v_magnitude, @ref v_sqr_magnitude +- Absolute values: @ref v_abs, @ref v_absdiff + +### Conversions + +Different type conversions and casts: + +- Rounding: @ref v_round, @ref v_floor, @ref v_ceil, @ref v_trunc, +- To float: @ref v_cvt_f32, @ref v_cvt_f64 +- Reinterpret: @ref v_reinterpret_as_u8, @ref v_reinterpret_as_s8, ... + +### Matrix operations + +In these operations vectors represent matrix rows/columns: @ref v_dotprod, @ref v_matmul, @ref v_transpose4x4 + +### Usability + +Most operations are implemented only for some subset of the available types, following matrices +shows the applicability of different operations to the types. + +Regular integers: + +| Operations\\Types | uint 8x16 | int 8x16 | uint 16x8 | int 16x8 | uint 32x4 | int 32x4 | +|-------------------|:-:|:-:|:-:|:-:|:-:|:-:| +|load, store | x | x | x | x | x | x | +|interleave | x | x | x | x | x | x | +|expand | x | x | x | x | x | x | +|expand_q | x | x | | | | | +|add, sub | x | x | x | x | x | x | +|add_wrap, sub_wrap | x | x | x | x | | | +|mul | | | x | x | x | x | +|mul_expand | | | x | x | x | | +|compare | x | x | x | x | x | x | +|shift | | | x | x | x | x | +|dotprod | | | | x | | | +|logical | x | x | x | x | x | x | +|min, max | x | x | x | x | x | x | +|absdiff | x | x | x | x | x | x | +|reduce | | | | | x | x | +|mask | x | x | x | x | x | x | +|pack | x | x | x | x | x | x | +|pack_u | x | | x | | | | +|unpack | x | x | x | x | x | x | +|extract | x | x | x | x | x | x | +|cvt_flt32 | | | | | | x | +|cvt_flt64 | | | | | | x | +|transpose4x4 | | | | | x | x | + +Big integers: + +| Operations\\Types | uint 64x2 | int 64x2 | +|-------------------|:-:|:-:| +|load, store | x | x | +|add, sub | x | x | +|shift | x | x | +|logical | x | x | +|extract | x | x | + +Floating point: + +| Operations\\Types | float 32x4 | float 64x2 | +|-------------------|:-:|:-:| +|load, store | x | x | +|interleave | x | | +|add, sub | x | x | +|mul | x | x | +|div | x | x | +|compare | x | x | +|min, max | x | x | +|absdiff | x | x | +|reduce | x | | +|mask | x | x | +|unpack | x | x | +|cvt_flt32 | | x | +|cvt_flt64 | x | | +|sqrt, abs | x | x | +|float math | x | x | +|transpose4x4 | x | | + + + @{ */ + +template struct v_reg +{ +//! @cond IGNORED + typedef _Tp lane_type; + typedef v_reg::int_type, n> int_vec; + typedef v_reg::abs_type, n> abs_vec; + enum { nlanes = n }; +// !@endcond + + /** @brief Constructor + + Initializes register with data from memory + @param ptr pointer to memory block with data for register */ + explicit v_reg(const _Tp* ptr) { for( int i = 0; i < n; i++ ) s[i] = ptr[i]; } + + /** @brief Constructor + + Initializes register with two 64-bit values */ + v_reg(_Tp s0, _Tp s1) { s[0] = s0; s[1] = s1; } + + /** @brief Constructor + + Initializes register with four 32-bit values */ + v_reg(_Tp s0, _Tp s1, _Tp s2, _Tp s3) { s[0] = s0; s[1] = s1; s[2] = s2; s[3] = s3; } + + /** @brief Constructor + + Initializes register with eight 16-bit values */ + v_reg(_Tp s0, _Tp s1, _Tp s2, _Tp s3, + _Tp s4, _Tp s5, _Tp s6, _Tp s7) + { + s[0] = s0; s[1] = s1; s[2] = s2; s[3] = s3; + s[4] = s4; s[5] = s5; s[6] = s6; s[7] = s7; + } + + /** @brief Constructor + + Initializes register with sixteen 8-bit values */ + v_reg(_Tp s0, _Tp s1, _Tp s2, _Tp s3, + _Tp s4, _Tp s5, _Tp s6, _Tp s7, + _Tp s8, _Tp s9, _Tp s10, _Tp s11, + _Tp s12, _Tp s13, _Tp s14, _Tp s15) + { + s[0] = s0; s[1] = s1; s[2] = s2; s[3] = s3; + s[4] = s4; s[5] = s5; s[6] = s6; s[7] = s7; + s[8] = s8; s[9] = s9; s[10] = s10; s[11] = s11; + s[12] = s12; s[13] = s13; s[14] = s14; s[15] = s15; + } + + /** @brief Default constructor + + Does not initialize anything*/ + v_reg() {} + + /** @brief Copy constructor */ + v_reg(const v_reg<_Tp, n> & r) + { + for( int i = 0; i < n; i++ ) + s[i] = r.s[i]; + } + /** @brief Access first value + + Returns value of the first lane according to register type, for example: + @code{.cpp} + v_int32x4 r(1, 2, 3, 4); + int v = r.get0(); // returns 1 + v_uint64x2 r(1, 2); + uint64_t v = r.get0(); // returns 1 + @endcode + */ + _Tp get0() const { return s[0]; } + +//! @cond IGNORED + _Tp get(const int i) const { return s[i]; } + v_reg<_Tp, n> high() const + { + v_reg<_Tp, n> c; + int i; + for( i = 0; i < n/2; i++ ) + { + c.s[i] = s[i+(n/2)]; + c.s[i+(n/2)] = 0; + } + return c; + } + + static v_reg<_Tp, n> zero() + { + v_reg<_Tp, n> c; + for( int i = 0; i < n; i++ ) + c.s[i] = (_Tp)0; + return c; + } + + static v_reg<_Tp, n> all(_Tp s) + { + v_reg<_Tp, n> c; + for( int i = 0; i < n; i++ ) + c.s[i] = s; + return c; + } + + template v_reg<_Tp2, n2> reinterpret_as() const + { + size_t bytes = std::min(sizeof(_Tp2)*n2, sizeof(_Tp)*n); + v_reg<_Tp2, n2> c; + std::memcpy(&c.s[0], &s[0], bytes); + return c; + } + + _Tp s[n]; +//! @endcond +}; + +/** @brief Sixteen 8-bit unsigned integer values */ +typedef v_reg v_uint8x16; +/** @brief Sixteen 8-bit signed integer values */ +typedef v_reg v_int8x16; +/** @brief Eight 16-bit unsigned integer values */ +typedef v_reg v_uint16x8; +/** @brief Eight 16-bit signed integer values */ +typedef v_reg v_int16x8; +/** @brief Four 32-bit unsigned integer values */ +typedef v_reg v_uint32x4; +/** @brief Four 32-bit signed integer values */ +typedef v_reg v_int32x4; +/** @brief Four 32-bit floating point values (single precision) */ +typedef v_reg v_float32x4; +/** @brief Two 64-bit floating point values (double precision) */ +typedef v_reg v_float64x2; +/** @brief Two 64-bit unsigned integer values */ +typedef v_reg v_uint64x2; +/** @brief Two 64-bit signed integer values */ +typedef v_reg v_int64x2; + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_BIN_OP(bin_op) \ +template inline v_reg<_Tp, n> \ + operator bin_op (const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) \ +{ \ + v_reg<_Tp, n> c; \ + for( int i = 0; i < n; i++ ) \ + c.s[i] = saturate_cast<_Tp>(a.s[i] bin_op b.s[i]); \ + return c; \ +} \ +template inline v_reg<_Tp, n>& \ + operator bin_op##= (v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) \ +{ \ + for( int i = 0; i < n; i++ ) \ + a.s[i] = saturate_cast<_Tp>(a.s[i] bin_op b.s[i]); \ + return a; \ +} + +/** @brief Add values + +For all types. */ +OPENCV_HAL_IMPL_BIN_OP(+) + +/** @brief Subtract values + +For all types. */ +OPENCV_HAL_IMPL_BIN_OP(-) + +/** @brief Multiply values + +For 16- and 32-bit integer types and floating types. */ +OPENCV_HAL_IMPL_BIN_OP(*) + +/** @brief Divide values + +For floating types only. */ +OPENCV_HAL_IMPL_BIN_OP(/) + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_BIT_OP(bit_op) \ +template inline v_reg<_Tp, n> operator bit_op \ + (const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) \ +{ \ + v_reg<_Tp, n> c; \ + typedef typename V_TypeTraits<_Tp>::int_type itype; \ + for( int i = 0; i < n; i++ ) \ + c.s[i] = V_TypeTraits<_Tp>::reinterpret_from_int((itype)(V_TypeTraits<_Tp>::reinterpret_int(a.s[i]) bit_op \ + V_TypeTraits<_Tp>::reinterpret_int(b.s[i]))); \ + return c; \ +} \ +template inline v_reg<_Tp, n>& operator \ + bit_op##= (v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) \ +{ \ + typedef typename V_TypeTraits<_Tp>::int_type itype; \ + for( int i = 0; i < n; i++ ) \ + a.s[i] = V_TypeTraits<_Tp>::reinterpret_from_int((itype)(V_TypeTraits<_Tp>::reinterpret_int(a.s[i]) bit_op \ + V_TypeTraits<_Tp>::reinterpret_int(b.s[i]))); \ + return a; \ +} + +/** @brief Bitwise AND + +Only for integer types. */ +OPENCV_HAL_IMPL_BIT_OP(&) + +/** @brief Bitwise OR + +Only for integer types. */ +OPENCV_HAL_IMPL_BIT_OP(|) + +/** @brief Bitwise XOR + +Only for integer types.*/ +OPENCV_HAL_IMPL_BIT_OP(^) + +/** @brief Bitwise NOT + +Only for integer types.*/ +template inline v_reg<_Tp, n> operator ~ (const v_reg<_Tp, n>& a) +{ + v_reg<_Tp, n> c; + for( int i = 0; i < n; i++ ) + { + c.s[i] = V_TypeTraits<_Tp>::reinterpret_from_int(~V_TypeTraits<_Tp>::reinterpret_int(a.s[i])); + } + return c; +} + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_MATH_FUNC(func, cfunc, _Tp2) \ +template inline v_reg<_Tp2, n> func(const v_reg<_Tp, n>& a) \ +{ \ + v_reg<_Tp2, n> c; \ + for( int i = 0; i < n; i++ ) \ + c.s[i] = cfunc(a.s[i]); \ + return c; \ +} + +/** @brief Square root of elements + +Only for floating point types.*/ +OPENCV_HAL_IMPL_MATH_FUNC(v_sqrt, std::sqrt, _Tp) + +//! @cond IGNORED +OPENCV_HAL_IMPL_MATH_FUNC(v_sin, std::sin, _Tp) +OPENCV_HAL_IMPL_MATH_FUNC(v_cos, std::cos, _Tp) +OPENCV_HAL_IMPL_MATH_FUNC(v_exp, std::exp, _Tp) +OPENCV_HAL_IMPL_MATH_FUNC(v_log, std::log, _Tp) +//! @endcond + +/** @brief Absolute value of elements + +Only for floating point types.*/ +OPENCV_HAL_IMPL_MATH_FUNC(v_abs, (typename V_TypeTraits<_Tp>::abs_type)std::abs, + typename V_TypeTraits<_Tp>::abs_type) + +/** @brief Round elements + +Only for floating point types.*/ +OPENCV_HAL_IMPL_MATH_FUNC(v_round, cvRound, int) + +/** @brief Floor elements + +Only for floating point types.*/ +OPENCV_HAL_IMPL_MATH_FUNC(v_floor, cvFloor, int) + +/** @brief Ceil elements + +Only for floating point types.*/ +OPENCV_HAL_IMPL_MATH_FUNC(v_ceil, cvCeil, int) + +/** @brief Truncate elements + +Only for floating point types.*/ +OPENCV_HAL_IMPL_MATH_FUNC(v_trunc, int, int) + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_MINMAX_FUNC(func, cfunc) \ +template inline v_reg<_Tp, n> func(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) \ +{ \ + v_reg<_Tp, n> c; \ + for( int i = 0; i < n; i++ ) \ + c.s[i] = cfunc(a.s[i], b.s[i]); \ + return c; \ +} + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_REDUCE_MINMAX_FUNC(func, cfunc) \ +template inline _Tp func(const v_reg<_Tp, n>& a) \ +{ \ + _Tp c = a.s[0]; \ + for( int i = 1; i < n; i++ ) \ + c = cfunc(c, a.s[i]); \ + return c; \ +} + +/** @brief Choose min values for each pair + +Scheme: +@code +{A1 A2 ...} +{B1 B2 ...} +-------------- +{min(A1,B1) min(A2,B2) ...} +@endcode +For all types except 64-bit integer. */ +OPENCV_HAL_IMPL_MINMAX_FUNC(v_min, std::min) + +/** @brief Choose max values for each pair + +Scheme: +@code +{A1 A2 ...} +{B1 B2 ...} +-------------- +{max(A1,B1) max(A2,B2) ...} +@endcode +For all types except 64-bit integer. */ +OPENCV_HAL_IMPL_MINMAX_FUNC(v_max, std::max) + +/** @brief Find one min value + +Scheme: +@code +{A1 A2 A3 ...} => min(A1,A2,A3,...) +@endcode +For 32-bit integer and 32-bit floating point types. */ +OPENCV_HAL_IMPL_REDUCE_MINMAX_FUNC(v_reduce_min, std::min) + +/** @brief Find one max value + +Scheme: +@code +{A1 A2 A3 ...} => max(A1,A2,A3,...) +@endcode +For 32-bit integer and 32-bit floating point types. */ +OPENCV_HAL_IMPL_REDUCE_MINMAX_FUNC(v_reduce_max, std::max) + +//! @cond IGNORED +template +inline void v_minmax( const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b, + v_reg<_Tp, n>& minval, v_reg<_Tp, n>& maxval ) +{ + for( int i = 0; i < n; i++ ) + { + minval.s[i] = std::min(a.s[i], b.s[i]); + maxval.s[i] = std::max(a.s[i], b.s[i]); + } +} +//! @endcond + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_CMP_OP(cmp_op) \ +template \ +inline v_reg<_Tp, n> operator cmp_op(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) \ +{ \ + typedef typename V_TypeTraits<_Tp>::int_type itype; \ + v_reg<_Tp, n> c; \ + for( int i = 0; i < n; i++ ) \ + c.s[i] = V_TypeTraits<_Tp>::reinterpret_from_int((itype)-(int)(a.s[i] cmp_op b.s[i])); \ + return c; \ +} + +/** @brief Less-than comparison + +For all types except 64-bit integer values. */ +OPENCV_HAL_IMPL_CMP_OP(<) + +/** @brief Greater-than comparison + +For all types except 64-bit integer values. */ +OPENCV_HAL_IMPL_CMP_OP(>) + +/** @brief Less-than or equal comparison + +For all types except 64-bit integer values. */ +OPENCV_HAL_IMPL_CMP_OP(<=) + +/** @brief Greater-than or equal comparison + +For all types except 64-bit integer values. */ +OPENCV_HAL_IMPL_CMP_OP(>=) + +/** @brief Equal comparison + +For all types except 64-bit integer values. */ +OPENCV_HAL_IMPL_CMP_OP(==) + +/** @brief Not equal comparison + +For all types except 64-bit integer values. */ +OPENCV_HAL_IMPL_CMP_OP(!=) + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_ADD_SUB_OP(func, bin_op, cast_op, _Tp2) \ +template \ +inline v_reg<_Tp2, n> func(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) \ +{ \ + typedef _Tp2 rtype; \ + v_reg c; \ + for( int i = 0; i < n; i++ ) \ + c.s[i] = cast_op(a.s[i] bin_op b.s[i]); \ + return c; \ +} + +/** @brief Add values without saturation + +For 8- and 16-bit integer values. */ +OPENCV_HAL_IMPL_ADD_SUB_OP(v_add_wrap, +, (_Tp), _Tp) + +/** @brief Subtract values without saturation + +For 8- and 16-bit integer values. */ +OPENCV_HAL_IMPL_ADD_SUB_OP(v_sub_wrap, -, (_Tp), _Tp) + +//! @cond IGNORED +template inline T _absdiff(T a, T b) +{ + return a > b ? a - b : b - a; +} +//! @endcond + +/** @brief Absolute difference + +Returns \f$ |a - b| \f$ converted to corresponding unsigned type. +Example: +@code{.cpp} +v_int32x4 a, b; // {1, 2, 3, 4} and {4, 3, 2, 1} +v_uint32x4 c = v_absdiff(a, b); // result is {3, 1, 1, 3} +@endcode +For 8-, 16-, 32-bit integer source types. */ +template +inline v_reg::abs_type, n> v_absdiff(const v_reg<_Tp, n>& a, const v_reg<_Tp, n> & b) +{ + typedef typename V_TypeTraits<_Tp>::abs_type rtype; + v_reg c; + const rtype mask = std::numeric_limits<_Tp>::is_signed ? (1 << (sizeof(rtype)*8 - 1)) : 0; + for( int i = 0; i < n; i++ ) + { + rtype ua = a.s[i] ^ mask; + rtype ub = b.s[i] ^ mask; + c.s[i] = _absdiff(ua, ub); + } + return c; +} + +/** @overload + +For 32-bit floating point values */ +inline v_float32x4 v_absdiff(const v_float32x4& a, const v_float32x4& b) +{ + v_float32x4 c; + for( int i = 0; i < c.nlanes; i++ ) + c.s[i] = _absdiff(a.s[i], b.s[i]); + return c; +} + +/** @overload + +For 64-bit floating point values */ +inline v_float64x2 v_absdiff(const v_float64x2& a, const v_float64x2& b) +{ + v_float64x2 c; + for( int i = 0; i < c.nlanes; i++ ) + c.s[i] = _absdiff(a.s[i], b.s[i]); + return c; +} + +/** @brief Inversed square root + +Returns \f$ 1/sqrt(a) \f$ +For floating point types only. */ +template +inline v_reg<_Tp, n> v_invsqrt(const v_reg<_Tp, n>& a) +{ + v_reg<_Tp, n> c; + for( int i = 0; i < n; i++ ) + c.s[i] = 1.f/std::sqrt(a.s[i]); + return c; +} + +/** @brief Magnitude + +Returns \f$ sqrt(a^2 + b^2) \f$ +For floating point types only. */ +template +inline v_reg<_Tp, n> v_magnitude(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) +{ + v_reg<_Tp, n> c; + for( int i = 0; i < n; i++ ) + c.s[i] = std::sqrt(a.s[i]*a.s[i] + b.s[i]*b.s[i]); + return c; +} + +/** @brief Square of the magnitude + +Returns \f$ a^2 + b^2 \f$ +For floating point types only. */ +template +inline v_reg<_Tp, n> v_sqr_magnitude(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) +{ + v_reg<_Tp, n> c; + for( int i = 0; i < n; i++ ) + c.s[i] = a.s[i]*a.s[i] + b.s[i]*b.s[i]; + return c; +} + +/** @brief Multiply and add + +Returns \f$ a*b + c \f$ +For floating point types only. */ +template +inline v_reg<_Tp, n> v_muladd(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b, + const v_reg<_Tp, n>& c) +{ + v_reg<_Tp, n> d; + for( int i = 0; i < n; i++ ) + d.s[i] = a.s[i]*b.s[i] + c.s[i]; + return d; +} + +/** @brief Dot product of elements + +Multiply values in two registers and sum adjacent result pairs. +Scheme: +@code + {A1 A2 ...} // 16-bit +x {B1 B2 ...} // 16-bit +------------- +{A1B1+A2B2 ...} // 32-bit +@endcode +Implemented only for 16-bit signed source type (v_int16x8). +*/ +template inline v_reg::w_type, n/2> + v_dotprod(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) +{ + typedef typename V_TypeTraits<_Tp>::w_type w_type; + v_reg c; + for( int i = 0; i < (n/2); i++ ) + c.s[i] = (w_type)a.s[i*2]*b.s[i*2] + (w_type)a.s[i*2+1]*b.s[i*2+1]; + return c; +} + +/** @brief Multiply and expand + +Multiply values two registers and store results in two registers with wider pack type. +Scheme: +@code + {A B C D} // 32-bit +x {E F G H} // 32-bit +--------------- +{AE BF} // 64-bit + {CG DH} // 64-bit +@endcode +Example: +@code{.cpp} +v_uint32x4 a, b; // {1,2,3,4} and {2,2,2,2} +v_uint64x2 c, d; // results +v_mul_expand(a, b, c, d); // c, d = {2,4}, {6, 8} +@endcode +Implemented only for 16- and unsigned 32-bit source types (v_int16x8, v_uint16x8, v_uint32x4). +*/ +template inline void v_mul_expand(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b, + v_reg::w_type, n/2>& c, + v_reg::w_type, n/2>& d) +{ + typedef typename V_TypeTraits<_Tp>::w_type w_type; + for( int i = 0; i < (n/2); i++ ) + { + c.s[i] = (w_type)a.s[i]*b.s[i]; + d.s[i] = (w_type)a.s[i+(n/2)]*b.s[i+(n/2)]; + } +} + +//! @cond IGNORED +template inline void v_hsum(const v_reg<_Tp, n>& a, + v_reg::w_type, n/2>& c) +{ + typedef typename V_TypeTraits<_Tp>::w_type w_type; + for( int i = 0; i < (n/2); i++ ) + { + c.s[i] = (w_type)a.s[i*2] + a.s[i*2+1]; + } +} +//! @endcond + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_SHIFT_OP(shift_op) \ +template inline v_reg<_Tp, n> operator shift_op(const v_reg<_Tp, n>& a, int imm) \ +{ \ + v_reg<_Tp, n> c; \ + for( int i = 0; i < n; i++ ) \ + c.s[i] = (_Tp)(a.s[i] shift_op imm); \ + return c; \ +} + +/** @brief Bitwise shift left + +For 16-, 32- and 64-bit integer values. */ +OPENCV_HAL_IMPL_SHIFT_OP(<<) + +/** @brief Bitwise shift right + +For 16-, 32- and 64-bit integer values. */ +OPENCV_HAL_IMPL_SHIFT_OP(>>) + +/** @brief Sum packed values + +Scheme: +@code +{A1 A2 A3 ...} => sum{A1,A2,A3,...} +@endcode +For 32-bit integer and 32-bit floating point types.*/ +template inline typename V_TypeTraits<_Tp>::sum_type v_reduce_sum(const v_reg<_Tp, n>& a) +{ + typename V_TypeTraits<_Tp>::sum_type c = a.s[0]; + for( int i = 1; i < n; i++ ) + c += a.s[i]; + return c; +} + +/** @brief Get negative values mask + +Returned value is a bit mask with bits set to 1 on places corresponding to negative packed values indexes. +Example: +@code{.cpp} +v_int32x4 r; // set to {-1, -1, 1, 1} +int mask = v_signmask(r); // mask = 3 <== 00000000 00000000 00000000 00000011 +@endcode +For all types except 64-bit. */ +template inline int v_signmask(const v_reg<_Tp, n>& a) +{ + int mask = 0; + for( int i = 0; i < n; i++ ) + mask |= (V_TypeTraits<_Tp>::reinterpret_int(a.s[i]) < 0) << i; + return mask; +} + +/** @brief Check if all packed values are less than zero + +Unsigned values will be casted to signed: `uchar 254 => char -2`. +For all types except 64-bit. */ +template inline bool v_check_all(const v_reg<_Tp, n>& a) +{ + for( int i = 0; i < n; i++ ) + if( V_TypeTraits<_Tp>::reinterpret_int(a.s[i]) >= 0 ) + return false; + return true; +} + +/** @brief Check if any of packed values is less than zero + +Unsigned values will be casted to signed: `uchar 254 => char -2`. +For all types except 64-bit. */ +template inline bool v_check_any(const v_reg<_Tp, n>& a) +{ + for( int i = 0; i < n; i++ ) + if( V_TypeTraits<_Tp>::reinterpret_int(a.s[i]) < 0 ) + return true; + return false; +} + +/** @brief Bitwise select + +Return value will be built by combining values a and b using the following scheme: +If the i-th bit in _mask_ is 1 + select i-th bit from _a_ +else + select i-th bit from _b_ */ +template inline v_reg<_Tp, n> v_select(const v_reg<_Tp, n>& mask, + const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) +{ + typedef V_TypeTraits<_Tp> Traits; + typedef typename Traits::int_type int_type; + v_reg<_Tp, n> c; + for( int i = 0; i < n; i++ ) + { + int_type m = Traits::reinterpret_int(mask.s[i]); + c.s[i] = Traits::reinterpret_from_int((Traits::reinterpret_int(a.s[i]) & m) + | (Traits::reinterpret_int(b.s[i]) & ~m)); + } + return c; +} + +/** @brief Expand values to the wider pack type + +Copy contents of register to two registers with 2x wider pack type. +Scheme: +@code + int32x4 int64x2 int64x2 +{A B C D} ==> {A B} , {C D} +@endcode */ +template inline void v_expand(const v_reg<_Tp, n>& a, + v_reg::w_type, n/2>& b0, + v_reg::w_type, n/2>& b1) +{ + for( int i = 0; i < (n/2); i++ ) + { + b0.s[i] = a.s[i]; + b1.s[i] = a.s[i+(n/2)]; + } +} + +//! @cond IGNORED +template inline v_reg::int_type, n> + v_reinterpret_as_int(const v_reg<_Tp, n>& a) +{ + v_reg::int_type, n> c; + for( int i = 0; i < n; i++ ) + c.s[i] = V_TypeTraits<_Tp>::reinterpret_int(a.s[i]); + return c; +} + +template inline v_reg::uint_type, n> + v_reinterpret_as_uint(const v_reg<_Tp, n>& a) +{ + v_reg::uint_type, n> c; + for( int i = 0; i < n; i++ ) + c.s[i] = V_TypeTraits<_Tp>::reinterpret_uint(a.s[i]); + return c; +} +//! @endcond + +/** @brief Interleave two vectors + +Scheme: +@code + {A1 A2 A3 A4} + {B1 B2 B3 B4} +--------------- + {A1 B1 A2 B2} and {A3 B3 A4 B4} +@endcode +For all types except 64-bit. +*/ +template inline void v_zip( const v_reg<_Tp, n>& a0, const v_reg<_Tp, n>& a1, + v_reg<_Tp, n>& b0, v_reg<_Tp, n>& b1 ) +{ + int i; + for( i = 0; i < n/2; i++ ) + { + b0.s[i*2] = a0.s[i]; + b0.s[i*2+1] = a1.s[i]; + } + for( ; i < n; i++ ) + { + b1.s[i*2-n] = a0.s[i]; + b1.s[i*2-n+1] = a1.s[i]; + } +} + +/** @brief Load register contents from memory + +@param ptr pointer to memory block with data +@return register object + +@note Returned type will be detected from passed pointer type, for example uchar ==> cv::v_uint8x16, int ==> cv::v_int32x4, etc. + */ +template +inline v_reg<_Tp, V_SIMD128Traits<_Tp>::nlanes> v_load(const _Tp* ptr) +{ + return v_reg<_Tp, V_SIMD128Traits<_Tp>::nlanes>(ptr); +} + +/** @brief Load register contents from memory (aligned) + +similar to cv::v_load, but source memory block should be aligned (to 16-byte boundary) + */ +template +inline v_reg<_Tp, V_SIMD128Traits<_Tp>::nlanes> v_load_aligned(const _Tp* ptr) +{ + return v_reg<_Tp, V_SIMD128Traits<_Tp>::nlanes>(ptr); +} + +/** @brief Load register contents from two memory blocks + +@param loptr memory block containing data for first half (0..n/2) +@param hiptr memory block containing data for second half (n/2..n) + +@code{.cpp} +int lo[2] = { 1, 2 }, hi[2] = { 3, 4 }; +v_int32x4 r = v_load_halves(lo, hi); +@endcode + */ +template +inline v_reg<_Tp, V_SIMD128Traits<_Tp>::nlanes> v_load_halves(const _Tp* loptr, const _Tp* hiptr) +{ + v_reg<_Tp, V_SIMD128Traits<_Tp>::nlanes> c; + for( int i = 0; i < c.nlanes/2; i++ ) + { + c.s[i] = loptr[i]; + c.s[i+c.nlanes/2] = hiptr[i]; + } + return c; +} + +/** @brief Load register contents from memory with double expand + +Same as cv::v_load, but result pack type will be 2x wider than memory type. + +@code{.cpp} +short buf[4] = {1, 2, 3, 4}; // type is int16 +v_int32x4 r = v_load_expand(buf); // r = {1, 2, 3, 4} - type is int32 +@endcode +For 8-, 16-, 32-bit integer source types. */ +template +inline v_reg::w_type, V_SIMD128Traits<_Tp>::nlanes / 2> +v_load_expand(const _Tp* ptr) +{ + typedef typename V_TypeTraits<_Tp>::w_type w_type; + v_reg::nlanes> c; + for( int i = 0; i < c.nlanes; i++ ) + { + c.s[i] = ptr[i]; + } + return c; +} + +/** @brief Load register contents from memory with quad expand + +Same as cv::v_load_expand, but result type is 4 times wider than source. +@code{.cpp} +char buf[4] = {1, 2, 3, 4}; // type is int8 +v_int32x4 r = v_load_q(buf); // r = {1, 2, 3, 4} - type is int32 +@endcode +For 8-bit integer source types. */ +template +inline v_reg::q_type, V_SIMD128Traits<_Tp>::nlanes / 4> +v_load_expand_q(const _Tp* ptr) +{ + typedef typename V_TypeTraits<_Tp>::q_type q_type; + v_reg::nlanes> c; + for( int i = 0; i < c.nlanes; i++ ) + { + c.s[i] = ptr[i]; + } + return c; +} + +/** @brief Load and deinterleave (2 channels) + +Load data from memory deinterleave and store to 2 registers. +Scheme: +@code +{A1 B1 A2 B2 ...} ==> {A1 A2 ...}, {B1 B2 ...} +@endcode +For all types except 64-bit. */ +template inline void v_load_deinterleave(const _Tp* ptr, v_reg<_Tp, n>& a, + v_reg<_Tp, n>& b) +{ + int i, i2; + for( i = i2 = 0; i < n; i++, i2 += 2 ) + { + a.s[i] = ptr[i2]; + b.s[i] = ptr[i2+1]; + } +} + +/** @brief Load and deinterleave (3 channels) + +Load data from memory deinterleave and store to 3 registers. +Scheme: +@code +{A1 B1 C1 A2 B2 C2 ...} ==> {A1 A2 ...}, {B1 B2 ...}, {C1 C2 ...} +@endcode +For all types except 64-bit. */ +template inline void v_load_deinterleave(const _Tp* ptr, v_reg<_Tp, n>& a, + v_reg<_Tp, n>& b, v_reg<_Tp, n>& c) +{ + int i, i3; + for( i = i3 = 0; i < n; i++, i3 += 3 ) + { + a.s[i] = ptr[i3]; + b.s[i] = ptr[i3+1]; + c.s[i] = ptr[i3+2]; + } +} + +/** @brief Load and deinterleave (4 channels) + +Load data from memory deinterleave and store to 4 registers. +Scheme: +@code +{A1 B1 C1 D1 A2 B2 C2 D2 ...} ==> {A1 A2 ...}, {B1 B2 ...}, {C1 C2 ...}, {D1 D2 ...} +@endcode +For all types except 64-bit. */ +template +inline void v_load_deinterleave(const _Tp* ptr, v_reg<_Tp, n>& a, + v_reg<_Tp, n>& b, v_reg<_Tp, n>& c, + v_reg<_Tp, n>& d) +{ + int i, i4; + for( i = i4 = 0; i < n; i++, i4 += 4 ) + { + a.s[i] = ptr[i4]; + b.s[i] = ptr[i4+1]; + c.s[i] = ptr[i4+2]; + d.s[i] = ptr[i4+3]; + } +} + +/** @brief Interleave and store (2 channels) + +Interleave and store data from 2 registers to memory. +Scheme: +@code +{A1 A2 ...}, {B1 B2 ...} ==> {A1 B1 A2 B2 ...} +@endcode +For all types except 64-bit. */ +template +inline void v_store_interleave( _Tp* ptr, const v_reg<_Tp, n>& a, + const v_reg<_Tp, n>& b) +{ + int i, i2; + for( i = i2 = 0; i < n; i++, i2 += 2 ) + { + ptr[i2] = a.s[i]; + ptr[i2+1] = b.s[i]; + } +} + +/** @brief Interleave and store (3 channels) + +Interleave and store data from 3 registers to memory. +Scheme: +@code +{A1 A2 ...}, {B1 B2 ...}, {C1 C2 ...} ==> {A1 B1 C1 A2 B2 C2 ...} +@endcode +For all types except 64-bit. */ +template +inline void v_store_interleave( _Tp* ptr, const v_reg<_Tp, n>& a, + const v_reg<_Tp, n>& b, const v_reg<_Tp, n>& c) +{ + int i, i3; + for( i = i3 = 0; i < n; i++, i3 += 3 ) + { + ptr[i3] = a.s[i]; + ptr[i3+1] = b.s[i]; + ptr[i3+2] = c.s[i]; + } +} + +/** @brief Interleave and store (4 channels) + +Interleave and store data from 4 registers to memory. +Scheme: +@code +{A1 A2 ...}, {B1 B2 ...}, {C1 C2 ...}, {D1 D2 ...} ==> {A1 B1 C1 D1 A2 B2 C2 D2 ...} +@endcode +For all types except 64-bit. */ +template inline void v_store_interleave( _Tp* ptr, const v_reg<_Tp, n>& a, + const v_reg<_Tp, n>& b, const v_reg<_Tp, n>& c, + const v_reg<_Tp, n>& d) +{ + int i, i4; + for( i = i4 = 0; i < n; i++, i4 += 4 ) + { + ptr[i4] = a.s[i]; + ptr[i4+1] = b.s[i]; + ptr[i4+2] = c.s[i]; + ptr[i4+3] = d.s[i]; + } +} + +/** @brief Store data to memory + +Store register contents to memory. +Scheme: +@code + REG {A B C D} ==> MEM {A B C D} +@endcode +Pointer can be unaligned. */ +template +inline void v_store(_Tp* ptr, const v_reg<_Tp, n>& a) +{ + for( int i = 0; i < n; i++ ) + ptr[i] = a.s[i]; +} + +/** @brief Store data to memory (lower half) + +Store lower half of register contents to memory. +Scheme: +@code + REG {A B C D} ==> MEM {A B} +@endcode */ +template +inline void v_store_low(_Tp* ptr, const v_reg<_Tp, n>& a) +{ + for( int i = 0; i < (n/2); i++ ) + ptr[i] = a.s[i]; +} + +/** @brief Store data to memory (higher half) + +Store higher half of register contents to memory. +Scheme: +@code + REG {A B C D} ==> MEM {C D} +@endcode */ +template +inline void v_store_high(_Tp* ptr, const v_reg<_Tp, n>& a) +{ + for( int i = 0; i < (n/2); i++ ) + ptr[i] = a.s[i+(n/2)]; +} + +/** @brief Store data to memory (aligned) + +Store register contents to memory. +Scheme: +@code + REG {A B C D} ==> MEM {A B C D} +@endcode +Pointer __should__ be aligned by 16-byte boundary. */ +template +inline void v_store_aligned(_Tp* ptr, const v_reg<_Tp, n>& a) +{ + for( int i = 0; i < n; i++ ) + ptr[i] = a.s[i]; +} + +/** @brief Combine vector from first elements of two vectors + +Scheme: +@code + {A1 A2 A3 A4} + {B1 B2 B3 B4} +--------------- + {A1 A2 B1 B2} +@endcode +For all types except 64-bit. */ +template +inline v_reg<_Tp, n> v_combine_low(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) +{ + v_reg<_Tp, n> c; + for( int i = 0; i < (n/2); i++ ) + { + c.s[i] = a.s[i]; + c.s[i+(n/2)] = b.s[i]; + } + return c; +} + +/** @brief Combine vector from last elements of two vectors + +Scheme: +@code + {A1 A2 A3 A4} + {B1 B2 B3 B4} +--------------- + {A3 A4 B3 B4} +@endcode +For all types except 64-bit. */ +template +inline v_reg<_Tp, n> v_combine_high(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) +{ + v_reg<_Tp, n> c; + for( int i = 0; i < (n/2); i++ ) + { + c.s[i] = a.s[i+(n/2)]; + c.s[i+(n/2)] = b.s[i+(n/2)]; + } + return c; +} + +/** @brief Combine two vectors from lower and higher parts of two other vectors + +@code{.cpp} +low = cv::v_combine_low(a, b); +high = cv::v_combine_high(a, b); +@endcode */ +template +inline void v_recombine(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b, + v_reg<_Tp, n>& low, v_reg<_Tp, n>& high) +{ + for( int i = 0; i < (n/2); i++ ) + { + low.s[i] = a.s[i]; + low.s[i+(n/2)] = b.s[i]; + high.s[i] = a.s[i+(n/2)]; + high.s[i+(n/2)] = b.s[i+(n/2)]; + } +} + +/** @brief Vector extract + +Scheme: +@code + {A1 A2 A3 A4} + {B1 B2 B3 B4} +======================== +shift = 1 {A2 A3 A4 B1} +shift = 2 {A3 A4 B1 B2} +shift = 3 {A4 B1 B2 B3} +@endcode +Restriction: 0 <= shift < nlanes + +Usage: +@code +v_int32x4 a, b, c; +c = v_extract<2>(a, b); +@endcode +For integer types only. */ +template +inline v_reg<_Tp, n> v_extract(const v_reg<_Tp, n>& a, const v_reg<_Tp, n>& b) +{ + v_reg<_Tp, n> r; + const int shift = n - s; + int i = 0; + for (; i < shift; ++i) + r.s[i] = a.s[i+s]; + for (; i < n; ++i) + r.s[i] = b.s[i-shift]; + return r; +} + +/** @brief Round + +Rounds each value. Input type is float vector ==> output type is int vector.*/ +template inline v_reg v_round(const v_reg& a) +{ + v_reg c; + for( int i = 0; i < n; i++ ) + c.s[i] = cvRound(a.s[i]); + return c; +} + +/** @brief Floor + +Floor each value. Input type is float vector ==> output type is int vector.*/ +template inline v_reg v_floor(const v_reg& a) +{ + v_reg c; + for( int i = 0; i < n; i++ ) + c.s[i] = cvFloor(a.s[i]); + return c; +} + +/** @brief Ceil + +Ceil each value. Input type is float vector ==> output type is int vector.*/ +template inline v_reg v_ceil(const v_reg& a) +{ + v_reg c; + for( int i = 0; i < n; i++ ) + c.s[i] = cvCeil(a.s[i]); + return c; +} + +/** @brief Trunc + +Truncate each value. Input type is float vector ==> output type is int vector.*/ +template inline v_reg v_trunc(const v_reg& a) +{ + v_reg c; + for( int i = 0; i < n; i++ ) + c.s[i] = (int)(a.s[i]); + return c; +} + +/** @overload */ +template inline v_reg v_round(const v_reg& a) +{ + v_reg c; + for( int i = 0; i < n; i++ ) + { + c.s[i] = cvRound(a.s[i]); + c.s[i+n] = 0; + } + return c; +} + +/** @overload */ +template inline v_reg v_floor(const v_reg& a) +{ + v_reg c; + for( int i = 0; i < n; i++ ) + { + c.s[i] = cvFloor(a.s[i]); + c.s[i+n] = 0; + } + return c; +} + +/** @overload */ +template inline v_reg v_ceil(const v_reg& a) +{ + v_reg c; + for( int i = 0; i < n; i++ ) + { + c.s[i] = cvCeil(a.s[i]); + c.s[i+n] = 0; + } + return c; +} + +/** @overload */ +template inline v_reg v_trunc(const v_reg& a) +{ + v_reg c; + for( int i = 0; i < n; i++ ) + { + c.s[i] = cvCeil(a.s[i]); + c.s[i+n] = 0; + } + return c; +} + +/** @brief Convert to float + +Supported input type is cv::v_int32x4. */ +template inline v_reg v_cvt_f32(const v_reg& a) +{ + v_reg c; + for( int i = 0; i < n; i++ ) + c.s[i] = (float)a.s[i]; + return c; +} + +/** @brief Convert to double + +Supported input type is cv::v_int32x4. */ +template inline v_reg v_cvt_f64(const v_reg& a) +{ + v_reg c; + for( int i = 0; i < n; i++ ) + c.s[i] = (double)a.s[i]; + return c; +} + +/** @brief Convert to double + +Supported input type is cv::v_float32x4. */ +template inline v_reg v_cvt_f64(const v_reg& a) +{ + v_reg c; + for( int i = 0; i < n; i++ ) + c.s[i] = (double)a.s[i]; + return c; +} + +/** @brief Transpose 4x4 matrix + +Scheme: +@code +a0 {A1 A2 A3 A4} +a1 {B1 B2 B3 B4} +a2 {C1 C2 C3 C4} +a3 {D1 D2 D3 D4} +=============== +b0 {A1 B1 C1 D1} +b1 {A2 B2 C2 D2} +b2 {A3 B3 C3 D3} +b3 {A4 B4 C4 D4} +@endcode +*/ +template +inline void v_transpose4x4( v_reg<_Tp, 4>& a0, const v_reg<_Tp, 4>& a1, + const v_reg<_Tp, 4>& a2, const v_reg<_Tp, 4>& a3, + v_reg<_Tp, 4>& b0, v_reg<_Tp, 4>& b1, + v_reg<_Tp, 4>& b2, v_reg<_Tp, 4>& b3 ) +{ + b0 = v_reg<_Tp, 4>(a0.s[0], a1.s[0], a2.s[0], a3.s[0]); + b1 = v_reg<_Tp, 4>(a0.s[1], a1.s[1], a2.s[1], a3.s[1]); + b2 = v_reg<_Tp, 4>(a0.s[2], a1.s[2], a2.s[2], a3.s[2]); + b3 = v_reg<_Tp, 4>(a0.s[3], a1.s[3], a2.s[3], a3.s[3]); +} + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_C_INIT_ZERO(_Tpvec, _Tp, suffix) \ +inline _Tpvec v_setzero_##suffix() { return _Tpvec::zero(); } + +//! @name Init with zero +//! @{ +//! @brief Create new vector with zero elements +OPENCV_HAL_IMPL_C_INIT_ZERO(v_uint8x16, uchar, u8) +OPENCV_HAL_IMPL_C_INIT_ZERO(v_int8x16, schar, s8) +OPENCV_HAL_IMPL_C_INIT_ZERO(v_uint16x8, ushort, u16) +OPENCV_HAL_IMPL_C_INIT_ZERO(v_int16x8, short, s16) +OPENCV_HAL_IMPL_C_INIT_ZERO(v_uint32x4, unsigned, u32) +OPENCV_HAL_IMPL_C_INIT_ZERO(v_int32x4, int, s32) +OPENCV_HAL_IMPL_C_INIT_ZERO(v_float32x4, float, f32) +OPENCV_HAL_IMPL_C_INIT_ZERO(v_float64x2, double, f64) +OPENCV_HAL_IMPL_C_INIT_ZERO(v_uint64x2, uint64, u64) +OPENCV_HAL_IMPL_C_INIT_ZERO(v_int64x2, int64, s64) +//! @} + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_C_INIT_VAL(_Tpvec, _Tp, suffix) \ +inline _Tpvec v_setall_##suffix(_Tp val) { return _Tpvec::all(val); } + +//! @name Init with value +//! @{ +//! @brief Create new vector with elements set to a specific value +OPENCV_HAL_IMPL_C_INIT_VAL(v_uint8x16, uchar, u8) +OPENCV_HAL_IMPL_C_INIT_VAL(v_int8x16, schar, s8) +OPENCV_HAL_IMPL_C_INIT_VAL(v_uint16x8, ushort, u16) +OPENCV_HAL_IMPL_C_INIT_VAL(v_int16x8, short, s16) +OPENCV_HAL_IMPL_C_INIT_VAL(v_uint32x4, unsigned, u32) +OPENCV_HAL_IMPL_C_INIT_VAL(v_int32x4, int, s32) +OPENCV_HAL_IMPL_C_INIT_VAL(v_float32x4, float, f32) +OPENCV_HAL_IMPL_C_INIT_VAL(v_float64x2, double, f64) +OPENCV_HAL_IMPL_C_INIT_VAL(v_uint64x2, uint64, u64) +OPENCV_HAL_IMPL_C_INIT_VAL(v_int64x2, int64, s64) +//! @} + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_C_REINTERPRET(_Tpvec, _Tp, suffix) \ +template inline _Tpvec \ + v_reinterpret_as_##suffix(const v_reg<_Tp0, n0>& a) \ +{ return a.template reinterpret_as<_Tp, _Tpvec::nlanes>(); } + +//! @name Reinterpret +//! @{ +//! @brief Convert vector to different type without modifying underlying data. +OPENCV_HAL_IMPL_C_REINTERPRET(v_uint8x16, uchar, u8) +OPENCV_HAL_IMPL_C_REINTERPRET(v_int8x16, schar, s8) +OPENCV_HAL_IMPL_C_REINTERPRET(v_uint16x8, ushort, u16) +OPENCV_HAL_IMPL_C_REINTERPRET(v_int16x8, short, s16) +OPENCV_HAL_IMPL_C_REINTERPRET(v_uint32x4, unsigned, u32) +OPENCV_HAL_IMPL_C_REINTERPRET(v_int32x4, int, s32) +OPENCV_HAL_IMPL_C_REINTERPRET(v_float32x4, float, f32) +OPENCV_HAL_IMPL_C_REINTERPRET(v_float64x2, double, f64) +OPENCV_HAL_IMPL_C_REINTERPRET(v_uint64x2, uint64, u64) +OPENCV_HAL_IMPL_C_REINTERPRET(v_int64x2, int64, s64) +//! @} + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_C_SHIFTL(_Tpvec, _Tp) \ +template inline _Tpvec v_shl(const _Tpvec& a) \ +{ return a << n; } + +//! @name Left shift +//! @{ +//! @brief Shift left +OPENCV_HAL_IMPL_C_SHIFTL(v_uint16x8, ushort) +OPENCV_HAL_IMPL_C_SHIFTL(v_int16x8, short) +OPENCV_HAL_IMPL_C_SHIFTL(v_uint32x4, unsigned) +OPENCV_HAL_IMPL_C_SHIFTL(v_int32x4, int) +OPENCV_HAL_IMPL_C_SHIFTL(v_uint64x2, uint64) +OPENCV_HAL_IMPL_C_SHIFTL(v_int64x2, int64) +//! @} + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_C_SHIFTR(_Tpvec, _Tp) \ +template inline _Tpvec v_shr(const _Tpvec& a) \ +{ return a >> n; } + +//! @name Right shift +//! @{ +//! @brief Shift right +OPENCV_HAL_IMPL_C_SHIFTR(v_uint16x8, ushort) +OPENCV_HAL_IMPL_C_SHIFTR(v_int16x8, short) +OPENCV_HAL_IMPL_C_SHIFTR(v_uint32x4, unsigned) +OPENCV_HAL_IMPL_C_SHIFTR(v_int32x4, int) +OPENCV_HAL_IMPL_C_SHIFTR(v_uint64x2, uint64) +OPENCV_HAL_IMPL_C_SHIFTR(v_int64x2, int64) +//! @} + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_C_RSHIFTR(_Tpvec, _Tp) \ +template inline _Tpvec v_rshr(const _Tpvec& a) \ +{ \ + _Tpvec c; \ + for( int i = 0; i < _Tpvec::nlanes; i++ ) \ + c.s[i] = (_Tp)((a.s[i] + ((_Tp)1 << (n - 1))) >> n); \ + return c; \ +} + +//! @name Rounding shift +//! @{ +//! @brief Rounding shift right +OPENCV_HAL_IMPL_C_RSHIFTR(v_uint16x8, ushort) +OPENCV_HAL_IMPL_C_RSHIFTR(v_int16x8, short) +OPENCV_HAL_IMPL_C_RSHIFTR(v_uint32x4, unsigned) +OPENCV_HAL_IMPL_C_RSHIFTR(v_int32x4, int) +OPENCV_HAL_IMPL_C_RSHIFTR(v_uint64x2, uint64) +OPENCV_HAL_IMPL_C_RSHIFTR(v_int64x2, int64) +//! @} + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_C_PACK(_Tpvec, _Tpnvec, _Tpn, pack_suffix) \ +inline _Tpnvec v_##pack_suffix(const _Tpvec& a, const _Tpvec& b) \ +{ \ + _Tpnvec c; \ + for( int i = 0; i < _Tpvec::nlanes; i++ ) \ + { \ + c.s[i] = saturate_cast<_Tpn>(a.s[i]); \ + c.s[i+_Tpvec::nlanes] = saturate_cast<_Tpn>(b.s[i]); \ + } \ + return c; \ +} + +//! @name Pack +//! @{ +//! @brief Pack values from two vectors to one +//! +//! Return vector type have twice more elements than input vector types. Variant with _u_ suffix also +//! converts to corresponding unsigned type. +//! +//! - pack: for 16-, 32- and 64-bit integer input types +//! - pack_u: for 16- and 32-bit signed integer input types +OPENCV_HAL_IMPL_C_PACK(v_uint16x8, v_uint8x16, uchar, pack) +OPENCV_HAL_IMPL_C_PACK(v_int16x8, v_int8x16, schar, pack) +OPENCV_HAL_IMPL_C_PACK(v_uint32x4, v_uint16x8, ushort, pack) +OPENCV_HAL_IMPL_C_PACK(v_int32x4, v_int16x8, short, pack) +OPENCV_HAL_IMPL_C_PACK(v_uint64x2, v_uint32x4, unsigned, pack) +OPENCV_HAL_IMPL_C_PACK(v_int64x2, v_int32x4, int, pack) +OPENCV_HAL_IMPL_C_PACK(v_int16x8, v_uint8x16, uchar, pack_u) +OPENCV_HAL_IMPL_C_PACK(v_int32x4, v_uint16x8, ushort, pack_u) +//! @} + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_C_RSHR_PACK(_Tpvec, _Tp, _Tpnvec, _Tpn, pack_suffix) \ +template inline _Tpnvec v_rshr_##pack_suffix(const _Tpvec& a, const _Tpvec& b) \ +{ \ + _Tpnvec c; \ + for( int i = 0; i < _Tpvec::nlanes; i++ ) \ + { \ + c.s[i] = saturate_cast<_Tpn>((a.s[i] + ((_Tp)1 << (n - 1))) >> n); \ + c.s[i+_Tpvec::nlanes] = saturate_cast<_Tpn>((b.s[i] + ((_Tp)1 << (n - 1))) >> n); \ + } \ + return c; \ +} + +//! @name Pack with rounding shift +//! @{ +//! @brief Pack values from two vectors to one with rounding shift +//! +//! Values from the input vectors will be shifted right by _n_ bits with rounding, converted to narrower +//! type and returned in the result vector. Variant with _u_ suffix converts to unsigned type. +//! +//! - pack: for 16-, 32- and 64-bit integer input types +//! - pack_u: for 16- and 32-bit signed integer input types +OPENCV_HAL_IMPL_C_RSHR_PACK(v_uint16x8, ushort, v_uint8x16, uchar, pack) +OPENCV_HAL_IMPL_C_RSHR_PACK(v_int16x8, short, v_int8x16, schar, pack) +OPENCV_HAL_IMPL_C_RSHR_PACK(v_uint32x4, unsigned, v_uint16x8, ushort, pack) +OPENCV_HAL_IMPL_C_RSHR_PACK(v_int32x4, int, v_int16x8, short, pack) +OPENCV_HAL_IMPL_C_RSHR_PACK(v_uint64x2, uint64, v_uint32x4, unsigned, pack) +OPENCV_HAL_IMPL_C_RSHR_PACK(v_int64x2, int64, v_int32x4, int, pack) +OPENCV_HAL_IMPL_C_RSHR_PACK(v_int16x8, short, v_uint8x16, uchar, pack_u) +OPENCV_HAL_IMPL_C_RSHR_PACK(v_int32x4, int, v_uint16x8, ushort, pack_u) +//! @} + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_C_PACK_STORE(_Tpvec, _Tp, _Tpnvec, _Tpn, pack_suffix) \ +inline void v_##pack_suffix##_store(_Tpn* ptr, const _Tpvec& a) \ +{ \ + for( int i = 0; i < _Tpvec::nlanes; i++ ) \ + ptr[i] = saturate_cast<_Tpn>(a.s[i]); \ +} + +//! @name Pack and store +//! @{ +//! @brief Store values from the input vector into memory with pack +//! +//! Values will be stored into memory with saturating conversion to narrower type. +//! Variant with _u_ suffix converts to corresponding unsigned type. +//! +//! - pack: for 16-, 32- and 64-bit integer input types +//! - pack_u: for 16- and 32-bit signed integer input types +OPENCV_HAL_IMPL_C_PACK_STORE(v_uint16x8, ushort, v_uint8x16, uchar, pack) +OPENCV_HAL_IMPL_C_PACK_STORE(v_int16x8, short, v_int8x16, schar, pack) +OPENCV_HAL_IMPL_C_PACK_STORE(v_uint32x4, unsigned, v_uint16x8, ushort, pack) +OPENCV_HAL_IMPL_C_PACK_STORE(v_int32x4, int, v_int16x8, short, pack) +OPENCV_HAL_IMPL_C_PACK_STORE(v_uint64x2, uint64, v_uint32x4, unsigned, pack) +OPENCV_HAL_IMPL_C_PACK_STORE(v_int64x2, int64, v_int32x4, int, pack) +OPENCV_HAL_IMPL_C_PACK_STORE(v_int16x8, short, v_uint8x16, uchar, pack_u) +OPENCV_HAL_IMPL_C_PACK_STORE(v_int32x4, int, v_uint16x8, ushort, pack_u) +//! @} + +//! @brief Helper macro +//! @ingroup core_hal_intrin_impl +#define OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(_Tpvec, _Tp, _Tpnvec, _Tpn, pack_suffix) \ +template inline void v_rshr_##pack_suffix##_store(_Tpn* ptr, const _Tpvec& a) \ +{ \ + for( int i = 0; i < _Tpvec::nlanes; i++ ) \ + ptr[i] = saturate_cast<_Tpn>((a.s[i] + ((_Tp)1 << (n - 1))) >> n); \ +} + +//! @name Pack and store with rounding shift +//! @{ +//! @brief Store values from the input vector into memory with pack +//! +//! Values will be shifted _n_ bits right with rounding, converted to narrower type and stored into +//! memory. Variant with _u_ suffix converts to unsigned type. +//! +//! - pack: for 16-, 32- and 64-bit integer input types +//! - pack_u: for 16- and 32-bit signed integer input types +OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(v_uint16x8, ushort, v_uint8x16, uchar, pack) +OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(v_int16x8, short, v_int8x16, schar, pack) +OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(v_uint32x4, unsigned, v_uint16x8, ushort, pack) +OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(v_int32x4, int, v_int16x8, short, pack) +OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(v_uint64x2, uint64, v_uint32x4, unsigned, pack) +OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(v_int64x2, int64, v_int32x4, int, pack) +OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(v_int16x8, short, v_uint8x16, uchar, pack_u) +OPENCV_HAL_IMPL_C_RSHR_PACK_STORE(v_int32x4, int, v_uint16x8, ushort, pack_u) +//! @} + +/** @brief Matrix multiplication + +Scheme: +@code +{A0 A1 A2 A3} |V0| +{B0 B1 B2 B3} |V1| +{C0 C1 C2 C3} |V2| +{D0 D1 D2 D3} x |V3| +==================== +{R0 R1 R2 R3}, where: +R0 = A0V0 + A1V1 + A2V2 + A3V3, +R1 = B0V0 + B1V1 + B2V2 + B3V3 +... +@endcode +*/ +inline v_float32x4 v_matmul(const v_float32x4& v, const v_float32x4& m0, + const v_float32x4& m1, const v_float32x4& m2, + const v_float32x4& m3) +{ + return v_float32x4(v.s[0]*m0.s[0] + v.s[1]*m1.s[0] + v.s[2]*m2.s[0] + v.s[3]*m3.s[0], + v.s[0]*m0.s[1] + v.s[1]*m1.s[1] + v.s[2]*m2.s[1] + v.s[3]*m3.s[1], + v.s[0]*m0.s[2] + v.s[1]*m1.s[2] + v.s[2]*m2.s[2] + v.s[3]*m3.s[2], + v.s[0]*m0.s[3] + v.s[1]*m1.s[3] + v.s[2]*m2.s[3] + v.s[3]*m3.s[3]); +} + +//! @} + +//! @name Check SIMD support +//! @{ +//! @brief Check CPU capability of SIMD operation +static inline bool hasSIMD128() +{ + return false; +} + +//! @} + + +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/core/hal/intrin_neon.hpp b/thirdparty1/linux/include/opencv2/core/hal/intrin_neon.hpp new file mode 100644 index 0000000..b000733 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/hal/intrin_neon.hpp @@ -0,0 +1,1234 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2015, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_HAL_INTRIN_NEON_HPP +#define OPENCV_HAL_INTRIN_NEON_HPP + +#include +#include "opencv2/core/utility.hpp" + +namespace cv +{ + +//! @cond IGNORED + +#define CV_SIMD128 1 +#if defined(__aarch64__) +#define CV_SIMD128_64F 1 +#else +#define CV_SIMD128_64F 0 +#endif + +#if CV_SIMD128_64F +#define OPENCV_HAL_IMPL_NEON_REINTERPRET(_Tpv, suffix) \ +template static inline \ +_Tpv vreinterpretq_##suffix##_f64(T a) { return (_Tpv) a; } \ +template static inline \ +float64x2_t vreinterpretq_f64_##suffix(T a) { return (float64x2_t) a; } +OPENCV_HAL_IMPL_NEON_REINTERPRET(uint8x16_t, u8) +OPENCV_HAL_IMPL_NEON_REINTERPRET(int8x16_t, s8) +OPENCV_HAL_IMPL_NEON_REINTERPRET(uint16x8_t, u16) +OPENCV_HAL_IMPL_NEON_REINTERPRET(int16x8_t, s16) +OPENCV_HAL_IMPL_NEON_REINTERPRET(uint32x4_t, u32) +OPENCV_HAL_IMPL_NEON_REINTERPRET(int32x4_t, s32) +OPENCV_HAL_IMPL_NEON_REINTERPRET(uint64x2_t, u64) +OPENCV_HAL_IMPL_NEON_REINTERPRET(int64x2_t, s64) +OPENCV_HAL_IMPL_NEON_REINTERPRET(float32x4_t, f32) +#endif + +struct v_uint8x16 +{ + typedef uchar lane_type; + enum { nlanes = 16 }; + + v_uint8x16() {} + explicit v_uint8x16(uint8x16_t v) : val(v) {} + v_uint8x16(uchar v0, uchar v1, uchar v2, uchar v3, uchar v4, uchar v5, uchar v6, uchar v7, + uchar v8, uchar v9, uchar v10, uchar v11, uchar v12, uchar v13, uchar v14, uchar v15) + { + uchar v[] = {v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15}; + val = vld1q_u8(v); + } + uchar get0() const + { + return vgetq_lane_u8(val, 0); + } + + uint8x16_t val; +}; + +struct v_int8x16 +{ + typedef schar lane_type; + enum { nlanes = 16 }; + + v_int8x16() {} + explicit v_int8x16(int8x16_t v) : val(v) {} + v_int8x16(schar v0, schar v1, schar v2, schar v3, schar v4, schar v5, schar v6, schar v7, + schar v8, schar v9, schar v10, schar v11, schar v12, schar v13, schar v14, schar v15) + { + schar v[] = {v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15}; + val = vld1q_s8(v); + } + schar get0() const + { + return vgetq_lane_s8(val, 0); + } + + int8x16_t val; +}; + +struct v_uint16x8 +{ + typedef ushort lane_type; + enum { nlanes = 8 }; + + v_uint16x8() {} + explicit v_uint16x8(uint16x8_t v) : val(v) {} + v_uint16x8(ushort v0, ushort v1, ushort v2, ushort v3, ushort v4, ushort v5, ushort v6, ushort v7) + { + ushort v[] = {v0, v1, v2, v3, v4, v5, v6, v7}; + val = vld1q_u16(v); + } + ushort get0() const + { + return vgetq_lane_u16(val, 0); + } + + uint16x8_t val; +}; + +struct v_int16x8 +{ + typedef short lane_type; + enum { nlanes = 8 }; + + v_int16x8() {} + explicit v_int16x8(int16x8_t v) : val(v) {} + v_int16x8(short v0, short v1, short v2, short v3, short v4, short v5, short v6, short v7) + { + short v[] = {v0, v1, v2, v3, v4, v5, v6, v7}; + val = vld1q_s16(v); + } + short get0() const + { + return vgetq_lane_s16(val, 0); + } + + int16x8_t val; +}; + +struct v_uint32x4 +{ + typedef unsigned lane_type; + enum { nlanes = 4 }; + + v_uint32x4() {} + explicit v_uint32x4(uint32x4_t v) : val(v) {} + v_uint32x4(unsigned v0, unsigned v1, unsigned v2, unsigned v3) + { + unsigned v[] = {v0, v1, v2, v3}; + val = vld1q_u32(v); + } + unsigned get0() const + { + return vgetq_lane_u32(val, 0); + } + + uint32x4_t val; +}; + +struct v_int32x4 +{ + typedef int lane_type; + enum { nlanes = 4 }; + + v_int32x4() {} + explicit v_int32x4(int32x4_t v) : val(v) {} + v_int32x4(int v0, int v1, int v2, int v3) + { + int v[] = {v0, v1, v2, v3}; + val = vld1q_s32(v); + } + int get0() const + { + return vgetq_lane_s32(val, 0); + } + int32x4_t val; +}; + +struct v_float32x4 +{ + typedef float lane_type; + enum { nlanes = 4 }; + + v_float32x4() {} + explicit v_float32x4(float32x4_t v) : val(v) {} + v_float32x4(float v0, float v1, float v2, float v3) + { + float v[] = {v0, v1, v2, v3}; + val = vld1q_f32(v); + } + float get0() const + { + return vgetq_lane_f32(val, 0); + } + float32x4_t val; +}; + +struct v_uint64x2 +{ + typedef uint64 lane_type; + enum { nlanes = 2 }; + + v_uint64x2() {} + explicit v_uint64x2(uint64x2_t v) : val(v) {} + v_uint64x2(unsigned v0, unsigned v1) + { + uint64 v[] = {v0, v1}; + val = vld1q_u64(v); + } + uint64 get0() const + { + return vgetq_lane_u64(val, 0); + } + uint64x2_t val; +}; + +struct v_int64x2 +{ + typedef int64 lane_type; + enum { nlanes = 2 }; + + v_int64x2() {} + explicit v_int64x2(int64x2_t v) : val(v) {} + v_int64x2(int v0, int v1) + { + int64 v[] = {v0, v1}; + val = vld1q_s64(v); + } + int64 get0() const + { + return vgetq_lane_s64(val, 0); + } + int64x2_t val; +}; + +#if CV_SIMD128_64F +struct v_float64x2 +{ + typedef double lane_type; + enum { nlanes = 2 }; + + v_float64x2() {} + explicit v_float64x2(float64x2_t v) : val(v) {} + v_float64x2(double v0, double v1) + { + double v[] = {v0, v1}; + val = vld1q_f64(v); + } + double get0() const + { + return vgetq_lane_f64(val, 0); + } + float64x2_t val; +}; +#endif + +#if defined (HAVE_FP16) +// Workaround for old comiplers +template static inline int16x4_t vreinterpret_s16_f16(T a) +{ return (int16x4_t)a; } +template static inline float16x4_t vreinterpret_f16_s16(T a) +{ return (float16x4_t)a; } +template static inline float16x4_t vld1_f16(const T* ptr) +{ return vreinterpret_f16_s16(vld1_s16((const short*)ptr)); } +template static inline void vst1_f16(T* ptr, float16x4_t a) +{ vst1_s16((short*)ptr, vreinterpret_s16_f16(a)); } + +struct v_float16x4 +{ + typedef short lane_type; + enum { nlanes = 4 }; + + v_float16x4() {} + explicit v_float16x4(float16x4_t v) : val(v) {} + v_float16x4(short v0, short v1, short v2, short v3) + { + short v[] = {v0, v1, v2, v3}; + val = vld1_f16(v); + } + short get0() const + { + return vget_lane_s16(vreinterpret_s16_f16(val), 0); + } + float16x4_t val; +}; +#endif + +#define OPENCV_HAL_IMPL_NEON_INIT(_Tpv, _Tp, suffix) \ +inline v_##_Tpv v_setzero_##suffix() { return v_##_Tpv(vdupq_n_##suffix((_Tp)0)); } \ +inline v_##_Tpv v_setall_##suffix(_Tp v) { return v_##_Tpv(vdupq_n_##suffix(v)); } \ +inline _Tpv##_t vreinterpretq_##suffix##_##suffix(_Tpv##_t v) { return v; } \ +inline v_uint8x16 v_reinterpret_as_u8(const v_##_Tpv& v) { return v_uint8x16(vreinterpretq_u8_##suffix(v.val)); } \ +inline v_int8x16 v_reinterpret_as_s8(const v_##_Tpv& v) { return v_int8x16(vreinterpretq_s8_##suffix(v.val)); } \ +inline v_uint16x8 v_reinterpret_as_u16(const v_##_Tpv& v) { return v_uint16x8(vreinterpretq_u16_##suffix(v.val)); } \ +inline v_int16x8 v_reinterpret_as_s16(const v_##_Tpv& v) { return v_int16x8(vreinterpretq_s16_##suffix(v.val)); } \ +inline v_uint32x4 v_reinterpret_as_u32(const v_##_Tpv& v) { return v_uint32x4(vreinterpretq_u32_##suffix(v.val)); } \ +inline v_int32x4 v_reinterpret_as_s32(const v_##_Tpv& v) { return v_int32x4(vreinterpretq_s32_##suffix(v.val)); } \ +inline v_uint64x2 v_reinterpret_as_u64(const v_##_Tpv& v) { return v_uint64x2(vreinterpretq_u64_##suffix(v.val)); } \ +inline v_int64x2 v_reinterpret_as_s64(const v_##_Tpv& v) { return v_int64x2(vreinterpretq_s64_##suffix(v.val)); } \ +inline v_float32x4 v_reinterpret_as_f32(const v_##_Tpv& v) { return v_float32x4(vreinterpretq_f32_##suffix(v.val)); } + +OPENCV_HAL_IMPL_NEON_INIT(uint8x16, uchar, u8) +OPENCV_HAL_IMPL_NEON_INIT(int8x16, schar, s8) +OPENCV_HAL_IMPL_NEON_INIT(uint16x8, ushort, u16) +OPENCV_HAL_IMPL_NEON_INIT(int16x8, short, s16) +OPENCV_HAL_IMPL_NEON_INIT(uint32x4, unsigned, u32) +OPENCV_HAL_IMPL_NEON_INIT(int32x4, int, s32) +OPENCV_HAL_IMPL_NEON_INIT(uint64x2, uint64, u64) +OPENCV_HAL_IMPL_NEON_INIT(int64x2, int64, s64) +OPENCV_HAL_IMPL_NEON_INIT(float32x4, float, f32) +#if CV_SIMD128_64F +#define OPENCV_HAL_IMPL_NEON_INIT_64(_Tpv, suffix) \ +inline v_float64x2 v_reinterpret_as_f64(const v_##_Tpv& v) { return v_float64x2(vreinterpretq_f64_##suffix(v.val)); } +OPENCV_HAL_IMPL_NEON_INIT(float64x2, double, f64) +OPENCV_HAL_IMPL_NEON_INIT_64(uint8x16, u8) +OPENCV_HAL_IMPL_NEON_INIT_64(int8x16, s8) +OPENCV_HAL_IMPL_NEON_INIT_64(uint16x8, u16) +OPENCV_HAL_IMPL_NEON_INIT_64(int16x8, s16) +OPENCV_HAL_IMPL_NEON_INIT_64(uint32x4, u32) +OPENCV_HAL_IMPL_NEON_INIT_64(int32x4, s32) +OPENCV_HAL_IMPL_NEON_INIT_64(uint64x2, u64) +OPENCV_HAL_IMPL_NEON_INIT_64(int64x2, s64) +OPENCV_HAL_IMPL_NEON_INIT_64(float32x4, f32) +OPENCV_HAL_IMPL_NEON_INIT_64(float64x2, f64) +#endif + +#define OPENCV_HAL_IMPL_NEON_PACK(_Tpvec, _Tp, hreg, suffix, _Tpwvec, wsuffix, pack, op) \ +inline _Tpvec v_##pack(const _Tpwvec& a, const _Tpwvec& b) \ +{ \ + hreg a1 = vqmov##op##_##wsuffix(a.val), b1 = vqmov##op##_##wsuffix(b.val); \ + return _Tpvec(vcombine_##suffix(a1, b1)); \ +} \ +inline void v_##pack##_store(_Tp* ptr, const _Tpwvec& a) \ +{ \ + hreg a1 = vqmov##op##_##wsuffix(a.val); \ + vst1_##suffix(ptr, a1); \ +} \ +template inline \ +_Tpvec v_rshr_##pack(const _Tpwvec& a, const _Tpwvec& b) \ +{ \ + hreg a1 = vqrshr##op##_n_##wsuffix(a.val, n); \ + hreg b1 = vqrshr##op##_n_##wsuffix(b.val, n); \ + return _Tpvec(vcombine_##suffix(a1, b1)); \ +} \ +template inline \ +void v_rshr_##pack##_store(_Tp* ptr, const _Tpwvec& a) \ +{ \ + hreg a1 = vqrshr##op##_n_##wsuffix(a.val, n); \ + vst1_##suffix(ptr, a1); \ +} + +OPENCV_HAL_IMPL_NEON_PACK(v_uint8x16, uchar, uint8x8_t, u8, v_uint16x8, u16, pack, n) +OPENCV_HAL_IMPL_NEON_PACK(v_int8x16, schar, int8x8_t, s8, v_int16x8, s16, pack, n) +OPENCV_HAL_IMPL_NEON_PACK(v_uint16x8, ushort, uint16x4_t, u16, v_uint32x4, u32, pack, n) +OPENCV_HAL_IMPL_NEON_PACK(v_int16x8, short, int16x4_t, s16, v_int32x4, s32, pack, n) +OPENCV_HAL_IMPL_NEON_PACK(v_uint32x4, unsigned, uint32x2_t, u32, v_uint64x2, u64, pack, n) +OPENCV_HAL_IMPL_NEON_PACK(v_int32x4, int, int32x2_t, s32, v_int64x2, s64, pack, n) + +OPENCV_HAL_IMPL_NEON_PACK(v_uint8x16, uchar, uint8x8_t, u8, v_int16x8, s16, pack_u, un) +OPENCV_HAL_IMPL_NEON_PACK(v_uint16x8, ushort, uint16x4_t, u16, v_int32x4, s32, pack_u, un) + +inline v_float32x4 v_matmul(const v_float32x4& v, const v_float32x4& m0, + const v_float32x4& m1, const v_float32x4& m2, + const v_float32x4& m3) +{ + float32x2_t vl = vget_low_f32(v.val), vh = vget_high_f32(v.val); + float32x4_t res = vmulq_lane_f32(m0.val, vl, 0); + res = vmlaq_lane_f32(res, m1.val, vl, 1); + res = vmlaq_lane_f32(res, m2.val, vh, 0); + res = vmlaq_lane_f32(res, m3.val, vh, 1); + return v_float32x4(res); +} + +#define OPENCV_HAL_IMPL_NEON_BIN_OP(bin_op, _Tpvec, intrin) \ +inline _Tpvec operator bin_op (const _Tpvec& a, const _Tpvec& b) \ +{ \ + return _Tpvec(intrin(a.val, b.val)); \ +} \ +inline _Tpvec& operator bin_op##= (_Tpvec& a, const _Tpvec& b) \ +{ \ + a.val = intrin(a.val, b.val); \ + return a; \ +} + +OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_uint8x16, vqaddq_u8) +OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_uint8x16, vqsubq_u8) +OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_int8x16, vqaddq_s8) +OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_int8x16, vqsubq_s8) +OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_uint16x8, vqaddq_u16) +OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_uint16x8, vqsubq_u16) +OPENCV_HAL_IMPL_NEON_BIN_OP(*, v_uint16x8, vmulq_u16) +OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_int16x8, vqaddq_s16) +OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_int16x8, vqsubq_s16) +OPENCV_HAL_IMPL_NEON_BIN_OP(*, v_int16x8, vmulq_s16) +OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_int32x4, vaddq_s32) +OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_int32x4, vsubq_s32) +OPENCV_HAL_IMPL_NEON_BIN_OP(*, v_int32x4, vmulq_s32) +OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_uint32x4, vaddq_u32) +OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_uint32x4, vsubq_u32) +OPENCV_HAL_IMPL_NEON_BIN_OP(*, v_uint32x4, vmulq_u32) +OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_float32x4, vaddq_f32) +OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_float32x4, vsubq_f32) +OPENCV_HAL_IMPL_NEON_BIN_OP(*, v_float32x4, vmulq_f32) +OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_int64x2, vaddq_s64) +OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_int64x2, vsubq_s64) +OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_uint64x2, vaddq_u64) +OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_uint64x2, vsubq_u64) +#if CV_SIMD128_64F +OPENCV_HAL_IMPL_NEON_BIN_OP(/, v_float32x4, vdivq_f32) +OPENCV_HAL_IMPL_NEON_BIN_OP(+, v_float64x2, vaddq_f64) +OPENCV_HAL_IMPL_NEON_BIN_OP(-, v_float64x2, vsubq_f64) +OPENCV_HAL_IMPL_NEON_BIN_OP(*, v_float64x2, vmulq_f64) +OPENCV_HAL_IMPL_NEON_BIN_OP(/, v_float64x2, vdivq_f64) +#else +inline v_float32x4 operator / (const v_float32x4& a, const v_float32x4& b) +{ + float32x4_t reciprocal = vrecpeq_f32(b.val); + reciprocal = vmulq_f32(vrecpsq_f32(b.val, reciprocal), reciprocal); + reciprocal = vmulq_f32(vrecpsq_f32(b.val, reciprocal), reciprocal); + return v_float32x4(vmulq_f32(a.val, reciprocal)); +} +inline v_float32x4& operator /= (v_float32x4& a, const v_float32x4& b) +{ + float32x4_t reciprocal = vrecpeq_f32(b.val); + reciprocal = vmulq_f32(vrecpsq_f32(b.val, reciprocal), reciprocal); + reciprocal = vmulq_f32(vrecpsq_f32(b.val, reciprocal), reciprocal); + a.val = vmulq_f32(a.val, reciprocal); + return a; +} +#endif + +inline void v_mul_expand(const v_int16x8& a, const v_int16x8& b, + v_int32x4& c, v_int32x4& d) +{ + c.val = vmull_s16(vget_low_s16(a.val), vget_low_s16(b.val)); + d.val = vmull_s16(vget_high_s16(a.val), vget_high_s16(b.val)); +} + +inline void v_mul_expand(const v_uint16x8& a, const v_uint16x8& b, + v_uint32x4& c, v_uint32x4& d) +{ + c.val = vmull_u16(vget_low_u16(a.val), vget_low_u16(b.val)); + d.val = vmull_u16(vget_high_u16(a.val), vget_high_u16(b.val)); +} + +inline void v_mul_expand(const v_uint32x4& a, const v_uint32x4& b, + v_uint64x2& c, v_uint64x2& d) +{ + c.val = vmull_u32(vget_low_u32(a.val), vget_low_u32(b.val)); + d.val = vmull_u32(vget_high_u32(a.val), vget_high_u32(b.val)); +} + +inline v_int32x4 v_dotprod(const v_int16x8& a, const v_int16x8& b) +{ + int32x4_t c = vmull_s16(vget_low_s16(a.val), vget_low_s16(b.val)); + int32x4_t d = vmull_s16(vget_high_s16(a.val), vget_high_s16(b.val)); + int32x4x2_t cd = vuzpq_s32(c, d); + return v_int32x4(vaddq_s32(cd.val[0], cd.val[1])); +} + +#define OPENCV_HAL_IMPL_NEON_LOGIC_OP(_Tpvec, suffix) \ + OPENCV_HAL_IMPL_NEON_BIN_OP(&, _Tpvec, vandq_##suffix) \ + OPENCV_HAL_IMPL_NEON_BIN_OP(|, _Tpvec, vorrq_##suffix) \ + OPENCV_HAL_IMPL_NEON_BIN_OP(^, _Tpvec, veorq_##suffix) \ + inline _Tpvec operator ~ (const _Tpvec& a) \ + { \ + return _Tpvec(vreinterpretq_##suffix##_u8(vmvnq_u8(vreinterpretq_u8_##suffix(a.val)))); \ + } + +OPENCV_HAL_IMPL_NEON_LOGIC_OP(v_uint8x16, u8) +OPENCV_HAL_IMPL_NEON_LOGIC_OP(v_int8x16, s8) +OPENCV_HAL_IMPL_NEON_LOGIC_OP(v_uint16x8, u16) +OPENCV_HAL_IMPL_NEON_LOGIC_OP(v_int16x8, s16) +OPENCV_HAL_IMPL_NEON_LOGIC_OP(v_uint32x4, u32) +OPENCV_HAL_IMPL_NEON_LOGIC_OP(v_int32x4, s32) +OPENCV_HAL_IMPL_NEON_LOGIC_OP(v_uint64x2, u64) +OPENCV_HAL_IMPL_NEON_LOGIC_OP(v_int64x2, s64) + +#define OPENCV_HAL_IMPL_NEON_FLT_BIT_OP(bin_op, intrin) \ +inline v_float32x4 operator bin_op (const v_float32x4& a, const v_float32x4& b) \ +{ \ + return v_float32x4(vreinterpretq_f32_s32(intrin(vreinterpretq_s32_f32(a.val), vreinterpretq_s32_f32(b.val)))); \ +} \ +inline v_float32x4& operator bin_op##= (v_float32x4& a, const v_float32x4& b) \ +{ \ + a.val = vreinterpretq_f32_s32(intrin(vreinterpretq_s32_f32(a.val), vreinterpretq_s32_f32(b.val))); \ + return a; \ +} + +OPENCV_HAL_IMPL_NEON_FLT_BIT_OP(&, vandq_s32) +OPENCV_HAL_IMPL_NEON_FLT_BIT_OP(|, vorrq_s32) +OPENCV_HAL_IMPL_NEON_FLT_BIT_OP(^, veorq_s32) + +inline v_float32x4 operator ~ (const v_float32x4& a) +{ + return v_float32x4(vreinterpretq_f32_s32(vmvnq_s32(vreinterpretq_s32_f32(a.val)))); +} + +#if CV_SIMD128_64F +inline v_float32x4 v_sqrt(const v_float32x4& x) +{ + return v_float32x4(vsqrtq_f32(x.val)); +} + +inline v_float32x4 v_invsqrt(const v_float32x4& x) +{ + v_float32x4 one = v_setall_f32(1.0f); + return one / v_sqrt(x); +} +#else +inline v_float32x4 v_sqrt(const v_float32x4& x) +{ + float32x4_t x1 = vmaxq_f32(x.val, vdupq_n_f32(FLT_MIN)); + float32x4_t e = vrsqrteq_f32(x1); + e = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x1, e), e), e); + e = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x1, e), e), e); + return v_float32x4(vmulq_f32(x.val, e)); +} + +inline v_float32x4 v_invsqrt(const v_float32x4& x) +{ + float32x4_t e = vrsqrteq_f32(x.val); + e = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x.val, e), e), e); + e = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x.val, e), e), e); + return v_float32x4(e); +} +#endif + +#define OPENCV_HAL_IMPL_NEON_ABS(_Tpuvec, _Tpsvec, usuffix, ssuffix) \ +inline _Tpuvec v_abs(const _Tpsvec& a) { return v_reinterpret_as_##usuffix(_Tpsvec(vabsq_##ssuffix(a.val))); } + +OPENCV_HAL_IMPL_NEON_ABS(v_uint8x16, v_int8x16, u8, s8) +OPENCV_HAL_IMPL_NEON_ABS(v_uint16x8, v_int16x8, u16, s16) +OPENCV_HAL_IMPL_NEON_ABS(v_uint32x4, v_int32x4, u32, s32) + +inline v_float32x4 v_abs(v_float32x4 x) +{ return v_float32x4(vabsq_f32(x.val)); } + +#if CV_SIMD128_64F +#define OPENCV_HAL_IMPL_NEON_DBL_BIT_OP(bin_op, intrin) \ +inline v_float64x2 operator bin_op (const v_float64x2& a, const v_float64x2& b) \ +{ \ + return v_float64x2(vreinterpretq_f64_s64(intrin(vreinterpretq_s64_f64(a.val), vreinterpretq_s64_f64(b.val)))); \ +} \ +inline v_float64x2& operator bin_op##= (v_float64x2& a, const v_float64x2& b) \ +{ \ + a.val = vreinterpretq_f64_s64(intrin(vreinterpretq_s64_f64(a.val), vreinterpretq_s64_f64(b.val))); \ + return a; \ +} + +OPENCV_HAL_IMPL_NEON_DBL_BIT_OP(&, vandq_s64) +OPENCV_HAL_IMPL_NEON_DBL_BIT_OP(|, vorrq_s64) +OPENCV_HAL_IMPL_NEON_DBL_BIT_OP(^, veorq_s64) + +inline v_float64x2 operator ~ (const v_float64x2& a) +{ + return v_float64x2(vreinterpretq_f64_s32(vmvnq_s32(vreinterpretq_s32_f64(a.val)))); +} + +inline v_float64x2 v_sqrt(const v_float64x2& x) +{ + return v_float64x2(vsqrtq_f64(x.val)); +} + +inline v_float64x2 v_invsqrt(const v_float64x2& x) +{ + v_float64x2 one = v_setall_f64(1.0f); + return one / v_sqrt(x); +} + +inline v_float64x2 v_abs(v_float64x2 x) +{ return v_float64x2(vabsq_f64(x.val)); } +#endif + +// TODO: exp, log, sin, cos + +#define OPENCV_HAL_IMPL_NEON_BIN_FUNC(_Tpvec, func, intrin) \ +inline _Tpvec func(const _Tpvec& a, const _Tpvec& b) \ +{ \ + return _Tpvec(intrin(a.val, b.val)); \ +} + +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint8x16, v_min, vminq_u8) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint8x16, v_max, vmaxq_u8) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int8x16, v_min, vminq_s8) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int8x16, v_max, vmaxq_s8) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint16x8, v_min, vminq_u16) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint16x8, v_max, vmaxq_u16) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int16x8, v_min, vminq_s16) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int16x8, v_max, vmaxq_s16) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint32x4, v_min, vminq_u32) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint32x4, v_max, vmaxq_u32) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int32x4, v_min, vminq_s32) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int32x4, v_max, vmaxq_s32) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_float32x4, v_min, vminq_f32) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_float32x4, v_max, vmaxq_f32) +#if CV_SIMD128_64F +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_float64x2, v_min, vminq_f64) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_float64x2, v_max, vmaxq_f64) +#endif + +#if CV_SIMD128_64F +inline int64x2_t vmvnq_s64(int64x2_t a) +{ + int64x2_t vx = vreinterpretq_s64_u32(vdupq_n_u32(0xFFFFFFFF)); + return veorq_s64(a, vx); +} +inline uint64x2_t vmvnq_u64(uint64x2_t a) +{ + uint64x2_t vx = vreinterpretq_u64_u32(vdupq_n_u32(0xFFFFFFFF)); + return veorq_u64(a, vx); +} +#endif +#define OPENCV_HAL_IMPL_NEON_INT_CMP_OP(_Tpvec, cast, suffix, not_suffix) \ +inline _Tpvec operator == (const _Tpvec& a, const _Tpvec& b) \ +{ return _Tpvec(cast(vceqq_##suffix(a.val, b.val))); } \ +inline _Tpvec operator != (const _Tpvec& a, const _Tpvec& b) \ +{ return _Tpvec(cast(vmvnq_##not_suffix(vceqq_##suffix(a.val, b.val)))); } \ +inline _Tpvec operator < (const _Tpvec& a, const _Tpvec& b) \ +{ return _Tpvec(cast(vcltq_##suffix(a.val, b.val))); } \ +inline _Tpvec operator > (const _Tpvec& a, const _Tpvec& b) \ +{ return _Tpvec(cast(vcgtq_##suffix(a.val, b.val))); } \ +inline _Tpvec operator <= (const _Tpvec& a, const _Tpvec& b) \ +{ return _Tpvec(cast(vcleq_##suffix(a.val, b.val))); } \ +inline _Tpvec operator >= (const _Tpvec& a, const _Tpvec& b) \ +{ return _Tpvec(cast(vcgeq_##suffix(a.val, b.val))); } + +OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_uint8x16, OPENCV_HAL_NOP, u8, u8) +OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_int8x16, vreinterpretq_s8_u8, s8, u8) +OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_uint16x8, OPENCV_HAL_NOP, u16, u16) +OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_int16x8, vreinterpretq_s16_u16, s16, u16) +OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_uint32x4, OPENCV_HAL_NOP, u32, u32) +OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_int32x4, vreinterpretq_s32_u32, s32, u32) +OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_float32x4, vreinterpretq_f32_u32, f32, u32) +#if CV_SIMD128_64F +OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_uint64x2, OPENCV_HAL_NOP, u64, u64) +OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_int64x2, vreinterpretq_s64_u64, s64, u64) +OPENCV_HAL_IMPL_NEON_INT_CMP_OP(v_float64x2, vreinterpretq_f64_u64, f64, u64) +#endif + +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint8x16, v_add_wrap, vaddq_u8) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int8x16, v_add_wrap, vaddq_s8) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint16x8, v_add_wrap, vaddq_u16) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int16x8, v_add_wrap, vaddq_s16) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint8x16, v_sub_wrap, vsubq_u8) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int8x16, v_sub_wrap, vsubq_s8) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint16x8, v_sub_wrap, vsubq_u16) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_int16x8, v_sub_wrap, vsubq_s16) + +// TODO: absdiff for signed integers +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint8x16, v_absdiff, vabdq_u8) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint16x8, v_absdiff, vabdq_u16) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_uint32x4, v_absdiff, vabdq_u32) +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_float32x4, v_absdiff, vabdq_f32) +#if CV_SIMD128_64F +OPENCV_HAL_IMPL_NEON_BIN_FUNC(v_float64x2, v_absdiff, vabdq_f64) +#endif + +#define OPENCV_HAL_IMPL_NEON_BIN_FUNC2(_Tpvec, _Tpvec2, cast, func, intrin) \ +inline _Tpvec2 func(const _Tpvec& a, const _Tpvec& b) \ +{ \ + return _Tpvec2(cast(intrin(a.val, b.val))); \ +} + +OPENCV_HAL_IMPL_NEON_BIN_FUNC2(v_int8x16, v_uint8x16, vreinterpretq_u8_s8, v_absdiff, vabdq_s8) +OPENCV_HAL_IMPL_NEON_BIN_FUNC2(v_int16x8, v_uint16x8, vreinterpretq_u16_s16, v_absdiff, vabdq_s16) +OPENCV_HAL_IMPL_NEON_BIN_FUNC2(v_int32x4, v_uint32x4, vreinterpretq_u32_s32, v_absdiff, vabdq_s32) + +inline v_float32x4 v_magnitude(const v_float32x4& a, const v_float32x4& b) +{ + v_float32x4 x(vmlaq_f32(vmulq_f32(a.val, a.val), b.val, b.val)); + return v_sqrt(x); +} + +inline v_float32x4 v_sqr_magnitude(const v_float32x4& a, const v_float32x4& b) +{ + return v_float32x4(vmlaq_f32(vmulq_f32(a.val, a.val), b.val, b.val)); +} + +inline v_float32x4 v_muladd(const v_float32x4& a, const v_float32x4& b, const v_float32x4& c) +{ + return v_float32x4(vmlaq_f32(c.val, a.val, b.val)); +} + +#if CV_SIMD128_64F +inline v_float64x2 v_magnitude(const v_float64x2& a, const v_float64x2& b) +{ + v_float64x2 x(vaddq_f64(vmulq_f64(a.val, a.val), vmulq_f64(b.val, b.val))); + return v_sqrt(x); +} + +inline v_float64x2 v_sqr_magnitude(const v_float64x2& a, const v_float64x2& b) +{ + return v_float64x2(vaddq_f64(vmulq_f64(a.val, a.val), vmulq_f64(b.val, b.val))); +} + +inline v_float64x2 v_muladd(const v_float64x2& a, const v_float64x2& b, const v_float64x2& c) +{ + return v_float64x2(vaddq_f64(c.val, vmulq_f64(a.val, b.val))); +} +#endif + +// trade efficiency for convenience +#define OPENCV_HAL_IMPL_NEON_SHIFT_OP(_Tpvec, suffix, _Tps, ssuffix) \ +inline _Tpvec operator << (const _Tpvec& a, int n) \ +{ return _Tpvec(vshlq_##suffix(a.val, vdupq_n_##ssuffix((_Tps)n))); } \ +inline _Tpvec operator >> (const _Tpvec& a, int n) \ +{ return _Tpvec(vshlq_##suffix(a.val, vdupq_n_##ssuffix((_Tps)-n))); } \ +template inline _Tpvec v_shl(const _Tpvec& a) \ +{ return _Tpvec(vshlq_n_##suffix(a.val, n)); } \ +template inline _Tpvec v_shr(const _Tpvec& a) \ +{ return _Tpvec(vshrq_n_##suffix(a.val, n)); } \ +template inline _Tpvec v_rshr(const _Tpvec& a) \ +{ return _Tpvec(vrshrq_n_##suffix(a.val, n)); } + +OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_uint8x16, u8, schar, s8) +OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_int8x16, s8, schar, s8) +OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_uint16x8, u16, short, s16) +OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_int16x8, s16, short, s16) +OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_uint32x4, u32, int, s32) +OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_int32x4, s32, int, s32) +OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_uint64x2, u64, int64, s64) +OPENCV_HAL_IMPL_NEON_SHIFT_OP(v_int64x2, s64, int64, s64) + +#define OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(_Tpvec, _Tp, suffix) \ +inline _Tpvec v_load(const _Tp* ptr) \ +{ return _Tpvec(vld1q_##suffix(ptr)); } \ +inline _Tpvec v_load_aligned(const _Tp* ptr) \ +{ return _Tpvec(vld1q_##suffix(ptr)); } \ +inline _Tpvec v_load_halves(const _Tp* ptr0, const _Tp* ptr1) \ +{ return _Tpvec(vcombine_##suffix(vld1_##suffix(ptr0), vld1_##suffix(ptr1))); } \ +inline void v_store(_Tp* ptr, const _Tpvec& a) \ +{ vst1q_##suffix(ptr, a.val); } \ +inline void v_store_aligned(_Tp* ptr, const _Tpvec& a) \ +{ vst1q_##suffix(ptr, a.val); } \ +inline void v_store_low(_Tp* ptr, const _Tpvec& a) \ +{ vst1_##suffix(ptr, vget_low_##suffix(a.val)); } \ +inline void v_store_high(_Tp* ptr, const _Tpvec& a) \ +{ vst1_##suffix(ptr, vget_high_##suffix(a.val)); } + +OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_uint8x16, uchar, u8) +OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_int8x16, schar, s8) +OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_uint16x8, ushort, u16) +OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_int16x8, short, s16) +OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_uint32x4, unsigned, u32) +OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_int32x4, int, s32) +OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_uint64x2, uint64, u64) +OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_int64x2, int64, s64) +OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_float32x4, float, f32) +#if CV_SIMD128_64F +OPENCV_HAL_IMPL_NEON_LOADSTORE_OP(v_float64x2, double, f64) +#endif + +#if defined (HAVE_FP16) +// Workaround for old comiplers +inline v_float16x4 v_load_f16(const short* ptr) +{ return v_float16x4(vld1_f16(ptr)); } +inline void v_store_f16(short* ptr, v_float16x4& a) +{ vst1_f16(ptr, a.val); } +#endif + +#define OPENCV_HAL_IMPL_NEON_REDUCE_OP_8(_Tpvec, _Tpnvec, scalartype, func, vectorfunc, suffix) \ +inline scalartype v_reduce_##func(const _Tpvec& a) \ +{ \ + _Tpnvec##_t a0 = vp##vectorfunc##_##suffix(vget_low_##suffix(a.val), vget_high_##suffix(a.val)); \ + a0 = vp##vectorfunc##_##suffix(a0, a0); \ + return (scalartype)vget_lane_##suffix(vp##vectorfunc##_##suffix(a0, a0),0); \ +} + +OPENCV_HAL_IMPL_NEON_REDUCE_OP_8(v_uint16x8, uint16x4, unsigned short, sum, add, u16) +OPENCV_HAL_IMPL_NEON_REDUCE_OP_8(v_uint16x8, uint16x4, unsigned short, max, max, u16) +OPENCV_HAL_IMPL_NEON_REDUCE_OP_8(v_uint16x8, uint16x4, unsigned short, min, min, u16) +OPENCV_HAL_IMPL_NEON_REDUCE_OP_8(v_int16x8, int16x4, short, sum, add, s16) +OPENCV_HAL_IMPL_NEON_REDUCE_OP_8(v_int16x8, int16x4, short, max, max, s16) +OPENCV_HAL_IMPL_NEON_REDUCE_OP_8(v_int16x8, int16x4, short, min, min, s16) + +#define OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(_Tpvec, _Tpnvec, scalartype, func, vectorfunc, suffix) \ +inline scalartype v_reduce_##func(const _Tpvec& a) \ +{ \ + _Tpnvec##_t a0 = vp##vectorfunc##_##suffix(vget_low_##suffix(a.val), vget_high_##suffix(a.val)); \ + return (scalartype)vget_lane_##suffix(vp##vectorfunc##_##suffix(a0, vget_high_##suffix(a.val)),0); \ +} + +OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_uint32x4, uint32x2, unsigned, sum, add, u32) +OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_uint32x4, uint32x2, unsigned, max, max, u32) +OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_uint32x4, uint32x2, unsigned, min, min, u32) +OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_int32x4, int32x2, int, sum, add, s32) +OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_int32x4, int32x2, int, max, max, s32) +OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_int32x4, int32x2, int, min, min, s32) +OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_float32x4, float32x2, float, sum, add, f32) +OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_float32x4, float32x2, float, max, max, f32) +OPENCV_HAL_IMPL_NEON_REDUCE_OP_4(v_float32x4, float32x2, float, min, min, f32) + +inline int v_signmask(const v_uint8x16& a) +{ + int8x8_t m0 = vcreate_s8(CV_BIG_UINT(0x0706050403020100)); + uint8x16_t v0 = vshlq_u8(vshrq_n_u8(a.val, 7), vcombine_s8(m0, m0)); + uint64x2_t v1 = vpaddlq_u32(vpaddlq_u16(vpaddlq_u8(v0))); + return (int)vgetq_lane_u64(v1, 0) + ((int)vgetq_lane_u64(v1, 1) << 8); +} +inline int v_signmask(const v_int8x16& a) +{ return v_signmask(v_reinterpret_as_u8(a)); } + +inline int v_signmask(const v_uint16x8& a) +{ + int16x4_t m0 = vcreate_s16(CV_BIG_UINT(0x0003000200010000)); + uint16x8_t v0 = vshlq_u16(vshrq_n_u16(a.val, 15), vcombine_s16(m0, m0)); + uint64x2_t v1 = vpaddlq_u32(vpaddlq_u16(v0)); + return (int)vgetq_lane_u64(v1, 0) + ((int)vgetq_lane_u64(v1, 1) << 4); +} +inline int v_signmask(const v_int16x8& a) +{ return v_signmask(v_reinterpret_as_u16(a)); } + +inline int v_signmask(const v_uint32x4& a) +{ + int32x2_t m0 = vcreate_s32(CV_BIG_UINT(0x0000000100000000)); + uint32x4_t v0 = vshlq_u32(vshrq_n_u32(a.val, 31), vcombine_s32(m0, m0)); + uint64x2_t v1 = vpaddlq_u32(v0); + return (int)vgetq_lane_u64(v1, 0) + ((int)vgetq_lane_u64(v1, 1) << 2); +} +inline int v_signmask(const v_int32x4& a) +{ return v_signmask(v_reinterpret_as_u32(a)); } +inline int v_signmask(const v_float32x4& a) +{ return v_signmask(v_reinterpret_as_u32(a)); } +#if CV_SIMD128_64F +inline int v_signmask(const v_uint64x2& a) +{ + int64x1_t m0 = vdup_n_s64(0); + uint64x2_t v0 = vshlq_u64(vshrq_n_u64(a.val, 63), vcombine_s64(m0, m0)); + return (int)vgetq_lane_u64(v0, 0) + ((int)vgetq_lane_u64(v0, 1) << 1); +} +inline int v_signmask(const v_float64x2& a) +{ return v_signmask(v_reinterpret_as_u64(a)); } +#endif + +#define OPENCV_HAL_IMPL_NEON_CHECK_ALLANY(_Tpvec, suffix, shift) \ +inline bool v_check_all(const v_##_Tpvec& a) \ +{ \ + _Tpvec##_t v0 = vshrq_n_##suffix(vmvnq_##suffix(a.val), shift); \ + uint64x2_t v1 = vreinterpretq_u64_##suffix(v0); \ + return (vgetq_lane_u64(v1, 0) | vgetq_lane_u64(v1, 1)) == 0; \ +} \ +inline bool v_check_any(const v_##_Tpvec& a) \ +{ \ + _Tpvec##_t v0 = vshrq_n_##suffix(a.val, shift); \ + uint64x2_t v1 = vreinterpretq_u64_##suffix(v0); \ + return (vgetq_lane_u64(v1, 0) | vgetq_lane_u64(v1, 1)) != 0; \ +} + +OPENCV_HAL_IMPL_NEON_CHECK_ALLANY(uint8x16, u8, 7) +OPENCV_HAL_IMPL_NEON_CHECK_ALLANY(uint16x8, u16, 15) +OPENCV_HAL_IMPL_NEON_CHECK_ALLANY(uint32x4, u32, 31) +#if CV_SIMD128_64F +OPENCV_HAL_IMPL_NEON_CHECK_ALLANY(uint64x2, u64, 63) +#endif + +inline bool v_check_all(const v_int8x16& a) +{ return v_check_all(v_reinterpret_as_u8(a)); } +inline bool v_check_all(const v_int16x8& a) +{ return v_check_all(v_reinterpret_as_u16(a)); } +inline bool v_check_all(const v_int32x4& a) +{ return v_check_all(v_reinterpret_as_u32(a)); } +inline bool v_check_all(const v_float32x4& a) +{ return v_check_all(v_reinterpret_as_u32(a)); } + +inline bool v_check_any(const v_int8x16& a) +{ return v_check_any(v_reinterpret_as_u8(a)); } +inline bool v_check_any(const v_int16x8& a) +{ return v_check_any(v_reinterpret_as_u16(a)); } +inline bool v_check_any(const v_int32x4& a) +{ return v_check_any(v_reinterpret_as_u32(a)); } +inline bool v_check_any(const v_float32x4& a) +{ return v_check_any(v_reinterpret_as_u32(a)); } + +#if CV_SIMD128_64F +inline bool v_check_all(const v_int64x2& a) +{ return v_check_all(v_reinterpret_as_u64(a)); } +inline bool v_check_all(const v_float64x2& a) +{ return v_check_all(v_reinterpret_as_u64(a)); } +inline bool v_check_any(const v_int64x2& a) +{ return v_check_any(v_reinterpret_as_u64(a)); } +inline bool v_check_any(const v_float64x2& a) +{ return v_check_any(v_reinterpret_as_u64(a)); } +#endif + +#define OPENCV_HAL_IMPL_NEON_SELECT(_Tpvec, suffix, usuffix) \ +inline _Tpvec v_select(const _Tpvec& mask, const _Tpvec& a, const _Tpvec& b) \ +{ \ + return _Tpvec(vbslq_##suffix(vreinterpretq_##usuffix##_##suffix(mask.val), a.val, b.val)); \ +} + +OPENCV_HAL_IMPL_NEON_SELECT(v_uint8x16, u8, u8) +OPENCV_HAL_IMPL_NEON_SELECT(v_int8x16, s8, u8) +OPENCV_HAL_IMPL_NEON_SELECT(v_uint16x8, u16, u16) +OPENCV_HAL_IMPL_NEON_SELECT(v_int16x8, s16, u16) +OPENCV_HAL_IMPL_NEON_SELECT(v_uint32x4, u32, u32) +OPENCV_HAL_IMPL_NEON_SELECT(v_int32x4, s32, u32) +OPENCV_HAL_IMPL_NEON_SELECT(v_float32x4, f32, u32) +#if CV_SIMD128_64F +OPENCV_HAL_IMPL_NEON_SELECT(v_float64x2, f64, u64) +#endif + +#define OPENCV_HAL_IMPL_NEON_EXPAND(_Tpvec, _Tpwvec, _Tp, suffix) \ +inline void v_expand(const _Tpvec& a, _Tpwvec& b0, _Tpwvec& b1) \ +{ \ + b0.val = vmovl_##suffix(vget_low_##suffix(a.val)); \ + b1.val = vmovl_##suffix(vget_high_##suffix(a.val)); \ +} \ +inline _Tpwvec v_load_expand(const _Tp* ptr) \ +{ \ + return _Tpwvec(vmovl_##suffix(vld1_##suffix(ptr))); \ +} + +OPENCV_HAL_IMPL_NEON_EXPAND(v_uint8x16, v_uint16x8, uchar, u8) +OPENCV_HAL_IMPL_NEON_EXPAND(v_int8x16, v_int16x8, schar, s8) +OPENCV_HAL_IMPL_NEON_EXPAND(v_uint16x8, v_uint32x4, ushort, u16) +OPENCV_HAL_IMPL_NEON_EXPAND(v_int16x8, v_int32x4, short, s16) +OPENCV_HAL_IMPL_NEON_EXPAND(v_uint32x4, v_uint64x2, uint, u32) +OPENCV_HAL_IMPL_NEON_EXPAND(v_int32x4, v_int64x2, int, s32) + +inline v_uint32x4 v_load_expand_q(const uchar* ptr) +{ + uint8x8_t v0 = vcreate_u8(*(unsigned*)ptr); + uint16x4_t v1 = vget_low_u16(vmovl_u8(v0)); + return v_uint32x4(vmovl_u16(v1)); +} + +inline v_int32x4 v_load_expand_q(const schar* ptr) +{ + int8x8_t v0 = vcreate_s8(*(unsigned*)ptr); + int16x4_t v1 = vget_low_s16(vmovl_s8(v0)); + return v_int32x4(vmovl_s16(v1)); +} + +#if defined(__aarch64__) +#define OPENCV_HAL_IMPL_NEON_UNPACKS(_Tpvec, suffix) \ +inline void v_zip(const v_##_Tpvec& a0, const v_##_Tpvec& a1, v_##_Tpvec& b0, v_##_Tpvec& b1) \ +{ \ + b0.val = vzip1q_##suffix(a0.val, a1.val); \ + b1.val = vzip2q_##suffix(a0.val, a1.val); \ +} \ +inline v_##_Tpvec v_combine_low(const v_##_Tpvec& a, const v_##_Tpvec& b) \ +{ \ + return v_##_Tpvec(vcombine_##suffix(vget_low_##suffix(a.val), vget_low_##suffix(b.val))); \ +} \ +inline v_##_Tpvec v_combine_high(const v_##_Tpvec& a, const v_##_Tpvec& b) \ +{ \ + return v_##_Tpvec(vcombine_##suffix(vget_high_##suffix(a.val), vget_high_##suffix(b.val))); \ +} \ +inline void v_recombine(const v_##_Tpvec& a, const v_##_Tpvec& b, v_##_Tpvec& c, v_##_Tpvec& d) \ +{ \ + c.val = vcombine_##suffix(vget_low_##suffix(a.val), vget_low_##suffix(b.val)); \ + d.val = vcombine_##suffix(vget_high_##suffix(a.val), vget_high_##suffix(b.val)); \ +} +#else +#define OPENCV_HAL_IMPL_NEON_UNPACKS(_Tpvec, suffix) \ +inline void v_zip(const v_##_Tpvec& a0, const v_##_Tpvec& a1, v_##_Tpvec& b0, v_##_Tpvec& b1) \ +{ \ + _Tpvec##x2_t p = vzipq_##suffix(a0.val, a1.val); \ + b0.val = p.val[0]; \ + b1.val = p.val[1]; \ +} \ +inline v_##_Tpvec v_combine_low(const v_##_Tpvec& a, const v_##_Tpvec& b) \ +{ \ + return v_##_Tpvec(vcombine_##suffix(vget_low_##suffix(a.val), vget_low_##suffix(b.val))); \ +} \ +inline v_##_Tpvec v_combine_high(const v_##_Tpvec& a, const v_##_Tpvec& b) \ +{ \ + return v_##_Tpvec(vcombine_##suffix(vget_high_##suffix(a.val), vget_high_##suffix(b.val))); \ +} \ +inline void v_recombine(const v_##_Tpvec& a, const v_##_Tpvec& b, v_##_Tpvec& c, v_##_Tpvec& d) \ +{ \ + c.val = vcombine_##suffix(vget_low_##suffix(a.val), vget_low_##suffix(b.val)); \ + d.val = vcombine_##suffix(vget_high_##suffix(a.val), vget_high_##suffix(b.val)); \ +} +#endif + +OPENCV_HAL_IMPL_NEON_UNPACKS(uint8x16, u8) +OPENCV_HAL_IMPL_NEON_UNPACKS(int8x16, s8) +OPENCV_HAL_IMPL_NEON_UNPACKS(uint16x8, u16) +OPENCV_HAL_IMPL_NEON_UNPACKS(int16x8, s16) +OPENCV_HAL_IMPL_NEON_UNPACKS(uint32x4, u32) +OPENCV_HAL_IMPL_NEON_UNPACKS(int32x4, s32) +OPENCV_HAL_IMPL_NEON_UNPACKS(float32x4, f32) +#if CV_SIMD128_64F +OPENCV_HAL_IMPL_NEON_UNPACKS(float64x2, f64) +#endif + +#define OPENCV_HAL_IMPL_NEON_EXTRACT(_Tpvec, suffix) \ +template \ +inline v_##_Tpvec v_extract(const v_##_Tpvec& a, const v_##_Tpvec& b) \ +{ \ + return v_##_Tpvec(vextq_##suffix(a.val, b.val, s)); \ +} + +OPENCV_HAL_IMPL_NEON_EXTRACT(uint8x16, u8) +OPENCV_HAL_IMPL_NEON_EXTRACT(int8x16, s8) +OPENCV_HAL_IMPL_NEON_EXTRACT(uint16x8, u16) +OPENCV_HAL_IMPL_NEON_EXTRACT(int16x8, s16) +OPENCV_HAL_IMPL_NEON_EXTRACT(uint32x4, u32) +OPENCV_HAL_IMPL_NEON_EXTRACT(int32x4, s32) +OPENCV_HAL_IMPL_NEON_EXTRACT(uint64x2, u64) +OPENCV_HAL_IMPL_NEON_EXTRACT(int64x2, s64) +OPENCV_HAL_IMPL_NEON_EXTRACT(float32x4, f32) +#if CV_SIMD128_64F +OPENCV_HAL_IMPL_NEON_EXTRACT(float64x2, f64) +#endif + +inline v_int32x4 v_round(const v_float32x4& a) +{ + static const int32x4_t v_sign = vdupq_n_s32(1 << 31), + v_05 = vreinterpretq_s32_f32(vdupq_n_f32(0.5f)); + + int32x4_t v_addition = vorrq_s32(v_05, vandq_s32(v_sign, vreinterpretq_s32_f32(a.val))); + return v_int32x4(vcvtq_s32_f32(vaddq_f32(a.val, vreinterpretq_f32_s32(v_addition)))); +} + +inline v_int32x4 v_floor(const v_float32x4& a) +{ + int32x4_t a1 = vcvtq_s32_f32(a.val); + uint32x4_t mask = vcgtq_f32(vcvtq_f32_s32(a1), a.val); + return v_int32x4(vaddq_s32(a1, vreinterpretq_s32_u32(mask))); +} + +inline v_int32x4 v_ceil(const v_float32x4& a) +{ + int32x4_t a1 = vcvtq_s32_f32(a.val); + uint32x4_t mask = vcgtq_f32(a.val, vcvtq_f32_s32(a1)); + return v_int32x4(vsubq_s32(a1, vreinterpretq_s32_u32(mask))); +} + +inline v_int32x4 v_trunc(const v_float32x4& a) +{ return v_int32x4(vcvtq_s32_f32(a.val)); } + +#if CV_SIMD128_64F +inline v_int32x4 v_round(const v_float64x2& a) +{ + static const int32x2_t zero = vdup_n_s32(0); + return v_int32x4(vcombine_s32(vmovn_s64(vcvtaq_s64_f64(a.val)), zero)); +} + +inline v_int32x4 v_floor(const v_float64x2& a) +{ + static const int32x2_t zero = vdup_n_s32(0); + int64x2_t a1 = vcvtq_s64_f64(a.val); + uint64x2_t mask = vcgtq_f64(vcvtq_f64_s64(a1), a.val); + a1 = vaddq_s64(a1, vreinterpretq_s64_u64(mask)); + return v_int32x4(vcombine_s32(vmovn_s64(a1), zero)); +} + +inline v_int32x4 v_ceil(const v_float64x2& a) +{ + static const int32x2_t zero = vdup_n_s32(0); + int64x2_t a1 = vcvtq_s64_f64(a.val); + uint64x2_t mask = vcgtq_f64(a.val, vcvtq_f64_s64(a1)); + a1 = vsubq_s64(a1, vreinterpretq_s64_u64(mask)); + return v_int32x4(vcombine_s32(vmovn_s64(a1), zero)); +} + +inline v_int32x4 v_trunc(const v_float64x2& a) +{ + static const int32x2_t zero = vdup_n_s32(0); + return v_int32x4(vcombine_s32(vmovn_s64(vcvtaq_s64_f64(a.val)), zero)); +} +#endif + +#define OPENCV_HAL_IMPL_NEON_TRANSPOSE4x4(_Tpvec, suffix) \ +inline void v_transpose4x4(const v_##_Tpvec& a0, const v_##_Tpvec& a1, \ + const v_##_Tpvec& a2, const v_##_Tpvec& a3, \ + v_##_Tpvec& b0, v_##_Tpvec& b1, \ + v_##_Tpvec& b2, v_##_Tpvec& b3) \ +{ \ + /* m00 m01 m02 m03 */ \ + /* m10 m11 m12 m13 */ \ + /* m20 m21 m22 m23 */ \ + /* m30 m31 m32 m33 */ \ + _Tpvec##x2_t t0 = vtrnq_##suffix(a0.val, a1.val); \ + _Tpvec##x2_t t1 = vtrnq_##suffix(a2.val, a3.val); \ + /* m00 m10 m02 m12 */ \ + /* m01 m11 m03 m13 */ \ + /* m20 m30 m22 m32 */ \ + /* m21 m31 m23 m33 */ \ + b0.val = vcombine_##suffix(vget_low_##suffix(t0.val[0]), vget_low_##suffix(t1.val[0])); \ + b1.val = vcombine_##suffix(vget_low_##suffix(t0.val[1]), vget_low_##suffix(t1.val[1])); \ + b2.val = vcombine_##suffix(vget_high_##suffix(t0.val[0]), vget_high_##suffix(t1.val[0])); \ + b3.val = vcombine_##suffix(vget_high_##suffix(t0.val[1]), vget_high_##suffix(t1.val[1])); \ +} + +OPENCV_HAL_IMPL_NEON_TRANSPOSE4x4(uint32x4, u32) +OPENCV_HAL_IMPL_NEON_TRANSPOSE4x4(int32x4, s32) +OPENCV_HAL_IMPL_NEON_TRANSPOSE4x4(float32x4, f32) + +#define OPENCV_HAL_IMPL_NEON_INTERLEAVED(_Tpvec, _Tp, suffix) \ +inline void v_load_deinterleave(const _Tp* ptr, v_##_Tpvec& a, v_##_Tpvec& b) \ +{ \ + _Tpvec##x2_t v = vld2q_##suffix(ptr); \ + a.val = v.val[0]; \ + b.val = v.val[1]; \ +} \ +inline void v_load_deinterleave(const _Tp* ptr, v_##_Tpvec& a, v_##_Tpvec& b, v_##_Tpvec& c) \ +{ \ + _Tpvec##x3_t v = vld3q_##suffix(ptr); \ + a.val = v.val[0]; \ + b.val = v.val[1]; \ + c.val = v.val[2]; \ +} \ +inline void v_load_deinterleave(const _Tp* ptr, v_##_Tpvec& a, v_##_Tpvec& b, \ + v_##_Tpvec& c, v_##_Tpvec& d) \ +{ \ + _Tpvec##x4_t v = vld4q_##suffix(ptr); \ + a.val = v.val[0]; \ + b.val = v.val[1]; \ + c.val = v.val[2]; \ + d.val = v.val[3]; \ +} \ +inline void v_store_interleave( _Tp* ptr, const v_##_Tpvec& a, const v_##_Tpvec& b) \ +{ \ + _Tpvec##x2_t v; \ + v.val[0] = a.val; \ + v.val[1] = b.val; \ + vst2q_##suffix(ptr, v); \ +} \ +inline void v_store_interleave( _Tp* ptr, const v_##_Tpvec& a, const v_##_Tpvec& b, const v_##_Tpvec& c) \ +{ \ + _Tpvec##x3_t v; \ + v.val[0] = a.val; \ + v.val[1] = b.val; \ + v.val[2] = c.val; \ + vst3q_##suffix(ptr, v); \ +} \ +inline void v_store_interleave( _Tp* ptr, const v_##_Tpvec& a, const v_##_Tpvec& b, \ + const v_##_Tpvec& c, const v_##_Tpvec& d) \ +{ \ + _Tpvec##x4_t v; \ + v.val[0] = a.val; \ + v.val[1] = b.val; \ + v.val[2] = c.val; \ + v.val[3] = d.val; \ + vst4q_##suffix(ptr, v); \ +} + +OPENCV_HAL_IMPL_NEON_INTERLEAVED(uint8x16, uchar, u8) +OPENCV_HAL_IMPL_NEON_INTERLEAVED(int8x16, schar, s8) +OPENCV_HAL_IMPL_NEON_INTERLEAVED(uint16x8, ushort, u16) +OPENCV_HAL_IMPL_NEON_INTERLEAVED(int16x8, short, s16) +OPENCV_HAL_IMPL_NEON_INTERLEAVED(uint32x4, unsigned, u32) +OPENCV_HAL_IMPL_NEON_INTERLEAVED(int32x4, int, s32) +OPENCV_HAL_IMPL_NEON_INTERLEAVED(float32x4, float, f32) +#if CV_SIMD128_64F +OPENCV_HAL_IMPL_NEON_INTERLEAVED(float64x2, double, f64) +#endif + +inline v_float32x4 v_cvt_f32(const v_int32x4& a) +{ + return v_float32x4(vcvtq_f32_s32(a.val)); +} + +#if CV_SIMD128_64F +inline v_float32x4 v_cvt_f32(const v_float64x2& a) +{ + float32x2_t zero = vdup_n_f32(0.0f); + return v_float32x4(vcombine_f32(vcvt_f32_f64(a.val), zero)); +} + +inline v_float64x2 v_cvt_f64(const v_int32x4& a) +{ + return v_float64x2(vcvt_f64_f32(vcvt_f32_s32(vget_low_s32(a.val)))); +} + +inline v_float64x2 v_cvt_f64_high(const v_int32x4& a) +{ + return v_float64x2(vcvt_f64_f32(vcvt_f32_s32(vget_high_s32(a.val)))); +} + +inline v_float64x2 v_cvt_f64(const v_float32x4& a) +{ + return v_float64x2(vcvt_f64_f32(vget_low_f32(a.val))); +} + +inline v_float64x2 v_cvt_f64_high(const v_float32x4& a) +{ + return v_float64x2(vcvt_f64_f32(vget_high_f32(a.val))); +} +#endif + +#if defined (HAVE_FP16) +inline v_float32x4 v_cvt_f32(const v_float16x4& a) +{ + return v_float32x4(vcvt_f32_f16(a.val)); +} + +inline v_float16x4 v_cvt_f16(const v_float32x4& a) +{ + return v_float16x4(vcvt_f16_f32(a.val)); +} +#endif + +//! @name Check SIMD support +//! @{ +//! @brief Check CPU capability of SIMD operation +static inline bool hasSIMD128() +{ + return checkHardwareSupport(CV_CPU_NEON); +} + +//! @} + +//! @endcond + +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/core/hal/intrin_sse.hpp b/thirdparty1/linux/include/opencv2/core/hal/intrin_sse.hpp new file mode 100644 index 0000000..fc81dac --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/hal/intrin_sse.hpp @@ -0,0 +1,1744 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2015, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_HAL_SSE_HPP +#define OPENCV_HAL_SSE_HPP + +#include +#include "opencv2/core/utility.hpp" + +#define CV_SIMD128 1 +#define CV_SIMD128_64F 1 + +namespace cv +{ + +//! @cond IGNORED + +struct v_uint8x16 +{ + typedef uchar lane_type; + enum { nlanes = 16 }; + + v_uint8x16() {} + explicit v_uint8x16(__m128i v) : val(v) {} + v_uint8x16(uchar v0, uchar v1, uchar v2, uchar v3, uchar v4, uchar v5, uchar v6, uchar v7, + uchar v8, uchar v9, uchar v10, uchar v11, uchar v12, uchar v13, uchar v14, uchar v15) + { + val = _mm_setr_epi8((char)v0, (char)v1, (char)v2, (char)v3, + (char)v4, (char)v5, (char)v6, (char)v7, + (char)v8, (char)v9, (char)v10, (char)v11, + (char)v12, (char)v13, (char)v14, (char)v15); + } + uchar get0() const + { + return (uchar)_mm_cvtsi128_si32(val); + } + + __m128i val; +}; + +struct v_int8x16 +{ + typedef schar lane_type; + enum { nlanes = 16 }; + + v_int8x16() {} + explicit v_int8x16(__m128i v) : val(v) {} + v_int8x16(schar v0, schar v1, schar v2, schar v3, schar v4, schar v5, schar v6, schar v7, + schar v8, schar v9, schar v10, schar v11, schar v12, schar v13, schar v14, schar v15) + { + val = _mm_setr_epi8((char)v0, (char)v1, (char)v2, (char)v3, + (char)v4, (char)v5, (char)v6, (char)v7, + (char)v8, (char)v9, (char)v10, (char)v11, + (char)v12, (char)v13, (char)v14, (char)v15); + } + schar get0() const + { + return (schar)_mm_cvtsi128_si32(val); + } + + __m128i val; +}; + +struct v_uint16x8 +{ + typedef ushort lane_type; + enum { nlanes = 8 }; + + v_uint16x8() {} + explicit v_uint16x8(__m128i v) : val(v) {} + v_uint16x8(ushort v0, ushort v1, ushort v2, ushort v3, ushort v4, ushort v5, ushort v6, ushort v7) + { + val = _mm_setr_epi16((short)v0, (short)v1, (short)v2, (short)v3, + (short)v4, (short)v5, (short)v6, (short)v7); + } + ushort get0() const + { + return (ushort)_mm_cvtsi128_si32(val); + } + + __m128i val; +}; + +struct v_int16x8 +{ + typedef short lane_type; + enum { nlanes = 8 }; + + v_int16x8() {} + explicit v_int16x8(__m128i v) : val(v) {} + v_int16x8(short v0, short v1, short v2, short v3, short v4, short v5, short v6, short v7) + { + val = _mm_setr_epi16((short)v0, (short)v1, (short)v2, (short)v3, + (short)v4, (short)v5, (short)v6, (short)v7); + } + short get0() const + { + return (short)_mm_cvtsi128_si32(val); + } + __m128i val; +}; + +struct v_uint32x4 +{ + typedef unsigned lane_type; + enum { nlanes = 4 }; + + v_uint32x4() {} + explicit v_uint32x4(__m128i v) : val(v) {} + v_uint32x4(unsigned v0, unsigned v1, unsigned v2, unsigned v3) + { + val = _mm_setr_epi32((int)v0, (int)v1, (int)v2, (int)v3); + } + unsigned get0() const + { + return (unsigned)_mm_cvtsi128_si32(val); + } + __m128i val; +}; + +struct v_int32x4 +{ + typedef int lane_type; + enum { nlanes = 4 }; + + v_int32x4() {} + explicit v_int32x4(__m128i v) : val(v) {} + v_int32x4(int v0, int v1, int v2, int v3) + { + val = _mm_setr_epi32(v0, v1, v2, v3); + } + int get0() const + { + return _mm_cvtsi128_si32(val); + } + __m128i val; +}; + +struct v_float32x4 +{ + typedef float lane_type; + enum { nlanes = 4 }; + + v_float32x4() {} + explicit v_float32x4(__m128 v) : val(v) {} + v_float32x4(float v0, float v1, float v2, float v3) + { + val = _mm_setr_ps(v0, v1, v2, v3); + } + float get0() const + { + return _mm_cvtss_f32(val); + } + __m128 val; +}; + +struct v_uint64x2 +{ + typedef uint64 lane_type; + enum { nlanes = 2 }; + + v_uint64x2() {} + explicit v_uint64x2(__m128i v) : val(v) {} + v_uint64x2(uint64 v0, uint64 v1) + { + val = _mm_setr_epi32((int)v0, (int)(v0 >> 32), (int)v1, (int)(v1 >> 32)); + } + uint64 get0() const + { + int a = _mm_cvtsi128_si32(val); + int b = _mm_cvtsi128_si32(_mm_srli_epi64(val, 32)); + return (unsigned)a | ((uint64)(unsigned)b << 32); + } + __m128i val; +}; + +struct v_int64x2 +{ + typedef int64 lane_type; + enum { nlanes = 2 }; + + v_int64x2() {} + explicit v_int64x2(__m128i v) : val(v) {} + v_int64x2(int64 v0, int64 v1) + { + val = _mm_setr_epi32((int)v0, (int)(v0 >> 32), (int)v1, (int)(v1 >> 32)); + } + int64 get0() const + { + int a = _mm_cvtsi128_si32(val); + int b = _mm_cvtsi128_si32(_mm_srli_epi64(val, 32)); + return (int64)((unsigned)a | ((uint64)(unsigned)b << 32)); + } + __m128i val; +}; + +struct v_float64x2 +{ + typedef double lane_type; + enum { nlanes = 2 }; + + v_float64x2() {} + explicit v_float64x2(__m128d v) : val(v) {} + v_float64x2(double v0, double v1) + { + val = _mm_setr_pd(v0, v1); + } + double get0() const + { + return _mm_cvtsd_f64(val); + } + __m128d val; +}; + +#if defined(HAVE_FP16) +struct v_float16x4 +{ + typedef short lane_type; + enum { nlanes = 4 }; + + v_float16x4() {} + explicit v_float16x4(__m128i v) : val(v) {} + v_float16x4(short v0, short v1, short v2, short v3) + { + val = _mm_setr_epi16(v0, v1, v2, v3, 0, 0, 0, 0); + } + short get0() const + { + return (short)_mm_cvtsi128_si32(val); + } + __m128i val; +}; +#endif + +#define OPENCV_HAL_IMPL_SSE_INITVEC(_Tpvec, _Tp, suffix, zsuffix, ssuffix, _Tps, cast) \ +inline _Tpvec v_setzero_##suffix() { return _Tpvec(_mm_setzero_##zsuffix()); } \ +inline _Tpvec v_setall_##suffix(_Tp v) { return _Tpvec(_mm_set1_##ssuffix((_Tps)v)); } \ +template inline _Tpvec v_reinterpret_as_##suffix(const _Tpvec0& a) \ +{ return _Tpvec(cast(a.val)); } + +OPENCV_HAL_IMPL_SSE_INITVEC(v_uint8x16, uchar, u8, si128, epi8, char, OPENCV_HAL_NOP) +OPENCV_HAL_IMPL_SSE_INITVEC(v_int8x16, schar, s8, si128, epi8, char, OPENCV_HAL_NOP) +OPENCV_HAL_IMPL_SSE_INITVEC(v_uint16x8, ushort, u16, si128, epi16, short, OPENCV_HAL_NOP) +OPENCV_HAL_IMPL_SSE_INITVEC(v_int16x8, short, s16, si128, epi16, short, OPENCV_HAL_NOP) +OPENCV_HAL_IMPL_SSE_INITVEC(v_uint32x4, unsigned, u32, si128, epi32, int, OPENCV_HAL_NOP) +OPENCV_HAL_IMPL_SSE_INITVEC(v_int32x4, int, s32, si128, epi32, int, OPENCV_HAL_NOP) +OPENCV_HAL_IMPL_SSE_INITVEC(v_float32x4, float, f32, ps, ps, float, _mm_castsi128_ps) +OPENCV_HAL_IMPL_SSE_INITVEC(v_float64x2, double, f64, pd, pd, double, _mm_castsi128_pd) + +inline v_uint64x2 v_setzero_u64() { return v_uint64x2(_mm_setzero_si128()); } +inline v_int64x2 v_setzero_s64() { return v_int64x2(_mm_setzero_si128()); } +inline v_uint64x2 v_setall_u64(uint64 val) { return v_uint64x2(val, val); } +inline v_int64x2 v_setall_s64(int64 val) { return v_int64x2(val, val); } + +template inline +v_uint64x2 v_reinterpret_as_u64(const _Tpvec& a) { return v_uint64x2(a.val); } +template inline +v_int64x2 v_reinterpret_as_s64(const _Tpvec& a) { return v_int64x2(a.val); } +inline v_float32x4 v_reinterpret_as_f32(const v_uint64x2& a) +{ return v_float32x4(_mm_castsi128_ps(a.val)); } +inline v_float32x4 v_reinterpret_as_f32(const v_int64x2& a) +{ return v_float32x4(_mm_castsi128_ps(a.val)); } +inline v_float64x2 v_reinterpret_as_f64(const v_uint64x2& a) +{ return v_float64x2(_mm_castsi128_pd(a.val)); } +inline v_float64x2 v_reinterpret_as_f64(const v_int64x2& a) +{ return v_float64x2(_mm_castsi128_pd(a.val)); } + +#define OPENCV_HAL_IMPL_SSE_INIT_FROM_FLT(_Tpvec, suffix) \ +inline _Tpvec v_reinterpret_as_##suffix(const v_float32x4& a) \ +{ return _Tpvec(_mm_castps_si128(a.val)); } \ +inline _Tpvec v_reinterpret_as_##suffix(const v_float64x2& a) \ +{ return _Tpvec(_mm_castpd_si128(a.val)); } + +OPENCV_HAL_IMPL_SSE_INIT_FROM_FLT(v_uint8x16, u8) +OPENCV_HAL_IMPL_SSE_INIT_FROM_FLT(v_int8x16, s8) +OPENCV_HAL_IMPL_SSE_INIT_FROM_FLT(v_uint16x8, u16) +OPENCV_HAL_IMPL_SSE_INIT_FROM_FLT(v_int16x8, s16) +OPENCV_HAL_IMPL_SSE_INIT_FROM_FLT(v_uint32x4, u32) +OPENCV_HAL_IMPL_SSE_INIT_FROM_FLT(v_int32x4, s32) +OPENCV_HAL_IMPL_SSE_INIT_FROM_FLT(v_uint64x2, u64) +OPENCV_HAL_IMPL_SSE_INIT_FROM_FLT(v_int64x2, s64) + +inline v_float32x4 v_reinterpret_as_f32(const v_float32x4& a) {return a; } +inline v_float64x2 v_reinterpret_as_f64(const v_float64x2& a) {return a; } +inline v_float32x4 v_reinterpret_as_f32(const v_float64x2& a) {return v_float32x4(_mm_castpd_ps(a.val)); } +inline v_float64x2 v_reinterpret_as_f64(const v_float32x4& a) {return v_float64x2(_mm_castps_pd(a.val)); } + +//////////////// PACK /////////////// +inline v_uint8x16 v_pack(const v_uint16x8& a, const v_uint16x8& b) +{ + __m128i delta = _mm_set1_epi16(255); + return v_uint8x16(_mm_packus_epi16(_mm_subs_epu16(a.val, _mm_subs_epu16(a.val, delta)), + _mm_subs_epu16(b.val, _mm_subs_epu16(b.val, delta)))); +} + +inline void v_pack_store(uchar* ptr, const v_uint16x8& a) +{ + __m128i delta = _mm_set1_epi16(255); + __m128i a1 = _mm_subs_epu16(a.val, _mm_subs_epu16(a.val, delta)); + _mm_storel_epi64((__m128i*)ptr, _mm_packus_epi16(a1, a1)); +} + +inline v_uint8x16 v_pack_u(const v_int16x8& a, const v_int16x8& b) +{ return v_uint8x16(_mm_packus_epi16(a.val, b.val)); } + +inline void v_pack_u_store(uchar* ptr, const v_int16x8& a) +{ _mm_storel_epi64((__m128i*)ptr, _mm_packus_epi16(a.val, a.val)); } + +template inline +v_uint8x16 v_rshr_pack(const v_uint16x8& a, const v_uint16x8& b) +{ + // we assume that n > 0, and so the shifted 16-bit values can be treated as signed numbers. + __m128i delta = _mm_set1_epi16((short)(1 << (n-1))); + return v_uint8x16(_mm_packus_epi16(_mm_srli_epi16(_mm_adds_epu16(a.val, delta), n), + _mm_srli_epi16(_mm_adds_epu16(b.val, delta), n))); +} + +template inline +void v_rshr_pack_store(uchar* ptr, const v_uint16x8& a) +{ + __m128i delta = _mm_set1_epi16((short)(1 << (n-1))); + __m128i a1 = _mm_srli_epi16(_mm_adds_epu16(a.val, delta), n); + _mm_storel_epi64((__m128i*)ptr, _mm_packus_epi16(a1, a1)); +} + +template inline +v_uint8x16 v_rshr_pack_u(const v_int16x8& a, const v_int16x8& b) +{ + __m128i delta = _mm_set1_epi16((short)(1 << (n-1))); + return v_uint8x16(_mm_packus_epi16(_mm_srai_epi16(_mm_adds_epi16(a.val, delta), n), + _mm_srai_epi16(_mm_adds_epi16(b.val, delta), n))); +} + +template inline +void v_rshr_pack_u_store(uchar* ptr, const v_int16x8& a) +{ + __m128i delta = _mm_set1_epi16((short)(1 << (n-1))); + __m128i a1 = _mm_srai_epi16(_mm_adds_epi16(a.val, delta), n); + _mm_storel_epi64((__m128i*)ptr, _mm_packus_epi16(a1, a1)); +} + +inline v_int8x16 v_pack(const v_int16x8& a, const v_int16x8& b) +{ return v_int8x16(_mm_packs_epi16(a.val, b.val)); } + +inline void v_pack_store(schar* ptr, v_int16x8& a) +{ _mm_storel_epi64((__m128i*)ptr, _mm_packs_epi16(a.val, a.val)); } + +template inline +v_int8x16 v_rshr_pack(const v_int16x8& a, const v_int16x8& b) +{ + // we assume that n > 0, and so the shifted 16-bit values can be treated as signed numbers. + __m128i delta = _mm_set1_epi16((short)(1 << (n-1))); + return v_int8x16(_mm_packs_epi16(_mm_srai_epi16(_mm_adds_epi16(a.val, delta), n), + _mm_srai_epi16(_mm_adds_epi16(b.val, delta), n))); +} +template inline +void v_rshr_pack_store(schar* ptr, const v_int16x8& a) +{ + // we assume that n > 0, and so the shifted 16-bit values can be treated as signed numbers. + __m128i delta = _mm_set1_epi16((short)(1 << (n-1))); + __m128i a1 = _mm_srai_epi16(_mm_adds_epi16(a.val, delta), n); + _mm_storel_epi64((__m128i*)ptr, _mm_packs_epi16(a1, a1)); +} + + +// bit-wise "mask ? a : b" +inline __m128i v_select_si128(__m128i mask, __m128i a, __m128i b) +{ + return _mm_xor_si128(b, _mm_and_si128(_mm_xor_si128(a, b), mask)); +} + +inline v_uint16x8 v_pack(const v_uint32x4& a, const v_uint32x4& b) +{ + __m128i z = _mm_setzero_si128(), maxval32 = _mm_set1_epi32(65535), delta32 = _mm_set1_epi32(32768); + __m128i a1 = _mm_sub_epi32(v_select_si128(_mm_cmpgt_epi32(z, a.val), maxval32, a.val), delta32); + __m128i b1 = _mm_sub_epi32(v_select_si128(_mm_cmpgt_epi32(z, b.val), maxval32, b.val), delta32); + __m128i r = _mm_packs_epi32(a1, b1); + return v_uint16x8(_mm_sub_epi16(r, _mm_set1_epi16(-32768))); +} + +inline void v_pack_store(ushort* ptr, const v_uint32x4& a) +{ + __m128i z = _mm_setzero_si128(), maxval32 = _mm_set1_epi32(65535), delta32 = _mm_set1_epi32(32768); + __m128i a1 = _mm_sub_epi32(v_select_si128(_mm_cmpgt_epi32(z, a.val), maxval32, a.val), delta32); + __m128i r = _mm_packs_epi32(a1, a1); + _mm_storel_epi64((__m128i*)ptr, _mm_sub_epi16(r, _mm_set1_epi16(-32768))); +} + +template inline +v_uint16x8 v_rshr_pack(const v_uint32x4& a, const v_uint32x4& b) +{ + __m128i delta = _mm_set1_epi32(1 << (n-1)), delta32 = _mm_set1_epi32(32768); + __m128i a1 = _mm_sub_epi32(_mm_srli_epi32(_mm_add_epi32(a.val, delta), n), delta32); + __m128i b1 = _mm_sub_epi32(_mm_srli_epi32(_mm_add_epi32(b.val, delta), n), delta32); + return v_uint16x8(_mm_sub_epi16(_mm_packs_epi32(a1, b1), _mm_set1_epi16(-32768))); +} + +template inline +void v_rshr_pack_store(ushort* ptr, const v_uint32x4& a) +{ + __m128i delta = _mm_set1_epi32(1 << (n-1)), delta32 = _mm_set1_epi32(32768); + __m128i a1 = _mm_sub_epi32(_mm_srli_epi32(_mm_add_epi32(a.val, delta), n), delta32); + __m128i a2 = _mm_sub_epi16(_mm_packs_epi32(a1, a1), _mm_set1_epi16(-32768)); + _mm_storel_epi64((__m128i*)ptr, a2); +} + +inline v_uint16x8 v_pack_u(const v_int32x4& a, const v_int32x4& b) +{ + __m128i delta32 = _mm_set1_epi32(32768); + __m128i r = _mm_packs_epi32(_mm_sub_epi32(a.val, delta32), _mm_sub_epi32(b.val, delta32)); + return v_uint16x8(_mm_sub_epi16(r, _mm_set1_epi16(-32768))); +} + +inline void v_pack_u_store(ushort* ptr, const v_int32x4& a) +{ + __m128i delta32 = _mm_set1_epi32(32768); + __m128i a1 = _mm_sub_epi32(a.val, delta32); + __m128i r = _mm_sub_epi16(_mm_packs_epi32(a1, a1), _mm_set1_epi16(-32768)); + _mm_storel_epi64((__m128i*)ptr, r); +} + +template inline +v_uint16x8 v_rshr_pack_u(const v_int32x4& a, const v_int32x4& b) +{ + __m128i delta = _mm_set1_epi32(1 << (n-1)), delta32 = _mm_set1_epi32(32768); + __m128i a1 = _mm_sub_epi32(_mm_srai_epi32(_mm_add_epi32(a.val, delta), n), delta32); + __m128i a2 = _mm_sub_epi16(_mm_packs_epi32(a1, a1), _mm_set1_epi16(-32768)); + __m128i b1 = _mm_sub_epi32(_mm_srai_epi32(_mm_add_epi32(b.val, delta), n), delta32); + __m128i b2 = _mm_sub_epi16(_mm_packs_epi32(b1, b1), _mm_set1_epi16(-32768)); + return v_uint16x8(_mm_unpacklo_epi64(a2, b2)); +} + +template inline +void v_rshr_pack_u_store(ushort* ptr, const v_int32x4& a) +{ + __m128i delta = _mm_set1_epi32(1 << (n-1)), delta32 = _mm_set1_epi32(32768); + __m128i a1 = _mm_sub_epi32(_mm_srai_epi32(_mm_add_epi32(a.val, delta), n), delta32); + __m128i a2 = _mm_sub_epi16(_mm_packs_epi32(a1, a1), _mm_set1_epi16(-32768)); + _mm_storel_epi64((__m128i*)ptr, a2); +} + +inline v_int16x8 v_pack(const v_int32x4& a, const v_int32x4& b) +{ return v_int16x8(_mm_packs_epi32(a.val, b.val)); } + +inline void v_pack_store(short* ptr, const v_int32x4& a) +{ + _mm_storel_epi64((__m128i*)ptr, _mm_packs_epi32(a.val, a.val)); +} + +template inline +v_int16x8 v_rshr_pack(const v_int32x4& a, const v_int32x4& b) +{ + __m128i delta = _mm_set1_epi32(1 << (n-1)); + return v_int16x8(_mm_packs_epi32(_mm_srai_epi32(_mm_add_epi32(a.val, delta), n), + _mm_srai_epi32(_mm_add_epi32(b.val, delta), n))); +} + +template inline +void v_rshr_pack_store(short* ptr, const v_int32x4& a) +{ + __m128i delta = _mm_set1_epi32(1 << (n-1)); + __m128i a1 = _mm_srai_epi32(_mm_add_epi32(a.val, delta), n); + _mm_storel_epi64((__m128i*)ptr, _mm_packs_epi32(a1, a1)); +} + + +// [a0 0 | b0 0] [a1 0 | b1 0] +inline v_uint32x4 v_pack(const v_uint64x2& a, const v_uint64x2& b) +{ + __m128i v0 = _mm_unpacklo_epi32(a.val, b.val); // a0 a1 0 0 + __m128i v1 = _mm_unpackhi_epi32(a.val, b.val); // b0 b1 0 0 + return v_uint32x4(_mm_unpacklo_epi32(v0, v1)); +} + +inline void v_pack_store(unsigned* ptr, const v_uint64x2& a) +{ + __m128i a1 = _mm_shuffle_epi32(a.val, _MM_SHUFFLE(0, 2, 2, 0)); + _mm_storel_epi64((__m128i*)ptr, a1); +} + +// [a0 0 | b0 0] [a1 0 | b1 0] +inline v_int32x4 v_pack(const v_int64x2& a, const v_int64x2& b) +{ + __m128i v0 = _mm_unpacklo_epi32(a.val, b.val); // a0 a1 0 0 + __m128i v1 = _mm_unpackhi_epi32(a.val, b.val); // b0 b1 0 0 + return v_int32x4(_mm_unpacklo_epi32(v0, v1)); +} + +inline void v_pack_store(int* ptr, const v_int64x2& a) +{ + __m128i a1 = _mm_shuffle_epi32(a.val, _MM_SHUFFLE(0, 2, 2, 0)); + _mm_storel_epi64((__m128i*)ptr, a1); +} + +template inline +v_uint32x4 v_rshr_pack(const v_uint64x2& a, const v_uint64x2& b) +{ + uint64 delta = (uint64)1 << (n-1); + v_uint64x2 delta2(delta, delta); + __m128i a1 = _mm_srli_epi64(_mm_add_epi64(a.val, delta2.val), n); + __m128i b1 = _mm_srli_epi64(_mm_add_epi64(b.val, delta2.val), n); + __m128i v0 = _mm_unpacklo_epi32(a1, b1); // a0 a1 0 0 + __m128i v1 = _mm_unpackhi_epi32(a1, b1); // b0 b1 0 0 + return v_uint32x4(_mm_unpacklo_epi32(v0, v1)); +} + +template inline +void v_rshr_pack_store(unsigned* ptr, const v_uint64x2& a) +{ + uint64 delta = (uint64)1 << (n-1); + v_uint64x2 delta2(delta, delta); + __m128i a1 = _mm_srli_epi64(_mm_add_epi64(a.val, delta2.val), n); + __m128i a2 = _mm_shuffle_epi32(a1, _MM_SHUFFLE(0, 2, 2, 0)); + _mm_storel_epi64((__m128i*)ptr, a2); +} + +inline __m128i v_sign_epi64(__m128i a) +{ + return _mm_shuffle_epi32(_mm_srai_epi32(a, 31), _MM_SHUFFLE(3, 3, 1, 1)); // x m0 | x m1 +} + +inline __m128i v_srai_epi64(__m128i a, int imm) +{ + __m128i smask = v_sign_epi64(a); + return _mm_xor_si128(_mm_srli_epi64(_mm_xor_si128(a, smask), imm), smask); +} + +template inline +v_int32x4 v_rshr_pack(const v_int64x2& a, const v_int64x2& b) +{ + int64 delta = (int64)1 << (n-1); + v_int64x2 delta2(delta, delta); + __m128i a1 = v_srai_epi64(_mm_add_epi64(a.val, delta2.val), n); + __m128i b1 = v_srai_epi64(_mm_add_epi64(b.val, delta2.val), n); + __m128i v0 = _mm_unpacklo_epi32(a1, b1); // a0 a1 0 0 + __m128i v1 = _mm_unpackhi_epi32(a1, b1); // b0 b1 0 0 + return v_int32x4(_mm_unpacklo_epi32(v0, v1)); +} + +template inline +void v_rshr_pack_store(int* ptr, const v_int64x2& a) +{ + int64 delta = (int64)1 << (n-1); + v_int64x2 delta2(delta, delta); + __m128i a1 = v_srai_epi64(_mm_add_epi64(a.val, delta2.val), n); + __m128i a2 = _mm_shuffle_epi32(a1, _MM_SHUFFLE(0, 2, 2, 0)); + _mm_storel_epi64((__m128i*)ptr, a2); +} + +inline v_float32x4 v_matmul(const v_float32x4& v, const v_float32x4& m0, + const v_float32x4& m1, const v_float32x4& m2, + const v_float32x4& m3) +{ + __m128 v0 = _mm_mul_ps(_mm_shuffle_ps(v.val, v.val, _MM_SHUFFLE(0, 0, 0, 0)), m0.val); + __m128 v1 = _mm_mul_ps(_mm_shuffle_ps(v.val, v.val, _MM_SHUFFLE(1, 1, 1, 1)), m1.val); + __m128 v2 = _mm_mul_ps(_mm_shuffle_ps(v.val, v.val, _MM_SHUFFLE(2, 2, 2, 2)), m2.val); + __m128 v3 = _mm_mul_ps(_mm_shuffle_ps(v.val, v.val, _MM_SHUFFLE(3, 3, 3, 3)), m3.val); + + return v_float32x4(_mm_add_ps(_mm_add_ps(v0, v1), _mm_add_ps(v2, v3))); +} + + +#define OPENCV_HAL_IMPL_SSE_BIN_OP(bin_op, _Tpvec, intrin) \ + inline _Tpvec operator bin_op (const _Tpvec& a, const _Tpvec& b) \ + { \ + return _Tpvec(intrin(a.val, b.val)); \ + } \ + inline _Tpvec& operator bin_op##= (_Tpvec& a, const _Tpvec& b) \ + { \ + a.val = intrin(a.val, b.val); \ + return a; \ + } + +OPENCV_HAL_IMPL_SSE_BIN_OP(+, v_uint8x16, _mm_adds_epu8) +OPENCV_HAL_IMPL_SSE_BIN_OP(-, v_uint8x16, _mm_subs_epu8) +OPENCV_HAL_IMPL_SSE_BIN_OP(+, v_int8x16, _mm_adds_epi8) +OPENCV_HAL_IMPL_SSE_BIN_OP(-, v_int8x16, _mm_subs_epi8) +OPENCV_HAL_IMPL_SSE_BIN_OP(+, v_uint16x8, _mm_adds_epu16) +OPENCV_HAL_IMPL_SSE_BIN_OP(-, v_uint16x8, _mm_subs_epu16) +OPENCV_HAL_IMPL_SSE_BIN_OP(*, v_uint16x8, _mm_mullo_epi16) +OPENCV_HAL_IMPL_SSE_BIN_OP(+, v_int16x8, _mm_adds_epi16) +OPENCV_HAL_IMPL_SSE_BIN_OP(-, v_int16x8, _mm_subs_epi16) +OPENCV_HAL_IMPL_SSE_BIN_OP(*, v_int16x8, _mm_mullo_epi16) +OPENCV_HAL_IMPL_SSE_BIN_OP(+, v_uint32x4, _mm_add_epi32) +OPENCV_HAL_IMPL_SSE_BIN_OP(-, v_uint32x4, _mm_sub_epi32) +OPENCV_HAL_IMPL_SSE_BIN_OP(+, v_int32x4, _mm_add_epi32) +OPENCV_HAL_IMPL_SSE_BIN_OP(-, v_int32x4, _mm_sub_epi32) +OPENCV_HAL_IMPL_SSE_BIN_OP(+, v_float32x4, _mm_add_ps) +OPENCV_HAL_IMPL_SSE_BIN_OP(-, v_float32x4, _mm_sub_ps) +OPENCV_HAL_IMPL_SSE_BIN_OP(*, v_float32x4, _mm_mul_ps) +OPENCV_HAL_IMPL_SSE_BIN_OP(/, v_float32x4, _mm_div_ps) +OPENCV_HAL_IMPL_SSE_BIN_OP(+, v_float64x2, _mm_add_pd) +OPENCV_HAL_IMPL_SSE_BIN_OP(-, v_float64x2, _mm_sub_pd) +OPENCV_HAL_IMPL_SSE_BIN_OP(*, v_float64x2, _mm_mul_pd) +OPENCV_HAL_IMPL_SSE_BIN_OP(/, v_float64x2, _mm_div_pd) +OPENCV_HAL_IMPL_SSE_BIN_OP(+, v_uint64x2, _mm_add_epi64) +OPENCV_HAL_IMPL_SSE_BIN_OP(-, v_uint64x2, _mm_sub_epi64) +OPENCV_HAL_IMPL_SSE_BIN_OP(+, v_int64x2, _mm_add_epi64) +OPENCV_HAL_IMPL_SSE_BIN_OP(-, v_int64x2, _mm_sub_epi64) + +inline v_uint32x4 operator * (const v_uint32x4& a, const v_uint32x4& b) +{ + __m128i c0 = _mm_mul_epu32(a.val, b.val); + __m128i c1 = _mm_mul_epu32(_mm_srli_epi64(a.val, 32), _mm_srli_epi64(b.val, 32)); + __m128i d0 = _mm_unpacklo_epi32(c0, c1); + __m128i d1 = _mm_unpackhi_epi32(c0, c1); + return v_uint32x4(_mm_unpacklo_epi64(d0, d1)); +} +inline v_int32x4 operator * (const v_int32x4& a, const v_int32x4& b) +{ + __m128i c0 = _mm_mul_epu32(a.val, b.val); + __m128i c1 = _mm_mul_epu32(_mm_srli_epi64(a.val, 32), _mm_srli_epi64(b.val, 32)); + __m128i d0 = _mm_unpacklo_epi32(c0, c1); + __m128i d1 = _mm_unpackhi_epi32(c0, c1); + return v_int32x4(_mm_unpacklo_epi64(d0, d1)); +} +inline v_uint32x4& operator *= (v_uint32x4& a, const v_uint32x4& b) +{ + a = a * b; + return a; +} +inline v_int32x4& operator *= (v_int32x4& a, const v_int32x4& b) +{ + a = a * b; + return a; +} + +inline void v_mul_expand(const v_int16x8& a, const v_int16x8& b, + v_int32x4& c, v_int32x4& d) +{ + __m128i v0 = _mm_mullo_epi16(a.val, b.val); + __m128i v1 = _mm_mulhi_epi16(a.val, b.val); + c.val = _mm_unpacklo_epi16(v0, v1); + d.val = _mm_unpackhi_epi16(v0, v1); +} + +inline void v_mul_expand(const v_uint16x8& a, const v_uint16x8& b, + v_uint32x4& c, v_uint32x4& d) +{ + __m128i v0 = _mm_mullo_epi16(a.val, b.val); + __m128i v1 = _mm_mulhi_epu16(a.val, b.val); + c.val = _mm_unpacklo_epi16(v0, v1); + d.val = _mm_unpackhi_epi16(v0, v1); +} + +inline void v_mul_expand(const v_uint32x4& a, const v_uint32x4& b, + v_uint64x2& c, v_uint64x2& d) +{ + __m128i c0 = _mm_mul_epu32(a.val, b.val); + __m128i c1 = _mm_mul_epu32(_mm_srli_epi64(a.val, 32), _mm_srli_epi64(b.val, 32)); + c.val = _mm_unpacklo_epi64(c0, c1); + d.val = _mm_unpackhi_epi64(c0, c1); +} + +inline v_int32x4 v_dotprod(const v_int16x8& a, const v_int16x8& b) +{ + return v_int32x4(_mm_madd_epi16(a.val, b.val)); +} + +#define OPENCV_HAL_IMPL_SSE_LOGIC_OP(_Tpvec, suffix, not_const) \ + OPENCV_HAL_IMPL_SSE_BIN_OP(&, _Tpvec, _mm_and_##suffix) \ + OPENCV_HAL_IMPL_SSE_BIN_OP(|, _Tpvec, _mm_or_##suffix) \ + OPENCV_HAL_IMPL_SSE_BIN_OP(^, _Tpvec, _mm_xor_##suffix) \ + inline _Tpvec operator ~ (const _Tpvec& a) \ + { \ + return _Tpvec(_mm_xor_##suffix(a.val, not_const)); \ + } + +OPENCV_HAL_IMPL_SSE_LOGIC_OP(v_uint8x16, si128, _mm_set1_epi32(-1)) +OPENCV_HAL_IMPL_SSE_LOGIC_OP(v_int8x16, si128, _mm_set1_epi32(-1)) +OPENCV_HAL_IMPL_SSE_LOGIC_OP(v_uint16x8, si128, _mm_set1_epi32(-1)) +OPENCV_HAL_IMPL_SSE_LOGIC_OP(v_int16x8, si128, _mm_set1_epi32(-1)) +OPENCV_HAL_IMPL_SSE_LOGIC_OP(v_uint32x4, si128, _mm_set1_epi32(-1)) +OPENCV_HAL_IMPL_SSE_LOGIC_OP(v_int32x4, si128, _mm_set1_epi32(-1)) +OPENCV_HAL_IMPL_SSE_LOGIC_OP(v_uint64x2, si128, _mm_set1_epi32(-1)) +OPENCV_HAL_IMPL_SSE_LOGIC_OP(v_int64x2, si128, _mm_set1_epi32(-1)) +OPENCV_HAL_IMPL_SSE_LOGIC_OP(v_float32x4, ps, _mm_castsi128_ps(_mm_set1_epi32(-1))) +OPENCV_HAL_IMPL_SSE_LOGIC_OP(v_float64x2, pd, _mm_castsi128_pd(_mm_set1_epi32(-1))) + +inline v_float32x4 v_sqrt(const v_float32x4& x) +{ return v_float32x4(_mm_sqrt_ps(x.val)); } + +inline v_float32x4 v_invsqrt(const v_float32x4& x) +{ + static const __m128 _0_5 = _mm_set1_ps(0.5f), _1_5 = _mm_set1_ps(1.5f); + __m128 t = x.val; + __m128 h = _mm_mul_ps(t, _0_5); + t = _mm_rsqrt_ps(t); + t = _mm_mul_ps(t, _mm_sub_ps(_1_5, _mm_mul_ps(_mm_mul_ps(t, t), h))); + return v_float32x4(t); +} + +inline v_float64x2 v_sqrt(const v_float64x2& x) +{ return v_float64x2(_mm_sqrt_pd(x.val)); } + +inline v_float64x2 v_invsqrt(const v_float64x2& x) +{ + static const __m128d v_1 = _mm_set1_pd(1.); + return v_float64x2(_mm_div_pd(v_1, _mm_sqrt_pd(x.val))); +} + +#define OPENCV_HAL_IMPL_SSE_ABS_INT_FUNC(_Tpuvec, _Tpsvec, func, suffix, subWidth) \ +inline _Tpuvec v_abs(const _Tpsvec& x) \ +{ return _Tpuvec(_mm_##func##_ep##suffix(x.val, _mm_sub_ep##subWidth(_mm_setzero_si128(), x.val))); } + +OPENCV_HAL_IMPL_SSE_ABS_INT_FUNC(v_uint8x16, v_int8x16, min, u8, i8) +OPENCV_HAL_IMPL_SSE_ABS_INT_FUNC(v_uint16x8, v_int16x8, max, i16, i16) +inline v_uint32x4 v_abs(const v_int32x4& x) +{ + __m128i s = _mm_srli_epi32(x.val, 31); + __m128i f = _mm_srai_epi32(x.val, 31); + return v_uint32x4(_mm_add_epi32(_mm_xor_si128(x.val, f), s)); +} +inline v_float32x4 v_abs(const v_float32x4& x) +{ return v_float32x4(_mm_and_ps(x.val, _mm_castsi128_ps(_mm_set1_epi32(0x7fffffff)))); } +inline v_float64x2 v_abs(const v_float64x2& x) +{ + return v_float64x2(_mm_and_pd(x.val, + _mm_castsi128_pd(_mm_srli_epi64(_mm_set1_epi32(-1), 1)))); +} + +// TODO: exp, log, sin, cos + +#define OPENCV_HAL_IMPL_SSE_BIN_FUNC(_Tpvec, func, intrin) \ +inline _Tpvec func(const _Tpvec& a, const _Tpvec& b) \ +{ \ + return _Tpvec(intrin(a.val, b.val)); \ +} + +OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_uint8x16, v_min, _mm_min_epu8) +OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_uint8x16, v_max, _mm_max_epu8) +OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_int16x8, v_min, _mm_min_epi16) +OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_int16x8, v_max, _mm_max_epi16) +OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_float32x4, v_min, _mm_min_ps) +OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_float32x4, v_max, _mm_max_ps) +OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_float64x2, v_min, _mm_min_pd) +OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_float64x2, v_max, _mm_max_pd) + +inline v_int8x16 v_min(const v_int8x16& a, const v_int8x16& b) +{ + __m128i delta = _mm_set1_epi8((char)-128); + return v_int8x16(_mm_xor_si128(delta, _mm_min_epu8(_mm_xor_si128(a.val, delta), + _mm_xor_si128(b.val, delta)))); +} +inline v_int8x16 v_max(const v_int8x16& a, const v_int8x16& b) +{ + __m128i delta = _mm_set1_epi8((char)-128); + return v_int8x16(_mm_xor_si128(delta, _mm_max_epu8(_mm_xor_si128(a.val, delta), + _mm_xor_si128(b.val, delta)))); +} +inline v_uint16x8 v_min(const v_uint16x8& a, const v_uint16x8& b) +{ + return v_uint16x8(_mm_subs_epu16(a.val, _mm_subs_epu16(a.val, b.val))); +} +inline v_uint16x8 v_max(const v_uint16x8& a, const v_uint16x8& b) +{ + return v_uint16x8(_mm_adds_epu16(_mm_subs_epu16(a.val, b.val), b.val)); +} +inline v_uint32x4 v_min(const v_uint32x4& a, const v_uint32x4& b) +{ + __m128i delta = _mm_set1_epi32((int)0x80000000); + __m128i mask = _mm_cmpgt_epi32(_mm_xor_si128(a.val, delta), _mm_xor_si128(b.val, delta)); + return v_uint32x4(v_select_si128(mask, b.val, a.val)); +} +inline v_uint32x4 v_max(const v_uint32x4& a, const v_uint32x4& b) +{ + __m128i delta = _mm_set1_epi32((int)0x80000000); + __m128i mask = _mm_cmpgt_epi32(_mm_xor_si128(a.val, delta), _mm_xor_si128(b.val, delta)); + return v_uint32x4(v_select_si128(mask, a.val, b.val)); +} +inline v_int32x4 v_min(const v_int32x4& a, const v_int32x4& b) +{ + return v_int32x4(v_select_si128(_mm_cmpgt_epi32(a.val, b.val), b.val, a.val)); +} +inline v_int32x4 v_max(const v_int32x4& a, const v_int32x4& b) +{ + return v_int32x4(v_select_si128(_mm_cmpgt_epi32(a.val, b.val), a.val, b.val)); +} + +#define OPENCV_HAL_IMPL_SSE_INT_CMP_OP(_Tpuvec, _Tpsvec, suffix, sbit) \ +inline _Tpuvec operator == (const _Tpuvec& a, const _Tpuvec& b) \ +{ return _Tpuvec(_mm_cmpeq_##suffix(a.val, b.val)); } \ +inline _Tpuvec operator != (const _Tpuvec& a, const _Tpuvec& b) \ +{ \ + __m128i not_mask = _mm_set1_epi32(-1); \ + return _Tpuvec(_mm_xor_si128(_mm_cmpeq_##suffix(a.val, b.val), not_mask)); \ +} \ +inline _Tpsvec operator == (const _Tpsvec& a, const _Tpsvec& b) \ +{ return _Tpsvec(_mm_cmpeq_##suffix(a.val, b.val)); } \ +inline _Tpsvec operator != (const _Tpsvec& a, const _Tpsvec& b) \ +{ \ + __m128i not_mask = _mm_set1_epi32(-1); \ + return _Tpsvec(_mm_xor_si128(_mm_cmpeq_##suffix(a.val, b.val), not_mask)); \ +} \ +inline _Tpuvec operator < (const _Tpuvec& a, const _Tpuvec& b) \ +{ \ + __m128i smask = _mm_set1_##suffix(sbit); \ + return _Tpuvec(_mm_cmpgt_##suffix(_mm_xor_si128(b.val, smask), _mm_xor_si128(a.val, smask))); \ +} \ +inline _Tpuvec operator > (const _Tpuvec& a, const _Tpuvec& b) \ +{ \ + __m128i smask = _mm_set1_##suffix(sbit); \ + return _Tpuvec(_mm_cmpgt_##suffix(_mm_xor_si128(a.val, smask), _mm_xor_si128(b.val, smask))); \ +} \ +inline _Tpuvec operator <= (const _Tpuvec& a, const _Tpuvec& b) \ +{ \ + __m128i smask = _mm_set1_##suffix(sbit); \ + __m128i not_mask = _mm_set1_epi32(-1); \ + __m128i res = _mm_cmpgt_##suffix(_mm_xor_si128(a.val, smask), _mm_xor_si128(b.val, smask)); \ + return _Tpuvec(_mm_xor_si128(res, not_mask)); \ +} \ +inline _Tpuvec operator >= (const _Tpuvec& a, const _Tpuvec& b) \ +{ \ + __m128i smask = _mm_set1_##suffix(sbit); \ + __m128i not_mask = _mm_set1_epi32(-1); \ + __m128i res = _mm_cmpgt_##suffix(_mm_xor_si128(b.val, smask), _mm_xor_si128(a.val, smask)); \ + return _Tpuvec(_mm_xor_si128(res, not_mask)); \ +} \ +inline _Tpsvec operator < (const _Tpsvec& a, const _Tpsvec& b) \ +{ \ + return _Tpsvec(_mm_cmpgt_##suffix(b.val, a.val)); \ +} \ +inline _Tpsvec operator > (const _Tpsvec& a, const _Tpsvec& b) \ +{ \ + return _Tpsvec(_mm_cmpgt_##suffix(a.val, b.val)); \ +} \ +inline _Tpsvec operator <= (const _Tpsvec& a, const _Tpsvec& b) \ +{ \ + __m128i not_mask = _mm_set1_epi32(-1); \ + return _Tpsvec(_mm_xor_si128(_mm_cmpgt_##suffix(a.val, b.val), not_mask)); \ +} \ +inline _Tpsvec operator >= (const _Tpsvec& a, const _Tpsvec& b) \ +{ \ + __m128i not_mask = _mm_set1_epi32(-1); \ + return _Tpsvec(_mm_xor_si128(_mm_cmpgt_##suffix(b.val, a.val), not_mask)); \ +} + +OPENCV_HAL_IMPL_SSE_INT_CMP_OP(v_uint8x16, v_int8x16, epi8, (char)-128) +OPENCV_HAL_IMPL_SSE_INT_CMP_OP(v_uint16x8, v_int16x8, epi16, (short)-32768) +OPENCV_HAL_IMPL_SSE_INT_CMP_OP(v_uint32x4, v_int32x4, epi32, (int)0x80000000) + +#define OPENCV_HAL_IMPL_SSE_FLT_CMP_OP(_Tpvec, suffix) \ +inline _Tpvec operator == (const _Tpvec& a, const _Tpvec& b) \ +{ return _Tpvec(_mm_cmpeq_##suffix(a.val, b.val)); } \ +inline _Tpvec operator != (const _Tpvec& a, const _Tpvec& b) \ +{ return _Tpvec(_mm_cmpneq_##suffix(a.val, b.val)); } \ +inline _Tpvec operator < (const _Tpvec& a, const _Tpvec& b) \ +{ return _Tpvec(_mm_cmplt_##suffix(a.val, b.val)); } \ +inline _Tpvec operator > (const _Tpvec& a, const _Tpvec& b) \ +{ return _Tpvec(_mm_cmpgt_##suffix(a.val, b.val)); } \ +inline _Tpvec operator <= (const _Tpvec& a, const _Tpvec& b) \ +{ return _Tpvec(_mm_cmple_##suffix(a.val, b.val)); } \ +inline _Tpvec operator >= (const _Tpvec& a, const _Tpvec& b) \ +{ return _Tpvec(_mm_cmpge_##suffix(a.val, b.val)); } + +OPENCV_HAL_IMPL_SSE_FLT_CMP_OP(v_float32x4, ps) +OPENCV_HAL_IMPL_SSE_FLT_CMP_OP(v_float64x2, pd) + +OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_uint8x16, v_add_wrap, _mm_add_epi8) +OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_int8x16, v_add_wrap, _mm_add_epi8) +OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_uint16x8, v_add_wrap, _mm_add_epi16) +OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_int16x8, v_add_wrap, _mm_add_epi16) +OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_uint8x16, v_sub_wrap, _mm_sub_epi8) +OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_int8x16, v_sub_wrap, _mm_sub_epi8) +OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_uint16x8, v_sub_wrap, _mm_sub_epi16) +OPENCV_HAL_IMPL_SSE_BIN_FUNC(v_int16x8, v_sub_wrap, _mm_sub_epi16) + +#define OPENCV_HAL_IMPL_SSE_ABSDIFF_8_16(_Tpuvec, _Tpsvec, bits, smask32) \ +inline _Tpuvec v_absdiff(const _Tpuvec& a, const _Tpuvec& b) \ +{ \ + return _Tpuvec(_mm_add_epi##bits(_mm_subs_epu##bits(a.val, b.val), _mm_subs_epu##bits(b.val, a.val))); \ +} \ +inline _Tpuvec v_absdiff(const _Tpsvec& a, const _Tpsvec& b) \ +{ \ + __m128i smask = _mm_set1_epi32(smask32); \ + __m128i a1 = _mm_xor_si128(a.val, smask); \ + __m128i b1 = _mm_xor_si128(b.val, smask); \ + return _Tpuvec(_mm_add_epi##bits(_mm_subs_epu##bits(a1, b1), _mm_subs_epu##bits(b1, a1))); \ +} + +OPENCV_HAL_IMPL_SSE_ABSDIFF_8_16(v_uint8x16, v_int8x16, 8, (int)0x80808080) +OPENCV_HAL_IMPL_SSE_ABSDIFF_8_16(v_uint16x8, v_int16x8, 16, (int)0x80008000) + +inline v_uint32x4 v_absdiff(const v_uint32x4& a, const v_uint32x4& b) +{ + return v_max(a, b) - v_min(a, b); +} + +inline v_uint32x4 v_absdiff(const v_int32x4& a, const v_int32x4& b) +{ + __m128i d = _mm_sub_epi32(a.val, b.val); + __m128i m = _mm_cmpgt_epi32(b.val, a.val); + return v_uint32x4(_mm_sub_epi32(_mm_xor_si128(d, m), m)); +} + +#define OPENCV_HAL_IMPL_SSE_MISC_FLT_OP(_Tpvec, _Tp, _Tpreg, suffix, absmask_vec) \ +inline _Tpvec v_absdiff(const _Tpvec& a, const _Tpvec& b) \ +{ \ + _Tpreg absmask = _mm_castsi128_##suffix(absmask_vec); \ + return _Tpvec(_mm_and_##suffix(_mm_sub_##suffix(a.val, b.val), absmask)); \ +} \ +inline _Tpvec v_magnitude(const _Tpvec& a, const _Tpvec& b) \ +{ \ + _Tpreg res = _mm_add_##suffix(_mm_mul_##suffix(a.val, a.val), _mm_mul_##suffix(b.val, b.val)); \ + return _Tpvec(_mm_sqrt_##suffix(res)); \ +} \ +inline _Tpvec v_sqr_magnitude(const _Tpvec& a, const _Tpvec& b) \ +{ \ + _Tpreg res = _mm_add_##suffix(_mm_mul_##suffix(a.val, a.val), _mm_mul_##suffix(b.val, b.val)); \ + return _Tpvec(res); \ +} \ +inline _Tpvec v_muladd(const _Tpvec& a, const _Tpvec& b, const _Tpvec& c) \ +{ \ + return _Tpvec(_mm_add_##suffix(_mm_mul_##suffix(a.val, b.val), c.val)); \ +} + +OPENCV_HAL_IMPL_SSE_MISC_FLT_OP(v_float32x4, float, __m128, ps, _mm_set1_epi32((int)0x7fffffff)) +OPENCV_HAL_IMPL_SSE_MISC_FLT_OP(v_float64x2, double, __m128d, pd, _mm_srli_epi64(_mm_set1_epi32(-1), 1)) + +#define OPENCV_HAL_IMPL_SSE_SHIFT_OP(_Tpuvec, _Tpsvec, suffix, srai) \ +inline _Tpuvec operator << (const _Tpuvec& a, int imm) \ +{ \ + return _Tpuvec(_mm_slli_##suffix(a.val, imm)); \ +} \ +inline _Tpsvec operator << (const _Tpsvec& a, int imm) \ +{ \ + return _Tpsvec(_mm_slli_##suffix(a.val, imm)); \ +} \ +inline _Tpuvec operator >> (const _Tpuvec& a, int imm) \ +{ \ + return _Tpuvec(_mm_srli_##suffix(a.val, imm)); \ +} \ +inline _Tpsvec operator >> (const _Tpsvec& a, int imm) \ +{ \ + return _Tpsvec(srai(a.val, imm)); \ +} \ +template \ +inline _Tpuvec v_shl(const _Tpuvec& a) \ +{ \ + return _Tpuvec(_mm_slli_##suffix(a.val, imm)); \ +} \ +template \ +inline _Tpsvec v_shl(const _Tpsvec& a) \ +{ \ + return _Tpsvec(_mm_slli_##suffix(a.val, imm)); \ +} \ +template \ +inline _Tpuvec v_shr(const _Tpuvec& a) \ +{ \ + return _Tpuvec(_mm_srli_##suffix(a.val, imm)); \ +} \ +template \ +inline _Tpsvec v_shr(const _Tpsvec& a) \ +{ \ + return _Tpsvec(srai(a.val, imm)); \ +} + +OPENCV_HAL_IMPL_SSE_SHIFT_OP(v_uint16x8, v_int16x8, epi16, _mm_srai_epi16) +OPENCV_HAL_IMPL_SSE_SHIFT_OP(v_uint32x4, v_int32x4, epi32, _mm_srai_epi32) +OPENCV_HAL_IMPL_SSE_SHIFT_OP(v_uint64x2, v_int64x2, epi64, v_srai_epi64) + +#define OPENCV_HAL_IMPL_SSE_LOADSTORE_INT_OP(_Tpvec, _Tp) \ +inline _Tpvec v_load(const _Tp* ptr) \ +{ return _Tpvec(_mm_loadu_si128((const __m128i*)ptr)); } \ +inline _Tpvec v_load_aligned(const _Tp* ptr) \ +{ return _Tpvec(_mm_load_si128((const __m128i*)ptr)); } \ +inline _Tpvec v_load_halves(const _Tp* ptr0, const _Tp* ptr1) \ +{ \ + return _Tpvec(_mm_unpacklo_epi64(_mm_loadl_epi64((const __m128i*)ptr0), \ + _mm_loadl_epi64((const __m128i*)ptr1))); \ +} \ +inline void v_store(_Tp* ptr, const _Tpvec& a) \ +{ _mm_storeu_si128((__m128i*)ptr, a.val); } \ +inline void v_store_aligned(_Tp* ptr, const _Tpvec& a) \ +{ _mm_store_si128((__m128i*)ptr, a.val); } \ +inline void v_store_low(_Tp* ptr, const _Tpvec& a) \ +{ _mm_storel_epi64((__m128i*)ptr, a.val); } \ +inline void v_store_high(_Tp* ptr, const _Tpvec& a) \ +{ _mm_storel_epi64((__m128i*)ptr, _mm_unpackhi_epi64(a.val, a.val)); } + +OPENCV_HAL_IMPL_SSE_LOADSTORE_INT_OP(v_uint8x16, uchar) +OPENCV_HAL_IMPL_SSE_LOADSTORE_INT_OP(v_int8x16, schar) +OPENCV_HAL_IMPL_SSE_LOADSTORE_INT_OP(v_uint16x8, ushort) +OPENCV_HAL_IMPL_SSE_LOADSTORE_INT_OP(v_int16x8, short) +OPENCV_HAL_IMPL_SSE_LOADSTORE_INT_OP(v_uint32x4, unsigned) +OPENCV_HAL_IMPL_SSE_LOADSTORE_INT_OP(v_int32x4, int) +OPENCV_HAL_IMPL_SSE_LOADSTORE_INT_OP(v_uint64x2, uint64) +OPENCV_HAL_IMPL_SSE_LOADSTORE_INT_OP(v_int64x2, int64) + +#define OPENCV_HAL_IMPL_SSE_LOADSTORE_FLT_OP(_Tpvec, _Tp, suffix) \ +inline _Tpvec v_load(const _Tp* ptr) \ +{ return _Tpvec(_mm_loadu_##suffix(ptr)); } \ +inline _Tpvec v_load_aligned(const _Tp* ptr) \ +{ return _Tpvec(_mm_load_##suffix(ptr)); } \ +inline _Tpvec v_load_halves(const _Tp* ptr0, const _Tp* ptr1) \ +{ \ + return _Tpvec(_mm_castsi128_##suffix( \ + _mm_unpacklo_epi64(_mm_loadl_epi64((const __m128i*)ptr0), \ + _mm_loadl_epi64((const __m128i*)ptr1)))); \ +} \ +inline void v_store(_Tp* ptr, const _Tpvec& a) \ +{ _mm_storeu_##suffix(ptr, a.val); } \ +inline void v_store_aligned(_Tp* ptr, const _Tpvec& a) \ +{ _mm_store_##suffix(ptr, a.val); } \ +inline void v_store_low(_Tp* ptr, const _Tpvec& a) \ +{ _mm_storel_epi64((__m128i*)ptr, _mm_cast##suffix##_si128(a.val)); } \ +inline void v_store_high(_Tp* ptr, const _Tpvec& a) \ +{ \ + __m128i a1 = _mm_cast##suffix##_si128(a.val); \ + _mm_storel_epi64((__m128i*)ptr, _mm_unpackhi_epi64(a1, a1)); \ +} + +OPENCV_HAL_IMPL_SSE_LOADSTORE_FLT_OP(v_float32x4, float, ps) +OPENCV_HAL_IMPL_SSE_LOADSTORE_FLT_OP(v_float64x2, double, pd) + +#if defined(HAVE_FP16) +inline v_float16x4 v_load_f16(const short* ptr) +{ return v_float16x4(_mm_loadl_epi64((const __m128i*)ptr)); } +inline void v_store_f16(short* ptr, v_float16x4& a) +{ _mm_storel_epi64((__m128i*)ptr, a.val); } +#endif + +#define OPENCV_HAL_IMPL_SSE_REDUCE_OP_8(_Tpvec, scalartype, func, suffix, sbit) \ +inline scalartype v_reduce_##func(const v_##_Tpvec& a) \ +{ \ + __m128i val = a.val; \ + val = _mm_##func##_##suffix(val, _mm_srli_si128(val,8)); \ + val = _mm_##func##_##suffix(val, _mm_srli_si128(val,4)); \ + val = _mm_##func##_##suffix(val, _mm_srli_si128(val,2)); \ + return (scalartype)_mm_cvtsi128_si32(val); \ +} \ +inline unsigned scalartype v_reduce_##func(const v_u##_Tpvec& a) \ +{ \ + __m128i val = a.val; \ + __m128i smask = _mm_set1_epi16(sbit); \ + val = _mm_xor_si128(val, smask); \ + val = _mm_##func##_##suffix(val, _mm_srli_si128(val,8)); \ + val = _mm_##func##_##suffix(val, _mm_srli_si128(val,4)); \ + val = _mm_##func##_##suffix(val, _mm_srli_si128(val,2)); \ + return (unsigned scalartype)(_mm_cvtsi128_si32(val) ^ sbit); \ +} +#define OPENCV_HAL_IMPL_SSE_REDUCE_OP_8_SUM(_Tpvec, scalartype, suffix) \ +inline scalartype v_reduce_sum(const v_##_Tpvec& a) \ +{ \ + __m128i val = a.val; \ + val = _mm_adds_epi##suffix(val, _mm_srli_si128(val, 8)); \ + val = _mm_adds_epi##suffix(val, _mm_srli_si128(val, 4)); \ + val = _mm_adds_epi##suffix(val, _mm_srli_si128(val, 2)); \ + return (scalartype)_mm_cvtsi128_si32(val); \ +} \ +inline unsigned scalartype v_reduce_sum(const v_u##_Tpvec& a) \ +{ \ + __m128i val = a.val; \ + val = _mm_adds_epu##suffix(val, _mm_srli_si128(val, 8)); \ + val = _mm_adds_epu##suffix(val, _mm_srli_si128(val, 4)); \ + val = _mm_adds_epu##suffix(val, _mm_srli_si128(val, 2)); \ + return (unsigned scalartype)_mm_cvtsi128_si32(val); \ +} +OPENCV_HAL_IMPL_SSE_REDUCE_OP_8(int16x8, short, max, epi16, (short)-32768) +OPENCV_HAL_IMPL_SSE_REDUCE_OP_8(int16x8, short, min, epi16, (short)-32768) +OPENCV_HAL_IMPL_SSE_REDUCE_OP_8_SUM(int16x8, short, 16) + +#define OPENCV_HAL_IMPL_SSE_REDUCE_OP_4(_Tpvec, scalartype, func, scalar_func) \ +inline scalartype v_reduce_##func(const _Tpvec& a) \ +{ \ + scalartype CV_DECL_ALIGNED(16) buf[4]; \ + v_store_aligned(buf, a); \ + scalartype s0 = scalar_func(buf[0], buf[1]); \ + scalartype s1 = scalar_func(buf[2], buf[3]); \ + return scalar_func(s0, s1); \ +} + +OPENCV_HAL_IMPL_SSE_REDUCE_OP_4(v_uint32x4, unsigned, sum, OPENCV_HAL_ADD) +OPENCV_HAL_IMPL_SSE_REDUCE_OP_4(v_uint32x4, unsigned, max, std::max) +OPENCV_HAL_IMPL_SSE_REDUCE_OP_4(v_uint32x4, unsigned, min, std::min) +OPENCV_HAL_IMPL_SSE_REDUCE_OP_4(v_int32x4, int, sum, OPENCV_HAL_ADD) +OPENCV_HAL_IMPL_SSE_REDUCE_OP_4(v_int32x4, int, max, std::max) +OPENCV_HAL_IMPL_SSE_REDUCE_OP_4(v_int32x4, int, min, std::min) +OPENCV_HAL_IMPL_SSE_REDUCE_OP_4(v_float32x4, float, sum, OPENCV_HAL_ADD) +OPENCV_HAL_IMPL_SSE_REDUCE_OP_4(v_float32x4, float, max, std::max) +OPENCV_HAL_IMPL_SSE_REDUCE_OP_4(v_float32x4, float, min, std::min) + +#define OPENCV_HAL_IMPL_SSE_CHECK_SIGNS(_Tpvec, suffix, pack_op, and_op, signmask, allmask) \ +inline int v_signmask(const _Tpvec& a) \ +{ \ + return and_op(_mm_movemask_##suffix(pack_op(a.val)), signmask); \ +} \ +inline bool v_check_all(const _Tpvec& a) \ +{ return and_op(_mm_movemask_##suffix(a.val), allmask) == allmask; } \ +inline bool v_check_any(const _Tpvec& a) \ +{ return and_op(_mm_movemask_##suffix(a.val), allmask) != 0; } + +#define OPENCV_HAL_PACKS(a) _mm_packs_epi16(a, a) +inline __m128i v_packq_epi32(__m128i a) +{ + __m128i b = _mm_packs_epi32(a, a); + return _mm_packs_epi16(b, b); +} + +OPENCV_HAL_IMPL_SSE_CHECK_SIGNS(v_uint8x16, epi8, OPENCV_HAL_NOP, OPENCV_HAL_1ST, 65535, 65535) +OPENCV_HAL_IMPL_SSE_CHECK_SIGNS(v_int8x16, epi8, OPENCV_HAL_NOP, OPENCV_HAL_1ST, 65535, 65535) +OPENCV_HAL_IMPL_SSE_CHECK_SIGNS(v_uint16x8, epi8, OPENCV_HAL_PACKS, OPENCV_HAL_AND, 255, (int)0xaaaa) +OPENCV_HAL_IMPL_SSE_CHECK_SIGNS(v_int16x8, epi8, OPENCV_HAL_PACKS, OPENCV_HAL_AND, 255, (int)0xaaaa) +OPENCV_HAL_IMPL_SSE_CHECK_SIGNS(v_uint32x4, epi8, v_packq_epi32, OPENCV_HAL_AND, 15, (int)0x8888) +OPENCV_HAL_IMPL_SSE_CHECK_SIGNS(v_int32x4, epi8, v_packq_epi32, OPENCV_HAL_AND, 15, (int)0x8888) +OPENCV_HAL_IMPL_SSE_CHECK_SIGNS(v_float32x4, ps, OPENCV_HAL_NOP, OPENCV_HAL_1ST, 15, 15) +OPENCV_HAL_IMPL_SSE_CHECK_SIGNS(v_float64x2, pd, OPENCV_HAL_NOP, OPENCV_HAL_1ST, 3, 3) + +#define OPENCV_HAL_IMPL_SSE_SELECT(_Tpvec, suffix) \ +inline _Tpvec v_select(const _Tpvec& mask, const _Tpvec& a, const _Tpvec& b) \ +{ \ + return _Tpvec(_mm_xor_##suffix(b.val, _mm_and_##suffix(_mm_xor_##suffix(b.val, a.val), mask.val))); \ +} + +OPENCV_HAL_IMPL_SSE_SELECT(v_uint8x16, si128) +OPENCV_HAL_IMPL_SSE_SELECT(v_int8x16, si128) +OPENCV_HAL_IMPL_SSE_SELECT(v_uint16x8, si128) +OPENCV_HAL_IMPL_SSE_SELECT(v_int16x8, si128) +OPENCV_HAL_IMPL_SSE_SELECT(v_uint32x4, si128) +OPENCV_HAL_IMPL_SSE_SELECT(v_int32x4, si128) +// OPENCV_HAL_IMPL_SSE_SELECT(v_uint64x2, si128) +// OPENCV_HAL_IMPL_SSE_SELECT(v_int64x2, si128) +OPENCV_HAL_IMPL_SSE_SELECT(v_float32x4, ps) +OPENCV_HAL_IMPL_SSE_SELECT(v_float64x2, pd) + +#define OPENCV_HAL_IMPL_SSE_EXPAND(_Tpuvec, _Tpwuvec, _Tpu, _Tpsvec, _Tpwsvec, _Tps, suffix, wsuffix, shift) \ +inline void v_expand(const _Tpuvec& a, _Tpwuvec& b0, _Tpwuvec& b1) \ +{ \ + __m128i z = _mm_setzero_si128(); \ + b0.val = _mm_unpacklo_##suffix(a.val, z); \ + b1.val = _mm_unpackhi_##suffix(a.val, z); \ +} \ +inline _Tpwuvec v_load_expand(const _Tpu* ptr) \ +{ \ + __m128i z = _mm_setzero_si128(); \ + return _Tpwuvec(_mm_unpacklo_##suffix(_mm_loadl_epi64((const __m128i*)ptr), z)); \ +} \ +inline void v_expand(const _Tpsvec& a, _Tpwsvec& b0, _Tpwsvec& b1) \ +{ \ + b0.val = _mm_srai_##wsuffix(_mm_unpacklo_##suffix(a.val, a.val), shift); \ + b1.val = _mm_srai_##wsuffix(_mm_unpackhi_##suffix(a.val, a.val), shift); \ +} \ +inline _Tpwsvec v_load_expand(const _Tps* ptr) \ +{ \ + __m128i a = _mm_loadl_epi64((const __m128i*)ptr); \ + return _Tpwsvec(_mm_srai_##wsuffix(_mm_unpacklo_##suffix(a, a), shift)); \ +} + +OPENCV_HAL_IMPL_SSE_EXPAND(v_uint8x16, v_uint16x8, uchar, v_int8x16, v_int16x8, schar, epi8, epi16, 8) +OPENCV_HAL_IMPL_SSE_EXPAND(v_uint16x8, v_uint32x4, ushort, v_int16x8, v_int32x4, short, epi16, epi32, 16) + +inline void v_expand(const v_uint32x4& a, v_uint64x2& b0, v_uint64x2& b1) +{ + __m128i z = _mm_setzero_si128(); + b0.val = _mm_unpacklo_epi32(a.val, z); + b1.val = _mm_unpackhi_epi32(a.val, z); +} +inline v_uint64x2 v_load_expand(const unsigned* ptr) +{ + __m128i z = _mm_setzero_si128(); + return v_uint64x2(_mm_unpacklo_epi32(_mm_loadl_epi64((const __m128i*)ptr), z)); +} +inline void v_expand(const v_int32x4& a, v_int64x2& b0, v_int64x2& b1) +{ + __m128i s = _mm_srai_epi32(a.val, 31); + b0.val = _mm_unpacklo_epi32(a.val, s); + b1.val = _mm_unpackhi_epi32(a.val, s); +} +inline v_int64x2 v_load_expand(const int* ptr) +{ + __m128i a = _mm_loadl_epi64((const __m128i*)ptr); + __m128i s = _mm_srai_epi32(a, 31); + return v_int64x2(_mm_unpacklo_epi32(a, s)); +} + +inline v_uint32x4 v_load_expand_q(const uchar* ptr) +{ + __m128i z = _mm_setzero_si128(); + __m128i a = _mm_cvtsi32_si128(*(const int*)ptr); + return v_uint32x4(_mm_unpacklo_epi16(_mm_unpacklo_epi8(a, z), z)); +} + +inline v_int32x4 v_load_expand_q(const schar* ptr) +{ + __m128i a = _mm_cvtsi32_si128(*(const int*)ptr); + a = _mm_unpacklo_epi8(a, a); + a = _mm_unpacklo_epi8(a, a); + return v_int32x4(_mm_srai_epi32(a, 24)); +} + +#define OPENCV_HAL_IMPL_SSE_UNPACKS(_Tpvec, suffix, cast_from, cast_to) \ +inline void v_zip(const _Tpvec& a0, const _Tpvec& a1, _Tpvec& b0, _Tpvec& b1) \ +{ \ + b0.val = _mm_unpacklo_##suffix(a0.val, a1.val); \ + b1.val = _mm_unpackhi_##suffix(a0.val, a1.val); \ +} \ +inline _Tpvec v_combine_low(const _Tpvec& a, const _Tpvec& b) \ +{ \ + __m128i a1 = cast_from(a.val), b1 = cast_from(b.val); \ + return _Tpvec(cast_to(_mm_unpacklo_epi64(a1, b1))); \ +} \ +inline _Tpvec v_combine_high(const _Tpvec& a, const _Tpvec& b) \ +{ \ + __m128i a1 = cast_from(a.val), b1 = cast_from(b.val); \ + return _Tpvec(cast_to(_mm_unpackhi_epi64(a1, b1))); \ +} \ +inline void v_recombine(const _Tpvec& a, const _Tpvec& b, _Tpvec& c, _Tpvec& d) \ +{ \ + __m128i a1 = cast_from(a.val), b1 = cast_from(b.val); \ + c.val = cast_to(_mm_unpacklo_epi64(a1, b1)); \ + d.val = cast_to(_mm_unpackhi_epi64(a1, b1)); \ +} + +OPENCV_HAL_IMPL_SSE_UNPACKS(v_uint8x16, epi8, OPENCV_HAL_NOP, OPENCV_HAL_NOP) +OPENCV_HAL_IMPL_SSE_UNPACKS(v_int8x16, epi8, OPENCV_HAL_NOP, OPENCV_HAL_NOP) +OPENCV_HAL_IMPL_SSE_UNPACKS(v_uint16x8, epi16, OPENCV_HAL_NOP, OPENCV_HAL_NOP) +OPENCV_HAL_IMPL_SSE_UNPACKS(v_int16x8, epi16, OPENCV_HAL_NOP, OPENCV_HAL_NOP) +OPENCV_HAL_IMPL_SSE_UNPACKS(v_uint32x4, epi32, OPENCV_HAL_NOP, OPENCV_HAL_NOP) +OPENCV_HAL_IMPL_SSE_UNPACKS(v_int32x4, epi32, OPENCV_HAL_NOP, OPENCV_HAL_NOP) +OPENCV_HAL_IMPL_SSE_UNPACKS(v_float32x4, ps, _mm_castps_si128, _mm_castsi128_ps) +OPENCV_HAL_IMPL_SSE_UNPACKS(v_float64x2, pd, _mm_castpd_si128, _mm_castsi128_pd) + +template +inline _Tpvec v_extract(const _Tpvec& a, const _Tpvec& b) +{ + const int w = sizeof(typename _Tpvec::lane_type); + const int n = _Tpvec::nlanes; + __m128i ra, rb; + ra = _mm_srli_si128(a.val, s*w); + rb = _mm_slli_si128(b.val, (n-s)*w); + return _Tpvec(_mm_or_si128(ra, rb)); +} + +inline v_int32x4 v_round(const v_float32x4& a) +{ return v_int32x4(_mm_cvtps_epi32(a.val)); } + +inline v_int32x4 v_floor(const v_float32x4& a) +{ + __m128i a1 = _mm_cvtps_epi32(a.val); + __m128i mask = _mm_castps_si128(_mm_cmpgt_ps(_mm_cvtepi32_ps(a1), a.val)); + return v_int32x4(_mm_add_epi32(a1, mask)); +} + +inline v_int32x4 v_ceil(const v_float32x4& a) +{ + __m128i a1 = _mm_cvtps_epi32(a.val); + __m128i mask = _mm_castps_si128(_mm_cmpgt_ps(a.val, _mm_cvtepi32_ps(a1))); + return v_int32x4(_mm_sub_epi32(a1, mask)); +} + +inline v_int32x4 v_trunc(const v_float32x4& a) +{ return v_int32x4(_mm_cvttps_epi32(a.val)); } + +inline v_int32x4 v_round(const v_float64x2& a) +{ return v_int32x4(_mm_cvtpd_epi32(a.val)); } + +inline v_int32x4 v_floor(const v_float64x2& a) +{ + __m128i a1 = _mm_cvtpd_epi32(a.val); + __m128i mask = _mm_castpd_si128(_mm_cmpgt_pd(_mm_cvtepi32_pd(a1), a.val)); + mask = _mm_srli_si128(_mm_slli_si128(mask, 4), 8); // m0 m0 m1 m1 => m0 m1 0 0 + return v_int32x4(_mm_add_epi32(a1, mask)); +} + +inline v_int32x4 v_ceil(const v_float64x2& a) +{ + __m128i a1 = _mm_cvtpd_epi32(a.val); + __m128i mask = _mm_castpd_si128(_mm_cmpgt_pd(a.val, _mm_cvtepi32_pd(a1))); + mask = _mm_srli_si128(_mm_slli_si128(mask, 4), 8); // m0 m0 m1 m1 => m0 m1 0 0 + return v_int32x4(_mm_sub_epi32(a1, mask)); +} + +inline v_int32x4 v_trunc(const v_float64x2& a) +{ return v_int32x4(_mm_cvttpd_epi32(a.val)); } + +#define OPENCV_HAL_IMPL_SSE_TRANSPOSE4x4(_Tpvec, suffix, cast_from, cast_to) \ +inline void v_transpose4x4(const _Tpvec& a0, const _Tpvec& a1, \ + const _Tpvec& a2, const _Tpvec& a3, \ + _Tpvec& b0, _Tpvec& b1, \ + _Tpvec& b2, _Tpvec& b3) \ +{ \ + __m128i t0 = cast_from(_mm_unpacklo_##suffix(a0.val, a1.val)); \ + __m128i t1 = cast_from(_mm_unpacklo_##suffix(a2.val, a3.val)); \ + __m128i t2 = cast_from(_mm_unpackhi_##suffix(a0.val, a1.val)); \ + __m128i t3 = cast_from(_mm_unpackhi_##suffix(a2.val, a3.val)); \ +\ + b0.val = cast_to(_mm_unpacklo_epi64(t0, t1)); \ + b1.val = cast_to(_mm_unpackhi_epi64(t0, t1)); \ + b2.val = cast_to(_mm_unpacklo_epi64(t2, t3)); \ + b3.val = cast_to(_mm_unpackhi_epi64(t2, t3)); \ +} + +OPENCV_HAL_IMPL_SSE_TRANSPOSE4x4(v_uint32x4, epi32, OPENCV_HAL_NOP, OPENCV_HAL_NOP) +OPENCV_HAL_IMPL_SSE_TRANSPOSE4x4(v_int32x4, epi32, OPENCV_HAL_NOP, OPENCV_HAL_NOP) +OPENCV_HAL_IMPL_SSE_TRANSPOSE4x4(v_float32x4, ps, _mm_castps_si128, _mm_castsi128_ps) + +// adopted from sse_utils.hpp +inline void v_load_deinterleave(const uchar* ptr, v_uint8x16& a, v_uint8x16& b, v_uint8x16& c) +{ + __m128i t00 = _mm_loadu_si128((const __m128i*)ptr); + __m128i t01 = _mm_loadu_si128((const __m128i*)(ptr + 16)); + __m128i t02 = _mm_loadu_si128((const __m128i*)(ptr + 32)); + + __m128i t10 = _mm_unpacklo_epi8(t00, _mm_unpackhi_epi64(t01, t01)); + __m128i t11 = _mm_unpacklo_epi8(_mm_unpackhi_epi64(t00, t00), t02); + __m128i t12 = _mm_unpacklo_epi8(t01, _mm_unpackhi_epi64(t02, t02)); + + __m128i t20 = _mm_unpacklo_epi8(t10, _mm_unpackhi_epi64(t11, t11)); + __m128i t21 = _mm_unpacklo_epi8(_mm_unpackhi_epi64(t10, t10), t12); + __m128i t22 = _mm_unpacklo_epi8(t11, _mm_unpackhi_epi64(t12, t12)); + + __m128i t30 = _mm_unpacklo_epi8(t20, _mm_unpackhi_epi64(t21, t21)); + __m128i t31 = _mm_unpacklo_epi8(_mm_unpackhi_epi64(t20, t20), t22); + __m128i t32 = _mm_unpacklo_epi8(t21, _mm_unpackhi_epi64(t22, t22)); + + a.val = _mm_unpacklo_epi8(t30, _mm_unpackhi_epi64(t31, t31)); + b.val = _mm_unpacklo_epi8(_mm_unpackhi_epi64(t30, t30), t32); + c.val = _mm_unpacklo_epi8(t31, _mm_unpackhi_epi64(t32, t32)); +} + +inline void v_load_deinterleave(const uchar* ptr, v_uint8x16& a, v_uint8x16& b, v_uint8x16& c, v_uint8x16& d) +{ + __m128i u0 = _mm_loadu_si128((const __m128i*)ptr); // a0 b0 c0 d0 a1 b1 c1 d1 ... + __m128i u1 = _mm_loadu_si128((const __m128i*)(ptr + 16)); // a4 b4 c4 d4 ... + __m128i u2 = _mm_loadu_si128((const __m128i*)(ptr + 32)); // a8 b8 c8 d8 ... + __m128i u3 = _mm_loadu_si128((const __m128i*)(ptr + 48)); // a12 b12 c12 d12 ... + + __m128i v0 = _mm_unpacklo_epi8(u0, u2); // a0 a8 b0 b8 ... + __m128i v1 = _mm_unpackhi_epi8(u0, u2); // a2 a10 b2 b10 ... + __m128i v2 = _mm_unpacklo_epi8(u1, u3); // a4 a12 b4 b12 ... + __m128i v3 = _mm_unpackhi_epi8(u1, u3); // a6 a14 b6 b14 ... + + u0 = _mm_unpacklo_epi8(v0, v2); // a0 a4 a8 a12 ... + u1 = _mm_unpacklo_epi8(v1, v3); // a2 a6 a10 a14 ... + u2 = _mm_unpackhi_epi8(v0, v2); // a1 a5 a9 a13 ... + u3 = _mm_unpackhi_epi8(v1, v3); // a3 a7 a11 a15 ... + + v0 = _mm_unpacklo_epi8(u0, u1); // a0 a2 a4 a6 ... + v1 = _mm_unpacklo_epi8(u2, u3); // a1 a3 a5 a7 ... + v2 = _mm_unpackhi_epi8(u0, u1); // c0 c2 c4 c6 ... + v3 = _mm_unpackhi_epi8(u2, u3); // c1 c3 c5 c7 ... + + a.val = _mm_unpacklo_epi8(v0, v1); + b.val = _mm_unpackhi_epi8(v0, v1); + c.val = _mm_unpacklo_epi8(v2, v3); + d.val = _mm_unpackhi_epi8(v2, v3); +} + +inline void v_load_deinterleave(const ushort* ptr, v_uint16x8& a, v_uint16x8& b, v_uint16x8& c) +{ + __m128i t00 = _mm_loadu_si128((const __m128i*)ptr); + __m128i t01 = _mm_loadu_si128((const __m128i*)(ptr + 8)); + __m128i t02 = _mm_loadu_si128((const __m128i*)(ptr + 16)); + + __m128i t10 = _mm_unpacklo_epi16(t00, _mm_unpackhi_epi64(t01, t01)); + __m128i t11 = _mm_unpacklo_epi16(_mm_unpackhi_epi64(t00, t00), t02); + __m128i t12 = _mm_unpacklo_epi16(t01, _mm_unpackhi_epi64(t02, t02)); + + __m128i t20 = _mm_unpacklo_epi16(t10, _mm_unpackhi_epi64(t11, t11)); + __m128i t21 = _mm_unpacklo_epi16(_mm_unpackhi_epi64(t10, t10), t12); + __m128i t22 = _mm_unpacklo_epi16(t11, _mm_unpackhi_epi64(t12, t12)); + + a.val = _mm_unpacklo_epi16(t20, _mm_unpackhi_epi64(t21, t21)); + b.val = _mm_unpacklo_epi16(_mm_unpackhi_epi64(t20, t20), t22); + c.val = _mm_unpacklo_epi16(t21, _mm_unpackhi_epi64(t22, t22)); +} + +inline void v_load_deinterleave(const ushort* ptr, v_uint16x8& a, v_uint16x8& b, v_uint16x8& c, v_uint16x8& d) +{ + __m128i u0 = _mm_loadu_si128((const __m128i*)ptr); // a0 b0 c0 d0 a1 b1 c1 d1 + __m128i u1 = _mm_loadu_si128((const __m128i*)(ptr + 8)); // a2 b2 c2 d2 ... + __m128i u2 = _mm_loadu_si128((const __m128i*)(ptr + 16)); // a4 b4 c4 d4 ... + __m128i u3 = _mm_loadu_si128((const __m128i*)(ptr + 24)); // a6 b6 c6 d6 ... + + __m128i v0 = _mm_unpacklo_epi16(u0, u2); // a0 a4 b0 b4 ... + __m128i v1 = _mm_unpackhi_epi16(u0, u2); // a1 a5 b1 b5 ... + __m128i v2 = _mm_unpacklo_epi16(u1, u3); // a2 a6 b2 b6 ... + __m128i v3 = _mm_unpackhi_epi16(u1, u3); // a3 a7 b3 b7 ... + + u0 = _mm_unpacklo_epi16(v0, v2); // a0 a2 a4 a6 ... + u1 = _mm_unpacklo_epi16(v1, v3); // a1 a3 a5 a7 ... + u2 = _mm_unpackhi_epi16(v0, v2); // c0 c2 c4 c6 ... + u3 = _mm_unpackhi_epi16(v1, v3); // c1 c3 c5 c7 ... + + a.val = _mm_unpacklo_epi16(u0, u1); + b.val = _mm_unpackhi_epi16(u0, u1); + c.val = _mm_unpacklo_epi16(u2, u3); + d.val = _mm_unpackhi_epi16(u2, u3); +} + +inline void v_load_deinterleave(const unsigned* ptr, v_uint32x4& a, v_uint32x4& b, v_uint32x4& c) +{ + __m128i t00 = _mm_loadu_si128((const __m128i*)ptr); + __m128i t01 = _mm_loadu_si128((const __m128i*)(ptr + 4)); + __m128i t02 = _mm_loadu_si128((const __m128i*)(ptr + 8)); + + __m128i t10 = _mm_unpacklo_epi32(t00, _mm_unpackhi_epi64(t01, t01)); + __m128i t11 = _mm_unpacklo_epi32(_mm_unpackhi_epi64(t00, t00), t02); + __m128i t12 = _mm_unpacklo_epi32(t01, _mm_unpackhi_epi64(t02, t02)); + + a.val = _mm_unpacklo_epi32(t10, _mm_unpackhi_epi64(t11, t11)); + b.val = _mm_unpacklo_epi32(_mm_unpackhi_epi64(t10, t10), t12); + c.val = _mm_unpacklo_epi32(t11, _mm_unpackhi_epi64(t12, t12)); +} + +inline void v_load_deinterleave(const unsigned* ptr, v_uint32x4& a, v_uint32x4& b, v_uint32x4& c, v_uint32x4& d) +{ + v_uint32x4 u0(_mm_loadu_si128((const __m128i*)ptr)); // a0 b0 c0 d0 + v_uint32x4 u1(_mm_loadu_si128((const __m128i*)(ptr + 4))); // a1 b1 c1 d1 + v_uint32x4 u2(_mm_loadu_si128((const __m128i*)(ptr + 8))); // a2 b2 c2 d2 + v_uint32x4 u3(_mm_loadu_si128((const __m128i*)(ptr + 12))); // a3 b3 c3 d3 + + v_transpose4x4(u0, u1, u2, u3, a, b, c, d); +} + +// 2-channel, float only +inline void v_load_deinterleave(const float* ptr, v_float32x4& a, v_float32x4& b) +{ + const int mask_lo = _MM_SHUFFLE(2, 0, 2, 0), mask_hi = _MM_SHUFFLE(3, 1, 3, 1); + + __m128 u0 = _mm_loadu_ps(ptr); // a0 b0 a1 b1 + __m128 u1 = _mm_loadu_ps((ptr + 4)); // a2 b2 a3 b3 + + a.val = _mm_shuffle_ps(u0, u1, mask_lo); // a0 a1 a2 a3 + b.val = _mm_shuffle_ps(u0, u1, mask_hi); // b0 b1 ab b3 +} + +inline void v_store_interleave( short* ptr, const v_int16x8& a, const v_int16x8& b ) +{ + __m128i t0, t1; + t0 = _mm_unpacklo_epi16(a.val, b.val); + t1 = _mm_unpackhi_epi16(a.val, b.val); + _mm_storeu_si128((__m128i*)(ptr), t0); + _mm_storeu_si128((__m128i*)(ptr + 8), t1); +} + +inline void v_store_interleave( uchar* ptr, const v_uint8x16& a, const v_uint8x16& b, + const v_uint8x16& c ) +{ + __m128i z = _mm_setzero_si128(); + __m128i ab0 = _mm_unpacklo_epi8(a.val, b.val); + __m128i ab1 = _mm_unpackhi_epi8(a.val, b.val); + __m128i c0 = _mm_unpacklo_epi8(c.val, z); + __m128i c1 = _mm_unpackhi_epi8(c.val, z); + + __m128i p00 = _mm_unpacklo_epi16(ab0, c0); + __m128i p01 = _mm_unpackhi_epi16(ab0, c0); + __m128i p02 = _mm_unpacklo_epi16(ab1, c1); + __m128i p03 = _mm_unpackhi_epi16(ab1, c1); + + __m128i p10 = _mm_unpacklo_epi32(p00, p01); + __m128i p11 = _mm_unpackhi_epi32(p00, p01); + __m128i p12 = _mm_unpacklo_epi32(p02, p03); + __m128i p13 = _mm_unpackhi_epi32(p02, p03); + + __m128i p20 = _mm_unpacklo_epi64(p10, p11); + __m128i p21 = _mm_unpackhi_epi64(p10, p11); + __m128i p22 = _mm_unpacklo_epi64(p12, p13); + __m128i p23 = _mm_unpackhi_epi64(p12, p13); + + p20 = _mm_slli_si128(p20, 1); + p22 = _mm_slli_si128(p22, 1); + + __m128i p30 = _mm_slli_epi64(_mm_unpacklo_epi32(p20, p21), 8); + __m128i p31 = _mm_srli_epi64(_mm_unpackhi_epi32(p20, p21), 8); + __m128i p32 = _mm_slli_epi64(_mm_unpacklo_epi32(p22, p23), 8); + __m128i p33 = _mm_srli_epi64(_mm_unpackhi_epi32(p22, p23), 8); + + __m128i p40 = _mm_unpacklo_epi64(p30, p31); + __m128i p41 = _mm_unpackhi_epi64(p30, p31); + __m128i p42 = _mm_unpacklo_epi64(p32, p33); + __m128i p43 = _mm_unpackhi_epi64(p32, p33); + + __m128i v0 = _mm_or_si128(_mm_srli_si128(p40, 2), _mm_slli_si128(p41, 10)); + __m128i v1 = _mm_or_si128(_mm_srli_si128(p41, 6), _mm_slli_si128(p42, 6)); + __m128i v2 = _mm_or_si128(_mm_srli_si128(p42, 10), _mm_slli_si128(p43, 2)); + + _mm_storeu_si128((__m128i*)(ptr), v0); + _mm_storeu_si128((__m128i*)(ptr + 16), v1); + _mm_storeu_si128((__m128i*)(ptr + 32), v2); +} + +inline void v_store_interleave( uchar* ptr, const v_uint8x16& a, const v_uint8x16& b, + const v_uint8x16& c, const v_uint8x16& d) +{ + // a0 a1 a2 a3 .... + // b0 b1 b2 b3 .... + // c0 c1 c2 c3 .... + // d0 d1 d2 d3 .... + __m128i u0 = _mm_unpacklo_epi8(a.val, c.val); // a0 c0 a1 c1 ... + __m128i u1 = _mm_unpackhi_epi8(a.val, c.val); // a8 c8 a9 c9 ... + __m128i u2 = _mm_unpacklo_epi8(b.val, d.val); // b0 d0 b1 d1 ... + __m128i u3 = _mm_unpackhi_epi8(b.val, d.val); // b8 d8 b9 d9 ... + + __m128i v0 = _mm_unpacklo_epi8(u0, u2); // a0 b0 c0 d0 ... + __m128i v1 = _mm_unpacklo_epi8(u1, u3); // a8 b8 c8 d8 ... + __m128i v2 = _mm_unpackhi_epi8(u0, u2); // a4 b4 c4 d4 ... + __m128i v3 = _mm_unpackhi_epi8(u1, u3); // a12 b12 c12 d12 ... + + _mm_storeu_si128((__m128i*)ptr, v0); + _mm_storeu_si128((__m128i*)(ptr + 16), v2); + _mm_storeu_si128((__m128i*)(ptr + 32), v1); + _mm_storeu_si128((__m128i*)(ptr + 48), v3); +} + +inline void v_store_interleave( ushort* ptr, const v_uint16x8& a, + const v_uint16x8& b, + const v_uint16x8& c ) +{ + __m128i z = _mm_setzero_si128(); + __m128i ab0 = _mm_unpacklo_epi16(a.val, b.val); + __m128i ab1 = _mm_unpackhi_epi16(a.val, b.val); + __m128i c0 = _mm_unpacklo_epi16(c.val, z); + __m128i c1 = _mm_unpackhi_epi16(c.val, z); + + __m128i p10 = _mm_unpacklo_epi32(ab0, c0); + __m128i p11 = _mm_unpackhi_epi32(ab0, c0); + __m128i p12 = _mm_unpacklo_epi32(ab1, c1); + __m128i p13 = _mm_unpackhi_epi32(ab1, c1); + + __m128i p20 = _mm_unpacklo_epi64(p10, p11); + __m128i p21 = _mm_unpackhi_epi64(p10, p11); + __m128i p22 = _mm_unpacklo_epi64(p12, p13); + __m128i p23 = _mm_unpackhi_epi64(p12, p13); + + p20 = _mm_slli_si128(p20, 2); + p22 = _mm_slli_si128(p22, 2); + + __m128i p30 = _mm_unpacklo_epi64(p20, p21); + __m128i p31 = _mm_unpackhi_epi64(p20, p21); + __m128i p32 = _mm_unpacklo_epi64(p22, p23); + __m128i p33 = _mm_unpackhi_epi64(p22, p23); + + __m128i v0 = _mm_or_si128(_mm_srli_si128(p30, 2), _mm_slli_si128(p31, 10)); + __m128i v1 = _mm_or_si128(_mm_srli_si128(p31, 6), _mm_slli_si128(p32, 6)); + __m128i v2 = _mm_or_si128(_mm_srli_si128(p32, 10), _mm_slli_si128(p33, 2)); + + _mm_storeu_si128((__m128i*)(ptr), v0); + _mm_storeu_si128((__m128i*)(ptr + 8), v1); + _mm_storeu_si128((__m128i*)(ptr + 16), v2); +} + +inline void v_store_interleave( ushort* ptr, const v_uint16x8& a, const v_uint16x8& b, + const v_uint16x8& c, const v_uint16x8& d) +{ + // a0 a1 a2 a3 .... + // b0 b1 b2 b3 .... + // c0 c1 c2 c3 .... + // d0 d1 d2 d3 .... + __m128i u0 = _mm_unpacklo_epi16(a.val, c.val); // a0 c0 a1 c1 ... + __m128i u1 = _mm_unpackhi_epi16(a.val, c.val); // a4 c4 a5 c5 ... + __m128i u2 = _mm_unpacklo_epi16(b.val, d.val); // b0 d0 b1 d1 ... + __m128i u3 = _mm_unpackhi_epi16(b.val, d.val); // b4 d4 b5 d5 ... + + __m128i v0 = _mm_unpacklo_epi16(u0, u2); // a0 b0 c0 d0 ... + __m128i v1 = _mm_unpacklo_epi16(u1, u3); // a4 b4 c4 d4 ... + __m128i v2 = _mm_unpackhi_epi16(u0, u2); // a2 b2 c2 d2 ... + __m128i v3 = _mm_unpackhi_epi16(u1, u3); // a6 b6 c6 d6 ... + + _mm_storeu_si128((__m128i*)ptr, v0); + _mm_storeu_si128((__m128i*)(ptr + 8), v2); + _mm_storeu_si128((__m128i*)(ptr + 16), v1); + _mm_storeu_si128((__m128i*)(ptr + 24), v3); +} + +inline void v_store_interleave( unsigned* ptr, const v_uint32x4& a, const v_uint32x4& b, + const v_uint32x4& c ) +{ + v_uint32x4 z = v_setzero_u32(), u0, u1, u2, u3; + v_transpose4x4(a, b, c, z, u0, u1, u2, u3); + + __m128i v0 = _mm_or_si128(u0.val, _mm_slli_si128(u1.val, 12)); + __m128i v1 = _mm_or_si128(_mm_srli_si128(u1.val, 4), _mm_slli_si128(u2.val, 8)); + __m128i v2 = _mm_or_si128(_mm_srli_si128(u2.val, 8), _mm_slli_si128(u3.val, 4)); + + _mm_storeu_si128((__m128i*)ptr, v0); + _mm_storeu_si128((__m128i*)(ptr + 4), v1); + _mm_storeu_si128((__m128i*)(ptr + 8), v2); +} + +inline void v_store_interleave(unsigned* ptr, const v_uint32x4& a, const v_uint32x4& b, + const v_uint32x4& c, const v_uint32x4& d) +{ + v_uint32x4 t0, t1, t2, t3; + v_transpose4x4(a, b, c, d, t0, t1, t2, t3); + v_store(ptr, t0); + v_store(ptr + 4, t1); + v_store(ptr + 8, t2); + v_store(ptr + 12, t3); +} + +// 2-channel, float only +inline void v_store_interleave(float* ptr, const v_float32x4& a, const v_float32x4& b) +{ + // a0 a1 a2 a3 ... + // b0 b1 b2 b3 ... + __m128 u0 = _mm_unpacklo_ps(a.val, b.val); // a0 b0 a1 b1 + __m128 u1 = _mm_unpackhi_ps(a.val, b.val); // a2 b2 a3 b3 + + _mm_storeu_ps(ptr, u0); + _mm_storeu_ps((ptr + 4), u1); +} + +#define OPENCV_HAL_IMPL_SSE_LOADSTORE_INTERLEAVE(_Tpvec, _Tp, suffix, _Tpuvec, _Tpu, usuffix) \ +inline void v_load_deinterleave( const _Tp* ptr, _Tpvec& a0, \ + _Tpvec& b0, _Tpvec& c0 ) \ +{ \ + _Tpuvec a1, b1, c1; \ + v_load_deinterleave((const _Tpu*)ptr, a1, b1, c1); \ + a0 = v_reinterpret_as_##suffix(a1); \ + b0 = v_reinterpret_as_##suffix(b1); \ + c0 = v_reinterpret_as_##suffix(c1); \ +} \ +inline void v_load_deinterleave( const _Tp* ptr, _Tpvec& a0, \ + _Tpvec& b0, _Tpvec& c0, _Tpvec& d0 ) \ +{ \ + _Tpuvec a1, b1, c1, d1; \ + v_load_deinterleave((const _Tpu*)ptr, a1, b1, c1, d1); \ + a0 = v_reinterpret_as_##suffix(a1); \ + b0 = v_reinterpret_as_##suffix(b1); \ + c0 = v_reinterpret_as_##suffix(c1); \ + d0 = v_reinterpret_as_##suffix(d1); \ +} \ +inline void v_store_interleave( _Tp* ptr, const _Tpvec& a0, \ + const _Tpvec& b0, const _Tpvec& c0 ) \ +{ \ + _Tpuvec a1 = v_reinterpret_as_##usuffix(a0); \ + _Tpuvec b1 = v_reinterpret_as_##usuffix(b0); \ + _Tpuvec c1 = v_reinterpret_as_##usuffix(c0); \ + v_store_interleave((_Tpu*)ptr, a1, b1, c1); \ +} \ +inline void v_store_interleave( _Tp* ptr, const _Tpvec& a0, const _Tpvec& b0, \ + const _Tpvec& c0, const _Tpvec& d0 ) \ +{ \ + _Tpuvec a1 = v_reinterpret_as_##usuffix(a0); \ + _Tpuvec b1 = v_reinterpret_as_##usuffix(b0); \ + _Tpuvec c1 = v_reinterpret_as_##usuffix(c0); \ + _Tpuvec d1 = v_reinterpret_as_##usuffix(d0); \ + v_store_interleave((_Tpu*)ptr, a1, b1, c1, d1); \ +} + +OPENCV_HAL_IMPL_SSE_LOADSTORE_INTERLEAVE(v_int8x16, schar, s8, v_uint8x16, uchar, u8) +OPENCV_HAL_IMPL_SSE_LOADSTORE_INTERLEAVE(v_int16x8, short, s16, v_uint16x8, ushort, u16) +OPENCV_HAL_IMPL_SSE_LOADSTORE_INTERLEAVE(v_int32x4, int, s32, v_uint32x4, unsigned, u32) +OPENCV_HAL_IMPL_SSE_LOADSTORE_INTERLEAVE(v_float32x4, float, f32, v_uint32x4, unsigned, u32) + +inline v_float32x4 v_cvt_f32(const v_int32x4& a) +{ + return v_float32x4(_mm_cvtepi32_ps(a.val)); +} + +inline v_float32x4 v_cvt_f32(const v_float64x2& a) +{ + return v_float32x4(_mm_cvtpd_ps(a.val)); +} + +inline v_float64x2 v_cvt_f64(const v_int32x4& a) +{ + return v_float64x2(_mm_cvtepi32_pd(a.val)); +} + +inline v_float64x2 v_cvt_f64_high(const v_int32x4& a) +{ + return v_float64x2(_mm_cvtepi32_pd(_mm_srli_si128(a.val,8))); +} + +inline v_float64x2 v_cvt_f64(const v_float32x4& a) +{ + return v_float64x2(_mm_cvtps_pd(a.val)); +} + +inline v_float64x2 v_cvt_f64_high(const v_float32x4& a) +{ + return v_float64x2(_mm_cvtps_pd(_mm_castsi128_ps(_mm_srli_si128(_mm_castps_si128(a.val),8)))); +} + +#if defined(HAVE_FP16) +inline v_float32x4 v_cvt_f32(const v_float16x4& a) +{ + return v_float32x4(_mm_cvtph_ps(a.val)); +} + +inline v_float16x4 v_cvt_f16(const v_float32x4& a) +{ + return v_float16x4(_mm_cvtps_ph(a.val, 0)); +} +#endif + +//! @name Check SIMD support +//! @{ +//! @brief Check CPU capability of SIMD operation +static inline bool hasSIMD128() +{ + return checkHardwareSupport(CV_CPU_SSE2); +} + +//! @} + +//! @endcond + +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/core/ippasync.hpp b/thirdparty1/linux/include/opencv2/core/ippasync.hpp new file mode 100644 index 0000000..0ed8264 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/ippasync.hpp @@ -0,0 +1,195 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2015, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2015, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_IPPASYNC_HPP +#define OPENCV_CORE_IPPASYNC_HPP + +#ifdef HAVE_IPP_A + +#include "opencv2/core.hpp" +#include +#include + +namespace cv +{ + +namespace hpp +{ + +/** @addtogroup core_ipp +This section describes conversion between OpenCV and [Intel® IPP Asynchronous +C/C++](http://software.intel.com/en-us/intel-ipp-preview) library. [Getting Started +Guide](http://registrationcenter.intel.com/irc_nas/3727/ipp_async_get_started.htm) help you to +install the library, configure header and library build paths. + */ +//! @{ + + //! convert OpenCV data type to hppDataType + inline int toHppType(const int cvType) + { + int depth = CV_MAT_DEPTH(cvType); + int hppType = depth == CV_8U ? HPP_DATA_TYPE_8U : + depth == CV_16U ? HPP_DATA_TYPE_16U : + depth == CV_16S ? HPP_DATA_TYPE_16S : + depth == CV_32S ? HPP_DATA_TYPE_32S : + depth == CV_32F ? HPP_DATA_TYPE_32F : + depth == CV_64F ? HPP_DATA_TYPE_64F : -1; + CV_Assert( hppType >= 0 ); + return hppType; + } + + //! convert hppDataType to OpenCV data type + inline int toCvType(const int hppType) + { + int cvType = hppType == HPP_DATA_TYPE_8U ? CV_8U : + hppType == HPP_DATA_TYPE_16U ? CV_16U : + hppType == HPP_DATA_TYPE_16S ? CV_16S : + hppType == HPP_DATA_TYPE_32S ? CV_32S : + hppType == HPP_DATA_TYPE_32F ? CV_32F : + hppType == HPP_DATA_TYPE_64F ? CV_64F : -1; + CV_Assert( cvType >= 0 ); + return cvType; + } + + /** @brief Convert hppiMatrix to Mat. + + This function allocates and initializes new matrix (if needed) that has the same size and type as + input matrix. Supports CV_8U, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F. + @param src input hppiMatrix. + @param dst output matrix. + @param accel accelerator instance (see hpp::getHpp for the list of acceleration framework types). + @param cn number of channels. + */ + inline void copyHppToMat(hppiMatrix* src, Mat& dst, hppAccel accel, int cn) + { + hppDataType type; + hpp32u width, height; + hppStatus sts; + + if (src == NULL) + return dst.release(); + + sts = hppiInquireMatrix(src, &type, &width, &height); + + CV_Assert( sts == HPP_STATUS_NO_ERROR); + + int matType = CV_MAKETYPE(toCvType(type), cn); + + CV_Assert(width%cn == 0); + + width /= cn; + + dst.create((int)height, (int)width, (int)matType); + + size_t newSize = (size_t)(height*(hpp32u)(dst.step)); + + sts = hppiGetMatrixData(accel,src,(hpp32u)(dst.step),dst.data,&newSize); + + CV_Assert( sts == HPP_STATUS_NO_ERROR); + } + + /** @brief Create Mat from hppiMatrix. + + This function allocates and initializes the Mat that has the same size and type as input matrix. + Supports CV_8U, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F. + @param src input hppiMatrix. + @param accel accelerator instance (see hpp::getHpp for the list of acceleration framework types). + @param cn number of channels. + @sa howToUseIPPAconversion, hpp::copyHppToMat, hpp::getHpp. + */ + inline Mat getMat(hppiMatrix* src, hppAccel accel, int cn) + { + Mat dst; + copyHppToMat(src, dst, accel, cn); + return dst; + } + + /** @brief Create hppiMatrix from Mat. + + This function allocates and initializes the hppiMatrix that has the same size and type as input + matrix, returns the hppiMatrix*. + + If you want to use zero-copy for GPU you should to have 4KB aligned matrix data. See details + [hppiCreateSharedMatrix](http://software.intel.com/ru-ru/node/501697). + + Supports CV_8U, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F. + + @note The hppiMatrix pointer to the image buffer in system memory refers to the src.data. Control + the lifetime of the matrix and don't change its data, if there is no special need. + @param src input matrix. + @param accel accelerator instance. Supports type: + - **HPP_ACCEL_TYPE_CPU** - accelerated by optimized CPU instructions. + - **HPP_ACCEL_TYPE_GPU** - accelerated by GPU programmable units or fixed-function + accelerators. + - **HPP_ACCEL_TYPE_ANY** - any acceleration or no acceleration available. + @sa howToUseIPPAconversion, hpp::getMat + */ + inline hppiMatrix* getHpp(const Mat& src, hppAccel accel) + { + int htype = toHppType(src.type()); + int cn = src.channels(); + + CV_Assert(src.data); + hppAccelType accelType = hppQueryAccelType(accel); + + if (accelType!=HPP_ACCEL_TYPE_CPU) + { + hpp32u pitch, size; + hppQueryMatrixAllocParams(accel, src.cols*cn, src.rows, htype, &pitch, &size); + if (pitch!=0 && size!=0) + if ((int)(src.data)%4096==0 && pitch==(hpp32u)(src.step)) + { + return hppiCreateSharedMatrix(htype, src.cols*cn, src.rows, src.data, pitch, size); + } + } + + return hppiCreateMatrix(htype, src.cols*cn, src.rows, src.data, (hpp32s)(src.step));; + } + +//! @} +}} + +#endif + +#endif diff --git a/thirdparty1/linux/include/opencv2/core/mat.hpp b/thirdparty1/linux/include/opencv2/core/mat.hpp new file mode 100644 index 0000000..39c197e --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/mat.hpp @@ -0,0 +1,3520 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_MAT_HPP +#define OPENCV_CORE_MAT_HPP + +#ifndef __cplusplus +# error mat.hpp header must be compiled as C++ +#endif + +#include "opencv2/core/matx.hpp" +#include "opencv2/core/types.hpp" + +#include "opencv2/core/bufferpool.hpp" + +namespace cv +{ + +//! @addtogroup core_basic +//! @{ + +enum { ACCESS_READ=1<<24, ACCESS_WRITE=1<<25, + ACCESS_RW=3<<24, ACCESS_MASK=ACCESS_RW, ACCESS_FAST=1<<26 }; + +class CV_EXPORTS _OutputArray; + +//////////////////////// Input/Output Array Arguments ///////////////////////////////// + +/** @brief This is the proxy class for passing read-only input arrays into OpenCV functions. + +It is defined as: +@code + typedef const _InputArray& InputArray; +@endcode +where _InputArray is a class that can be constructed from `Mat`, `Mat_`, `Matx`, +`std::vector`, `std::vector >` or `std::vector`. It can also be constructed +from a matrix expression. + +Since this is mostly implementation-level class, and its interface may change in future versions, we +do not describe it in details. There are a few key things, though, that should be kept in mind: + +- When you see in the reference manual or in OpenCV source code a function that takes + InputArray, it means that you can actually pass `Mat`, `Matx`, `vector` etc. (see above the + complete list). +- Optional input arguments: If some of the input arrays may be empty, pass cv::noArray() (or + simply cv::Mat() as you probably did before). +- The class is designed solely for passing parameters. That is, normally you *should not* + declare class members, local and global variables of this type. +- If you want to design your own function or a class method that can operate of arrays of + multiple types, you can use InputArray (or OutputArray) for the respective parameters. Inside + a function you should use _InputArray::getMat() method to construct a matrix header for the + array (without copying data). _InputArray::kind() can be used to distinguish Mat from + `vector<>` etc., but normally it is not needed. + +Here is how you can use a function that takes InputArray : +@code + std::vector vec; + // points or a circle + for( int i = 0; i < 30; i++ ) + vec.push_back(Point2f((float)(100 + 30*cos(i*CV_PI*2/5)), + (float)(100 - 30*sin(i*CV_PI*2/5)))); + cv::transform(vec, vec, cv::Matx23f(0.707, -0.707, 10, 0.707, 0.707, 20)); +@endcode +That is, we form an STL vector containing points, and apply in-place affine transformation to the +vector using the 2x3 matrix created inline as `Matx` instance. + +Here is how such a function can be implemented (for simplicity, we implement a very specific case of +it, according to the assertion statement inside) : +@code + void myAffineTransform(InputArray _src, OutputArray _dst, InputArray _m) + { + // get Mat headers for input arrays. This is O(1) operation, + // unless _src and/or _m are matrix expressions. + Mat src = _src.getMat(), m = _m.getMat(); + CV_Assert( src.type() == CV_32FC2 && m.type() == CV_32F && m.size() == Size(3, 2) ); + + // [re]create the output array so that it has the proper size and type. + // In case of Mat it calls Mat::create, in case of STL vector it calls vector::resize. + _dst.create(src.size(), src.type()); + Mat dst = _dst.getMat(); + + for( int i = 0; i < src.rows; i++ ) + for( int j = 0; j < src.cols; j++ ) + { + Point2f pt = src.at(i, j); + dst.at(i, j) = Point2f(m.at(0, 0)*pt.x + + m.at(0, 1)*pt.y + + m.at(0, 2), + m.at(1, 0)*pt.x + + m.at(1, 1)*pt.y + + m.at(1, 2)); + } + } +@endcode +There is another related type, InputArrayOfArrays, which is currently defined as a synonym for +InputArray: +@code + typedef InputArray InputArrayOfArrays; +@endcode +It denotes function arguments that are either vectors of vectors or vectors of matrices. A separate +synonym is needed to generate Python/Java etc. wrappers properly. At the function implementation +level their use is similar, but _InputArray::getMat(idx) should be used to get header for the +idx-th component of the outer vector and _InputArray::size().area() should be used to find the +number of components (vectors/matrices) of the outer vector. + */ +class CV_EXPORTS _InputArray +{ +public: + enum { + KIND_SHIFT = 16, + FIXED_TYPE = 0x8000 << KIND_SHIFT, + FIXED_SIZE = 0x4000 << KIND_SHIFT, + KIND_MASK = 31 << KIND_SHIFT, + + NONE = 0 << KIND_SHIFT, + MAT = 1 << KIND_SHIFT, + MATX = 2 << KIND_SHIFT, + STD_VECTOR = 3 << KIND_SHIFT, + STD_VECTOR_VECTOR = 4 << KIND_SHIFT, + STD_VECTOR_MAT = 5 << KIND_SHIFT, + EXPR = 6 << KIND_SHIFT, + OPENGL_BUFFER = 7 << KIND_SHIFT, + CUDA_HOST_MEM = 8 << KIND_SHIFT, + CUDA_GPU_MAT = 9 << KIND_SHIFT, + UMAT =10 << KIND_SHIFT, + STD_VECTOR_UMAT =11 << KIND_SHIFT, + STD_BOOL_VECTOR =12 << KIND_SHIFT, + STD_VECTOR_CUDA_GPU_MAT = 13 << KIND_SHIFT + }; + + _InputArray(); + _InputArray(int _flags, void* _obj); + _InputArray(const Mat& m); + _InputArray(const MatExpr& expr); + _InputArray(const std::vector& vec); + template _InputArray(const Mat_<_Tp>& m); + template _InputArray(const std::vector<_Tp>& vec); + _InputArray(const std::vector& vec); + template _InputArray(const std::vector >& vec); + template _InputArray(const std::vector >& vec); + template _InputArray(const _Tp* vec, int n); + template _InputArray(const Matx<_Tp, m, n>& matx); + _InputArray(const double& val); + _InputArray(const cuda::GpuMat& d_mat); + _InputArray(const std::vector& d_mat_array); + _InputArray(const ogl::Buffer& buf); + _InputArray(const cuda::HostMem& cuda_mem); + template _InputArray(const cudev::GpuMat_<_Tp>& m); + _InputArray(const UMat& um); + _InputArray(const std::vector& umv); + + Mat getMat(int idx=-1) const; + Mat getMat_(int idx=-1) const; + UMat getUMat(int idx=-1) const; + void getMatVector(std::vector& mv) const; + void getUMatVector(std::vector& umv) const; + void getGpuMatVector(std::vector& gpumv) const; + cuda::GpuMat getGpuMat() const; + ogl::Buffer getOGlBuffer() const; + + int getFlags() const; + void* getObj() const; + Size getSz() const; + + int kind() const; + int dims(int i=-1) const; + int cols(int i=-1) const; + int rows(int i=-1) const; + Size size(int i=-1) const; + int sizend(int* sz, int i=-1) const; + bool sameSize(const _InputArray& arr) const; + size_t total(int i=-1) const; + int type(int i=-1) const; + int depth(int i=-1) const; + int channels(int i=-1) const; + bool isContinuous(int i=-1) const; + bool isSubmatrix(int i=-1) const; + bool empty() const; + void copyTo(const _OutputArray& arr) const; + void copyTo(const _OutputArray& arr, const _InputArray & mask) const; + size_t offset(int i=-1) const; + size_t step(int i=-1) const; + bool isMat() const; + bool isUMat() const; + bool isMatVector() const; + bool isUMatVector() const; + bool isMatx() const; + bool isVector() const; + bool isGpuMatVector() const; + ~_InputArray(); + +protected: + int flags; + void* obj; + Size sz; + + void init(int _flags, const void* _obj); + void init(int _flags, const void* _obj, Size _sz); +}; + + +/** @brief This type is very similar to InputArray except that it is used for input/output and output function +parameters. + +Just like with InputArray, OpenCV users should not care about OutputArray, they just pass `Mat`, +`vector` etc. to the functions. The same limitation as for `InputArray`: *Do not explicitly +create OutputArray instances* applies here too. + +If you want to make your function polymorphic (i.e. accept different arrays as output parameters), +it is also not very difficult. Take the sample above as the reference. Note that +_OutputArray::create() needs to be called before _OutputArray::getMat(). This way you guarantee +that the output array is properly allocated. + +Optional output parameters. If you do not need certain output array to be computed and returned to +you, pass cv::noArray(), just like you would in the case of optional input array. At the +implementation level, use _OutputArray::needed() to check if certain output array needs to be +computed or not. + +There are several synonyms for OutputArray that are used to assist automatic Python/Java/... wrapper +generators: +@code + typedef OutputArray OutputArrayOfArrays; + typedef OutputArray InputOutputArray; + typedef OutputArray InputOutputArrayOfArrays; +@endcode + */ +class CV_EXPORTS _OutputArray : public _InputArray +{ +public: + enum + { + DEPTH_MASK_8U = 1 << CV_8U, + DEPTH_MASK_8S = 1 << CV_8S, + DEPTH_MASK_16U = 1 << CV_16U, + DEPTH_MASK_16S = 1 << CV_16S, + DEPTH_MASK_32S = 1 << CV_32S, + DEPTH_MASK_32F = 1 << CV_32F, + DEPTH_MASK_64F = 1 << CV_64F, + DEPTH_MASK_ALL = (DEPTH_MASK_64F<<1)-1, + DEPTH_MASK_ALL_BUT_8S = DEPTH_MASK_ALL & ~DEPTH_MASK_8S, + DEPTH_MASK_FLT = DEPTH_MASK_32F + DEPTH_MASK_64F + }; + + _OutputArray(); + _OutputArray(int _flags, void* _obj); + _OutputArray(Mat& m); + _OutputArray(std::vector& vec); + _OutputArray(cuda::GpuMat& d_mat); + _OutputArray(std::vector& d_mat); + _OutputArray(ogl::Buffer& buf); + _OutputArray(cuda::HostMem& cuda_mem); + template _OutputArray(cudev::GpuMat_<_Tp>& m); + template _OutputArray(std::vector<_Tp>& vec); + _OutputArray(std::vector& vec); + template _OutputArray(std::vector >& vec); + template _OutputArray(std::vector >& vec); + template _OutputArray(Mat_<_Tp>& m); + template _OutputArray(_Tp* vec, int n); + template _OutputArray(Matx<_Tp, m, n>& matx); + _OutputArray(UMat& m); + _OutputArray(std::vector& vec); + + _OutputArray(const Mat& m); + _OutputArray(const std::vector& vec); + _OutputArray(const cuda::GpuMat& d_mat); + _OutputArray(const std::vector& d_mat); + _OutputArray(const ogl::Buffer& buf); + _OutputArray(const cuda::HostMem& cuda_mem); + template _OutputArray(const cudev::GpuMat_<_Tp>& m); + template _OutputArray(const std::vector<_Tp>& vec); + template _OutputArray(const std::vector >& vec); + template _OutputArray(const std::vector >& vec); + template _OutputArray(const Mat_<_Tp>& m); + template _OutputArray(const _Tp* vec, int n); + template _OutputArray(const Matx<_Tp, m, n>& matx); + _OutputArray(const UMat& m); + _OutputArray(const std::vector& vec); + + bool fixedSize() const; + bool fixedType() const; + bool needed() const; + Mat& getMatRef(int i=-1) const; + UMat& getUMatRef(int i=-1) const; + cuda::GpuMat& getGpuMatRef() const; + std::vector& getGpuMatVecRef() const; + ogl::Buffer& getOGlBufferRef() const; + cuda::HostMem& getHostMemRef() const; + void create(Size sz, int type, int i=-1, bool allowTransposed=false, int fixedDepthMask=0) const; + void create(int rows, int cols, int type, int i=-1, bool allowTransposed=false, int fixedDepthMask=0) const; + void create(int dims, const int* size, int type, int i=-1, bool allowTransposed=false, int fixedDepthMask=0) const; + void createSameSize(const _InputArray& arr, int mtype) const; + void release() const; + void clear() const; + void setTo(const _InputArray& value, const _InputArray & mask = _InputArray()) const; + + void assign(const UMat& u) const; + void assign(const Mat& m) const; +}; + + +class CV_EXPORTS _InputOutputArray : public _OutputArray +{ +public: + _InputOutputArray(); + _InputOutputArray(int _flags, void* _obj); + _InputOutputArray(Mat& m); + _InputOutputArray(std::vector& vec); + _InputOutputArray(cuda::GpuMat& d_mat); + _InputOutputArray(ogl::Buffer& buf); + _InputOutputArray(cuda::HostMem& cuda_mem); + template _InputOutputArray(cudev::GpuMat_<_Tp>& m); + template _InputOutputArray(std::vector<_Tp>& vec); + _InputOutputArray(std::vector& vec); + template _InputOutputArray(std::vector >& vec); + template _InputOutputArray(std::vector >& vec); + template _InputOutputArray(Mat_<_Tp>& m); + template _InputOutputArray(_Tp* vec, int n); + template _InputOutputArray(Matx<_Tp, m, n>& matx); + _InputOutputArray(UMat& m); + _InputOutputArray(std::vector& vec); + + _InputOutputArray(const Mat& m); + _InputOutputArray(const std::vector& vec); + _InputOutputArray(const cuda::GpuMat& d_mat); + _InputOutputArray(const std::vector& d_mat); + _InputOutputArray(const ogl::Buffer& buf); + _InputOutputArray(const cuda::HostMem& cuda_mem); + template _InputOutputArray(const cudev::GpuMat_<_Tp>& m); + template _InputOutputArray(const std::vector<_Tp>& vec); + template _InputOutputArray(const std::vector >& vec); + template _InputOutputArray(const std::vector >& vec); + template _InputOutputArray(const Mat_<_Tp>& m); + template _InputOutputArray(const _Tp* vec, int n); + template _InputOutputArray(const Matx<_Tp, m, n>& matx); + _InputOutputArray(const UMat& m); + _InputOutputArray(const std::vector& vec); +}; + +typedef const _InputArray& InputArray; +typedef InputArray InputArrayOfArrays; +typedef const _OutputArray& OutputArray; +typedef OutputArray OutputArrayOfArrays; +typedef const _InputOutputArray& InputOutputArray; +typedef InputOutputArray InputOutputArrayOfArrays; + +CV_EXPORTS InputOutputArray noArray(); + +/////////////////////////////////// MatAllocator ////////////////////////////////////// + +//! Usage flags for allocator +enum UMatUsageFlags +{ + USAGE_DEFAULT = 0, + + // buffer allocation policy is platform and usage specific + USAGE_ALLOCATE_HOST_MEMORY = 1 << 0, + USAGE_ALLOCATE_DEVICE_MEMORY = 1 << 1, + USAGE_ALLOCATE_SHARED_MEMORY = 1 << 2, // It is not equal to: USAGE_ALLOCATE_HOST_MEMORY | USAGE_ALLOCATE_DEVICE_MEMORY + + __UMAT_USAGE_FLAGS_32BIT = 0x7fffffff // Binary compatibility hint +}; + +struct CV_EXPORTS UMatData; + +/** @brief Custom array allocator +*/ +class CV_EXPORTS MatAllocator +{ +public: + MatAllocator() {} + virtual ~MatAllocator() {} + + // let's comment it off for now to detect and fix all the uses of allocator + //virtual void allocate(int dims, const int* sizes, int type, int*& refcount, + // uchar*& datastart, uchar*& data, size_t* step) = 0; + //virtual void deallocate(int* refcount, uchar* datastart, uchar* data) = 0; + virtual UMatData* allocate(int dims, const int* sizes, int type, + void* data, size_t* step, int flags, UMatUsageFlags usageFlags) const = 0; + virtual bool allocate(UMatData* data, int accessflags, UMatUsageFlags usageFlags) const = 0; + virtual void deallocate(UMatData* data) const = 0; + virtual void map(UMatData* data, int accessflags) const; + virtual void unmap(UMatData* data) const; + virtual void download(UMatData* data, void* dst, int dims, const size_t sz[], + const size_t srcofs[], const size_t srcstep[], + const size_t dststep[]) const; + virtual void upload(UMatData* data, const void* src, int dims, const size_t sz[], + const size_t dstofs[], const size_t dststep[], + const size_t srcstep[]) const; + virtual void copy(UMatData* srcdata, UMatData* dstdata, int dims, const size_t sz[], + const size_t srcofs[], const size_t srcstep[], + const size_t dstofs[], const size_t dststep[], bool sync) const; + + // default implementation returns DummyBufferPoolController + virtual BufferPoolController* getBufferPoolController(const char* id = NULL) const; +}; + + +//////////////////////////////// MatCommaInitializer ////////////////////////////////// + +/** @brief Comma-separated Matrix Initializer + + The class instances are usually not created explicitly. + Instead, they are created on "matrix << firstValue" operator. + + The sample below initializes 2x2 rotation matrix: + + \code + double angle = 30, a = cos(angle*CV_PI/180), b = sin(angle*CV_PI/180); + Mat R = (Mat_(2,2) << a, -b, b, a); + \endcode +*/ +template class MatCommaInitializer_ +{ +public: + //! the constructor, created by "matrix << firstValue" operator, where matrix is cv::Mat + MatCommaInitializer_(Mat_<_Tp>* _m); + //! the operator that takes the next value and put it to the matrix + template MatCommaInitializer_<_Tp>& operator , (T2 v); + //! another form of conversion operator + operator Mat_<_Tp>() const; +protected: + MatIterator_<_Tp> it; +}; + + +/////////////////////////////////////// Mat /////////////////////////////////////////// + +// note that umatdata might be allocated together +// with the matrix data, not as a separate object. +// therefore, it does not have constructor or destructor; +// it should be explicitly initialized using init(). +struct CV_EXPORTS UMatData +{ + enum { COPY_ON_MAP=1, HOST_COPY_OBSOLETE=2, + DEVICE_COPY_OBSOLETE=4, TEMP_UMAT=8, TEMP_COPIED_UMAT=24, + USER_ALLOCATED=32, DEVICE_MEM_MAPPED=64}; + UMatData(const MatAllocator* allocator); + ~UMatData(); + + // provide atomic access to the structure + void lock(); + void unlock(); + + bool hostCopyObsolete() const; + bool deviceCopyObsolete() const; + bool deviceMemMapped() const; + bool copyOnMap() const; + bool tempUMat() const; + bool tempCopiedUMat() const; + void markHostCopyObsolete(bool flag); + void markDeviceCopyObsolete(bool flag); + void markDeviceMemMapped(bool flag); + + const MatAllocator* prevAllocator; + const MatAllocator* currAllocator; + int urefcount; + int refcount; + uchar* data; + uchar* origdata; + size_t size; + + int flags; + void* handle; + void* userdata; + int allocatorFlags_; + int mapcount; + UMatData* originalUMatData; +}; + + +struct CV_EXPORTS UMatDataAutoLock +{ + explicit UMatDataAutoLock(UMatData* u); + ~UMatDataAutoLock(); + UMatData* u; +}; + + +struct CV_EXPORTS MatSize +{ + explicit MatSize(int* _p); + Size operator()() const; + const int& operator[](int i) const; + int& operator[](int i); + operator const int*() const; + bool operator == (const MatSize& sz) const; + bool operator != (const MatSize& sz) const; + + int* p; +}; + +struct CV_EXPORTS MatStep +{ + MatStep(); + explicit MatStep(size_t s); + const size_t& operator[](int i) const; + size_t& operator[](int i); + operator size_t() const; + MatStep& operator = (size_t s); + + size_t* p; + size_t buf[2]; +protected: + MatStep& operator = (const MatStep&); +}; + +/** @example cout_mat.cpp +An example demonstrating the serial out capabilities of cv::Mat +*/ + + /** @brief n-dimensional dense array class + +The class Mat represents an n-dimensional dense numerical single-channel or multi-channel array. It +can be used to store real or complex-valued vectors and matrices, grayscale or color images, voxel +volumes, vector fields, point clouds, tensors, histograms (though, very high-dimensional histograms +may be better stored in a SparseMat ). The data layout of the array `M` is defined by the array +`M.step[]`, so that the address of element \f$(i_0,...,i_{M.dims-1})\f$, where \f$0\leq i_k= M.step[i+1]` (in fact, `M.step[i] >= M.step[i+1]*M.size[i+1]` ). This means +that 2-dimensional matrices are stored row-by-row, 3-dimensional matrices are stored plane-by-plane, +and so on. M.step[M.dims-1] is minimal and always equal to the element size M.elemSize() . + +So, the data layout in Mat is fully compatible with CvMat, IplImage, and CvMatND types from OpenCV +1.x. It is also compatible with the majority of dense array types from the standard toolkits and +SDKs, such as Numpy (ndarray), Win32 (independent device bitmaps), and others, that is, with any +array that uses *steps* (or *strides*) to compute the position of a pixel. Due to this +compatibility, it is possible to make a Mat header for user-allocated data and process it in-place +using OpenCV functions. + +There are many different ways to create a Mat object. The most popular options are listed below: + +- Use the create(nrows, ncols, type) method or the similar Mat(nrows, ncols, type[, fillValue]) +constructor. A new array of the specified size and type is allocated. type has the same meaning as +in the cvCreateMat method. For example, CV_8UC1 means a 8-bit single-channel array, CV_32FC2 +means a 2-channel (complex) floating-point array, and so on. +@code + // make a 7x7 complex matrix filled with 1+3j. + Mat M(7,7,CV_32FC2,Scalar(1,3)); + // and now turn M to a 100x60 15-channel 8-bit matrix. + // The old content will be deallocated + M.create(100,60,CV_8UC(15)); +@endcode +As noted in the introduction to this chapter, create() allocates only a new array when the shape +or type of the current array are different from the specified ones. + +- Create a multi-dimensional array: +@code + // create a 100x100x100 8-bit array + int sz[] = {100, 100, 100}; + Mat bigCube(3, sz, CV_8U, Scalar::all(0)); +@endcode +It passes the number of dimensions =1 to the Mat constructor but the created array will be +2-dimensional with the number of columns set to 1. So, Mat::dims is always \>= 2 (can also be 0 +when the array is empty). + +- Use a copy constructor or assignment operator where there can be an array or expression on the +right side (see below). As noted in the introduction, the array assignment is an O(1) operation +because it only copies the header and increases the reference counter. The Mat::clone() method can +be used to get a full (deep) copy of the array when you need it. + +- Construct a header for a part of another array. It can be a single row, single column, several +rows, several columns, rectangular region in the array (called a *minor* in algebra) or a +diagonal. Such operations are also O(1) because the new header references the same data. You can +actually modify a part of the array using this feature, for example: +@code + // add the 5-th row, multiplied by 3 to the 3rd row + M.row(3) = M.row(3) + M.row(5)*3; + // now copy the 7-th column to the 1-st column + // M.col(1) = M.col(7); // this will not work + Mat M1 = M.col(1); + M.col(7).copyTo(M1); + // create a new 320x240 image + Mat img(Size(320,240),CV_8UC3); + // select a ROI + Mat roi(img, Rect(10,10,100,100)); + // fill the ROI with (0,255,0) (which is green in RGB space); + // the original 320x240 image will be modified + roi = Scalar(0,255,0); +@endcode +Due to the additional datastart and dataend members, it is possible to compute a relative +sub-array position in the main *container* array using locateROI(): +@code + Mat A = Mat::eye(10, 10, CV_32S); + // extracts A columns, 1 (inclusive) to 3 (exclusive). + Mat B = A(Range::all(), Range(1, 3)); + // extracts B rows, 5 (inclusive) to 9 (exclusive). + // that is, C \~ A(Range(5, 9), Range(1, 3)) + Mat C = B(Range(5, 9), Range::all()); + Size size; Point ofs; + C.locateROI(size, ofs); + // size will be (width=10,height=10) and the ofs will be (x=1, y=5) +@endcode +As in case of whole matrices, if you need a deep copy, use the `clone()` method of the extracted +sub-matrices. + +- Make a header for user-allocated data. It can be useful to do the following: + -# Process "foreign" data using OpenCV (for example, when you implement a DirectShow\* filter or + a processing module for gstreamer, and so on). For example: + @code + void process_video_frame(const unsigned char* pixels, + int width, int height, int step) + { + Mat img(height, width, CV_8UC3, pixels, step); + GaussianBlur(img, img, Size(7,7), 1.5, 1.5); + } + @endcode + -# Quickly initialize small matrices and/or get a super-fast element access. + @code + double m[3][3] = {{a, b, c}, {d, e, f}, {g, h, i}}; + Mat M = Mat(3, 3, CV_64F, m).inv(); + @endcode + . + Partial yet very common cases of this *user-allocated data* case are conversions from CvMat and + IplImage to Mat. For this purpose, there is function cv::cvarrToMat taking pointers to CvMat or + IplImage and the optional flag indicating whether to copy the data or not. + @snippet samples/cpp/image.cpp iplimage + +- Use MATLAB-style array initializers, zeros(), ones(), eye(), for example: +@code + // create a double-precision identity martix and add it to M. + M += Mat::eye(M.rows, M.cols, CV_64F); +@endcode + +- Use a comma-separated initializer: +@code + // create a 3x3 double-precision identity matrix + Mat M = (Mat_(3,3) << 1, 0, 0, 0, 1, 0, 0, 0, 1); +@endcode +With this approach, you first call a constructor of the Mat class with the proper parameters, and +then you just put `<< operator` followed by comma-separated values that can be constants, +variables, expressions, and so on. Also, note the extra parentheses required to avoid compilation +errors. + +Once the array is created, it is automatically managed via a reference-counting mechanism. If the +array header is built on top of user-allocated data, you should handle the data by yourself. The +array data is deallocated when no one points to it. If you want to release the data pointed by a +array header before the array destructor is called, use Mat::release(). + +The next important thing to learn about the array class is element access. This manual already +described how to compute an address of each array element. Normally, you are not required to use the +formula directly in the code. If you know the array element type (which can be retrieved using the +method Mat::type() ), you can access the element \f$M_{ij}\f$ of a 2-dimensional array as: +@code + M.at(i,j) += 1.f; +@endcode +assuming that `M` is a double-precision floating-point array. There are several variants of the method +at for a different number of dimensions. + +If you need to process a whole row of a 2D array, the most efficient way is to get the pointer to +the row first, and then just use the plain C operator [] : +@code + // compute sum of positive matrix elements + // (assuming that M isa double-precision matrix) + double sum=0; + for(int i = 0; i < M.rows; i++) + { + const double* Mi = M.ptr(i); + for(int j = 0; j < M.cols; j++) + sum += std::max(Mi[j], 0.); + } +@endcode +Some operations, like the one above, do not actually depend on the array shape. They just process +elements of an array one by one (or elements from multiple arrays that have the same coordinates, +for example, array addition). Such operations are called *element-wise*. It makes sense to check +whether all the input/output arrays are continuous, namely, have no gaps at the end of each row. If +yes, process them as a long single row: +@code + // compute the sum of positive matrix elements, optimized variant + double sum=0; + int cols = M.cols, rows = M.rows; + if(M.isContinuous()) + { + cols *= rows; + rows = 1; + } + for(int i = 0; i < rows; i++) + { + const double* Mi = M.ptr(i); + for(int j = 0; j < cols; j++) + sum += std::max(Mi[j], 0.); + } +@endcode +In case of the continuous matrix, the outer loop body is executed just once. So, the overhead is +smaller, which is especially noticeable in case of small matrices. + +Finally, there are STL-style iterators that are smart enough to skip gaps between successive rows: +@code + // compute sum of positive matrix elements, iterator-based variant + double sum=0; + MatConstIterator_ it = M.begin(), it_end = M.end(); + for(; it != it_end; ++it) + sum += std::max(*it, 0.); +@endcode +The matrix iterators are random-access iterators, so they can be passed to any STL algorithm, +including std::sort(). +*/ +class CV_EXPORTS Mat +{ +public: + /** + These are various constructors that form a matrix. As noted in the AutomaticAllocation, often + the default constructor is enough, and the proper matrix will be allocated by an OpenCV function. + The constructed matrix can further be assigned to another matrix or matrix expression or can be + allocated with Mat::create . In the former case, the old content is de-referenced. + */ + Mat(); + + /** @overload + @param rows Number of rows in a 2D array. + @param cols Number of columns in a 2D array. + @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or + CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. + */ + Mat(int rows, int cols, int type); + + /** @overload + @param size 2D array size: Size(cols, rows) . In the Size() constructor, the number of rows and the + number of columns go in the reverse order. + @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or + CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. + */ + Mat(Size size, int type); + + /** @overload + @param rows Number of rows in a 2D array. + @param cols Number of columns in a 2D array. + @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or + CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. + @param s An optional value to initialize each matrix element with. To set all the matrix elements to + the particular value after the construction, use the assignment operator + Mat::operator=(const Scalar& value) . + */ + Mat(int rows, int cols, int type, const Scalar& s); + + /** @overload + @param size 2D array size: Size(cols, rows) . In the Size() constructor, the number of rows and the + number of columns go in the reverse order. + @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or + CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. + @param s An optional value to initialize each matrix element with. To set all the matrix elements to + the particular value after the construction, use the assignment operator + Mat::operator=(const Scalar& value) . + */ + Mat(Size size, int type, const Scalar& s); + + /** @overload + @param ndims Array dimensionality. + @param sizes Array of integers specifying an n-dimensional array shape. + @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or + CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. + */ + Mat(int ndims, const int* sizes, int type); + + /** @overload + @param sizes Array of integers specifying an n-dimensional array shape. + @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or + CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. + */ + Mat(const std::vector& sizes, int type); + + /** @overload + @param ndims Array dimensionality. + @param sizes Array of integers specifying an n-dimensional array shape. + @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or + CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. + @param s An optional value to initialize each matrix element with. To set all the matrix elements to + the particular value after the construction, use the assignment operator + Mat::operator=(const Scalar& value) . + */ + Mat(int ndims, const int* sizes, int type, const Scalar& s); + + /** @overload + @param sizes Array of integers specifying an n-dimensional array shape. + @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or + CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. + @param s An optional value to initialize each matrix element with. To set all the matrix elements to + the particular value after the construction, use the assignment operator + Mat::operator=(const Scalar& value) . + */ + Mat(const std::vector& sizes, int type, const Scalar& s); + + + /** @overload + @param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied + by these constructors. Instead, the header pointing to m data or its sub-array is constructed and + associated with it. The reference counter, if any, is incremented. So, when you modify the matrix + formed using such a constructor, you also modify the corresponding elements of m . If you want to + have an independent copy of the sub-array, use Mat::clone() . + */ + Mat(const Mat& m); + + /** @overload + @param rows Number of rows in a 2D array. + @param cols Number of columns in a 2D array. + @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or + CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. + @param data Pointer to the user data. Matrix constructors that take data and step parameters do not + allocate matrix data. Instead, they just initialize the matrix header that points to the specified + data, which means that no data is copied. This operation is very efficient and can be used to + process external data using OpenCV functions. The external data is not automatically deallocated, so + you should take care of it. + @param step Number of bytes each matrix row occupies. The value should include the padding bytes at + the end of each row, if any. If the parameter is missing (set to AUTO_STEP ), no padding is assumed + and the actual step is calculated as cols*elemSize(). See Mat::elemSize. + */ + Mat(int rows, int cols, int type, void* data, size_t step=AUTO_STEP); + + /** @overload + @param size 2D array size: Size(cols, rows) . In the Size() constructor, the number of rows and the + number of columns go in the reverse order. + @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or + CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. + @param data Pointer to the user data. Matrix constructors that take data and step parameters do not + allocate matrix data. Instead, they just initialize the matrix header that points to the specified + data, which means that no data is copied. This operation is very efficient and can be used to + process external data using OpenCV functions. The external data is not automatically deallocated, so + you should take care of it. + @param step Number of bytes each matrix row occupies. The value should include the padding bytes at + the end of each row, if any. If the parameter is missing (set to AUTO_STEP ), no padding is assumed + and the actual step is calculated as cols*elemSize(). See Mat::elemSize. + */ + Mat(Size size, int type, void* data, size_t step=AUTO_STEP); + + /** @overload + @param ndims Array dimensionality. + @param sizes Array of integers specifying an n-dimensional array shape. + @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or + CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. + @param data Pointer to the user data. Matrix constructors that take data and step parameters do not + allocate matrix data. Instead, they just initialize the matrix header that points to the specified + data, which means that no data is copied. This operation is very efficient and can be used to + process external data using OpenCV functions. The external data is not automatically deallocated, so + you should take care of it. + @param steps Array of ndims-1 steps in case of a multi-dimensional array (the last step is always + set to the element size). If not specified, the matrix is assumed to be continuous. + */ + Mat(int ndims, const int* sizes, int type, void* data, const size_t* steps=0); + + /** @overload + @param sizes Array of integers specifying an n-dimensional array shape. + @param type Array type. Use CV_8UC1, ..., CV_64FC4 to create 1-4 channel matrices, or + CV_8UC(n), ..., CV_64FC(n) to create multi-channel (up to CV_CN_MAX channels) matrices. + @param data Pointer to the user data. Matrix constructors that take data and step parameters do not + allocate matrix data. Instead, they just initialize the matrix header that points to the specified + data, which means that no data is copied. This operation is very efficient and can be used to + process external data using OpenCV functions. The external data is not automatically deallocated, so + you should take care of it. + @param steps Array of ndims-1 steps in case of a multi-dimensional array (the last step is always + set to the element size). If not specified, the matrix is assumed to be continuous. + */ + Mat(const std::vector& sizes, int type, void* data, const size_t* steps=0); + + /** @overload + @param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied + by these constructors. Instead, the header pointing to m data or its sub-array is constructed and + associated with it. The reference counter, if any, is incremented. So, when you modify the matrix + formed using such a constructor, you also modify the corresponding elements of m . If you want to + have an independent copy of the sub-array, use Mat::clone() . + @param rowRange Range of the m rows to take. As usual, the range start is inclusive and the range + end is exclusive. Use Range::all() to take all the rows. + @param colRange Range of the m columns to take. Use Range::all() to take all the columns. + */ + Mat(const Mat& m, const Range& rowRange, const Range& colRange=Range::all()); + + /** @overload + @param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied + by these constructors. Instead, the header pointing to m data or its sub-array is constructed and + associated with it. The reference counter, if any, is incremented. So, when you modify the matrix + formed using such a constructor, you also modify the corresponding elements of m . If you want to + have an independent copy of the sub-array, use Mat::clone() . + @param roi Region of interest. + */ + Mat(const Mat& m, const Rect& roi); + + /** @overload + @param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied + by these constructors. Instead, the header pointing to m data or its sub-array is constructed and + associated with it. The reference counter, if any, is incremented. So, when you modify the matrix + formed using such a constructor, you also modify the corresponding elements of m . If you want to + have an independent copy of the sub-array, use Mat::clone() . + @param ranges Array of selected ranges of m along each dimensionality. + */ + Mat(const Mat& m, const Range* ranges); + + /** @overload + @param m Array that (as a whole or partly) is assigned to the constructed matrix. No data is copied + by these constructors. Instead, the header pointing to m data or its sub-array is constructed and + associated with it. The reference counter, if any, is incremented. So, when you modify the matrix + formed using such a constructor, you also modify the corresponding elements of m . If you want to + have an independent copy of the sub-array, use Mat::clone() . + @param ranges Array of selected ranges of m along each dimensionality. + */ + Mat(const Mat& m, const std::vector& ranges); + + /** @overload + @param vec STL vector whose elements form the matrix. The matrix has a single column and the number + of rows equal to the number of vector elements. Type of the matrix matches the type of vector + elements. The constructor can handle arbitrary types, for which there is a properly declared + DataType . This means that the vector elements must be primitive numbers or uni-type numerical + tuples of numbers. Mixed-type structures are not supported. The corresponding constructor is + explicit. Since STL vectors are not automatically converted to Mat instances, you should write + Mat(vec) explicitly. Unless you copy the data into the matrix ( copyData=true ), no new elements + will be added to the vector because it can potentially yield vector data reallocation, and, thus, + the matrix data pointer will be invalid. + @param copyData Flag to specify whether the underlying data of the STL vector should be copied + to (true) or shared with (false) the newly constructed matrix. When the data is copied, the + allocated buffer is managed using Mat reference counting mechanism. While the data is shared, + the reference counter is NULL, and you should not deallocate the data until the matrix is not + destructed. + */ + template explicit Mat(const std::vector<_Tp>& vec, bool copyData=false); + + /** @overload + */ + template explicit Mat(const Vec<_Tp, n>& vec, bool copyData=true); + + /** @overload + */ + template explicit Mat(const Matx<_Tp, m, n>& mtx, bool copyData=true); + + /** @overload + */ + template explicit Mat(const Point_<_Tp>& pt, bool copyData=true); + + /** @overload + */ + template explicit Mat(const Point3_<_Tp>& pt, bool copyData=true); + + /** @overload + */ + template explicit Mat(const MatCommaInitializer_<_Tp>& commaInitializer); + + //! download data from GpuMat + explicit Mat(const cuda::GpuMat& m); + + //! destructor - calls release() + ~Mat(); + + /** @brief assignment operators + + These are available assignment operators. Since they all are very different, make sure to read the + operator parameters description. + @param m Assigned, right-hand-side matrix. Matrix assignment is an O(1) operation. This means that + no data is copied but the data is shared and the reference counter, if any, is incremented. Before + assigning new data, the old data is de-referenced via Mat::release . + */ + Mat& operator = (const Mat& m); + + /** @overload + @param expr Assigned matrix expression object. As opposite to the first form of the assignment + operation, the second form can reuse already allocated matrix if it has the right size and type to + fit the matrix expression result. It is automatically handled by the real function that the matrix + expressions is expanded to. For example, C=A+B is expanded to add(A, B, C), and add takes care of + automatic C reallocation. + */ + Mat& operator = (const MatExpr& expr); + + //! retrieve UMat from Mat + UMat getUMat(int accessFlags, UMatUsageFlags usageFlags = USAGE_DEFAULT) const; + + /** @brief Creates a matrix header for the specified matrix row. + + The method makes a new header for the specified matrix row and returns it. This is an O(1) + operation, regardless of the matrix size. The underlying data of the new matrix is shared with the + original matrix. Here is the example of one of the classical basic matrix processing operations, + axpy, used by LU and many other algorithms: + @code + inline void matrix_axpy(Mat& A, int i, int j, double alpha) + { + A.row(i) += A.row(j)*alpha; + } + @endcode + @note In the current implementation, the following code does not work as expected: + @code + Mat A; + ... + A.row(i) = A.row(j); // will not work + @endcode + This happens because A.row(i) forms a temporary header that is further assigned to another header. + Remember that each of these operations is O(1), that is, no data is copied. Thus, the above + assignment is not true if you may have expected the j-th row to be copied to the i-th row. To + achieve that, you should either turn this simple assignment into an expression or use the + Mat::copyTo method: + @code + Mat A; + ... + // works, but looks a bit obscure. + A.row(i) = A.row(j) + 0; + // this is a bit longer, but the recommended method. + A.row(j).copyTo(A.row(i)); + @endcode + @param y A 0-based row index. + */ + Mat row(int y) const; + + /** @brief Creates a matrix header for the specified matrix column. + + The method makes a new header for the specified matrix column and returns it. This is an O(1) + operation, regardless of the matrix size. The underlying data of the new matrix is shared with the + original matrix. See also the Mat::row description. + @param x A 0-based column index. + */ + Mat col(int x) const; + + /** @brief Creates a matrix header for the specified row span. + + The method makes a new header for the specified row span of the matrix. Similarly to Mat::row and + Mat::col , this is an O(1) operation. + @param startrow An inclusive 0-based start index of the row span. + @param endrow An exclusive 0-based ending index of the row span. + */ + Mat rowRange(int startrow, int endrow) const; + + /** @overload + @param r Range structure containing both the start and the end indices. + */ + Mat rowRange(const Range& r) const; + + /** @brief Creates a matrix header for the specified column span. + + The method makes a new header for the specified column span of the matrix. Similarly to Mat::row and + Mat::col , this is an O(1) operation. + @param startcol An inclusive 0-based start index of the column span. + @param endcol An exclusive 0-based ending index of the column span. + */ + Mat colRange(int startcol, int endcol) const; + + /** @overload + @param r Range structure containing both the start and the end indices. + */ + Mat colRange(const Range& r) const; + + /** @brief Extracts a diagonal from a matrix + + The method makes a new header for the specified matrix diagonal. The new matrix is represented as a + single-column matrix. Similarly to Mat::row and Mat::col, this is an O(1) operation. + @param d index of the diagonal, with the following values: + - `d=0` is the main diagonal. + - `d>0` is a diagonal from the lower half. For example, d=1 means the diagonal is set + immediately below the main one. + - `d<0` is a diagonal from the upper half. For example, d=-1 means the diagonal is set + immediately above the main one. + */ + Mat diag(int d=0) const; + + /** @brief creates a diagonal matrix + + The method creates a square diagonal matrix from specified main diagonal. + @param d One-dimensional matrix that represents the main diagonal. + */ + static Mat diag(const Mat& d); + + /** @brief Creates a full copy of the array and the underlying data. + + The method creates a full copy of the array. The original step[] is not taken into account. So, the + array copy is a continuous array occupying total()*elemSize() bytes. + */ + Mat clone() const; + + /** @brief Copies the matrix to another one. + + The method copies the matrix data to another matrix. Before copying the data, the method invokes : + @code + m.create(this->size(), this->type()); + @endcode + so that the destination matrix is reallocated if needed. While m.copyTo(m); works flawlessly, the + function does not handle the case of a partial overlap between the source and the destination + matrices. + + When the operation mask is specified, if the Mat::create call shown above reallocates the matrix, + the newly allocated matrix is initialized with all zeros before copying the data. + @param m Destination matrix. If it does not have a proper size or type before the operation, it is + reallocated. + */ + void copyTo( OutputArray m ) const; + + /** @overload + @param m Destination matrix. If it does not have a proper size or type before the operation, it is + reallocated. + @param mask Operation mask. Its non-zero elements indicate which matrix elements need to be copied. + The mask has to be of type CV_8U and can have 1 or multiple channels. + */ + void copyTo( OutputArray m, InputArray mask ) const; + + /** @brief Converts an array to another data type with optional scaling. + + The method converts source pixel values to the target data type. saturate_cast\<\> is applied at + the end to avoid possible overflows: + + \f[m(x,y) = saturate \_ cast( \alpha (*this)(x,y) + \beta )\f] + @param m output matrix; if it does not have a proper size or type before the operation, it is + reallocated. + @param rtype desired output matrix type or, rather, the depth since the number of channels are the + same as the input has; if rtype is negative, the output matrix will have the same type as the input. + @param alpha optional scale factor. + @param beta optional delta added to the scaled values. + */ + void convertTo( OutputArray m, int rtype, double alpha=1, double beta=0 ) const; + + /** @brief Provides a functional form of convertTo. + + This is an internally used method called by the @ref MatrixExpressions engine. + @param m Destination array. + @param type Desired destination array depth (or -1 if it should be the same as the source type). + */ + void assignTo( Mat& m, int type=-1 ) const; + + /** @brief Sets all or some of the array elements to the specified value. + @param s Assigned scalar converted to the actual array type. + */ + Mat& operator = (const Scalar& s); + + /** @brief Sets all or some of the array elements to the specified value. + + This is an advanced variant of the Mat::operator=(const Scalar& s) operator. + @param value Assigned scalar converted to the actual array type. + @param mask Operation mask of the same size as \*this. + */ + Mat& setTo(InputArray value, InputArray mask=noArray()); + + /** @brief Changes the shape and/or the number of channels of a 2D matrix without copying the data. + + The method makes a new matrix header for \*this elements. The new matrix may have a different size + and/or different number of channels. Any combination is possible if: + - No extra elements are included into the new matrix and no elements are excluded. Consequently, + the product rows\*cols\*channels() must stay the same after the transformation. + - No data is copied. That is, this is an O(1) operation. Consequently, if you change the number of + rows, or the operation changes the indices of elements row in some other way, the matrix must be + continuous. See Mat::isContinuous . + + For example, if there is a set of 3D points stored as an STL vector, and you want to represent the + points as a 3xN matrix, do the following: + @code + std::vector vec; + ... + Mat pointMat = Mat(vec). // convert vector to Mat, O(1) operation + reshape(1). // make Nx3 1-channel matrix out of Nx1 3-channel. + // Also, an O(1) operation + t(); // finally, transpose the Nx3 matrix. + // This involves copying all the elements + @endcode + @param cn New number of channels. If the parameter is 0, the number of channels remains the same. + @param rows New number of rows. If the parameter is 0, the number of rows remains the same. + */ + Mat reshape(int cn, int rows=0) const; + + /** @overload */ + Mat reshape(int cn, int newndims, const int* newsz) const; + + /** @brief Transposes a matrix. + + The method performs matrix transposition by means of matrix expressions. It does not perform the + actual transposition but returns a temporary matrix transposition object that can be further used as + a part of more complex matrix expressions or can be assigned to a matrix: + @code + Mat A1 = A + Mat::eye(A.size(), A.type())*lambda; + Mat C = A1.t()*A1; // compute (A + lambda*I)^t * (A + lamda*I) + @endcode + */ + MatExpr t() const; + + /** @brief Inverses a matrix. + + The method performs a matrix inversion by means of matrix expressions. This means that a temporary + matrix inversion object is returned by the method and can be used further as a part of more complex + matrix expressions or can be assigned to a matrix. + @param method Matrix inversion method. One of cv::DecompTypes + */ + MatExpr inv(int method=DECOMP_LU) const; + + /** @brief Performs an element-wise multiplication or division of the two matrices. + + The method returns a temporary object encoding per-element array multiplication, with optional + scale. Note that this is not a matrix multiplication that corresponds to a simpler "\*" operator. + + Example: + @code + Mat C = A.mul(5/B); // equivalent to divide(A, B, C, 5) + @endcode + @param m Another array of the same type and the same size as \*this, or a matrix expression. + @param scale Optional scale factor. + */ + MatExpr mul(InputArray m, double scale=1) const; + + /** @brief Computes a cross-product of two 3-element vectors. + + The method computes a cross-product of two 3-element vectors. The vectors must be 3-element + floating-point vectors of the same shape and size. The result is another 3-element vector of the + same shape and type as operands. + @param m Another cross-product operand. + */ + Mat cross(InputArray m) const; + + /** @brief Computes a dot-product of two vectors. + + The method computes a dot-product of two matrices. If the matrices are not single-column or + single-row vectors, the top-to-bottom left-to-right scan ordering is used to treat them as 1D + vectors. The vectors must have the same size and type. If the matrices have more than one channel, + the dot products from all the channels are summed together. + @param m another dot-product operand. + */ + double dot(InputArray m) const; + + /** @brief Returns a zero array of the specified size and type. + + The method returns a Matlab-style zero array initializer. It can be used to quickly form a constant + array as a function parameter, part of a matrix expression, or as a matrix initializer. : + @code + Mat A; + A = Mat::zeros(3, 3, CV_32F); + @endcode + In the example above, a new matrix is allocated only if A is not a 3x3 floating-point matrix. + Otherwise, the existing matrix A is filled with zeros. + @param rows Number of rows. + @param cols Number of columns. + @param type Created matrix type. + */ + static MatExpr zeros(int rows, int cols, int type); + + /** @overload + @param size Alternative to the matrix size specification Size(cols, rows) . + @param type Created matrix type. + */ + static MatExpr zeros(Size size, int type); + + /** @overload + @param ndims Array dimensionality. + @param sz Array of integers specifying the array shape. + @param type Created matrix type. + */ + static MatExpr zeros(int ndims, const int* sz, int type); + + /** @brief Returns an array of all 1's of the specified size and type. + + The method returns a Matlab-style 1's array initializer, similarly to Mat::zeros. Note that using + this method you can initialize an array with an arbitrary value, using the following Matlab idiom: + @code + Mat A = Mat::ones(100, 100, CV_8U)*3; // make 100x100 matrix filled with 3. + @endcode + The above operation does not form a 100x100 matrix of 1's and then multiply it by 3. Instead, it + just remembers the scale factor (3 in this case) and use it when actually invoking the matrix + initializer. + @param rows Number of rows. + @param cols Number of columns. + @param type Created matrix type. + */ + static MatExpr ones(int rows, int cols, int type); + + /** @overload + @param size Alternative to the matrix size specification Size(cols, rows) . + @param type Created matrix type. + */ + static MatExpr ones(Size size, int type); + + /** @overload + @param ndims Array dimensionality. + @param sz Array of integers specifying the array shape. + @param type Created matrix type. + */ + static MatExpr ones(int ndims, const int* sz, int type); + + /** @brief Returns an identity matrix of the specified size and type. + + The method returns a Matlab-style identity matrix initializer, similarly to Mat::zeros. Similarly to + Mat::ones, you can use a scale operation to create a scaled identity matrix efficiently: + @code + // make a 4x4 diagonal matrix with 0.1's on the diagonal. + Mat A = Mat::eye(4, 4, CV_32F)*0.1; + @endcode + @param rows Number of rows. + @param cols Number of columns. + @param type Created matrix type. + */ + static MatExpr eye(int rows, int cols, int type); + + /** @overload + @param size Alternative matrix size specification as Size(cols, rows) . + @param type Created matrix type. + */ + static MatExpr eye(Size size, int type); + + /** @brief Allocates new array data if needed. + + This is one of the key Mat methods. Most new-style OpenCV functions and methods that produce arrays + call this method for each output array. The method uses the following algorithm: + + -# If the current array shape and the type match the new ones, return immediately. Otherwise, + de-reference the previous data by calling Mat::release. + -# Initialize the new header. + -# Allocate the new data of total()\*elemSize() bytes. + -# Allocate the new, associated with the data, reference counter and set it to 1. + + Such a scheme makes the memory management robust and efficient at the same time and helps avoid + extra typing for you. This means that usually there is no need to explicitly allocate output arrays. + That is, instead of writing: + @code + Mat color; + ... + Mat gray(color.rows, color.cols, color.depth()); + cvtColor(color, gray, COLOR_BGR2GRAY); + @endcode + you can simply write: + @code + Mat color; + ... + Mat gray; + cvtColor(color, gray, COLOR_BGR2GRAY); + @endcode + because cvtColor, as well as the most of OpenCV functions, calls Mat::create() for the output array + internally. + @param rows New number of rows. + @param cols New number of columns. + @param type New matrix type. + */ + void create(int rows, int cols, int type); + + /** @overload + @param size Alternative new matrix size specification: Size(cols, rows) + @param type New matrix type. + */ + void create(Size size, int type); + + /** @overload + @param ndims New array dimensionality. + @param sizes Array of integers specifying a new array shape. + @param type New matrix type. + */ + void create(int ndims, const int* sizes, int type); + + /** @overload + @param sizes Array of integers specifying a new array shape. + @param type New matrix type. + */ + void create(const std::vector& sizes, int type); + + /** @brief Increments the reference counter. + + The method increments the reference counter associated with the matrix data. If the matrix header + points to an external data set (see Mat::Mat ), the reference counter is NULL, and the method has no + effect in this case. Normally, to avoid memory leaks, the method should not be called explicitly. It + is called implicitly by the matrix assignment operator. The reference counter increment is an atomic + operation on the platforms that support it. Thus, it is safe to operate on the same matrices + asynchronously in different threads. + */ + void addref(); + + /** @brief Decrements the reference counter and deallocates the matrix if needed. + + The method decrements the reference counter associated with the matrix data. When the reference + counter reaches 0, the matrix data is deallocated and the data and the reference counter pointers + are set to NULL's. If the matrix header points to an external data set (see Mat::Mat ), the + reference counter is NULL, and the method has no effect in this case. + + This method can be called manually to force the matrix data deallocation. But since this method is + automatically called in the destructor, or by any other method that changes the data pointer, it is + usually not needed. The reference counter decrement and check for 0 is an atomic operation on the + platforms that support it. Thus, it is safe to operate on the same matrices asynchronously in + different threads. + */ + void release(); + + //! deallocates the matrix data + void deallocate(); + //! internal use function; properly re-allocates _size, _step arrays + void copySize(const Mat& m); + + /** @brief Reserves space for the certain number of rows. + + The method reserves space for sz rows. If the matrix already has enough space to store sz rows, + nothing happens. If the matrix is reallocated, the first Mat::rows rows are preserved. The method + emulates the corresponding method of the STL vector class. + @param sz Number of rows. + */ + void reserve(size_t sz); + + /** @brief Changes the number of matrix rows. + + The methods change the number of matrix rows. If the matrix is reallocated, the first + min(Mat::rows, sz) rows are preserved. The methods emulate the corresponding methods of the STL + vector class. + @param sz New number of rows. + */ + void resize(size_t sz); + + /** @overload + @param sz New number of rows. + @param s Value assigned to the newly added elements. + */ + void resize(size_t sz, const Scalar& s); + + //! internal function + void push_back_(const void* elem); + + /** @brief Adds elements to the bottom of the matrix. + + The methods add one or more elements to the bottom of the matrix. They emulate the corresponding + method of the STL vector class. When elem is Mat , its type and the number of columns must be the + same as in the container matrix. + @param elem Added element(s). + */ + template void push_back(const _Tp& elem); + + /** @overload + @param elem Added element(s). + */ + template void push_back(const Mat_<_Tp>& elem); + + /** @overload + @param m Added line(s). + */ + void push_back(const Mat& m); + + /** @brief Removes elements from the bottom of the matrix. + + The method removes one or more rows from the bottom of the matrix. + @param nelems Number of removed rows. If it is greater than the total number of rows, an exception + is thrown. + */ + void pop_back(size_t nelems=1); + + /** @brief Locates the matrix header within a parent matrix. + + After you extracted a submatrix from a matrix using Mat::row, Mat::col, Mat::rowRange, + Mat::colRange, and others, the resultant submatrix points just to the part of the original big + matrix. However, each submatrix contains information (represented by datastart and dataend + fields) that helps reconstruct the original matrix size and the position of the extracted + submatrix within the original matrix. The method locateROI does exactly that. + @param wholeSize Output parameter that contains the size of the whole matrix containing *this* + as a part. + @param ofs Output parameter that contains an offset of *this* inside the whole matrix. + */ + void locateROI( Size& wholeSize, Point& ofs ) const; + + /** @brief Adjusts a submatrix size and position within the parent matrix. + + The method is complimentary to Mat::locateROI . The typical use of these functions is to determine + the submatrix position within the parent matrix and then shift the position somehow. Typically, it + can be required for filtering operations when pixels outside of the ROI should be taken into + account. When all the method parameters are positive, the ROI needs to grow in all directions by the + specified amount, for example: + @code + A.adjustROI(2, 2, 2, 2); + @endcode + In this example, the matrix size is increased by 4 elements in each direction. The matrix is shifted + by 2 elements to the left and 2 elements up, which brings in all the necessary pixels for the + filtering with the 5x5 kernel. + + adjustROI forces the adjusted ROI to be inside of the parent matrix that is boundaries of the + adjusted ROI are constrained by boundaries of the parent matrix. For example, if the submatrix A is + located in the first row of a parent matrix and you called A.adjustROI(2, 2, 2, 2) then A will not + be increased in the upward direction. + + The function is used internally by the OpenCV filtering functions, like filter2D , morphological + operations, and so on. + @param dtop Shift of the top submatrix boundary upwards. + @param dbottom Shift of the bottom submatrix boundary downwards. + @param dleft Shift of the left submatrix boundary to the left. + @param dright Shift of the right submatrix boundary to the right. + @sa copyMakeBorder + */ + Mat& adjustROI( int dtop, int dbottom, int dleft, int dright ); + + /** @brief Extracts a rectangular submatrix. + + The operators make a new header for the specified sub-array of \*this . They are the most + generalized forms of Mat::row, Mat::col, Mat::rowRange, and Mat::colRange . For example, + `A(Range(0, 10), Range::all())` is equivalent to `A.rowRange(0, 10)`. Similarly to all of the above, + the operators are O(1) operations, that is, no matrix data is copied. + @param rowRange Start and end row of the extracted submatrix. The upper boundary is not included. To + select all the rows, use Range::all(). + @param colRange Start and end column of the extracted submatrix. The upper boundary is not included. + To select all the columns, use Range::all(). + */ + Mat operator()( Range rowRange, Range colRange ) const; + + /** @overload + @param roi Extracted submatrix specified as a rectangle. + */ + Mat operator()( const Rect& roi ) const; + + /** @overload + @param ranges Array of selected ranges along each array dimension. + */ + Mat operator()( const Range* ranges ) const; + + /** @overload + @param ranges Array of selected ranges along each array dimension. + */ + Mat operator()(const std::vector& ranges) const; + + // //! converts header to CvMat; no data is copied + // operator CvMat() const; + // //! converts header to CvMatND; no data is copied + // operator CvMatND() const; + // //! converts header to IplImage; no data is copied + // operator IplImage() const; + + template operator std::vector<_Tp>() const; + template operator Vec<_Tp, n>() const; + template operator Matx<_Tp, m, n>() const; + + /** @brief Reports whether the matrix is continuous or not. + + The method returns true if the matrix elements are stored continuously without gaps at the end of + each row. Otherwise, it returns false. Obviously, 1x1 or 1xN matrices are always continuous. + Matrices created with Mat::create are always continuous. But if you extract a part of the matrix + using Mat::col, Mat::diag, and so on, or constructed a matrix header for externally allocated data, + such matrices may no longer have this property. + + The continuity flag is stored as a bit in the Mat::flags field and is computed automatically when + you construct a matrix header. Thus, the continuity check is a very fast operation, though + theoretically it could be done as follows: + @code + // alternative implementation of Mat::isContinuous() + bool myCheckMatContinuity(const Mat& m) + { + //return (m.flags & Mat::CONTINUOUS_FLAG) != 0; + return m.rows == 1 || m.step == m.cols*m.elemSize(); + } + @endcode + The method is used in quite a few of OpenCV functions. The point is that element-wise operations + (such as arithmetic and logical operations, math functions, alpha blending, color space + transformations, and others) do not depend on the image geometry. Thus, if all the input and output + arrays are continuous, the functions can process them as very long single-row vectors. The example + below illustrates how an alpha-blending function can be implemented: + @code + template + void alphaBlendRGBA(const Mat& src1, const Mat& src2, Mat& dst) + { + const float alpha_scale = (float)std::numeric_limits::max(), + inv_scale = 1.f/alpha_scale; + + CV_Assert( src1.type() == src2.type() && + src1.type() == CV_MAKETYPE(DataType::depth, 4) && + src1.size() == src2.size()); + Size size = src1.size(); + dst.create(size, src1.type()); + + // here is the idiom: check the arrays for continuity and, + // if this is the case, + // treat the arrays as 1D vectors + if( src1.isContinuous() && src2.isContinuous() && dst.isContinuous() ) + { + size.width *= size.height; + size.height = 1; + } + size.width *= 4; + + for( int i = 0; i < size.height; i++ ) + { + // when the arrays are continuous, + // the outer loop is executed only once + const T* ptr1 = src1.ptr(i); + const T* ptr2 = src2.ptr(i); + T* dptr = dst.ptr(i); + + for( int j = 0; j < size.width; j += 4 ) + { + float alpha = ptr1[j+3]*inv_scale, beta = ptr2[j+3]*inv_scale; + dptr[j] = saturate_cast(ptr1[j]*alpha + ptr2[j]*beta); + dptr[j+1] = saturate_cast(ptr1[j+1]*alpha + ptr2[j+1]*beta); + dptr[j+2] = saturate_cast(ptr1[j+2]*alpha + ptr2[j+2]*beta); + dptr[j+3] = saturate_cast((1 - (1-alpha)*(1-beta))*alpha_scale); + } + } + } + @endcode + This approach, while being very simple, can boost the performance of a simple element-operation by + 10-20 percents, especially if the image is rather small and the operation is quite simple. + + Another OpenCV idiom in this function, a call of Mat::create for the destination array, that + allocates the destination array unless it already has the proper size and type. And while the newly + allocated arrays are always continuous, you still need to check the destination array because + Mat::create does not always allocate a new matrix. + */ + bool isContinuous() const; + + //! returns true if the matrix is a submatrix of another matrix + bool isSubmatrix() const; + + /** @brief Returns the matrix element size in bytes. + + The method returns the matrix element size in bytes. For example, if the matrix type is CV_16SC3 , + the method returns 3\*sizeof(short) or 6. + */ + size_t elemSize() const; + + /** @brief Returns the size of each matrix element channel in bytes. + + The method returns the matrix element channel size in bytes, that is, it ignores the number of + channels. For example, if the matrix type is CV_16SC3 , the method returns sizeof(short) or 2. + */ + size_t elemSize1() const; + + /** @brief Returns the type of a matrix element. + + The method returns a matrix element type. This is an identifier compatible with the CvMat type + system, like CV_16SC3 or 16-bit signed 3-channel array, and so on. + */ + int type() const; + + /** @brief Returns the depth of a matrix element. + + The method returns the identifier of the matrix element depth (the type of each individual channel). + For example, for a 16-bit signed element array, the method returns CV_16S . A complete list of + matrix types contains the following values: + - CV_8U - 8-bit unsigned integers ( 0..255 ) + - CV_8S - 8-bit signed integers ( -128..127 ) + - CV_16U - 16-bit unsigned integers ( 0..65535 ) + - CV_16S - 16-bit signed integers ( -32768..32767 ) + - CV_32S - 32-bit signed integers ( -2147483648..2147483647 ) + - CV_32F - 32-bit floating-point numbers ( -FLT_MAX..FLT_MAX, INF, NAN ) + - CV_64F - 64-bit floating-point numbers ( -DBL_MAX..DBL_MAX, INF, NAN ) + */ + int depth() const; + + /** @brief Returns the number of matrix channels. + + The method returns the number of matrix channels. + */ + int channels() const; + + /** @brief Returns a normalized step. + + The method returns a matrix step divided by Mat::elemSize1() . It can be useful to quickly access an + arbitrary matrix element. + */ + size_t step1(int i=0) const; + + /** @brief Returns true if the array has no elements. + + The method returns true if Mat::total() is 0 or if Mat::data is NULL. Because of pop_back() and + resize() methods `M.total() == 0` does not imply that `M.data == NULL`. + */ + bool empty() const; + + /** @brief Returns the total number of array elements. + + The method returns the number of array elements (a number of pixels if the array represents an + image). + */ + size_t total() const; + + //! returns N if the matrix is 1-channel (N x ptdim) or ptdim-channel (1 x N) or (N x 1); negative number otherwise + int checkVector(int elemChannels, int depth=-1, bool requireContinuous=true) const; + + /** @brief Returns a pointer to the specified matrix row. + + The methods return `uchar*` or typed pointer to the specified matrix row. See the sample in + Mat::isContinuous to know how to use these methods. + @param i0 A 0-based row index. + */ + uchar* ptr(int i0=0); + /** @overload */ + const uchar* ptr(int i0=0) const; + + /** @overload + @param row Index along the dimension 0 + @param col Index along the dimension 1 + */ + uchar* ptr(int row, int col); + /** @overload + @param row Index along the dimension 0 + @param col Index along the dimension 1 + */ + const uchar* ptr(int row, int col) const; + + /** @overload */ + uchar* ptr(int i0, int i1, int i2); + /** @overload */ + const uchar* ptr(int i0, int i1, int i2) const; + + /** @overload */ + uchar* ptr(const int* idx); + /** @overload */ + const uchar* ptr(const int* idx) const; + /** @overload */ + template uchar* ptr(const Vec& idx); + /** @overload */ + template const uchar* ptr(const Vec& idx) const; + + /** @overload */ + template _Tp* ptr(int i0=0); + /** @overload */ + template const _Tp* ptr(int i0=0) const; + /** @overload + @param row Index along the dimension 0 + @param col Index along the dimension 1 + */ + template _Tp* ptr(int row, int col); + /** @overload + @param row Index along the dimension 0 + @param col Index along the dimension 1 + */ + template const _Tp* ptr(int row, int col) const; + /** @overload */ + template _Tp* ptr(int i0, int i1, int i2); + /** @overload */ + template const _Tp* ptr(int i0, int i1, int i2) const; + /** @overload */ + template _Tp* ptr(const int* idx); + /** @overload */ + template const _Tp* ptr(const int* idx) const; + /** @overload */ + template _Tp* ptr(const Vec& idx); + /** @overload */ + template const _Tp* ptr(const Vec& idx) const; + + /** @brief Returns a reference to the specified array element. + + The template methods return a reference to the specified array element. For the sake of higher + performance, the index range checks are only performed in the Debug configuration. + + Note that the variants with a single index (i) can be used to access elements of single-row or + single-column 2-dimensional arrays. That is, if, for example, A is a 1 x N floating-point matrix and + B is an M x 1 integer matrix, you can simply write `A.at(k+4)` and `B.at(2*i+1)` + instead of `A.at(0,k+4)` and `B.at(2*i+1,0)`, respectively. + + The example below initializes a Hilbert matrix: + @code + Mat H(100, 100, CV_64F); + for(int i = 0; i < H.rows; i++) + for(int j = 0; j < H.cols; j++) + H.at(i,j)=1./(i+j+1); + @endcode + + Keep in mind that the size identifier used in the at operator cannot be chosen at random. It depends + on the image from which you are trying to retrieve the data. The table below gives a better insight in this: + - If matrix is of type `CV_8U` then use `Mat.at(y,x)`. + - If matrix is of type `CV_8S` then use `Mat.at(y,x)`. + - If matrix is of type `CV_16U` then use `Mat.at(y,x)`. + - If matrix is of type `CV_16S` then use `Mat.at(y,x)`. + - If matrix is of type `CV_32S` then use `Mat.at(y,x)`. + - If matrix is of type `CV_32F` then use `Mat.at(y,x)`. + - If matrix is of type `CV_64F` then use `Mat.at(y,x)`. + + @param i0 Index along the dimension 0 + */ + template _Tp& at(int i0=0); + /** @overload + @param i0 Index along the dimension 0 + */ + template const _Tp& at(int i0=0) const; + /** @overload + @param row Index along the dimension 0 + @param col Index along the dimension 1 + */ + template _Tp& at(int row, int col); + /** @overload + @param row Index along the dimension 0 + @param col Index along the dimension 1 + */ + template const _Tp& at(int row, int col) const; + + /** @overload + @param i0 Index along the dimension 0 + @param i1 Index along the dimension 1 + @param i2 Index along the dimension 2 + */ + template _Tp& at(int i0, int i1, int i2); + /** @overload + @param i0 Index along the dimension 0 + @param i1 Index along the dimension 1 + @param i2 Index along the dimension 2 + */ + template const _Tp& at(int i0, int i1, int i2) const; + + /** @overload + @param idx Array of Mat::dims indices. + */ + template _Tp& at(const int* idx); + /** @overload + @param idx Array of Mat::dims indices. + */ + template const _Tp& at(const int* idx) const; + + /** @overload */ + template _Tp& at(const Vec& idx); + /** @overload */ + template const _Tp& at(const Vec& idx) const; + + /** @overload + special versions for 2D arrays (especially convenient for referencing image pixels) + @param pt Element position specified as Point(j,i) . + */ + template _Tp& at(Point pt); + /** @overload + special versions for 2D arrays (especially convenient for referencing image pixels) + @param pt Element position specified as Point(j,i) . + */ + template const _Tp& at(Point pt) const; + + /** @brief Returns the matrix iterator and sets it to the first matrix element. + + The methods return the matrix read-only or read-write iterators. The use of matrix iterators is very + similar to the use of bi-directional STL iterators. In the example below, the alpha blending + function is rewritten using the matrix iterators: + @code + template + void alphaBlendRGBA(const Mat& src1, const Mat& src2, Mat& dst) + { + typedef Vec VT; + + const float alpha_scale = (float)std::numeric_limits::max(), + inv_scale = 1.f/alpha_scale; + + CV_Assert( src1.type() == src2.type() && + src1.type() == DataType::type && + src1.size() == src2.size()); + Size size = src1.size(); + dst.create(size, src1.type()); + + MatConstIterator_ it1 = src1.begin(), it1_end = src1.end(); + MatConstIterator_ it2 = src2.begin(); + MatIterator_ dst_it = dst.begin(); + + for( ; it1 != it1_end; ++it1, ++it2, ++dst_it ) + { + VT pix1 = *it1, pix2 = *it2; + float alpha = pix1[3]*inv_scale, beta = pix2[3]*inv_scale; + *dst_it = VT(saturate_cast(pix1[0]*alpha + pix2[0]*beta), + saturate_cast(pix1[1]*alpha + pix2[1]*beta), + saturate_cast(pix1[2]*alpha + pix2[2]*beta), + saturate_cast((1 - (1-alpha)*(1-beta))*alpha_scale)); + } + } + @endcode + */ + template MatIterator_<_Tp> begin(); + template MatConstIterator_<_Tp> begin() const; + + /** @brief Returns the matrix iterator and sets it to the after-last matrix element. + + The methods return the matrix read-only or read-write iterators, set to the point following the last + matrix element. + */ + template MatIterator_<_Tp> end(); + template MatConstIterator_<_Tp> end() const; + + /** @brief Runs the given functor over all matrix elements in parallel. + + The operation passed as argument has to be a function pointer, a function object or a lambda(C++11). + + Example 1. All of the operations below put 0xFF the first channel of all matrix elements: + @code + Mat image(1920, 1080, CV_8UC3); + typedef cv::Point3_ Pixel; + + // first. raw pointer access. + for (int r = 0; r < image.rows; ++r) { + Pixel* ptr = image.ptr(0, r); + const Pixel* ptr_end = ptr + image.cols; + for (; ptr != ptr_end; ++ptr) { + ptr->x = 255; + } + } + + // Using MatIterator. (Simple but there are a Iterator's overhead) + for (Pixel &p : cv::Mat_(image)) { + p.x = 255; + } + + // Parallel execution with function object. + struct Operator { + void operator ()(Pixel &pixel, const int * position) { + pixel.x = 255; + } + }; + image.forEach(Operator()); + + // Parallel execution using C++11 lambda. + image.forEach([](Pixel &p, const int * position) -> void { + p.x = 255; + }); + @endcode + Example 2. Using the pixel's position: + @code + // Creating 3D matrix (255 x 255 x 255) typed uint8_t + // and initialize all elements by the value which equals elements position. + // i.e. pixels (x,y,z) = (1,2,3) is (b,g,r) = (1,2,3). + + int sizes[] = { 255, 255, 255 }; + typedef cv::Point3_ Pixel; + + Mat_ image = Mat::zeros(3, sizes, CV_8UC3); + + image.forEach([&](Pixel& pixel, const int position[]) -> void { + pixel.x = position[0]; + pixel.y = position[1]; + pixel.z = position[2]; + }); + @endcode + */ + template void forEach(const Functor& operation); + /** @overload */ + template void forEach(const Functor& operation) const; + +#ifdef CV_CXX_MOVE_SEMANTICS + Mat(Mat&& m); + Mat& operator = (Mat&& m); +#endif + + enum { MAGIC_VAL = 0x42FF0000, AUTO_STEP = 0, CONTINUOUS_FLAG = CV_MAT_CONT_FLAG, SUBMATRIX_FLAG = CV_SUBMAT_FLAG }; + enum { MAGIC_MASK = 0xFFFF0000, TYPE_MASK = 0x00000FFF, DEPTH_MASK = 7 }; + + /*! includes several bit-fields: + - the magic signature + - continuity flag + - depth + - number of channels + */ + int flags; + //! the matrix dimensionality, >= 2 + int dims; + //! the number of rows and columns or (-1, -1) when the matrix has more than 2 dimensions + int rows, cols; + //! pointer to the data + uchar* data; + + //! helper fields used in locateROI and adjustROI + const uchar* datastart; + const uchar* dataend; + const uchar* datalimit; + + //! custom allocator + MatAllocator* allocator; + //! and the standard allocator + static MatAllocator* getStdAllocator(); + static MatAllocator* getDefaultAllocator(); + static void setDefaultAllocator(MatAllocator* allocator); + + //! interaction with UMat + UMatData* u; + + MatSize size; + MatStep step; + +protected: + template void forEach_impl(const Functor& operation); +}; + + +///////////////////////////////// Mat_<_Tp> //////////////////////////////////// + +/** @brief Template matrix class derived from Mat + +@code + template class Mat_ : public Mat + { + public: + // ... some specific methods + // and + // no new extra fields + }; +@endcode +The class `Mat_<_Tp>` is a *thin* template wrapper on top of the Mat class. It does not have any +extra data fields. Nor this class nor Mat has any virtual methods. Thus, references or pointers to +these two classes can be freely but carefully converted one to another. For example: +@code + // create a 100x100 8-bit matrix + Mat M(100,100,CV_8U); + // this will be compiled fine. no any data conversion will be done. + Mat_& M1 = (Mat_&)M; + // the program is likely to crash at the statement below + M1(99,99) = 1.f; +@endcode +While Mat is sufficient in most cases, Mat_ can be more convenient if you use a lot of element +access operations and if you know matrix type at the compilation time. Note that +`Mat::at(int y,int x)` and `Mat_::operator()(int y,int x)` do absolutely the same +and run at the same speed, but the latter is certainly shorter: +@code + Mat_ M(20,20); + for(int i = 0; i < M.rows; i++) + for(int j = 0; j < M.cols; j++) + M(i,j) = 1./(i+j+1); + Mat E, V; + eigen(M,E,V); + cout << E.at(0,0)/E.at(M.rows-1,0); +@endcode +To use Mat_ for multi-channel images/matrices, pass Vec as a Mat_ parameter: +@code + // allocate a 320x240 color image and fill it with green (in RGB space) + Mat_ img(240, 320, Vec3b(0,255,0)); + // now draw a diagonal white line + for(int i = 0; i < 100; i++) + img(i,i)=Vec3b(255,255,255); + // and now scramble the 2nd (red) channel of each pixel + for(int i = 0; i < img.rows; i++) + for(int j = 0; j < img.cols; j++) + img(i,j)[2] ^= (uchar)(i ^ j); +@endcode + */ +template class Mat_ : public Mat +{ +public: + typedef _Tp value_type; + typedef typename DataType<_Tp>::channel_type channel_type; + typedef MatIterator_<_Tp> iterator; + typedef MatConstIterator_<_Tp> const_iterator; + + //! default constructor + Mat_(); + //! equivalent to Mat(_rows, _cols, DataType<_Tp>::type) + Mat_(int _rows, int _cols); + //! constructor that sets each matrix element to specified value + Mat_(int _rows, int _cols, const _Tp& value); + //! equivalent to Mat(_size, DataType<_Tp>::type) + explicit Mat_(Size _size); + //! constructor that sets each matrix element to specified value + Mat_(Size _size, const _Tp& value); + //! n-dim array constructor + Mat_(int _ndims, const int* _sizes); + //! n-dim array constructor that sets each matrix element to specified value + Mat_(int _ndims, const int* _sizes, const _Tp& value); + //! copy/conversion contructor. If m is of different type, it's converted + Mat_(const Mat& m); + //! copy constructor + Mat_(const Mat_& m); + //! constructs a matrix on top of user-allocated data. step is in bytes(!!!), regardless of the type + Mat_(int _rows, int _cols, _Tp* _data, size_t _step=AUTO_STEP); + //! constructs n-dim matrix on top of user-allocated data. steps are in bytes(!!!), regardless of the type + Mat_(int _ndims, const int* _sizes, _Tp* _data, const size_t* _steps=0); + //! selects a submatrix + Mat_(const Mat_& m, const Range& rowRange, const Range& colRange=Range::all()); + //! selects a submatrix + Mat_(const Mat_& m, const Rect& roi); + //! selects a submatrix, n-dim version + Mat_(const Mat_& m, const Range* ranges); + //! selects a submatrix, n-dim version + Mat_(const Mat_& m, const std::vector& ranges); + //! from a matrix expression + explicit Mat_(const MatExpr& e); + //! makes a matrix out of Vec, std::vector, Point_ or Point3_. The matrix will have a single column + explicit Mat_(const std::vector<_Tp>& vec, bool copyData=false); + template explicit Mat_(const Vec::channel_type, n>& vec, bool copyData=true); + template explicit Mat_(const Matx::channel_type, m, n>& mtx, bool copyData=true); + explicit Mat_(const Point_::channel_type>& pt, bool copyData=true); + explicit Mat_(const Point3_::channel_type>& pt, bool copyData=true); + explicit Mat_(const MatCommaInitializer_<_Tp>& commaInitializer); + + Mat_& operator = (const Mat& m); + Mat_& operator = (const Mat_& m); + //! set all the elements to s. + Mat_& operator = (const _Tp& s); + //! assign a matrix expression + Mat_& operator = (const MatExpr& e); + + //! iterators; they are smart enough to skip gaps in the end of rows + iterator begin(); + iterator end(); + const_iterator begin() const; + const_iterator end() const; + + //! template methods for for operation over all matrix elements. + // the operations take care of skipping gaps in the end of rows (if any) + template void forEach(const Functor& operation); + template void forEach(const Functor& operation) const; + + //! equivalent to Mat::create(_rows, _cols, DataType<_Tp>::type) + void create(int _rows, int _cols); + //! equivalent to Mat::create(_size, DataType<_Tp>::type) + void create(Size _size); + //! equivalent to Mat::create(_ndims, _sizes, DatType<_Tp>::type) + void create(int _ndims, const int* _sizes); + //! cross-product + Mat_ cross(const Mat_& m) const; + //! data type conversion + template operator Mat_() const; + //! overridden forms of Mat::row() etc. + Mat_ row(int y) const; + Mat_ col(int x) const; + Mat_ diag(int d=0) const; + Mat_ clone() const; + + //! overridden forms of Mat::elemSize() etc. + size_t elemSize() const; + size_t elemSize1() const; + int type() const; + int depth() const; + int channels() const; + size_t step1(int i=0) const; + //! returns step()/sizeof(_Tp) + size_t stepT(int i=0) const; + + //! overridden forms of Mat::zeros() etc. Data type is omitted, of course + static MatExpr zeros(int rows, int cols); + static MatExpr zeros(Size size); + static MatExpr zeros(int _ndims, const int* _sizes); + static MatExpr ones(int rows, int cols); + static MatExpr ones(Size size); + static MatExpr ones(int _ndims, const int* _sizes); + static MatExpr eye(int rows, int cols); + static MatExpr eye(Size size); + + //! some more overriden methods + Mat_& adjustROI( int dtop, int dbottom, int dleft, int dright ); + Mat_ operator()( const Range& rowRange, const Range& colRange ) const; + Mat_ operator()( const Rect& roi ) const; + Mat_ operator()( const Range* ranges ) const; + Mat_ operator()(const std::vector& ranges) const; + + //! more convenient forms of row and element access operators + _Tp* operator [](int y); + const _Tp* operator [](int y) const; + + //! returns reference to the specified element + _Tp& operator ()(const int* idx); + //! returns read-only reference to the specified element + const _Tp& operator ()(const int* idx) const; + + //! returns reference to the specified element + template _Tp& operator ()(const Vec& idx); + //! returns read-only reference to the specified element + template const _Tp& operator ()(const Vec& idx) const; + + //! returns reference to the specified element (1D case) + _Tp& operator ()(int idx0); + //! returns read-only reference to the specified element (1D case) + const _Tp& operator ()(int idx0) const; + //! returns reference to the specified element (2D case) + _Tp& operator ()(int row, int col); + //! returns read-only reference to the specified element (2D case) + const _Tp& operator ()(int row, int col) const; + //! returns reference to the specified element (3D case) + _Tp& operator ()(int idx0, int idx1, int idx2); + //! returns read-only reference to the specified element (3D case) + const _Tp& operator ()(int idx0, int idx1, int idx2) const; + + _Tp& operator ()(Point pt); + const _Tp& operator ()(Point pt) const; + + //! conversion to vector. + operator std::vector<_Tp>() const; + //! conversion to Vec + template operator Vec::channel_type, n>() const; + //! conversion to Matx + template operator Matx::channel_type, m, n>() const; + +#ifdef CV_CXX_MOVE_SEMANTICS + Mat_(Mat_&& m); + Mat_& operator = (Mat_&& m); + + Mat_(Mat&& m); + Mat_& operator = (Mat&& m); + + Mat_(MatExpr&& e); +#endif +}; + +typedef Mat_ Mat1b; +typedef Mat_ Mat2b; +typedef Mat_ Mat3b; +typedef Mat_ Mat4b; + +typedef Mat_ Mat1s; +typedef Mat_ Mat2s; +typedef Mat_ Mat3s; +typedef Mat_ Mat4s; + +typedef Mat_ Mat1w; +typedef Mat_ Mat2w; +typedef Mat_ Mat3w; +typedef Mat_ Mat4w; + +typedef Mat_ Mat1i; +typedef Mat_ Mat2i; +typedef Mat_ Mat3i; +typedef Mat_ Mat4i; + +typedef Mat_ Mat1f; +typedef Mat_ Mat2f; +typedef Mat_ Mat3f; +typedef Mat_ Mat4f; + +typedef Mat_ Mat1d; +typedef Mat_ Mat2d; +typedef Mat_ Mat3d; +typedef Mat_ Mat4d; + +/** @todo document */ +class CV_EXPORTS UMat +{ +public: + //! default constructor + UMat(UMatUsageFlags usageFlags = USAGE_DEFAULT); + //! constructs 2D matrix of the specified size and type + // (_type is CV_8UC1, CV_64FC3, CV_32SC(12) etc.) + UMat(int rows, int cols, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT); + UMat(Size size, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT); + //! constucts 2D matrix and fills it with the specified value _s. + UMat(int rows, int cols, int type, const Scalar& s, UMatUsageFlags usageFlags = USAGE_DEFAULT); + UMat(Size size, int type, const Scalar& s, UMatUsageFlags usageFlags = USAGE_DEFAULT); + + //! constructs n-dimensional matrix + UMat(int ndims, const int* sizes, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT); + UMat(int ndims, const int* sizes, int type, const Scalar& s, UMatUsageFlags usageFlags = USAGE_DEFAULT); + + //! copy constructor + UMat(const UMat& m); + + //! creates a matrix header for a part of the bigger matrix + UMat(const UMat& m, const Range& rowRange, const Range& colRange=Range::all()); + UMat(const UMat& m, const Rect& roi); + UMat(const UMat& m, const Range* ranges); + UMat(const UMat& m, const std::vector& ranges); + //! builds matrix from std::vector with or without copying the data + template explicit UMat(const std::vector<_Tp>& vec, bool copyData=false); + //! builds matrix from cv::Vec; the data is copied by default + template explicit UMat(const Vec<_Tp, n>& vec, bool copyData=true); + //! builds matrix from cv::Matx; the data is copied by default + template explicit UMat(const Matx<_Tp, m, n>& mtx, bool copyData=true); + //! builds matrix from a 2D point + template explicit UMat(const Point_<_Tp>& pt, bool copyData=true); + //! builds matrix from a 3D point + template explicit UMat(const Point3_<_Tp>& pt, bool copyData=true); + //! builds matrix from comma initializer + template explicit UMat(const MatCommaInitializer_<_Tp>& commaInitializer); + + //! destructor - calls release() + ~UMat(); + //! assignment operators + UMat& operator = (const UMat& m); + + Mat getMat(int flags) const; + + //! returns a new matrix header for the specified row + UMat row(int y) const; + //! returns a new matrix header for the specified column + UMat col(int x) const; + //! ... for the specified row span + UMat rowRange(int startrow, int endrow) const; + UMat rowRange(const Range& r) const; + //! ... for the specified column span + UMat colRange(int startcol, int endcol) const; + UMat colRange(const Range& r) const; + //! ... for the specified diagonal + // (d=0 - the main diagonal, + // >0 - a diagonal from the lower half, + // <0 - a diagonal from the upper half) + UMat diag(int d=0) const; + //! constructs a square diagonal matrix which main diagonal is vector "d" + static UMat diag(const UMat& d); + + //! returns deep copy of the matrix, i.e. the data is copied + UMat clone() const; + //! copies the matrix content to "m". + // It calls m.create(this->size(), this->type()). + void copyTo( OutputArray m ) const; + //! copies those matrix elements to "m" that are marked with non-zero mask elements. + void copyTo( OutputArray m, InputArray mask ) const; + //! converts matrix to another datatype with optional scalng. See cvConvertScale. + void convertTo( OutputArray m, int rtype, double alpha=1, double beta=0 ) const; + + void assignTo( UMat& m, int type=-1 ) const; + + //! sets every matrix element to s + UMat& operator = (const Scalar& s); + //! sets some of the matrix elements to s, according to the mask + UMat& setTo(InputArray value, InputArray mask=noArray()); + //! creates alternative matrix header for the same data, with different + // number of channels and/or different number of rows. see cvReshape. + UMat reshape(int cn, int rows=0) const; + UMat reshape(int cn, int newndims, const int* newsz) const; + + //! matrix transposition by means of matrix expressions + UMat t() const; + //! matrix inversion by means of matrix expressions + UMat inv(int method=DECOMP_LU) const; + //! per-element matrix multiplication by means of matrix expressions + UMat mul(InputArray m, double scale=1) const; + + //! computes dot-product + double dot(InputArray m) const; + + //! Matlab-style matrix initialization + static UMat zeros(int rows, int cols, int type); + static UMat zeros(Size size, int type); + static UMat zeros(int ndims, const int* sz, int type); + static UMat ones(int rows, int cols, int type); + static UMat ones(Size size, int type); + static UMat ones(int ndims, const int* sz, int type); + static UMat eye(int rows, int cols, int type); + static UMat eye(Size size, int type); + + //! allocates new matrix data unless the matrix already has specified size and type. + // previous data is unreferenced if needed. + void create(int rows, int cols, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT); + void create(Size size, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT); + void create(int ndims, const int* sizes, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT); + void create(const std::vector& sizes, int type, UMatUsageFlags usageFlags = USAGE_DEFAULT); + + //! increases the reference counter; use with care to avoid memleaks + void addref(); + //! decreases reference counter; + // deallocates the data when reference counter reaches 0. + void release(); + + //! deallocates the matrix data + void deallocate(); + //! internal use function; properly re-allocates _size, _step arrays + void copySize(const UMat& m); + + //! locates matrix header within a parent matrix. See below + void locateROI( Size& wholeSize, Point& ofs ) const; + //! moves/resizes the current matrix ROI inside the parent matrix. + UMat& adjustROI( int dtop, int dbottom, int dleft, int dright ); + //! extracts a rectangular sub-matrix + // (this is a generalized form of row, rowRange etc.) + UMat operator()( Range rowRange, Range colRange ) const; + UMat operator()( const Rect& roi ) const; + UMat operator()( const Range* ranges ) const; + UMat operator()(const std::vector& ranges) const; + + //! returns true iff the matrix data is continuous + // (i.e. when there are no gaps between successive rows). + // similar to CV_IS_MAT_CONT(cvmat->type) + bool isContinuous() const; + + //! returns true if the matrix is a submatrix of another matrix + bool isSubmatrix() const; + + //! returns element size in bytes, + // similar to CV_ELEM_SIZE(cvmat->type) + size_t elemSize() const; + //! returns the size of element channel in bytes. + size_t elemSize1() const; + //! returns element type, similar to CV_MAT_TYPE(cvmat->type) + int type() const; + //! returns element type, similar to CV_MAT_DEPTH(cvmat->type) + int depth() const; + //! returns element type, similar to CV_MAT_CN(cvmat->type) + int channels() const; + //! returns step/elemSize1() + size_t step1(int i=0) const; + //! returns true if matrix data is NULL + bool empty() const; + //! returns the total number of matrix elements + size_t total() const; + + //! returns N if the matrix is 1-channel (N x ptdim) or ptdim-channel (1 x N) or (N x 1); negative number otherwise + int checkVector(int elemChannels, int depth=-1, bool requireContinuous=true) const; + +#ifdef CV_CXX_MOVE_SEMANTICS + UMat(UMat&& m); + UMat& operator = (UMat&& m); +#endif + + void* handle(int accessFlags) const; + void ndoffset(size_t* ofs) const; + + enum { MAGIC_VAL = 0x42FF0000, AUTO_STEP = 0, CONTINUOUS_FLAG = CV_MAT_CONT_FLAG, SUBMATRIX_FLAG = CV_SUBMAT_FLAG }; + enum { MAGIC_MASK = 0xFFFF0000, TYPE_MASK = 0x00000FFF, DEPTH_MASK = 7 }; + + /*! includes several bit-fields: + - the magic signature + - continuity flag + - depth + - number of channels + */ + int flags; + //! the matrix dimensionality, >= 2 + int dims; + //! the number of rows and columns or (-1, -1) when the matrix has more than 2 dimensions + int rows, cols; + + //! custom allocator + MatAllocator* allocator; + UMatUsageFlags usageFlags; // usage flags for allocator + //! and the standard allocator + static MatAllocator* getStdAllocator(); + + // black-box container of UMat data + UMatData* u; + + // offset of the submatrix (or 0) + size_t offset; + + MatSize size; + MatStep step; + +protected: +}; + + +/////////////////////////// multi-dimensional sparse matrix ////////////////////////// + +/** @brief The class SparseMat represents multi-dimensional sparse numerical arrays. + +Such a sparse array can store elements of any type that Mat can store. *Sparse* means that only +non-zero elements are stored (though, as a result of operations on a sparse matrix, some of its +stored elements can actually become 0. It is up to you to detect such elements and delete them +using SparseMat::erase ). The non-zero elements are stored in a hash table that grows when it is +filled so that the search time is O(1) in average (regardless of whether element is there or not). +Elements can be accessed using the following methods: +- Query operations (SparseMat::ptr and the higher-level SparseMat::ref, SparseMat::value and + SparseMat::find), for example: + @code + const int dims = 5; + int size[5] = {10, 10, 10, 10, 10}; + SparseMat sparse_mat(dims, size, CV_32F); + for(int i = 0; i < 1000; i++) + { + int idx[dims]; + for(int k = 0; k < dims; k++) + idx[k] = rand() % size[k]; + sparse_mat.ref(idx) += 1.f; + } + cout << "nnz = " << sparse_mat.nzcount() << endl; + @endcode +- Sparse matrix iterators. They are similar to MatIterator but different from NAryMatIterator. + That is, the iteration loop is familiar to STL users: + @code + // prints elements of a sparse floating-point matrix + // and the sum of elements. + SparseMatConstIterator_ + it = sparse_mat.begin(), + it_end = sparse_mat.end(); + double s = 0; + int dims = sparse_mat.dims(); + for(; it != it_end; ++it) + { + // print element indices and the element value + const SparseMat::Node* n = it.node(); + printf("("); + for(int i = 0; i < dims; i++) + printf("%d%s", n->idx[i], i < dims-1 ? ", " : ")"); + printf(": %g\n", it.value()); + s += *it; + } + printf("Element sum is %g\n", s); + @endcode + If you run this loop, you will notice that elements are not enumerated in a logical order + (lexicographical, and so on). They come in the same order as they are stored in the hash table + (semi-randomly). You may collect pointers to the nodes and sort them to get the proper ordering. + Note, however, that pointers to the nodes may become invalid when you add more elements to the + matrix. This may happen due to possible buffer reallocation. +- Combination of the above 2 methods when you need to process 2 or more sparse matrices + simultaneously. For example, this is how you can compute unnormalized cross-correlation of the 2 + floating-point sparse matrices: + @code + double cross_corr(const SparseMat& a, const SparseMat& b) + { + const SparseMat *_a = &a, *_b = &b; + // if b contains less elements than a, + // it is faster to iterate through b + if(_a->nzcount() > _b->nzcount()) + std::swap(_a, _b); + SparseMatConstIterator_ it = _a->begin(), + it_end = _a->end(); + double ccorr = 0; + for(; it != it_end; ++it) + { + // take the next element from the first matrix + float avalue = *it; + const Node* anode = it.node(); + // and try to find an element with the same index in the second matrix. + // since the hash value depends only on the element index, + // reuse the hash value stored in the node + float bvalue = _b->value(anode->idx,&anode->hashval); + ccorr += avalue*bvalue; + } + return ccorr; + } + @endcode + */ +class CV_EXPORTS SparseMat +{ +public: + typedef SparseMatIterator iterator; + typedef SparseMatConstIterator const_iterator; + + enum { MAGIC_VAL=0x42FD0000, MAX_DIM=32, HASH_SCALE=0x5bd1e995, HASH_BIT=0x80000000 }; + + //! the sparse matrix header + struct CV_EXPORTS Hdr + { + Hdr(int _dims, const int* _sizes, int _type); + void clear(); + int refcount; + int dims; + int valueOffset; + size_t nodeSize; + size_t nodeCount; + size_t freeList; + std::vector pool; + std::vector hashtab; + int size[MAX_DIM]; + }; + + //! sparse matrix node - element of a hash table + struct CV_EXPORTS Node + { + //! hash value + size_t hashval; + //! index of the next node in the same hash table entry + size_t next; + //! index of the matrix element + int idx[MAX_DIM]; + }; + + /** @brief Various SparseMat constructors. + */ + SparseMat(); + + /** @overload + @param dims Array dimensionality. + @param _sizes Sparce matrix size on all dementions. + @param _type Sparse matrix data type. + */ + SparseMat(int dims, const int* _sizes, int _type); + + /** @overload + @param m Source matrix for copy constructor. If m is dense matrix (ocvMat) then it will be converted + to sparse representation. + */ + SparseMat(const SparseMat& m); + + /** @overload + @param m Source matrix for copy constructor. If m is dense matrix (ocvMat) then it will be converted + to sparse representation. + */ + explicit SparseMat(const Mat& m); + + //! the destructor + ~SparseMat(); + + //! assignment operator. This is O(1) operation, i.e. no data is copied + SparseMat& operator = (const SparseMat& m); + //! equivalent to the corresponding constructor + SparseMat& operator = (const Mat& m); + + //! creates full copy of the matrix + SparseMat clone() const; + + //! copies all the data to the destination matrix. All the previous content of m is erased + void copyTo( SparseMat& m ) const; + //! converts sparse matrix to dense matrix. + void copyTo( Mat& m ) const; + //! multiplies all the matrix elements by the specified scale factor alpha and converts the results to the specified data type + void convertTo( SparseMat& m, int rtype, double alpha=1 ) const; + //! converts sparse matrix to dense n-dim matrix with optional type conversion and scaling. + /*! + @param [out] m - output matrix; if it does not have a proper size or type before the operation, + it is reallocated + @param [in] rtype – desired output matrix type or, rather, the depth since the number of channels + are the same as the input has; if rtype is negative, the output matrix will have the + same type as the input. + @param [in] alpha – optional scale factor + @param [in] beta – optional delta added to the scaled values + */ + void convertTo( Mat& m, int rtype, double alpha=1, double beta=0 ) const; + + // not used now + void assignTo( SparseMat& m, int type=-1 ) const; + + //! reallocates sparse matrix. + /*! + If the matrix already had the proper size and type, + it is simply cleared with clear(), otherwise, + the old matrix is released (using release()) and the new one is allocated. + */ + void create(int dims, const int* _sizes, int _type); + //! sets all the sparse matrix elements to 0, which means clearing the hash table. + void clear(); + //! manually increments the reference counter to the header. + void addref(); + // decrements the header reference counter. When the counter reaches 0, the header and all the underlying data are deallocated. + void release(); + + //! converts sparse matrix to the old-style representation; all the elements are copied. + //operator CvSparseMat*() const; + //! returns the size of each element in bytes (not including the overhead - the space occupied by SparseMat::Node elements) + size_t elemSize() const; + //! returns elemSize()/channels() + size_t elemSize1() const; + + //! returns type of sparse matrix elements + int type() const; + //! returns the depth of sparse matrix elements + int depth() const; + //! returns the number of channels + int channels() const; + + //! returns the array of sizes, or NULL if the matrix is not allocated + const int* size() const; + //! returns the size of i-th matrix dimension (or 0) + int size(int i) const; + //! returns the matrix dimensionality + int dims() const; + //! returns the number of non-zero elements (=the number of hash table nodes) + size_t nzcount() const; + + //! computes the element hash value (1D case) + size_t hash(int i0) const; + //! computes the element hash value (2D case) + size_t hash(int i0, int i1) const; + //! computes the element hash value (3D case) + size_t hash(int i0, int i1, int i2) const; + //! computes the element hash value (nD case) + size_t hash(const int* idx) const; + + //!@{ + /*! + specialized variants for 1D, 2D, 3D cases and the generic_type one for n-D case. + return pointer to the matrix element. + - if the element is there (it's non-zero), the pointer to it is returned + - if it's not there and createMissing=false, NULL pointer is returned + - if it's not there and createMissing=true, then the new element + is created and initialized with 0. Pointer to it is returned + - if the optional hashval pointer is not NULL, the element hash value is + not computed, but *hashval is taken instead. + */ + //! returns pointer to the specified element (1D case) + uchar* ptr(int i0, bool createMissing, size_t* hashval=0); + //! returns pointer to the specified element (2D case) + uchar* ptr(int i0, int i1, bool createMissing, size_t* hashval=0); + //! returns pointer to the specified element (3D case) + uchar* ptr(int i0, int i1, int i2, bool createMissing, size_t* hashval=0); + //! returns pointer to the specified element (nD case) + uchar* ptr(const int* idx, bool createMissing, size_t* hashval=0); + //!@} + + //!@{ + /*! + return read-write reference to the specified sparse matrix element. + + `ref<_Tp>(i0,...[,hashval])` is equivalent to `*(_Tp*)ptr(i0,...,true[,hashval])`. + The methods always return a valid reference. + If the element did not exist, it is created and initialiazed with 0. + */ + //! returns reference to the specified element (1D case) + template _Tp& ref(int i0, size_t* hashval=0); + //! returns reference to the specified element (2D case) + template _Tp& ref(int i0, int i1, size_t* hashval=0); + //! returns reference to the specified element (3D case) + template _Tp& ref(int i0, int i1, int i2, size_t* hashval=0); + //! returns reference to the specified element (nD case) + template _Tp& ref(const int* idx, size_t* hashval=0); + //!@} + + //!@{ + /*! + return value of the specified sparse matrix element. + + `value<_Tp>(i0,...[,hashval])` is equivalent to + @code + { const _Tp* p = find<_Tp>(i0,...[,hashval]); return p ? *p : _Tp(); } + @endcode + + That is, if the element did not exist, the methods return 0. + */ + //! returns value of the specified element (1D case) + template _Tp value(int i0, size_t* hashval=0) const; + //! returns value of the specified element (2D case) + template _Tp value(int i0, int i1, size_t* hashval=0) const; + //! returns value of the specified element (3D case) + template _Tp value(int i0, int i1, int i2, size_t* hashval=0) const; + //! returns value of the specified element (nD case) + template _Tp value(const int* idx, size_t* hashval=0) const; + //!@} + + //!@{ + /*! + Return pointer to the specified sparse matrix element if it exists + + `find<_Tp>(i0,...[,hashval])` is equivalent to `(_const Tp*)ptr(i0,...false[,hashval])`. + + If the specified element does not exist, the methods return NULL. + */ + //! returns pointer to the specified element (1D case) + template const _Tp* find(int i0, size_t* hashval=0) const; + //! returns pointer to the specified element (2D case) + template const _Tp* find(int i0, int i1, size_t* hashval=0) const; + //! returns pointer to the specified element (3D case) + template const _Tp* find(int i0, int i1, int i2, size_t* hashval=0) const; + //! returns pointer to the specified element (nD case) + template const _Tp* find(const int* idx, size_t* hashval=0) const; + //!@} + + //! erases the specified element (2D case) + void erase(int i0, int i1, size_t* hashval=0); + //! erases the specified element (3D case) + void erase(int i0, int i1, int i2, size_t* hashval=0); + //! erases the specified element (nD case) + void erase(const int* idx, size_t* hashval=0); + + //!@{ + /*! + return the sparse matrix iterator pointing to the first sparse matrix element + */ + //! returns the sparse matrix iterator at the matrix beginning + SparseMatIterator begin(); + //! returns the sparse matrix iterator at the matrix beginning + template SparseMatIterator_<_Tp> begin(); + //! returns the read-only sparse matrix iterator at the matrix beginning + SparseMatConstIterator begin() const; + //! returns the read-only sparse matrix iterator at the matrix beginning + template SparseMatConstIterator_<_Tp> begin() const; + //!@} + /*! + return the sparse matrix iterator pointing to the element following the last sparse matrix element + */ + //! returns the sparse matrix iterator at the matrix end + SparseMatIterator end(); + //! returns the read-only sparse matrix iterator at the matrix end + SparseMatConstIterator end() const; + //! returns the typed sparse matrix iterator at the matrix end + template SparseMatIterator_<_Tp> end(); + //! returns the typed read-only sparse matrix iterator at the matrix end + template SparseMatConstIterator_<_Tp> end() const; + + //! returns the value stored in the sparse martix node + template _Tp& value(Node* n); + //! returns the value stored in the sparse martix node + template const _Tp& value(const Node* n) const; + + ////////////// some internal-use methods /////////////// + Node* node(size_t nidx); + const Node* node(size_t nidx) const; + + uchar* newNode(const int* idx, size_t hashval); + void removeNode(size_t hidx, size_t nidx, size_t previdx); + void resizeHashTab(size_t newsize); + + int flags; + Hdr* hdr; +}; + + + +///////////////////////////////// SparseMat_<_Tp> //////////////////////////////////// + +/** @brief Template sparse n-dimensional array class derived from SparseMat + +SparseMat_ is a thin wrapper on top of SparseMat created in the same way as Mat_ . It simplifies +notation of some operations: +@code + int sz[] = {10, 20, 30}; + SparseMat_ M(3, sz); + ... + M.ref(1, 2, 3) = M(4, 5, 6) + M(7, 8, 9); +@endcode + */ +template class SparseMat_ : public SparseMat +{ +public: + typedef SparseMatIterator_<_Tp> iterator; + typedef SparseMatConstIterator_<_Tp> const_iterator; + + //! the default constructor + SparseMat_(); + //! the full constructor equivelent to SparseMat(dims, _sizes, DataType<_Tp>::type) + SparseMat_(int dims, const int* _sizes); + //! the copy constructor. If DataType<_Tp>.type != m.type(), the m elements are converted + SparseMat_(const SparseMat& m); + //! the copy constructor. This is O(1) operation - no data is copied + SparseMat_(const SparseMat_& m); + //! converts dense matrix to the sparse form + SparseMat_(const Mat& m); + //! converts the old-style sparse matrix to the C++ class. All the elements are copied + //SparseMat_(const CvSparseMat* m); + //! the assignment operator. If DataType<_Tp>.type != m.type(), the m elements are converted + SparseMat_& operator = (const SparseMat& m); + //! the assignment operator. This is O(1) operation - no data is copied + SparseMat_& operator = (const SparseMat_& m); + //! converts dense matrix to the sparse form + SparseMat_& operator = (const Mat& m); + + //! makes full copy of the matrix. All the elements are duplicated + SparseMat_ clone() const; + //! equivalent to cv::SparseMat::create(dims, _sizes, DataType<_Tp>::type) + void create(int dims, const int* _sizes); + //! converts sparse matrix to the old-style CvSparseMat. All the elements are copied + //operator CvSparseMat*() const; + + //! returns type of the matrix elements + int type() const; + //! returns depth of the matrix elements + int depth() const; + //! returns the number of channels in each matrix element + int channels() const; + + //! equivalent to SparseMat::ref<_Tp>(i0, hashval) + _Tp& ref(int i0, size_t* hashval=0); + //! equivalent to SparseMat::ref<_Tp>(i0, i1, hashval) + _Tp& ref(int i0, int i1, size_t* hashval=0); + //! equivalent to SparseMat::ref<_Tp>(i0, i1, i2, hashval) + _Tp& ref(int i0, int i1, int i2, size_t* hashval=0); + //! equivalent to SparseMat::ref<_Tp>(idx, hashval) + _Tp& ref(const int* idx, size_t* hashval=0); + + //! equivalent to SparseMat::value<_Tp>(i0, hashval) + _Tp operator()(int i0, size_t* hashval=0) const; + //! equivalent to SparseMat::value<_Tp>(i0, i1, hashval) + _Tp operator()(int i0, int i1, size_t* hashval=0) const; + //! equivalent to SparseMat::value<_Tp>(i0, i1, i2, hashval) + _Tp operator()(int i0, int i1, int i2, size_t* hashval=0) const; + //! equivalent to SparseMat::value<_Tp>(idx, hashval) + _Tp operator()(const int* idx, size_t* hashval=0) const; + + //! returns sparse matrix iterator pointing to the first sparse matrix element + SparseMatIterator_<_Tp> begin(); + //! returns read-only sparse matrix iterator pointing to the first sparse matrix element + SparseMatConstIterator_<_Tp> begin() const; + //! returns sparse matrix iterator pointing to the element following the last sparse matrix element + SparseMatIterator_<_Tp> end(); + //! returns read-only sparse matrix iterator pointing to the element following the last sparse matrix element + SparseMatConstIterator_<_Tp> end() const; +}; + + + +////////////////////////////////// MatConstIterator ////////////////////////////////// + +class CV_EXPORTS MatConstIterator +{ +public: + typedef uchar* value_type; + typedef ptrdiff_t difference_type; + typedef const uchar** pointer; + typedef uchar* reference; + +#ifndef OPENCV_NOSTL + typedef std::random_access_iterator_tag iterator_category; +#endif + + //! default constructor + MatConstIterator(); + //! constructor that sets the iterator to the beginning of the matrix + MatConstIterator(const Mat* _m); + //! constructor that sets the iterator to the specified element of the matrix + MatConstIterator(const Mat* _m, int _row, int _col=0); + //! constructor that sets the iterator to the specified element of the matrix + MatConstIterator(const Mat* _m, Point _pt); + //! constructor that sets the iterator to the specified element of the matrix + MatConstIterator(const Mat* _m, const int* _idx); + //! copy constructor + MatConstIterator(const MatConstIterator& it); + + //! copy operator + MatConstIterator& operator = (const MatConstIterator& it); + //! returns the current matrix element + const uchar* operator *() const; + //! returns the i-th matrix element, relative to the current + const uchar* operator [](ptrdiff_t i) const; + + //! shifts the iterator forward by the specified number of elements + MatConstIterator& operator += (ptrdiff_t ofs); + //! shifts the iterator backward by the specified number of elements + MatConstIterator& operator -= (ptrdiff_t ofs); + //! decrements the iterator + MatConstIterator& operator --(); + //! decrements the iterator + MatConstIterator operator --(int); + //! increments the iterator + MatConstIterator& operator ++(); + //! increments the iterator + MatConstIterator operator ++(int); + //! returns the current iterator position + Point pos() const; + //! returns the current iterator position + void pos(int* _idx) const; + + ptrdiff_t lpos() const; + void seek(ptrdiff_t ofs, bool relative = false); + void seek(const int* _idx, bool relative = false); + + const Mat* m; + size_t elemSize; + const uchar* ptr; + const uchar* sliceStart; + const uchar* sliceEnd; +}; + + + +////////////////////////////////// MatConstIterator_ ///////////////////////////////// + +/** @brief Matrix read-only iterator + */ +template +class MatConstIterator_ : public MatConstIterator +{ +public: + typedef _Tp value_type; + typedef ptrdiff_t difference_type; + typedef const _Tp* pointer; + typedef const _Tp& reference; + +#ifndef OPENCV_NOSTL + typedef std::random_access_iterator_tag iterator_category; +#endif + + //! default constructor + MatConstIterator_(); + //! constructor that sets the iterator to the beginning of the matrix + MatConstIterator_(const Mat_<_Tp>* _m); + //! constructor that sets the iterator to the specified element of the matrix + MatConstIterator_(const Mat_<_Tp>* _m, int _row, int _col=0); + //! constructor that sets the iterator to the specified element of the matrix + MatConstIterator_(const Mat_<_Tp>* _m, Point _pt); + //! constructor that sets the iterator to the specified element of the matrix + MatConstIterator_(const Mat_<_Tp>* _m, const int* _idx); + //! copy constructor + MatConstIterator_(const MatConstIterator_& it); + + //! copy operator + MatConstIterator_& operator = (const MatConstIterator_& it); + //! returns the current matrix element + const _Tp& operator *() const; + //! returns the i-th matrix element, relative to the current + const _Tp& operator [](ptrdiff_t i) const; + + //! shifts the iterator forward by the specified number of elements + MatConstIterator_& operator += (ptrdiff_t ofs); + //! shifts the iterator backward by the specified number of elements + MatConstIterator_& operator -= (ptrdiff_t ofs); + //! decrements the iterator + MatConstIterator_& operator --(); + //! decrements the iterator + MatConstIterator_ operator --(int); + //! increments the iterator + MatConstIterator_& operator ++(); + //! increments the iterator + MatConstIterator_ operator ++(int); + //! returns the current iterator position + Point pos() const; +}; + + + +//////////////////////////////////// MatIterator_ //////////////////////////////////// + +/** @brief Matrix read-write iterator +*/ +template +class MatIterator_ : public MatConstIterator_<_Tp> +{ +public: + typedef _Tp* pointer; + typedef _Tp& reference; + +#ifndef OPENCV_NOSTL + typedef std::random_access_iterator_tag iterator_category; +#endif + + //! the default constructor + MatIterator_(); + //! constructor that sets the iterator to the beginning of the matrix + MatIterator_(Mat_<_Tp>* _m); + //! constructor that sets the iterator to the specified element of the matrix + MatIterator_(Mat_<_Tp>* _m, int _row, int _col=0); + //! constructor that sets the iterator to the specified element of the matrix + MatIterator_(Mat_<_Tp>* _m, Point _pt); + //! constructor that sets the iterator to the specified element of the matrix + MatIterator_(Mat_<_Tp>* _m, const int* _idx); + //! copy constructor + MatIterator_(const MatIterator_& it); + //! copy operator + MatIterator_& operator = (const MatIterator_<_Tp>& it ); + + //! returns the current matrix element + _Tp& operator *() const; + //! returns the i-th matrix element, relative to the current + _Tp& operator [](ptrdiff_t i) const; + + //! shifts the iterator forward by the specified number of elements + MatIterator_& operator += (ptrdiff_t ofs); + //! shifts the iterator backward by the specified number of elements + MatIterator_& operator -= (ptrdiff_t ofs); + //! decrements the iterator + MatIterator_& operator --(); + //! decrements the iterator + MatIterator_ operator --(int); + //! increments the iterator + MatIterator_& operator ++(); + //! increments the iterator + MatIterator_ operator ++(int); +}; + + + +/////////////////////////////// SparseMatConstIterator /////////////////////////////// + +/** @brief Read-Only Sparse Matrix Iterator. + + Here is how to use the iterator to compute the sum of floating-point sparse matrix elements: + + \code + SparseMatConstIterator it = m.begin(), it_end = m.end(); + double s = 0; + CV_Assert( m.type() == CV_32F ); + for( ; it != it_end; ++it ) + s += it.value(); + \endcode +*/ +class CV_EXPORTS SparseMatConstIterator +{ +public: + //! the default constructor + SparseMatConstIterator(); + //! the full constructor setting the iterator to the first sparse matrix element + SparseMatConstIterator(const SparseMat* _m); + //! the copy constructor + SparseMatConstIterator(const SparseMatConstIterator& it); + + //! the assignment operator + SparseMatConstIterator& operator = (const SparseMatConstIterator& it); + + //! template method returning the current matrix element + template const _Tp& value() const; + //! returns the current node of the sparse matrix. it.node->idx is the current element index + const SparseMat::Node* node() const; + + //! moves iterator to the previous element + SparseMatConstIterator& operator --(); + //! moves iterator to the previous element + SparseMatConstIterator operator --(int); + //! moves iterator to the next element + SparseMatConstIterator& operator ++(); + //! moves iterator to the next element + SparseMatConstIterator operator ++(int); + + //! moves iterator to the element after the last element + void seekEnd(); + + const SparseMat* m; + size_t hashidx; + uchar* ptr; +}; + + + +////////////////////////////////// SparseMatIterator ///////////////////////////////// + +/** @brief Read-write Sparse Matrix Iterator + + The class is similar to cv::SparseMatConstIterator, + but can be used for in-place modification of the matrix elements. +*/ +class CV_EXPORTS SparseMatIterator : public SparseMatConstIterator +{ +public: + //! the default constructor + SparseMatIterator(); + //! the full constructor setting the iterator to the first sparse matrix element + SparseMatIterator(SparseMat* _m); + //! the full constructor setting the iterator to the specified sparse matrix element + SparseMatIterator(SparseMat* _m, const int* idx); + //! the copy constructor + SparseMatIterator(const SparseMatIterator& it); + + //! the assignment operator + SparseMatIterator& operator = (const SparseMatIterator& it); + //! returns read-write reference to the current sparse matrix element + template _Tp& value() const; + //! returns pointer to the current sparse matrix node. it.node->idx is the index of the current element (do not modify it!) + SparseMat::Node* node() const; + + //! moves iterator to the next element + SparseMatIterator& operator ++(); + //! moves iterator to the next element + SparseMatIterator operator ++(int); +}; + + + +/////////////////////////////// SparseMatConstIterator_ ////////////////////////////// + +/** @brief Template Read-Only Sparse Matrix Iterator Class. + + This is the derived from SparseMatConstIterator class that + introduces more convenient operator *() for accessing the current element. +*/ +template class SparseMatConstIterator_ : public SparseMatConstIterator +{ +public: + +#ifndef OPENCV_NOSTL + typedef std::forward_iterator_tag iterator_category; +#endif + + //! the default constructor + SparseMatConstIterator_(); + //! the full constructor setting the iterator to the first sparse matrix element + SparseMatConstIterator_(const SparseMat_<_Tp>* _m); + SparseMatConstIterator_(const SparseMat* _m); + //! the copy constructor + SparseMatConstIterator_(const SparseMatConstIterator_& it); + + //! the assignment operator + SparseMatConstIterator_& operator = (const SparseMatConstIterator_& it); + //! the element access operator + const _Tp& operator *() const; + + //! moves iterator to the next element + SparseMatConstIterator_& operator ++(); + //! moves iterator to the next element + SparseMatConstIterator_ operator ++(int); +}; + + + +///////////////////////////////// SparseMatIterator_ ///////////////////////////////// + +/** @brief Template Read-Write Sparse Matrix Iterator Class. + + This is the derived from cv::SparseMatConstIterator_ class that + introduces more convenient operator *() for accessing the current element. +*/ +template class SparseMatIterator_ : public SparseMatConstIterator_<_Tp> +{ +public: + +#ifndef OPENCV_NOSTL + typedef std::forward_iterator_tag iterator_category; +#endif + + //! the default constructor + SparseMatIterator_(); + //! the full constructor setting the iterator to the first sparse matrix element + SparseMatIterator_(SparseMat_<_Tp>* _m); + SparseMatIterator_(SparseMat* _m); + //! the copy constructor + SparseMatIterator_(const SparseMatIterator_& it); + + //! the assignment operator + SparseMatIterator_& operator = (const SparseMatIterator_& it); + //! returns the reference to the current element + _Tp& operator *() const; + + //! moves the iterator to the next element + SparseMatIterator_& operator ++(); + //! moves the iterator to the next element + SparseMatIterator_ operator ++(int); +}; + + + +/////////////////////////////////// NAryMatIterator ////////////////////////////////// + +/** @brief n-ary multi-dimensional array iterator. + +Use the class to implement unary, binary, and, generally, n-ary element-wise operations on +multi-dimensional arrays. Some of the arguments of an n-ary function may be continuous arrays, some +may be not. It is possible to use conventional MatIterator 's for each array but incrementing all of +the iterators after each small operations may be a big overhead. In this case consider using +NAryMatIterator to iterate through several matrices simultaneously as long as they have the same +geometry (dimensionality and all the dimension sizes are the same). On each iteration `it.planes[0]`, +`it.planes[1]`,... will be the slices of the corresponding matrices. + +The example below illustrates how you can compute a normalized and threshold 3D color histogram: +@code + void computeNormalizedColorHist(const Mat& image, Mat& hist, int N, double minProb) + { + const int histSize[] = {N, N, N}; + + // make sure that the histogram has a proper size and type + hist.create(3, histSize, CV_32F); + + // and clear it + hist = Scalar(0); + + // the loop below assumes that the image + // is a 8-bit 3-channel. check it. + CV_Assert(image.type() == CV_8UC3); + MatConstIterator_ it = image.begin(), + it_end = image.end(); + for( ; it != it_end; ++it ) + { + const Vec3b& pix = *it; + hist.at(pix[0]*N/256, pix[1]*N/256, pix[2]*N/256) += 1.f; + } + + minProb *= image.rows*image.cols; + + // initialize iterator (the style is different from STL). + // after initialization the iterator will contain + // the number of slices or planes the iterator will go through. + // it simultaneously increments iterators for several matrices + // supplied as a null terminated list of pointers + const Mat* arrays[] = {&hist, 0}; + Mat planes[1]; + NAryMatIterator itNAry(arrays, planes, 1); + double s = 0; + // iterate through the matrix. on each iteration + // itNAry.planes[i] (of type Mat) will be set to the current plane + // of the i-th n-dim matrix passed to the iterator constructor. + for(int p = 0; p < itNAry.nplanes; p++, ++itNAry) + { + threshold(itNAry.planes[0], itNAry.planes[0], minProb, 0, THRESH_TOZERO); + s += sum(itNAry.planes[0])[0]; + } + + s = 1./s; + itNAry = NAryMatIterator(arrays, planes, 1); + for(int p = 0; p < itNAry.nplanes; p++, ++itNAry) + itNAry.planes[0] *= s; + } +@endcode + */ +class CV_EXPORTS NAryMatIterator +{ +public: + //! the default constructor + NAryMatIterator(); + //! the full constructor taking arbitrary number of n-dim matrices + NAryMatIterator(const Mat** arrays, uchar** ptrs, int narrays=-1); + //! the full constructor taking arbitrary number of n-dim matrices + NAryMatIterator(const Mat** arrays, Mat* planes, int narrays=-1); + //! the separate iterator initialization method + void init(const Mat** arrays, Mat* planes, uchar** ptrs, int narrays=-1); + + //! proceeds to the next plane of every iterated matrix + NAryMatIterator& operator ++(); + //! proceeds to the next plane of every iterated matrix (postfix increment operator) + NAryMatIterator operator ++(int); + + //! the iterated arrays + const Mat** arrays; + //! the current planes + Mat* planes; + //! data pointers + uchar** ptrs; + //! the number of arrays + int narrays; + //! the number of hyper-planes that the iterator steps through + size_t nplanes; + //! the size of each segment (in elements) + size_t size; +protected: + int iterdepth; + size_t idx; +}; + + + +///////////////////////////////// Matrix Expressions ///////////////////////////////// + +class CV_EXPORTS MatOp +{ +public: + MatOp(); + virtual ~MatOp(); + + virtual bool elementWise(const MatExpr& expr) const; + virtual void assign(const MatExpr& expr, Mat& m, int type=-1) const = 0; + virtual void roi(const MatExpr& expr, const Range& rowRange, + const Range& colRange, MatExpr& res) const; + virtual void diag(const MatExpr& expr, int d, MatExpr& res) const; + virtual void augAssignAdd(const MatExpr& expr, Mat& m) const; + virtual void augAssignSubtract(const MatExpr& expr, Mat& m) const; + virtual void augAssignMultiply(const MatExpr& expr, Mat& m) const; + virtual void augAssignDivide(const MatExpr& expr, Mat& m) const; + virtual void augAssignAnd(const MatExpr& expr, Mat& m) const; + virtual void augAssignOr(const MatExpr& expr, Mat& m) const; + virtual void augAssignXor(const MatExpr& expr, Mat& m) const; + + virtual void add(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const; + virtual void add(const MatExpr& expr1, const Scalar& s, MatExpr& res) const; + + virtual void subtract(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const; + virtual void subtract(const Scalar& s, const MatExpr& expr, MatExpr& res) const; + + virtual void multiply(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res, double scale=1) const; + virtual void multiply(const MatExpr& expr1, double s, MatExpr& res) const; + + virtual void divide(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res, double scale=1) const; + virtual void divide(double s, const MatExpr& expr, MatExpr& res) const; + + virtual void abs(const MatExpr& expr, MatExpr& res) const; + + virtual void transpose(const MatExpr& expr, MatExpr& res) const; + virtual void matmul(const MatExpr& expr1, const MatExpr& expr2, MatExpr& res) const; + virtual void invert(const MatExpr& expr, int method, MatExpr& res) const; + + virtual Size size(const MatExpr& expr) const; + virtual int type(const MatExpr& expr) const; +}; + +/** @brief Matrix expression representation +@anchor MatrixExpressions +This is a list of implemented matrix operations that can be combined in arbitrary complex +expressions (here A, B stand for matrices ( Mat ), s for a scalar ( Scalar ), alpha for a +real-valued scalar ( double )): +- Addition, subtraction, negation: `A+B`, `A-B`, `A+s`, `A-s`, `s+A`, `s-A`, `-A` +- Scaling: `A*alpha` +- Per-element multiplication and division: `A.mul(B)`, `A/B`, `alpha/A` +- Matrix multiplication: `A*B` +- Transposition: `A.t()` (means AT) +- Matrix inversion and pseudo-inversion, solving linear systems and least-squares problems: + `A.inv([method]) (~ A-1)`, `A.inv([method])*B (~ X: AX=B)` +- Comparison: `A cmpop B`, `A cmpop alpha`, `alpha cmpop A`, where *cmpop* is one of + `>`, `>=`, `==`, `!=`, `<=`, `<`. The result of comparison is an 8-bit single channel mask whose + elements are set to 255 (if the particular element or pair of elements satisfy the condition) or + 0. +- Bitwise logical operations: `A logicop B`, `A logicop s`, `s logicop A`, `~A`, where *logicop* is one of + `&`, `|`, `^`. +- Element-wise minimum and maximum: `min(A, B)`, `min(A, alpha)`, `max(A, B)`, `max(A, alpha)` +- Element-wise absolute value: `abs(A)` +- Cross-product, dot-product: `A.cross(B)`, `A.dot(B)` +- Any function of matrix or matrices and scalars that returns a matrix or a scalar, such as norm, + mean, sum, countNonZero, trace, determinant, repeat, and others. +- Matrix initializers ( Mat::eye(), Mat::zeros(), Mat::ones() ), matrix comma-separated + initializers, matrix constructors and operators that extract sub-matrices (see Mat description). +- Mat_() constructors to cast the result to the proper type. +@note Comma-separated initializers and probably some other operations may require additional +explicit Mat() or Mat_() constructor calls to resolve a possible ambiguity. + +Here are examples of matrix expressions: +@code + // compute pseudo-inverse of A, equivalent to A.inv(DECOMP_SVD) + SVD svd(A); + Mat pinvA = svd.vt.t()*Mat::diag(1./svd.w)*svd.u.t(); + + // compute the new vector of parameters in the Levenberg-Marquardt algorithm + x -= (A.t()*A + lambda*Mat::eye(A.cols,A.cols,A.type())).inv(DECOMP_CHOLESKY)*(A.t()*err); + + // sharpen image using "unsharp mask" algorithm + Mat blurred; double sigma = 1, threshold = 5, amount = 1; + GaussianBlur(img, blurred, Size(), sigma, sigma); + Mat lowContrastMask = abs(img - blurred) < threshold; + Mat sharpened = img*(1+amount) + blurred*(-amount); + img.copyTo(sharpened, lowContrastMask); +@endcode +*/ +class CV_EXPORTS MatExpr +{ +public: + MatExpr(); + explicit MatExpr(const Mat& m); + + MatExpr(const MatOp* _op, int _flags, const Mat& _a = Mat(), const Mat& _b = Mat(), + const Mat& _c = Mat(), double _alpha = 1, double _beta = 1, const Scalar& _s = Scalar()); + + operator Mat() const; + template operator Mat_<_Tp>() const; + + Size size() const; + int type() const; + + MatExpr row(int y) const; + MatExpr col(int x) const; + MatExpr diag(int d = 0) const; + MatExpr operator()( const Range& rowRange, const Range& colRange ) const; + MatExpr operator()( const Rect& roi ) const; + + MatExpr t() const; + MatExpr inv(int method = DECOMP_LU) const; + MatExpr mul(const MatExpr& e, double scale=1) const; + MatExpr mul(const Mat& m, double scale=1) const; + + Mat cross(const Mat& m) const; + double dot(const Mat& m) const; + + const MatOp* op; + int flags; + + Mat a, b, c; + double alpha, beta; + Scalar s; +}; + +//! @} core_basic + +//! @relates cv::MatExpr +//! @{ +CV_EXPORTS MatExpr operator + (const Mat& a, const Mat& b); +CV_EXPORTS MatExpr operator + (const Mat& a, const Scalar& s); +CV_EXPORTS MatExpr operator + (const Scalar& s, const Mat& a); +CV_EXPORTS MatExpr operator + (const MatExpr& e, const Mat& m); +CV_EXPORTS MatExpr operator + (const Mat& m, const MatExpr& e); +CV_EXPORTS MatExpr operator + (const MatExpr& e, const Scalar& s); +CV_EXPORTS MatExpr operator + (const Scalar& s, const MatExpr& e); +CV_EXPORTS MatExpr operator + (const MatExpr& e1, const MatExpr& e2); + +CV_EXPORTS MatExpr operator - (const Mat& a, const Mat& b); +CV_EXPORTS MatExpr operator - (const Mat& a, const Scalar& s); +CV_EXPORTS MatExpr operator - (const Scalar& s, const Mat& a); +CV_EXPORTS MatExpr operator - (const MatExpr& e, const Mat& m); +CV_EXPORTS MatExpr operator - (const Mat& m, const MatExpr& e); +CV_EXPORTS MatExpr operator - (const MatExpr& e, const Scalar& s); +CV_EXPORTS MatExpr operator - (const Scalar& s, const MatExpr& e); +CV_EXPORTS MatExpr operator - (const MatExpr& e1, const MatExpr& e2); + +CV_EXPORTS MatExpr operator - (const Mat& m); +CV_EXPORTS MatExpr operator - (const MatExpr& e); + +CV_EXPORTS MatExpr operator * (const Mat& a, const Mat& b); +CV_EXPORTS MatExpr operator * (const Mat& a, double s); +CV_EXPORTS MatExpr operator * (double s, const Mat& a); +CV_EXPORTS MatExpr operator * (const MatExpr& e, const Mat& m); +CV_EXPORTS MatExpr operator * (const Mat& m, const MatExpr& e); +CV_EXPORTS MatExpr operator * (const MatExpr& e, double s); +CV_EXPORTS MatExpr operator * (double s, const MatExpr& e); +CV_EXPORTS MatExpr operator * (const MatExpr& e1, const MatExpr& e2); + +CV_EXPORTS MatExpr operator / (const Mat& a, const Mat& b); +CV_EXPORTS MatExpr operator / (const Mat& a, double s); +CV_EXPORTS MatExpr operator / (double s, const Mat& a); +CV_EXPORTS MatExpr operator / (const MatExpr& e, const Mat& m); +CV_EXPORTS MatExpr operator / (const Mat& m, const MatExpr& e); +CV_EXPORTS MatExpr operator / (const MatExpr& e, double s); +CV_EXPORTS MatExpr operator / (double s, const MatExpr& e); +CV_EXPORTS MatExpr operator / (const MatExpr& e1, const MatExpr& e2); + +CV_EXPORTS MatExpr operator < (const Mat& a, const Mat& b); +CV_EXPORTS MatExpr operator < (const Mat& a, double s); +CV_EXPORTS MatExpr operator < (double s, const Mat& a); + +CV_EXPORTS MatExpr operator <= (const Mat& a, const Mat& b); +CV_EXPORTS MatExpr operator <= (const Mat& a, double s); +CV_EXPORTS MatExpr operator <= (double s, const Mat& a); + +CV_EXPORTS MatExpr operator == (const Mat& a, const Mat& b); +CV_EXPORTS MatExpr operator == (const Mat& a, double s); +CV_EXPORTS MatExpr operator == (double s, const Mat& a); + +CV_EXPORTS MatExpr operator != (const Mat& a, const Mat& b); +CV_EXPORTS MatExpr operator != (const Mat& a, double s); +CV_EXPORTS MatExpr operator != (double s, const Mat& a); + +CV_EXPORTS MatExpr operator >= (const Mat& a, const Mat& b); +CV_EXPORTS MatExpr operator >= (const Mat& a, double s); +CV_EXPORTS MatExpr operator >= (double s, const Mat& a); + +CV_EXPORTS MatExpr operator > (const Mat& a, const Mat& b); +CV_EXPORTS MatExpr operator > (const Mat& a, double s); +CV_EXPORTS MatExpr operator > (double s, const Mat& a); + +CV_EXPORTS MatExpr operator & (const Mat& a, const Mat& b); +CV_EXPORTS MatExpr operator & (const Mat& a, const Scalar& s); +CV_EXPORTS MatExpr operator & (const Scalar& s, const Mat& a); + +CV_EXPORTS MatExpr operator | (const Mat& a, const Mat& b); +CV_EXPORTS MatExpr operator | (const Mat& a, const Scalar& s); +CV_EXPORTS MatExpr operator | (const Scalar& s, const Mat& a); + +CV_EXPORTS MatExpr operator ^ (const Mat& a, const Mat& b); +CV_EXPORTS MatExpr operator ^ (const Mat& a, const Scalar& s); +CV_EXPORTS MatExpr operator ^ (const Scalar& s, const Mat& a); + +CV_EXPORTS MatExpr operator ~(const Mat& m); + +CV_EXPORTS MatExpr min(const Mat& a, const Mat& b); +CV_EXPORTS MatExpr min(const Mat& a, double s); +CV_EXPORTS MatExpr min(double s, const Mat& a); + +CV_EXPORTS MatExpr max(const Mat& a, const Mat& b); +CV_EXPORTS MatExpr max(const Mat& a, double s); +CV_EXPORTS MatExpr max(double s, const Mat& a); + +/** @brief Calculates an absolute value of each matrix element. + +abs is a meta-function that is expanded to one of absdiff or convertScaleAbs forms: +- C = abs(A-B) is equivalent to `absdiff(A, B, C)` +- C = abs(A) is equivalent to `absdiff(A, Scalar::all(0), C)` +- C = `Mat_ >(abs(A*alpha + beta))` is equivalent to `convertScaleAbs(A, C, alpha, +beta)` + +The output matrix has the same size and the same type as the input one except for the last case, +where C is depth=CV_8U . +@param m matrix. +@sa @ref MatrixExpressions, absdiff, convertScaleAbs + */ +CV_EXPORTS MatExpr abs(const Mat& m); +/** @overload +@param e matrix expression. +*/ +CV_EXPORTS MatExpr abs(const MatExpr& e); +//! @} relates cv::MatExpr + +} // cv + +#include "opencv2/core/mat.inl.hpp" + +#endif // OPENCV_CORE_MAT_HPP diff --git a/thirdparty1/linux/include/opencv2/core/mat.inl.hpp b/thirdparty1/linux/include/opencv2/core/mat.inl.hpp new file mode 100644 index 0000000..4a32de1 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/mat.inl.hpp @@ -0,0 +1,3733 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2015, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_MATRIX_OPERATIONS_HPP +#define OPENCV_CORE_MATRIX_OPERATIONS_HPP + +#ifndef __cplusplus +# error mat.inl.hpp header must be compiled as C++ +#endif + +namespace cv +{ + +//! @cond IGNORED + +//////////////////////// Input/Output Arrays //////////////////////// + +inline void _InputArray::init(int _flags, const void* _obj) +{ flags = _flags; obj = (void*)_obj; } + +inline void _InputArray::init(int _flags, const void* _obj, Size _sz) +{ flags = _flags; obj = (void*)_obj; sz = _sz; } + +inline void* _InputArray::getObj() const { return obj; } +inline int _InputArray::getFlags() const { return flags; } +inline Size _InputArray::getSz() const { return sz; } + +inline _InputArray::_InputArray() { init(NONE, 0); } +inline _InputArray::_InputArray(int _flags, void* _obj) { init(_flags, _obj); } +inline _InputArray::_InputArray(const Mat& m) { init(MAT+ACCESS_READ, &m); } +inline _InputArray::_InputArray(const std::vector& vec) { init(STD_VECTOR_MAT+ACCESS_READ, &vec); } +inline _InputArray::_InputArray(const UMat& m) { init(UMAT+ACCESS_READ, &m); } +inline _InputArray::_InputArray(const std::vector& vec) { init(STD_VECTOR_UMAT+ACCESS_READ, &vec); } + +template inline +_InputArray::_InputArray(const std::vector<_Tp>& vec) +{ init(FIXED_TYPE + STD_VECTOR + DataType<_Tp>::type + ACCESS_READ, &vec); } + +inline +_InputArray::_InputArray(const std::vector& vec) +{ init(FIXED_TYPE + STD_BOOL_VECTOR + DataType::type + ACCESS_READ, &vec); } + +template inline +_InputArray::_InputArray(const std::vector >& vec) +{ init(FIXED_TYPE + STD_VECTOR_VECTOR + DataType<_Tp>::type + ACCESS_READ, &vec); } + +template inline +_InputArray::_InputArray(const std::vector >& vec) +{ init(FIXED_TYPE + STD_VECTOR_MAT + DataType<_Tp>::type + ACCESS_READ, &vec); } + +template inline +_InputArray::_InputArray(const Matx<_Tp, m, n>& mtx) +{ init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_READ, &mtx, Size(n, m)); } + +template inline +_InputArray::_InputArray(const _Tp* vec, int n) +{ init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_READ, vec, Size(n, 1)); } + +template inline +_InputArray::_InputArray(const Mat_<_Tp>& m) +{ init(FIXED_TYPE + MAT + DataType<_Tp>::type + ACCESS_READ, &m); } + +inline _InputArray::_InputArray(const double& val) +{ init(FIXED_TYPE + FIXED_SIZE + MATX + CV_64F + ACCESS_READ, &val, Size(1,1)); } + +inline _InputArray::_InputArray(const MatExpr& expr) +{ init(FIXED_TYPE + FIXED_SIZE + EXPR + ACCESS_READ, &expr); } + +inline _InputArray::_InputArray(const cuda::GpuMat& d_mat) +{ init(CUDA_GPU_MAT + ACCESS_READ, &d_mat); } + +inline _InputArray::_InputArray(const std::vector& d_mat) +{ init(STD_VECTOR_CUDA_GPU_MAT + ACCESS_READ, &d_mat);} + +inline _InputArray::_InputArray(const ogl::Buffer& buf) +{ init(OPENGL_BUFFER + ACCESS_READ, &buf); } + +inline _InputArray::_InputArray(const cuda::HostMem& cuda_mem) +{ init(CUDA_HOST_MEM + ACCESS_READ, &cuda_mem); } + +inline _InputArray::~_InputArray() {} + +inline Mat _InputArray::getMat(int i) const +{ + if( kind() == MAT && i < 0 ) + return *(const Mat*)obj; + return getMat_(i); +} + +inline bool _InputArray::isMat() const { return kind() == _InputArray::MAT; } +inline bool _InputArray::isUMat() const { return kind() == _InputArray::UMAT; } +inline bool _InputArray::isMatVector() const { return kind() == _InputArray::STD_VECTOR_MAT; } +inline bool _InputArray::isUMatVector() const { return kind() == _InputArray::STD_VECTOR_UMAT; } +inline bool _InputArray::isMatx() const { return kind() == _InputArray::MATX; } +inline bool _InputArray::isVector() const { return kind() == _InputArray::STD_VECTOR || kind() == _InputArray::STD_BOOL_VECTOR; } +inline bool _InputArray::isGpuMatVector() const { return kind() == _InputArray::STD_VECTOR_CUDA_GPU_MAT; } + +//////////////////////////////////////////////////////////////////////////////////////// + +inline _OutputArray::_OutputArray() { init(ACCESS_WRITE, 0); } +inline _OutputArray::_OutputArray(int _flags, void* _obj) { init(_flags|ACCESS_WRITE, _obj); } +inline _OutputArray::_OutputArray(Mat& m) { init(MAT+ACCESS_WRITE, &m); } +inline _OutputArray::_OutputArray(std::vector& vec) { init(STD_VECTOR_MAT+ACCESS_WRITE, &vec); } +inline _OutputArray::_OutputArray(UMat& m) { init(UMAT+ACCESS_WRITE, &m); } +inline _OutputArray::_OutputArray(std::vector& vec) { init(STD_VECTOR_UMAT+ACCESS_WRITE, &vec); } + +template inline +_OutputArray::_OutputArray(std::vector<_Tp>& vec) +{ init(FIXED_TYPE + STD_VECTOR + DataType<_Tp>::type + ACCESS_WRITE, &vec); } + +inline +_OutputArray::_OutputArray(std::vector&) +{ CV_Error(Error::StsUnsupportedFormat, "std::vector cannot be an output array\n"); } + +template inline +_OutputArray::_OutputArray(std::vector >& vec) +{ init(FIXED_TYPE + STD_VECTOR_VECTOR + DataType<_Tp>::type + ACCESS_WRITE, &vec); } + +template inline +_OutputArray::_OutputArray(std::vector >& vec) +{ init(FIXED_TYPE + STD_VECTOR_MAT + DataType<_Tp>::type + ACCESS_WRITE, &vec); } + +template inline +_OutputArray::_OutputArray(Mat_<_Tp>& m) +{ init(FIXED_TYPE + MAT + DataType<_Tp>::type + ACCESS_WRITE, &m); } + +template inline +_OutputArray::_OutputArray(Matx<_Tp, m, n>& mtx) +{ init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_WRITE, &mtx, Size(n, m)); } + +template inline +_OutputArray::_OutputArray(_Tp* vec, int n) +{ init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_WRITE, vec, Size(n, 1)); } + +template inline +_OutputArray::_OutputArray(const std::vector<_Tp>& vec) +{ init(FIXED_TYPE + FIXED_SIZE + STD_VECTOR + DataType<_Tp>::type + ACCESS_WRITE, &vec); } + +template inline +_OutputArray::_OutputArray(const std::vector >& vec) +{ init(FIXED_TYPE + FIXED_SIZE + STD_VECTOR_VECTOR + DataType<_Tp>::type + ACCESS_WRITE, &vec); } + +template inline +_OutputArray::_OutputArray(const std::vector >& vec) +{ init(FIXED_TYPE + FIXED_SIZE + STD_VECTOR_MAT + DataType<_Tp>::type + ACCESS_WRITE, &vec); } + +template inline +_OutputArray::_OutputArray(const Mat_<_Tp>& m) +{ init(FIXED_TYPE + FIXED_SIZE + MAT + DataType<_Tp>::type + ACCESS_WRITE, &m); } + +template inline +_OutputArray::_OutputArray(const Matx<_Tp, m, n>& mtx) +{ init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_WRITE, &mtx, Size(n, m)); } + +template inline +_OutputArray::_OutputArray(const _Tp* vec, int n) +{ init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_WRITE, vec, Size(n, 1)); } + +inline _OutputArray::_OutputArray(cuda::GpuMat& d_mat) +{ init(CUDA_GPU_MAT + ACCESS_WRITE, &d_mat); } + +inline _OutputArray::_OutputArray(std::vector& d_mat) +{ init(STD_VECTOR_CUDA_GPU_MAT + ACCESS_WRITE, &d_mat);} + +inline _OutputArray::_OutputArray(ogl::Buffer& buf) +{ init(OPENGL_BUFFER + ACCESS_WRITE, &buf); } + +inline _OutputArray::_OutputArray(cuda::HostMem& cuda_mem) +{ init(CUDA_HOST_MEM + ACCESS_WRITE, &cuda_mem); } + +inline _OutputArray::_OutputArray(const Mat& m) +{ init(FIXED_TYPE + FIXED_SIZE + MAT + ACCESS_WRITE, &m); } + +inline _OutputArray::_OutputArray(const std::vector& vec) +{ init(FIXED_SIZE + STD_VECTOR_MAT + ACCESS_WRITE, &vec); } + +inline _OutputArray::_OutputArray(const UMat& m) +{ init(FIXED_TYPE + FIXED_SIZE + UMAT + ACCESS_WRITE, &m); } + +inline _OutputArray::_OutputArray(const std::vector& vec) +{ init(FIXED_SIZE + STD_VECTOR_UMAT + ACCESS_WRITE, &vec); } + +inline _OutputArray::_OutputArray(const cuda::GpuMat& d_mat) +{ init(FIXED_TYPE + FIXED_SIZE + CUDA_GPU_MAT + ACCESS_WRITE, &d_mat); } + + +inline _OutputArray::_OutputArray(const ogl::Buffer& buf) +{ init(FIXED_TYPE + FIXED_SIZE + OPENGL_BUFFER + ACCESS_WRITE, &buf); } + +inline _OutputArray::_OutputArray(const cuda::HostMem& cuda_mem) +{ init(FIXED_TYPE + FIXED_SIZE + CUDA_HOST_MEM + ACCESS_WRITE, &cuda_mem); } + +/////////////////////////////////////////////////////////////////////////////////////////// + +inline _InputOutputArray::_InputOutputArray() { init(ACCESS_RW, 0); } +inline _InputOutputArray::_InputOutputArray(int _flags, void* _obj) { init(_flags|ACCESS_RW, _obj); } +inline _InputOutputArray::_InputOutputArray(Mat& m) { init(MAT+ACCESS_RW, &m); } +inline _InputOutputArray::_InputOutputArray(std::vector& vec) { init(STD_VECTOR_MAT+ACCESS_RW, &vec); } +inline _InputOutputArray::_InputOutputArray(UMat& m) { init(UMAT+ACCESS_RW, &m); } +inline _InputOutputArray::_InputOutputArray(std::vector& vec) { init(STD_VECTOR_UMAT+ACCESS_RW, &vec); } + +template inline +_InputOutputArray::_InputOutputArray(std::vector<_Tp>& vec) +{ init(FIXED_TYPE + STD_VECTOR + DataType<_Tp>::type + ACCESS_RW, &vec); } + +inline _InputOutputArray::_InputOutputArray(std::vector&) +{ CV_Error(Error::StsUnsupportedFormat, "std::vector cannot be an input/output array\n"); } + +template inline +_InputOutputArray::_InputOutputArray(std::vector >& vec) +{ init(FIXED_TYPE + STD_VECTOR_VECTOR + DataType<_Tp>::type + ACCESS_RW, &vec); } + +template inline +_InputOutputArray::_InputOutputArray(std::vector >& vec) +{ init(FIXED_TYPE + STD_VECTOR_MAT + DataType<_Tp>::type + ACCESS_RW, &vec); } + +template inline +_InputOutputArray::_InputOutputArray(Mat_<_Tp>& m) +{ init(FIXED_TYPE + MAT + DataType<_Tp>::type + ACCESS_RW, &m); } + +template inline +_InputOutputArray::_InputOutputArray(Matx<_Tp, m, n>& mtx) +{ init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_RW, &mtx, Size(n, m)); } + +template inline +_InputOutputArray::_InputOutputArray(_Tp* vec, int n) +{ init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_RW, vec, Size(n, 1)); } + +template inline +_InputOutputArray::_InputOutputArray(const std::vector<_Tp>& vec) +{ init(FIXED_TYPE + FIXED_SIZE + STD_VECTOR + DataType<_Tp>::type + ACCESS_RW, &vec); } + +template inline +_InputOutputArray::_InputOutputArray(const std::vector >& vec) +{ init(FIXED_TYPE + FIXED_SIZE + STD_VECTOR_VECTOR + DataType<_Tp>::type + ACCESS_RW, &vec); } + +template inline +_InputOutputArray::_InputOutputArray(const std::vector >& vec) +{ init(FIXED_TYPE + FIXED_SIZE + STD_VECTOR_MAT + DataType<_Tp>::type + ACCESS_RW, &vec); } + +template inline +_InputOutputArray::_InputOutputArray(const Mat_<_Tp>& m) +{ init(FIXED_TYPE + FIXED_SIZE + MAT + DataType<_Tp>::type + ACCESS_RW, &m); } + +template inline +_InputOutputArray::_InputOutputArray(const Matx<_Tp, m, n>& mtx) +{ init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_RW, &mtx, Size(n, m)); } + +template inline +_InputOutputArray::_InputOutputArray(const _Tp* vec, int n) +{ init(FIXED_TYPE + FIXED_SIZE + MATX + DataType<_Tp>::type + ACCESS_RW, vec, Size(n, 1)); } + +inline _InputOutputArray::_InputOutputArray(cuda::GpuMat& d_mat) +{ init(CUDA_GPU_MAT + ACCESS_RW, &d_mat); } + +inline _InputOutputArray::_InputOutputArray(ogl::Buffer& buf) +{ init(OPENGL_BUFFER + ACCESS_RW, &buf); } + +inline _InputOutputArray::_InputOutputArray(cuda::HostMem& cuda_mem) +{ init(CUDA_HOST_MEM + ACCESS_RW, &cuda_mem); } + +inline _InputOutputArray::_InputOutputArray(const Mat& m) +{ init(FIXED_TYPE + FIXED_SIZE + MAT + ACCESS_RW, &m); } + +inline _InputOutputArray::_InputOutputArray(const std::vector& vec) +{ init(FIXED_SIZE + STD_VECTOR_MAT + ACCESS_RW, &vec); } + +inline _InputOutputArray::_InputOutputArray(const UMat& m) +{ init(FIXED_TYPE + FIXED_SIZE + UMAT + ACCESS_RW, &m); } + +inline _InputOutputArray::_InputOutputArray(const std::vector& vec) +{ init(FIXED_SIZE + STD_VECTOR_UMAT + ACCESS_RW, &vec); } + +inline _InputOutputArray::_InputOutputArray(const cuda::GpuMat& d_mat) +{ init(FIXED_TYPE + FIXED_SIZE + CUDA_GPU_MAT + ACCESS_RW, &d_mat); } + +inline _InputOutputArray::_InputOutputArray(const std::vector& d_mat) +{ init(FIXED_TYPE + FIXED_SIZE + STD_VECTOR_CUDA_GPU_MAT + ACCESS_RW, &d_mat);} + +template<> inline _InputOutputArray::_InputOutputArray(std::vector& d_mat) +{ init(FIXED_TYPE + FIXED_SIZE + STD_VECTOR_CUDA_GPU_MAT + ACCESS_RW, &d_mat);} + +inline _InputOutputArray::_InputOutputArray(const ogl::Buffer& buf) +{ init(FIXED_TYPE + FIXED_SIZE + OPENGL_BUFFER + ACCESS_RW, &buf); } + +inline _InputOutputArray::_InputOutputArray(const cuda::HostMem& cuda_mem) +{ init(FIXED_TYPE + FIXED_SIZE + CUDA_HOST_MEM + ACCESS_RW, &cuda_mem); } + +//////////////////////////////////////////// Mat ////////////////////////////////////////// + +inline +Mat::Mat() + : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), + datalimit(0), allocator(0), u(0), size(&rows) +{} + +inline +Mat::Mat(int _rows, int _cols, int _type) + : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), + datalimit(0), allocator(0), u(0), size(&rows) +{ + create(_rows, _cols, _type); +} + +inline +Mat::Mat(int _rows, int _cols, int _type, const Scalar& _s) + : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), + datalimit(0), allocator(0), u(0), size(&rows) +{ + create(_rows, _cols, _type); + *this = _s; +} + +inline +Mat::Mat(Size _sz, int _type) + : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), + datalimit(0), allocator(0), u(0), size(&rows) +{ + create( _sz.height, _sz.width, _type ); +} + +inline +Mat::Mat(Size _sz, int _type, const Scalar& _s) + : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), + datalimit(0), allocator(0), u(0), size(&rows) +{ + create(_sz.height, _sz.width, _type); + *this = _s; +} + +inline +Mat::Mat(int _dims, const int* _sz, int _type) + : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), + datalimit(0), allocator(0), u(0), size(&rows) +{ + create(_dims, _sz, _type); +} + +inline +Mat::Mat(int _dims, const int* _sz, int _type, const Scalar& _s) + : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), + datalimit(0), allocator(0), u(0), size(&rows) +{ + create(_dims, _sz, _type); + *this = _s; +} + +inline +Mat::Mat(const std::vector& _sz, int _type) + : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), + datalimit(0), allocator(0), u(0), size(&rows) +{ + create(_sz, _type); +} + +inline +Mat::Mat(const std::vector& _sz, int _type, const Scalar& _s) + : flags(MAGIC_VAL), dims(0), rows(0), cols(0), data(0), datastart(0), dataend(0), + datalimit(0), allocator(0), u(0), size(&rows) +{ + create(_sz, _type); + *this = _s; +} + +inline +Mat::Mat(const Mat& m) + : flags(m.flags), dims(m.dims), rows(m.rows), cols(m.cols), data(m.data), + datastart(m.datastart), dataend(m.dataend), datalimit(m.datalimit), allocator(m.allocator), + u(m.u), size(&rows) +{ + if( u ) + CV_XADD(&u->refcount, 1); + if( m.dims <= 2 ) + { + step[0] = m.step[0]; step[1] = m.step[1]; + } + else + { + dims = 0; + copySize(m); + } +} + +inline +Mat::Mat(int _rows, int _cols, int _type, void* _data, size_t _step) + : flags(MAGIC_VAL + (_type & TYPE_MASK)), dims(2), rows(_rows), cols(_cols), + data((uchar*)_data), datastart((uchar*)_data), dataend(0), datalimit(0), + allocator(0), u(0), size(&rows) +{ + CV_Assert(total() == 0 || data != NULL); + + size_t esz = CV_ELEM_SIZE(_type), esz1 = CV_ELEM_SIZE1(_type); + size_t minstep = cols * esz; + if( _step == AUTO_STEP ) + { + _step = minstep; + flags |= CONTINUOUS_FLAG; + } + else + { + if( rows == 1 ) _step = minstep; + CV_DbgAssert( _step >= minstep ); + + if (_step % esz1 != 0) + { + CV_Error(Error::BadStep, "Step must be a multiple of esz1"); + } + + flags |= _step == minstep ? CONTINUOUS_FLAG : 0; + } + step[0] = _step; + step[1] = esz; + datalimit = datastart + _step * rows; + dataend = datalimit - _step + minstep; +} + +inline +Mat::Mat(Size _sz, int _type, void* _data, size_t _step) + : flags(MAGIC_VAL + (_type & TYPE_MASK)), dims(2), rows(_sz.height), cols(_sz.width), + data((uchar*)_data), datastart((uchar*)_data), dataend(0), datalimit(0), + allocator(0), u(0), size(&rows) +{ + CV_Assert(total() == 0 || data != NULL); + + size_t esz = CV_ELEM_SIZE(_type), esz1 = CV_ELEM_SIZE1(_type); + size_t minstep = cols*esz; + if( _step == AUTO_STEP ) + { + _step = minstep; + flags |= CONTINUOUS_FLAG; + } + else + { + if( rows == 1 ) _step = minstep; + CV_DbgAssert( _step >= minstep ); + + if (_step % esz1 != 0) + { + CV_Error(Error::BadStep, "Step must be a multiple of esz1"); + } + + flags |= _step == minstep ? CONTINUOUS_FLAG : 0; + } + step[0] = _step; + step[1] = esz; + datalimit = datastart + _step*rows; + dataend = datalimit - _step + minstep; +} + +template inline +Mat::Mat(const std::vector<_Tp>& vec, bool copyData) + : flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG), dims(2), rows((int)vec.size()), + cols(1), data(0), datastart(0), dataend(0), allocator(0), u(0), size(&rows) +{ + if(vec.empty()) + return; + if( !copyData ) + { + step[0] = step[1] = sizeof(_Tp); + datastart = data = (uchar*)&vec[0]; + datalimit = dataend = datastart + rows * step[0]; + } + else + Mat((int)vec.size(), 1, DataType<_Tp>::type, (uchar*)&vec[0]).copyTo(*this); +} + +template inline +Mat::Mat(const Vec<_Tp, n>& vec, bool copyData) + : flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG), dims(2), rows(n), cols(1), data(0), + datastart(0), dataend(0), allocator(0), u(0), size(&rows) +{ + if( !copyData ) + { + step[0] = step[1] = sizeof(_Tp); + datastart = data = (uchar*)vec.val; + datalimit = dataend = datastart + rows * step[0]; + } + else + Mat(n, 1, DataType<_Tp>::type, (void*)vec.val).copyTo(*this); +} + + +template inline +Mat::Mat(const Matx<_Tp,m,n>& M, bool copyData) + : flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG), dims(2), rows(m), cols(n), data(0), + datastart(0), dataend(0), allocator(0), u(0), size(&rows) +{ + if( !copyData ) + { + step[0] = cols * sizeof(_Tp); + step[1] = sizeof(_Tp); + datastart = data = (uchar*)M.val; + datalimit = dataend = datastart + rows * step[0]; + } + else + Mat(m, n, DataType<_Tp>::type, (uchar*)M.val).copyTo(*this); +} + +template inline +Mat::Mat(const Point_<_Tp>& pt, bool copyData) + : flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG), dims(2), rows(2), cols(1), data(0), + datastart(0), dataend(0), allocator(0), u(0), size(&rows) +{ + if( !copyData ) + { + step[0] = step[1] = sizeof(_Tp); + datastart = data = (uchar*)&pt.x; + datalimit = dataend = datastart + rows * step[0]; + } + else + { + create(2, 1, DataType<_Tp>::type); + ((_Tp*)data)[0] = pt.x; + ((_Tp*)data)[1] = pt.y; + } +} + +template inline +Mat::Mat(const Point3_<_Tp>& pt, bool copyData) + : flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG), dims(2), rows(3), cols(1), data(0), + datastart(0), dataend(0), allocator(0), u(0), size(&rows) +{ + if( !copyData ) + { + step[0] = step[1] = sizeof(_Tp); + datastart = data = (uchar*)&pt.x; + datalimit = dataend = datastart + rows * step[0]; + } + else + { + create(3, 1, DataType<_Tp>::type); + ((_Tp*)data)[0] = pt.x; + ((_Tp*)data)[1] = pt.y; + ((_Tp*)data)[2] = pt.z; + } +} + +template inline +Mat::Mat(const MatCommaInitializer_<_Tp>& commaInitializer) + : flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG), dims(0), rows(0), cols(0), data(0), + datastart(0), dataend(0), allocator(0), u(0), size(&rows) +{ + *this = commaInitializer.operator Mat_<_Tp>(); +} + +inline +Mat::~Mat() +{ + release(); + if( step.p != step.buf ) + fastFree(step.p); +} + +inline +Mat& Mat::operator = (const Mat& m) +{ + if( this != &m ) + { + if( m.u ) + CV_XADD(&m.u->refcount, 1); + release(); + flags = m.flags; + if( dims <= 2 && m.dims <= 2 ) + { + dims = m.dims; + rows = m.rows; + cols = m.cols; + step[0] = m.step[0]; + step[1] = m.step[1]; + } + else + copySize(m); + data = m.data; + datastart = m.datastart; + dataend = m.dataend; + datalimit = m.datalimit; + allocator = m.allocator; + u = m.u; + } + return *this; +} + +inline +Mat Mat::row(int y) const +{ + return Mat(*this, Range(y, y + 1), Range::all()); +} + +inline +Mat Mat::col(int x) const +{ + return Mat(*this, Range::all(), Range(x, x + 1)); +} + +inline +Mat Mat::rowRange(int startrow, int endrow) const +{ + return Mat(*this, Range(startrow, endrow), Range::all()); +} + +inline +Mat Mat::rowRange(const Range& r) const +{ + return Mat(*this, r, Range::all()); +} + +inline +Mat Mat::colRange(int startcol, int endcol) const +{ + return Mat(*this, Range::all(), Range(startcol, endcol)); +} + +inline +Mat Mat::colRange(const Range& r) const +{ + return Mat(*this, Range::all(), r); +} + +inline +Mat Mat::clone() const +{ + Mat m; + copyTo(m); + return m; +} + +inline +void Mat::assignTo( Mat& m, int _type ) const +{ + if( _type < 0 ) + m = *this; + else + convertTo(m, _type); +} + +inline +void Mat::create(int _rows, int _cols, int _type) +{ + _type &= TYPE_MASK; + if( dims <= 2 && rows == _rows && cols == _cols && type() == _type && data ) + return; + int sz[] = {_rows, _cols}; + create(2, sz, _type); +} + +inline +void Mat::create(Size _sz, int _type) +{ + create(_sz.height, _sz.width, _type); +} + +inline +void Mat::addref() +{ + if( u ) + CV_XADD(&u->refcount, 1); +} + +inline +void Mat::release() +{ + if( u && CV_XADD(&u->refcount, -1) == 1 ) + deallocate(); + u = NULL; + datastart = dataend = datalimit = data = 0; + for(int i = 0; i < dims; i++) + size.p[i] = 0; +#ifdef _DEBUG + flags = MAGIC_VAL; + dims = rows = cols = 0; + if(step.p != step.buf) + { + fastFree(step.p); + step.p = step.buf; + size.p = &rows; + } +#endif +} + +inline +Mat Mat::operator()( Range _rowRange, Range _colRange ) const +{ + return Mat(*this, _rowRange, _colRange); +} + +inline +Mat Mat::operator()( const Rect& roi ) const +{ + return Mat(*this, roi); +} + +inline +Mat Mat::operator()(const Range* ranges) const +{ + return Mat(*this, ranges); +} + +inline +Mat Mat::operator()(const std::vector& ranges) const +{ + return Mat(*this, ranges); +} + +inline +bool Mat::isContinuous() const +{ + return (flags & CONTINUOUS_FLAG) != 0; +} + +inline +bool Mat::isSubmatrix() const +{ + return (flags & SUBMATRIX_FLAG) != 0; +} + +inline +size_t Mat::elemSize() const +{ + return dims > 0 ? step.p[dims - 1] : 0; +} + +inline +size_t Mat::elemSize1() const +{ + return CV_ELEM_SIZE1(flags); +} + +inline +int Mat::type() const +{ + return CV_MAT_TYPE(flags); +} + +inline +int Mat::depth() const +{ + return CV_MAT_DEPTH(flags); +} + +inline +int Mat::channels() const +{ + return CV_MAT_CN(flags); +} + +inline +size_t Mat::step1(int i) const +{ + return step.p[i] / elemSize1(); +} + +inline +bool Mat::empty() const +{ + return data == 0 || total() == 0; +} + +inline +size_t Mat::total() const +{ + if( dims <= 2 ) + return (size_t)rows * cols; + size_t p = 1; + for( int i = 0; i < dims; i++ ) + p *= size[i]; + return p; +} + +inline +uchar* Mat::ptr(int y) +{ + CV_DbgAssert( y == 0 || (data && dims >= 1 && (unsigned)y < (unsigned)size.p[0]) ); + return data + step.p[0] * y; +} + +inline +const uchar* Mat::ptr(int y) const +{ + CV_DbgAssert( y == 0 || (data && dims >= 1 && (unsigned)y < (unsigned)size.p[0]) ); + return data + step.p[0] * y; +} + +template inline +_Tp* Mat::ptr(int y) +{ + CV_DbgAssert( y == 0 || (data && dims >= 1 && (unsigned)y < (unsigned)size.p[0]) ); + return (_Tp*)(data + step.p[0] * y); +} + +template inline +const _Tp* Mat::ptr(int y) const +{ + CV_DbgAssert( y == 0 || (data && dims >= 1 && data && (unsigned)y < (unsigned)size.p[0]) ); + return (const _Tp*)(data + step.p[0] * y); +} + +inline +uchar* Mat::ptr(int i0, int i1) +{ + CV_DbgAssert(dims >= 2); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); + CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); + return data + i0 * step.p[0] + i1 * step.p[1]; +} + +inline +const uchar* Mat::ptr(int i0, int i1) const +{ + CV_DbgAssert(dims >= 2); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); + CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); + return data + i0 * step.p[0] + i1 * step.p[1]; +} + +template inline +_Tp* Mat::ptr(int i0, int i1) +{ + CV_DbgAssert(dims >= 2); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); + CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); + return (_Tp*)(data + i0 * step.p[0] + i1 * step.p[1]); +} + +template inline +const _Tp* Mat::ptr(int i0, int i1) const +{ + CV_DbgAssert(dims >= 2); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); + CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); + return (const _Tp*)(data + i0 * step.p[0] + i1 * step.p[1]); +} + +inline +uchar* Mat::ptr(int i0, int i1, int i2) +{ + CV_DbgAssert(dims >= 3); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); + CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); + CV_DbgAssert((unsigned)i2 < (unsigned)size.p[2]); + return data + i0 * step.p[0] + i1 * step.p[1] + i2 * step.p[2]; +} + +inline +const uchar* Mat::ptr(int i0, int i1, int i2) const +{ + CV_DbgAssert(dims >= 3); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); + CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); + CV_DbgAssert((unsigned)i2 < (unsigned)size.p[2]); + return data + i0 * step.p[0] + i1 * step.p[1] + i2 * step.p[2]; +} + +template inline +_Tp* Mat::ptr(int i0, int i1, int i2) +{ + CV_DbgAssert(dims >= 3); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); + CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); + CV_DbgAssert((unsigned)i2 < (unsigned)size.p[2]); + return (_Tp*)(data + i0 * step.p[0] + i1 * step.p[1] + i2 * step.p[2]); +} + +template inline +const _Tp* Mat::ptr(int i0, int i1, int i2) const +{ + CV_DbgAssert(dims >= 3); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); + CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); + CV_DbgAssert((unsigned)i2 < (unsigned)size.p[2]); + return (const _Tp*)(data + i0 * step.p[0] + i1 * step.p[1] + i2 * step.p[2]); +} + +inline +uchar* Mat::ptr(const int* idx) +{ + int i, d = dims; + uchar* p = data; + CV_DbgAssert( d >= 1 && p ); + for( i = 0; i < d; i++ ) + { + CV_DbgAssert( (unsigned)idx[i] < (unsigned)size.p[i] ); + p += idx[i] * step.p[i]; + } + return p; +} + +inline +const uchar* Mat::ptr(const int* idx) const +{ + int i, d = dims; + uchar* p = data; + CV_DbgAssert( d >= 1 && p ); + for( i = 0; i < d; i++ ) + { + CV_DbgAssert( (unsigned)idx[i] < (unsigned)size.p[i] ); + p += idx[i] * step.p[i]; + } + return p; +} + +template inline +_Tp& Mat::at(int i0, int i1) +{ + CV_DbgAssert(dims <= 2); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); + CV_DbgAssert((unsigned)(i1 * DataType<_Tp>::channels) < (unsigned)(size.p[1] * channels())); + CV_DbgAssert(CV_ELEM_SIZE1(DataType<_Tp>::depth) == elemSize1()); + return ((_Tp*)(data + step.p[0] * i0))[i1]; +} + +template inline +const _Tp& Mat::at(int i0, int i1) const +{ + CV_DbgAssert(dims <= 2); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); + CV_DbgAssert((unsigned)(i1 * DataType<_Tp>::channels) < (unsigned)(size.p[1] * channels())); + CV_DbgAssert(CV_ELEM_SIZE1(DataType<_Tp>::depth) == elemSize1()); + return ((const _Tp*)(data + step.p[0] * i0))[i1]; +} + +template inline +_Tp& Mat::at(Point pt) +{ + CV_DbgAssert(dims <= 2); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)pt.y < (unsigned)size.p[0]); + CV_DbgAssert((unsigned)(pt.x * DataType<_Tp>::channels) < (unsigned)(size.p[1] * channels())); + CV_DbgAssert(CV_ELEM_SIZE1(DataType<_Tp>::depth) == elemSize1()); + return ((_Tp*)(data + step.p[0] * pt.y))[pt.x]; +} + +template inline +const _Tp& Mat::at(Point pt) const +{ + CV_DbgAssert(dims <= 2); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)pt.y < (unsigned)size.p[0]); + CV_DbgAssert((unsigned)(pt.x * DataType<_Tp>::channels) < (unsigned)(size.p[1] * channels())); + CV_DbgAssert(CV_ELEM_SIZE1(DataType<_Tp>::depth) == elemSize1()); + return ((const _Tp*)(data + step.p[0] * pt.y))[pt.x]; +} + +template inline +_Tp& Mat::at(int i0) +{ + CV_DbgAssert(dims <= 2); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)i0 < (unsigned)(size.p[0] * size.p[1])); + CV_DbgAssert(elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type)); + if( isContinuous() || size.p[0] == 1 ) + return ((_Tp*)data)[i0]; + if( size.p[1] == 1 ) + return *(_Tp*)(data + step.p[0] * i0); + int i = i0 / cols, j = i0 - i * cols; + return ((_Tp*)(data + step.p[0] * i))[j]; +} + +template inline +const _Tp& Mat::at(int i0) const +{ + CV_DbgAssert(dims <= 2); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)i0 < (unsigned)(size.p[0] * size.p[1])); + CV_DbgAssert(elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type)); + if( isContinuous() || size.p[0] == 1 ) + return ((const _Tp*)data)[i0]; + if( size.p[1] == 1 ) + return *(const _Tp*)(data + step.p[0] * i0); + int i = i0 / cols, j = i0 - i * cols; + return ((const _Tp*)(data + step.p[0] * i))[j]; +} + +template inline +_Tp& Mat::at(int i0, int i1, int i2) +{ + CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) ); + return *(_Tp*)ptr(i0, i1, i2); +} + +template inline +const _Tp& Mat::at(int i0, int i1, int i2) const +{ + CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) ); + return *(const _Tp*)ptr(i0, i1, i2); +} + +template inline +_Tp& Mat::at(const int* idx) +{ + CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) ); + return *(_Tp*)ptr(idx); +} + +template inline +const _Tp& Mat::at(const int* idx) const +{ + CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) ); + return *(const _Tp*)ptr(idx); +} + +template inline +_Tp& Mat::at(const Vec& idx) +{ + CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) ); + return *(_Tp*)ptr(idx.val); +} + +template inline +const _Tp& Mat::at(const Vec& idx) const +{ + CV_DbgAssert( elemSize() == CV_ELEM_SIZE(DataType<_Tp>::type) ); + return *(const _Tp*)ptr(idx.val); +} + +template inline +MatConstIterator_<_Tp> Mat::begin() const +{ + CV_DbgAssert( elemSize() == sizeof(_Tp) ); + return MatConstIterator_<_Tp>((const Mat_<_Tp>*)this); +} + +template inline +MatConstIterator_<_Tp> Mat::end() const +{ + CV_DbgAssert( elemSize() == sizeof(_Tp) ); + MatConstIterator_<_Tp> it((const Mat_<_Tp>*)this); + it += total(); + return it; +} + +template inline +MatIterator_<_Tp> Mat::begin() +{ + CV_DbgAssert( elemSize() == sizeof(_Tp) ); + return MatIterator_<_Tp>((Mat_<_Tp>*)this); +} + +template inline +MatIterator_<_Tp> Mat::end() +{ + CV_DbgAssert( elemSize() == sizeof(_Tp) ); + MatIterator_<_Tp> it((Mat_<_Tp>*)this); + it += total(); + return it; +} + +template inline +void Mat::forEach(const Functor& operation) { + this->forEach_impl<_Tp>(operation); +} + +template inline +void Mat::forEach(const Functor& operation) const { + // call as not const + (const_cast(this))->forEach(operation); +} + +template inline +Mat::operator std::vector<_Tp>() const +{ + std::vector<_Tp> v; + copyTo(v); + return v; +} + +template inline +Mat::operator Vec<_Tp, n>() const +{ + CV_Assert( data && dims <= 2 && (rows == 1 || cols == 1) && + rows + cols - 1 == n && channels() == 1 ); + + if( isContinuous() && type() == DataType<_Tp>::type ) + return Vec<_Tp, n>((_Tp*)data); + Vec<_Tp, n> v; + Mat tmp(rows, cols, DataType<_Tp>::type, v.val); + convertTo(tmp, tmp.type()); + return v; +} + +template inline +Mat::operator Matx<_Tp, m, n>() const +{ + CV_Assert( data && dims <= 2 && rows == m && cols == n && channels() == 1 ); + + if( isContinuous() && type() == DataType<_Tp>::type ) + return Matx<_Tp, m, n>((_Tp*)data); + Matx<_Tp, m, n> mtx; + Mat tmp(rows, cols, DataType<_Tp>::type, mtx.val); + convertTo(tmp, tmp.type()); + return mtx; +} + +template inline +void Mat::push_back(const _Tp& elem) +{ + if( !data ) + { + *this = Mat(1, 1, DataType<_Tp>::type, (void*)&elem).clone(); + return; + } + CV_Assert(DataType<_Tp>::type == type() && cols == 1 + /* && dims == 2 (cols == 1 implies dims == 2) */); + const uchar* tmp = dataend + step[0]; + if( !isSubmatrix() && isContinuous() && tmp <= datalimit ) + { + *(_Tp*)(data + (size.p[0]++) * step.p[0]) = elem; + dataend = tmp; + } + else + push_back_(&elem); +} + +template inline +void Mat::push_back(const Mat_<_Tp>& m) +{ + push_back((const Mat&)m); +} + +template<> inline +void Mat::push_back(const MatExpr& expr) +{ + push_back(static_cast(expr)); +} + +#ifdef CV_CXX_MOVE_SEMANTICS + +inline +Mat::Mat(Mat&& m) + : flags(m.flags), dims(m.dims), rows(m.rows), cols(m.cols), data(m.data), + datastart(m.datastart), dataend(m.dataend), datalimit(m.datalimit), allocator(m.allocator), + u(m.u), size(&rows) +{ + if (m.dims <= 2) // move new step/size info + { + step[0] = m.step[0]; + step[1] = m.step[1]; + } + else + { + CV_DbgAssert(m.step.p != m.step.buf); + step.p = m.step.p; + size.p = m.size.p; + m.step.p = m.step.buf; + m.size.p = &m.rows; + } + m.flags = MAGIC_VAL; m.dims = m.rows = m.cols = 0; + m.data = NULL; m.datastart = NULL; m.dataend = NULL; m.datalimit = NULL; + m.allocator = NULL; + m.u = NULL; +} + +inline +Mat& Mat::operator = (Mat&& m) +{ + if (this == &m) + return *this; + + release(); + flags = m.flags; dims = m.dims; rows = m.rows; cols = m.cols; data = m.data; + datastart = m.datastart; dataend = m.dataend; datalimit = m.datalimit; allocator = m.allocator; + u = m.u; + if (step.p != step.buf) // release self step/size + { + fastFree(step.p); + step.p = step.buf; + size.p = &rows; + } + if (m.dims <= 2) // move new step/size info + { + step[0] = m.step[0]; + step[1] = m.step[1]; + } + else + { + CV_DbgAssert(m.step.p != m.step.buf); + step.p = m.step.p; + size.p = m.size.p; + m.step.p = m.step.buf; + m.size.p = &m.rows; + } + m.flags = MAGIC_VAL; m.dims = m.rows = m.cols = 0; + m.data = NULL; m.datastart = NULL; m.dataend = NULL; m.datalimit = NULL; + m.allocator = NULL; + m.u = NULL; + return *this; +} + +#endif + + +///////////////////////////// MatSize //////////////////////////// + +inline +MatSize::MatSize(int* _p) + : p(_p) {} + +inline +Size MatSize::operator()() const +{ + CV_DbgAssert(p[-1] <= 2); + return Size(p[1], p[0]); +} + +inline +const int& MatSize::operator[](int i) const +{ + return p[i]; +} + +inline +int& MatSize::operator[](int i) +{ + return p[i]; +} + +inline +MatSize::operator const int*() const +{ + return p; +} + +inline +bool MatSize::operator == (const MatSize& sz) const +{ + int d = p[-1]; + int dsz = sz.p[-1]; + if( d != dsz ) + return false; + if( d == 2 ) + return p[0] == sz.p[0] && p[1] == sz.p[1]; + + for( int i = 0; i < d; i++ ) + if( p[i] != sz.p[i] ) + return false; + return true; +} + +inline +bool MatSize::operator != (const MatSize& sz) const +{ + return !(*this == sz); +} + + + +///////////////////////////// MatStep //////////////////////////// + +inline +MatStep::MatStep() +{ + p = buf; p[0] = p[1] = 0; +} + +inline +MatStep::MatStep(size_t s) +{ + p = buf; p[0] = s; p[1] = 0; +} + +inline +const size_t& MatStep::operator[](int i) const +{ + return p[i]; +} + +inline +size_t& MatStep::operator[](int i) +{ + return p[i]; +} + +inline MatStep::operator size_t() const +{ + CV_DbgAssert( p == buf ); + return buf[0]; +} + +inline MatStep& MatStep::operator = (size_t s) +{ + CV_DbgAssert( p == buf ); + buf[0] = s; + return *this; +} + + + +////////////////////////////// Mat_<_Tp> //////////////////////////// + +template inline +Mat_<_Tp>::Mat_() + : Mat() +{ + flags = (flags & ~CV_MAT_TYPE_MASK) | DataType<_Tp>::type; +} + +template inline +Mat_<_Tp>::Mat_(int _rows, int _cols) + : Mat(_rows, _cols, DataType<_Tp>::type) +{ +} + +template inline +Mat_<_Tp>::Mat_(int _rows, int _cols, const _Tp& value) + : Mat(_rows, _cols, DataType<_Tp>::type) +{ + *this = value; +} + +template inline +Mat_<_Tp>::Mat_(Size _sz) + : Mat(_sz.height, _sz.width, DataType<_Tp>::type) +{} + +template inline +Mat_<_Tp>::Mat_(Size _sz, const _Tp& value) + : Mat(_sz.height, _sz.width, DataType<_Tp>::type) +{ + *this = value; +} + +template inline +Mat_<_Tp>::Mat_(int _dims, const int* _sz) + : Mat(_dims, _sz, DataType<_Tp>::type) +{} + +template inline +Mat_<_Tp>::Mat_(int _dims, const int* _sz, const _Tp& _s) + : Mat(_dims, _sz, DataType<_Tp>::type, Scalar(_s)) +{} + +template inline +Mat_<_Tp>::Mat_(int _dims, const int* _sz, _Tp* _data, const size_t* _steps) + : Mat(_dims, _sz, DataType<_Tp>::type, _data, _steps) +{} + +template inline +Mat_<_Tp>::Mat_(const Mat_<_Tp>& m, const Range* ranges) + : Mat(m, ranges) +{} + +template inline +Mat_<_Tp>::Mat_(const Mat_<_Tp>& m, const std::vector& ranges) + : Mat(m, ranges) +{} + +template inline +Mat_<_Tp>::Mat_(const Mat& m) + : Mat() +{ + flags = (flags & ~CV_MAT_TYPE_MASK) | DataType<_Tp>::type; + *this = m; +} + +template inline +Mat_<_Tp>::Mat_(const Mat_& m) + : Mat(m) +{} + +template inline +Mat_<_Tp>::Mat_(int _rows, int _cols, _Tp* _data, size_t steps) + : Mat(_rows, _cols, DataType<_Tp>::type, _data, steps) +{} + +template inline +Mat_<_Tp>::Mat_(const Mat_& m, const Range& _rowRange, const Range& _colRange) + : Mat(m, _rowRange, _colRange) +{} + +template inline +Mat_<_Tp>::Mat_(const Mat_& m, const Rect& roi) + : Mat(m, roi) +{} + +template template inline +Mat_<_Tp>::Mat_(const Vec::channel_type, n>& vec, bool copyData) + : Mat(n / DataType<_Tp>::channels, 1, DataType<_Tp>::type, (void*)&vec) +{ + CV_Assert(n%DataType<_Tp>::channels == 0); + if( copyData ) + *this = clone(); +} + +template template inline +Mat_<_Tp>::Mat_(const Matx::channel_type, m, n>& M, bool copyData) + : Mat(m, n / DataType<_Tp>::channels, DataType<_Tp>::type, (void*)&M) +{ + CV_Assert(n % DataType<_Tp>::channels == 0); + if( copyData ) + *this = clone(); +} + +template inline +Mat_<_Tp>::Mat_(const Point_::channel_type>& pt, bool copyData) + : Mat(2 / DataType<_Tp>::channels, 1, DataType<_Tp>::type, (void*)&pt) +{ + CV_Assert(2 % DataType<_Tp>::channels == 0); + if( copyData ) + *this = clone(); +} + +template inline +Mat_<_Tp>::Mat_(const Point3_::channel_type>& pt, bool copyData) + : Mat(3 / DataType<_Tp>::channels, 1, DataType<_Tp>::type, (void*)&pt) +{ + CV_Assert(3 % DataType<_Tp>::channels == 0); + if( copyData ) + *this = clone(); +} + +template inline +Mat_<_Tp>::Mat_(const MatCommaInitializer_<_Tp>& commaInitializer) + : Mat(commaInitializer) +{} + +template inline +Mat_<_Tp>::Mat_(const std::vector<_Tp>& vec, bool copyData) + : Mat(vec, copyData) +{} + +template inline +Mat_<_Tp>& Mat_<_Tp>::operator = (const Mat& m) +{ + if( DataType<_Tp>::type == m.type() ) + { + Mat::operator = (m); + return *this; + } + if( DataType<_Tp>::depth == m.depth() ) + { + return (*this = m.reshape(DataType<_Tp>::channels, m.dims, 0)); + } + CV_DbgAssert(DataType<_Tp>::channels == m.channels()); + m.convertTo(*this, type()); + return *this; +} + +template inline +Mat_<_Tp>& Mat_<_Tp>::operator = (const Mat_& m) +{ + Mat::operator=(m); + return *this; +} + +template inline +Mat_<_Tp>& Mat_<_Tp>::operator = (const _Tp& s) +{ + typedef typename DataType<_Tp>::vec_type VT; + Mat::operator=(Scalar((const VT&)s)); + return *this; +} + +template inline +void Mat_<_Tp>::create(int _rows, int _cols) +{ + Mat::create(_rows, _cols, DataType<_Tp>::type); +} + +template inline +void Mat_<_Tp>::create(Size _sz) +{ + Mat::create(_sz, DataType<_Tp>::type); +} + +template inline +void Mat_<_Tp>::create(int _dims, const int* _sz) +{ + Mat::create(_dims, _sz, DataType<_Tp>::type); +} + +template inline +Mat_<_Tp> Mat_<_Tp>::cross(const Mat_& m) const +{ + return Mat_<_Tp>(Mat::cross(m)); +} + +template template inline +Mat_<_Tp>::operator Mat_() const +{ + return Mat_(*this); +} + +template inline +Mat_<_Tp> Mat_<_Tp>::row(int y) const +{ + return Mat_(*this, Range(y, y+1), Range::all()); +} + +template inline +Mat_<_Tp> Mat_<_Tp>::col(int x) const +{ + return Mat_(*this, Range::all(), Range(x, x+1)); +} + +template inline +Mat_<_Tp> Mat_<_Tp>::diag(int d) const +{ + return Mat_(Mat::diag(d)); +} + +template inline +Mat_<_Tp> Mat_<_Tp>::clone() const +{ + return Mat_(Mat::clone()); +} + +template inline +size_t Mat_<_Tp>::elemSize() const +{ + CV_DbgAssert( Mat::elemSize() == sizeof(_Tp) ); + return sizeof(_Tp); +} + +template inline +size_t Mat_<_Tp>::elemSize1() const +{ + CV_DbgAssert( Mat::elemSize1() == sizeof(_Tp) / DataType<_Tp>::channels ); + return sizeof(_Tp) / DataType<_Tp>::channels; +} + +template inline +int Mat_<_Tp>::type() const +{ + CV_DbgAssert( Mat::type() == DataType<_Tp>::type ); + return DataType<_Tp>::type; +} + +template inline +int Mat_<_Tp>::depth() const +{ + CV_DbgAssert( Mat::depth() == DataType<_Tp>::depth ); + return DataType<_Tp>::depth; +} + +template inline +int Mat_<_Tp>::channels() const +{ + CV_DbgAssert( Mat::channels() == DataType<_Tp>::channels ); + return DataType<_Tp>::channels; +} + +template inline +size_t Mat_<_Tp>::stepT(int i) const +{ + return step.p[i] / elemSize(); +} + +template inline +size_t Mat_<_Tp>::step1(int i) const +{ + return step.p[i] / elemSize1(); +} + +template inline +Mat_<_Tp>& Mat_<_Tp>::adjustROI( int dtop, int dbottom, int dleft, int dright ) +{ + return (Mat_<_Tp>&)(Mat::adjustROI(dtop, dbottom, dleft, dright)); +} + +template inline +Mat_<_Tp> Mat_<_Tp>::operator()( const Range& _rowRange, const Range& _colRange ) const +{ + return Mat_<_Tp>(*this, _rowRange, _colRange); +} + +template inline +Mat_<_Tp> Mat_<_Tp>::operator()( const Rect& roi ) const +{ + return Mat_<_Tp>(*this, roi); +} + +template inline +Mat_<_Tp> Mat_<_Tp>::operator()( const Range* ranges ) const +{ + return Mat_<_Tp>(*this, ranges); +} + +template inline +Mat_<_Tp> Mat_<_Tp>::operator()(const std::vector& ranges) const +{ + return Mat_<_Tp>(*this, ranges); +} + +template inline +_Tp* Mat_<_Tp>::operator [](int y) +{ + CV_DbgAssert( 0 <= y && y < rows ); + return (_Tp*)(data + y*step.p[0]); +} + +template inline +const _Tp* Mat_<_Tp>::operator [](int y) const +{ + CV_DbgAssert( 0 <= y && y < rows ); + return (const _Tp*)(data + y*step.p[0]); +} + +template inline +_Tp& Mat_<_Tp>::operator ()(int i0, int i1) +{ + CV_DbgAssert(dims <= 2); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); + CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); + CV_DbgAssert(type() == DataType<_Tp>::type); + return ((_Tp*)(data + step.p[0] * i0))[i1]; +} + +template inline +const _Tp& Mat_<_Tp>::operator ()(int i0, int i1) const +{ + CV_DbgAssert(dims <= 2); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)i0 < (unsigned)size.p[0]); + CV_DbgAssert((unsigned)i1 < (unsigned)size.p[1]); + CV_DbgAssert(type() == DataType<_Tp>::type); + return ((const _Tp*)(data + step.p[0] * i0))[i1]; +} + +template inline +_Tp& Mat_<_Tp>::operator ()(Point pt) +{ + CV_DbgAssert(dims <= 2); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)pt.y < (unsigned)size.p[0]); + CV_DbgAssert((unsigned)pt.x < (unsigned)size.p[1]); + CV_DbgAssert(type() == DataType<_Tp>::type); + return ((_Tp*)(data + step.p[0] * pt.y))[pt.x]; +} + +template inline +const _Tp& Mat_<_Tp>::operator ()(Point pt) const +{ + CV_DbgAssert(dims <= 2); + CV_DbgAssert(data); + CV_DbgAssert((unsigned)pt.y < (unsigned)size.p[0]); + CV_DbgAssert((unsigned)pt.x < (unsigned)size.p[1]); + CV_DbgAssert(type() == DataType<_Tp>::type); + return ((const _Tp*)(data + step.p[0] * pt.y))[pt.x]; +} + +template inline +_Tp& Mat_<_Tp>::operator ()(const int* idx) +{ + return Mat::at<_Tp>(idx); +} + +template inline +const _Tp& Mat_<_Tp>::operator ()(const int* idx) const +{ + return Mat::at<_Tp>(idx); +} + +template template inline +_Tp& Mat_<_Tp>::operator ()(const Vec& idx) +{ + return Mat::at<_Tp>(idx); +} + +template template inline +const _Tp& Mat_<_Tp>::operator ()(const Vec& idx) const +{ + return Mat::at<_Tp>(idx); +} + +template inline +_Tp& Mat_<_Tp>::operator ()(int i0) +{ + return this->at<_Tp>(i0); +} + +template inline +const _Tp& Mat_<_Tp>::operator ()(int i0) const +{ + return this->at<_Tp>(i0); +} + +template inline +_Tp& Mat_<_Tp>::operator ()(int i0, int i1, int i2) +{ + return this->at<_Tp>(i0, i1, i2); +} + +template inline +const _Tp& Mat_<_Tp>::operator ()(int i0, int i1, int i2) const +{ + return this->at<_Tp>(i0, i1, i2); +} + +template inline +Mat_<_Tp>::operator std::vector<_Tp>() const +{ + std::vector<_Tp> v; + copyTo(v); + return v; +} + +template template inline +Mat_<_Tp>::operator Vec::channel_type, n>() const +{ + CV_Assert(n % DataType<_Tp>::channels == 0); + +#if defined _MSC_VER + const Mat* pMat = (const Mat*)this; // workaround for MSVS <= 2012 compiler bugs (but GCC 4.6 dislikes this workaround) + return pMat->operator Vec::channel_type, n>(); +#else + return this->Mat::operator Vec::channel_type, n>(); +#endif +} + +template template inline +Mat_<_Tp>::operator Matx::channel_type, m, n>() const +{ + CV_Assert(n % DataType<_Tp>::channels == 0); + +#if defined _MSC_VER + const Mat* pMat = (const Mat*)this; // workaround for MSVS <= 2012 compiler bugs (but GCC 4.6 dislikes this workaround) + Matx::channel_type, m, n> res = pMat->operator Matx::channel_type, m, n>(); + return res; +#else + Matx::channel_type, m, n> res = this->Mat::operator Matx::channel_type, m, n>(); + return res; +#endif +} + +template inline +MatConstIterator_<_Tp> Mat_<_Tp>::begin() const +{ + return Mat::begin<_Tp>(); +} + +template inline +MatConstIterator_<_Tp> Mat_<_Tp>::end() const +{ + return Mat::end<_Tp>(); +} + +template inline +MatIterator_<_Tp> Mat_<_Tp>::begin() +{ + return Mat::begin<_Tp>(); +} + +template inline +MatIterator_<_Tp> Mat_<_Tp>::end() +{ + return Mat::end<_Tp>(); +} + +template template inline +void Mat_<_Tp>::forEach(const Functor& operation) { + Mat::forEach<_Tp, Functor>(operation); +} + +template template inline +void Mat_<_Tp>::forEach(const Functor& operation) const { + Mat::forEach<_Tp, Functor>(operation); +} + +#ifdef CV_CXX_MOVE_SEMANTICS + +template inline +Mat_<_Tp>::Mat_(Mat_&& m) + : Mat(m) +{ +} + +template inline +Mat_<_Tp>& Mat_<_Tp>::operator = (Mat_&& m) +{ + Mat::operator = (m); + return *this; +} + +template inline +Mat_<_Tp>::Mat_(Mat&& m) + : Mat() +{ + flags = (flags & ~CV_MAT_TYPE_MASK) | DataType<_Tp>::type; + *this = m; +} + +template inline +Mat_<_Tp>& Mat_<_Tp>::operator = (Mat&& m) +{ + if( DataType<_Tp>::type == m.type() ) + { + Mat::operator = ((Mat&&)m); + return *this; + } + if( DataType<_Tp>::depth == m.depth() ) + { + Mat::operator = ((Mat&&)m.reshape(DataType<_Tp>::channels, m.dims, 0)); + return *this; + } + CV_DbgAssert(DataType<_Tp>::channels == m.channels()); + m.convertTo(*this, type()); + return *this; +} + +template inline +Mat_<_Tp>::Mat_(MatExpr&& e) + : Mat() +{ + flags = (flags & ~CV_MAT_TYPE_MASK) | DataType<_Tp>::type; + *this = Mat(e); +} + +#endif + +///////////////////////////// SparseMat ///////////////////////////// + +inline +SparseMat::SparseMat() + : flags(MAGIC_VAL), hdr(0) +{} + +inline +SparseMat::SparseMat(int _dims, const int* _sizes, int _type) + : flags(MAGIC_VAL), hdr(0) +{ + create(_dims, _sizes, _type); +} + +inline +SparseMat::SparseMat(const SparseMat& m) + : flags(m.flags), hdr(m.hdr) +{ + addref(); +} + +inline +SparseMat::~SparseMat() +{ + release(); +} + +inline +SparseMat& SparseMat::operator = (const SparseMat& m) +{ + if( this != &m ) + { + if( m.hdr ) + CV_XADD(&m.hdr->refcount, 1); + release(); + flags = m.flags; + hdr = m.hdr; + } + return *this; +} + +inline +SparseMat& SparseMat::operator = (const Mat& m) +{ + return (*this = SparseMat(m)); +} + +inline +SparseMat SparseMat::clone() const +{ + SparseMat temp; + this->copyTo(temp); + return temp; +} + +inline +void SparseMat::assignTo( SparseMat& m, int _type ) const +{ + if( _type < 0 ) + m = *this; + else + convertTo(m, _type); +} + +inline +void SparseMat::addref() +{ + if( hdr ) + CV_XADD(&hdr->refcount, 1); +} + +inline +void SparseMat::release() +{ + if( hdr && CV_XADD(&hdr->refcount, -1) == 1 ) + delete hdr; + hdr = 0; +} + +inline +size_t SparseMat::elemSize() const +{ + return CV_ELEM_SIZE(flags); +} + +inline +size_t SparseMat::elemSize1() const +{ + return CV_ELEM_SIZE1(flags); +} + +inline +int SparseMat::type() const +{ + return CV_MAT_TYPE(flags); +} + +inline +int SparseMat::depth() const +{ + return CV_MAT_DEPTH(flags); +} + +inline +int SparseMat::channels() const +{ + return CV_MAT_CN(flags); +} + +inline +const int* SparseMat::size() const +{ + return hdr ? hdr->size : 0; +} + +inline +int SparseMat::size(int i) const +{ + if( hdr ) + { + CV_DbgAssert((unsigned)i < (unsigned)hdr->dims); + return hdr->size[i]; + } + return 0; +} + +inline +int SparseMat::dims() const +{ + return hdr ? hdr->dims : 0; +} + +inline +size_t SparseMat::nzcount() const +{ + return hdr ? hdr->nodeCount : 0; +} + +inline +size_t SparseMat::hash(int i0) const +{ + return (size_t)i0; +} + +inline +size_t SparseMat::hash(int i0, int i1) const +{ + return (size_t)(unsigned)i0 * HASH_SCALE + (unsigned)i1; +} + +inline +size_t SparseMat::hash(int i0, int i1, int i2) const +{ + return ((size_t)(unsigned)i0 * HASH_SCALE + (unsigned)i1) * HASH_SCALE + (unsigned)i2; +} + +inline +size_t SparseMat::hash(const int* idx) const +{ + size_t h = (unsigned)idx[0]; + if( !hdr ) + return 0; + int d = hdr->dims; + for(int i = 1; i < d; i++ ) + h = h * HASH_SCALE + (unsigned)idx[i]; + return h; +} + +template inline +_Tp& SparseMat::ref(int i0, size_t* hashval) +{ + return *(_Tp*)((SparseMat*)this)->ptr(i0, true, hashval); +} + +template inline +_Tp& SparseMat::ref(int i0, int i1, size_t* hashval) +{ + return *(_Tp*)((SparseMat*)this)->ptr(i0, i1, true, hashval); +} + +template inline +_Tp& SparseMat::ref(int i0, int i1, int i2, size_t* hashval) +{ + return *(_Tp*)((SparseMat*)this)->ptr(i0, i1, i2, true, hashval); +} + +template inline +_Tp& SparseMat::ref(const int* idx, size_t* hashval) +{ + return *(_Tp*)((SparseMat*)this)->ptr(idx, true, hashval); +} + +template inline +_Tp SparseMat::value(int i0, size_t* hashval) const +{ + const _Tp* p = (const _Tp*)((SparseMat*)this)->ptr(i0, false, hashval); + return p ? *p : _Tp(); +} + +template inline +_Tp SparseMat::value(int i0, int i1, size_t* hashval) const +{ + const _Tp* p = (const _Tp*)((SparseMat*)this)->ptr(i0, i1, false, hashval); + return p ? *p : _Tp(); +} + +template inline +_Tp SparseMat::value(int i0, int i1, int i2, size_t* hashval) const +{ + const _Tp* p = (const _Tp*)((SparseMat*)this)->ptr(i0, i1, i2, false, hashval); + return p ? *p : _Tp(); +} + +template inline +_Tp SparseMat::value(const int* idx, size_t* hashval) const +{ + const _Tp* p = (const _Tp*)((SparseMat*)this)->ptr(idx, false, hashval); + return p ? *p : _Tp(); +} + +template inline +const _Tp* SparseMat::find(int i0, size_t* hashval) const +{ + return (const _Tp*)((SparseMat*)this)->ptr(i0, false, hashval); +} + +template inline +const _Tp* SparseMat::find(int i0, int i1, size_t* hashval) const +{ + return (const _Tp*)((SparseMat*)this)->ptr(i0, i1, false, hashval); +} + +template inline +const _Tp* SparseMat::find(int i0, int i1, int i2, size_t* hashval) const +{ + return (const _Tp*)((SparseMat*)this)->ptr(i0, i1, i2, false, hashval); +} + +template inline +const _Tp* SparseMat::find(const int* idx, size_t* hashval) const +{ + return (const _Tp*)((SparseMat*)this)->ptr(idx, false, hashval); +} + +template inline +_Tp& SparseMat::value(Node* n) +{ + return *(_Tp*)((uchar*)n + hdr->valueOffset); +} + +template inline +const _Tp& SparseMat::value(const Node* n) const +{ + return *(const _Tp*)((const uchar*)n + hdr->valueOffset); +} + +inline +SparseMat::Node* SparseMat::node(size_t nidx) +{ + return (Node*)(void*)&hdr->pool[nidx]; +} + +inline +const SparseMat::Node* SparseMat::node(size_t nidx) const +{ + return (const Node*)(const void*)&hdr->pool[nidx]; +} + +inline +SparseMatIterator SparseMat::begin() +{ + return SparseMatIterator(this); +} + +inline +SparseMatConstIterator SparseMat::begin() const +{ + return SparseMatConstIterator(this); +} + +inline +SparseMatIterator SparseMat::end() +{ + SparseMatIterator it(this); + it.seekEnd(); + return it; +} + +inline +SparseMatConstIterator SparseMat::end() const +{ + SparseMatConstIterator it(this); + it.seekEnd(); + return it; +} + +template inline +SparseMatIterator_<_Tp> SparseMat::begin() +{ + return SparseMatIterator_<_Tp>(this); +} + +template inline +SparseMatConstIterator_<_Tp> SparseMat::begin() const +{ + return SparseMatConstIterator_<_Tp>(this); +} + +template inline +SparseMatIterator_<_Tp> SparseMat::end() +{ + SparseMatIterator_<_Tp> it(this); + it.seekEnd(); + return it; +} + +template inline +SparseMatConstIterator_<_Tp> SparseMat::end() const +{ + SparseMatConstIterator_<_Tp> it(this); + it.seekEnd(); + return it; +} + + + +///////////////////////////// SparseMat_ //////////////////////////// + +template inline +SparseMat_<_Tp>::SparseMat_() +{ + flags = MAGIC_VAL | DataType<_Tp>::type; +} + +template inline +SparseMat_<_Tp>::SparseMat_(int _dims, const int* _sizes) + : SparseMat(_dims, _sizes, DataType<_Tp>::type) +{} + +template inline +SparseMat_<_Tp>::SparseMat_(const SparseMat& m) +{ + if( m.type() == DataType<_Tp>::type ) + *this = (const SparseMat_<_Tp>&)m; + else + m.convertTo(*this, DataType<_Tp>::type); +} + +template inline +SparseMat_<_Tp>::SparseMat_(const SparseMat_<_Tp>& m) +{ + this->flags = m.flags; + this->hdr = m.hdr; + if( this->hdr ) + CV_XADD(&this->hdr->refcount, 1); +} + +template inline +SparseMat_<_Tp>::SparseMat_(const Mat& m) +{ + SparseMat sm(m); + *this = sm; +} + +template inline +SparseMat_<_Tp>& SparseMat_<_Tp>::operator = (const SparseMat_<_Tp>& m) +{ + if( this != &m ) + { + if( m.hdr ) CV_XADD(&m.hdr->refcount, 1); + release(); + flags = m.flags; + hdr = m.hdr; + } + return *this; +} + +template inline +SparseMat_<_Tp>& SparseMat_<_Tp>::operator = (const SparseMat& m) +{ + if( m.type() == DataType<_Tp>::type ) + return (*this = (const SparseMat_<_Tp>&)m); + m.convertTo(*this, DataType<_Tp>::type); + return *this; +} + +template inline +SparseMat_<_Tp>& SparseMat_<_Tp>::operator = (const Mat& m) +{ + return (*this = SparseMat(m)); +} + +template inline +SparseMat_<_Tp> SparseMat_<_Tp>::clone() const +{ + SparseMat_<_Tp> m; + this->copyTo(m); + return m; +} + +template inline +void SparseMat_<_Tp>::create(int _dims, const int* _sizes) +{ + SparseMat::create(_dims, _sizes, DataType<_Tp>::type); +} + +template inline +int SparseMat_<_Tp>::type() const +{ + return DataType<_Tp>::type; +} + +template inline +int SparseMat_<_Tp>::depth() const +{ + return DataType<_Tp>::depth; +} + +template inline +int SparseMat_<_Tp>::channels() const +{ + return DataType<_Tp>::channels; +} + +template inline +_Tp& SparseMat_<_Tp>::ref(int i0, size_t* hashval) +{ + return SparseMat::ref<_Tp>(i0, hashval); +} + +template inline +_Tp SparseMat_<_Tp>::operator()(int i0, size_t* hashval) const +{ + return SparseMat::value<_Tp>(i0, hashval); +} + +template inline +_Tp& SparseMat_<_Tp>::ref(int i0, int i1, size_t* hashval) +{ + return SparseMat::ref<_Tp>(i0, i1, hashval); +} + +template inline +_Tp SparseMat_<_Tp>::operator()(int i0, int i1, size_t* hashval) const +{ + return SparseMat::value<_Tp>(i0, i1, hashval); +} + +template inline +_Tp& SparseMat_<_Tp>::ref(int i0, int i1, int i2, size_t* hashval) +{ + return SparseMat::ref<_Tp>(i0, i1, i2, hashval); +} + +template inline +_Tp SparseMat_<_Tp>::operator()(int i0, int i1, int i2, size_t* hashval) const +{ + return SparseMat::value<_Tp>(i0, i1, i2, hashval); +} + +template inline +_Tp& SparseMat_<_Tp>::ref(const int* idx, size_t* hashval) +{ + return SparseMat::ref<_Tp>(idx, hashval); +} + +template inline +_Tp SparseMat_<_Tp>::operator()(const int* idx, size_t* hashval) const +{ + return SparseMat::value<_Tp>(idx, hashval); +} + +template inline +SparseMatIterator_<_Tp> SparseMat_<_Tp>::begin() +{ + return SparseMatIterator_<_Tp>(this); +} + +template inline +SparseMatConstIterator_<_Tp> SparseMat_<_Tp>::begin() const +{ + return SparseMatConstIterator_<_Tp>(this); +} + +template inline +SparseMatIterator_<_Tp> SparseMat_<_Tp>::end() +{ + SparseMatIterator_<_Tp> it(this); + it.seekEnd(); + return it; +} + +template inline +SparseMatConstIterator_<_Tp> SparseMat_<_Tp>::end() const +{ + SparseMatConstIterator_<_Tp> it(this); + it.seekEnd(); + return it; +} + + + +////////////////////////// MatConstIterator ///////////////////////// + +inline +MatConstIterator::MatConstIterator() + : m(0), elemSize(0), ptr(0), sliceStart(0), sliceEnd(0) +{} + +inline +MatConstIterator::MatConstIterator(const Mat* _m) + : m(_m), elemSize(_m->elemSize()), ptr(0), sliceStart(0), sliceEnd(0) +{ + if( m && m->isContinuous() ) + { + sliceStart = m->ptr(); + sliceEnd = sliceStart + m->total()*elemSize; + } + seek((const int*)0); +} + +inline +MatConstIterator::MatConstIterator(const Mat* _m, int _row, int _col) + : m(_m), elemSize(_m->elemSize()), ptr(0), sliceStart(0), sliceEnd(0) +{ + CV_Assert(m && m->dims <= 2); + if( m->isContinuous() ) + { + sliceStart = m->ptr(); + sliceEnd = sliceStart + m->total()*elemSize; + } + int idx[] = {_row, _col}; + seek(idx); +} + +inline +MatConstIterator::MatConstIterator(const Mat* _m, Point _pt) + : m(_m), elemSize(_m->elemSize()), ptr(0), sliceStart(0), sliceEnd(0) +{ + CV_Assert(m && m->dims <= 2); + if( m->isContinuous() ) + { + sliceStart = m->ptr(); + sliceEnd = sliceStart + m->total()*elemSize; + } + int idx[] = {_pt.y, _pt.x}; + seek(idx); +} + +inline +MatConstIterator::MatConstIterator(const MatConstIterator& it) + : m(it.m), elemSize(it.elemSize), ptr(it.ptr), sliceStart(it.sliceStart), sliceEnd(it.sliceEnd) +{} + +inline +MatConstIterator& MatConstIterator::operator = (const MatConstIterator& it ) +{ + m = it.m; elemSize = it.elemSize; ptr = it.ptr; + sliceStart = it.sliceStart; sliceEnd = it.sliceEnd; + return *this; +} + +inline +const uchar* MatConstIterator::operator *() const +{ + return ptr; +} + +inline MatConstIterator& MatConstIterator::operator += (ptrdiff_t ofs) +{ + if( !m || ofs == 0 ) + return *this; + ptrdiff_t ofsb = ofs*elemSize; + ptr += ofsb; + if( ptr < sliceStart || sliceEnd <= ptr ) + { + ptr -= ofsb; + seek(ofs, true); + } + return *this; +} + +inline +MatConstIterator& MatConstIterator::operator -= (ptrdiff_t ofs) +{ + return (*this += -ofs); +} + +inline +MatConstIterator& MatConstIterator::operator --() +{ + if( m && (ptr -= elemSize) < sliceStart ) + { + ptr += elemSize; + seek(-1, true); + } + return *this; +} + +inline +MatConstIterator MatConstIterator::operator --(int) +{ + MatConstIterator b = *this; + *this += -1; + return b; +} + +inline +MatConstIterator& MatConstIterator::operator ++() +{ + if( m && (ptr += elemSize) >= sliceEnd ) + { + ptr -= elemSize; + seek(1, true); + } + return *this; +} + +inline MatConstIterator MatConstIterator::operator ++(int) +{ + MatConstIterator b = *this; + *this += 1; + return b; +} + + +static inline +bool operator == (const MatConstIterator& a, const MatConstIterator& b) +{ + return a.m == b.m && a.ptr == b.ptr; +} + +static inline +bool operator != (const MatConstIterator& a, const MatConstIterator& b) +{ + return !(a == b); +} + +static inline +bool operator < (const MatConstIterator& a, const MatConstIterator& b) +{ + return a.ptr < b.ptr; +} + +static inline +bool operator > (const MatConstIterator& a, const MatConstIterator& b) +{ + return a.ptr > b.ptr; +} + +static inline +bool operator <= (const MatConstIterator& a, const MatConstIterator& b) +{ + return a.ptr <= b.ptr; +} + +static inline +bool operator >= (const MatConstIterator& a, const MatConstIterator& b) +{ + return a.ptr >= b.ptr; +} + +static inline +ptrdiff_t operator - (const MatConstIterator& b, const MatConstIterator& a) +{ + if( a.m != b.m ) + return ((size_t)(-1) >> 1); + if( a.sliceEnd == b.sliceEnd ) + return (b.ptr - a.ptr)/static_cast(b.elemSize); + + return b.lpos() - a.lpos(); +} + +static inline +MatConstIterator operator + (const MatConstIterator& a, ptrdiff_t ofs) +{ + MatConstIterator b = a; + return b += ofs; +} + +static inline +MatConstIterator operator + (ptrdiff_t ofs, const MatConstIterator& a) +{ + MatConstIterator b = a; + return b += ofs; +} + +static inline +MatConstIterator operator - (const MatConstIterator& a, ptrdiff_t ofs) +{ + MatConstIterator b = a; + return b += -ofs; +} + + +inline +const uchar* MatConstIterator::operator [](ptrdiff_t i) const +{ + return *(*this + i); +} + + + +///////////////////////// MatConstIterator_ ///////////////////////// + +template inline +MatConstIterator_<_Tp>::MatConstIterator_() +{} + +template inline +MatConstIterator_<_Tp>::MatConstIterator_(const Mat_<_Tp>* _m) + : MatConstIterator(_m) +{} + +template inline +MatConstIterator_<_Tp>::MatConstIterator_(const Mat_<_Tp>* _m, int _row, int _col) + : MatConstIterator(_m, _row, _col) +{} + +template inline +MatConstIterator_<_Tp>::MatConstIterator_(const Mat_<_Tp>* _m, Point _pt) + : MatConstIterator(_m, _pt) +{} + +template inline +MatConstIterator_<_Tp>::MatConstIterator_(const MatConstIterator_& it) + : MatConstIterator(it) +{} + +template inline +MatConstIterator_<_Tp>& MatConstIterator_<_Tp>::operator = (const MatConstIterator_& it ) +{ + MatConstIterator::operator = (it); + return *this; +} + +template inline +const _Tp& MatConstIterator_<_Tp>::operator *() const +{ + return *(_Tp*)(this->ptr); +} + +template inline +MatConstIterator_<_Tp>& MatConstIterator_<_Tp>::operator += (ptrdiff_t ofs) +{ + MatConstIterator::operator += (ofs); + return *this; +} + +template inline +MatConstIterator_<_Tp>& MatConstIterator_<_Tp>::operator -= (ptrdiff_t ofs) +{ + return (*this += -ofs); +} + +template inline +MatConstIterator_<_Tp>& MatConstIterator_<_Tp>::operator --() +{ + MatConstIterator::operator --(); + return *this; +} + +template inline +MatConstIterator_<_Tp> MatConstIterator_<_Tp>::operator --(int) +{ + MatConstIterator_ b = *this; + MatConstIterator::operator --(); + return b; +} + +template inline +MatConstIterator_<_Tp>& MatConstIterator_<_Tp>::operator ++() +{ + MatConstIterator::operator ++(); + return *this; +} + +template inline +MatConstIterator_<_Tp> MatConstIterator_<_Tp>::operator ++(int) +{ + MatConstIterator_ b = *this; + MatConstIterator::operator ++(); + return b; +} + + +template inline +Point MatConstIterator_<_Tp>::pos() const +{ + if( !m ) + return Point(); + CV_DbgAssert( m->dims <= 2 ); + if( m->isContinuous() ) + { + ptrdiff_t ofs = (const _Tp*)ptr - (const _Tp*)m->data; + int y = (int)(ofs / m->cols); + int x = (int)(ofs - (ptrdiff_t)y * m->cols); + return Point(x, y); + } + else + { + ptrdiff_t ofs = (uchar*)ptr - m->data; + int y = (int)(ofs / m->step); + int x = (int)((ofs - y * m->step)/sizeof(_Tp)); + return Point(x, y); + } +} + + +template static inline +bool operator == (const MatConstIterator_<_Tp>& a, const MatConstIterator_<_Tp>& b) +{ + return a.m == b.m && a.ptr == b.ptr; +} + +template static inline +bool operator != (const MatConstIterator_<_Tp>& a, const MatConstIterator_<_Tp>& b) +{ + return a.m != b.m || a.ptr != b.ptr; +} + +template static inline +MatConstIterator_<_Tp> operator + (const MatConstIterator_<_Tp>& a, ptrdiff_t ofs) +{ + MatConstIterator t = (const MatConstIterator&)a + ofs; + return (MatConstIterator_<_Tp>&)t; +} + +template static inline +MatConstIterator_<_Tp> operator + (ptrdiff_t ofs, const MatConstIterator_<_Tp>& a) +{ + MatConstIterator t = (const MatConstIterator&)a + ofs; + return (MatConstIterator_<_Tp>&)t; +} + +template static inline +MatConstIterator_<_Tp> operator - (const MatConstIterator_<_Tp>& a, ptrdiff_t ofs) +{ + MatConstIterator t = (const MatConstIterator&)a - ofs; + return (MatConstIterator_<_Tp>&)t; +} + +template inline +const _Tp& MatConstIterator_<_Tp>::operator [](ptrdiff_t i) const +{ + return *(_Tp*)MatConstIterator::operator [](i); +} + + + +//////////////////////////// MatIterator_ /////////////////////////// + +template inline +MatIterator_<_Tp>::MatIterator_() + : MatConstIterator_<_Tp>() +{} + +template inline +MatIterator_<_Tp>::MatIterator_(Mat_<_Tp>* _m) + : MatConstIterator_<_Tp>(_m) +{} + +template inline +MatIterator_<_Tp>::MatIterator_(Mat_<_Tp>* _m, int _row, int _col) + : MatConstIterator_<_Tp>(_m, _row, _col) +{} + +template inline +MatIterator_<_Tp>::MatIterator_(Mat_<_Tp>* _m, Point _pt) + : MatConstIterator_<_Tp>(_m, _pt) +{} + +template inline +MatIterator_<_Tp>::MatIterator_(Mat_<_Tp>* _m, const int* _idx) + : MatConstIterator_<_Tp>(_m, _idx) +{} + +template inline +MatIterator_<_Tp>::MatIterator_(const MatIterator_& it) + : MatConstIterator_<_Tp>(it) +{} + +template inline +MatIterator_<_Tp>& MatIterator_<_Tp>::operator = (const MatIterator_<_Tp>& it ) +{ + MatConstIterator::operator = (it); + return *this; +} + +template inline +_Tp& MatIterator_<_Tp>::operator *() const +{ + return *(_Tp*)(this->ptr); +} + +template inline +MatIterator_<_Tp>& MatIterator_<_Tp>::operator += (ptrdiff_t ofs) +{ + MatConstIterator::operator += (ofs); + return *this; +} + +template inline +MatIterator_<_Tp>& MatIterator_<_Tp>::operator -= (ptrdiff_t ofs) +{ + MatConstIterator::operator += (-ofs); + return *this; +} + +template inline +MatIterator_<_Tp>& MatIterator_<_Tp>::operator --() +{ + MatConstIterator::operator --(); + return *this; +} + +template inline +MatIterator_<_Tp> MatIterator_<_Tp>::operator --(int) +{ + MatIterator_ b = *this; + MatConstIterator::operator --(); + return b; +} + +template inline +MatIterator_<_Tp>& MatIterator_<_Tp>::operator ++() +{ + MatConstIterator::operator ++(); + return *this; +} + +template inline +MatIterator_<_Tp> MatIterator_<_Tp>::operator ++(int) +{ + MatIterator_ b = *this; + MatConstIterator::operator ++(); + return b; +} + +template inline +_Tp& MatIterator_<_Tp>::operator [](ptrdiff_t i) const +{ + return *(*this + i); +} + + +template static inline +bool operator == (const MatIterator_<_Tp>& a, const MatIterator_<_Tp>& b) +{ + return a.m == b.m && a.ptr == b.ptr; +} + +template static inline +bool operator != (const MatIterator_<_Tp>& a, const MatIterator_<_Tp>& b) +{ + return a.m != b.m || a.ptr != b.ptr; +} + +template static inline +MatIterator_<_Tp> operator + (const MatIterator_<_Tp>& a, ptrdiff_t ofs) +{ + MatConstIterator t = (const MatConstIterator&)a + ofs; + return (MatIterator_<_Tp>&)t; +} + +template static inline +MatIterator_<_Tp> operator + (ptrdiff_t ofs, const MatIterator_<_Tp>& a) +{ + MatConstIterator t = (const MatConstIterator&)a + ofs; + return (MatIterator_<_Tp>&)t; +} + +template static inline +MatIterator_<_Tp> operator - (const MatIterator_<_Tp>& a, ptrdiff_t ofs) +{ + MatConstIterator t = (const MatConstIterator&)a - ofs; + return (MatIterator_<_Tp>&)t; +} + + + +/////////////////////// SparseMatConstIterator ////////////////////// + +inline +SparseMatConstIterator::SparseMatConstIterator() + : m(0), hashidx(0), ptr(0) +{} + +inline +SparseMatConstIterator::SparseMatConstIterator(const SparseMatConstIterator& it) + : m(it.m), hashidx(it.hashidx), ptr(it.ptr) +{} + +inline SparseMatConstIterator& SparseMatConstIterator::operator = (const SparseMatConstIterator& it) +{ + if( this != &it ) + { + m = it.m; + hashidx = it.hashidx; + ptr = it.ptr; + } + return *this; +} + +template inline +const _Tp& SparseMatConstIterator::value() const +{ + return *(const _Tp*)ptr; +} + +inline +const SparseMat::Node* SparseMatConstIterator::node() const +{ + return (ptr && m && m->hdr) ? (const SparseMat::Node*)(const void*)(ptr - m->hdr->valueOffset) : 0; +} + +inline +SparseMatConstIterator SparseMatConstIterator::operator ++(int) +{ + SparseMatConstIterator it = *this; + ++*this; + return it; +} + +inline +void SparseMatConstIterator::seekEnd() +{ + if( m && m->hdr ) + { + hashidx = m->hdr->hashtab.size(); + ptr = 0; + } +} + + +static inline +bool operator == (const SparseMatConstIterator& it1, const SparseMatConstIterator& it2) +{ + return it1.m == it2.m && it1.ptr == it2.ptr; +} + +static inline +bool operator != (const SparseMatConstIterator& it1, const SparseMatConstIterator& it2) +{ + return !(it1 == it2); +} + + + +///////////////////////// SparseMatIterator ///////////////////////// + +inline +SparseMatIterator::SparseMatIterator() +{} + +inline +SparseMatIterator::SparseMatIterator(SparseMat* _m) + : SparseMatConstIterator(_m) +{} + +inline +SparseMatIterator::SparseMatIterator(const SparseMatIterator& it) + : SparseMatConstIterator(it) +{} + +inline +SparseMatIterator& SparseMatIterator::operator = (const SparseMatIterator& it) +{ + (SparseMatConstIterator&)*this = it; + return *this; +} + +template inline +_Tp& SparseMatIterator::value() const +{ + return *(_Tp*)ptr; +} + +inline +SparseMat::Node* SparseMatIterator::node() const +{ + return (SparseMat::Node*)SparseMatConstIterator::node(); +} + +inline +SparseMatIterator& SparseMatIterator::operator ++() +{ + SparseMatConstIterator::operator ++(); + return *this; +} + +inline +SparseMatIterator SparseMatIterator::operator ++(int) +{ + SparseMatIterator it = *this; + ++*this; + return it; +} + + + +////////////////////// SparseMatConstIterator_ ////////////////////// + +template inline +SparseMatConstIterator_<_Tp>::SparseMatConstIterator_() +{} + +template inline +SparseMatConstIterator_<_Tp>::SparseMatConstIterator_(const SparseMat_<_Tp>* _m) + : SparseMatConstIterator(_m) +{} + +template inline +SparseMatConstIterator_<_Tp>::SparseMatConstIterator_(const SparseMat* _m) + : SparseMatConstIterator(_m) +{ + CV_Assert( _m->type() == DataType<_Tp>::type ); +} + +template inline +SparseMatConstIterator_<_Tp>::SparseMatConstIterator_(const SparseMatConstIterator_<_Tp>& it) + : SparseMatConstIterator(it) +{} + +template inline +SparseMatConstIterator_<_Tp>& SparseMatConstIterator_<_Tp>::operator = (const SparseMatConstIterator_<_Tp>& it) +{ + return reinterpret_cast&> + (*reinterpret_cast(this) = + reinterpret_cast(it)); +} + +template inline +const _Tp& SparseMatConstIterator_<_Tp>::operator *() const +{ + return *(const _Tp*)this->ptr; +} + +template inline +SparseMatConstIterator_<_Tp>& SparseMatConstIterator_<_Tp>::operator ++() +{ + SparseMatConstIterator::operator ++(); + return *this; +} + +template inline +SparseMatConstIterator_<_Tp> SparseMatConstIterator_<_Tp>::operator ++(int) +{ + SparseMatConstIterator_<_Tp> it = *this; + SparseMatConstIterator::operator ++(); + return it; +} + + + +///////////////////////// SparseMatIterator_ //////////////////////// + +template inline +SparseMatIterator_<_Tp>::SparseMatIterator_() +{} + +template inline +SparseMatIterator_<_Tp>::SparseMatIterator_(SparseMat_<_Tp>* _m) + : SparseMatConstIterator_<_Tp>(_m) +{} + +template inline +SparseMatIterator_<_Tp>::SparseMatIterator_(SparseMat* _m) + : SparseMatConstIterator_<_Tp>(_m) +{} + +template inline +SparseMatIterator_<_Tp>::SparseMatIterator_(const SparseMatIterator_<_Tp>& it) + : SparseMatConstIterator_<_Tp>(it) +{} + +template inline +SparseMatIterator_<_Tp>& SparseMatIterator_<_Tp>::operator = (const SparseMatIterator_<_Tp>& it) +{ + return reinterpret_cast&> + (*reinterpret_cast(this) = + reinterpret_cast(it)); +} + +template inline +_Tp& SparseMatIterator_<_Tp>::operator *() const +{ + return *(_Tp*)this->ptr; +} + +template inline +SparseMatIterator_<_Tp>& SparseMatIterator_<_Tp>::operator ++() +{ + SparseMatConstIterator::operator ++(); + return *this; +} + +template inline +SparseMatIterator_<_Tp> SparseMatIterator_<_Tp>::operator ++(int) +{ + SparseMatIterator_<_Tp> it = *this; + SparseMatConstIterator::operator ++(); + return it; +} + + + +//////////////////////// MatCommaInitializer_ /////////////////////// + +template inline +MatCommaInitializer_<_Tp>::MatCommaInitializer_(Mat_<_Tp>* _m) + : it(_m) +{} + +template template inline +MatCommaInitializer_<_Tp>& MatCommaInitializer_<_Tp>::operator , (T2 v) +{ + CV_DbgAssert( this->it < ((const Mat_<_Tp>*)this->it.m)->end() ); + *this->it = _Tp(v); + ++this->it; + return *this; +} + +template inline +MatCommaInitializer_<_Tp>::operator Mat_<_Tp>() const +{ + CV_DbgAssert( this->it == ((const Mat_<_Tp>*)this->it.m)->end() ); + return Mat_<_Tp>(*this->it.m); +} + + +template static inline +MatCommaInitializer_<_Tp> operator << (const Mat_<_Tp>& m, T2 val) +{ + MatCommaInitializer_<_Tp> commaInitializer((Mat_<_Tp>*)&m); + return (commaInitializer, val); +} + + + +///////////////////////// Matrix Expressions //////////////////////// + +inline +Mat& Mat::operator = (const MatExpr& e) +{ + e.op->assign(e, *this); + return *this; +} + +template inline +Mat_<_Tp>::Mat_(const MatExpr& e) +{ + e.op->assign(e, *this, DataType<_Tp>::type); +} + +template inline +Mat_<_Tp>& Mat_<_Tp>::operator = (const MatExpr& e) +{ + e.op->assign(e, *this, DataType<_Tp>::type); + return *this; +} + +template inline +MatExpr Mat_<_Tp>::zeros(int rows, int cols) +{ + return Mat::zeros(rows, cols, DataType<_Tp>::type); +} + +template inline +MatExpr Mat_<_Tp>::zeros(Size sz) +{ + return Mat::zeros(sz, DataType<_Tp>::type); +} + +template inline +MatExpr Mat_<_Tp>::ones(int rows, int cols) +{ + return Mat::ones(rows, cols, DataType<_Tp>::type); +} + +template inline +MatExpr Mat_<_Tp>::ones(Size sz) +{ + return Mat::ones(sz, DataType<_Tp>::type); +} + +template inline +MatExpr Mat_<_Tp>::eye(int rows, int cols) +{ + return Mat::eye(rows, cols, DataType<_Tp>::type); +} + +template inline +MatExpr Mat_<_Tp>::eye(Size sz) +{ + return Mat::eye(sz, DataType<_Tp>::type); +} + +inline +MatExpr::MatExpr() + : op(0), flags(0), a(Mat()), b(Mat()), c(Mat()), alpha(0), beta(0), s() +{} + +inline +MatExpr::MatExpr(const MatOp* _op, int _flags, const Mat& _a, const Mat& _b, + const Mat& _c, double _alpha, double _beta, const Scalar& _s) + : op(_op), flags(_flags), a(_a), b(_b), c(_c), alpha(_alpha), beta(_beta), s(_s) +{} + +inline +MatExpr::operator Mat() const +{ + Mat m; + op->assign(*this, m); + return m; +} + +template inline +MatExpr::operator Mat_<_Tp>() const +{ + Mat_<_Tp> m; + op->assign(*this, m, DataType<_Tp>::type); + return m; +} + + +template static inline +MatExpr min(const Mat_<_Tp>& a, const Mat_<_Tp>& b) +{ + return cv::min((const Mat&)a, (const Mat&)b); +} + +template static inline +MatExpr min(const Mat_<_Tp>& a, double s) +{ + return cv::min((const Mat&)a, s); +} + +template static inline +MatExpr min(double s, const Mat_<_Tp>& a) +{ + return cv::min((const Mat&)a, s); +} + +template static inline +MatExpr max(const Mat_<_Tp>& a, const Mat_<_Tp>& b) +{ + return cv::max((const Mat&)a, (const Mat&)b); +} + +template static inline +MatExpr max(const Mat_<_Tp>& a, double s) +{ + return cv::max((const Mat&)a, s); +} + +template static inline +MatExpr max(double s, const Mat_<_Tp>& a) +{ + return cv::max((const Mat&)a, s); +} + +template static inline +MatExpr abs(const Mat_<_Tp>& m) +{ + return cv::abs((const Mat&)m); +} + + +static inline +Mat& operator += (Mat& a, const MatExpr& b) +{ + b.op->augAssignAdd(b, a); + return a; +} + +static inline +const Mat& operator += (const Mat& a, const MatExpr& b) +{ + b.op->augAssignAdd(b, (Mat&)a); + return a; +} + +template static inline +Mat_<_Tp>& operator += (Mat_<_Tp>& a, const MatExpr& b) +{ + b.op->augAssignAdd(b, a); + return a; +} + +template static inline +const Mat_<_Tp>& operator += (const Mat_<_Tp>& a, const MatExpr& b) +{ + b.op->augAssignAdd(b, (Mat&)a); + return a; +} + +static inline +Mat& operator -= (Mat& a, const MatExpr& b) +{ + b.op->augAssignSubtract(b, a); + return a; +} + +static inline +const Mat& operator -= (const Mat& a, const MatExpr& b) +{ + b.op->augAssignSubtract(b, (Mat&)a); + return a; +} + +template static inline +Mat_<_Tp>& operator -= (Mat_<_Tp>& a, const MatExpr& b) +{ + b.op->augAssignSubtract(b, a); + return a; +} + +template static inline +const Mat_<_Tp>& operator -= (const Mat_<_Tp>& a, const MatExpr& b) +{ + b.op->augAssignSubtract(b, (Mat&)a); + return a; +} + +static inline +Mat& operator *= (Mat& a, const MatExpr& b) +{ + b.op->augAssignMultiply(b, a); + return a; +} + +static inline +const Mat& operator *= (const Mat& a, const MatExpr& b) +{ + b.op->augAssignMultiply(b, (Mat&)a); + return a; +} + +template static inline +Mat_<_Tp>& operator *= (Mat_<_Tp>& a, const MatExpr& b) +{ + b.op->augAssignMultiply(b, a); + return a; +} + +template static inline +const Mat_<_Tp>& operator *= (const Mat_<_Tp>& a, const MatExpr& b) +{ + b.op->augAssignMultiply(b, (Mat&)a); + return a; +} + +static inline +Mat& operator /= (Mat& a, const MatExpr& b) +{ + b.op->augAssignDivide(b, a); + return a; +} + +static inline +const Mat& operator /= (const Mat& a, const MatExpr& b) +{ + b.op->augAssignDivide(b, (Mat&)a); + return a; +} + +template static inline +Mat_<_Tp>& operator /= (Mat_<_Tp>& a, const MatExpr& b) +{ + b.op->augAssignDivide(b, a); + return a; +} + +template static inline +const Mat_<_Tp>& operator /= (const Mat_<_Tp>& a, const MatExpr& b) +{ + b.op->augAssignDivide(b, (Mat&)a); + return a; +} + + +//////////////////////////////// UMat //////////////////////////////// + +inline +UMat::UMat(UMatUsageFlags _usageFlags) +: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) +{} + +inline +UMat::UMat(int _rows, int _cols, int _type, UMatUsageFlags _usageFlags) +: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) +{ + create(_rows, _cols, _type); +} + +inline +UMat::UMat(int _rows, int _cols, int _type, const Scalar& _s, UMatUsageFlags _usageFlags) +: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) +{ + create(_rows, _cols, _type); + *this = _s; +} + +inline +UMat::UMat(Size _sz, int _type, UMatUsageFlags _usageFlags) +: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) +{ + create( _sz.height, _sz.width, _type ); +} + +inline +UMat::UMat(Size _sz, int _type, const Scalar& _s, UMatUsageFlags _usageFlags) +: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) +{ + create(_sz.height, _sz.width, _type); + *this = _s; +} + +inline +UMat::UMat(int _dims, const int* _sz, int _type, UMatUsageFlags _usageFlags) +: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) +{ + create(_dims, _sz, _type); +} + +inline +UMat::UMat(int _dims, const int* _sz, int _type, const Scalar& _s, UMatUsageFlags _usageFlags) +: flags(MAGIC_VAL), dims(0), rows(0), cols(0), allocator(0), usageFlags(_usageFlags), u(0), offset(0), size(&rows) +{ + create(_dims, _sz, _type); + *this = _s; +} + +inline +UMat::UMat(const UMat& m) +: flags(m.flags), dims(m.dims), rows(m.rows), cols(m.cols), allocator(m.allocator), + usageFlags(m.usageFlags), u(m.u), offset(m.offset), size(&rows) +{ + addref(); + if( m.dims <= 2 ) + { + step[0] = m.step[0]; step[1] = m.step[1]; + } + else + { + dims = 0; + copySize(m); + } +} + + +template inline +UMat::UMat(const std::vector<_Tp>& vec, bool copyData) +: flags(MAGIC_VAL | DataType<_Tp>::type | CV_MAT_CONT_FLAG), dims(2), rows((int)vec.size()), +cols(1), allocator(0), usageFlags(USAGE_DEFAULT), u(0), offset(0), size(&rows) +{ + if(vec.empty()) + return; + if( !copyData ) + { + // !!!TODO!!! + CV_Error(Error::StsNotImplemented, ""); + } + else + Mat((int)vec.size(), 1, DataType<_Tp>::type, (uchar*)&vec[0]).copyTo(*this); +} + + +inline +UMat& UMat::operator = (const UMat& m) +{ + if( this != &m ) + { + const_cast(m).addref(); + release(); + flags = m.flags; + if( dims <= 2 && m.dims <= 2 ) + { + dims = m.dims; + rows = m.rows; + cols = m.cols; + step[0] = m.step[0]; + step[1] = m.step[1]; + } + else + copySize(m); + allocator = m.allocator; + if (usageFlags == USAGE_DEFAULT) + usageFlags = m.usageFlags; + u = m.u; + offset = m.offset; + } + return *this; +} + +inline +UMat UMat::row(int y) const +{ + return UMat(*this, Range(y, y + 1), Range::all()); +} + +inline +UMat UMat::col(int x) const +{ + return UMat(*this, Range::all(), Range(x, x + 1)); +} + +inline +UMat UMat::rowRange(int startrow, int endrow) const +{ + return UMat(*this, Range(startrow, endrow), Range::all()); +} + +inline +UMat UMat::rowRange(const Range& r) const +{ + return UMat(*this, r, Range::all()); +} + +inline +UMat UMat::colRange(int startcol, int endcol) const +{ + return UMat(*this, Range::all(), Range(startcol, endcol)); +} + +inline +UMat UMat::colRange(const Range& r) const +{ + return UMat(*this, Range::all(), r); +} + +inline +UMat UMat::clone() const +{ + UMat m; + copyTo(m); + return m; +} + +inline +void UMat::assignTo( UMat& m, int _type ) const +{ + if( _type < 0 ) + m = *this; + else + convertTo(m, _type); +} + +inline +void UMat::create(int _rows, int _cols, int _type, UMatUsageFlags _usageFlags) +{ + _type &= TYPE_MASK; + if( dims <= 2 && rows == _rows && cols == _cols && type() == _type && u ) + return; + int sz[] = {_rows, _cols}; + create(2, sz, _type, _usageFlags); +} + +inline +void UMat::create(Size _sz, int _type, UMatUsageFlags _usageFlags) +{ + create(_sz.height, _sz.width, _type, _usageFlags); +} + +inline +void UMat::addref() +{ + if( u ) + CV_XADD(&(u->urefcount), 1); +} + +inline void UMat::release() +{ + if( u && CV_XADD(&(u->urefcount), -1) == 1 ) + deallocate(); + for(int i = 0; i < dims; i++) + size.p[i] = 0; + u = 0; +} + +inline +UMat UMat::operator()( Range _rowRange, Range _colRange ) const +{ + return UMat(*this, _rowRange, _colRange); +} + +inline +UMat UMat::operator()( const Rect& roi ) const +{ + return UMat(*this, roi); +} + +inline +UMat UMat::operator()(const Range* ranges) const +{ + return UMat(*this, ranges); +} + +inline +UMat UMat::operator()(const std::vector& ranges) const +{ + return UMat(*this, ranges); +} + +inline +bool UMat::isContinuous() const +{ + return (flags & CONTINUOUS_FLAG) != 0; +} + +inline +bool UMat::isSubmatrix() const +{ + return (flags & SUBMATRIX_FLAG) != 0; +} + +inline +size_t UMat::elemSize() const +{ + return dims > 0 ? step.p[dims - 1] : 0; +} + +inline +size_t UMat::elemSize1() const +{ + return CV_ELEM_SIZE1(flags); +} + +inline +int UMat::type() const +{ + return CV_MAT_TYPE(flags); +} + +inline +int UMat::depth() const +{ + return CV_MAT_DEPTH(flags); +} + +inline +int UMat::channels() const +{ + return CV_MAT_CN(flags); +} + +inline +size_t UMat::step1(int i) const +{ + return step.p[i] / elemSize1(); +} + +inline +bool UMat::empty() const +{ + return u == 0 || total() == 0; +} + +inline +size_t UMat::total() const +{ + if( dims <= 2 ) + return (size_t)rows * cols; + size_t p = 1; + for( int i = 0; i < dims; i++ ) + p *= size[i]; + return p; +} + +#ifdef CV_CXX_MOVE_SEMANTICS + +inline +UMat::UMat(UMat&& m) +: flags(m.flags), dims(m.dims), rows(m.rows), cols(m.cols), allocator(m.allocator), + usageFlags(m.usageFlags), u(m.u), offset(m.offset), size(&rows) +{ + if (m.dims <= 2) // move new step/size info + { + step[0] = m.step[0]; + step[1] = m.step[1]; + } + else + { + CV_DbgAssert(m.step.p != m.step.buf); + step.p = m.step.p; + size.p = m.size.p; + m.step.p = m.step.buf; + m.size.p = &m.rows; + } + m.flags = MAGIC_VAL; m.dims = m.rows = m.cols = 0; + m.allocator = NULL; + m.u = NULL; + m.offset = 0; +} + +inline +UMat& UMat::operator = (UMat&& m) +{ + if (this == &m) + return *this; + release(); + flags = m.flags; dims = m.dims; rows = m.rows; cols = m.cols; + allocator = m.allocator; usageFlags = m.usageFlags; + u = m.u; + offset = m.offset; + if (step.p != step.buf) // release self step/size + { + fastFree(step.p); + step.p = step.buf; + size.p = &rows; + } + if (m.dims <= 2) // move new step/size info + { + step[0] = m.step[0]; + step[1] = m.step[1]; + } + else + { + CV_DbgAssert(m.step.p != m.step.buf); + step.p = m.step.p; + size.p = m.size.p; + m.step.p = m.step.buf; + m.size.p = &m.rows; + } + m.flags = MAGIC_VAL; m.dims = m.rows = m.cols = 0; + m.allocator = NULL; + m.u = NULL; + m.offset = 0; + return *this; +} + +#endif + + +inline bool UMatData::hostCopyObsolete() const { return (flags & HOST_COPY_OBSOLETE) != 0; } +inline bool UMatData::deviceCopyObsolete() const { return (flags & DEVICE_COPY_OBSOLETE) != 0; } +inline bool UMatData::deviceMemMapped() const { return (flags & DEVICE_MEM_MAPPED) != 0; } +inline bool UMatData::copyOnMap() const { return (flags & COPY_ON_MAP) != 0; } +inline bool UMatData::tempUMat() const { return (flags & TEMP_UMAT) != 0; } +inline bool UMatData::tempCopiedUMat() const { return (flags & TEMP_COPIED_UMAT) == TEMP_COPIED_UMAT; } + +inline void UMatData::markDeviceMemMapped(bool flag) +{ + if(flag) + flags |= DEVICE_MEM_MAPPED; + else + flags &= ~DEVICE_MEM_MAPPED; +} + +inline void UMatData::markHostCopyObsolete(bool flag) +{ + if(flag) + flags |= HOST_COPY_OBSOLETE; + else + flags &= ~HOST_COPY_OBSOLETE; +} +inline void UMatData::markDeviceCopyObsolete(bool flag) +{ + if(flag) + flags |= DEVICE_COPY_OBSOLETE; + else + flags &= ~DEVICE_COPY_OBSOLETE; +} + +inline UMatDataAutoLock::UMatDataAutoLock(UMatData* _u) : u(_u) { u->lock(); } +inline UMatDataAutoLock::~UMatDataAutoLock() { u->unlock(); } + +//! @endcond + +} //cv + +#endif diff --git a/thirdparty1/linux/include/opencv2/core/matx.hpp b/thirdparty1/linux/include/opencv2/core/matx.hpp new file mode 100644 index 0000000..0d07c3f --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/matx.hpp @@ -0,0 +1,1407 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_MATX_HPP +#define OPENCV_CORE_MATX_HPP + +#ifndef __cplusplus +# error matx.hpp header must be compiled as C++ +#endif + +#include "opencv2/core/cvdef.h" +#include "opencv2/core/base.hpp" +#include "opencv2/core/traits.hpp" +#include "opencv2/core/saturate.hpp" + +namespace cv +{ + +//! @addtogroup core_basic +//! @{ + +////////////////////////////// Small Matrix /////////////////////////// + +//! @cond IGNORED +struct CV_EXPORTS Matx_AddOp {}; +struct CV_EXPORTS Matx_SubOp {}; +struct CV_EXPORTS Matx_ScaleOp {}; +struct CV_EXPORTS Matx_MulOp {}; +struct CV_EXPORTS Matx_DivOp {}; +struct CV_EXPORTS Matx_MatMulOp {}; +struct CV_EXPORTS Matx_TOp {}; +//! @endcond + +/** @brief Template class for small matrices whose type and size are known at compilation time + +If you need a more flexible type, use Mat . The elements of the matrix M are accessible using the +M(i,j) notation. Most of the common matrix operations (see also @ref MatrixExpressions ) are +available. To do an operation on Matx that is not implemented, you can easily convert the matrix to +Mat and backwards: +@code + Matx33f m(1, 2, 3, + 4, 5, 6, + 7, 8, 9); + cout << sum(Mat(m*m.t())) << endl; + @endcode + */ +template class Matx +{ +public: + enum { depth = DataType<_Tp>::depth, + rows = m, + cols = n, + channels = rows*cols, + type = CV_MAKETYPE(depth, channels), + shortdim = (m < n ? m : n) + }; + + typedef _Tp value_type; + typedef Matx<_Tp, m, n> mat_type; + typedef Matx<_Tp, shortdim, 1> diag_type; + + //! default constructor + Matx(); + + Matx(_Tp v0); //!< 1x1 matrix + Matx(_Tp v0, _Tp v1); //!< 1x2 or 2x1 matrix + Matx(_Tp v0, _Tp v1, _Tp v2); //!< 1x3 or 3x1 matrix + Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3); //!< 1x4, 2x2 or 4x1 matrix + Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4); //!< 1x5 or 5x1 matrix + Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5); //!< 1x6, 2x3, 3x2 or 6x1 matrix + Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6); //!< 1x7 or 7x1 matrix + Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7); //!< 1x8, 2x4, 4x2 or 8x1 matrix + Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8); //!< 1x9, 3x3 or 9x1 matrix + Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9); //!< 1x10, 2x5 or 5x2 or 10x1 matrix + Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, + _Tp v4, _Tp v5, _Tp v6, _Tp v7, + _Tp v8, _Tp v9, _Tp v10, _Tp v11); //!< 1x12, 2x6, 3x4, 4x3, 6x2 or 12x1 matrix + Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, + _Tp v4, _Tp v5, _Tp v6, _Tp v7, + _Tp v8, _Tp v9, _Tp v10, _Tp v11, + _Tp v12, _Tp v13); //!< 1x14, 2x7, 7x2 or 14x1 matrix + Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, + _Tp v4, _Tp v5, _Tp v6, _Tp v7, + _Tp v8, _Tp v9, _Tp v10, _Tp v11, + _Tp v12, _Tp v13, _Tp v14, _Tp v15); //!< 1x16, 4x4 or 16x1 matrix + explicit Matx(const _Tp* vals); //!< initialize from a plain array + + static Matx all(_Tp alpha); + static Matx zeros(); + static Matx ones(); + static Matx eye(); + static Matx diag(const diag_type& d); + static Matx randu(_Tp a, _Tp b); + static Matx randn(_Tp a, _Tp b); + + //! dot product computed with the default precision + _Tp dot(const Matx<_Tp, m, n>& v) const; + + //! dot product computed in double-precision arithmetics + double ddot(const Matx<_Tp, m, n>& v) const; + + //! conversion to another data type + template operator Matx() const; + + //! change the matrix shape + template Matx<_Tp, m1, n1> reshape() const; + + //! extract part of the matrix + template Matx<_Tp, m1, n1> get_minor(int i, int j) const; + + //! extract the matrix row + Matx<_Tp, 1, n> row(int i) const; + + //! extract the matrix column + Matx<_Tp, m, 1> col(int i) const; + + //! extract the matrix diagonal + diag_type diag() const; + + //! transpose the matrix + Matx<_Tp, n, m> t() const; + + //! invert the matrix + Matx<_Tp, n, m> inv(int method=DECOMP_LU, bool *p_is_ok = NULL) const; + + //! solve linear system + template Matx<_Tp, n, l> solve(const Matx<_Tp, m, l>& rhs, int flags=DECOMP_LU) const; + Vec<_Tp, n> solve(const Vec<_Tp, m>& rhs, int method) const; + + //! multiply two matrices element-wise + Matx<_Tp, m, n> mul(const Matx<_Tp, m, n>& a) const; + + //! divide two matrices element-wise + Matx<_Tp, m, n> div(const Matx<_Tp, m, n>& a) const; + + //! element access + const _Tp& operator ()(int i, int j) const; + _Tp& operator ()(int i, int j); + + //! 1D element access + const _Tp& operator ()(int i) const; + _Tp& operator ()(int i); + + Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_AddOp); + Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_SubOp); + template Matx(const Matx<_Tp, m, n>& a, _T2 alpha, Matx_ScaleOp); + Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_MulOp); + Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_DivOp); + template Matx(const Matx<_Tp, m, l>& a, const Matx<_Tp, l, n>& b, Matx_MatMulOp); + Matx(const Matx<_Tp, n, m>& a, Matx_TOp); + + _Tp val[m*n]; //< matrix elements +}; + +typedef Matx Matx12f; +typedef Matx Matx12d; +typedef Matx Matx13f; +typedef Matx Matx13d; +typedef Matx Matx14f; +typedef Matx Matx14d; +typedef Matx Matx16f; +typedef Matx Matx16d; + +typedef Matx Matx21f; +typedef Matx Matx21d; +typedef Matx Matx31f; +typedef Matx Matx31d; +typedef Matx Matx41f; +typedef Matx Matx41d; +typedef Matx Matx61f; +typedef Matx Matx61d; + +typedef Matx Matx22f; +typedef Matx Matx22d; +typedef Matx Matx23f; +typedef Matx Matx23d; +typedef Matx Matx32f; +typedef Matx Matx32d; + +typedef Matx Matx33f; +typedef Matx Matx33d; + +typedef Matx Matx34f; +typedef Matx Matx34d; +typedef Matx Matx43f; +typedef Matx Matx43d; + +typedef Matx Matx44f; +typedef Matx Matx44d; +typedef Matx Matx66f; +typedef Matx Matx66d; + +/*! + traits +*/ +template class DataType< Matx<_Tp, m, n> > +{ +public: + typedef Matx<_Tp, m, n> value_type; + typedef Matx::work_type, m, n> work_type; + typedef _Tp channel_type; + typedef value_type vec_type; + + enum { generic_type = 0, + depth = DataType::depth, + channels = m * n, + fmt = DataType::fmt + ((channels - 1) << 8), + type = CV_MAKETYPE(depth, channels) + }; +}; + +/** @brief Comma-separated Matrix Initializer +*/ +template class MatxCommaInitializer +{ +public: + MatxCommaInitializer(Matx<_Tp, m, n>* _mtx); + template MatxCommaInitializer<_Tp, m, n>& operator , (T2 val); + Matx<_Tp, m, n> operator *() const; + + Matx<_Tp, m, n>* dst; + int idx; +}; + +/* + Utility methods +*/ +template static double determinant(const Matx<_Tp, m, m>& a); +template static double trace(const Matx<_Tp, m, n>& a); +template static double norm(const Matx<_Tp, m, n>& M); +template static double norm(const Matx<_Tp, m, n>& M, int normType); + + + +/////////////////////// Vec (used as element of multi-channel images ///////////////////// + +/** @brief Template class for short numerical vectors, a partial case of Matx + +This template class represents short numerical vectors (of 1, 2, 3, 4 ... elements) on which you +can perform basic arithmetical operations, access individual elements using [] operator etc. The +vectors are allocated on stack, as opposite to std::valarray, std::vector, cv::Mat etc., which +elements are dynamically allocated in the heap. + +The template takes 2 parameters: +@tparam _Tp element type +@tparam cn the number of elements + +In addition to the universal notation like Vec, you can use shorter aliases +for the most popular specialized variants of Vec, e.g. Vec3f ~ Vec. + +It is possible to convert Vec\ to/from Point_, Vec\ to/from Point3_ , and Vec\ +to CvScalar or Scalar_. Use operator[] to access the elements of Vec. + +All the expected vector operations are also implemented: +- v1 = v2 + v3 +- v1 = v2 - v3 +- v1 = v2 \* scale +- v1 = scale \* v2 +- v1 = -v2 +- v1 += v2 and other augmenting operations +- v1 == v2, v1 != v2 +- norm(v1) (euclidean norm) +The Vec class is commonly used to describe pixel types of multi-channel arrays. See Mat for details. +*/ +template class Vec : public Matx<_Tp, cn, 1> +{ +public: + typedef _Tp value_type; + enum { depth = Matx<_Tp, cn, 1>::depth, + channels = cn, + type = CV_MAKETYPE(depth, channels) + }; + + //! default constructor + Vec(); + + Vec(_Tp v0); //!< 1-element vector constructor + Vec(_Tp v0, _Tp v1); //!< 2-element vector constructor + Vec(_Tp v0, _Tp v1, _Tp v2); //!< 3-element vector constructor + Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3); //!< 4-element vector constructor + Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4); //!< 5-element vector constructor + Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5); //!< 6-element vector constructor + Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6); //!< 7-element vector constructor + Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7); //!< 8-element vector constructor + Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8); //!< 9-element vector constructor + Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9); //!< 10-element vector constructor + Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9, _Tp v10, _Tp v11, _Tp v12, _Tp v13); //!< 14-element vector constructor + explicit Vec(const _Tp* values); + + Vec(const Vec<_Tp, cn>& v); + + static Vec all(_Tp alpha); + + //! per-element multiplication + Vec mul(const Vec<_Tp, cn>& v) const; + + //! conjugation (makes sense for complex numbers and quaternions) + Vec conj() const; + + /*! + cross product of the two 3D vectors. + + For other dimensionalities the exception is raised + */ + Vec cross(const Vec& v) const; + //! conversion to another data type + template operator Vec() const; + + /*! element access */ + const _Tp& operator [](int i) const; + _Tp& operator[](int i); + const _Tp& operator ()(int i) const; + _Tp& operator ()(int i); + + Vec(const Matx<_Tp, cn, 1>& a, const Matx<_Tp, cn, 1>& b, Matx_AddOp); + Vec(const Matx<_Tp, cn, 1>& a, const Matx<_Tp, cn, 1>& b, Matx_SubOp); + template Vec(const Matx<_Tp, cn, 1>& a, _T2 alpha, Matx_ScaleOp); +}; + +/** @name Shorter aliases for the most popular specializations of Vec + @{ +*/ +typedef Vec Vec2b; +typedef Vec Vec3b; +typedef Vec Vec4b; + +typedef Vec Vec2s; +typedef Vec Vec3s; +typedef Vec Vec4s; + +typedef Vec Vec2w; +typedef Vec Vec3w; +typedef Vec Vec4w; + +typedef Vec Vec2i; +typedef Vec Vec3i; +typedef Vec Vec4i; +typedef Vec Vec6i; +typedef Vec Vec8i; + +typedef Vec Vec2f; +typedef Vec Vec3f; +typedef Vec Vec4f; +typedef Vec Vec6f; + +typedef Vec Vec2d; +typedef Vec Vec3d; +typedef Vec Vec4d; +typedef Vec Vec6d; +/** @} */ + +/*! + traits +*/ +template class DataType< Vec<_Tp, cn> > +{ +public: + typedef Vec<_Tp, cn> value_type; + typedef Vec::work_type, cn> work_type; + typedef _Tp channel_type; + typedef value_type vec_type; + + enum { generic_type = 0, + depth = DataType::depth, + channels = cn, + fmt = DataType::fmt + ((channels - 1) << 8), + type = CV_MAKETYPE(depth, channels) + }; +}; + +/** @brief Comma-separated Vec Initializer +*/ +template class VecCommaInitializer : public MatxCommaInitializer<_Tp, m, 1> +{ +public: + VecCommaInitializer(Vec<_Tp, m>* _vec); + template VecCommaInitializer<_Tp, m>& operator , (T2 val); + Vec<_Tp, m> operator *() const; +}; + +template static Vec<_Tp, cn> normalize(const Vec<_Tp, cn>& v); + +//! @} core_basic + +//! @cond IGNORED + +///////////////////////////////////// helper classes ///////////////////////////////////// +namespace internal +{ + +template struct Matx_DetOp +{ + double operator ()(const Matx<_Tp, m, m>& a) const + { + Matx<_Tp, m, m> temp = a; + double p = LU(temp.val, m*sizeof(_Tp), m, 0, 0, 0); + if( p == 0 ) + return p; + for( int i = 0; i < m; i++ ) + p *= temp(i, i); + return p; + } +}; + +template struct Matx_DetOp<_Tp, 1> +{ + double operator ()(const Matx<_Tp, 1, 1>& a) const + { + return a(0,0); + } +}; + +template struct Matx_DetOp<_Tp, 2> +{ + double operator ()(const Matx<_Tp, 2, 2>& a) const + { + return a(0,0)*a(1,1) - a(0,1)*a(1,0); + } +}; + +template struct Matx_DetOp<_Tp, 3> +{ + double operator ()(const Matx<_Tp, 3, 3>& a) const + { + return a(0,0)*(a(1,1)*a(2,2) - a(2,1)*a(1,2)) - + a(0,1)*(a(1,0)*a(2,2) - a(2,0)*a(1,2)) + + a(0,2)*(a(1,0)*a(2,1) - a(2,0)*a(1,1)); + } +}; + +template Vec<_Tp, 2> inline conjugate(const Vec<_Tp, 2>& v) +{ + return Vec<_Tp, 2>(v[0], -v[1]); +} + +template Vec<_Tp, 4> inline conjugate(const Vec<_Tp, 4>& v) +{ + return Vec<_Tp, 4>(v[0], -v[1], -v[2], -v[3]); +} + +} // internal + + + +////////////////////////////////// Matx Implementation /////////////////////////////////// + +template inline +Matx<_Tp, m, n>::Matx() +{ + for(int i = 0; i < channels; i++) val[i] = _Tp(0); +} + +template inline +Matx<_Tp, m, n>::Matx(_Tp v0) +{ + val[0] = v0; + for(int i = 1; i < channels; i++) val[i] = _Tp(0); +} + +template inline +Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1) +{ + CV_StaticAssert(channels >= 2, "Matx should have at least 2 elements."); + val[0] = v0; val[1] = v1; + for(int i = 2; i < channels; i++) val[i] = _Tp(0); +} + +template inline +Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2) +{ + CV_StaticAssert(channels >= 3, "Matx should have at least 3 elements."); + val[0] = v0; val[1] = v1; val[2] = v2; + for(int i = 3; i < channels; i++) val[i] = _Tp(0); +} + +template inline +Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3) +{ + CV_StaticAssert(channels >= 4, "Matx should have at least 4 elements."); + val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3; + for(int i = 4; i < channels; i++) val[i] = _Tp(0); +} + +template inline +Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4) +{ + CV_StaticAssert(channels >= 5, "Matx should have at least 5 elements."); + val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3; val[4] = v4; + for(int i = 5; i < channels; i++) val[i] = _Tp(0); +} + +template inline +Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5) +{ + CV_StaticAssert(channels >= 6, "Matx should have at least 6 elements."); + val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3; + val[4] = v4; val[5] = v5; + for(int i = 6; i < channels; i++) val[i] = _Tp(0); +} + +template inline +Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6) +{ + CV_StaticAssert(channels >= 7, "Matx should have at least 7 elements."); + val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3; + val[4] = v4; val[5] = v5; val[6] = v6; + for(int i = 7; i < channels; i++) val[i] = _Tp(0); +} + +template inline +Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7) +{ + CV_StaticAssert(channels >= 8, "Matx should have at least 8 elements."); + val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3; + val[4] = v4; val[5] = v5; val[6] = v6; val[7] = v7; + for(int i = 8; i < channels; i++) val[i] = _Tp(0); +} + +template inline +Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8) +{ + CV_StaticAssert(channels >= 9, "Matx should have at least 9 elements."); + val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3; + val[4] = v4; val[5] = v5; val[6] = v6; val[7] = v7; + val[8] = v8; + for(int i = 9; i < channels; i++) val[i] = _Tp(0); +} + +template inline +Matx<_Tp, m, n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9) +{ + CV_StaticAssert(channels >= 10, "Matx should have at least 10 elements."); + val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3; + val[4] = v4; val[5] = v5; val[6] = v6; val[7] = v7; + val[8] = v8; val[9] = v9; + for(int i = 10; i < channels; i++) val[i] = _Tp(0); +} + + +template inline +Matx<_Tp,m,n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9, _Tp v10, _Tp v11) +{ + CV_StaticAssert(channels >= 12, "Matx should have at least 12 elements."); + val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3; + val[4] = v4; val[5] = v5; val[6] = v6; val[7] = v7; + val[8] = v8; val[9] = v9; val[10] = v10; val[11] = v11; + for(int i = 12; i < channels; i++) val[i] = _Tp(0); +} + +template inline +Matx<_Tp,m,n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9, _Tp v10, _Tp v11, _Tp v12, _Tp v13) +{ + CV_StaticAssert(channels == 14, "Matx should have at least 14 elements."); + val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3; + val[4] = v4; val[5] = v5; val[6] = v6; val[7] = v7; + val[8] = v8; val[9] = v9; val[10] = v10; val[11] = v11; + val[12] = v12; val[13] = v13; +} + + +template inline +Matx<_Tp,m,n>::Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9, _Tp v10, _Tp v11, _Tp v12, _Tp v13, _Tp v14, _Tp v15) +{ + CV_StaticAssert(channels >= 16, "Matx should have at least 16 elements."); + val[0] = v0; val[1] = v1; val[2] = v2; val[3] = v3; + val[4] = v4; val[5] = v5; val[6] = v6; val[7] = v7; + val[8] = v8; val[9] = v9; val[10] = v10; val[11] = v11; + val[12] = v12; val[13] = v13; val[14] = v14; val[15] = v15; + for(int i = 16; i < channels; i++) val[i] = _Tp(0); +} + +template inline +Matx<_Tp, m, n>::Matx(const _Tp* values) +{ + for( int i = 0; i < channels; i++ ) val[i] = values[i]; +} + +template inline +Matx<_Tp, m, n> Matx<_Tp, m, n>::all(_Tp alpha) +{ + Matx<_Tp, m, n> M; + for( int i = 0; i < m*n; i++ ) M.val[i] = alpha; + return M; +} + +template inline +Matx<_Tp,m,n> Matx<_Tp,m,n>::zeros() +{ + return all(0); +} + +template inline +Matx<_Tp,m,n> Matx<_Tp,m,n>::ones() +{ + return all(1); +} + +template inline +Matx<_Tp,m,n> Matx<_Tp,m,n>::eye() +{ + Matx<_Tp,m,n> M; + for(int i = 0; i < shortdim; i++) + M(i,i) = 1; + return M; +} + +template inline +_Tp Matx<_Tp, m, n>::dot(const Matx<_Tp, m, n>& M) const +{ + _Tp s = 0; + for( int i = 0; i < channels; i++ ) s += val[i]*M.val[i]; + return s; +} + +template inline +double Matx<_Tp, m, n>::ddot(const Matx<_Tp, m, n>& M) const +{ + double s = 0; + for( int i = 0; i < channels; i++ ) s += (double)val[i]*M.val[i]; + return s; +} + +template inline +Matx<_Tp,m,n> Matx<_Tp,m,n>::diag(const typename Matx<_Tp,m,n>::diag_type& d) +{ + Matx<_Tp,m,n> M; + for(int i = 0; i < shortdim; i++) + M(i,i) = d(i, 0); + return M; +} + +template template +inline Matx<_Tp, m, n>::operator Matx() const +{ + Matx M; + for( int i = 0; i < m*n; i++ ) M.val[i] = saturate_cast(val[i]); + return M; +} + +template template inline +Matx<_Tp, m1, n1> Matx<_Tp, m, n>::reshape() const +{ + CV_StaticAssert(m1*n1 == m*n, "Input and destnarion matrices must have the same number of elements"); + return (const Matx<_Tp, m1, n1>&)*this; +} + +template +template inline +Matx<_Tp, m1, n1> Matx<_Tp, m, n>::get_minor(int i, int j) const +{ + CV_DbgAssert(0 <= i && i+m1 <= m && 0 <= j && j+n1 <= n); + Matx<_Tp, m1, n1> s; + for( int di = 0; di < m1; di++ ) + for( int dj = 0; dj < n1; dj++ ) + s(di, dj) = (*this)(i+di, j+dj); + return s; +} + +template inline +Matx<_Tp, 1, n> Matx<_Tp, m, n>::row(int i) const +{ + CV_DbgAssert((unsigned)i < (unsigned)m); + return Matx<_Tp, 1, n>(&val[i*n]); +} + +template inline +Matx<_Tp, m, 1> Matx<_Tp, m, n>::col(int j) const +{ + CV_DbgAssert((unsigned)j < (unsigned)n); + Matx<_Tp, m, 1> v; + for( int i = 0; i < m; i++ ) + v.val[i] = val[i*n + j]; + return v; +} + +template inline +typename Matx<_Tp, m, n>::diag_type Matx<_Tp, m, n>::diag() const +{ + diag_type d; + for( int i = 0; i < shortdim; i++ ) + d.val[i] = val[i*n + i]; + return d; +} + +template inline +const _Tp& Matx<_Tp, m, n>::operator()(int i, int j) const +{ + CV_DbgAssert( (unsigned)i < (unsigned)m && (unsigned)j < (unsigned)n ); + return this->val[i*n + j]; +} + +template inline +_Tp& Matx<_Tp, m, n>::operator ()(int i, int j) +{ + CV_DbgAssert( (unsigned)i < (unsigned)m && (unsigned)j < (unsigned)n ); + return val[i*n + j]; +} + +template inline +const _Tp& Matx<_Tp, m, n>::operator ()(int i) const +{ + CV_StaticAssert(m == 1 || n == 1, "Single index indexation requires matrix to be a column or a row"); + CV_DbgAssert( (unsigned)i < (unsigned)(m+n-1) ); + return val[i]; +} + +template inline +_Tp& Matx<_Tp, m, n>::operator ()(int i) +{ + CV_StaticAssert(m == 1 || n == 1, "Single index indexation requires matrix to be a column or a row"); + CV_DbgAssert( (unsigned)i < (unsigned)(m+n-1) ); + return val[i]; +} + +template inline +Matx<_Tp,m,n>::Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_AddOp) +{ + for( int i = 0; i < channels; i++ ) + val[i] = saturate_cast<_Tp>(a.val[i] + b.val[i]); +} + +template inline +Matx<_Tp,m,n>::Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_SubOp) +{ + for( int i = 0; i < channels; i++ ) + val[i] = saturate_cast<_Tp>(a.val[i] - b.val[i]); +} + +template template inline +Matx<_Tp,m,n>::Matx(const Matx<_Tp, m, n>& a, _T2 alpha, Matx_ScaleOp) +{ + for( int i = 0; i < channels; i++ ) + val[i] = saturate_cast<_Tp>(a.val[i] * alpha); +} + +template inline +Matx<_Tp,m,n>::Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_MulOp) +{ + for( int i = 0; i < channels; i++ ) + val[i] = saturate_cast<_Tp>(a.val[i] * b.val[i]); +} + +template inline +Matx<_Tp,m,n>::Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_DivOp) +{ + for( int i = 0; i < channels; i++ ) + val[i] = saturate_cast<_Tp>(a.val[i] / b.val[i]); +} + +template template inline +Matx<_Tp,m,n>::Matx(const Matx<_Tp, m, l>& a, const Matx<_Tp, l, n>& b, Matx_MatMulOp) +{ + for( int i = 0; i < m; i++ ) + for( int j = 0; j < n; j++ ) + { + _Tp s = 0; + for( int k = 0; k < l; k++ ) + s += a(i, k) * b(k, j); + val[i*n + j] = s; + } +} + +template inline +Matx<_Tp,m,n>::Matx(const Matx<_Tp, n, m>& a, Matx_TOp) +{ + for( int i = 0; i < m; i++ ) + for( int j = 0; j < n; j++ ) + val[i*n + j] = a(j, i); +} + +template inline +Matx<_Tp, m, n> Matx<_Tp, m, n>::mul(const Matx<_Tp, m, n>& a) const +{ + return Matx<_Tp, m, n>(*this, a, Matx_MulOp()); +} + +template inline +Matx<_Tp, m, n> Matx<_Tp, m, n>::div(const Matx<_Tp, m, n>& a) const +{ + return Matx<_Tp, m, n>(*this, a, Matx_DivOp()); +} + +template inline +Matx<_Tp, n, m> Matx<_Tp, m, n>::t() const +{ + return Matx<_Tp, n, m>(*this, Matx_TOp()); +} + +template inline +Vec<_Tp, n> Matx<_Tp, m, n>::solve(const Vec<_Tp, m>& rhs, int method) const +{ + Matx<_Tp, n, 1> x = solve((const Matx<_Tp, m, 1>&)(rhs), method); + return (Vec<_Tp, n>&)(x); +} + +template static inline +double determinant(const Matx<_Tp, m, m>& a) +{ + return cv::internal::Matx_DetOp<_Tp, m>()(a); +} + +template static inline +double trace(const Matx<_Tp, m, n>& a) +{ + _Tp s = 0; + for( int i = 0; i < std::min(m, n); i++ ) + s += a(i,i); + return s; +} + +template static inline +double norm(const Matx<_Tp, m, n>& M) +{ + return std::sqrt(normL2Sqr<_Tp, double>(M.val, m*n)); +} + +template static inline +double norm(const Matx<_Tp, m, n>& M, int normType) +{ + switch(normType) { + case NORM_INF: + return (double)normInf<_Tp, typename DataType<_Tp>::work_type>(M.val, m*n); + case NORM_L1: + return (double)normL1<_Tp, typename DataType<_Tp>::work_type>(M.val, m*n); + case NORM_L2SQR: + return (double)normL2Sqr<_Tp, typename DataType<_Tp>::work_type>(M.val, m*n); + default: + case NORM_L2: + return std::sqrt((double)normL2Sqr<_Tp, typename DataType<_Tp>::work_type>(M.val, m*n)); + } +} + + + +//////////////////////////////// matx comma initializer ////////////////////////////////// + +template static inline +MatxCommaInitializer<_Tp, m, n> operator << (const Matx<_Tp, m, n>& mtx, _T2 val) +{ + MatxCommaInitializer<_Tp, m, n> commaInitializer((Matx<_Tp, m, n>*)&mtx); + return (commaInitializer, val); +} + +template inline +MatxCommaInitializer<_Tp, m, n>::MatxCommaInitializer(Matx<_Tp, m, n>* _mtx) + : dst(_mtx), idx(0) +{} + +template template inline +MatxCommaInitializer<_Tp, m, n>& MatxCommaInitializer<_Tp, m, n>::operator , (_T2 value) +{ + CV_DbgAssert( idx < m*n ); + dst->val[idx++] = saturate_cast<_Tp>(value); + return *this; +} + +template inline +Matx<_Tp, m, n> MatxCommaInitializer<_Tp, m, n>::operator *() const +{ + CV_DbgAssert( idx == n*m ); + return *dst; +} + + + +/////////////////////////////////// Vec Implementation /////////////////////////////////// + +template inline +Vec<_Tp, cn>::Vec() {} + +template inline +Vec<_Tp, cn>::Vec(_Tp v0) + : Matx<_Tp, cn, 1>(v0) {} + +template inline +Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1) + : Matx<_Tp, cn, 1>(v0, v1) {} + +template inline +Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2) + : Matx<_Tp, cn, 1>(v0, v1, v2) {} + +template inline +Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3) + : Matx<_Tp, cn, 1>(v0, v1, v2, v3) {} + +template inline +Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4) + : Matx<_Tp, cn, 1>(v0, v1, v2, v3, v4) {} + +template inline +Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5) + : Matx<_Tp, cn, 1>(v0, v1, v2, v3, v4, v5) {} + +template inline +Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6) + : Matx<_Tp, cn, 1>(v0, v1, v2, v3, v4, v5, v6) {} + +template inline +Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7) + : Matx<_Tp, cn, 1>(v0, v1, v2, v3, v4, v5, v6, v7) {} + +template inline +Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8) + : Matx<_Tp, cn, 1>(v0, v1, v2, v3, v4, v5, v6, v7, v8) {} + +template inline +Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9) + : Matx<_Tp, cn, 1>(v0, v1, v2, v3, v4, v5, v6, v7, v8, v9) {} + +template inline +Vec<_Tp, cn>::Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9, _Tp v10, _Tp v11, _Tp v12, _Tp v13) + : Matx<_Tp, cn, 1>(v0, v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13) {} + +template inline +Vec<_Tp, cn>::Vec(const _Tp* values) + : Matx<_Tp, cn, 1>(values) {} + +template inline +Vec<_Tp, cn>::Vec(const Vec<_Tp, cn>& m) + : Matx<_Tp, cn, 1>(m.val) {} + +template inline +Vec<_Tp, cn>::Vec(const Matx<_Tp, cn, 1>& a, const Matx<_Tp, cn, 1>& b, Matx_AddOp op) + : Matx<_Tp, cn, 1>(a, b, op) {} + +template inline +Vec<_Tp, cn>::Vec(const Matx<_Tp, cn, 1>& a, const Matx<_Tp, cn, 1>& b, Matx_SubOp op) + : Matx<_Tp, cn, 1>(a, b, op) {} + +template template inline +Vec<_Tp, cn>::Vec(const Matx<_Tp, cn, 1>& a, _T2 alpha, Matx_ScaleOp op) + : Matx<_Tp, cn, 1>(a, alpha, op) {} + +template inline +Vec<_Tp, cn> Vec<_Tp, cn>::all(_Tp alpha) +{ + Vec v; + for( int i = 0; i < cn; i++ ) v.val[i] = alpha; + return v; +} + +template inline +Vec<_Tp, cn> Vec<_Tp, cn>::mul(const Vec<_Tp, cn>& v) const +{ + Vec<_Tp, cn> w; + for( int i = 0; i < cn; i++ ) w.val[i] = saturate_cast<_Tp>(this->val[i]*v.val[i]); + return w; +} + +template<> inline +Vec Vec::conj() const +{ + return cv::internal::conjugate(*this); +} + +template<> inline +Vec Vec::conj() const +{ + return cv::internal::conjugate(*this); +} + +template<> inline +Vec Vec::conj() const +{ + return cv::internal::conjugate(*this); +} + +template<> inline +Vec Vec::conj() const +{ + return cv::internal::conjugate(*this); +} + +template inline +Vec<_Tp, cn> Vec<_Tp, cn>::cross(const Vec<_Tp, cn>&) const +{ + CV_StaticAssert(cn == 3, "for arbitrary-size vector there is no cross-product defined"); + return Vec<_Tp, cn>(); +} + +template<> inline +Vec Vec::cross(const Vec& v) const +{ + return Vec(this->val[1]*v.val[2] - this->val[2]*v.val[1], + this->val[2]*v.val[0] - this->val[0]*v.val[2], + this->val[0]*v.val[1] - this->val[1]*v.val[0]); +} + +template<> inline +Vec Vec::cross(const Vec& v) const +{ + return Vec(this->val[1]*v.val[2] - this->val[2]*v.val[1], + this->val[2]*v.val[0] - this->val[0]*v.val[2], + this->val[0]*v.val[1] - this->val[1]*v.val[0]); +} + +template template inline +Vec<_Tp, cn>::operator Vec() const +{ + Vec v; + for( int i = 0; i < cn; i++ ) v.val[i] = saturate_cast(this->val[i]); + return v; +} + +template inline +const _Tp& Vec<_Tp, cn>::operator [](int i) const +{ + CV_DbgAssert( (unsigned)i < (unsigned)cn ); + return this->val[i]; +} + +template inline +_Tp& Vec<_Tp, cn>::operator [](int i) +{ + CV_DbgAssert( (unsigned)i < (unsigned)cn ); + return this->val[i]; +} + +template inline +const _Tp& Vec<_Tp, cn>::operator ()(int i) const +{ + CV_DbgAssert( (unsigned)i < (unsigned)cn ); + return this->val[i]; +} + +template inline +_Tp& Vec<_Tp, cn>::operator ()(int i) +{ + CV_DbgAssert( (unsigned)i < (unsigned)cn ); + return this->val[i]; +} + +template inline +Vec<_Tp, cn> normalize(const Vec<_Tp, cn>& v) +{ + double nv = norm(v); + return v * (nv ? 1./nv : 0.); +} + + + +//////////////////////////////// matx comma initializer ////////////////////////////////// + + +template static inline +VecCommaInitializer<_Tp, cn> operator << (const Vec<_Tp, cn>& vec, _T2 val) +{ + VecCommaInitializer<_Tp, cn> commaInitializer((Vec<_Tp, cn>*)&vec); + return (commaInitializer, val); +} + +template inline +VecCommaInitializer<_Tp, cn>::VecCommaInitializer(Vec<_Tp, cn>* _vec) + : MatxCommaInitializer<_Tp, cn, 1>(_vec) +{} + +template template inline +VecCommaInitializer<_Tp, cn>& VecCommaInitializer<_Tp, cn>::operator , (_T2 value) +{ + CV_DbgAssert( this->idx < cn ); + this->dst->val[this->idx++] = saturate_cast<_Tp>(value); + return *this; +} + +template inline +Vec<_Tp, cn> VecCommaInitializer<_Tp, cn>::operator *() const +{ + CV_DbgAssert( this->idx == cn ); + return *this->dst; +} + +//! @endcond + +///////////////////////////// Matx out-of-class operators //////////////////////////////// + +//! @relates cv::Matx +//! @{ + +template static inline +Matx<_Tp1, m, n>& operator += (Matx<_Tp1, m, n>& a, const Matx<_Tp2, m, n>& b) +{ + for( int i = 0; i < m*n; i++ ) + a.val[i] = saturate_cast<_Tp1>(a.val[i] + b.val[i]); + return a; +} + +template static inline +Matx<_Tp1, m, n>& operator -= (Matx<_Tp1, m, n>& a, const Matx<_Tp2, m, n>& b) +{ + for( int i = 0; i < m*n; i++ ) + a.val[i] = saturate_cast<_Tp1>(a.val[i] - b.val[i]); + return a; +} + +template static inline +Matx<_Tp, m, n> operator + (const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b) +{ + return Matx<_Tp, m, n>(a, b, Matx_AddOp()); +} + +template static inline +Matx<_Tp, m, n> operator - (const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b) +{ + return Matx<_Tp, m, n>(a, b, Matx_SubOp()); +} + +template static inline +Matx<_Tp, m, n>& operator *= (Matx<_Tp, m, n>& a, int alpha) +{ + for( int i = 0; i < m*n; i++ ) + a.val[i] = saturate_cast<_Tp>(a.val[i] * alpha); + return a; +} + +template static inline +Matx<_Tp, m, n>& operator *= (Matx<_Tp, m, n>& a, float alpha) +{ + for( int i = 0; i < m*n; i++ ) + a.val[i] = saturate_cast<_Tp>(a.val[i] * alpha); + return a; +} + +template static inline +Matx<_Tp, m, n>& operator *= (Matx<_Tp, m, n>& a, double alpha) +{ + for( int i = 0; i < m*n; i++ ) + a.val[i] = saturate_cast<_Tp>(a.val[i] * alpha); + return a; +} + +template static inline +Matx<_Tp, m, n> operator * (const Matx<_Tp, m, n>& a, int alpha) +{ + return Matx<_Tp, m, n>(a, alpha, Matx_ScaleOp()); +} + +template static inline +Matx<_Tp, m, n> operator * (const Matx<_Tp, m, n>& a, float alpha) +{ + return Matx<_Tp, m, n>(a, alpha, Matx_ScaleOp()); +} + +template static inline +Matx<_Tp, m, n> operator * (const Matx<_Tp, m, n>& a, double alpha) +{ + return Matx<_Tp, m, n>(a, alpha, Matx_ScaleOp()); +} + +template static inline +Matx<_Tp, m, n> operator * (int alpha, const Matx<_Tp, m, n>& a) +{ + return Matx<_Tp, m, n>(a, alpha, Matx_ScaleOp()); +} + +template static inline +Matx<_Tp, m, n> operator * (float alpha, const Matx<_Tp, m, n>& a) +{ + return Matx<_Tp, m, n>(a, alpha, Matx_ScaleOp()); +} + +template static inline +Matx<_Tp, m, n> operator * (double alpha, const Matx<_Tp, m, n>& a) +{ + return Matx<_Tp, m, n>(a, alpha, Matx_ScaleOp()); +} + +template static inline +Matx<_Tp, m, n> operator - (const Matx<_Tp, m, n>& a) +{ + return Matx<_Tp, m, n>(a, -1, Matx_ScaleOp()); +} + +template static inline +Matx<_Tp, m, n> operator * (const Matx<_Tp, m, l>& a, const Matx<_Tp, l, n>& b) +{ + return Matx<_Tp, m, n>(a, b, Matx_MatMulOp()); +} + +template static inline +Vec<_Tp, m> operator * (const Matx<_Tp, m, n>& a, const Vec<_Tp, n>& b) +{ + Matx<_Tp, m, 1> c(a, b, Matx_MatMulOp()); + return (const Vec<_Tp, m>&)(c); +} + +template static inline +bool operator == (const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b) +{ + for( int i = 0; i < m*n; i++ ) + if( a.val[i] != b.val[i] ) return false; + return true; +} + +template static inline +bool operator != (const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b) +{ + return !(a == b); +} + +//! @} + +////////////////////////////// Vec out-of-class operators //////////////////////////////// + +//! @relates cv::Vec +//! @{ + +template static inline +Vec<_Tp1, cn>& operator += (Vec<_Tp1, cn>& a, const Vec<_Tp2, cn>& b) +{ + for( int i = 0; i < cn; i++ ) + a.val[i] = saturate_cast<_Tp1>(a.val[i] + b.val[i]); + return a; +} + +template static inline +Vec<_Tp1, cn>& operator -= (Vec<_Tp1, cn>& a, const Vec<_Tp2, cn>& b) +{ + for( int i = 0; i < cn; i++ ) + a.val[i] = saturate_cast<_Tp1>(a.val[i] - b.val[i]); + return a; +} + +template static inline +Vec<_Tp, cn> operator + (const Vec<_Tp, cn>& a, const Vec<_Tp, cn>& b) +{ + return Vec<_Tp, cn>(a, b, Matx_AddOp()); +} + +template static inline +Vec<_Tp, cn> operator - (const Vec<_Tp, cn>& a, const Vec<_Tp, cn>& b) +{ + return Vec<_Tp, cn>(a, b, Matx_SubOp()); +} + +template static inline +Vec<_Tp, cn>& operator *= (Vec<_Tp, cn>& a, int alpha) +{ + for( int i = 0; i < cn; i++ ) + a[i] = saturate_cast<_Tp>(a[i]*alpha); + return a; +} + +template static inline +Vec<_Tp, cn>& operator *= (Vec<_Tp, cn>& a, float alpha) +{ + for( int i = 0; i < cn; i++ ) + a[i] = saturate_cast<_Tp>(a[i]*alpha); + return a; +} + +template static inline +Vec<_Tp, cn>& operator *= (Vec<_Tp, cn>& a, double alpha) +{ + for( int i = 0; i < cn; i++ ) + a[i] = saturate_cast<_Tp>(a[i]*alpha); + return a; +} + +template static inline +Vec<_Tp, cn>& operator /= (Vec<_Tp, cn>& a, int alpha) +{ + double ialpha = 1./alpha; + for( int i = 0; i < cn; i++ ) + a[i] = saturate_cast<_Tp>(a[i]*ialpha); + return a; +} + +template static inline +Vec<_Tp, cn>& operator /= (Vec<_Tp, cn>& a, float alpha) +{ + float ialpha = 1.f/alpha; + for( int i = 0; i < cn; i++ ) + a[i] = saturate_cast<_Tp>(a[i]*ialpha); + return a; +} + +template static inline +Vec<_Tp, cn>& operator /= (Vec<_Tp, cn>& a, double alpha) +{ + double ialpha = 1./alpha; + for( int i = 0; i < cn; i++ ) + a[i] = saturate_cast<_Tp>(a[i]*ialpha); + return a; +} + +template static inline +Vec<_Tp, cn> operator * (const Vec<_Tp, cn>& a, int alpha) +{ + return Vec<_Tp, cn>(a, alpha, Matx_ScaleOp()); +} + +template static inline +Vec<_Tp, cn> operator * (int alpha, const Vec<_Tp, cn>& a) +{ + return Vec<_Tp, cn>(a, alpha, Matx_ScaleOp()); +} + +template static inline +Vec<_Tp, cn> operator * (const Vec<_Tp, cn>& a, float alpha) +{ + return Vec<_Tp, cn>(a, alpha, Matx_ScaleOp()); +} + +template static inline +Vec<_Tp, cn> operator * (float alpha, const Vec<_Tp, cn>& a) +{ + return Vec<_Tp, cn>(a, alpha, Matx_ScaleOp()); +} + +template static inline +Vec<_Tp, cn> operator * (const Vec<_Tp, cn>& a, double alpha) +{ + return Vec<_Tp, cn>(a, alpha, Matx_ScaleOp()); +} + +template static inline +Vec<_Tp, cn> operator * (double alpha, const Vec<_Tp, cn>& a) +{ + return Vec<_Tp, cn>(a, alpha, Matx_ScaleOp()); +} + +template static inline +Vec<_Tp, cn> operator / (const Vec<_Tp, cn>& a, int alpha) +{ + return Vec<_Tp, cn>(a, 1./alpha, Matx_ScaleOp()); +} + +template static inline +Vec<_Tp, cn> operator / (const Vec<_Tp, cn>& a, float alpha) +{ + return Vec<_Tp, cn>(a, 1.f/alpha, Matx_ScaleOp()); +} + +template static inline +Vec<_Tp, cn> operator / (const Vec<_Tp, cn>& a, double alpha) +{ + return Vec<_Tp, cn>(a, 1./alpha, Matx_ScaleOp()); +} + +template static inline +Vec<_Tp, cn> operator - (const Vec<_Tp, cn>& a) +{ + Vec<_Tp,cn> t; + for( int i = 0; i < cn; i++ ) t.val[i] = saturate_cast<_Tp>(-a.val[i]); + return t; +} + +template inline Vec<_Tp, 4> operator * (const Vec<_Tp, 4>& v1, const Vec<_Tp, 4>& v2) +{ + return Vec<_Tp, 4>(saturate_cast<_Tp>(v1[0]*v2[0] - v1[1]*v2[1] - v1[2]*v2[2] - v1[3]*v2[3]), + saturate_cast<_Tp>(v1[0]*v2[1] + v1[1]*v2[0] + v1[2]*v2[3] - v1[3]*v2[2]), + saturate_cast<_Tp>(v1[0]*v2[2] - v1[1]*v2[3] + v1[2]*v2[0] + v1[3]*v2[1]), + saturate_cast<_Tp>(v1[0]*v2[3] + v1[1]*v2[2] - v1[2]*v2[1] + v1[3]*v2[0])); +} + +template inline Vec<_Tp, 4>& operator *= (Vec<_Tp, 4>& v1, const Vec<_Tp, 4>& v2) +{ + v1 = v1 * v2; + return v1; +} + +//! @} + +} // cv + +#endif // OPENCV_CORE_MATX_HPP diff --git a/thirdparty1/linux/include/opencv2/core/neon_utils.hpp b/thirdparty1/linux/include/opencv2/core/neon_utils.hpp new file mode 100644 index 0000000..573ba99 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/neon_utils.hpp @@ -0,0 +1,128 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2015, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_HAL_NEON_UTILS_HPP +#define OPENCV_HAL_NEON_UTILS_HPP + +#include "opencv2/core/cvdef.h" + +//! @addtogroup core_utils_neon +//! @{ + +#if CV_NEON + +inline int32x2_t cv_vrnd_s32_f32(float32x2_t v) +{ + static int32x2_t v_sign = vdup_n_s32(1 << 31), + v_05 = vreinterpret_s32_f32(vdup_n_f32(0.5f)); + + int32x2_t v_addition = vorr_s32(v_05, vand_s32(v_sign, vreinterpret_s32_f32(v))); + return vcvt_s32_f32(vadd_f32(v, vreinterpret_f32_s32(v_addition))); +} + +inline int32x4_t cv_vrndq_s32_f32(float32x4_t v) +{ + static int32x4_t v_sign = vdupq_n_s32(1 << 31), + v_05 = vreinterpretq_s32_f32(vdupq_n_f32(0.5f)); + + int32x4_t v_addition = vorrq_s32(v_05, vandq_s32(v_sign, vreinterpretq_s32_f32(v))); + return vcvtq_s32_f32(vaddq_f32(v, vreinterpretq_f32_s32(v_addition))); +} + +inline uint32x2_t cv_vrnd_u32_f32(float32x2_t v) +{ + static float32x2_t v_05 = vdup_n_f32(0.5f); + return vcvt_u32_f32(vadd_f32(v, v_05)); +} + +inline uint32x4_t cv_vrndq_u32_f32(float32x4_t v) +{ + static float32x4_t v_05 = vdupq_n_f32(0.5f); + return vcvtq_u32_f32(vaddq_f32(v, v_05)); +} + +inline float32x4_t cv_vrecpq_f32(float32x4_t val) +{ + float32x4_t reciprocal = vrecpeq_f32(val); + reciprocal = vmulq_f32(vrecpsq_f32(val, reciprocal), reciprocal); + reciprocal = vmulq_f32(vrecpsq_f32(val, reciprocal), reciprocal); + return reciprocal; +} + +inline float32x2_t cv_vrecp_f32(float32x2_t val) +{ + float32x2_t reciprocal = vrecpe_f32(val); + reciprocal = vmul_f32(vrecps_f32(val, reciprocal), reciprocal); + reciprocal = vmul_f32(vrecps_f32(val, reciprocal), reciprocal); + return reciprocal; +} + +inline float32x4_t cv_vrsqrtq_f32(float32x4_t val) +{ + float32x4_t e = vrsqrteq_f32(val); + e = vmulq_f32(vrsqrtsq_f32(vmulq_f32(e, e), val), e); + e = vmulq_f32(vrsqrtsq_f32(vmulq_f32(e, e), val), e); + return e; +} + +inline float32x2_t cv_vrsqrt_f32(float32x2_t val) +{ + float32x2_t e = vrsqrte_f32(val); + e = vmul_f32(vrsqrts_f32(vmul_f32(e, e), val), e); + e = vmul_f32(vrsqrts_f32(vmul_f32(e, e), val), e); + return e; +} + +inline float32x4_t cv_vsqrtq_f32(float32x4_t val) +{ + return cv_vrecpq_f32(cv_vrsqrtq_f32(val)); +} + +inline float32x2_t cv_vsqrt_f32(float32x2_t val) +{ + return cv_vrecp_f32(cv_vrsqrt_f32(val)); +} + +#endif + +//! @} + +#endif // OPENCV_HAL_NEON_UTILS_HPP diff --git a/thirdparty1/linux/include/opencv2/core/ocl.hpp b/thirdparty1/linux/include/opencv2/core/ocl.hpp new file mode 100644 index 0000000..1a9549d --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/ocl.hpp @@ -0,0 +1,757 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the OpenCV Foundation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_OPENCL_HPP +#define OPENCV_OPENCL_HPP + +#include "opencv2/core.hpp" + +namespace cv { namespace ocl { + +//! @addtogroup core_opencl +//! @{ + +CV_EXPORTS_W bool haveOpenCL(); +CV_EXPORTS_W bool useOpenCL(); +CV_EXPORTS_W bool haveAmdBlas(); +CV_EXPORTS_W bool haveAmdFft(); +CV_EXPORTS_W void setUseOpenCL(bool flag); +CV_EXPORTS_W void finish(); + +CV_EXPORTS bool haveSVM(); + +class CV_EXPORTS Context; +class CV_EXPORTS Device; +class CV_EXPORTS Kernel; +class CV_EXPORTS Program; +class CV_EXPORTS ProgramSource; +class CV_EXPORTS Queue; +class CV_EXPORTS PlatformInfo; +class CV_EXPORTS Image2D; + +class CV_EXPORTS Device +{ +public: + Device(); + explicit Device(void* d); + Device(const Device& d); + Device& operator = (const Device& d); + ~Device(); + + void set(void* d); + + enum + { + TYPE_DEFAULT = (1 << 0), + TYPE_CPU = (1 << 1), + TYPE_GPU = (1 << 2), + TYPE_ACCELERATOR = (1 << 3), + TYPE_DGPU = TYPE_GPU + (1 << 16), + TYPE_IGPU = TYPE_GPU + (1 << 17), + TYPE_ALL = 0xFFFFFFFF + }; + + String name() const; + String extensions() const; + String version() const; + String vendorName() const; + String OpenCL_C_Version() const; + String OpenCLVersion() const; + int deviceVersionMajor() const; + int deviceVersionMinor() const; + String driverVersion() const; + void* ptr() const; + + int type() const; + + int addressBits() const; + bool available() const; + bool compilerAvailable() const; + bool linkerAvailable() const; + + enum + { + FP_DENORM=(1 << 0), + FP_INF_NAN=(1 << 1), + FP_ROUND_TO_NEAREST=(1 << 2), + FP_ROUND_TO_ZERO=(1 << 3), + FP_ROUND_TO_INF=(1 << 4), + FP_FMA=(1 << 5), + FP_SOFT_FLOAT=(1 << 6), + FP_CORRECTLY_ROUNDED_DIVIDE_SQRT=(1 << 7) + }; + int doubleFPConfig() const; + int singleFPConfig() const; + int halfFPConfig() const; + + bool endianLittle() const; + bool errorCorrectionSupport() const; + + enum + { + EXEC_KERNEL=(1 << 0), + EXEC_NATIVE_KERNEL=(1 << 1) + }; + int executionCapabilities() const; + + size_t globalMemCacheSize() const; + + enum + { + NO_CACHE=0, + READ_ONLY_CACHE=1, + READ_WRITE_CACHE=2 + }; + int globalMemCacheType() const; + int globalMemCacheLineSize() const; + size_t globalMemSize() const; + + size_t localMemSize() const; + enum + { + NO_LOCAL_MEM=0, + LOCAL_IS_LOCAL=1, + LOCAL_IS_GLOBAL=2 + }; + int localMemType() const; + bool hostUnifiedMemory() const; + + bool imageSupport() const; + + bool imageFromBufferSupport() const; + uint imagePitchAlignment() const; + uint imageBaseAddressAlignment() const; + + size_t image2DMaxWidth() const; + size_t image2DMaxHeight() const; + + size_t image3DMaxWidth() const; + size_t image3DMaxHeight() const; + size_t image3DMaxDepth() const; + + size_t imageMaxBufferSize() const; + size_t imageMaxArraySize() const; + + enum + { + UNKNOWN_VENDOR=0, + VENDOR_AMD=1, + VENDOR_INTEL=2, + VENDOR_NVIDIA=3 + }; + int vendorID() const; + // FIXIT + // dev.isAMD() doesn't work for OpenCL CPU devices from AMD OpenCL platform. + // This method should use platform name instead of vendor name. + // After fix restore code in arithm.cpp: ocl_compare() + inline bool isAMD() const { return vendorID() == VENDOR_AMD; } + inline bool isIntel() const { return vendorID() == VENDOR_INTEL; } + inline bool isNVidia() const { return vendorID() == VENDOR_NVIDIA; } + + int maxClockFrequency() const; + int maxComputeUnits() const; + int maxConstantArgs() const; + size_t maxConstantBufferSize() const; + + size_t maxMemAllocSize() const; + size_t maxParameterSize() const; + + int maxReadImageArgs() const; + int maxWriteImageArgs() const; + int maxSamplers() const; + + size_t maxWorkGroupSize() const; + int maxWorkItemDims() const; + void maxWorkItemSizes(size_t*) const; + + int memBaseAddrAlign() const; + + int nativeVectorWidthChar() const; + int nativeVectorWidthShort() const; + int nativeVectorWidthInt() const; + int nativeVectorWidthLong() const; + int nativeVectorWidthFloat() const; + int nativeVectorWidthDouble() const; + int nativeVectorWidthHalf() const; + + int preferredVectorWidthChar() const; + int preferredVectorWidthShort() const; + int preferredVectorWidthInt() const; + int preferredVectorWidthLong() const; + int preferredVectorWidthFloat() const; + int preferredVectorWidthDouble() const; + int preferredVectorWidthHalf() const; + + size_t printfBufferSize() const; + size_t profilingTimerResolution() const; + + static const Device& getDefault(); + +protected: + struct Impl; + Impl* p; +}; + + +class CV_EXPORTS Context +{ +public: + Context(); + explicit Context(int dtype); + ~Context(); + Context(const Context& c); + Context& operator = (const Context& c); + + bool create(); + bool create(int dtype); + size_t ndevices() const; + const Device& device(size_t idx) const; + Program getProg(const ProgramSource& prog, + const String& buildopt, String& errmsg); + + static Context& getDefault(bool initialize = true); + void* ptr() const; + + friend void initializeContextFromHandle(Context& ctx, void* platform, void* context, void* device); + + bool useSVM() const; + void setUseSVM(bool enabled); + + struct Impl; + Impl* p; +}; + +class CV_EXPORTS Platform +{ +public: + Platform(); + ~Platform(); + Platform(const Platform& p); + Platform& operator = (const Platform& p); + + void* ptr() const; + static Platform& getDefault(); + + friend void initializeContextFromHandle(Context& ctx, void* platform, void* context, void* device); +protected: + struct Impl; + Impl* p; +}; + +/* +//! @brief Attaches OpenCL context to OpenCV +// +//! @note Note: +// OpenCV will check if available OpenCL platform has platformName name, +// then assign context to OpenCV and call clRetainContext function. +// The deviceID device will be used as target device and new command queue +// will be created. +// +// Params: +//! @param platformName - name of OpenCL platform to attach, +//! this string is used to check if platform is available +//! to OpenCV at runtime +//! @param platfromID - ID of platform attached context was created for +//! @param context - OpenCL context to be attached to OpenCV +//! @param deviceID - ID of device, must be created from attached context +*/ +CV_EXPORTS void attachContext(const String& platformName, void* platformID, void* context, void* deviceID); + +/* +//! @brief Convert OpenCL buffer to UMat +// +//! @note Note: +// OpenCL buffer (cl_mem_buffer) should contain 2D image data, compatible with OpenCV. +// Memory content is not copied from clBuffer to UMat. Instead, buffer handle assigned +// to UMat and clRetainMemObject is called. +// +// Params: +//! @param cl_mem_buffer - source clBuffer handle +//! @param step - num of bytes in single row +//! @param rows - number of rows +//! @param cols - number of cols +//! @param type - OpenCV type of image +//! @param dst - destination UMat +*/ +CV_EXPORTS void convertFromBuffer(void* cl_mem_buffer, size_t step, int rows, int cols, int type, UMat& dst); + +/* +//! @brief Convert OpenCL image2d_t to UMat +// +//! @note Note: +// OpenCL image2d_t (cl_mem_image), should be compatible with OpenCV +// UMat formats. +// Memory content is copied from image to UMat with +// clEnqueueCopyImageToBuffer function. +// +// Params: +//! @param cl_mem_image - source image2d_t handle +//! @param dst - destination UMat +*/ +CV_EXPORTS void convertFromImage(void* cl_mem_image, UMat& dst); + +// TODO Move to internal header +void initializeContextFromHandle(Context& ctx, void* platform, void* context, void* device); + +class CV_EXPORTS Queue +{ +public: + Queue(); + explicit Queue(const Context& c, const Device& d=Device()); + ~Queue(); + Queue(const Queue& q); + Queue& operator = (const Queue& q); + + bool create(const Context& c=Context(), const Device& d=Device()); + void finish(); + void* ptr() const; + static Queue& getDefault(); + +protected: + struct Impl; + Impl* p; +}; + + +class CV_EXPORTS KernelArg +{ +public: + enum { LOCAL=1, READ_ONLY=2, WRITE_ONLY=4, READ_WRITE=6, CONSTANT=8, PTR_ONLY = 16, NO_SIZE=256 }; + KernelArg(int _flags, UMat* _m, int wscale=1, int iwscale=1, const void* _obj=0, size_t _sz=0); + KernelArg(); + + static KernelArg Local() { return KernelArg(LOCAL, 0); } + static KernelArg PtrWriteOnly(const UMat& m) + { return KernelArg(PTR_ONLY+WRITE_ONLY, (UMat*)&m); } + static KernelArg PtrReadOnly(const UMat& m) + { return KernelArg(PTR_ONLY+READ_ONLY, (UMat*)&m); } + static KernelArg PtrReadWrite(const UMat& m) + { return KernelArg(PTR_ONLY+READ_WRITE, (UMat*)&m); } + static KernelArg ReadWrite(const UMat& m, int wscale=1, int iwscale=1) + { return KernelArg(READ_WRITE, (UMat*)&m, wscale, iwscale); } + static KernelArg ReadWriteNoSize(const UMat& m, int wscale=1, int iwscale=1) + { return KernelArg(READ_WRITE+NO_SIZE, (UMat*)&m, wscale, iwscale); } + static KernelArg ReadOnly(const UMat& m, int wscale=1, int iwscale=1) + { return KernelArg(READ_ONLY, (UMat*)&m, wscale, iwscale); } + static KernelArg WriteOnly(const UMat& m, int wscale=1, int iwscale=1) + { return KernelArg(WRITE_ONLY, (UMat*)&m, wscale, iwscale); } + static KernelArg ReadOnlyNoSize(const UMat& m, int wscale=1, int iwscale=1) + { return KernelArg(READ_ONLY+NO_SIZE, (UMat*)&m, wscale, iwscale); } + static KernelArg WriteOnlyNoSize(const UMat& m, int wscale=1, int iwscale=1) + { return KernelArg(WRITE_ONLY+NO_SIZE, (UMat*)&m, wscale, iwscale); } + static KernelArg Constant(const Mat& m); + template static KernelArg Constant(const _Tp* arr, size_t n) + { return KernelArg(CONSTANT, 0, 1, 1, (void*)arr, n); } + + int flags; + UMat* m; + const void* obj; + size_t sz; + int wscale, iwscale; +}; + + +class CV_EXPORTS Kernel +{ +public: + Kernel(); + Kernel(const char* kname, const Program& prog); + Kernel(const char* kname, const ProgramSource& prog, + const String& buildopts = String(), String* errmsg=0); + ~Kernel(); + Kernel(const Kernel& k); + Kernel& operator = (const Kernel& k); + + bool empty() const; + bool create(const char* kname, const Program& prog); + bool create(const char* kname, const ProgramSource& prog, + const String& buildopts, String* errmsg=0); + + int set(int i, const void* value, size_t sz); + int set(int i, const Image2D& image2D); + int set(int i, const UMat& m); + int set(int i, const KernelArg& arg); + template int set(int i, const _Tp& value) + { return set(i, &value, sizeof(value)); } + + template + Kernel& args(const _Tp0& a0) + { + set(0, a0); return *this; + } + + template + Kernel& args(const _Tp0& a0, const _Tp1& a1) + { + int i = set(0, a0); set(i, a1); return *this; + } + + template + Kernel& args(const _Tp0& a0, const _Tp1& a1, const _Tp2& a2) + { + int i = set(0, a0); i = set(i, a1); set(i, a2); return *this; + } + + template + Kernel& args(const _Tp0& a0, const _Tp1& a1, const _Tp2& a2, const _Tp3& a3) + { + int i = set(0, a0); i = set(i, a1); i = set(i, a2); i = set(i, a3); return *this; + } + + template + Kernel& args(const _Tp0& a0, const _Tp1& a1, const _Tp2& a2, + const _Tp3& a3, const _Tp4& a4) + { + int i = set(0, a0); i = set(i, a1); i = set(i, a2); + i = set(i, a3); set(i, a4); return *this; + } + + template + Kernel& args(const _Tp0& a0, const _Tp1& a1, const _Tp2& a2, + const _Tp3& a3, const _Tp4& a4, const _Tp5& a5) + { + int i = set(0, a0); i = set(i, a1); i = set(i, a2); + i = set(i, a3); i = set(i, a4); set(i, a5); return *this; + } + + template + Kernel& args(const _Tp0& a0, const _Tp1& a1, const _Tp2& a2, const _Tp3& a3, + const _Tp4& a4, const _Tp5& a5, const _Tp6& a6) + { + int i = set(0, a0); i = set(i, a1); i = set(i, a2); i = set(i, a3); + i = set(i, a4); i = set(i, a5); set(i, a6); return *this; + } + + template + Kernel& args(const _Tp0& a0, const _Tp1& a1, const _Tp2& a2, const _Tp3& a3, + const _Tp4& a4, const _Tp5& a5, const _Tp6& a6, const _Tp7& a7) + { + int i = set(0, a0); i = set(i, a1); i = set(i, a2); i = set(i, a3); + i = set(i, a4); i = set(i, a5); i = set(i, a6); set(i, a7); return *this; + } + + template + Kernel& args(const _Tp0& a0, const _Tp1& a1, const _Tp2& a2, const _Tp3& a3, + const _Tp4& a4, const _Tp5& a5, const _Tp6& a6, const _Tp7& a7, + const _Tp8& a8) + { + int i = set(0, a0); i = set(i, a1); i = set(i, a2); i = set(i, a3); i = set(i, a4); + i = set(i, a5); i = set(i, a6); i = set(i, a7); set(i, a8); return *this; + } + + template + Kernel& args(const _Tp0& a0, const _Tp1& a1, const _Tp2& a2, const _Tp3& a3, + const _Tp4& a4, const _Tp5& a5, const _Tp6& a6, const _Tp7& a7, + const _Tp8& a8, const _Tp9& a9) + { + int i = set(0, a0); i = set(i, a1); i = set(i, a2); i = set(i, a3); i = set(i, a4); i = set(i, a5); + i = set(i, a6); i = set(i, a7); i = set(i, a8); set(i, a9); return *this; + } + + template + Kernel& args(const _Tp0& a0, const _Tp1& a1, const _Tp2& a2, const _Tp3& a3, + const _Tp4& a4, const _Tp5& a5, const _Tp6& a6, const _Tp7& a7, + const _Tp8& a8, const _Tp9& a9, const _Tp10& a10) + { + int i = set(0, a0); i = set(i, a1); i = set(i, a2); i = set(i, a3); i = set(i, a4); i = set(i, a5); + i = set(i, a6); i = set(i, a7); i = set(i, a8); i = set(i, a9); set(i, a10); return *this; + } + + template + Kernel& args(const _Tp0& a0, const _Tp1& a1, const _Tp2& a2, const _Tp3& a3, + const _Tp4& a4, const _Tp5& a5, const _Tp6& a6, const _Tp7& a7, + const _Tp8& a8, const _Tp9& a9, const _Tp10& a10, const _Tp11& a11) + { + int i = set(0, a0); i = set(i, a1); i = set(i, a2); i = set(i, a3); i = set(i, a4); i = set(i, a5); + i = set(i, a6); i = set(i, a7); i = set(i, a8); i = set(i, a9); i = set(i, a10); set(i, a11); return *this; + } + + template + Kernel& args(const _Tp0& a0, const _Tp1& a1, const _Tp2& a2, const _Tp3& a3, + const _Tp4& a4, const _Tp5& a5, const _Tp6& a6, const _Tp7& a7, + const _Tp8& a8, const _Tp9& a9, const _Tp10& a10, const _Tp11& a11, + const _Tp12& a12) + { + int i = set(0, a0); i = set(i, a1); i = set(i, a2); i = set(i, a3); i = set(i, a4); i = set(i, a5); + i = set(i, a6); i = set(i, a7); i = set(i, a8); i = set(i, a9); i = set(i, a10); i = set(i, a11); + set(i, a12); return *this; + } + + template + Kernel& args(const _Tp0& a0, const _Tp1& a1, const _Tp2& a2, const _Tp3& a3, + const _Tp4& a4, const _Tp5& a5, const _Tp6& a6, const _Tp7& a7, + const _Tp8& a8, const _Tp9& a9, const _Tp10& a10, const _Tp11& a11, + const _Tp12& a12, const _Tp13& a13) + { + int i = set(0, a0); i = set(i, a1); i = set(i, a2); i = set(i, a3); i = set(i, a4); i = set(i, a5); + i = set(i, a6); i = set(i, a7); i = set(i, a8); i = set(i, a9); i = set(i, a10); i = set(i, a11); + i = set(i, a12); set(i, a13); return *this; + } + + template + Kernel& args(const _Tp0& a0, const _Tp1& a1, const _Tp2& a2, const _Tp3& a3, + const _Tp4& a4, const _Tp5& a5, const _Tp6& a6, const _Tp7& a7, + const _Tp8& a8, const _Tp9& a9, const _Tp10& a10, const _Tp11& a11, + const _Tp12& a12, const _Tp13& a13, const _Tp14& a14) + { + int i = set(0, a0); i = set(i, a1); i = set(i, a2); i = set(i, a3); i = set(i, a4); i = set(i, a5); + i = set(i, a6); i = set(i, a7); i = set(i, a8); i = set(i, a9); i = set(i, a10); i = set(i, a11); + i = set(i, a12); i = set(i, a13); set(i, a14); return *this; + } + + template + Kernel& args(const _Tp0& a0, const _Tp1& a1, const _Tp2& a2, const _Tp3& a3, + const _Tp4& a4, const _Tp5& a5, const _Tp6& a6, const _Tp7& a7, + const _Tp8& a8, const _Tp9& a9, const _Tp10& a10, const _Tp11& a11, + const _Tp12& a12, const _Tp13& a13, const _Tp14& a14, const _Tp15& a15) + { + int i = set(0, a0); i = set(i, a1); i = set(i, a2); i = set(i, a3); i = set(i, a4); i = set(i, a5); + i = set(i, a6); i = set(i, a7); i = set(i, a8); i = set(i, a9); i = set(i, a10); i = set(i, a11); + i = set(i, a12); i = set(i, a13); i = set(i, a14); set(i, a15); return *this; + } + /* + Run the OpenCL kernel. + @param dims the work problem dimensions. It is the length of globalsize and localsize. It can be either 1, 2 or 3. + @param globalsize work items for each dimension. + It is not the final globalsize passed to OpenCL. + Each dimension will be adjusted to the nearest integer divisible by the corresponding value in localsize. + If localsize is NULL, it will still be adjusted depending on dims. + The adjusted values are greater than or equal to the original values. + @param localsize work-group size for each dimension. + @param sync specify whether to wait for OpenCL computation to finish before return. + @param q command queue + */ + bool run(int dims, size_t globalsize[], + size_t localsize[], bool sync, const Queue& q=Queue()); + bool runTask(bool sync, const Queue& q=Queue()); + + size_t workGroupSize() const; + size_t preferedWorkGroupSizeMultiple() const; + bool compileWorkGroupSize(size_t wsz[]) const; + size_t localMemSize() const; + + void* ptr() const; + struct Impl; + +protected: + Impl* p; +}; + +class CV_EXPORTS Program +{ +public: + Program(); + Program(const ProgramSource& src, + const String& buildflags, String& errmsg); + explicit Program(const String& buf); + Program(const Program& prog); + + Program& operator = (const Program& prog); + ~Program(); + + bool create(const ProgramSource& src, + const String& buildflags, String& errmsg); + bool read(const String& buf, const String& buildflags); + bool write(String& buf) const; + + const ProgramSource& source() const; + void* ptr() const; + + String getPrefix() const; + static String getPrefix(const String& buildflags); + +protected: + struct Impl; + Impl* p; +}; + + +class CV_EXPORTS ProgramSource +{ +public: + typedef uint64 hash_t; + + ProgramSource(); + explicit ProgramSource(const String& prog); + explicit ProgramSource(const char* prog); + ~ProgramSource(); + ProgramSource(const ProgramSource& prog); + ProgramSource& operator = (const ProgramSource& prog); + + const String& source() const; + hash_t hash() const; + +protected: + struct Impl; + Impl* p; +}; + +class CV_EXPORTS PlatformInfo +{ +public: + PlatformInfo(); + explicit PlatformInfo(void* id); + ~PlatformInfo(); + + PlatformInfo(const PlatformInfo& i); + PlatformInfo& operator =(const PlatformInfo& i); + + String name() const; + String vendor() const; + String version() const; + int deviceNumber() const; + void getDevice(Device& device, int d) const; + +protected: + struct Impl; + Impl* p; +}; + +CV_EXPORTS const char* convertTypeStr(int sdepth, int ddepth, int cn, char* buf); +CV_EXPORTS const char* typeToStr(int t); +CV_EXPORTS const char* memopTypeToStr(int t); +CV_EXPORTS const char* vecopTypeToStr(int t); +CV_EXPORTS String kernelToStr(InputArray _kernel, int ddepth = -1, const char * name = NULL); +CV_EXPORTS void getPlatfomsInfo(std::vector& platform_info); + + +enum OclVectorStrategy +{ + // all matrices have its own vector width + OCL_VECTOR_OWN = 0, + // all matrices have maximal vector width among all matrices + // (useful for cases when matrices have different data types) + OCL_VECTOR_MAX = 1, + + // default strategy + OCL_VECTOR_DEFAULT = OCL_VECTOR_OWN +}; + +CV_EXPORTS int predictOptimalVectorWidth(InputArray src1, InputArray src2 = noArray(), InputArray src3 = noArray(), + InputArray src4 = noArray(), InputArray src5 = noArray(), InputArray src6 = noArray(), + InputArray src7 = noArray(), InputArray src8 = noArray(), InputArray src9 = noArray(), + OclVectorStrategy strat = OCL_VECTOR_DEFAULT); + +CV_EXPORTS int checkOptimalVectorWidth(const int *vectorWidths, + InputArray src1, InputArray src2 = noArray(), InputArray src3 = noArray(), + InputArray src4 = noArray(), InputArray src5 = noArray(), InputArray src6 = noArray(), + InputArray src7 = noArray(), InputArray src8 = noArray(), InputArray src9 = noArray(), + OclVectorStrategy strat = OCL_VECTOR_DEFAULT); + +// with OCL_VECTOR_MAX strategy +CV_EXPORTS int predictOptimalVectorWidthMax(InputArray src1, InputArray src2 = noArray(), InputArray src3 = noArray(), + InputArray src4 = noArray(), InputArray src5 = noArray(), InputArray src6 = noArray(), + InputArray src7 = noArray(), InputArray src8 = noArray(), InputArray src9 = noArray()); + +CV_EXPORTS void buildOptionsAddMatrixDescription(String& buildOptions, const String& name, InputArray _m); + +class CV_EXPORTS Image2D +{ +public: + Image2D(); + + // src: The UMat from which to get image properties and data + // norm: Flag to enable the use of normalized channel data types + // alias: Flag indicating that the image should alias the src UMat. + // If true, changes to the image or src will be reflected in + // both objects. + explicit Image2D(const UMat &src, bool norm = false, bool alias = false); + Image2D(const Image2D & i); + ~Image2D(); + + Image2D & operator = (const Image2D & i); + + // Indicates if creating an aliased image should succeed. Depends on the + // underlying platform and the dimensions of the UMat. + static bool canCreateAlias(const UMat &u); + + // Indicates if the image format is supported. + static bool isFormatSupported(int depth, int cn, bool norm); + + void* ptr() const; +protected: + struct Impl; + Impl* p; +}; + + +CV_EXPORTS MatAllocator* getOpenCLAllocator(); + + +#ifdef __OPENCV_BUILD +namespace internal { + +CV_EXPORTS bool isOpenCLForced(); +#define OCL_FORCE_CHECK(condition) (cv::ocl::internal::isOpenCLForced() || (condition)) + +CV_EXPORTS bool isPerformanceCheckBypassed(); +#define OCL_PERFORMANCE_CHECK(condition) (cv::ocl::internal::isPerformanceCheckBypassed() || (condition)) + +CV_EXPORTS bool isCLBuffer(UMat& u); + +} // namespace internal +#endif + +//! @} + +}} + +#endif diff --git a/thirdparty1/linux/include/opencv2/core/ocl_genbase.hpp b/thirdparty1/linux/include/opencv2/core/ocl_genbase.hpp new file mode 100644 index 0000000..5408958 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/ocl_genbase.hpp @@ -0,0 +1,64 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the OpenCV Foundation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_OPENCL_GENBASE_HPP +#define OPENCV_OPENCL_GENBASE_HPP + +namespace cv +{ +namespace ocl +{ + +//! @cond IGNORED + +struct ProgramEntry +{ + const char* name; + const char* programStr; + const char* programHash; +}; + +//! @endcond + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/core/opengl.hpp b/thirdparty1/linux/include/opencv2/core/opengl.hpp new file mode 100644 index 0000000..8b63d6c --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/opengl.hpp @@ -0,0 +1,729 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_OPENGL_HPP +#define OPENCV_CORE_OPENGL_HPP + +#ifndef __cplusplus +# error opengl.hpp header must be compiled as C++ +#endif + +#include "opencv2/core.hpp" +#include "ocl.hpp" + +namespace cv { namespace ogl { + +/** @addtogroup core_opengl +This section describes OpenGL interoperability. + +To enable OpenGL support, configure OpenCV using CMake with WITH_OPENGL=ON . Currently OpenGL is +supported only with WIN32, GTK and Qt backends on Windows and Linux (MacOS and Android are not +supported). For GTK backend gtkglext-1.0 library is required. + +To use OpenGL functionality you should first create OpenGL context (window or frame buffer). You can +do this with namedWindow function or with other OpenGL toolkit (GLUT, for example). +*/ +//! @{ + +/////////////////// OpenGL Objects /////////////////// + +/** @brief Smart pointer for OpenGL buffer object with reference counting. + +Buffer Objects are OpenGL objects that store an array of unformatted memory allocated by the OpenGL +context. These can be used to store vertex data, pixel data retrieved from images or the +framebuffer, and a variety of other things. + +ogl::Buffer has interface similar with Mat interface and represents 2D array memory. + +ogl::Buffer supports memory transfers between host and device and also can be mapped to CUDA memory. + */ +class CV_EXPORTS Buffer +{ +public: + /** @brief The target defines how you intend to use the buffer object. + */ + enum Target + { + ARRAY_BUFFER = 0x8892, //!< The buffer will be used as a source for vertex data + ELEMENT_ARRAY_BUFFER = 0x8893, //!< The buffer will be used for indices (in glDrawElements, for example) + PIXEL_PACK_BUFFER = 0x88EB, //!< The buffer will be used for reading from OpenGL textures + PIXEL_UNPACK_BUFFER = 0x88EC //!< The buffer will be used for writing to OpenGL textures + }; + + enum Access + { + READ_ONLY = 0x88B8, + WRITE_ONLY = 0x88B9, + READ_WRITE = 0x88BA + }; + + /** @brief The constructors. + + Creates empty ogl::Buffer object, creates ogl::Buffer object from existed buffer ( abufId + parameter), allocates memory for ogl::Buffer object or copies from host/device memory. + */ + Buffer(); + + /** @overload + @param arows Number of rows in a 2D array. + @param acols Number of columns in a 2D array. + @param atype Array type ( CV_8UC1, ..., CV_64FC4 ). See Mat for details. + @param abufId Buffer object name. + @param autoRelease Auto release mode (if true, release will be called in object's destructor). + */ + Buffer(int arows, int acols, int atype, unsigned int abufId, bool autoRelease = false); + + /** @overload + @param asize 2D array size. + @param atype Array type ( CV_8UC1, ..., CV_64FC4 ). See Mat for details. + @param abufId Buffer object name. + @param autoRelease Auto release mode (if true, release will be called in object's destructor). + */ + Buffer(Size asize, int atype, unsigned int abufId, bool autoRelease = false); + + /** @overload + @param arows Number of rows in a 2D array. + @param acols Number of columns in a 2D array. + @param atype Array type ( CV_8UC1, ..., CV_64FC4 ). See Mat for details. + @param target Buffer usage. See cv::ogl::Buffer::Target . + @param autoRelease Auto release mode (if true, release will be called in object's destructor). + */ + Buffer(int arows, int acols, int atype, Target target = ARRAY_BUFFER, bool autoRelease = false); + + /** @overload + @param asize 2D array size. + @param atype Array type ( CV_8UC1, ..., CV_64FC4 ). See Mat for details. + @param target Buffer usage. See cv::ogl::Buffer::Target . + @param autoRelease Auto release mode (if true, release will be called in object's destructor). + */ + Buffer(Size asize, int atype, Target target = ARRAY_BUFFER, bool autoRelease = false); + + /** @overload + @param arr Input array (host or device memory, it can be Mat , cuda::GpuMat or std::vector ). + @param target Buffer usage. See cv::ogl::Buffer::Target . + @param autoRelease Auto release mode (if true, release will be called in object's destructor). + */ + explicit Buffer(InputArray arr, Target target = ARRAY_BUFFER, bool autoRelease = false); + + /** @brief Allocates memory for ogl::Buffer object. + + @param arows Number of rows in a 2D array. + @param acols Number of columns in a 2D array. + @param atype Array type ( CV_8UC1, ..., CV_64FC4 ). See Mat for details. + @param target Buffer usage. See cv::ogl::Buffer::Target . + @param autoRelease Auto release mode (if true, release will be called in object's destructor). + */ + void create(int arows, int acols, int atype, Target target = ARRAY_BUFFER, bool autoRelease = false); + + /** @overload + @param asize 2D array size. + @param atype Array type ( CV_8UC1, ..., CV_64FC4 ). See Mat for details. + @param target Buffer usage. See cv::ogl::Buffer::Target . + @param autoRelease Auto release mode (if true, release will be called in object's destructor). + */ + void create(Size asize, int atype, Target target = ARRAY_BUFFER, bool autoRelease = false); + + /** @brief Decrements the reference counter and destroys the buffer object if needed. + + The function will call setAutoRelease(true) . + */ + void release(); + + /** @brief Sets auto release mode. + + The lifetime of the OpenGL object is tied to the lifetime of the context. If OpenGL context was + bound to a window it could be released at any time (user can close a window). If object's destructor + is called after destruction of the context it will cause an error. Thus ogl::Buffer doesn't destroy + OpenGL object in destructor by default (all OpenGL resources will be released with OpenGL context). + This function can force ogl::Buffer destructor to destroy OpenGL object. + @param flag Auto release mode (if true, release will be called in object's destructor). + */ + void setAutoRelease(bool flag); + + /** @brief Copies from host/device memory to OpenGL buffer. + @param arr Input array (host or device memory, it can be Mat , cuda::GpuMat or std::vector ). + @param target Buffer usage. See cv::ogl::Buffer::Target . + @param autoRelease Auto release mode (if true, release will be called in object's destructor). + */ + void copyFrom(InputArray arr, Target target = ARRAY_BUFFER, bool autoRelease = false); + + /** @overload */ + void copyFrom(InputArray arr, cuda::Stream& stream, Target target = ARRAY_BUFFER, bool autoRelease = false); + + /** @brief Copies from OpenGL buffer to host/device memory or another OpenGL buffer object. + + @param arr Destination array (host or device memory, can be Mat , cuda::GpuMat , std::vector or + ogl::Buffer ). + */ + void copyTo(OutputArray arr) const; + + /** @overload */ + void copyTo(OutputArray arr, cuda::Stream& stream) const; + + /** @brief Creates a full copy of the buffer object and the underlying data. + + @param target Buffer usage for destination buffer. + @param autoRelease Auto release mode for destination buffer. + */ + Buffer clone(Target target = ARRAY_BUFFER, bool autoRelease = false) const; + + /** @brief Binds OpenGL buffer to the specified buffer binding point. + + @param target Binding point. See cv::ogl::Buffer::Target . + */ + void bind(Target target) const; + + /** @brief Unbind any buffers from the specified binding point. + + @param target Binding point. See cv::ogl::Buffer::Target . + */ + static void unbind(Target target); + + /** @brief Maps OpenGL buffer to host memory. + + mapHost maps to the client's address space the entire data store of the buffer object. The data can + then be directly read and/or written relative to the returned pointer, depending on the specified + access policy. + + A mapped data store must be unmapped with ogl::Buffer::unmapHost before its buffer object is used. + + This operation can lead to memory transfers between host and device. + + Only one buffer object can be mapped at a time. + @param access Access policy, indicating whether it will be possible to read from, write to, or both + read from and write to the buffer object's mapped data store. The symbolic constant must be + ogl::Buffer::READ_ONLY , ogl::Buffer::WRITE_ONLY or ogl::Buffer::READ_WRITE . + */ + Mat mapHost(Access access); + + /** @brief Unmaps OpenGL buffer. + */ + void unmapHost(); + + //! map to device memory (blocking) + cuda::GpuMat mapDevice(); + void unmapDevice(); + + /** @brief Maps OpenGL buffer to CUDA device memory. + + This operatation doesn't copy data. Several buffer objects can be mapped to CUDA memory at a time. + + A mapped data store must be unmapped with ogl::Buffer::unmapDevice before its buffer object is used. + */ + cuda::GpuMat mapDevice(cuda::Stream& stream); + + /** @brief Unmaps OpenGL buffer. + */ + void unmapDevice(cuda::Stream& stream); + + int rows() const; + int cols() const; + Size size() const; + bool empty() const; + + int type() const; + int depth() const; + int channels() const; + int elemSize() const; + int elemSize1() const; + + //! get OpenGL opject id + unsigned int bufId() const; + + class Impl; + +private: + Ptr impl_; + int rows_; + int cols_; + int type_; +}; + +/** @brief Smart pointer for OpenGL 2D texture memory with reference counting. + */ +class CV_EXPORTS Texture2D +{ +public: + /** @brief An Image Format describes the way that the images in Textures store their data. + */ + enum Format + { + NONE = 0, + DEPTH_COMPONENT = 0x1902, //!< Depth + RGB = 0x1907, //!< Red, Green, Blue + RGBA = 0x1908 //!< Red, Green, Blue, Alpha + }; + + /** @brief The constructors. + + Creates empty ogl::Texture2D object, allocates memory for ogl::Texture2D object or copies from + host/device memory. + */ + Texture2D(); + + /** @overload */ + Texture2D(int arows, int acols, Format aformat, unsigned int atexId, bool autoRelease = false); + + /** @overload */ + Texture2D(Size asize, Format aformat, unsigned int atexId, bool autoRelease = false); + + /** @overload + @param arows Number of rows. + @param acols Number of columns. + @param aformat Image format. See cv::ogl::Texture2D::Format . + @param autoRelease Auto release mode (if true, release will be called in object's destructor). + */ + Texture2D(int arows, int acols, Format aformat, bool autoRelease = false); + + /** @overload + @param asize 2D array size. + @param aformat Image format. See cv::ogl::Texture2D::Format . + @param autoRelease Auto release mode (if true, release will be called in object's destructor). + */ + Texture2D(Size asize, Format aformat, bool autoRelease = false); + + /** @overload + @param arr Input array (host or device memory, it can be Mat , cuda::GpuMat or ogl::Buffer ). + @param autoRelease Auto release mode (if true, release will be called in object's destructor). + */ + explicit Texture2D(InputArray arr, bool autoRelease = false); + + /** @brief Allocates memory for ogl::Texture2D object. + + @param arows Number of rows. + @param acols Number of columns. + @param aformat Image format. See cv::ogl::Texture2D::Format . + @param autoRelease Auto release mode (if true, release will be called in object's destructor). + */ + void create(int arows, int acols, Format aformat, bool autoRelease = false); + /** @overload + @param asize 2D array size. + @param aformat Image format. See cv::ogl::Texture2D::Format . + @param autoRelease Auto release mode (if true, release will be called in object's destructor). + */ + void create(Size asize, Format aformat, bool autoRelease = false); + + /** @brief Decrements the reference counter and destroys the texture object if needed. + + The function will call setAutoRelease(true) . + */ + void release(); + + /** @brief Sets auto release mode. + + @param flag Auto release mode (if true, release will be called in object's destructor). + + The lifetime of the OpenGL object is tied to the lifetime of the context. If OpenGL context was + bound to a window it could be released at any time (user can close a window). If object's destructor + is called after destruction of the context it will cause an error. Thus ogl::Texture2D doesn't + destroy OpenGL object in destructor by default (all OpenGL resources will be released with OpenGL + context). This function can force ogl::Texture2D destructor to destroy OpenGL object. + */ + void setAutoRelease(bool flag); + + /** @brief Copies from host/device memory to OpenGL texture. + + @param arr Input array (host or device memory, it can be Mat , cuda::GpuMat or ogl::Buffer ). + @param autoRelease Auto release mode (if true, release will be called in object's destructor). + */ + void copyFrom(InputArray arr, bool autoRelease = false); + + /** @brief Copies from OpenGL texture to host/device memory or another OpenGL texture object. + + @param arr Destination array (host or device memory, can be Mat , cuda::GpuMat , ogl::Buffer or + ogl::Texture2D ). + @param ddepth Destination depth. + @param autoRelease Auto release mode for destination buffer (if arr is OpenGL buffer or texture). + */ + void copyTo(OutputArray arr, int ddepth = CV_32F, bool autoRelease = false) const; + + /** @brief Binds texture to current active texture unit for GL_TEXTURE_2D target. + */ + void bind() const; + + int rows() const; + int cols() const; + Size size() const; + bool empty() const; + + Format format() const; + + //! get OpenGL opject id + unsigned int texId() const; + + class Impl; + +private: + Ptr impl_; + int rows_; + int cols_; + Format format_; +}; + +/** @brief Wrapper for OpenGL Client-Side Vertex arrays. + +ogl::Arrays stores vertex data in ogl::Buffer objects. + */ +class CV_EXPORTS Arrays +{ +public: + /** @brief Default constructor + */ + Arrays(); + + /** @brief Sets an array of vertex coordinates. + @param vertex array with vertex coordinates, can be both host and device memory. + */ + void setVertexArray(InputArray vertex); + + /** @brief Resets vertex coordinates. + */ + void resetVertexArray(); + + /** @brief Sets an array of vertex colors. + @param color array with vertex colors, can be both host and device memory. + */ + void setColorArray(InputArray color); + + /** @brief Resets vertex colors. + */ + void resetColorArray(); + + /** @brief Sets an array of vertex normals. + @param normal array with vertex normals, can be both host and device memory. + */ + void setNormalArray(InputArray normal); + + /** @brief Resets vertex normals. + */ + void resetNormalArray(); + + /** @brief Sets an array of vertex texture coordinates. + @param texCoord array with vertex texture coordinates, can be both host and device memory. + */ + void setTexCoordArray(InputArray texCoord); + + /** @brief Resets vertex texture coordinates. + */ + void resetTexCoordArray(); + + /** @brief Releases all inner buffers. + */ + void release(); + + /** @brief Sets auto release mode all inner buffers. + @param flag Auto release mode. + */ + void setAutoRelease(bool flag); + + /** @brief Binds all vertex arrays. + */ + void bind() const; + + /** @brief Returns the vertex count. + */ + int size() const; + bool empty() const; + +private: + int size_; + Buffer vertex_; + Buffer color_; + Buffer normal_; + Buffer texCoord_; +}; + +/////////////////// Render Functions /////////////////// + +//! render mode +enum RenderModes { + POINTS = 0x0000, + LINES = 0x0001, + LINE_LOOP = 0x0002, + LINE_STRIP = 0x0003, + TRIANGLES = 0x0004, + TRIANGLE_STRIP = 0x0005, + TRIANGLE_FAN = 0x0006, + QUADS = 0x0007, + QUAD_STRIP = 0x0008, + POLYGON = 0x0009 +}; + +/** @brief Render OpenGL texture or primitives. +@param tex Texture to draw. +@param wndRect Region of window, where to draw a texture (normalized coordinates). +@param texRect Region of texture to draw (normalized coordinates). + */ +CV_EXPORTS void render(const Texture2D& tex, + Rect_ wndRect = Rect_(0.0, 0.0, 1.0, 1.0), + Rect_ texRect = Rect_(0.0, 0.0, 1.0, 1.0)); + +/** @overload +@param arr Array of privitives vertices. +@param mode Render mode. One of cv::ogl::RenderModes +@param color Color for all vertices. Will be used if arr doesn't contain color array. +*/ +CV_EXPORTS void render(const Arrays& arr, int mode = POINTS, Scalar color = Scalar::all(255)); + +/** @overload +@param arr Array of privitives vertices. +@param indices Array of vertices indices (host or device memory). +@param mode Render mode. One of cv::ogl::RenderModes +@param color Color for all vertices. Will be used if arr doesn't contain color array. +*/ +CV_EXPORTS void render(const Arrays& arr, InputArray indices, int mode = POINTS, Scalar color = Scalar::all(255)); + +/////////////////// CL-GL Interoperability Functions /////////////////// + +namespace ocl { +using namespace cv::ocl; + +// TODO static functions in the Context class +/** @brief Creates OpenCL context from GL. +@return Returns reference to OpenCL Context + */ +CV_EXPORTS Context& initializeContextFromGL(); + +} // namespace cv::ogl::ocl + +/** @brief Converts InputArray to Texture2D object. +@param src - source InputArray. +@param texture - destination Texture2D object. + */ +CV_EXPORTS void convertToGLTexture2D(InputArray src, Texture2D& texture); + +/** @brief Converts Texture2D object to OutputArray. +@param texture - source Texture2D object. +@param dst - destination OutputArray. + */ +CV_EXPORTS void convertFromGLTexture2D(const Texture2D& texture, OutputArray dst); + +/** @brief Maps Buffer object to process on CL side (convert to UMat). + +Function creates CL buffer from GL one, and then constructs UMat that can be used +to process buffer data with OpenCV functions. Note that in current implementation +UMat constructed this way doesn't own corresponding GL buffer object, so it is +the user responsibility to close down CL/GL buffers relationships by explicitly +calling unmapGLBuffer() function. +@param buffer - source Buffer object. +@param accessFlags - data access flags (ACCESS_READ|ACCESS_WRITE). +@return Returns UMat object + */ +CV_EXPORTS UMat mapGLBuffer(const Buffer& buffer, int accessFlags = ACCESS_READ|ACCESS_WRITE); + +/** @brief Unmaps Buffer object (releases UMat, previously mapped from Buffer). + +Function must be called explicitly by the user for each UMat previously constructed +by the call to mapGLBuffer() function. +@param u - source UMat, created by mapGLBuffer(). + */ +CV_EXPORTS void unmapGLBuffer(UMat& u); + +}} // namespace cv::ogl + +namespace cv { namespace cuda { + +//! @addtogroup cuda +//! @{ + +/** @brief Sets a CUDA device and initializes it for the current thread with OpenGL interoperability. + +This function should be explicitly called after OpenGL context creation and before any CUDA calls. +@param device System index of a CUDA device starting with 0. +@ingroup core_opengl + */ +CV_EXPORTS void setGlDevice(int device = 0); + +//! @} + +}} + +//! @cond IGNORED + +//////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////// +//////////////////////////////////////////////////////////////////////// + +inline +cv::ogl::Buffer::Buffer(int arows, int acols, int atype, Target target, bool autoRelease) : rows_(0), cols_(0), type_(0) +{ + create(arows, acols, atype, target, autoRelease); +} + +inline +cv::ogl::Buffer::Buffer(Size asize, int atype, Target target, bool autoRelease) : rows_(0), cols_(0), type_(0) +{ + create(asize, atype, target, autoRelease); +} + +inline +void cv::ogl::Buffer::create(Size asize, int atype, Target target, bool autoRelease) +{ + create(asize.height, asize.width, atype, target, autoRelease); +} + +inline +int cv::ogl::Buffer::rows() const +{ + return rows_; +} + +inline +int cv::ogl::Buffer::cols() const +{ + return cols_; +} + +inline +cv::Size cv::ogl::Buffer::size() const +{ + return Size(cols_, rows_); +} + +inline +bool cv::ogl::Buffer::empty() const +{ + return rows_ == 0 || cols_ == 0; +} + +inline +int cv::ogl::Buffer::type() const +{ + return type_; +} + +inline +int cv::ogl::Buffer::depth() const +{ + return CV_MAT_DEPTH(type_); +} + +inline +int cv::ogl::Buffer::channels() const +{ + return CV_MAT_CN(type_); +} + +inline +int cv::ogl::Buffer::elemSize() const +{ + return CV_ELEM_SIZE(type_); +} + +inline +int cv::ogl::Buffer::elemSize1() const +{ + return CV_ELEM_SIZE1(type_); +} + +/////// + +inline +cv::ogl::Texture2D::Texture2D(int arows, int acols, Format aformat, bool autoRelease) : rows_(0), cols_(0), format_(NONE) +{ + create(arows, acols, aformat, autoRelease); +} + +inline +cv::ogl::Texture2D::Texture2D(Size asize, Format aformat, bool autoRelease) : rows_(0), cols_(0), format_(NONE) +{ + create(asize, aformat, autoRelease); +} + +inline +void cv::ogl::Texture2D::create(Size asize, Format aformat, bool autoRelease) +{ + create(asize.height, asize.width, aformat, autoRelease); +} + +inline +int cv::ogl::Texture2D::rows() const +{ + return rows_; +} + +inline +int cv::ogl::Texture2D::cols() const +{ + return cols_; +} + +inline +cv::Size cv::ogl::Texture2D::size() const +{ + return Size(cols_, rows_); +} + +inline +bool cv::ogl::Texture2D::empty() const +{ + return rows_ == 0 || cols_ == 0; +} + +inline +cv::ogl::Texture2D::Format cv::ogl::Texture2D::format() const +{ + return format_; +} + +/////// + +inline +cv::ogl::Arrays::Arrays() : size_(0) +{ +} + +inline +int cv::ogl::Arrays::size() const +{ + return size_; +} + +inline +bool cv::ogl::Arrays::empty() const +{ + return size_ == 0; +} + +//! @endcond + +#endif /* OPENCV_CORE_OPENGL_HPP */ diff --git a/thirdparty1/linux/include/opencv2/core/operations.hpp b/thirdparty1/linux/include/opencv2/core/operations.hpp new file mode 100644 index 0000000..4a4ad9e --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/operations.hpp @@ -0,0 +1,530 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2015, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_OPERATIONS_HPP +#define OPENCV_CORE_OPERATIONS_HPP + +#ifndef __cplusplus +# error operations.hpp header must be compiled as C++ +#endif + +#include + +//! @cond IGNORED + +namespace cv +{ + +////////////////////////////// Matx methods depending on core API ///////////////////////////// + +namespace internal +{ + +template struct Matx_FastInvOp +{ + bool operator()(const Matx<_Tp, m, m>& a, Matx<_Tp, m, m>& b, int method) const + { + Matx<_Tp, m, m> temp = a; + + // assume that b is all 0's on input => make it a unity matrix + for( int i = 0; i < m; i++ ) + b(i, i) = (_Tp)1; + + if( method == DECOMP_CHOLESKY ) + return Cholesky(temp.val, m*sizeof(_Tp), m, b.val, m*sizeof(_Tp), m); + + return LU(temp.val, m*sizeof(_Tp), m, b.val, m*sizeof(_Tp), m) != 0; + } +}; + +template struct Matx_FastInvOp<_Tp, 2> +{ + bool operator()(const Matx<_Tp, 2, 2>& a, Matx<_Tp, 2, 2>& b, int) const + { + _Tp d = determinant(a); + if( d == 0 ) + return false; + d = 1/d; + b(1,1) = a(0,0)*d; + b(0,0) = a(1,1)*d; + b(0,1) = -a(0,1)*d; + b(1,0) = -a(1,0)*d; + return true; + } +}; + +template struct Matx_FastInvOp<_Tp, 3> +{ + bool operator()(const Matx<_Tp, 3, 3>& a, Matx<_Tp, 3, 3>& b, int) const + { + _Tp d = (_Tp)determinant(a); + if( d == 0 ) + return false; + d = 1/d; + b(0,0) = (a(1,1) * a(2,2) - a(1,2) * a(2,1)) * d; + b(0,1) = (a(0,2) * a(2,1) - a(0,1) * a(2,2)) * d; + b(0,2) = (a(0,1) * a(1,2) - a(0,2) * a(1,1)) * d; + + b(1,0) = (a(1,2) * a(2,0) - a(1,0) * a(2,2)) * d; + b(1,1) = (a(0,0) * a(2,2) - a(0,2) * a(2,0)) * d; + b(1,2) = (a(0,2) * a(1,0) - a(0,0) * a(1,2)) * d; + + b(2,0) = (a(1,0) * a(2,1) - a(1,1) * a(2,0)) * d; + b(2,1) = (a(0,1) * a(2,0) - a(0,0) * a(2,1)) * d; + b(2,2) = (a(0,0) * a(1,1) - a(0,1) * a(1,0)) * d; + return true; + } +}; + + +template struct Matx_FastSolveOp +{ + bool operator()(const Matx<_Tp, m, m>& a, const Matx<_Tp, m, n>& b, + Matx<_Tp, m, n>& x, int method) const + { + Matx<_Tp, m, m> temp = a; + x = b; + if( method == DECOMP_CHOLESKY ) + return Cholesky(temp.val, m*sizeof(_Tp), m, x.val, n*sizeof(_Tp), n); + + return LU(temp.val, m*sizeof(_Tp), m, x.val, n*sizeof(_Tp), n) != 0; + } +}; + +template struct Matx_FastSolveOp<_Tp, 2, 1> +{ + bool operator()(const Matx<_Tp, 2, 2>& a, const Matx<_Tp, 2, 1>& b, + Matx<_Tp, 2, 1>& x, int) const + { + _Tp d = determinant(a); + if( d == 0 ) + return false; + d = 1/d; + x(0) = (b(0)*a(1,1) - b(1)*a(0,1))*d; + x(1) = (b(1)*a(0,0) - b(0)*a(1,0))*d; + return true; + } +}; + +template struct Matx_FastSolveOp<_Tp, 3, 1> +{ + bool operator()(const Matx<_Tp, 3, 3>& a, const Matx<_Tp, 3, 1>& b, + Matx<_Tp, 3, 1>& x, int) const + { + _Tp d = (_Tp)determinant(a); + if( d == 0 ) + return false; + d = 1/d; + x(0) = d*(b(0)*(a(1,1)*a(2,2) - a(1,2)*a(2,1)) - + a(0,1)*(b(1)*a(2,2) - a(1,2)*b(2)) + + a(0,2)*(b(1)*a(2,1) - a(1,1)*b(2))); + + x(1) = d*(a(0,0)*(b(1)*a(2,2) - a(1,2)*b(2)) - + b(0)*(a(1,0)*a(2,2) - a(1,2)*a(2,0)) + + a(0,2)*(a(1,0)*b(2) - b(1)*a(2,0))); + + x(2) = d*(a(0,0)*(a(1,1)*b(2) - b(1)*a(2,1)) - + a(0,1)*(a(1,0)*b(2) - b(1)*a(2,0)) + + b(0)*(a(1,0)*a(2,1) - a(1,1)*a(2,0))); + return true; + } +}; + +} // internal + +template inline +Matx<_Tp,m,n> Matx<_Tp,m,n>::randu(_Tp a, _Tp b) +{ + Matx<_Tp,m,n> M; + cv::randu(M, Scalar(a), Scalar(b)); + return M; +} + +template inline +Matx<_Tp,m,n> Matx<_Tp,m,n>::randn(_Tp a, _Tp b) +{ + Matx<_Tp,m,n> M; + cv::randn(M, Scalar(a), Scalar(b)); + return M; +} + +template inline +Matx<_Tp, n, m> Matx<_Tp, m, n>::inv(int method, bool *p_is_ok /*= NULL*/) const +{ + Matx<_Tp, n, m> b; + bool ok; + if( method == DECOMP_LU || method == DECOMP_CHOLESKY ) + ok = cv::internal::Matx_FastInvOp<_Tp, m>()(*this, b, method); + else + { + Mat A(*this, false), B(b, false); + ok = (invert(A, B, method) != 0); + } + if( NULL != p_is_ok ) { *p_is_ok = ok; } + return ok ? b : Matx<_Tp, n, m>::zeros(); +} + +template template inline +Matx<_Tp, n, l> Matx<_Tp, m, n>::solve(const Matx<_Tp, m, l>& rhs, int method) const +{ + Matx<_Tp, n, l> x; + bool ok; + if( method == DECOMP_LU || method == DECOMP_CHOLESKY ) + ok = cv::internal::Matx_FastSolveOp<_Tp, m, l>()(*this, rhs, x, method); + else + { + Mat A(*this, false), B(rhs, false), X(x, false); + ok = cv::solve(A, B, X, method); + } + + return ok ? x : Matx<_Tp, n, l>::zeros(); +} + + + +////////////////////////// Augmenting algebraic & logical operations ////////////////////////// + +#define CV_MAT_AUG_OPERATOR1(op, cvop, A, B) \ + static inline A& operator op (A& a, const B& b) { cvop; return a; } + +#define CV_MAT_AUG_OPERATOR(op, cvop, A, B) \ + CV_MAT_AUG_OPERATOR1(op, cvop, A, B) \ + CV_MAT_AUG_OPERATOR1(op, cvop, const A, B) + +#define CV_MAT_AUG_OPERATOR_T(op, cvop, A, B) \ + template CV_MAT_AUG_OPERATOR1(op, cvop, A, B) \ + template CV_MAT_AUG_OPERATOR1(op, cvop, const A, B) + +CV_MAT_AUG_OPERATOR (+=, cv::add(a,b,a), Mat, Mat) +CV_MAT_AUG_OPERATOR (+=, cv::add(a,b,a), Mat, Scalar) +CV_MAT_AUG_OPERATOR_T(+=, cv::add(a,b,a), Mat_<_Tp>, Mat) +CV_MAT_AUG_OPERATOR_T(+=, cv::add(a,b,a), Mat_<_Tp>, Scalar) +CV_MAT_AUG_OPERATOR_T(+=, cv::add(a,b,a), Mat_<_Tp>, Mat_<_Tp>) + +CV_MAT_AUG_OPERATOR (-=, cv::subtract(a,b,a), Mat, Mat) +CV_MAT_AUG_OPERATOR (-=, cv::subtract(a,b,a), Mat, Scalar) +CV_MAT_AUG_OPERATOR_T(-=, cv::subtract(a,b,a), Mat_<_Tp>, Mat) +CV_MAT_AUG_OPERATOR_T(-=, cv::subtract(a,b,a), Mat_<_Tp>, Scalar) +CV_MAT_AUG_OPERATOR_T(-=, cv::subtract(a,b,a), Mat_<_Tp>, Mat_<_Tp>) + +CV_MAT_AUG_OPERATOR (*=, cv::gemm(a, b, 1, Mat(), 0, a, 0), Mat, Mat) +CV_MAT_AUG_OPERATOR_T(*=, cv::gemm(a, b, 1, Mat(), 0, a, 0), Mat_<_Tp>, Mat) +CV_MAT_AUG_OPERATOR_T(*=, cv::gemm(a, b, 1, Mat(), 0, a, 0), Mat_<_Tp>, Mat_<_Tp>) +CV_MAT_AUG_OPERATOR (*=, a.convertTo(a, -1, b), Mat, double) +CV_MAT_AUG_OPERATOR_T(*=, a.convertTo(a, -1, b), Mat_<_Tp>, double) + +CV_MAT_AUG_OPERATOR (/=, cv::divide(a,b,a), Mat, Mat) +CV_MAT_AUG_OPERATOR_T(/=, cv::divide(a,b,a), Mat_<_Tp>, Mat) +CV_MAT_AUG_OPERATOR_T(/=, cv::divide(a,b,a), Mat_<_Tp>, Mat_<_Tp>) +CV_MAT_AUG_OPERATOR (/=, a.convertTo((Mat&)a, -1, 1./b), Mat, double) +CV_MAT_AUG_OPERATOR_T(/=, a.convertTo((Mat&)a, -1, 1./b), Mat_<_Tp>, double) + +CV_MAT_AUG_OPERATOR (&=, cv::bitwise_and(a,b,a), Mat, Mat) +CV_MAT_AUG_OPERATOR (&=, cv::bitwise_and(a,b,a), Mat, Scalar) +CV_MAT_AUG_OPERATOR_T(&=, cv::bitwise_and(a,b,a), Mat_<_Tp>, Mat) +CV_MAT_AUG_OPERATOR_T(&=, cv::bitwise_and(a,b,a), Mat_<_Tp>, Scalar) +CV_MAT_AUG_OPERATOR_T(&=, cv::bitwise_and(a,b,a), Mat_<_Tp>, Mat_<_Tp>) + +CV_MAT_AUG_OPERATOR (|=, cv::bitwise_or(a,b,a), Mat, Mat) +CV_MAT_AUG_OPERATOR (|=, cv::bitwise_or(a,b,a), Mat, Scalar) +CV_MAT_AUG_OPERATOR_T(|=, cv::bitwise_or(a,b,a), Mat_<_Tp>, Mat) +CV_MAT_AUG_OPERATOR_T(|=, cv::bitwise_or(a,b,a), Mat_<_Tp>, Scalar) +CV_MAT_AUG_OPERATOR_T(|=, cv::bitwise_or(a,b,a), Mat_<_Tp>, Mat_<_Tp>) + +CV_MAT_AUG_OPERATOR (^=, cv::bitwise_xor(a,b,a), Mat, Mat) +CV_MAT_AUG_OPERATOR (^=, cv::bitwise_xor(a,b,a), Mat, Scalar) +CV_MAT_AUG_OPERATOR_T(^=, cv::bitwise_xor(a,b,a), Mat_<_Tp>, Mat) +CV_MAT_AUG_OPERATOR_T(^=, cv::bitwise_xor(a,b,a), Mat_<_Tp>, Scalar) +CV_MAT_AUG_OPERATOR_T(^=, cv::bitwise_xor(a,b,a), Mat_<_Tp>, Mat_<_Tp>) + +#undef CV_MAT_AUG_OPERATOR_T +#undef CV_MAT_AUG_OPERATOR +#undef CV_MAT_AUG_OPERATOR1 + + + +///////////////////////////////////////////// SVD ///////////////////////////////////////////// + +inline SVD::SVD() {} +inline SVD::SVD( InputArray m, int flags ) { operator ()(m, flags); } +inline void SVD::solveZ( InputArray m, OutputArray _dst ) +{ + Mat mtx = m.getMat(); + SVD svd(mtx, (mtx.rows >= mtx.cols ? 0 : SVD::FULL_UV)); + _dst.create(svd.vt.cols, 1, svd.vt.type()); + Mat dst = _dst.getMat(); + svd.vt.row(svd.vt.rows-1).reshape(1,svd.vt.cols).copyTo(dst); +} + +template inline void + SVD::compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w, Matx<_Tp, m, nm>& u, Matx<_Tp, n, nm>& vt ) +{ + CV_StaticAssert( nm == MIN(m, n), "Invalid size of output vector."); + Mat _a(a, false), _u(u, false), _w(w, false), _vt(vt, false); + SVD::compute(_a, _w, _u, _vt); + CV_Assert(_w.data == (uchar*)&w.val[0] && _u.data == (uchar*)&u.val[0] && _vt.data == (uchar*)&vt.val[0]); +} + +template inline void +SVD::compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w ) +{ + CV_StaticAssert( nm == MIN(m, n), "Invalid size of output vector."); + Mat _a(a, false), _w(w, false); + SVD::compute(_a, _w); + CV_Assert(_w.data == (uchar*)&w.val[0]); +} + +template inline void +SVD::backSubst( const Matx<_Tp, nm, 1>& w, const Matx<_Tp, m, nm>& u, + const Matx<_Tp, n, nm>& vt, const Matx<_Tp, m, nb>& rhs, + Matx<_Tp, n, nb>& dst ) +{ + CV_StaticAssert( nm == MIN(m, n), "Invalid size of output vector."); + Mat _u(u, false), _w(w, false), _vt(vt, false), _rhs(rhs, false), _dst(dst, false); + SVD::backSubst(_w, _u, _vt, _rhs, _dst); + CV_Assert(_dst.data == (uchar*)&dst.val[0]); +} + + + +/////////////////////////////////// Multiply-with-Carry RNG /////////////////////////////////// + +inline RNG::RNG() { state = 0xffffffff; } +inline RNG::RNG(uint64 _state) { state = _state ? _state : 0xffffffff; } + +inline RNG::operator uchar() { return (uchar)next(); } +inline RNG::operator schar() { return (schar)next(); } +inline RNG::operator ushort() { return (ushort)next(); } +inline RNG::operator short() { return (short)next(); } +inline RNG::operator int() { return (int)next(); } +inline RNG::operator unsigned() { return next(); } +inline RNG::operator float() { return next()*2.3283064365386962890625e-10f; } +inline RNG::operator double() { unsigned t = next(); return (((uint64)t << 32) | next()) * 5.4210108624275221700372640043497e-20; } + +inline unsigned RNG::operator ()(unsigned N) { return (unsigned)uniform(0,N); } +inline unsigned RNG::operator ()() { return next(); } + +inline int RNG::uniform(int a, int b) { return a == b ? a : (int)(next() % (b - a) + a); } +inline float RNG::uniform(float a, float b) { return ((float)*this)*(b - a) + a; } +inline double RNG::uniform(double a, double b) { return ((double)*this)*(b - a) + a; } + +inline unsigned RNG::next() +{ + state = (uint64)(unsigned)state* /*CV_RNG_COEFF*/ 4164903690U + (unsigned)(state >> 32); + return (unsigned)state; +} + +//! returns the next unifomly-distributed random number of the specified type +template static inline _Tp randu() +{ + return (_Tp)theRNG(); +} + +///////////////////////////////// Formatted string generation ///////////////////////////////// + +CV_EXPORTS String format( const char* fmt, ... ); + +///////////////////////////////// Formatted output of cv::Mat ///////////////////////////////// + +static inline +Ptr format(InputArray mtx, int fmt) +{ + return Formatter::get(fmt)->format(mtx.getMat()); +} + +static inline +int print(Ptr fmtd, FILE* stream = stdout) +{ + int written = 0; + fmtd->reset(); + for(const char* str = fmtd->next(); str; str = fmtd->next()) + written += fputs(str, stream); + + return written; +} + +static inline +int print(const Mat& mtx, FILE* stream = stdout) +{ + return print(Formatter::get()->format(mtx), stream); +} + +static inline +int print(const UMat& mtx, FILE* stream = stdout) +{ + return print(Formatter::get()->format(mtx.getMat(ACCESS_READ)), stream); +} + +template static inline +int print(const std::vector >& vec, FILE* stream = stdout) +{ + return print(Formatter::get()->format(Mat(vec)), stream); +} + +template static inline +int print(const std::vector >& vec, FILE* stream = stdout) +{ + return print(Formatter::get()->format(Mat(vec)), stream); +} + +template static inline +int print(const Matx<_Tp, m, n>& matx, FILE* stream = stdout) +{ + return print(Formatter::get()->format(cv::Mat(matx)), stream); +} + +//! @endcond + +/****************************************************************************************\ +* Auxiliary algorithms * +\****************************************************************************************/ + +/** @brief Splits an element set into equivalency classes. + +The generic function partition implements an \f$O(N^2)\f$ algorithm for splitting a set of \f$N\f$ elements +into one or more equivalency classes, as described in + . The function returns the number of +equivalency classes. +@param _vec Set of elements stored as a vector. +@param labels Output vector of labels. It contains as many elements as vec. Each label labels[i] is +a 0-based cluster index of `vec[i]`. +@param predicate Equivalence predicate (pointer to a boolean function of two arguments or an +instance of the class that has the method bool operator()(const _Tp& a, const _Tp& b) ). The +predicate returns true when the elements are certainly in the same class, and returns false if they +may or may not be in the same class. +@ingroup core_cluster +*/ +template int +partition( const std::vector<_Tp>& _vec, std::vector& labels, + _EqPredicate predicate=_EqPredicate()) +{ + int i, j, N = (int)_vec.size(); + const _Tp* vec = &_vec[0]; + + const int PARENT=0; + const int RANK=1; + + std::vector _nodes(N*2); + int (*nodes)[2] = (int(*)[2])&_nodes[0]; + + // The first O(N) pass: create N single-vertex trees + for(i = 0; i < N; i++) + { + nodes[i][PARENT]=-1; + nodes[i][RANK] = 0; + } + + // The main O(N^2) pass: merge connected components + for( i = 0; i < N; i++ ) + { + int root = i; + + // find root + while( nodes[root][PARENT] >= 0 ) + root = nodes[root][PARENT]; + + for( j = 0; j < N; j++ ) + { + if( i == j || !predicate(vec[i], vec[j])) + continue; + int root2 = j; + + while( nodes[root2][PARENT] >= 0 ) + root2 = nodes[root2][PARENT]; + + if( root2 != root ) + { + // unite both trees + int rank = nodes[root][RANK], rank2 = nodes[root2][RANK]; + if( rank > rank2 ) + nodes[root2][PARENT] = root; + else + { + nodes[root][PARENT] = root2; + nodes[root2][RANK] += rank == rank2; + root = root2; + } + CV_Assert( nodes[root][PARENT] < 0 ); + + int k = j, parent; + + // compress the path from node2 to root + while( (parent = nodes[k][PARENT]) >= 0 ) + { + nodes[k][PARENT] = root; + k = parent; + } + + // compress the path from node to root + k = i; + while( (parent = nodes[k][PARENT]) >= 0 ) + { + nodes[k][PARENT] = root; + k = parent; + } + } + } + } + + // Final O(N) pass: enumerate classes + labels.resize(N); + int nclasses = 0; + + for( i = 0; i < N; i++ ) + { + int root = i; + while( nodes[root][PARENT] >= 0 ) + root = nodes[root][PARENT]; + // re-use the rank as the class label + if( nodes[root][RANK] >= 0 ) + nodes[root][RANK] = ~nclasses++; + labels[i] = ~nodes[root][RANK]; + } + + return nclasses; +} + +} // cv + +#endif diff --git a/thirdparty1/linux/include/opencv2/core/optim.hpp b/thirdparty1/linux/include/opencv2/core/optim.hpp new file mode 100644 index 0000000..7249e0f --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/optim.hpp @@ -0,0 +1,302 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the OpenCV Foundation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_OPTIM_HPP +#define OPENCV_OPTIM_HPP + +#include "opencv2/core.hpp" + +namespace cv +{ + +/** @addtogroup core_optim +The algorithms in this section minimize or maximize function value within specified constraints or +without any constraints. +@{ +*/ + +/** @brief Basic interface for all solvers + */ +class CV_EXPORTS MinProblemSolver : public Algorithm +{ +public: + /** @brief Represents function being optimized + */ + class CV_EXPORTS Function + { + public: + virtual ~Function() {} + virtual int getDims() const = 0; + virtual double getGradientEps() const; + virtual double calc(const double* x) const = 0; + virtual void getGradient(const double* x,double* grad); + }; + + /** @brief Getter for the optimized function. + + The optimized function is represented by Function interface, which requires derivatives to + implement the sole method calc(double*) to evaluate the function. + + @return Smart-pointer to an object that implements Function interface - it represents the + function that is being optimized. It can be empty, if no function was given so far. + */ + virtual Ptr getFunction() const = 0; + + /** @brief Setter for the optimized function. + + *It should be called at least once before the call to* minimize(), as default value is not usable. + + @param f The new function to optimize. + */ + virtual void setFunction(const Ptr& f) = 0; + + /** @brief Getter for the previously set terminal criteria for this algorithm. + + @return Deep copy of the terminal criteria used at the moment. + */ + virtual TermCriteria getTermCriteria() const = 0; + + /** @brief Set terminal criteria for solver. + + This method *is not necessary* to be called before the first call to minimize(), as the default + value is sensible. + + Algorithm stops when the number of function evaluations done exceeds termcrit.maxCount, when + the function values at the vertices of simplex are within termcrit.epsilon range or simplex + becomes so small that it can enclosed in a box with termcrit.epsilon sides, whatever comes + first. + @param termcrit Terminal criteria to be used, represented as cv::TermCriteria structure. + */ + virtual void setTermCriteria(const TermCriteria& termcrit) = 0; + + /** @brief actually runs the algorithm and performs the minimization. + + The sole input parameter determines the centroid of the starting simplex (roughly, it tells + where to start), all the others (terminal criteria, initial step, function to be minimized) are + supposed to be set via the setters before the call to this method or the default values (not + always sensible) will be used. + + @param x The initial point, that will become a centroid of an initial simplex. After the algorithm + will terminate, it will be setted to the point where the algorithm stops, the point of possible + minimum. + @return The value of a function at the point found. + */ + virtual double minimize(InputOutputArray x) = 0; +}; + +/** @brief This class is used to perform the non-linear non-constrained minimization of a function, + +defined on an `n`-dimensional Euclidean space, using the **Nelder-Mead method**, also known as +**downhill simplex method**. The basic idea about the method can be obtained from +. + +It should be noted, that this method, although deterministic, is rather a heuristic and therefore +may converge to a local minima, not necessary a global one. It is iterative optimization technique, +which at each step uses an information about the values of a function evaluated only at `n+1` +points, arranged as a *simplex* in `n`-dimensional space (hence the second name of the method). At +each step new point is chosen to evaluate function at, obtained value is compared with previous +ones and based on this information simplex changes it's shape , slowly moving to the local minimum. +Thus this method is using *only* function values to make decision, on contrary to, say, Nonlinear +Conjugate Gradient method (which is also implemented in optim). + +Algorithm stops when the number of function evaluations done exceeds termcrit.maxCount, when the +function values at the vertices of simplex are within termcrit.epsilon range or simplex becomes so +small that it can enclosed in a box with termcrit.epsilon sides, whatever comes first, for some +defined by user positive integer termcrit.maxCount and positive non-integer termcrit.epsilon. + +@note DownhillSolver is a derivative of the abstract interface +cv::MinProblemSolver, which in turn is derived from the Algorithm interface and is used to +encapsulate the functionality, common to all non-linear optimization algorithms in the optim +module. + +@note term criteria should meet following condition: +@code + termcrit.type == (TermCriteria::MAX_ITER + TermCriteria::EPS) && termcrit.epsilon > 0 && termcrit.maxCount > 0 +@endcode + */ +class CV_EXPORTS DownhillSolver : public MinProblemSolver +{ +public: + /** @brief Returns the initial step that will be used in downhill simplex algorithm. + + @param step Initial step that will be used in algorithm. Note, that although corresponding setter + accepts column-vectors as well as row-vectors, this method will return a row-vector. + @see DownhillSolver::setInitStep + */ + virtual void getInitStep(OutputArray step) const=0; + + /** @brief Sets the initial step that will be used in downhill simplex algorithm. + + Step, together with initial point (givin in DownhillSolver::minimize) are two `n`-dimensional + vectors that are used to determine the shape of initial simplex. Roughly said, initial point + determines the position of a simplex (it will become simplex's centroid), while step determines the + spread (size in each dimension) of a simplex. To be more precise, if \f$s,x_0\in\mathbb{R}^n\f$ are + the initial step and initial point respectively, the vertices of a simplex will be: + \f$v_0:=x_0-\frac{1}{2} s\f$ and \f$v_i:=x_0+s_i\f$ for \f$i=1,2,\dots,n\f$ where \f$s_i\f$ denotes + projections of the initial step of *n*-th coordinate (the result of projection is treated to be + vector given by \f$s_i:=e_i\cdot\left\f$, where \f$e_i\f$ form canonical basis) + + @param step Initial step that will be used in algorithm. Roughly said, it determines the spread + (size in each dimension) of an initial simplex. + */ + virtual void setInitStep(InputArray step)=0; + + /** @brief This function returns the reference to the ready-to-use DownhillSolver object. + + All the parameters are optional, so this procedure can be called even without parameters at + all. In this case, the default values will be used. As default value for terminal criteria are + the only sensible ones, MinProblemSolver::setFunction() and DownhillSolver::setInitStep() + should be called upon the obtained object, if the respective parameters were not given to + create(). Otherwise, the two ways (give parameters to createDownhillSolver() or miss them out + and call the MinProblemSolver::setFunction() and DownhillSolver::setInitStep()) are absolutely + equivalent (and will drop the same errors in the same way, should invalid input be detected). + @param f Pointer to the function that will be minimized, similarly to the one you submit via + MinProblemSolver::setFunction. + @param initStep Initial step, that will be used to construct the initial simplex, similarly to the one + you submit via MinProblemSolver::setInitStep. + @param termcrit Terminal criteria to the algorithm, similarly to the one you submit via + MinProblemSolver::setTermCriteria. + */ + static Ptr create(const Ptr& f=Ptr(), + InputArray initStep=Mat_(1,1,0.0), + TermCriteria termcrit=TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5000,0.000001)); +}; + +/** @brief This class is used to perform the non-linear non-constrained minimization of a function +with known gradient, + +defined on an *n*-dimensional Euclidean space, using the **Nonlinear Conjugate Gradient method**. +The implementation was done based on the beautifully clear explanatory article [An Introduction to +the Conjugate Gradient Method Without the Agonizing +Pain](http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf) by Jonathan Richard +Shewchuk. The method can be seen as an adaptation of a standard Conjugate Gradient method (see, for +example ) for numerically solving the +systems of linear equations. + +It should be noted, that this method, although deterministic, is rather a heuristic method and +therefore may converge to a local minima, not necessary a global one. What is even more disastrous, +most of its behaviour is ruled by gradient, therefore it essentially cannot distinguish between +local minima and maxima. Therefore, if it starts sufficiently near to the local maximum, it may +converge to it. Another obvious restriction is that it should be possible to compute the gradient of +a function at any point, thus it is preferable to have analytic expression for gradient and +computational burden should be born by the user. + +The latter responsibility is accompilished via the getGradient method of a +MinProblemSolver::Function interface (which represents function being optimized). This method takes +point a point in *n*-dimensional space (first argument represents the array of coordinates of that +point) and comput its gradient (it should be stored in the second argument as an array). + +@note class ConjGradSolver thus does not add any new methods to the basic MinProblemSolver interface. + +@note term criteria should meet following condition: +@code + termcrit.type == (TermCriteria::MAX_ITER + TermCriteria::EPS) && termcrit.epsilon > 0 && termcrit.maxCount > 0 + // or + termcrit.type == TermCriteria::MAX_ITER) && termcrit.maxCount > 0 +@endcode + */ +class CV_EXPORTS ConjGradSolver : public MinProblemSolver +{ +public: + /** @brief This function returns the reference to the ready-to-use ConjGradSolver object. + + All the parameters are optional, so this procedure can be called even without parameters at + all. In this case, the default values will be used. As default value for terminal criteria are + the only sensible ones, MinProblemSolver::setFunction() should be called upon the obtained + object, if the function was not given to create(). Otherwise, the two ways (submit it to + create() or miss it out and call the MinProblemSolver::setFunction()) are absolutely equivalent + (and will drop the same errors in the same way, should invalid input be detected). + @param f Pointer to the function that will be minimized, similarly to the one you submit via + MinProblemSolver::setFunction. + @param termcrit Terminal criteria to the algorithm, similarly to the one you submit via + MinProblemSolver::setTermCriteria. + */ + static Ptr create(const Ptr& f=Ptr(), + TermCriteria termcrit=TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5000,0.000001)); +}; + +//! return codes for cv::solveLP() function +enum SolveLPResult +{ + SOLVELP_UNBOUNDED = -2, //!< problem is unbounded (target function can achieve arbitrary high values) + SOLVELP_UNFEASIBLE = -1, //!< problem is unfeasible (there are no points that satisfy all the constraints imposed) + SOLVELP_SINGLE = 0, //!< there is only one maximum for target function + SOLVELP_MULTI = 1 //!< there are multiple maxima for target function - the arbitrary one is returned +}; + +/** @brief Solve given (non-integer) linear programming problem using the Simplex Algorithm (Simplex Method). + +What we mean here by "linear programming problem" (or LP problem, for short) can be formulated as: + +\f[\mbox{Maximize } c\cdot x\\ + \mbox{Subject to:}\\ + Ax\leq b\\ + x\geq 0\f] + +Where \f$c\f$ is fixed `1`-by-`n` row-vector, \f$A\f$ is fixed `m`-by-`n` matrix, \f$b\f$ is fixed `m`-by-`1` +column vector and \f$x\f$ is an arbitrary `n`-by-`1` column vector, which satisfies the constraints. + +Simplex algorithm is one of many algorithms that are designed to handle this sort of problems +efficiently. Although it is not optimal in theoretical sense (there exist algorithms that can solve +any problem written as above in polynomial time, while simplex method degenerates to exponential +time for some special cases), it is well-studied, easy to implement and is shown to work well for +real-life purposes. + +The particular implementation is taken almost verbatim from **Introduction to Algorithms, third +edition** by T. H. Cormen, C. E. Leiserson, R. L. Rivest and Clifford Stein. In particular, the +Bland's rule is used to prevent cycling. + +@param Func This row-vector corresponds to \f$c\f$ in the LP problem formulation (see above). It should +contain 32- or 64-bit floating point numbers. As a convenience, column-vector may be also submitted, +in the latter case it is understood to correspond to \f$c^T\f$. +@param Constr `m`-by-`n+1` matrix, whose rightmost column corresponds to \f$b\f$ in formulation above +and the remaining to \f$A\f$. It should containt 32- or 64-bit floating point numbers. +@param z The solution will be returned here as a column-vector - it corresponds to \f$c\f$ in the +formulation above. It will contain 64-bit floating point numbers. +@return One of cv::SolveLPResult + */ +CV_EXPORTS_W int solveLP(const Mat& Func, const Mat& Constr, Mat& z); + +//! @} + +}// cv + +#endif diff --git a/thirdparty1/linux/include/opencv2/core/ovx.hpp b/thirdparty1/linux/include/opencv2/core/ovx.hpp new file mode 100644 index 0000000..8bb7d54 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/ovx.hpp @@ -0,0 +1,28 @@ +// This file is part of OpenCV project. +// It is subject to the license terms in the LICENSE file found in the top-level directory +// of this distribution and at http://opencv.org/license.html. + +// Copyright (C) 2016, Intel Corporation, all rights reserved. +// Third party copyrights are property of their respective owners. + +// OpenVX related definitions and declarations + +#pragma once +#ifndef OPENCV_OVX_HPP +#define OPENCV_OVX_HPP + +#include "cvdef.h" + +namespace cv +{ +/// Check if use of OpenVX is possible +CV_EXPORTS_W bool haveOpenVX(); + +/// Check if use of OpenVX is enabled +CV_EXPORTS_W bool useOpenVX(); + +/// Enable/disable use of OpenVX +CV_EXPORTS_W void setUseOpenVX(bool flag); +} // namespace cv + +#endif // OPENCV_OVX_HPP diff --git a/thirdparty1/linux/include/opencv2/core/persistence.hpp b/thirdparty1/linux/include/opencv2/core/persistence.hpp new file mode 100644 index 0000000..3f18d54 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/persistence.hpp @@ -0,0 +1,1274 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_PERSISTENCE_HPP +#define OPENCV_CORE_PERSISTENCE_HPP + +#ifndef __cplusplus +# error persistence.hpp header must be compiled as C++ +#endif + +//! @addtogroup core_c +//! @{ + +/** @brief "black box" representation of the file storage associated with a file on disk. + +Several functions that are described below take CvFileStorage\* as inputs and allow the user to +save or to load hierarchical collections that consist of scalar values, standard CXCore objects +(such as matrices, sequences, graphs), and user-defined objects. + +OpenCV can read and write data in XML (), YAML () or +JSON () formats. Below is an example of 3x3 floating-point identity matrix A, +stored in XML and YAML files +using CXCore functions: +XML: +@code{.xml} + + + + 3 + 3 +
f
+ 1. 0. 0. 0. 1. 0. 0. 0. 1. +
+
+@endcode +YAML: +@code{.yaml} + %YAML:1.0 + A: !!opencv-matrix + rows: 3 + cols: 3 + dt: f + data: [ 1., 0., 0., 0., 1., 0., 0., 0., 1.] +@endcode +As it can be seen from the examples, XML uses nested tags to represent hierarchy, while YAML uses +indentation for that purpose (similar to the Python programming language). + +The same functions can read and write data in both formats; the particular format is determined by +the extension of the opened file, ".xml" for XML files, ".yml" or ".yaml" for YAML and ".json" for +JSON. + */ +typedef struct CvFileStorage CvFileStorage; +typedef struct CvFileNode CvFileNode; +typedef struct CvMat CvMat; +typedef struct CvMatND CvMatND; + +//! @} core_c + +#include "opencv2/core/types.hpp" +#include "opencv2/core/mat.hpp" + +namespace cv { + +/** @addtogroup core_xml + +XML/YAML/JSON file storages. {#xml_storage} +======================= +Writing to a file storage. +-------------------------- +You can store and then restore various OpenCV data structures to/from XML (), +YAML () or JSON () formats. Also, it is possible store +and load arbitrarily complex data structures, which include OpenCV data structures, as well as +primitive data types (integer and floating-point numbers and text strings) as their elements. + +Use the following procedure to write something to XML, YAML or JSON: +-# Create new FileStorage and open it for writing. It can be done with a single call to +FileStorage::FileStorage constructor that takes a filename, or you can use the default constructor +and then call FileStorage::open. Format of the file (XML, YAML or JSON) is determined from the filename +extension (".xml", ".yml"/".yaml" and ".json", respectively) +-# Write all the data you want using the streaming operator `<<`, just like in the case of STL +streams. +-# Close the file using FileStorage::release. FileStorage destructor also closes the file. + +Here is an example: +@code + #include "opencv2/opencv.hpp" + #include + + using namespace cv; + + int main(int, char** argv) + { + FileStorage fs("test.yml", FileStorage::WRITE); + + fs << "frameCount" << 5; + time_t rawtime; time(&rawtime); + fs << "calibrationDate" << asctime(localtime(&rawtime)); + Mat cameraMatrix = (Mat_(3,3) << 1000, 0, 320, 0, 1000, 240, 0, 0, 1); + Mat distCoeffs = (Mat_(5,1) << 0.1, 0.01, -0.001, 0, 0); + fs << "cameraMatrix" << cameraMatrix << "distCoeffs" << distCoeffs; + fs << "features" << "["; + for( int i = 0; i < 3; i++ ) + { + int x = rand() % 640; + int y = rand() % 480; + uchar lbp = rand() % 256; + + fs << "{:" << "x" << x << "y" << y << "lbp" << "[:"; + for( int j = 0; j < 8; j++ ) + fs << ((lbp >> j) & 1); + fs << "]" << "}"; + } + fs << "]"; + fs.release(); + return 0; + } +@endcode +The sample above stores to XML and integer, text string (calibration date), 2 matrices, and a custom +structure "feature", which includes feature coordinates and LBP (local binary pattern) value. Here +is output of the sample: +@code{.yaml} +%YAML:1.0 +frameCount: 5 +calibrationDate: "Fri Jun 17 14:09:29 2011\n" +cameraMatrix: !!opencv-matrix + rows: 3 + cols: 3 + dt: d + data: [ 1000., 0., 320., 0., 1000., 240., 0., 0., 1. ] +distCoeffs: !!opencv-matrix + rows: 5 + cols: 1 + dt: d + data: [ 1.0000000000000001e-01, 1.0000000000000000e-02, + -1.0000000000000000e-03, 0., 0. ] +features: + - { x:167, y:49, lbp:[ 1, 0, 0, 1, 1, 0, 1, 1 ] } + - { x:298, y:130, lbp:[ 0, 0, 0, 1, 0, 0, 1, 1 ] } + - { x:344, y:158, lbp:[ 1, 1, 0, 0, 0, 0, 1, 0 ] } +@endcode + +As an exercise, you can replace ".yml" with ".xml" or ".json" in the sample above and see, how the +corresponding XML file will look like. + +Several things can be noted by looking at the sample code and the output: + +- The produced YAML (and XML/JSON) consists of heterogeneous collections that can be nested. There are + 2 types of collections: named collections (mappings) and unnamed collections (sequences). In mappings + each element has a name and is accessed by name. This is similar to structures and std::map in + C/C++ and dictionaries in Python. In sequences elements do not have names, they are accessed by + indices. This is similar to arrays and std::vector in C/C++ and lists, tuples in Python. + "Heterogeneous" means that elements of each single collection can have different types. + + Top-level collection in YAML/XML/JSON is a mapping. Each matrix is stored as a mapping, and the matrix + elements are stored as a sequence. Then, there is a sequence of features, where each feature is + represented a mapping, and lbp value in a nested sequence. + +- When you write to a mapping (a structure), you write element name followed by its value. When you + write to a sequence, you simply write the elements one by one. OpenCV data structures (such as + cv::Mat) are written in absolutely the same way as simple C data structures - using `<<` + operator. + +- To write a mapping, you first write the special string `{` to the storage, then write the + elements as pairs (`fs << << `) and then write the closing + `}`. + +- To write a sequence, you first write the special string `[`, then write the elements, then + write the closing `]`. + +- In YAML/JSON (but not XML), mappings and sequences can be written in a compact Python-like inline + form. In the sample above matrix elements, as well as each feature, including its lbp value, is + stored in such inline form. To store a mapping/sequence in a compact form, put `:` after the + opening character, e.g. use `{:` instead of `{` and `[:` instead of `[`. When the + data is written to XML, those extra `:` are ignored. + +Reading data from a file storage. +--------------------------------- +To read the previously written XML, YAML or JSON file, do the following: +-# Open the file storage using FileStorage::FileStorage constructor or FileStorage::open method. + In the current implementation the whole file is parsed and the whole representation of file + storage is built in memory as a hierarchy of file nodes (see FileNode) + +-# Read the data you are interested in. Use FileStorage::operator [], FileNode::operator [] + and/or FileNodeIterator. + +-# Close the storage using FileStorage::release. + +Here is how to read the file created by the code sample above: +@code + FileStorage fs2("test.yml", FileStorage::READ); + + // first method: use (type) operator on FileNode. + int frameCount = (int)fs2["frameCount"]; + + String date; + // second method: use FileNode::operator >> + fs2["calibrationDate"] >> date; + + Mat cameraMatrix2, distCoeffs2; + fs2["cameraMatrix"] >> cameraMatrix2; + fs2["distCoeffs"] >> distCoeffs2; + + cout << "frameCount: " << frameCount << endl + << "calibration date: " << date << endl + << "camera matrix: " << cameraMatrix2 << endl + << "distortion coeffs: " << distCoeffs2 << endl; + + FileNode features = fs2["features"]; + FileNodeIterator it = features.begin(), it_end = features.end(); + int idx = 0; + std::vector lbpval; + + // iterate through a sequence using FileNodeIterator + for( ; it != it_end; ++it, idx++ ) + { + cout << "feature #" << idx << ": "; + cout << "x=" << (int)(*it)["x"] << ", y=" << (int)(*it)["y"] << ", lbp: ("; + // you can also easily read numerical arrays using FileNode >> std::vector operator. + (*it)["lbp"] >> lbpval; + for( int i = 0; i < (int)lbpval.size(); i++ ) + cout << " " << (int)lbpval[i]; + cout << ")" << endl; + } + fs2.release(); +@endcode + +Format specification {#format_spec} +-------------------- +`([count]{u|c|w|s|i|f|d})`... where the characters correspond to fundamental C++ types: +- `u` 8-bit unsigned number +- `c` 8-bit signed number +- `w` 16-bit unsigned number +- `s` 16-bit signed number +- `i` 32-bit signed number +- `f` single precision floating-point number +- `d` double precision floating-point number +- `r` pointer, 32 lower bits of which are written as a signed integer. The type can be used to + store structures with links between the elements. + +`count` is the optional counter of values of a given type. For example, `2if` means that each array +element is a structure of 2 integers, followed by a single-precision floating-point number. The +equivalent notations of the above specification are `iif`, `2i1f` and so forth. Other examples: `u` +means that the array consists of bytes, and `2d` means the array consists of pairs of doubles. + +@see @ref filestorage.cpp +*/ + +//! @{ + +/** @example filestorage.cpp +A complete example using the FileStorage interface +*/ + +////////////////////////// XML & YAML I/O ////////////////////////// + +class CV_EXPORTS FileNode; +class CV_EXPORTS FileNodeIterator; + +/** @brief XML/YAML/JSON file storage class that encapsulates all the information necessary for writing or +reading data to/from a file. + */ +class CV_EXPORTS_W FileStorage +{ +public: + //! file storage mode + enum Mode + { + READ = 0, //!< value, open the file for reading + WRITE = 1, //!< value, open the file for writing + APPEND = 2, //!< value, open the file for appending + MEMORY = 4, //!< flag, read data from source or write data to the internal buffer (which is + //!< returned by FileStorage::release) + FORMAT_MASK = (7<<3), //!< mask for format flags + FORMAT_AUTO = 0, //!< flag, auto format + FORMAT_XML = (1<<3), //!< flag, XML format + FORMAT_YAML = (2<<3), //!< flag, YAML format + FORMAT_JSON = (3<<3), //!< flag, JSON format + + BASE64 = 64, //!< flag, write rawdata in Base64 by default. (consider using WRITE_BASE64) + WRITE_BASE64 = BASE64 | WRITE, //!< flag, enable both WRITE and BASE64 + }; + enum + { + UNDEFINED = 0, + VALUE_EXPECTED = 1, + NAME_EXPECTED = 2, + INSIDE_MAP = 4 + }; + + /** @brief The constructors. + + The full constructor opens the file. Alternatively you can use the default constructor and then + call FileStorage::open. + */ + CV_WRAP FileStorage(); + + /** @overload + @param source Name of the file to open or the text string to read the data from. Extension of the + file (.xml, .yml/.yaml, or .json) determines its format (XML, YAML or JSON respectively). Also you can + append .gz to work with compressed files, for example myHugeMatrix.xml.gz. If both FileStorage::WRITE + and FileStorage::MEMORY flags are specified, source is used just to specify the output file format (e.g. + mydata.xml, .yml etc.). + @param flags Mode of operation. See FileStorage::Mode + @param encoding Encoding of the file. Note that UTF-16 XML encoding is not supported currently and + you should use 8-bit encoding instead of it. + */ + CV_WRAP FileStorage(const String& source, int flags, const String& encoding=String()); + + /** @overload */ + FileStorage(CvFileStorage* fs, bool owning=true); + + //! the destructor. calls release() + virtual ~FileStorage(); + + /** @brief Opens a file. + + See description of parameters in FileStorage::FileStorage. The method calls FileStorage::release + before opening the file. + @param filename Name of the file to open or the text string to read the data from. + Extension of the file (.xml, .yml/.yaml or .json) determines its format (XML, YAML or JSON + respectively). Also you can append .gz to work with compressed files, for example myHugeMatrix.xml.gz. If both + FileStorage::WRITE and FileStorage::MEMORY flags are specified, source is used just to specify + the output file format (e.g. mydata.xml, .yml etc.). A file name can also contain parameters. + You can use this format, "*?base64" (e.g. "file.json?base64" (case sensitive)), as an alternative to + FileStorage::BASE64 flag. + @param flags Mode of operation. One of FileStorage::Mode + @param encoding Encoding of the file. Note that UTF-16 XML encoding is not supported currently and + you should use 8-bit encoding instead of it. + */ + CV_WRAP virtual bool open(const String& filename, int flags, const String& encoding=String()); + + /** @brief Checks whether the file is opened. + + @returns true if the object is associated with the current file and false otherwise. It is a + good practice to call this method after you tried to open a file. + */ + CV_WRAP virtual bool isOpened() const; + + /** @brief Closes the file and releases all the memory buffers. + + Call this method after all I/O operations with the storage are finished. + */ + CV_WRAP virtual void release(); + + /** @brief Closes the file and releases all the memory buffers. + + Call this method after all I/O operations with the storage are finished. If the storage was + opened for writing data and FileStorage::WRITE was specified + */ + CV_WRAP virtual String releaseAndGetString(); + + /** @brief Returns the first element of the top-level mapping. + @returns The first element of the top-level mapping. + */ + CV_WRAP FileNode getFirstTopLevelNode() const; + + /** @brief Returns the top-level mapping + @param streamidx Zero-based index of the stream. In most cases there is only one stream in the file. + However, YAML supports multiple streams and so there can be several. + @returns The top-level mapping. + */ + CV_WRAP FileNode root(int streamidx=0) const; + + /** @brief Returns the specified element of the top-level mapping. + @param nodename Name of the file node. + @returns Node with the given name. + */ + FileNode operator[](const String& nodename) const; + + /** @overload */ + CV_WRAP_AS(getNode) FileNode operator[](const char* nodename) const; + + /** @brief Returns the obsolete C FileStorage structure. + @returns Pointer to the underlying C FileStorage structure + */ + CvFileStorage* operator *() { return fs.get(); } + + /** @overload */ + const CvFileStorage* operator *() const { return fs.get(); } + + /** @brief Writes multiple numbers. + + Writes one or more numbers of the specified format to the currently written structure. Usually it is + more convenient to use operator `<<` instead of this method. + @param fmt Specification of each array element, see @ref format_spec "format specification" + @param vec Pointer to the written array. + @param len Number of the uchar elements to write. + */ + void writeRaw( const String& fmt, const uchar* vec, size_t len ); + + /** @brief Writes the registered C structure (CvMat, CvMatND, CvSeq). + @param name Name of the written object. + @param obj Pointer to the object. + @see ocvWrite for details. + */ + void writeObj( const String& name, const void* obj ); + + /** + * @brief Simplified writing API to use with bindings. + * @param name Name of the written object + * @param val Value of the written object + */ + CV_WRAP void write(const String& name, double val); + /// @overload + CV_WRAP void write(const String& name, const String& val); + /// @overload + CV_WRAP void write(const String& name, InputArray val); + + /** @brief Writes a comment. + + The function writes a comment into file storage. The comments are skipped when the storage is read. + @param comment The written comment, single-line or multi-line + @param append If true, the function tries to put the comment at the end of current line. + Else if the comment is multi-line, or if it does not fit at the end of the current + line, the comment starts a new line. + */ + CV_WRAP void writeComment(const String& comment, bool append = false); + + /** @brief Returns the normalized object name for the specified name of a file. + @param filename Name of a file + @returns The normalized object name. + */ + static String getDefaultObjectName(const String& filename); + + Ptr fs; //!< the underlying C FileStorage structure + String elname; //!< the currently written element + std::vector structs; //!< the stack of written structures + int state; //!< the writer state +}; + +template<> CV_EXPORTS void DefaultDeleter::operator ()(CvFileStorage* obj) const; + +/** @brief File Storage Node class. + +The node is used to store each and every element of the file storage opened for reading. When +XML/YAML file is read, it is first parsed and stored in the memory as a hierarchical collection of +nodes. Each node can be a “leaf” that is contain a single number or a string, or be a collection of +other nodes. There can be named collections (mappings) where each element has a name and it is +accessed by a name, and ordered collections (sequences) where elements do not have names but rather +accessed by index. Type of the file node can be determined using FileNode::type method. + +Note that file nodes are only used for navigating file storages opened for reading. When a file +storage is opened for writing, no data is stored in memory after it is written. + */ +class CV_EXPORTS_W_SIMPLE FileNode +{ +public: + //! type of the file storage node + enum Type + { + NONE = 0, //!< empty node + INT = 1, //!< an integer + REAL = 2, //!< floating-point number + FLOAT = REAL, //!< synonym or REAL + STR = 3, //!< text string in UTF-8 encoding + STRING = STR, //!< synonym for STR + REF = 4, //!< integer of size size_t. Typically used for storing complex dynamic structures where some elements reference the others + SEQ = 5, //!< sequence + MAP = 6, //!< mapping + TYPE_MASK = 7, + FLOW = 8, //!< compact representation of a sequence or mapping. Used only by YAML writer + USER = 16, //!< a registered object (e.g. a matrix) + EMPTY = 32, //!< empty structure (sequence or mapping) + NAMED = 64 //!< the node has a name (i.e. it is element of a mapping) + }; + /** @brief The constructors. + + These constructors are used to create a default file node, construct it from obsolete structures or + from the another file node. + */ + CV_WRAP FileNode(); + + /** @overload + @param fs Pointer to the obsolete file storage structure. + @param node File node to be used as initialization for the created file node. + */ + FileNode(const CvFileStorage* fs, const CvFileNode* node); + + /** @overload + @param node File node to be used as initialization for the created file node. + */ + FileNode(const FileNode& node); + + /** @brief Returns element of a mapping node or a sequence node. + @param nodename Name of an element in the mapping node. + @returns Returns the element with the given identifier. + */ + FileNode operator[](const String& nodename) const; + + /** @overload + @param nodename Name of an element in the mapping node. + */ + CV_WRAP_AS(getNode) FileNode operator[](const char* nodename) const; + + /** @overload + @param i Index of an element in the sequence node. + */ + CV_WRAP_AS(at) FileNode operator[](int i) const; + + /** @brief Returns type of the node. + @returns Type of the node. See FileNode::Type + */ + CV_WRAP int type() const; + + //! returns true if the node is empty + CV_WRAP bool empty() const; + //! returns true if the node is a "none" object + CV_WRAP bool isNone() const; + //! returns true if the node is a sequence + CV_WRAP bool isSeq() const; + //! returns true if the node is a mapping + CV_WRAP bool isMap() const; + //! returns true if the node is an integer + CV_WRAP bool isInt() const; + //! returns true if the node is a floating-point number + CV_WRAP bool isReal() const; + //! returns true if the node is a text string + CV_WRAP bool isString() const; + //! returns true if the node has a name + CV_WRAP bool isNamed() const; + //! returns the node name or an empty string if the node is nameless + CV_WRAP String name() const; + //! returns the number of elements in the node, if it is a sequence or mapping, or 1 otherwise. + CV_WRAP size_t size() const; + //! returns the node content as an integer. If the node stores floating-point number, it is rounded. + operator int() const; + //! returns the node content as float + operator float() const; + //! returns the node content as double + operator double() const; + //! returns the node content as text string + operator String() const; +#ifndef OPENCV_NOSTL + operator std::string() const; +#endif + + //! returns pointer to the underlying file node + CvFileNode* operator *(); + //! returns pointer to the underlying file node + const CvFileNode* operator* () const; + + //! returns iterator pointing to the first node element + FileNodeIterator begin() const; + //! returns iterator pointing to the element following the last node element + FileNodeIterator end() const; + + /** @brief Reads node elements to the buffer with the specified format. + + Usually it is more convenient to use operator `>>` instead of this method. + @param fmt Specification of each array element. See @ref format_spec "format specification" + @param vec Pointer to the destination array. + @param len Number of elements to read. If it is greater than number of remaining elements then all + of them will be read. + */ + void readRaw( const String& fmt, uchar* vec, size_t len ) const; + + //! reads the registered object and returns pointer to it + void* readObj() const; + + //! Simplified reading API to use with bindings. + CV_WRAP double real() const; + //! Simplified reading API to use with bindings. + CV_WRAP String string() const; + //! Simplified reading API to use with bindings. + CV_WRAP Mat mat() const; + + // do not use wrapper pointer classes for better efficiency + const CvFileStorage* fs; + const CvFileNode* node; +}; + + +/** @brief used to iterate through sequences and mappings. + +A standard STL notation, with node.begin(), node.end() denoting the beginning and the end of a +sequence, stored in node. See the data reading sample in the beginning of the section. + */ +class CV_EXPORTS FileNodeIterator +{ +public: + /** @brief The constructors. + + These constructors are used to create a default iterator, set it to specific element in a file node + or construct it from another iterator. + */ + FileNodeIterator(); + + /** @overload + @param fs File storage for the iterator. + @param node File node for the iterator. + @param ofs Index of the element in the node. The created iterator will point to this element. + */ + FileNodeIterator(const CvFileStorage* fs, const CvFileNode* node, size_t ofs=0); + + /** @overload + @param it Iterator to be used as initialization for the created iterator. + */ + FileNodeIterator(const FileNodeIterator& it); + + //! returns the currently observed element + FileNode operator *() const; + //! accesses the currently observed element methods + FileNode operator ->() const; + + //! moves iterator to the next node + FileNodeIterator& operator ++ (); + //! moves iterator to the next node + FileNodeIterator operator ++ (int); + //! moves iterator to the previous node + FileNodeIterator& operator -- (); + //! moves iterator to the previous node + FileNodeIterator operator -- (int); + //! moves iterator forward by the specified offset (possibly negative) + FileNodeIterator& operator += (int ofs); + //! moves iterator backward by the specified offset (possibly negative) + FileNodeIterator& operator -= (int ofs); + + /** @brief Reads node elements to the buffer with the specified format. + + Usually it is more convenient to use operator `>>` instead of this method. + @param fmt Specification of each array element. See @ref format_spec "format specification" + @param vec Pointer to the destination array. + @param maxCount Number of elements to read. If it is greater than number of remaining elements then + all of them will be read. + */ + FileNodeIterator& readRaw( const String& fmt, uchar* vec, + size_t maxCount=(size_t)INT_MAX ); + + struct SeqReader + { + int header_size; + void* seq; /* sequence, beign read; CvSeq */ + void* block; /* current block; CvSeqBlock */ + schar* ptr; /* pointer to element be read next */ + schar* block_min; /* pointer to the beginning of block */ + schar* block_max; /* pointer to the end of block */ + int delta_index;/* = seq->first->start_index */ + schar* prev_elem; /* pointer to previous element */ + }; + + const CvFileStorage* fs; + const CvFileNode* container; + SeqReader reader; + size_t remaining; +}; + +//! @} core_xml + +/////////////////// XML & YAML I/O implementation ////////////////// + +//! @relates cv::FileStorage +//! @{ + +CV_EXPORTS void write( FileStorage& fs, const String& name, int value ); +CV_EXPORTS void write( FileStorage& fs, const String& name, float value ); +CV_EXPORTS void write( FileStorage& fs, const String& name, double value ); +CV_EXPORTS void write( FileStorage& fs, const String& name, const String& value ); +CV_EXPORTS void write( FileStorage& fs, const String& name, const Mat& value ); +CV_EXPORTS void write( FileStorage& fs, const String& name, const SparseMat& value ); +CV_EXPORTS void write( FileStorage& fs, const String& name, const std::vector& value); +CV_EXPORTS void write( FileStorage& fs, const String& name, const std::vector& value); + +CV_EXPORTS void writeScalar( FileStorage& fs, int value ); +CV_EXPORTS void writeScalar( FileStorage& fs, float value ); +CV_EXPORTS void writeScalar( FileStorage& fs, double value ); +CV_EXPORTS void writeScalar( FileStorage& fs, const String& value ); + +//! @} + +//! @relates cv::FileNode +//! @{ + +CV_EXPORTS void read(const FileNode& node, int& value, int default_value); +CV_EXPORTS void read(const FileNode& node, float& value, float default_value); +CV_EXPORTS void read(const FileNode& node, double& value, double default_value); +CV_EXPORTS void read(const FileNode& node, String& value, const String& default_value); +CV_EXPORTS void read(const FileNode& node, Mat& mat, const Mat& default_mat = Mat() ); +CV_EXPORTS void read(const FileNode& node, SparseMat& mat, const SparseMat& default_mat = SparseMat() ); +CV_EXPORTS void read(const FileNode& node, std::vector& keypoints); +CV_EXPORTS void read(const FileNode& node, std::vector& matches); + +template static inline void read(const FileNode& node, Point_<_Tp>& value, const Point_<_Tp>& default_value) +{ + std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp; + value = temp.size() != 2 ? default_value : Point_<_Tp>(saturate_cast<_Tp>(temp[0]), saturate_cast<_Tp>(temp[1])); +} + +template static inline void read(const FileNode& node, Point3_<_Tp>& value, const Point3_<_Tp>& default_value) +{ + std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp; + value = temp.size() != 3 ? default_value : Point3_<_Tp>(saturate_cast<_Tp>(temp[0]), saturate_cast<_Tp>(temp[1]), + saturate_cast<_Tp>(temp[2])); +} + +template static inline void read(const FileNode& node, Size_<_Tp>& value, const Size_<_Tp>& default_value) +{ + std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp; + value = temp.size() != 2 ? default_value : Size_<_Tp>(saturate_cast<_Tp>(temp[0]), saturate_cast<_Tp>(temp[1])); +} + +template static inline void read(const FileNode& node, Complex<_Tp>& value, const Complex<_Tp>& default_value) +{ + std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp; + value = temp.size() != 2 ? default_value : Complex<_Tp>(saturate_cast<_Tp>(temp[0]), saturate_cast<_Tp>(temp[1])); +} + +template static inline void read(const FileNode& node, Rect_<_Tp>& value, const Rect_<_Tp>& default_value) +{ + std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp; + value = temp.size() != 4 ? default_value : Rect_<_Tp>(saturate_cast<_Tp>(temp[0]), saturate_cast<_Tp>(temp[1]), + saturate_cast<_Tp>(temp[2]), saturate_cast<_Tp>(temp[3])); +} + +template static inline void read(const FileNode& node, Vec<_Tp, cn>& value, const Vec<_Tp, cn>& default_value) +{ + std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp; + value = temp.size() != cn ? default_value : Vec<_Tp, cn>(&temp[0]); +} + +template static inline void read(const FileNode& node, Scalar_<_Tp>& value, const Scalar_<_Tp>& default_value) +{ + std::vector<_Tp> temp; FileNodeIterator it = node.begin(); it >> temp; + value = temp.size() != 4 ? default_value : Scalar_<_Tp>(saturate_cast<_Tp>(temp[0]), saturate_cast<_Tp>(temp[1]), + saturate_cast<_Tp>(temp[2]), saturate_cast<_Tp>(temp[3])); +} + +static inline void read(const FileNode& node, Range& value, const Range& default_value) +{ + Point2i temp(value.start, value.end); const Point2i default_temp = Point2i(default_value.start, default_value.end); + read(node, temp, default_temp); + value.start = temp.x; value.end = temp.y; +} + +//! @} + +/** @brief Writes string to a file storage. +@relates cv::FileStorage + */ +CV_EXPORTS FileStorage& operator << (FileStorage& fs, const String& str); + +//! @cond IGNORED + +namespace internal +{ + class CV_EXPORTS WriteStructContext + { + public: + WriteStructContext(FileStorage& _fs, const String& name, int flags, const String& typeName = String()); + ~WriteStructContext(); + private: + FileStorage* fs; + }; + + template class VecWriterProxy + { + public: + VecWriterProxy( FileStorage* _fs ) : fs(_fs) {} + void operator()(const std::vector<_Tp>& vec) const + { + size_t count = vec.size(); + for (size_t i = 0; i < count; i++) + write(*fs, vec[i]); + } + private: + FileStorage* fs; + }; + + template class VecWriterProxy<_Tp, 1> + { + public: + VecWriterProxy( FileStorage* _fs ) : fs(_fs) {} + void operator()(const std::vector<_Tp>& vec) const + { + int _fmt = DataType<_Tp>::fmt; + char fmt[] = { (char)((_fmt >> 8) + '1'), (char)_fmt, '\0' }; + fs->writeRaw(fmt, !vec.empty() ? (uchar*)&vec[0] : 0, vec.size() * sizeof(_Tp)); + } + private: + FileStorage* fs; + }; + + template class VecReaderProxy + { + public: + VecReaderProxy( FileNodeIterator* _it ) : it(_it) {} + void operator()(std::vector<_Tp>& vec, size_t count) const + { + count = std::min(count, it->remaining); + vec.resize(count); + for (size_t i = 0; i < count; i++, ++(*it)) + read(**it, vec[i], _Tp()); + } + private: + FileNodeIterator* it; + }; + + template class VecReaderProxy<_Tp, 1> + { + public: + VecReaderProxy( FileNodeIterator* _it ) : it(_it) {} + void operator()(std::vector<_Tp>& vec, size_t count) const + { + size_t remaining = it->remaining; + size_t cn = DataType<_Tp>::channels; + int _fmt = DataType<_Tp>::fmt; + char fmt[] = { (char)((_fmt >> 8)+'1'), (char)_fmt, '\0' }; + size_t remaining1 = remaining / cn; + count = count < remaining1 ? count : remaining1; + vec.resize(count); + it->readRaw(fmt, !vec.empty() ? (uchar*)&vec[0] : 0, count*sizeof(_Tp)); + } + private: + FileNodeIterator* it; + }; + +} // internal + +//! @endcond + +//! @relates cv::FileStorage +//! @{ + +template static inline +void write(FileStorage& fs, const _Tp& value) +{ + write(fs, String(), value); +} + +template<> inline +void write( FileStorage& fs, const int& value ) +{ + writeScalar(fs, value); +} + +template<> inline +void write( FileStorage& fs, const float& value ) +{ + writeScalar(fs, value); +} + +template<> inline +void write( FileStorage& fs, const double& value ) +{ + writeScalar(fs, value); +} + +template<> inline +void write( FileStorage& fs, const String& value ) +{ + writeScalar(fs, value); +} + +template static inline +void write(FileStorage& fs, const Point_<_Tp>& pt ) +{ + write(fs, pt.x); + write(fs, pt.y); +} + +template static inline +void write(FileStorage& fs, const Point3_<_Tp>& pt ) +{ + write(fs, pt.x); + write(fs, pt.y); + write(fs, pt.z); +} + +template static inline +void write(FileStorage& fs, const Size_<_Tp>& sz ) +{ + write(fs, sz.width); + write(fs, sz.height); +} + +template static inline +void write(FileStorage& fs, const Complex<_Tp>& c ) +{ + write(fs, c.re); + write(fs, c.im); +} + +template static inline +void write(FileStorage& fs, const Rect_<_Tp>& r ) +{ + write(fs, r.x); + write(fs, r.y); + write(fs, r.width); + write(fs, r.height); +} + +template static inline +void write(FileStorage& fs, const Vec<_Tp, cn>& v ) +{ + for(int i = 0; i < cn; i++) + write(fs, v.val[i]); +} + +template static inline +void write(FileStorage& fs, const Scalar_<_Tp>& s ) +{ + write(fs, s.val[0]); + write(fs, s.val[1]); + write(fs, s.val[2]); + write(fs, s.val[3]); +} + +static inline +void write(FileStorage& fs, const Range& r ) +{ + write(fs, r.start); + write(fs, r.end); +} + +template static inline +void write( FileStorage& fs, const std::vector<_Tp>& vec ) +{ + cv::internal::VecWriterProxy<_Tp, DataType<_Tp>::fmt != 0> w(&fs); + w(vec); +} + +template static inline +void write(FileStorage& fs, const String& name, const Point_<_Tp>& pt ) +{ + cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW); + write(fs, pt); +} + +template static inline +void write(FileStorage& fs, const String& name, const Point3_<_Tp>& pt ) +{ + cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW); + write(fs, pt); +} + +template static inline +void write(FileStorage& fs, const String& name, const Size_<_Tp>& sz ) +{ + cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW); + write(fs, sz); +} + +template static inline +void write(FileStorage& fs, const String& name, const Complex<_Tp>& c ) +{ + cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW); + write(fs, c); +} + +template static inline +void write(FileStorage& fs, const String& name, const Rect_<_Tp>& r ) +{ + cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW); + write(fs, r); +} + +template static inline +void write(FileStorage& fs, const String& name, const Vec<_Tp, cn>& v ) +{ + cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW); + write(fs, v); +} + +template static inline +void write(FileStorage& fs, const String& name, const Scalar_<_Tp>& s ) +{ + cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW); + write(fs, s); +} + +static inline +void write(FileStorage& fs, const String& name, const Range& r ) +{ + cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+FileNode::FLOW); + write(fs, r); +} + +template static inline +void write( FileStorage& fs, const String& name, const std::vector<_Tp>& vec ) +{ + cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ+(DataType<_Tp>::fmt != 0 ? FileNode::FLOW : 0)); + write(fs, vec); +} + +template static inline +void write( FileStorage& fs, const String& name, const std::vector< std::vector<_Tp> >& vec ) +{ + cv::internal::WriteStructContext ws(fs, name, FileNode::SEQ); + for(size_t i = 0; i < vec.size(); i++) + { + cv::internal::WriteStructContext ws_(fs, name, FileNode::SEQ+(DataType<_Tp>::fmt != 0 ? FileNode::FLOW : 0)); + write(fs, vec[i]); + } +} + +//! @} FileStorage + +//! @relates cv::FileNode +//! @{ + +static inline +void read(const FileNode& node, bool& value, bool default_value) +{ + int temp; + read(node, temp, (int)default_value); + value = temp != 0; +} + +static inline +void read(const FileNode& node, uchar& value, uchar default_value) +{ + int temp; + read(node, temp, (int)default_value); + value = saturate_cast(temp); +} + +static inline +void read(const FileNode& node, schar& value, schar default_value) +{ + int temp; + read(node, temp, (int)default_value); + value = saturate_cast(temp); +} + +static inline +void read(const FileNode& node, ushort& value, ushort default_value) +{ + int temp; + read(node, temp, (int)default_value); + value = saturate_cast(temp); +} + +static inline +void read(const FileNode& node, short& value, short default_value) +{ + int temp; + read(node, temp, (int)default_value); + value = saturate_cast(temp); +} + +template static inline +void read( FileNodeIterator& it, std::vector<_Tp>& vec, size_t maxCount = (size_t)INT_MAX ) +{ + cv::internal::VecReaderProxy<_Tp, DataType<_Tp>::fmt != 0> r(&it); + r(vec, maxCount); +} + +template static inline +void read( const FileNode& node, std::vector<_Tp>& vec, const std::vector<_Tp>& default_value = std::vector<_Tp>() ) +{ + if(!node.node) + vec = default_value; + else + { + FileNodeIterator it = node.begin(); + read( it, vec ); + } +} + +//! @} FileNode + +//! @relates cv::FileStorage +//! @{ + +/** @brief Writes data to a file storage. + */ +template static inline +FileStorage& operator << (FileStorage& fs, const _Tp& value) +{ + if( !fs.isOpened() ) + return fs; + if( fs.state == FileStorage::NAME_EXPECTED + FileStorage::INSIDE_MAP ) + CV_Error( Error::StsError, "No element name has been given" ); + write( fs, fs.elname, value ); + if( fs.state & FileStorage::INSIDE_MAP ) + fs.state = FileStorage::NAME_EXPECTED + FileStorage::INSIDE_MAP; + return fs; +} + +/** @brief Writes data to a file storage. + */ +static inline +FileStorage& operator << (FileStorage& fs, const char* str) +{ + return (fs << String(str)); +} + +/** @brief Writes data to a file storage. + */ +static inline +FileStorage& operator << (FileStorage& fs, char* value) +{ + return (fs << String(value)); +} + +//! @} FileStorage + +//! @relates cv::FileNodeIterator +//! @{ + +/** @brief Reads data from a file storage. + */ +template static inline +FileNodeIterator& operator >> (FileNodeIterator& it, _Tp& value) +{ + read( *it, value, _Tp()); + return ++it; +} + +/** @brief Reads data from a file storage. + */ +template static inline +FileNodeIterator& operator >> (FileNodeIterator& it, std::vector<_Tp>& vec) +{ + cv::internal::VecReaderProxy<_Tp, DataType<_Tp>::fmt != 0> r(&it); + r(vec, (size_t)INT_MAX); + return it; +} + +//! @} FileNodeIterator + +//! @relates cv::FileNode +//! @{ + +/** @brief Reads data from a file storage. + */ +template static inline +void operator >> (const FileNode& n, _Tp& value) +{ + read( n, value, _Tp()); +} + +/** @brief Reads data from a file storage. + */ +template static inline +void operator >> (const FileNode& n, std::vector<_Tp>& vec) +{ + FileNodeIterator it = n.begin(); + it >> vec; +} + +/** @brief Reads KeyPoint from a file storage. +*/ +//It needs special handling because it contains two types of fields, int & float. +static inline +void operator >> (const FileNode& n, std::vector& vec) +{ + read(n, vec); +} +/** @brief Reads DMatch from a file storage. +*/ +//It needs special handling because it contains two types of fields, int & float. +static inline +void operator >> (const FileNode& n, std::vector& vec) +{ + read(n, vec); +} + +//! @} FileNode + +//! @relates cv::FileNodeIterator +//! @{ + +static inline +bool operator == (const FileNodeIterator& it1, const FileNodeIterator& it2) +{ + return it1.fs == it2.fs && it1.container == it2.container && + it1.reader.ptr == it2.reader.ptr && it1.remaining == it2.remaining; +} + +static inline +bool operator != (const FileNodeIterator& it1, const FileNodeIterator& it2) +{ + return !(it1 == it2); +} + +static inline +ptrdiff_t operator - (const FileNodeIterator& it1, const FileNodeIterator& it2) +{ + return it2.remaining - it1.remaining; +} + +static inline +bool operator < (const FileNodeIterator& it1, const FileNodeIterator& it2) +{ + return it1.remaining > it2.remaining; +} + +//! @} FileNodeIterator + +//! @cond IGNORED + +inline FileNode FileStorage::getFirstTopLevelNode() const { FileNode r = root(); FileNodeIterator it = r.begin(); return it != r.end() ? *it : FileNode(); } +inline FileNode::FileNode() : fs(0), node(0) {} +inline FileNode::FileNode(const CvFileStorage* _fs, const CvFileNode* _node) : fs(_fs), node(_node) {} +inline FileNode::FileNode(const FileNode& _node) : fs(_node.fs), node(_node.node) {} +inline bool FileNode::empty() const { return node == 0; } +inline bool FileNode::isNone() const { return type() == NONE; } +inline bool FileNode::isSeq() const { return type() == SEQ; } +inline bool FileNode::isMap() const { return type() == MAP; } +inline bool FileNode::isInt() const { return type() == INT; } +inline bool FileNode::isReal() const { return type() == REAL; } +inline bool FileNode::isString() const { return type() == STR; } +inline CvFileNode* FileNode::operator *() { return (CvFileNode*)node; } +inline const CvFileNode* FileNode::operator* () const { return node; } +inline FileNode::operator int() const { int value; read(*this, value, 0); return value; } +inline FileNode::operator float() const { float value; read(*this, value, 0.f); return value; } +inline FileNode::operator double() const { double value; read(*this, value, 0.); return value; } +inline FileNode::operator String() const { String value; read(*this, value, value); return value; } +inline double FileNode::real() const { return double(*this); } +inline String FileNode::string() const { return String(*this); } +inline Mat FileNode::mat() const { Mat value; read(*this, value, value); return value; } +inline FileNodeIterator FileNode::begin() const { return FileNodeIterator(fs, node); } +inline FileNodeIterator FileNode::end() const { return FileNodeIterator(fs, node, size()); } +inline void FileNode::readRaw( const String& fmt, uchar* vec, size_t len ) const { begin().readRaw( fmt, vec, len ); } +inline FileNode FileNodeIterator::operator *() const { return FileNode(fs, (const CvFileNode*)(const void*)reader.ptr); } +inline FileNode FileNodeIterator::operator ->() const { return FileNode(fs, (const CvFileNode*)(const void*)reader.ptr); } +inline String::String(const FileNode& fn): cstr_(0), len_(0) { read(fn, *this, *this); } + +//! @endcond + + +CV_EXPORTS void cvStartWriteRawData_Base64(::CvFileStorage * fs, const char* name, int len, const char* dt); + +CV_EXPORTS void cvWriteRawData_Base64(::CvFileStorage * fs, const void* _data, int len); + +CV_EXPORTS void cvEndWriteRawData_Base64(::CvFileStorage * fs); + +CV_EXPORTS void cvWriteMat_Base64(::CvFileStorage* fs, const char* name, const ::CvMat* mat); + +CV_EXPORTS void cvWriteMatND_Base64(::CvFileStorage* fs, const char* name, const ::CvMatND* mat); + +} // cv + +#endif // OPENCV_CORE_PERSISTENCE_HPP diff --git a/thirdparty1/linux/include/opencv2/core/private.cuda.hpp b/thirdparty1/linux/include/opencv2/core/private.cuda.hpp new file mode 100644 index 0000000..01a4ab3 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/private.cuda.hpp @@ -0,0 +1,172 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_PRIVATE_CUDA_HPP +#define OPENCV_CORE_PRIVATE_CUDA_HPP + +#ifndef __OPENCV_BUILD +# error this is a private header which should not be used from outside of the OpenCV library +#endif + +#include "cvconfig.h" + +#include "opencv2/core/cvdef.h" +#include "opencv2/core/base.hpp" + +#include "opencv2/core/cuda.hpp" + +#ifdef HAVE_CUDA +# include +# include +# include +# include "opencv2/core/cuda_stream_accessor.hpp" +# include "opencv2/core/cuda/common.hpp" + +# define NPP_VERSION (NPP_VERSION_MAJOR * 1000 + NPP_VERSION_MINOR * 100 + NPP_VERSION_BUILD) + +# define CUDART_MINIMUM_REQUIRED_VERSION 6050 + +# if (CUDART_VERSION < CUDART_MINIMUM_REQUIRED_VERSION) +# error "Insufficient Cuda Runtime library version, please update it." +# endif + +# if defined(CUDA_ARCH_BIN_OR_PTX_10) +# error "OpenCV CUDA module doesn't support NVIDIA compute capability 1.0" +# endif +#endif + +//! @cond IGNORED + +namespace cv { namespace cuda { + CV_EXPORTS cv::String getNppErrorMessage(int code); + CV_EXPORTS cv::String getCudaDriverApiErrorMessage(int code); + + CV_EXPORTS GpuMat getInputMat(InputArray _src, Stream& stream); + + CV_EXPORTS GpuMat getOutputMat(OutputArray _dst, int rows, int cols, int type, Stream& stream); + static inline GpuMat getOutputMat(OutputArray _dst, Size size, int type, Stream& stream) + { + return getOutputMat(_dst, size.height, size.width, type, stream); + } + + CV_EXPORTS void syncOutput(const GpuMat& dst, OutputArray _dst, Stream& stream); +}} + +#ifndef HAVE_CUDA + +static inline void throw_no_cuda() { CV_Error(cv::Error::GpuNotSupported, "The library is compiled without CUDA support"); } + +#else // HAVE_CUDA + +static inline void throw_no_cuda() { CV_Error(cv::Error::StsNotImplemented, "The called functionality is disabled for current build or platform"); } + +namespace cv { namespace cuda +{ + class CV_EXPORTS BufferPool + { + public: + explicit BufferPool(Stream& stream); + + GpuMat getBuffer(int rows, int cols, int type); + GpuMat getBuffer(Size size, int type) { return getBuffer(size.height, size.width, type); } + + GpuMat::Allocator* getAllocator() const { return allocator_; } + + private: + GpuMat::Allocator* allocator_; + }; + + static inline void checkNppError(int code, const char* file, const int line, const char* func) + { + if (code < 0) + cv::error(cv::Error::GpuApiCallError, getNppErrorMessage(code), func, file, line); + } + + static inline void checkCudaDriverApiError(int code, const char* file, const int line, const char* func) + { + if (code != CUDA_SUCCESS) + cv::error(cv::Error::GpuApiCallError, getCudaDriverApiErrorMessage(code), func, file, line); + } + + template struct NPPTypeTraits; + template<> struct NPPTypeTraits { typedef Npp8u npp_type; }; + template<> struct NPPTypeTraits { typedef Npp8s npp_type; }; + template<> struct NPPTypeTraits { typedef Npp16u npp_type; }; + template<> struct NPPTypeTraits { typedef Npp16s npp_type; }; + template<> struct NPPTypeTraits { typedef Npp32s npp_type; }; + template<> struct NPPTypeTraits { typedef Npp32f npp_type; }; + template<> struct NPPTypeTraits { typedef Npp64f npp_type; }; + + class NppStreamHandler + { + public: + inline explicit NppStreamHandler(Stream& newStream) + { + oldStream = nppGetStream(); + nppSetStream(StreamAccessor::getStream(newStream)); + } + + inline explicit NppStreamHandler(cudaStream_t newStream) + { + oldStream = nppGetStream(); + nppSetStream(newStream); + } + + inline ~NppStreamHandler() + { + nppSetStream(oldStream); + } + + private: + cudaStream_t oldStream; + }; +}} + +#define nppSafeCall(expr) cv::cuda::checkNppError(expr, __FILE__, __LINE__, CV_Func) +#define cuSafeCall(expr) cv::cuda::checkCudaDriverApiError(expr, __FILE__, __LINE__, CV_Func) + +#endif // HAVE_CUDA + +//! @endcond + +#endif // OPENCV_CORE_PRIVATE_CUDA_HPP diff --git a/thirdparty1/linux/include/opencv2/core/private.hpp b/thirdparty1/linux/include/opencv2/core/private.hpp new file mode 100644 index 0000000..e428ecf --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/private.hpp @@ -0,0 +1,585 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_PRIVATE_HPP +#define OPENCV_CORE_PRIVATE_HPP + +#ifndef __OPENCV_BUILD +# error this is a private header which should not be used from outside of the OpenCV library +#endif + +#include "opencv2/core.hpp" +#include "cvconfig.h" + +#ifdef HAVE_EIGEN +# if defined __GNUC__ && defined __APPLE__ +# pragma GCC diagnostic ignored "-Wshadow" +# endif +# include +# include "opencv2/core/eigen.hpp" +#endif + +#ifdef HAVE_TBB +# include "tbb/tbb.h" +# include "tbb/task.h" +# undef min +# undef max +#endif + +#if defined HAVE_FP16 && (defined __F16C__ || (defined _MSC_VER && _MSC_VER >= 1700)) +# include +# define CV_FP16 1 +#elif defined HAVE_FP16 && defined __GNUC__ +# define CV_FP16 1 +#endif + +#ifndef CV_FP16 +# define CV_FP16 0 +#endif + +//! @cond IGNORED + +namespace cv +{ +#ifdef HAVE_TBB + + typedef tbb::blocked_range BlockedRange; + + template static inline + void parallel_for( const BlockedRange& range, const Body& body ) + { + tbb::parallel_for(range, body); + } + + typedef tbb::split Split; + + template static inline + void parallel_reduce( const BlockedRange& range, Body& body ) + { + tbb::parallel_reduce(range, body); + } + + typedef tbb::concurrent_vector ConcurrentRectVector; +#else + class BlockedRange + { + public: + BlockedRange() : _begin(0), _end(0), _grainsize(0) {} + BlockedRange(int b, int e, int g=1) : _begin(b), _end(e), _grainsize(g) {} + int begin() const { return _begin; } + int end() const { return _end; } + int grainsize() const { return _grainsize; } + + protected: + int _begin, _end, _grainsize; + }; + + template static inline + void parallel_for( const BlockedRange& range, const Body& body ) + { + body(range); + } + typedef std::vector ConcurrentRectVector; + + class Split {}; + + template static inline + void parallel_reduce( const BlockedRange& range, Body& body ) + { + body(range); + } +#endif + + // Returns a static string if there is a parallel framework, + // NULL otherwise. + CV_EXPORTS const char* currentParallelFramework(); +} //namespace cv + +/****************************************************************************************\ +* Common declarations * +\****************************************************************************************/ + +/* the alignment of all the allocated buffers */ +#define CV_MALLOC_ALIGN 16 + +/* IEEE754 constants and macros */ +#define CV_TOGGLE_FLT(x) ((x)^((int)(x) < 0 ? 0x7fffffff : 0)) +#define CV_TOGGLE_DBL(x) ((x)^((int64)(x) < 0 ? CV_BIG_INT(0x7fffffffffffffff) : 0)) + +static inline void* cvAlignPtr( const void* ptr, int align = 32 ) +{ + CV_DbgAssert ( (align & (align-1)) == 0 ); + return (void*)( ((size_t)ptr + align - 1) & ~(size_t)(align-1) ); +} + +static inline int cvAlign( int size, int align ) +{ + CV_DbgAssert( (align & (align-1)) == 0 && size < INT_MAX ); + return (size + align - 1) & -align; +} + +#ifdef IPL_DEPTH_8U +static inline cv::Size cvGetMatSize( const CvMat* mat ) +{ + return cv::Size(mat->cols, mat->rows); +} +#endif + +namespace cv +{ +CV_EXPORTS void scalarToRawData(const cv::Scalar& s, void* buf, int type, int unroll_to = 0); +} + +// property implementation macros + +#define CV_IMPL_PROPERTY_RO(type, name, member) \ + inline type get##name() const { return member; } + +#define CV_HELP_IMPL_PROPERTY(r_type, w_type, name, member) \ + CV_IMPL_PROPERTY_RO(r_type, name, member) \ + inline void set##name(w_type val) { member = val; } + +#define CV_HELP_WRAP_PROPERTY(r_type, w_type, name, internal_name, internal_obj) \ + r_type get##name() const { return internal_obj.get##internal_name(); } \ + void set##name(w_type val) { internal_obj.set##internal_name(val); } + +#define CV_IMPL_PROPERTY(type, name, member) CV_HELP_IMPL_PROPERTY(type, type, name, member) +#define CV_IMPL_PROPERTY_S(type, name, member) CV_HELP_IMPL_PROPERTY(type, const type &, name, member) + +#define CV_WRAP_PROPERTY(type, name, internal_name, internal_obj) CV_HELP_WRAP_PROPERTY(type, type, name, internal_name, internal_obj) +#define CV_WRAP_PROPERTY_S(type, name, internal_name, internal_obj) CV_HELP_WRAP_PROPERTY(type, const type &, name, internal_name, internal_obj) + +#define CV_WRAP_SAME_PROPERTY(type, name, internal_obj) CV_WRAP_PROPERTY(type, name, name, internal_obj) +#define CV_WRAP_SAME_PROPERTY_S(type, name, internal_obj) CV_WRAP_PROPERTY_S(type, name, name, internal_obj) + +/****************************************************************************************\ +* Structures and macros for integration with IPP * +\****************************************************************************************/ + +#ifdef HAVE_IPP +#include "ipp.h" + +#ifndef IPP_VERSION_UPDATE // prior to 7.1 +#define IPP_VERSION_UPDATE 0 +#endif + +#define IPP_VERSION_X100 (IPP_VERSION_MAJOR * 100 + IPP_VERSION_MINOR*10 + IPP_VERSION_UPDATE) + +// General define for ipp function disabling +#define IPP_DISABLE_BLOCK 0 + +#ifdef CV_MALLOC_ALIGN +#undef CV_MALLOC_ALIGN +#endif +#define CV_MALLOC_ALIGN 32 // required for AVX optimization + +#define setIppErrorStatus() cv::ipp::setIppStatus(-1, CV_Func, __FILE__, __LINE__) + +static inline IppiSize ippiSize(int width, int height) +{ + IppiSize size = { width, height }; + return size; +} + +static inline IppiSize ippiSize(const cv::Size & _size) +{ + IppiSize size = { _size.width, _size.height }; + return size; +} + +static inline IppiPoint ippiPoint(const cv::Point & _point) +{ + IppiPoint point = { _point.x, _point.y }; + return point; +} + +static inline IppiPoint ippiPoint(int x, int y) +{ + IppiPoint point = { x, y }; + return point; +} + +static inline IppiBorderType ippiGetBorderType(int borderTypeNI) +{ + return borderTypeNI == cv::BORDER_CONSTANT ? ippBorderConst : + borderTypeNI == cv::BORDER_WRAP ? ippBorderWrap : + borderTypeNI == cv::BORDER_REPLICATE ? ippBorderRepl : + borderTypeNI == cv::BORDER_REFLECT_101 ? ippBorderMirror : + borderTypeNI == cv::BORDER_REFLECT ? ippBorderMirrorR : (IppiBorderType)-1; +} + +static inline IppDataType ippiGetDataType(int depth) +{ + return depth == CV_8U ? ipp8u : + depth == CV_8S ? ipp8s : + depth == CV_16U ? ipp16u : + depth == CV_16S ? ipp16s : + depth == CV_32S ? ipp32s : + depth == CV_32F ? ipp32f : + depth == CV_64F ? ipp64f : (IppDataType)-1; +} + +// IPP temporary buffer hepler +template +class IppAutoBuffer +{ +public: + IppAutoBuffer() { m_pBuffer = NULL; } + IppAutoBuffer(int size) { Alloc(size); } + ~IppAutoBuffer() { Release(); } + T* Alloc(int size) { m_pBuffer = (T*)ippMalloc(size); return m_pBuffer; } + void Release() { if(m_pBuffer) ippFree(m_pBuffer); } + inline operator T* () { return (T*)m_pBuffer;} + inline operator const T* () const { return (const T*)m_pBuffer;} +private: + // Disable copy operations + IppAutoBuffer(IppAutoBuffer &) {} + IppAutoBuffer& operator =(const IppAutoBuffer &) {return *this;} + + T* m_pBuffer; +}; + +#else +#define IPP_VERSION_X100 0 +#endif + +#if defined HAVE_IPP +#if IPP_VERSION_X100 >= 900 +#define IPP_INITIALIZER(FEAT) \ +{ \ + if(FEAT) \ + ippSetCpuFeatures(FEAT); \ + else \ + ippInit(); \ +} +#elif IPP_VERSION_X100 >= 800 +#define IPP_INITIALIZER(FEAT) \ +{ \ + ippInit(); \ +} +#else +#define IPP_INITIALIZER(FEAT) \ +{ \ + ippStaticInit(); \ +} +#endif + +#ifdef CVAPI_EXPORTS +#define IPP_INITIALIZER_AUTO \ +struct __IppInitializer__ \ +{ \ + __IppInitializer__() \ + {IPP_INITIALIZER(cv::ipp::getIppFeatures())} \ +}; \ +static struct __IppInitializer__ __ipp_initializer__; +#else +#define IPP_INITIALIZER_AUTO +#endif +#else +#define IPP_INITIALIZER +#define IPP_INITIALIZER_AUTO +#endif + +#define CV_IPP_CHECK_COND (cv::ipp::useIPP()) +#define CV_IPP_CHECK() if(CV_IPP_CHECK_COND) + +#ifdef HAVE_IPP + +#ifdef CV_IPP_RUN_VERBOSE +#define CV_IPP_RUN_(condition, func, ...) \ + { \ + if (cv::ipp::useIPP() && (condition) && (func)) \ + { \ + printf("%s: IPP implementation is running\n", CV_Func); \ + fflush(stdout); \ + CV_IMPL_ADD(CV_IMPL_IPP); \ + return __VA_ARGS__; \ + } \ + else \ + { \ + printf("%s: Plain implementation is running\n", CV_Func); \ + fflush(stdout); \ + } \ + } +#elif defined CV_IPP_RUN_ASSERT +#define CV_IPP_RUN_(condition, func, ...) \ + { \ + if (cv::ipp::useIPP() && (condition)) \ + { \ + if(func) \ + { \ + CV_IMPL_ADD(CV_IMPL_IPP); \ + } \ + else \ + { \ + setIppErrorStatus(); \ + CV_Error(cv::Error::StsAssert, #func); \ + } \ + return __VA_ARGS__; \ + } \ + } +#else +#define CV_IPP_RUN_(condition, func, ...) \ + if (cv::ipp::useIPP() && (condition) && (func)) \ + { \ + CV_IMPL_ADD(CV_IMPL_IPP); \ + return __VA_ARGS__; \ + } +#endif +#define CV_IPP_RUN_FAST(func, ...) \ + if (cv::ipp::useIPP() && (func)) \ + { \ + CV_IMPL_ADD(CV_IMPL_IPP); \ + return __VA_ARGS__; \ + } +#else +#define CV_IPP_RUN_(condition, func, ...) +#define CV_IPP_RUN_FAST(func, ...) +#endif + +#define CV_IPP_RUN(condition, func, ...) CV_IPP_RUN_((condition), (func), __VA_ARGS__) + + +#ifndef IPPI_CALL +# define IPPI_CALL(func) CV_Assert((func) >= 0) +#endif + +/* IPP-compatible return codes */ +typedef enum CvStatus +{ + CV_BADMEMBLOCK_ERR = -113, + CV_INPLACE_NOT_SUPPORTED_ERR= -112, + CV_UNMATCHED_ROI_ERR = -111, + CV_NOTFOUND_ERR = -110, + CV_BADCONVERGENCE_ERR = -109, + + CV_BADDEPTH_ERR = -107, + CV_BADROI_ERR = -106, + CV_BADHEADER_ERR = -105, + CV_UNMATCHED_FORMATS_ERR = -104, + CV_UNSUPPORTED_COI_ERR = -103, + CV_UNSUPPORTED_CHANNELS_ERR = -102, + CV_UNSUPPORTED_DEPTH_ERR = -101, + CV_UNSUPPORTED_FORMAT_ERR = -100, + + CV_BADARG_ERR = -49, //ipp comp + CV_NOTDEFINED_ERR = -48, //ipp comp + + CV_BADCHANNELS_ERR = -47, //ipp comp + CV_BADRANGE_ERR = -44, //ipp comp + CV_BADSTEP_ERR = -29, //ipp comp + + CV_BADFLAG_ERR = -12, + CV_DIV_BY_ZERO_ERR = -11, //ipp comp + CV_BADCOEF_ERR = -10, + + CV_BADFACTOR_ERR = -7, + CV_BADPOINT_ERR = -6, + CV_BADSCALE_ERR = -4, + CV_OUTOFMEM_ERR = -3, + CV_NULLPTR_ERR = -2, + CV_BADSIZE_ERR = -1, + CV_NO_ERR = 0, + CV_OK = CV_NO_ERR +} +CvStatus; + +#ifdef HAVE_TEGRA_OPTIMIZATION +namespace tegra { + +CV_EXPORTS bool useTegra(); +CV_EXPORTS void setUseTegra(bool flag); + +} +#endif + +#ifdef ENABLE_INSTRUMENTATION +namespace cv +{ +namespace instr +{ +struct InstrTLSStruct +{ + InstrTLSStruct() + { + pCurrentNode = NULL; + } + InstrNode* pCurrentNode; +}; + +class InstrStruct +{ +public: + InstrStruct() + { + useInstr = false; + flags = FLAGS_MAPPING; + maxDepth = 0; + + rootNode.m_payload = NodeData("ROOT", NULL, 0, NULL, false, TYPE_GENERAL, IMPL_PLAIN); + tlsStruct.get()->pCurrentNode = &rootNode; + } + + Mutex mutexCreate; + Mutex mutexCount; + + bool useInstr; + int flags; + int maxDepth; + InstrNode rootNode; + TLSData tlsStruct; +}; + +class CV_EXPORTS IntrumentationRegion +{ +public: + IntrumentationRegion(const char* funName, const char* fileName, int lineNum, void *retAddress, bool alwaysExpand, TYPE instrType = TYPE_GENERAL, IMPL implType = IMPL_PLAIN); + ~IntrumentationRegion(); + +private: + bool m_disabled; // region status + uint64 m_regionTicks; +}; + +CV_EXPORTS InstrStruct& getInstrumentStruct(); +InstrTLSStruct& getInstrumentTLSStruct(); +CV_EXPORTS InstrNode* getCurrentNode(); +} +} + +#ifdef _WIN32 +#define CV_INSTRUMENT_GET_RETURN_ADDRESS _ReturnAddress() +#else +#define CV_INSTRUMENT_GET_RETURN_ADDRESS __builtin_extract_return_addr(__builtin_return_address(0)) +#endif + +// Instrument region +#define CV_INSTRUMENT_REGION_META(NAME, ALWAYS_EXPAND, TYPE, IMPL) ::cv::instr::IntrumentationRegion __instr_region__(NAME, __FILE__, __LINE__, CV_INSTRUMENT_GET_RETURN_ADDRESS, ALWAYS_EXPAND, TYPE, IMPL); +#define CV_INSTRUMENT_REGION_CUSTOM_META(NAME, ALWAYS_EXPAND, TYPE, IMPL)\ + void *__curr_address__ = [&]() {return CV_INSTRUMENT_GET_RETURN_ADDRESS;}();\ + ::cv::instr::IntrumentationRegion __instr_region__(NAME, __FILE__, __LINE__, __curr_address__, false, ::cv::instr::TYPE_GENERAL, ::cv::instr::IMPL_PLAIN); +// Instrument functions with non-void return type +#define CV_INSTRUMENT_FUN_RT_META(TYPE, IMPL, ERROR_COND, FUN, ...) ([&]()\ +{\ + if(::cv::instr::useInstrumentation()){\ + ::cv::instr::IntrumentationRegion __instr__(#FUN, __FILE__, __LINE__, NULL, false, TYPE, IMPL);\ + try{\ + auto status = ((FUN)(__VA_ARGS__));\ + if(ERROR_COND){\ + ::cv::instr::getCurrentNode()->m_payload.m_funError = true;\ + CV_INSTRUMENT_MARK_META(IMPL, #FUN " - BadExit");\ + }\ + return status;\ + }catch(...){\ + ::cv::instr::getCurrentNode()->m_payload.m_funError = true;\ + CV_INSTRUMENT_MARK_META(IMPL, #FUN " - BadExit");\ + throw;\ + }\ + }else{\ + return ((FUN)(__VA_ARGS__));\ + }\ +}()) +// Instrument functions with void return type +#define CV_INSTRUMENT_FUN_RV_META(TYPE, IMPL, FUN, ...) ([&]()\ +{\ + if(::cv::instr::useInstrumentation()){\ + ::cv::instr::IntrumentationRegion __instr__(#FUN, __FILE__, __LINE__, NULL, false, TYPE, IMPL);\ + try{\ + (FUN)(__VA_ARGS__);\ + }catch(...){\ + ::cv::instr::getCurrentNode()->m_payload.m_funError = true;\ + CV_INSTRUMENT_MARK_META(IMPL, #FUN "- BadExit");\ + throw;\ + }\ + }else{\ + (FUN)(__VA_ARGS__);\ + }\ +}()) +// Instrumentation information marker +#define CV_INSTRUMENT_MARK_META(IMPL, NAME, ...) {::cv::instr::IntrumentationRegion __instr_mark__(NAME, __FILE__, __LINE__, NULL, false, ::cv::instr::TYPE_MARKER, IMPL);} + +///// General instrumentation +// General OpenCV region instrumentation macro +#define CV_INSTRUMENT_REGION() CV_INSTRUMENT_REGION_META(__FUNCTION__, false, ::cv::instr::TYPE_GENERAL, ::cv::instr::IMPL_PLAIN) +// Custom OpenCV region instrumentation macro +#define CV_INSTRUMENT_REGION_NAME(NAME) CV_INSTRUMENT_REGION_CUSTOM_META(NAME, false, ::cv::instr::TYPE_GENERAL, ::cv::instr::IMPL_PLAIN) +// Instrumentation for parallel_for_ or other regions which forks and gathers threads +#define CV_INSTRUMENT_REGION_MT_FORK() CV_INSTRUMENT_REGION_META(__FUNCTION__, true, ::cv::instr::TYPE_GENERAL, ::cv::instr::IMPL_PLAIN); + +///// IPP instrumentation +// Wrapper region instrumentation macro +#define CV_INSTRUMENT_REGION_IPP() CV_INSTRUMENT_REGION_META(__FUNCTION__, false, ::cv::instr::TYPE_WRAPPER, ::cv::instr::IMPL_IPP) +// Function instrumentation macro +#define CV_INSTRUMENT_FUN_IPP(FUN, ...) CV_INSTRUMENT_FUN_RT_META(::cv::instr::TYPE_FUN, ::cv::instr::IMPL_IPP, status < 0, FUN, __VA_ARGS__) +// Diagnostic markers +#define CV_INSTRUMENT_MARK_IPP(NAME) CV_INSTRUMENT_MARK_META(::cv::instr::IMPL_IPP, NAME) + +///// OpenCL instrumentation +// Wrapper region instrumentation macro +#define CV_INSTRUMENT_REGION_OPENCL() CV_INSTRUMENT_REGION_META(__FUNCTION__, false, ::cv::instr::TYPE_WRAPPER, ::cv::instr::IMPL_OPENCL) +// OpenCL kernel compilation wrapper +#define CV_INSTRUMENT_REGION_OPENCL_COMPILE(NAME) CV_INSTRUMENT_REGION_META(NAME, false, ::cv::instr::TYPE_WRAPPER, ::cv::instr::IMPL_OPENCL) +// OpenCL kernel run wrapper +#define CV_INSTRUMENT_REGION_OPENCL_RUN(NAME) CV_INSTRUMENT_REGION_META(NAME, false, ::cv::instr::TYPE_FUN, ::cv::instr::IMPL_OPENCL) +// Diagnostic markers +#define CV_INSTRUMENT_MARK_OPENCL(NAME) CV_INSTRUMENT_MARK_META(::cv::instr::IMPL_OPENCL, NAME) +#else +#define CV_INSTRUMENT_REGION_META(...) + +#define CV_INSTRUMENT_REGION() +#define CV_INSTRUMENT_REGION_NAME(...) +#define CV_INSTRUMENT_REGION_MT_FORK() + +#define CV_INSTRUMENT_REGION_IPP() +#define CV_INSTRUMENT_FUN_IPP(FUN, ...) ((FUN)(__VA_ARGS__)) +#define CV_INSTRUMENT_MARK_IPP(...) + +#define CV_INSTRUMENT_REGION_OPENCL() +#define CV_INSTRUMENT_REGION_OPENCL_COMPILE(...) +#define CV_INSTRUMENT_REGION_OPENCL_RUN(...) +#define CV_INSTRUMENT_MARK_OPENCL(...) +#endif + +//! @endcond + +#endif // OPENCV_CORE_PRIVATE_HPP diff --git a/thirdparty1/linux/include/opencv2/core/ptr.inl.hpp b/thirdparty1/linux/include/opencv2/core/ptr.inl.hpp new file mode 100644 index 0000000..3c095a1 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/ptr.inl.hpp @@ -0,0 +1,379 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2013, NVIDIA Corporation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the copyright holders or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_PTR_INL_HPP +#define OPENCV_CORE_PTR_INL_HPP + +#include + +//! @cond IGNORED + +namespace cv { + +template +void DefaultDeleter::operator () (Y* p) const +{ + delete p; +} + +namespace detail +{ + +struct PtrOwner +{ + PtrOwner() : refCount(1) + {} + + void incRef() + { + CV_XADD(&refCount, 1); + } + + void decRef() + { + if (CV_XADD(&refCount, -1) == 1) deleteSelf(); + } + +protected: + /* This doesn't really need to be virtual, since PtrOwner is never deleted + directly, but it doesn't hurt and it helps avoid warnings. */ + virtual ~PtrOwner() + {} + + virtual void deleteSelf() = 0; + +private: + unsigned int refCount; + + // noncopyable + PtrOwner(const PtrOwner&); + PtrOwner& operator = (const PtrOwner&); +}; + +template +struct PtrOwnerImpl : PtrOwner +{ + PtrOwnerImpl(Y* p, D d) : owned(p), deleter(d) + {} + + void deleteSelf() + { + deleter(owned); + delete this; + } + +private: + Y* owned; + D deleter; +}; + + +} + +template +Ptr::Ptr() : owner(NULL), stored(NULL) +{} + +template +template +Ptr::Ptr(Y* p) + : owner(p + ? new detail::PtrOwnerImpl >(p, DefaultDeleter()) + : NULL), + stored(p) +{} + +template +template +Ptr::Ptr(Y* p, D d) + : owner(p + ? new detail::PtrOwnerImpl(p, d) + : NULL), + stored(p) +{} + +template +Ptr::Ptr(const Ptr& o) : owner(o.owner), stored(o.stored) +{ + if (owner) owner->incRef(); +} + +template +template +Ptr::Ptr(const Ptr& o) : owner(o.owner), stored(o.stored) +{ + if (owner) owner->incRef(); +} + +template +template +Ptr::Ptr(const Ptr& o, T* p) : owner(o.owner), stored(p) +{ + if (owner) owner->incRef(); +} + +template +Ptr::~Ptr() +{ + release(); +} + +template +Ptr& Ptr::operator = (const Ptr& o) +{ + Ptr(o).swap(*this); + return *this; +} + +template +template +Ptr& Ptr::operator = (const Ptr& o) +{ + Ptr(o).swap(*this); + return *this; +} + +template +void Ptr::release() +{ + if (owner) owner->decRef(); + owner = NULL; + stored = NULL; +} + +template +template +void Ptr::reset(Y* p) +{ + Ptr(p).swap(*this); +} + +template +template +void Ptr::reset(Y* p, D d) +{ + Ptr(p, d).swap(*this); +} + +template +void Ptr::swap(Ptr& o) +{ + std::swap(owner, o.owner); + std::swap(stored, o.stored); +} + +template +T* Ptr::get() const +{ + return stored; +} + +template +typename detail::RefOrVoid::type Ptr::operator * () const +{ + return *stored; +} + +template +T* Ptr::operator -> () const +{ + return stored; +} + +template +Ptr::operator T* () const +{ + return stored; +} + + +template +bool Ptr::empty() const +{ + return !stored; +} + +template +template +Ptr Ptr::staticCast() const +{ + return Ptr(*this, static_cast(stored)); +} + +template +template +Ptr Ptr::constCast() const +{ + return Ptr(*this, const_cast(stored)); +} + +template +template +Ptr Ptr::dynamicCast() const +{ + return Ptr(*this, dynamic_cast(stored)); +} + +#ifdef CV_CXX_MOVE_SEMANTICS + +template +Ptr::Ptr(Ptr&& o) : owner(o.owner), stored(o.stored) +{ + o.owner = NULL; + o.stored = NULL; +} + +template +Ptr& Ptr::operator = (Ptr&& o) +{ + if (this == &o) + return *this; + + release(); + owner = o.owner; + stored = o.stored; + o.owner = NULL; + o.stored = NULL; + return *this; +} + +#endif + + +template +void swap(Ptr& ptr1, Ptr& ptr2){ + ptr1.swap(ptr2); +} + +template +bool operator == (const Ptr& ptr1, const Ptr& ptr2) +{ + return ptr1.get() == ptr2.get(); +} + +template +bool operator != (const Ptr& ptr1, const Ptr& ptr2) +{ + return ptr1.get() != ptr2.get(); +} + +template +Ptr makePtr() +{ + return Ptr(new T()); +} + +template +Ptr makePtr(const A1& a1) +{ + return Ptr(new T(a1)); +} + +template +Ptr makePtr(const A1& a1, const A2& a2) +{ + return Ptr(new T(a1, a2)); +} + +template +Ptr makePtr(const A1& a1, const A2& a2, const A3& a3) +{ + return Ptr(new T(a1, a2, a3)); +} + +template +Ptr makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4) +{ + return Ptr(new T(a1, a2, a3, a4)); +} + +template +Ptr makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5) +{ + return Ptr(new T(a1, a2, a3, a4, a5)); +} + +template +Ptr makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6) +{ + return Ptr(new T(a1, a2, a3, a4, a5, a6)); +} + +template +Ptr makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7) +{ + return Ptr(new T(a1, a2, a3, a4, a5, a6, a7)); +} + +template +Ptr makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8) +{ + return Ptr(new T(a1, a2, a3, a4, a5, a6, a7, a8)); +} + +template +Ptr makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9) +{ + return Ptr(new T(a1, a2, a3, a4, a5, a6, a7, a8, a9)); +} + +template +Ptr makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9, const A10& a10) +{ + return Ptr(new T(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10)); +} + +template +Ptr makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9, const A10& a10, const A11& a11) +{ + return Ptr(new T(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11)); +} + +template +Ptr makePtr(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6, const A7& a7, const A8& a8, const A9& a9, const A10& a10, const A11& a11, const A12& a12) +{ + return Ptr(new T(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12)); +} +} // namespace cv + +//! @endcond + +#endif // OPENCV_CORE_PTR_INL_HPP diff --git a/thirdparty1/linux/include/opencv2/core/saturate.hpp b/thirdparty1/linux/include/opencv2/core/saturate.hpp new file mode 100644 index 0000000..79a9a66 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/saturate.hpp @@ -0,0 +1,150 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2014, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_SATURATE_HPP +#define OPENCV_CORE_SATURATE_HPP + +#include "opencv2/core/cvdef.h" +#include "opencv2/core/fast_math.hpp" + +namespace cv +{ + +//! @addtogroup core_utils +//! @{ + +/////////////// saturate_cast (used in image & signal processing) /////////////////// + +/** @brief Template function for accurate conversion from one primitive type to another. + + The functions saturate_cast resemble the standard C++ cast operations, such as static_cast\() + and others. They perform an efficient and accurate conversion from one primitive type to another + (see the introduction chapter). saturate in the name means that when the input value v is out of the + range of the target type, the result is not formed just by taking low bits of the input, but instead + the value is clipped. For example: + @code + uchar a = saturate_cast(-100); // a = 0 (UCHAR_MIN) + short b = saturate_cast(33333.33333); // b = 32767 (SHRT_MAX) + @endcode + Such clipping is done when the target type is unsigned char , signed char , unsigned short or + signed short . For 32-bit integers, no clipping is done. + + When the parameter is a floating-point value and the target type is an integer (8-, 16- or 32-bit), + the floating-point value is first rounded to the nearest integer and then clipped if needed (when + the target type is 8- or 16-bit). + + This operation is used in the simplest or most complex image processing functions in OpenCV. + + @param v Function parameter. + @sa add, subtract, multiply, divide, Mat::convertTo + */ +template static inline _Tp saturate_cast(uchar v) { return _Tp(v); } +/** @overload */ +template static inline _Tp saturate_cast(schar v) { return _Tp(v); } +/** @overload */ +template static inline _Tp saturate_cast(ushort v) { return _Tp(v); } +/** @overload */ +template static inline _Tp saturate_cast(short v) { return _Tp(v); } +/** @overload */ +template static inline _Tp saturate_cast(unsigned v) { return _Tp(v); } +/** @overload */ +template static inline _Tp saturate_cast(int v) { return _Tp(v); } +/** @overload */ +template static inline _Tp saturate_cast(float v) { return _Tp(v); } +/** @overload */ +template static inline _Tp saturate_cast(double v) { return _Tp(v); } +/** @overload */ +template static inline _Tp saturate_cast(int64 v) { return _Tp(v); } +/** @overload */ +template static inline _Tp saturate_cast(uint64 v) { return _Tp(v); } + +template<> inline uchar saturate_cast(schar v) { return (uchar)std::max((int)v, 0); } +template<> inline uchar saturate_cast(ushort v) { return (uchar)std::min((unsigned)v, (unsigned)UCHAR_MAX); } +template<> inline uchar saturate_cast(int v) { return (uchar)((unsigned)v <= UCHAR_MAX ? v : v > 0 ? UCHAR_MAX : 0); } +template<> inline uchar saturate_cast(short v) { return saturate_cast((int)v); } +template<> inline uchar saturate_cast(unsigned v) { return (uchar)std::min(v, (unsigned)UCHAR_MAX); } +template<> inline uchar saturate_cast(float v) { int iv = cvRound(v); return saturate_cast(iv); } +template<> inline uchar saturate_cast(double v) { int iv = cvRound(v); return saturate_cast(iv); } +template<> inline uchar saturate_cast(int64 v) { return (uchar)((uint64)v <= (uint64)UCHAR_MAX ? v : v > 0 ? UCHAR_MAX : 0); } +template<> inline uchar saturate_cast(uint64 v) { return (uchar)std::min(v, (uint64)UCHAR_MAX); } + +template<> inline schar saturate_cast(uchar v) { return (schar)std::min((int)v, SCHAR_MAX); } +template<> inline schar saturate_cast(ushort v) { return (schar)std::min((unsigned)v, (unsigned)SCHAR_MAX); } +template<> inline schar saturate_cast(int v) { return (schar)((unsigned)(v-SCHAR_MIN) <= (unsigned)UCHAR_MAX ? v : v > 0 ? SCHAR_MAX : SCHAR_MIN); } +template<> inline schar saturate_cast(short v) { return saturate_cast((int)v); } +template<> inline schar saturate_cast(unsigned v) { return (schar)std::min(v, (unsigned)SCHAR_MAX); } +template<> inline schar saturate_cast(float v) { int iv = cvRound(v); return saturate_cast(iv); } +template<> inline schar saturate_cast(double v) { int iv = cvRound(v); return saturate_cast(iv); } +template<> inline schar saturate_cast(int64 v) { return (schar)((uint64)((int64)v-SCHAR_MIN) <= (uint64)UCHAR_MAX ? v : v > 0 ? SCHAR_MAX : SCHAR_MIN); } +template<> inline schar saturate_cast(uint64 v) { return (schar)std::min(v, (uint64)SCHAR_MAX); } + +template<> inline ushort saturate_cast(schar v) { return (ushort)std::max((int)v, 0); } +template<> inline ushort saturate_cast(short v) { return (ushort)std::max((int)v, 0); } +template<> inline ushort saturate_cast(int v) { return (ushort)((unsigned)v <= (unsigned)USHRT_MAX ? v : v > 0 ? USHRT_MAX : 0); } +template<> inline ushort saturate_cast(unsigned v) { return (ushort)std::min(v, (unsigned)USHRT_MAX); } +template<> inline ushort saturate_cast(float v) { int iv = cvRound(v); return saturate_cast(iv); } +template<> inline ushort saturate_cast(double v) { int iv = cvRound(v); return saturate_cast(iv); } +template<> inline ushort saturate_cast(int64 v) { return (ushort)((uint64)v <= (uint64)USHRT_MAX ? v : v > 0 ? USHRT_MAX : 0); } +template<> inline ushort saturate_cast(uint64 v) { return (ushort)std::min(v, (uint64)USHRT_MAX); } + +template<> inline short saturate_cast(ushort v) { return (short)std::min((int)v, SHRT_MAX); } +template<> inline short saturate_cast(int v) { return (short)((unsigned)(v - SHRT_MIN) <= (unsigned)USHRT_MAX ? v : v > 0 ? SHRT_MAX : SHRT_MIN); } +template<> inline short saturate_cast(unsigned v) { return (short)std::min(v, (unsigned)SHRT_MAX); } +template<> inline short saturate_cast(float v) { int iv = cvRound(v); return saturate_cast(iv); } +template<> inline short saturate_cast(double v) { int iv = cvRound(v); return saturate_cast(iv); } +template<> inline short saturate_cast(int64 v) { return (short)((uint64)((int64)v - SHRT_MIN) <= (uint64)USHRT_MAX ? v : v > 0 ? SHRT_MAX : SHRT_MIN); } +template<> inline short saturate_cast(uint64 v) { return (short)std::min(v, (uint64)SHRT_MAX); } + +template<> inline int saturate_cast(float v) { return cvRound(v); } +template<> inline int saturate_cast(double v) { return cvRound(v); } + +// we intentionally do not clip negative numbers, to make -1 become 0xffffffff etc. +template<> inline unsigned saturate_cast(float v) { return cvRound(v); } +template<> inline unsigned saturate_cast(double v) { return cvRound(v); } + +//! @} + +} // cv + +#endif // OPENCV_CORE_SATURATE_HPP diff --git a/thirdparty1/linux/include/opencv2/core/sse_utils.hpp b/thirdparty1/linux/include/opencv2/core/sse_utils.hpp new file mode 100644 index 0000000..69efffe --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/sse_utils.hpp @@ -0,0 +1,652 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2015, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_SSE_UTILS_HPP +#define OPENCV_CORE_SSE_UTILS_HPP + +#ifndef __cplusplus +# error sse_utils.hpp header must be compiled as C++ +#endif + +#include "opencv2/core/cvdef.h" + +//! @addtogroup core_utils_sse +//! @{ + +#if CV_SSE2 + +inline void _mm_deinterleave_epi8(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, __m128i & v_g1) +{ + __m128i layer1_chunk0 = _mm_unpacklo_epi8(v_r0, v_g0); + __m128i layer1_chunk1 = _mm_unpackhi_epi8(v_r0, v_g0); + __m128i layer1_chunk2 = _mm_unpacklo_epi8(v_r1, v_g1); + __m128i layer1_chunk3 = _mm_unpackhi_epi8(v_r1, v_g1); + + __m128i layer2_chunk0 = _mm_unpacklo_epi8(layer1_chunk0, layer1_chunk2); + __m128i layer2_chunk1 = _mm_unpackhi_epi8(layer1_chunk0, layer1_chunk2); + __m128i layer2_chunk2 = _mm_unpacklo_epi8(layer1_chunk1, layer1_chunk3); + __m128i layer2_chunk3 = _mm_unpackhi_epi8(layer1_chunk1, layer1_chunk3); + + __m128i layer3_chunk0 = _mm_unpacklo_epi8(layer2_chunk0, layer2_chunk2); + __m128i layer3_chunk1 = _mm_unpackhi_epi8(layer2_chunk0, layer2_chunk2); + __m128i layer3_chunk2 = _mm_unpacklo_epi8(layer2_chunk1, layer2_chunk3); + __m128i layer3_chunk3 = _mm_unpackhi_epi8(layer2_chunk1, layer2_chunk3); + + __m128i layer4_chunk0 = _mm_unpacklo_epi8(layer3_chunk0, layer3_chunk2); + __m128i layer4_chunk1 = _mm_unpackhi_epi8(layer3_chunk0, layer3_chunk2); + __m128i layer4_chunk2 = _mm_unpacklo_epi8(layer3_chunk1, layer3_chunk3); + __m128i layer4_chunk3 = _mm_unpackhi_epi8(layer3_chunk1, layer3_chunk3); + + v_r0 = _mm_unpacklo_epi8(layer4_chunk0, layer4_chunk2); + v_r1 = _mm_unpackhi_epi8(layer4_chunk0, layer4_chunk2); + v_g0 = _mm_unpacklo_epi8(layer4_chunk1, layer4_chunk3); + v_g1 = _mm_unpackhi_epi8(layer4_chunk1, layer4_chunk3); +} + +inline void _mm_deinterleave_epi8(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, + __m128i & v_g1, __m128i & v_b0, __m128i & v_b1) +{ + __m128i layer1_chunk0 = _mm_unpacklo_epi8(v_r0, v_g1); + __m128i layer1_chunk1 = _mm_unpackhi_epi8(v_r0, v_g1); + __m128i layer1_chunk2 = _mm_unpacklo_epi8(v_r1, v_b0); + __m128i layer1_chunk3 = _mm_unpackhi_epi8(v_r1, v_b0); + __m128i layer1_chunk4 = _mm_unpacklo_epi8(v_g0, v_b1); + __m128i layer1_chunk5 = _mm_unpackhi_epi8(v_g0, v_b1); + + __m128i layer2_chunk0 = _mm_unpacklo_epi8(layer1_chunk0, layer1_chunk3); + __m128i layer2_chunk1 = _mm_unpackhi_epi8(layer1_chunk0, layer1_chunk3); + __m128i layer2_chunk2 = _mm_unpacklo_epi8(layer1_chunk1, layer1_chunk4); + __m128i layer2_chunk3 = _mm_unpackhi_epi8(layer1_chunk1, layer1_chunk4); + __m128i layer2_chunk4 = _mm_unpacklo_epi8(layer1_chunk2, layer1_chunk5); + __m128i layer2_chunk5 = _mm_unpackhi_epi8(layer1_chunk2, layer1_chunk5); + + __m128i layer3_chunk0 = _mm_unpacklo_epi8(layer2_chunk0, layer2_chunk3); + __m128i layer3_chunk1 = _mm_unpackhi_epi8(layer2_chunk0, layer2_chunk3); + __m128i layer3_chunk2 = _mm_unpacklo_epi8(layer2_chunk1, layer2_chunk4); + __m128i layer3_chunk3 = _mm_unpackhi_epi8(layer2_chunk1, layer2_chunk4); + __m128i layer3_chunk4 = _mm_unpacklo_epi8(layer2_chunk2, layer2_chunk5); + __m128i layer3_chunk5 = _mm_unpackhi_epi8(layer2_chunk2, layer2_chunk5); + + __m128i layer4_chunk0 = _mm_unpacklo_epi8(layer3_chunk0, layer3_chunk3); + __m128i layer4_chunk1 = _mm_unpackhi_epi8(layer3_chunk0, layer3_chunk3); + __m128i layer4_chunk2 = _mm_unpacklo_epi8(layer3_chunk1, layer3_chunk4); + __m128i layer4_chunk3 = _mm_unpackhi_epi8(layer3_chunk1, layer3_chunk4); + __m128i layer4_chunk4 = _mm_unpacklo_epi8(layer3_chunk2, layer3_chunk5); + __m128i layer4_chunk5 = _mm_unpackhi_epi8(layer3_chunk2, layer3_chunk5); + + v_r0 = _mm_unpacklo_epi8(layer4_chunk0, layer4_chunk3); + v_r1 = _mm_unpackhi_epi8(layer4_chunk0, layer4_chunk3); + v_g0 = _mm_unpacklo_epi8(layer4_chunk1, layer4_chunk4); + v_g1 = _mm_unpackhi_epi8(layer4_chunk1, layer4_chunk4); + v_b0 = _mm_unpacklo_epi8(layer4_chunk2, layer4_chunk5); + v_b1 = _mm_unpackhi_epi8(layer4_chunk2, layer4_chunk5); +} + +inline void _mm_deinterleave_epi8(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, __m128i & v_g1, + __m128i & v_b0, __m128i & v_b1, __m128i & v_a0, __m128i & v_a1) +{ + __m128i layer1_chunk0 = _mm_unpacklo_epi8(v_r0, v_b0); + __m128i layer1_chunk1 = _mm_unpackhi_epi8(v_r0, v_b0); + __m128i layer1_chunk2 = _mm_unpacklo_epi8(v_r1, v_b1); + __m128i layer1_chunk3 = _mm_unpackhi_epi8(v_r1, v_b1); + __m128i layer1_chunk4 = _mm_unpacklo_epi8(v_g0, v_a0); + __m128i layer1_chunk5 = _mm_unpackhi_epi8(v_g0, v_a0); + __m128i layer1_chunk6 = _mm_unpacklo_epi8(v_g1, v_a1); + __m128i layer1_chunk7 = _mm_unpackhi_epi8(v_g1, v_a1); + + __m128i layer2_chunk0 = _mm_unpacklo_epi8(layer1_chunk0, layer1_chunk4); + __m128i layer2_chunk1 = _mm_unpackhi_epi8(layer1_chunk0, layer1_chunk4); + __m128i layer2_chunk2 = _mm_unpacklo_epi8(layer1_chunk1, layer1_chunk5); + __m128i layer2_chunk3 = _mm_unpackhi_epi8(layer1_chunk1, layer1_chunk5); + __m128i layer2_chunk4 = _mm_unpacklo_epi8(layer1_chunk2, layer1_chunk6); + __m128i layer2_chunk5 = _mm_unpackhi_epi8(layer1_chunk2, layer1_chunk6); + __m128i layer2_chunk6 = _mm_unpacklo_epi8(layer1_chunk3, layer1_chunk7); + __m128i layer2_chunk7 = _mm_unpackhi_epi8(layer1_chunk3, layer1_chunk7); + + __m128i layer3_chunk0 = _mm_unpacklo_epi8(layer2_chunk0, layer2_chunk4); + __m128i layer3_chunk1 = _mm_unpackhi_epi8(layer2_chunk0, layer2_chunk4); + __m128i layer3_chunk2 = _mm_unpacklo_epi8(layer2_chunk1, layer2_chunk5); + __m128i layer3_chunk3 = _mm_unpackhi_epi8(layer2_chunk1, layer2_chunk5); + __m128i layer3_chunk4 = _mm_unpacklo_epi8(layer2_chunk2, layer2_chunk6); + __m128i layer3_chunk5 = _mm_unpackhi_epi8(layer2_chunk2, layer2_chunk6); + __m128i layer3_chunk6 = _mm_unpacklo_epi8(layer2_chunk3, layer2_chunk7); + __m128i layer3_chunk7 = _mm_unpackhi_epi8(layer2_chunk3, layer2_chunk7); + + __m128i layer4_chunk0 = _mm_unpacklo_epi8(layer3_chunk0, layer3_chunk4); + __m128i layer4_chunk1 = _mm_unpackhi_epi8(layer3_chunk0, layer3_chunk4); + __m128i layer4_chunk2 = _mm_unpacklo_epi8(layer3_chunk1, layer3_chunk5); + __m128i layer4_chunk3 = _mm_unpackhi_epi8(layer3_chunk1, layer3_chunk5); + __m128i layer4_chunk4 = _mm_unpacklo_epi8(layer3_chunk2, layer3_chunk6); + __m128i layer4_chunk5 = _mm_unpackhi_epi8(layer3_chunk2, layer3_chunk6); + __m128i layer4_chunk6 = _mm_unpacklo_epi8(layer3_chunk3, layer3_chunk7); + __m128i layer4_chunk7 = _mm_unpackhi_epi8(layer3_chunk3, layer3_chunk7); + + v_r0 = _mm_unpacklo_epi8(layer4_chunk0, layer4_chunk4); + v_r1 = _mm_unpackhi_epi8(layer4_chunk0, layer4_chunk4); + v_g0 = _mm_unpacklo_epi8(layer4_chunk1, layer4_chunk5); + v_g1 = _mm_unpackhi_epi8(layer4_chunk1, layer4_chunk5); + v_b0 = _mm_unpacklo_epi8(layer4_chunk2, layer4_chunk6); + v_b1 = _mm_unpackhi_epi8(layer4_chunk2, layer4_chunk6); + v_a0 = _mm_unpacklo_epi8(layer4_chunk3, layer4_chunk7); + v_a1 = _mm_unpackhi_epi8(layer4_chunk3, layer4_chunk7); +} + +inline void _mm_interleave_epi8(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, __m128i & v_g1) +{ + __m128i v_mask = _mm_set1_epi16(0x00ff); + + __m128i layer4_chunk0 = _mm_packus_epi16(_mm_and_si128(v_r0, v_mask), _mm_and_si128(v_r1, v_mask)); + __m128i layer4_chunk2 = _mm_packus_epi16(_mm_srli_epi16(v_r0, 8), _mm_srli_epi16(v_r1, 8)); + __m128i layer4_chunk1 = _mm_packus_epi16(_mm_and_si128(v_g0, v_mask), _mm_and_si128(v_g1, v_mask)); + __m128i layer4_chunk3 = _mm_packus_epi16(_mm_srli_epi16(v_g0, 8), _mm_srli_epi16(v_g1, 8)); + + __m128i layer3_chunk0 = _mm_packus_epi16(_mm_and_si128(layer4_chunk0, v_mask), _mm_and_si128(layer4_chunk1, v_mask)); + __m128i layer3_chunk2 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk0, 8), _mm_srli_epi16(layer4_chunk1, 8)); + __m128i layer3_chunk1 = _mm_packus_epi16(_mm_and_si128(layer4_chunk2, v_mask), _mm_and_si128(layer4_chunk3, v_mask)); + __m128i layer3_chunk3 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk2, 8), _mm_srli_epi16(layer4_chunk3, 8)); + + __m128i layer2_chunk0 = _mm_packus_epi16(_mm_and_si128(layer3_chunk0, v_mask), _mm_and_si128(layer3_chunk1, v_mask)); + __m128i layer2_chunk2 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk0, 8), _mm_srli_epi16(layer3_chunk1, 8)); + __m128i layer2_chunk1 = _mm_packus_epi16(_mm_and_si128(layer3_chunk2, v_mask), _mm_and_si128(layer3_chunk3, v_mask)); + __m128i layer2_chunk3 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk2, 8), _mm_srli_epi16(layer3_chunk3, 8)); + + __m128i layer1_chunk0 = _mm_packus_epi16(_mm_and_si128(layer2_chunk0, v_mask), _mm_and_si128(layer2_chunk1, v_mask)); + __m128i layer1_chunk2 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk0, 8), _mm_srli_epi16(layer2_chunk1, 8)); + __m128i layer1_chunk1 = _mm_packus_epi16(_mm_and_si128(layer2_chunk2, v_mask), _mm_and_si128(layer2_chunk3, v_mask)); + __m128i layer1_chunk3 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk2, 8), _mm_srli_epi16(layer2_chunk3, 8)); + + v_r0 = _mm_packus_epi16(_mm_and_si128(layer1_chunk0, v_mask), _mm_and_si128(layer1_chunk1, v_mask)); + v_g0 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk0, 8), _mm_srli_epi16(layer1_chunk1, 8)); + v_r1 = _mm_packus_epi16(_mm_and_si128(layer1_chunk2, v_mask), _mm_and_si128(layer1_chunk3, v_mask)); + v_g1 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk2, 8), _mm_srli_epi16(layer1_chunk3, 8)); +} + +inline void _mm_interleave_epi8(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, + __m128i & v_g1, __m128i & v_b0, __m128i & v_b1) +{ + __m128i v_mask = _mm_set1_epi16(0x00ff); + + __m128i layer4_chunk0 = _mm_packus_epi16(_mm_and_si128(v_r0, v_mask), _mm_and_si128(v_r1, v_mask)); + __m128i layer4_chunk3 = _mm_packus_epi16(_mm_srli_epi16(v_r0, 8), _mm_srli_epi16(v_r1, 8)); + __m128i layer4_chunk1 = _mm_packus_epi16(_mm_and_si128(v_g0, v_mask), _mm_and_si128(v_g1, v_mask)); + __m128i layer4_chunk4 = _mm_packus_epi16(_mm_srli_epi16(v_g0, 8), _mm_srli_epi16(v_g1, 8)); + __m128i layer4_chunk2 = _mm_packus_epi16(_mm_and_si128(v_b0, v_mask), _mm_and_si128(v_b1, v_mask)); + __m128i layer4_chunk5 = _mm_packus_epi16(_mm_srli_epi16(v_b0, 8), _mm_srli_epi16(v_b1, 8)); + + __m128i layer3_chunk0 = _mm_packus_epi16(_mm_and_si128(layer4_chunk0, v_mask), _mm_and_si128(layer4_chunk1, v_mask)); + __m128i layer3_chunk3 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk0, 8), _mm_srli_epi16(layer4_chunk1, 8)); + __m128i layer3_chunk1 = _mm_packus_epi16(_mm_and_si128(layer4_chunk2, v_mask), _mm_and_si128(layer4_chunk3, v_mask)); + __m128i layer3_chunk4 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk2, 8), _mm_srli_epi16(layer4_chunk3, 8)); + __m128i layer3_chunk2 = _mm_packus_epi16(_mm_and_si128(layer4_chunk4, v_mask), _mm_and_si128(layer4_chunk5, v_mask)); + __m128i layer3_chunk5 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk4, 8), _mm_srli_epi16(layer4_chunk5, 8)); + + __m128i layer2_chunk0 = _mm_packus_epi16(_mm_and_si128(layer3_chunk0, v_mask), _mm_and_si128(layer3_chunk1, v_mask)); + __m128i layer2_chunk3 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk0, 8), _mm_srli_epi16(layer3_chunk1, 8)); + __m128i layer2_chunk1 = _mm_packus_epi16(_mm_and_si128(layer3_chunk2, v_mask), _mm_and_si128(layer3_chunk3, v_mask)); + __m128i layer2_chunk4 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk2, 8), _mm_srli_epi16(layer3_chunk3, 8)); + __m128i layer2_chunk2 = _mm_packus_epi16(_mm_and_si128(layer3_chunk4, v_mask), _mm_and_si128(layer3_chunk5, v_mask)); + __m128i layer2_chunk5 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk4, 8), _mm_srli_epi16(layer3_chunk5, 8)); + + __m128i layer1_chunk0 = _mm_packus_epi16(_mm_and_si128(layer2_chunk0, v_mask), _mm_and_si128(layer2_chunk1, v_mask)); + __m128i layer1_chunk3 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk0, 8), _mm_srli_epi16(layer2_chunk1, 8)); + __m128i layer1_chunk1 = _mm_packus_epi16(_mm_and_si128(layer2_chunk2, v_mask), _mm_and_si128(layer2_chunk3, v_mask)); + __m128i layer1_chunk4 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk2, 8), _mm_srli_epi16(layer2_chunk3, 8)); + __m128i layer1_chunk2 = _mm_packus_epi16(_mm_and_si128(layer2_chunk4, v_mask), _mm_and_si128(layer2_chunk5, v_mask)); + __m128i layer1_chunk5 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk4, 8), _mm_srli_epi16(layer2_chunk5, 8)); + + v_r0 = _mm_packus_epi16(_mm_and_si128(layer1_chunk0, v_mask), _mm_and_si128(layer1_chunk1, v_mask)); + v_g1 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk0, 8), _mm_srli_epi16(layer1_chunk1, 8)); + v_r1 = _mm_packus_epi16(_mm_and_si128(layer1_chunk2, v_mask), _mm_and_si128(layer1_chunk3, v_mask)); + v_b0 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk2, 8), _mm_srli_epi16(layer1_chunk3, 8)); + v_g0 = _mm_packus_epi16(_mm_and_si128(layer1_chunk4, v_mask), _mm_and_si128(layer1_chunk5, v_mask)); + v_b1 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk4, 8), _mm_srli_epi16(layer1_chunk5, 8)); +} + +inline void _mm_interleave_epi8(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, __m128i & v_g1, + __m128i & v_b0, __m128i & v_b1, __m128i & v_a0, __m128i & v_a1) +{ + __m128i v_mask = _mm_set1_epi16(0x00ff); + + __m128i layer4_chunk0 = _mm_packus_epi16(_mm_and_si128(v_r0, v_mask), _mm_and_si128(v_r1, v_mask)); + __m128i layer4_chunk4 = _mm_packus_epi16(_mm_srli_epi16(v_r0, 8), _mm_srli_epi16(v_r1, 8)); + __m128i layer4_chunk1 = _mm_packus_epi16(_mm_and_si128(v_g0, v_mask), _mm_and_si128(v_g1, v_mask)); + __m128i layer4_chunk5 = _mm_packus_epi16(_mm_srli_epi16(v_g0, 8), _mm_srli_epi16(v_g1, 8)); + __m128i layer4_chunk2 = _mm_packus_epi16(_mm_and_si128(v_b0, v_mask), _mm_and_si128(v_b1, v_mask)); + __m128i layer4_chunk6 = _mm_packus_epi16(_mm_srli_epi16(v_b0, 8), _mm_srli_epi16(v_b1, 8)); + __m128i layer4_chunk3 = _mm_packus_epi16(_mm_and_si128(v_a0, v_mask), _mm_and_si128(v_a1, v_mask)); + __m128i layer4_chunk7 = _mm_packus_epi16(_mm_srli_epi16(v_a0, 8), _mm_srli_epi16(v_a1, 8)); + + __m128i layer3_chunk0 = _mm_packus_epi16(_mm_and_si128(layer4_chunk0, v_mask), _mm_and_si128(layer4_chunk1, v_mask)); + __m128i layer3_chunk4 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk0, 8), _mm_srli_epi16(layer4_chunk1, 8)); + __m128i layer3_chunk1 = _mm_packus_epi16(_mm_and_si128(layer4_chunk2, v_mask), _mm_and_si128(layer4_chunk3, v_mask)); + __m128i layer3_chunk5 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk2, 8), _mm_srli_epi16(layer4_chunk3, 8)); + __m128i layer3_chunk2 = _mm_packus_epi16(_mm_and_si128(layer4_chunk4, v_mask), _mm_and_si128(layer4_chunk5, v_mask)); + __m128i layer3_chunk6 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk4, 8), _mm_srli_epi16(layer4_chunk5, 8)); + __m128i layer3_chunk3 = _mm_packus_epi16(_mm_and_si128(layer4_chunk6, v_mask), _mm_and_si128(layer4_chunk7, v_mask)); + __m128i layer3_chunk7 = _mm_packus_epi16(_mm_srli_epi16(layer4_chunk6, 8), _mm_srli_epi16(layer4_chunk7, 8)); + + __m128i layer2_chunk0 = _mm_packus_epi16(_mm_and_si128(layer3_chunk0, v_mask), _mm_and_si128(layer3_chunk1, v_mask)); + __m128i layer2_chunk4 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk0, 8), _mm_srli_epi16(layer3_chunk1, 8)); + __m128i layer2_chunk1 = _mm_packus_epi16(_mm_and_si128(layer3_chunk2, v_mask), _mm_and_si128(layer3_chunk3, v_mask)); + __m128i layer2_chunk5 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk2, 8), _mm_srli_epi16(layer3_chunk3, 8)); + __m128i layer2_chunk2 = _mm_packus_epi16(_mm_and_si128(layer3_chunk4, v_mask), _mm_and_si128(layer3_chunk5, v_mask)); + __m128i layer2_chunk6 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk4, 8), _mm_srli_epi16(layer3_chunk5, 8)); + __m128i layer2_chunk3 = _mm_packus_epi16(_mm_and_si128(layer3_chunk6, v_mask), _mm_and_si128(layer3_chunk7, v_mask)); + __m128i layer2_chunk7 = _mm_packus_epi16(_mm_srli_epi16(layer3_chunk6, 8), _mm_srli_epi16(layer3_chunk7, 8)); + + __m128i layer1_chunk0 = _mm_packus_epi16(_mm_and_si128(layer2_chunk0, v_mask), _mm_and_si128(layer2_chunk1, v_mask)); + __m128i layer1_chunk4 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk0, 8), _mm_srli_epi16(layer2_chunk1, 8)); + __m128i layer1_chunk1 = _mm_packus_epi16(_mm_and_si128(layer2_chunk2, v_mask), _mm_and_si128(layer2_chunk3, v_mask)); + __m128i layer1_chunk5 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk2, 8), _mm_srli_epi16(layer2_chunk3, 8)); + __m128i layer1_chunk2 = _mm_packus_epi16(_mm_and_si128(layer2_chunk4, v_mask), _mm_and_si128(layer2_chunk5, v_mask)); + __m128i layer1_chunk6 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk4, 8), _mm_srli_epi16(layer2_chunk5, 8)); + __m128i layer1_chunk3 = _mm_packus_epi16(_mm_and_si128(layer2_chunk6, v_mask), _mm_and_si128(layer2_chunk7, v_mask)); + __m128i layer1_chunk7 = _mm_packus_epi16(_mm_srli_epi16(layer2_chunk6, 8), _mm_srli_epi16(layer2_chunk7, 8)); + + v_r0 = _mm_packus_epi16(_mm_and_si128(layer1_chunk0, v_mask), _mm_and_si128(layer1_chunk1, v_mask)); + v_b0 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk0, 8), _mm_srli_epi16(layer1_chunk1, 8)); + v_r1 = _mm_packus_epi16(_mm_and_si128(layer1_chunk2, v_mask), _mm_and_si128(layer1_chunk3, v_mask)); + v_b1 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk2, 8), _mm_srli_epi16(layer1_chunk3, 8)); + v_g0 = _mm_packus_epi16(_mm_and_si128(layer1_chunk4, v_mask), _mm_and_si128(layer1_chunk5, v_mask)); + v_a0 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk4, 8), _mm_srli_epi16(layer1_chunk5, 8)); + v_g1 = _mm_packus_epi16(_mm_and_si128(layer1_chunk6, v_mask), _mm_and_si128(layer1_chunk7, v_mask)); + v_a1 = _mm_packus_epi16(_mm_srli_epi16(layer1_chunk6, 8), _mm_srli_epi16(layer1_chunk7, 8)); +} + +inline void _mm_deinterleave_epi16(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, __m128i & v_g1) +{ + __m128i layer1_chunk0 = _mm_unpacklo_epi16(v_r0, v_g0); + __m128i layer1_chunk1 = _mm_unpackhi_epi16(v_r0, v_g0); + __m128i layer1_chunk2 = _mm_unpacklo_epi16(v_r1, v_g1); + __m128i layer1_chunk3 = _mm_unpackhi_epi16(v_r1, v_g1); + + __m128i layer2_chunk0 = _mm_unpacklo_epi16(layer1_chunk0, layer1_chunk2); + __m128i layer2_chunk1 = _mm_unpackhi_epi16(layer1_chunk0, layer1_chunk2); + __m128i layer2_chunk2 = _mm_unpacklo_epi16(layer1_chunk1, layer1_chunk3); + __m128i layer2_chunk3 = _mm_unpackhi_epi16(layer1_chunk1, layer1_chunk3); + + __m128i layer3_chunk0 = _mm_unpacklo_epi16(layer2_chunk0, layer2_chunk2); + __m128i layer3_chunk1 = _mm_unpackhi_epi16(layer2_chunk0, layer2_chunk2); + __m128i layer3_chunk2 = _mm_unpacklo_epi16(layer2_chunk1, layer2_chunk3); + __m128i layer3_chunk3 = _mm_unpackhi_epi16(layer2_chunk1, layer2_chunk3); + + v_r0 = _mm_unpacklo_epi16(layer3_chunk0, layer3_chunk2); + v_r1 = _mm_unpackhi_epi16(layer3_chunk0, layer3_chunk2); + v_g0 = _mm_unpacklo_epi16(layer3_chunk1, layer3_chunk3); + v_g1 = _mm_unpackhi_epi16(layer3_chunk1, layer3_chunk3); +} + +inline void _mm_deinterleave_epi16(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, + __m128i & v_g1, __m128i & v_b0, __m128i & v_b1) +{ + __m128i layer1_chunk0 = _mm_unpacklo_epi16(v_r0, v_g1); + __m128i layer1_chunk1 = _mm_unpackhi_epi16(v_r0, v_g1); + __m128i layer1_chunk2 = _mm_unpacklo_epi16(v_r1, v_b0); + __m128i layer1_chunk3 = _mm_unpackhi_epi16(v_r1, v_b0); + __m128i layer1_chunk4 = _mm_unpacklo_epi16(v_g0, v_b1); + __m128i layer1_chunk5 = _mm_unpackhi_epi16(v_g0, v_b1); + + __m128i layer2_chunk0 = _mm_unpacklo_epi16(layer1_chunk0, layer1_chunk3); + __m128i layer2_chunk1 = _mm_unpackhi_epi16(layer1_chunk0, layer1_chunk3); + __m128i layer2_chunk2 = _mm_unpacklo_epi16(layer1_chunk1, layer1_chunk4); + __m128i layer2_chunk3 = _mm_unpackhi_epi16(layer1_chunk1, layer1_chunk4); + __m128i layer2_chunk4 = _mm_unpacklo_epi16(layer1_chunk2, layer1_chunk5); + __m128i layer2_chunk5 = _mm_unpackhi_epi16(layer1_chunk2, layer1_chunk5); + + __m128i layer3_chunk0 = _mm_unpacklo_epi16(layer2_chunk0, layer2_chunk3); + __m128i layer3_chunk1 = _mm_unpackhi_epi16(layer2_chunk0, layer2_chunk3); + __m128i layer3_chunk2 = _mm_unpacklo_epi16(layer2_chunk1, layer2_chunk4); + __m128i layer3_chunk3 = _mm_unpackhi_epi16(layer2_chunk1, layer2_chunk4); + __m128i layer3_chunk4 = _mm_unpacklo_epi16(layer2_chunk2, layer2_chunk5); + __m128i layer3_chunk5 = _mm_unpackhi_epi16(layer2_chunk2, layer2_chunk5); + + v_r0 = _mm_unpacklo_epi16(layer3_chunk0, layer3_chunk3); + v_r1 = _mm_unpackhi_epi16(layer3_chunk0, layer3_chunk3); + v_g0 = _mm_unpacklo_epi16(layer3_chunk1, layer3_chunk4); + v_g1 = _mm_unpackhi_epi16(layer3_chunk1, layer3_chunk4); + v_b0 = _mm_unpacklo_epi16(layer3_chunk2, layer3_chunk5); + v_b1 = _mm_unpackhi_epi16(layer3_chunk2, layer3_chunk5); +} + +inline void _mm_deinterleave_epi16(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, __m128i & v_g1, + __m128i & v_b0, __m128i & v_b1, __m128i & v_a0, __m128i & v_a1) +{ + __m128i layer1_chunk0 = _mm_unpacklo_epi16(v_r0, v_b0); + __m128i layer1_chunk1 = _mm_unpackhi_epi16(v_r0, v_b0); + __m128i layer1_chunk2 = _mm_unpacklo_epi16(v_r1, v_b1); + __m128i layer1_chunk3 = _mm_unpackhi_epi16(v_r1, v_b1); + __m128i layer1_chunk4 = _mm_unpacklo_epi16(v_g0, v_a0); + __m128i layer1_chunk5 = _mm_unpackhi_epi16(v_g0, v_a0); + __m128i layer1_chunk6 = _mm_unpacklo_epi16(v_g1, v_a1); + __m128i layer1_chunk7 = _mm_unpackhi_epi16(v_g1, v_a1); + + __m128i layer2_chunk0 = _mm_unpacklo_epi16(layer1_chunk0, layer1_chunk4); + __m128i layer2_chunk1 = _mm_unpackhi_epi16(layer1_chunk0, layer1_chunk4); + __m128i layer2_chunk2 = _mm_unpacklo_epi16(layer1_chunk1, layer1_chunk5); + __m128i layer2_chunk3 = _mm_unpackhi_epi16(layer1_chunk1, layer1_chunk5); + __m128i layer2_chunk4 = _mm_unpacklo_epi16(layer1_chunk2, layer1_chunk6); + __m128i layer2_chunk5 = _mm_unpackhi_epi16(layer1_chunk2, layer1_chunk6); + __m128i layer2_chunk6 = _mm_unpacklo_epi16(layer1_chunk3, layer1_chunk7); + __m128i layer2_chunk7 = _mm_unpackhi_epi16(layer1_chunk3, layer1_chunk7); + + __m128i layer3_chunk0 = _mm_unpacklo_epi16(layer2_chunk0, layer2_chunk4); + __m128i layer3_chunk1 = _mm_unpackhi_epi16(layer2_chunk0, layer2_chunk4); + __m128i layer3_chunk2 = _mm_unpacklo_epi16(layer2_chunk1, layer2_chunk5); + __m128i layer3_chunk3 = _mm_unpackhi_epi16(layer2_chunk1, layer2_chunk5); + __m128i layer3_chunk4 = _mm_unpacklo_epi16(layer2_chunk2, layer2_chunk6); + __m128i layer3_chunk5 = _mm_unpackhi_epi16(layer2_chunk2, layer2_chunk6); + __m128i layer3_chunk6 = _mm_unpacklo_epi16(layer2_chunk3, layer2_chunk7); + __m128i layer3_chunk7 = _mm_unpackhi_epi16(layer2_chunk3, layer2_chunk7); + + v_r0 = _mm_unpacklo_epi16(layer3_chunk0, layer3_chunk4); + v_r1 = _mm_unpackhi_epi16(layer3_chunk0, layer3_chunk4); + v_g0 = _mm_unpacklo_epi16(layer3_chunk1, layer3_chunk5); + v_g1 = _mm_unpackhi_epi16(layer3_chunk1, layer3_chunk5); + v_b0 = _mm_unpacklo_epi16(layer3_chunk2, layer3_chunk6); + v_b1 = _mm_unpackhi_epi16(layer3_chunk2, layer3_chunk6); + v_a0 = _mm_unpacklo_epi16(layer3_chunk3, layer3_chunk7); + v_a1 = _mm_unpackhi_epi16(layer3_chunk3, layer3_chunk7); +} + +#if CV_SSE4_1 + +inline void _mm_interleave_epi16(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, __m128i & v_g1) +{ + __m128i v_mask = _mm_set1_epi32(0x0000ffff); + + __m128i layer3_chunk0 = _mm_packus_epi32(_mm_and_si128(v_r0, v_mask), _mm_and_si128(v_r1, v_mask)); + __m128i layer3_chunk2 = _mm_packus_epi32(_mm_srli_epi32(v_r0, 16), _mm_srli_epi32(v_r1, 16)); + __m128i layer3_chunk1 = _mm_packus_epi32(_mm_and_si128(v_g0, v_mask), _mm_and_si128(v_g1, v_mask)); + __m128i layer3_chunk3 = _mm_packus_epi32(_mm_srli_epi32(v_g0, 16), _mm_srli_epi32(v_g1, 16)); + + __m128i layer2_chunk0 = _mm_packus_epi32(_mm_and_si128(layer3_chunk0, v_mask), _mm_and_si128(layer3_chunk1, v_mask)); + __m128i layer2_chunk2 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk0, 16), _mm_srli_epi32(layer3_chunk1, 16)); + __m128i layer2_chunk1 = _mm_packus_epi32(_mm_and_si128(layer3_chunk2, v_mask), _mm_and_si128(layer3_chunk3, v_mask)); + __m128i layer2_chunk3 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk2, 16), _mm_srli_epi32(layer3_chunk3, 16)); + + __m128i layer1_chunk0 = _mm_packus_epi32(_mm_and_si128(layer2_chunk0, v_mask), _mm_and_si128(layer2_chunk1, v_mask)); + __m128i layer1_chunk2 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk0, 16), _mm_srli_epi32(layer2_chunk1, 16)); + __m128i layer1_chunk1 = _mm_packus_epi32(_mm_and_si128(layer2_chunk2, v_mask), _mm_and_si128(layer2_chunk3, v_mask)); + __m128i layer1_chunk3 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk2, 16), _mm_srli_epi32(layer2_chunk3, 16)); + + v_r0 = _mm_packus_epi32(_mm_and_si128(layer1_chunk0, v_mask), _mm_and_si128(layer1_chunk1, v_mask)); + v_g0 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk0, 16), _mm_srli_epi32(layer1_chunk1, 16)); + v_r1 = _mm_packus_epi32(_mm_and_si128(layer1_chunk2, v_mask), _mm_and_si128(layer1_chunk3, v_mask)); + v_g1 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk2, 16), _mm_srli_epi32(layer1_chunk3, 16)); +} + +inline void _mm_interleave_epi16(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, + __m128i & v_g1, __m128i & v_b0, __m128i & v_b1) +{ + __m128i v_mask = _mm_set1_epi32(0x0000ffff); + + __m128i layer3_chunk0 = _mm_packus_epi32(_mm_and_si128(v_r0, v_mask), _mm_and_si128(v_r1, v_mask)); + __m128i layer3_chunk3 = _mm_packus_epi32(_mm_srli_epi32(v_r0, 16), _mm_srli_epi32(v_r1, 16)); + __m128i layer3_chunk1 = _mm_packus_epi32(_mm_and_si128(v_g0, v_mask), _mm_and_si128(v_g1, v_mask)); + __m128i layer3_chunk4 = _mm_packus_epi32(_mm_srli_epi32(v_g0, 16), _mm_srli_epi32(v_g1, 16)); + __m128i layer3_chunk2 = _mm_packus_epi32(_mm_and_si128(v_b0, v_mask), _mm_and_si128(v_b1, v_mask)); + __m128i layer3_chunk5 = _mm_packus_epi32(_mm_srli_epi32(v_b0, 16), _mm_srli_epi32(v_b1, 16)); + + __m128i layer2_chunk0 = _mm_packus_epi32(_mm_and_si128(layer3_chunk0, v_mask), _mm_and_si128(layer3_chunk1, v_mask)); + __m128i layer2_chunk3 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk0, 16), _mm_srli_epi32(layer3_chunk1, 16)); + __m128i layer2_chunk1 = _mm_packus_epi32(_mm_and_si128(layer3_chunk2, v_mask), _mm_and_si128(layer3_chunk3, v_mask)); + __m128i layer2_chunk4 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk2, 16), _mm_srli_epi32(layer3_chunk3, 16)); + __m128i layer2_chunk2 = _mm_packus_epi32(_mm_and_si128(layer3_chunk4, v_mask), _mm_and_si128(layer3_chunk5, v_mask)); + __m128i layer2_chunk5 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk4, 16), _mm_srli_epi32(layer3_chunk5, 16)); + + __m128i layer1_chunk0 = _mm_packus_epi32(_mm_and_si128(layer2_chunk0, v_mask), _mm_and_si128(layer2_chunk1, v_mask)); + __m128i layer1_chunk3 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk0, 16), _mm_srli_epi32(layer2_chunk1, 16)); + __m128i layer1_chunk1 = _mm_packus_epi32(_mm_and_si128(layer2_chunk2, v_mask), _mm_and_si128(layer2_chunk3, v_mask)); + __m128i layer1_chunk4 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk2, 16), _mm_srli_epi32(layer2_chunk3, 16)); + __m128i layer1_chunk2 = _mm_packus_epi32(_mm_and_si128(layer2_chunk4, v_mask), _mm_and_si128(layer2_chunk5, v_mask)); + __m128i layer1_chunk5 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk4, 16), _mm_srli_epi32(layer2_chunk5, 16)); + + v_r0 = _mm_packus_epi32(_mm_and_si128(layer1_chunk0, v_mask), _mm_and_si128(layer1_chunk1, v_mask)); + v_g1 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk0, 16), _mm_srli_epi32(layer1_chunk1, 16)); + v_r1 = _mm_packus_epi32(_mm_and_si128(layer1_chunk2, v_mask), _mm_and_si128(layer1_chunk3, v_mask)); + v_b0 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk2, 16), _mm_srli_epi32(layer1_chunk3, 16)); + v_g0 = _mm_packus_epi32(_mm_and_si128(layer1_chunk4, v_mask), _mm_and_si128(layer1_chunk5, v_mask)); + v_b1 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk4, 16), _mm_srli_epi32(layer1_chunk5, 16)); +} + +inline void _mm_interleave_epi16(__m128i & v_r0, __m128i & v_r1, __m128i & v_g0, __m128i & v_g1, + __m128i & v_b0, __m128i & v_b1, __m128i & v_a0, __m128i & v_a1) +{ + __m128i v_mask = _mm_set1_epi32(0x0000ffff); + + __m128i layer3_chunk0 = _mm_packus_epi32(_mm_and_si128(v_r0, v_mask), _mm_and_si128(v_r1, v_mask)); + __m128i layer3_chunk4 = _mm_packus_epi32(_mm_srli_epi32(v_r0, 16), _mm_srli_epi32(v_r1, 16)); + __m128i layer3_chunk1 = _mm_packus_epi32(_mm_and_si128(v_g0, v_mask), _mm_and_si128(v_g1, v_mask)); + __m128i layer3_chunk5 = _mm_packus_epi32(_mm_srli_epi32(v_g0, 16), _mm_srli_epi32(v_g1, 16)); + __m128i layer3_chunk2 = _mm_packus_epi32(_mm_and_si128(v_b0, v_mask), _mm_and_si128(v_b1, v_mask)); + __m128i layer3_chunk6 = _mm_packus_epi32(_mm_srli_epi32(v_b0, 16), _mm_srli_epi32(v_b1, 16)); + __m128i layer3_chunk3 = _mm_packus_epi32(_mm_and_si128(v_a0, v_mask), _mm_and_si128(v_a1, v_mask)); + __m128i layer3_chunk7 = _mm_packus_epi32(_mm_srli_epi32(v_a0, 16), _mm_srli_epi32(v_a1, 16)); + + __m128i layer2_chunk0 = _mm_packus_epi32(_mm_and_si128(layer3_chunk0, v_mask), _mm_and_si128(layer3_chunk1, v_mask)); + __m128i layer2_chunk4 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk0, 16), _mm_srli_epi32(layer3_chunk1, 16)); + __m128i layer2_chunk1 = _mm_packus_epi32(_mm_and_si128(layer3_chunk2, v_mask), _mm_and_si128(layer3_chunk3, v_mask)); + __m128i layer2_chunk5 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk2, 16), _mm_srli_epi32(layer3_chunk3, 16)); + __m128i layer2_chunk2 = _mm_packus_epi32(_mm_and_si128(layer3_chunk4, v_mask), _mm_and_si128(layer3_chunk5, v_mask)); + __m128i layer2_chunk6 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk4, 16), _mm_srli_epi32(layer3_chunk5, 16)); + __m128i layer2_chunk3 = _mm_packus_epi32(_mm_and_si128(layer3_chunk6, v_mask), _mm_and_si128(layer3_chunk7, v_mask)); + __m128i layer2_chunk7 = _mm_packus_epi32(_mm_srli_epi32(layer3_chunk6, 16), _mm_srli_epi32(layer3_chunk7, 16)); + + __m128i layer1_chunk0 = _mm_packus_epi32(_mm_and_si128(layer2_chunk0, v_mask), _mm_and_si128(layer2_chunk1, v_mask)); + __m128i layer1_chunk4 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk0, 16), _mm_srli_epi32(layer2_chunk1, 16)); + __m128i layer1_chunk1 = _mm_packus_epi32(_mm_and_si128(layer2_chunk2, v_mask), _mm_and_si128(layer2_chunk3, v_mask)); + __m128i layer1_chunk5 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk2, 16), _mm_srli_epi32(layer2_chunk3, 16)); + __m128i layer1_chunk2 = _mm_packus_epi32(_mm_and_si128(layer2_chunk4, v_mask), _mm_and_si128(layer2_chunk5, v_mask)); + __m128i layer1_chunk6 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk4, 16), _mm_srli_epi32(layer2_chunk5, 16)); + __m128i layer1_chunk3 = _mm_packus_epi32(_mm_and_si128(layer2_chunk6, v_mask), _mm_and_si128(layer2_chunk7, v_mask)); + __m128i layer1_chunk7 = _mm_packus_epi32(_mm_srli_epi32(layer2_chunk6, 16), _mm_srli_epi32(layer2_chunk7, 16)); + + v_r0 = _mm_packus_epi32(_mm_and_si128(layer1_chunk0, v_mask), _mm_and_si128(layer1_chunk1, v_mask)); + v_b0 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk0, 16), _mm_srli_epi32(layer1_chunk1, 16)); + v_r1 = _mm_packus_epi32(_mm_and_si128(layer1_chunk2, v_mask), _mm_and_si128(layer1_chunk3, v_mask)); + v_b1 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk2, 16), _mm_srli_epi32(layer1_chunk3, 16)); + v_g0 = _mm_packus_epi32(_mm_and_si128(layer1_chunk4, v_mask), _mm_and_si128(layer1_chunk5, v_mask)); + v_a0 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk4, 16), _mm_srli_epi32(layer1_chunk5, 16)); + v_g1 = _mm_packus_epi32(_mm_and_si128(layer1_chunk6, v_mask), _mm_and_si128(layer1_chunk7, v_mask)); + v_a1 = _mm_packus_epi32(_mm_srli_epi32(layer1_chunk6, 16), _mm_srli_epi32(layer1_chunk7, 16)); +} + +#endif // CV_SSE4_1 + +inline void _mm_deinterleave_ps(__m128 & v_r0, __m128 & v_r1, __m128 & v_g0, __m128 & v_g1) +{ + __m128 layer1_chunk0 = _mm_unpacklo_ps(v_r0, v_g0); + __m128 layer1_chunk1 = _mm_unpackhi_ps(v_r0, v_g0); + __m128 layer1_chunk2 = _mm_unpacklo_ps(v_r1, v_g1); + __m128 layer1_chunk3 = _mm_unpackhi_ps(v_r1, v_g1); + + __m128 layer2_chunk0 = _mm_unpacklo_ps(layer1_chunk0, layer1_chunk2); + __m128 layer2_chunk1 = _mm_unpackhi_ps(layer1_chunk0, layer1_chunk2); + __m128 layer2_chunk2 = _mm_unpacklo_ps(layer1_chunk1, layer1_chunk3); + __m128 layer2_chunk3 = _mm_unpackhi_ps(layer1_chunk1, layer1_chunk3); + + v_r0 = _mm_unpacklo_ps(layer2_chunk0, layer2_chunk2); + v_r1 = _mm_unpackhi_ps(layer2_chunk0, layer2_chunk2); + v_g0 = _mm_unpacklo_ps(layer2_chunk1, layer2_chunk3); + v_g1 = _mm_unpackhi_ps(layer2_chunk1, layer2_chunk3); +} + +inline void _mm_deinterleave_ps(__m128 & v_r0, __m128 & v_r1, __m128 & v_g0, + __m128 & v_g1, __m128 & v_b0, __m128 & v_b1) +{ + __m128 layer1_chunk0 = _mm_unpacklo_ps(v_r0, v_g1); + __m128 layer1_chunk1 = _mm_unpackhi_ps(v_r0, v_g1); + __m128 layer1_chunk2 = _mm_unpacklo_ps(v_r1, v_b0); + __m128 layer1_chunk3 = _mm_unpackhi_ps(v_r1, v_b0); + __m128 layer1_chunk4 = _mm_unpacklo_ps(v_g0, v_b1); + __m128 layer1_chunk5 = _mm_unpackhi_ps(v_g0, v_b1); + + __m128 layer2_chunk0 = _mm_unpacklo_ps(layer1_chunk0, layer1_chunk3); + __m128 layer2_chunk1 = _mm_unpackhi_ps(layer1_chunk0, layer1_chunk3); + __m128 layer2_chunk2 = _mm_unpacklo_ps(layer1_chunk1, layer1_chunk4); + __m128 layer2_chunk3 = _mm_unpackhi_ps(layer1_chunk1, layer1_chunk4); + __m128 layer2_chunk4 = _mm_unpacklo_ps(layer1_chunk2, layer1_chunk5); + __m128 layer2_chunk5 = _mm_unpackhi_ps(layer1_chunk2, layer1_chunk5); + + v_r0 = _mm_unpacklo_ps(layer2_chunk0, layer2_chunk3); + v_r1 = _mm_unpackhi_ps(layer2_chunk0, layer2_chunk3); + v_g0 = _mm_unpacklo_ps(layer2_chunk1, layer2_chunk4); + v_g1 = _mm_unpackhi_ps(layer2_chunk1, layer2_chunk4); + v_b0 = _mm_unpacklo_ps(layer2_chunk2, layer2_chunk5); + v_b1 = _mm_unpackhi_ps(layer2_chunk2, layer2_chunk5); +} + +inline void _mm_deinterleave_ps(__m128 & v_r0, __m128 & v_r1, __m128 & v_g0, __m128 & v_g1, + __m128 & v_b0, __m128 & v_b1, __m128 & v_a0, __m128 & v_a1) +{ + __m128 layer1_chunk0 = _mm_unpacklo_ps(v_r0, v_b0); + __m128 layer1_chunk1 = _mm_unpackhi_ps(v_r0, v_b0); + __m128 layer1_chunk2 = _mm_unpacklo_ps(v_r1, v_b1); + __m128 layer1_chunk3 = _mm_unpackhi_ps(v_r1, v_b1); + __m128 layer1_chunk4 = _mm_unpacklo_ps(v_g0, v_a0); + __m128 layer1_chunk5 = _mm_unpackhi_ps(v_g0, v_a0); + __m128 layer1_chunk6 = _mm_unpacklo_ps(v_g1, v_a1); + __m128 layer1_chunk7 = _mm_unpackhi_ps(v_g1, v_a1); + + __m128 layer2_chunk0 = _mm_unpacklo_ps(layer1_chunk0, layer1_chunk4); + __m128 layer2_chunk1 = _mm_unpackhi_ps(layer1_chunk0, layer1_chunk4); + __m128 layer2_chunk2 = _mm_unpacklo_ps(layer1_chunk1, layer1_chunk5); + __m128 layer2_chunk3 = _mm_unpackhi_ps(layer1_chunk1, layer1_chunk5); + __m128 layer2_chunk4 = _mm_unpacklo_ps(layer1_chunk2, layer1_chunk6); + __m128 layer2_chunk5 = _mm_unpackhi_ps(layer1_chunk2, layer1_chunk6); + __m128 layer2_chunk6 = _mm_unpacklo_ps(layer1_chunk3, layer1_chunk7); + __m128 layer2_chunk7 = _mm_unpackhi_ps(layer1_chunk3, layer1_chunk7); + + v_r0 = _mm_unpacklo_ps(layer2_chunk0, layer2_chunk4); + v_r1 = _mm_unpackhi_ps(layer2_chunk0, layer2_chunk4); + v_g0 = _mm_unpacklo_ps(layer2_chunk1, layer2_chunk5); + v_g1 = _mm_unpackhi_ps(layer2_chunk1, layer2_chunk5); + v_b0 = _mm_unpacklo_ps(layer2_chunk2, layer2_chunk6); + v_b1 = _mm_unpackhi_ps(layer2_chunk2, layer2_chunk6); + v_a0 = _mm_unpacklo_ps(layer2_chunk3, layer2_chunk7); + v_a1 = _mm_unpackhi_ps(layer2_chunk3, layer2_chunk7); +} + +inline void _mm_interleave_ps(__m128 & v_r0, __m128 & v_r1, __m128 & v_g0, __m128 & v_g1) +{ + const int mask_lo = _MM_SHUFFLE(2, 0, 2, 0), mask_hi = _MM_SHUFFLE(3, 1, 3, 1); + + __m128 layer2_chunk0 = _mm_shuffle_ps(v_r0, v_r1, mask_lo); + __m128 layer2_chunk2 = _mm_shuffle_ps(v_r0, v_r1, mask_hi); + __m128 layer2_chunk1 = _mm_shuffle_ps(v_g0, v_g1, mask_lo); + __m128 layer2_chunk3 = _mm_shuffle_ps(v_g0, v_g1, mask_hi); + + __m128 layer1_chunk0 = _mm_shuffle_ps(layer2_chunk0, layer2_chunk1, mask_lo); + __m128 layer1_chunk2 = _mm_shuffle_ps(layer2_chunk0, layer2_chunk1, mask_hi); + __m128 layer1_chunk1 = _mm_shuffle_ps(layer2_chunk2, layer2_chunk3, mask_lo); + __m128 layer1_chunk3 = _mm_shuffle_ps(layer2_chunk2, layer2_chunk3, mask_hi); + + v_r0 = _mm_shuffle_ps(layer1_chunk0, layer1_chunk1, mask_lo); + v_g0 = _mm_shuffle_ps(layer1_chunk0, layer1_chunk1, mask_hi); + v_r1 = _mm_shuffle_ps(layer1_chunk2, layer1_chunk3, mask_lo); + v_g1 = _mm_shuffle_ps(layer1_chunk2, layer1_chunk3, mask_hi); +} + +inline void _mm_interleave_ps(__m128 & v_r0, __m128 & v_r1, __m128 & v_g0, + __m128 & v_g1, __m128 & v_b0, __m128 & v_b1) +{ + const int mask_lo = _MM_SHUFFLE(2, 0, 2, 0), mask_hi = _MM_SHUFFLE(3, 1, 3, 1); + + __m128 layer2_chunk0 = _mm_shuffle_ps(v_r0, v_r1, mask_lo); + __m128 layer2_chunk3 = _mm_shuffle_ps(v_r0, v_r1, mask_hi); + __m128 layer2_chunk1 = _mm_shuffle_ps(v_g0, v_g1, mask_lo); + __m128 layer2_chunk4 = _mm_shuffle_ps(v_g0, v_g1, mask_hi); + __m128 layer2_chunk2 = _mm_shuffle_ps(v_b0, v_b1, mask_lo); + __m128 layer2_chunk5 = _mm_shuffle_ps(v_b0, v_b1, mask_hi); + + __m128 layer1_chunk0 = _mm_shuffle_ps(layer2_chunk0, layer2_chunk1, mask_lo); + __m128 layer1_chunk3 = _mm_shuffle_ps(layer2_chunk0, layer2_chunk1, mask_hi); + __m128 layer1_chunk1 = _mm_shuffle_ps(layer2_chunk2, layer2_chunk3, mask_lo); + __m128 layer1_chunk4 = _mm_shuffle_ps(layer2_chunk2, layer2_chunk3, mask_hi); + __m128 layer1_chunk2 = _mm_shuffle_ps(layer2_chunk4, layer2_chunk5, mask_lo); + __m128 layer1_chunk5 = _mm_shuffle_ps(layer2_chunk4, layer2_chunk5, mask_hi); + + v_r0 = _mm_shuffle_ps(layer1_chunk0, layer1_chunk1, mask_lo); + v_g1 = _mm_shuffle_ps(layer1_chunk0, layer1_chunk1, mask_hi); + v_r1 = _mm_shuffle_ps(layer1_chunk2, layer1_chunk3, mask_lo); + v_b0 = _mm_shuffle_ps(layer1_chunk2, layer1_chunk3, mask_hi); + v_g0 = _mm_shuffle_ps(layer1_chunk4, layer1_chunk5, mask_lo); + v_b1 = _mm_shuffle_ps(layer1_chunk4, layer1_chunk5, mask_hi); +} + +inline void _mm_interleave_ps(__m128 & v_r0, __m128 & v_r1, __m128 & v_g0, __m128 & v_g1, + __m128 & v_b0, __m128 & v_b1, __m128 & v_a0, __m128 & v_a1) +{ + const int mask_lo = _MM_SHUFFLE(2, 0, 2, 0), mask_hi = _MM_SHUFFLE(3, 1, 3, 1); + + __m128 layer2_chunk0 = _mm_shuffle_ps(v_r0, v_r1, mask_lo); + __m128 layer2_chunk4 = _mm_shuffle_ps(v_r0, v_r1, mask_hi); + __m128 layer2_chunk1 = _mm_shuffle_ps(v_g0, v_g1, mask_lo); + __m128 layer2_chunk5 = _mm_shuffle_ps(v_g0, v_g1, mask_hi); + __m128 layer2_chunk2 = _mm_shuffle_ps(v_b0, v_b1, mask_lo); + __m128 layer2_chunk6 = _mm_shuffle_ps(v_b0, v_b1, mask_hi); + __m128 layer2_chunk3 = _mm_shuffle_ps(v_a0, v_a1, mask_lo); + __m128 layer2_chunk7 = _mm_shuffle_ps(v_a0, v_a1, mask_hi); + + __m128 layer1_chunk0 = _mm_shuffle_ps(layer2_chunk0, layer2_chunk1, mask_lo); + __m128 layer1_chunk4 = _mm_shuffle_ps(layer2_chunk0, layer2_chunk1, mask_hi); + __m128 layer1_chunk1 = _mm_shuffle_ps(layer2_chunk2, layer2_chunk3, mask_lo); + __m128 layer1_chunk5 = _mm_shuffle_ps(layer2_chunk2, layer2_chunk3, mask_hi); + __m128 layer1_chunk2 = _mm_shuffle_ps(layer2_chunk4, layer2_chunk5, mask_lo); + __m128 layer1_chunk6 = _mm_shuffle_ps(layer2_chunk4, layer2_chunk5, mask_hi); + __m128 layer1_chunk3 = _mm_shuffle_ps(layer2_chunk6, layer2_chunk7, mask_lo); + __m128 layer1_chunk7 = _mm_shuffle_ps(layer2_chunk6, layer2_chunk7, mask_hi); + + v_r0 = _mm_shuffle_ps(layer1_chunk0, layer1_chunk1, mask_lo); + v_b0 = _mm_shuffle_ps(layer1_chunk0, layer1_chunk1, mask_hi); + v_r1 = _mm_shuffle_ps(layer1_chunk2, layer1_chunk3, mask_lo); + v_b1 = _mm_shuffle_ps(layer1_chunk2, layer1_chunk3, mask_hi); + v_g0 = _mm_shuffle_ps(layer1_chunk4, layer1_chunk5, mask_lo); + v_a0 = _mm_shuffle_ps(layer1_chunk4, layer1_chunk5, mask_hi); + v_g1 = _mm_shuffle_ps(layer1_chunk6, layer1_chunk7, mask_lo); + v_a1 = _mm_shuffle_ps(layer1_chunk6, layer1_chunk7, mask_hi); +} + +#endif // CV_SSE2 + +//! @} + +#endif //OPENCV_CORE_SSE_UTILS_HPP diff --git a/thirdparty1/linux/include/opencv2/core/traits.hpp b/thirdparty1/linux/include/opencv2/core/traits.hpp new file mode 100644 index 0000000..f83b05f --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/traits.hpp @@ -0,0 +1,326 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_TRAITS_HPP +#define OPENCV_CORE_TRAITS_HPP + +#include "opencv2/core/cvdef.h" + +namespace cv +{ + +//! @addtogroup core_basic +//! @{ + +/** @brief Template "trait" class for OpenCV primitive data types. + +A primitive OpenCV data type is one of unsigned char, bool, signed char, unsigned short, signed +short, int, float, double, or a tuple of values of one of these types, where all the values in the +tuple have the same type. Any primitive type from the list can be defined by an identifier in the +form CV_\{U|S|F}C(\), for example: uchar \~ CV_8UC1, 3-element +floating-point tuple \~ CV_32FC3, and so on. A universal OpenCV structure that is able to store a +single instance of such a primitive data type is Vec. Multiple instances of such a type can be +stored in a std::vector, Mat, Mat_, SparseMat, SparseMat_, or any other container that is able to +store Vec instances. + +The DataType class is basically used to provide a description of such primitive data types without +adding any fields or methods to the corresponding classes (and it is actually impossible to add +anything to primitive C/C++ data types). This technique is known in C++ as class traits. It is not +DataType itself that is used but its specialized versions, such as: +@code + template<> class DataType + { + typedef uchar value_type; + typedef int work_type; + typedef uchar channel_type; + enum { channel_type = CV_8U, channels = 1, fmt='u', type = CV_8U }; + }; + ... + template DataType > + { + typedef std::complex<_Tp> value_type; + typedef std::complex<_Tp> work_type; + typedef _Tp channel_type; + // DataDepth is another helper trait class + enum { depth = DataDepth<_Tp>::value, channels=2, + fmt=(channels-1)*256+DataDepth<_Tp>::fmt, + type=CV_MAKETYPE(depth, channels) }; + }; + ... +@endcode +The main purpose of this class is to convert compilation-time type information to an +OpenCV-compatible data type identifier, for example: +@code + // allocates a 30x40 floating-point matrix + Mat A(30, 40, DataType::type); + + Mat B = Mat_ >(3, 3); + // the statement below will print 6, 2 , that is depth == CV_64F, channels == 2 + cout << B.depth() << ", " << B.channels() << endl; +@endcode +So, such traits are used to tell OpenCV which data type you are working with, even if such a type is +not native to OpenCV. For example, the matrix B initialization above is compiled because OpenCV +defines the proper specialized template class DataType\ \> . This mechanism is also +useful (and used in OpenCV this way) for generic algorithms implementations. +*/ +template class DataType +{ +public: + typedef _Tp value_type; + typedef value_type work_type; + typedef value_type channel_type; + typedef value_type vec_type; + enum { generic_type = 1, + depth = -1, + channels = 1, + fmt = 0, + type = CV_MAKETYPE(depth, channels) + }; +}; + +template<> class DataType +{ +public: + typedef bool value_type; + typedef int work_type; + typedef value_type channel_type; + typedef value_type vec_type; + enum { generic_type = 0, + depth = CV_8U, + channels = 1, + fmt = (int)'u', + type = CV_MAKETYPE(depth, channels) + }; +}; + +template<> class DataType +{ +public: + typedef uchar value_type; + typedef int work_type; + typedef value_type channel_type; + typedef value_type vec_type; + enum { generic_type = 0, + depth = CV_8U, + channels = 1, + fmt = (int)'u', + type = CV_MAKETYPE(depth, channels) + }; +}; + +template<> class DataType +{ +public: + typedef schar value_type; + typedef int work_type; + typedef value_type channel_type; + typedef value_type vec_type; + enum { generic_type = 0, + depth = CV_8S, + channels = 1, + fmt = (int)'c', + type = CV_MAKETYPE(depth, channels) + }; +}; + +template<> class DataType +{ +public: + typedef schar value_type; + typedef int work_type; + typedef value_type channel_type; + typedef value_type vec_type; + enum { generic_type = 0, + depth = CV_8S, + channels = 1, + fmt = (int)'c', + type = CV_MAKETYPE(depth, channels) + }; +}; + +template<> class DataType +{ +public: + typedef ushort value_type; + typedef int work_type; + typedef value_type channel_type; + typedef value_type vec_type; + enum { generic_type = 0, + depth = CV_16U, + channels = 1, + fmt = (int)'w', + type = CV_MAKETYPE(depth, channels) + }; +}; + +template<> class DataType +{ +public: + typedef short value_type; + typedef int work_type; + typedef value_type channel_type; + typedef value_type vec_type; + enum { generic_type = 0, + depth = CV_16S, + channels = 1, + fmt = (int)'s', + type = CV_MAKETYPE(depth, channels) + }; +}; + +template<> class DataType +{ +public: + typedef int value_type; + typedef value_type work_type; + typedef value_type channel_type; + typedef value_type vec_type; + enum { generic_type = 0, + depth = CV_32S, + channels = 1, + fmt = (int)'i', + type = CV_MAKETYPE(depth, channels) + }; +}; + +template<> class DataType +{ +public: + typedef float value_type; + typedef value_type work_type; + typedef value_type channel_type; + typedef value_type vec_type; + enum { generic_type = 0, + depth = CV_32F, + channels = 1, + fmt = (int)'f', + type = CV_MAKETYPE(depth, channels) + }; +}; + +template<> class DataType +{ +public: + typedef double value_type; + typedef value_type work_type; + typedef value_type channel_type; + typedef value_type vec_type; + enum { generic_type = 0, + depth = CV_64F, + channels = 1, + fmt = (int)'d', + type = CV_MAKETYPE(depth, channels) + }; +}; + + +/** @brief A helper class for cv::DataType + +The class is specialized for each fundamental numerical data type supported by OpenCV. It provides +DataDepth::value constant. +*/ +template class DataDepth +{ +public: + enum + { + value = DataType<_Tp>::depth, + fmt = DataType<_Tp>::fmt + }; +}; + + + +template class TypeDepth +{ + enum { depth = CV_USRTYPE1 }; + typedef void value_type; +}; + +template<> class TypeDepth +{ + enum { depth = CV_8U }; + typedef uchar value_type; +}; + +template<> class TypeDepth +{ + enum { depth = CV_8S }; + typedef schar value_type; +}; + +template<> class TypeDepth +{ + enum { depth = CV_16U }; + typedef ushort value_type; +}; + +template<> class TypeDepth +{ + enum { depth = CV_16S }; + typedef short value_type; +}; + +template<> class TypeDepth +{ + enum { depth = CV_32S }; + typedef int value_type; +}; + +template<> class TypeDepth +{ + enum { depth = CV_32F }; + typedef float value_type; +}; + +template<> class TypeDepth +{ + enum { depth = CV_64F }; + typedef double value_type; +}; + +//! @} + +} // cv + +#endif // OPENCV_CORE_TRAITS_HPP diff --git a/thirdparty1/linux/include/opencv2/core/types.hpp b/thirdparty1/linux/include/opencv2/core/types.hpp new file mode 100644 index 0000000..d5c64ca --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/types.hpp @@ -0,0 +1,2264 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_TYPES_HPP +#define OPENCV_CORE_TYPES_HPP + +#ifndef __cplusplus +# error types.hpp header must be compiled as C++ +#endif + +#include +#include +#include +#include + +#include "opencv2/core/cvdef.h" +#include "opencv2/core/cvstd.hpp" +#include "opencv2/core/matx.hpp" + +namespace cv +{ + +//! @addtogroup core_basic +//! @{ + +//////////////////////////////// Complex ////////////////////////////// + +/** @brief A complex number class. + + The template class is similar and compatible with std::complex, however it provides slightly + more convenient access to the real and imaginary parts using through the simple field access, as opposite + to std::complex::real() and std::complex::imag(). +*/ +template class Complex +{ +public: + + //! constructors + Complex(); + Complex( _Tp _re, _Tp _im = 0 ); + + //! conversion to another data type + template operator Complex() const; + //! conjugation + Complex conj() const; + + _Tp re, im; //< the real and the imaginary parts +}; + +typedef Complex Complexf; +typedef Complex Complexd; + +template class DataType< Complex<_Tp> > +{ +public: + typedef Complex<_Tp> value_type; + typedef value_type work_type; + typedef _Tp channel_type; + + enum { generic_type = 0, + depth = DataType::depth, + channels = 2, + fmt = DataType::fmt + ((channels - 1) << 8), + type = CV_MAKETYPE(depth, channels) }; + + typedef Vec vec_type; +}; + + + +//////////////////////////////// Point_ //////////////////////////////// + +/** @brief Template class for 2D points specified by its coordinates `x` and `y`. + +An instance of the class is interchangeable with C structures, CvPoint and CvPoint2D32f . There is +also a cast operator to convert point coordinates to the specified type. The conversion from +floating-point coordinates to integer coordinates is done by rounding. Commonly, the conversion +uses this operation for each of the coordinates. Besides the class members listed in the +declaration above, the following operations on points are implemented: +@code + pt1 = pt2 + pt3; + pt1 = pt2 - pt3; + pt1 = pt2 * a; + pt1 = a * pt2; + pt1 = pt2 / a; + pt1 += pt2; + pt1 -= pt2; + pt1 *= a; + pt1 /= a; + double value = norm(pt); // L2 norm + pt1 == pt2; + pt1 != pt2; +@endcode +For your convenience, the following type aliases are defined: +@code + typedef Point_ Point2i; + typedef Point2i Point; + typedef Point_ Point2f; + typedef Point_ Point2d; +@endcode +Example: +@code + Point2f a(0.3f, 0.f), b(0.f, 0.4f); + Point pt = (a + b)*10.f; + cout << pt.x << ", " << pt.y << endl; +@endcode +*/ +template class Point_ +{ +public: + typedef _Tp value_type; + + // various constructors + Point_(); + Point_(_Tp _x, _Tp _y); + Point_(const Point_& pt); + Point_(const Size_<_Tp>& sz); + Point_(const Vec<_Tp, 2>& v); + + Point_& operator = (const Point_& pt); + //! conversion to another data type + template operator Point_<_Tp2>() const; + + //! conversion to the old-style C structures + operator Vec<_Tp, 2>() const; + + //! dot product + _Tp dot(const Point_& pt) const; + //! dot product computed in double-precision arithmetics + double ddot(const Point_& pt) const; + //! cross-product + double cross(const Point_& pt) const; + //! checks whether the point is inside the specified rectangle + bool inside(const Rect_<_Tp>& r) const; + + _Tp x, y; //< the point coordinates +}; + +typedef Point_ Point2i; +typedef Point_ Point2l; +typedef Point_ Point2f; +typedef Point_ Point2d; +typedef Point2i Point; + +template class DataType< Point_<_Tp> > +{ +public: + typedef Point_<_Tp> value_type; + typedef Point_::work_type> work_type; + typedef _Tp channel_type; + + enum { generic_type = 0, + depth = DataType::depth, + channels = 2, + fmt = DataType::fmt + ((channels - 1) << 8), + type = CV_MAKETYPE(depth, channels) + }; + + typedef Vec vec_type; +}; + + + +//////////////////////////////// Point3_ //////////////////////////////// + +/** @brief Template class for 3D points specified by its coordinates `x`, `y` and `z`. + +An instance of the class is interchangeable with the C structure CvPoint2D32f . Similarly to +Point_ , the coordinates of 3D points can be converted to another type. The vector arithmetic and +comparison operations are also supported. + +The following Point3_\<\> aliases are available: +@code + typedef Point3_ Point3i; + typedef Point3_ Point3f; + typedef Point3_ Point3d; +@endcode +@see cv::Point3i, cv::Point3f and cv::Point3d +*/ +template class Point3_ +{ +public: + typedef _Tp value_type; + + // various constructors + Point3_(); + Point3_(_Tp _x, _Tp _y, _Tp _z); + Point3_(const Point3_& pt); + explicit Point3_(const Point_<_Tp>& pt); + Point3_(const Vec<_Tp, 3>& v); + + Point3_& operator = (const Point3_& pt); + //! conversion to another data type + template operator Point3_<_Tp2>() const; + //! conversion to cv::Vec<> +#if OPENCV_ABI_COMPATIBILITY > 300 + template operator Vec<_Tp2, 3>() const; +#else + operator Vec<_Tp, 3>() const; +#endif + + //! dot product + _Tp dot(const Point3_& pt) const; + //! dot product computed in double-precision arithmetics + double ddot(const Point3_& pt) const; + //! cross product of the 2 3D points + Point3_ cross(const Point3_& pt) const; + + _Tp x, y, z; //< the point coordinates +}; + +typedef Point3_ Point3i; +typedef Point3_ Point3f; +typedef Point3_ Point3d; + +template class DataType< Point3_<_Tp> > +{ +public: + typedef Point3_<_Tp> value_type; + typedef Point3_::work_type> work_type; + typedef _Tp channel_type; + + enum { generic_type = 0, + depth = DataType::depth, + channels = 3, + fmt = DataType::fmt + ((channels - 1) << 8), + type = CV_MAKETYPE(depth, channels) + }; + + typedef Vec vec_type; +}; + + + +//////////////////////////////// Size_ //////////////////////////////// + +/** @brief Template class for specifying the size of an image or rectangle. + +The class includes two members called width and height. The structure can be converted to and from +the old OpenCV structures CvSize and CvSize2D32f . The same set of arithmetic and comparison +operations as for Point_ is available. + +OpenCV defines the following Size_\<\> aliases: +@code + typedef Size_ Size2i; + typedef Size2i Size; + typedef Size_ Size2f; +@endcode +*/ +template class Size_ +{ +public: + typedef _Tp value_type; + + //! various constructors + Size_(); + Size_(_Tp _width, _Tp _height); + Size_(const Size_& sz); + Size_(const Point_<_Tp>& pt); + + Size_& operator = (const Size_& sz); + //! the area (width*height) + _Tp area() const; + + //! conversion of another data type. + template operator Size_<_Tp2>() const; + + _Tp width, height; // the width and the height +}; + +typedef Size_ Size2i; +typedef Size_ Size2l; +typedef Size_ Size2f; +typedef Size_ Size2d; +typedef Size2i Size; + +template class DataType< Size_<_Tp> > +{ +public: + typedef Size_<_Tp> value_type; + typedef Size_::work_type> work_type; + typedef _Tp channel_type; + + enum { generic_type = 0, + depth = DataType::depth, + channels = 2, + fmt = DataType::fmt + ((channels - 1) << 8), + type = CV_MAKETYPE(depth, channels) + }; + + typedef Vec vec_type; +}; + + + +//////////////////////////////// Rect_ //////////////////////////////// + +/** @brief Template class for 2D rectangles + +described by the following parameters: +- Coordinates of the top-left corner. This is a default interpretation of Rect_::x and Rect_::y + in OpenCV. Though, in your algorithms you may count x and y from the bottom-left corner. +- Rectangle width and height. + +OpenCV typically assumes that the top and left boundary of the rectangle are inclusive, while the +right and bottom boundaries are not. For example, the method Rect_::contains returns true if + +\f[x \leq pt.x < x+width, + y \leq pt.y < y+height\f] + +Virtually every loop over an image ROI in OpenCV (where ROI is specified by Rect_\ ) is +implemented as: +@code + for(int y = roi.y; y < roi.y + roi.height; y++) + for(int x = roi.x; x < roi.x + roi.width; x++) + { + // ... + } +@endcode +In addition to the class members, the following operations on rectangles are implemented: +- \f$\texttt{rect} = \texttt{rect} \pm \texttt{point}\f$ (shifting a rectangle by a certain offset) +- \f$\texttt{rect} = \texttt{rect} \pm \texttt{size}\f$ (expanding or shrinking a rectangle by a + certain amount) +- rect += point, rect -= point, rect += size, rect -= size (augmenting operations) +- rect = rect1 & rect2 (rectangle intersection) +- rect = rect1 | rect2 (minimum area rectangle containing rect1 and rect2 ) +- rect &= rect1, rect |= rect1 (and the corresponding augmenting operations) +- rect == rect1, rect != rect1 (rectangle comparison) + +This is an example how the partial ordering on rectangles can be established (rect1 \f$\subseteq\f$ +rect2): +@code + template inline bool + operator <= (const Rect_<_Tp>& r1, const Rect_<_Tp>& r2) + { + return (r1 & r2) == r1; + } +@endcode +For your convenience, the Rect_\<\> alias is available: cv::Rect +*/ +template class Rect_ +{ +public: + typedef _Tp value_type; + + //! various constructors + Rect_(); + Rect_(_Tp _x, _Tp _y, _Tp _width, _Tp _height); + Rect_(const Rect_& r); + Rect_(const Point_<_Tp>& org, const Size_<_Tp>& sz); + Rect_(const Point_<_Tp>& pt1, const Point_<_Tp>& pt2); + + Rect_& operator = ( const Rect_& r ); + //! the top-left corner + Point_<_Tp> tl() const; + //! the bottom-right corner + Point_<_Tp> br() const; + + //! size (width, height) of the rectangle + Size_<_Tp> size() const; + //! area (width*height) of the rectangle + _Tp area() const; + + //! conversion to another data type + template operator Rect_<_Tp2>() const; + + //! checks whether the rectangle contains the point + bool contains(const Point_<_Tp>& pt) const; + + _Tp x, y, width, height; //< the top-left corner, as well as width and height of the rectangle +}; + +typedef Rect_ Rect2i; +typedef Rect_ Rect2f; +typedef Rect_ Rect2d; +typedef Rect2i Rect; + +template class DataType< Rect_<_Tp> > +{ +public: + typedef Rect_<_Tp> value_type; + typedef Rect_::work_type> work_type; + typedef _Tp channel_type; + + enum { generic_type = 0, + depth = DataType::depth, + channels = 4, + fmt = DataType::fmt + ((channels - 1) << 8), + type = CV_MAKETYPE(depth, channels) + }; + + typedef Vec vec_type; +}; + + + +///////////////////////////// RotatedRect ///////////////////////////// + +/** @brief The class represents rotated (i.e. not up-right) rectangles on a plane. + +Each rectangle is specified by the center point (mass center), length of each side (represented by +cv::Size2f structure) and the rotation angle in degrees. + +The sample below demonstrates how to use RotatedRect: +@code + Mat image(200, 200, CV_8UC3, Scalar(0)); + RotatedRect rRect = RotatedRect(Point2f(100,100), Size2f(100,50), 30); + + Point2f vertices[4]; + rRect.points(vertices); + for (int i = 0; i < 4; i++) + line(image, vertices[i], vertices[(i+1)%4], Scalar(0,255,0)); + + Rect brect = rRect.boundingRect(); + rectangle(image, brect, Scalar(255,0,0)); + + imshow("rectangles", image); + waitKey(0); +@endcode +![image](pics/rotatedrect.png) + +@sa CamShift, fitEllipse, minAreaRect, CvBox2D +*/ +class CV_EXPORTS RotatedRect +{ +public: + //! various constructors + RotatedRect(); + /** + @param center The rectangle mass center. + @param size Width and height of the rectangle. + @param angle The rotation angle in a clockwise direction. When the angle is 0, 90, 180, 270 etc., + the rectangle becomes an up-right rectangle. + */ + RotatedRect(const Point2f& center, const Size2f& size, float angle); + /** + Any 3 end points of the RotatedRect. They must be given in order (either clockwise or + anticlockwise). + */ + RotatedRect(const Point2f& point1, const Point2f& point2, const Point2f& point3); + + /** returns 4 vertices of the rectangle + @param pts The points array for storing rectangle vertices. + */ + void points(Point2f pts[]) const; + //! returns the minimal up-right integer rectangle containing the rotated rectangle + Rect boundingRect() const; + //! returns the minimal (exact) floating point rectangle containing the rotated rectangle, not intended for use with images + Rect_ boundingRect2f() const; + + Point2f center; //< the rectangle mass center + Size2f size; //< width and height of the rectangle + float angle; //< the rotation angle. When the angle is 0, 90, 180, 270 etc., the rectangle becomes an up-right rectangle. +}; + +template<> class DataType< RotatedRect > +{ +public: + typedef RotatedRect value_type; + typedef value_type work_type; + typedef float channel_type; + + enum { generic_type = 0, + depth = DataType::depth, + channels = (int)sizeof(value_type)/sizeof(channel_type), // 5 + fmt = DataType::fmt + ((channels - 1) << 8), + type = CV_MAKETYPE(depth, channels) + }; + + typedef Vec vec_type; +}; + + + +//////////////////////////////// Range ///////////////////////////////// + +/** @brief Template class specifying a continuous subsequence (slice) of a sequence. + +The class is used to specify a row or a column span in a matrix ( Mat ) and for many other purposes. +Range(a,b) is basically the same as a:b in Matlab or a..b in Python. As in Python, start is an +inclusive left boundary of the range and end is an exclusive right boundary of the range. Such a +half-opened interval is usually denoted as \f$[start,end)\f$ . + +The static method Range::all() returns a special variable that means "the whole sequence" or "the +whole range", just like " : " in Matlab or " ... " in Python. All the methods and functions in +OpenCV that take Range support this special Range::all() value. But, of course, in case of your own +custom processing, you will probably have to check and handle it explicitly: +@code + void my_function(..., const Range& r, ....) + { + if(r == Range::all()) { + // process all the data + } + else { + // process [r.start, r.end) + } + } +@endcode +*/ +class CV_EXPORTS Range +{ +public: + Range(); + Range(int _start, int _end); + int size() const; + bool empty() const; + static Range all(); + + int start, end; +}; + +template<> class DataType +{ +public: + typedef Range value_type; + typedef value_type work_type; + typedef int channel_type; + + enum { generic_type = 0, + depth = DataType::depth, + channels = 2, + fmt = DataType::fmt + ((channels - 1) << 8), + type = CV_MAKETYPE(depth, channels) + }; + + typedef Vec vec_type; +}; + + + +//////////////////////////////// Scalar_ /////////////////////////////// + +/** @brief Template class for a 4-element vector derived from Vec. + +Being derived from Vec\<_Tp, 4\> , Scalar_ and Scalar can be used just as typical 4-element +vectors. In addition, they can be converted to/from CvScalar . The type Scalar is widely used in +OpenCV to pass pixel values. +*/ +template class Scalar_ : public Vec<_Tp, 4> +{ +public: + //! various constructors + Scalar_(); + Scalar_(_Tp v0, _Tp v1, _Tp v2=0, _Tp v3=0); + Scalar_(_Tp v0); + + template + Scalar_(const Vec<_Tp2, cn>& v); + + //! returns a scalar with all elements set to v0 + static Scalar_<_Tp> all(_Tp v0); + + //! conversion to another data type + template operator Scalar_() const; + + //! per-element product + Scalar_<_Tp> mul(const Scalar_<_Tp>& a, double scale=1 ) const; + + // returns (v0, -v1, -v2, -v3) + Scalar_<_Tp> conj() const; + + // returns true iff v1 == v2 == v3 == 0 + bool isReal() const; +}; + +typedef Scalar_ Scalar; + +template class DataType< Scalar_<_Tp> > +{ +public: + typedef Scalar_<_Tp> value_type; + typedef Scalar_::work_type> work_type; + typedef _Tp channel_type; + + enum { generic_type = 0, + depth = DataType::depth, + channels = 4, + fmt = DataType::fmt + ((channels - 1) << 8), + type = CV_MAKETYPE(depth, channels) + }; + + typedef Vec vec_type; +}; + + + +/////////////////////////////// KeyPoint //////////////////////////////// + +/** @brief Data structure for salient point detectors. + +The class instance stores a keypoint, i.e. a point feature found by one of many available keypoint +detectors, such as Harris corner detector, cv::FAST, cv::StarDetector, cv::SURF, cv::SIFT, +cv::LDetector etc. + +The keypoint is characterized by the 2D position, scale (proportional to the diameter of the +neighborhood that needs to be taken into account), orientation and some other parameters. The +keypoint neighborhood is then analyzed by another algorithm that builds a descriptor (usually +represented as a feature vector). The keypoints representing the same object in different images +can then be matched using cv::KDTree or another method. +*/ +class CV_EXPORTS_W_SIMPLE KeyPoint +{ +public: + //! the default constructor + CV_WRAP KeyPoint(); + /** + @param _pt x & y coordinates of the keypoint + @param _size keypoint diameter + @param _angle keypoint orientation + @param _response keypoint detector response on the keypoint (that is, strength of the keypoint) + @param _octave pyramid octave in which the keypoint has been detected + @param _class_id object id + */ + KeyPoint(Point2f _pt, float _size, float _angle=-1, float _response=0, int _octave=0, int _class_id=-1); + /** + @param x x-coordinate of the keypoint + @param y y-coordinate of the keypoint + @param _size keypoint diameter + @param _angle keypoint orientation + @param _response keypoint detector response on the keypoint (that is, strength of the keypoint) + @param _octave pyramid octave in which the keypoint has been detected + @param _class_id object id + */ + CV_WRAP KeyPoint(float x, float y, float _size, float _angle=-1, float _response=0, int _octave=0, int _class_id=-1); + + size_t hash() const; + + /** + This method converts vector of keypoints to vector of points or the reverse, where each keypoint is + assigned the same size and the same orientation. + + @param keypoints Keypoints obtained from any feature detection algorithm like SIFT/SURF/ORB + @param points2f Array of (x,y) coordinates of each keypoint + @param keypointIndexes Array of indexes of keypoints to be converted to points. (Acts like a mask to + convert only specified keypoints) + */ + CV_WRAP static void convert(const std::vector& keypoints, + CV_OUT std::vector& points2f, + const std::vector& keypointIndexes=std::vector()); + /** @overload + @param points2f Array of (x,y) coordinates of each keypoint + @param keypoints Keypoints obtained from any feature detection algorithm like SIFT/SURF/ORB + @param size keypoint diameter + @param response keypoint detector response on the keypoint (that is, strength of the keypoint) + @param octave pyramid octave in which the keypoint has been detected + @param class_id object id + */ + CV_WRAP static void convert(const std::vector& points2f, + CV_OUT std::vector& keypoints, + float size=1, float response=1, int octave=0, int class_id=-1); + + /** + This method computes overlap for pair of keypoints. Overlap is the ratio between area of keypoint + regions' intersection and area of keypoint regions' union (considering keypoint region as circle). + If they don't overlap, we get zero. If they coincide at same location with same size, we get 1. + @param kp1 First keypoint + @param kp2 Second keypoint + */ + CV_WRAP static float overlap(const KeyPoint& kp1, const KeyPoint& kp2); + + CV_PROP_RW Point2f pt; //!< coordinates of the keypoints + CV_PROP_RW float size; //!< diameter of the meaningful keypoint neighborhood + CV_PROP_RW float angle; //!< computed orientation of the keypoint (-1 if not applicable); + //!< it's in [0,360) degrees and measured relative to + //!< image coordinate system, ie in clockwise. + CV_PROP_RW float response; //!< the response by which the most strong keypoints have been selected. Can be used for the further sorting or subsampling + CV_PROP_RW int octave; //!< octave (pyramid layer) from which the keypoint has been extracted + CV_PROP_RW int class_id; //!< object class (if the keypoints need to be clustered by an object they belong to) +}; + +template<> class DataType +{ +public: + typedef KeyPoint value_type; + typedef float work_type; + typedef float channel_type; + + enum { generic_type = 0, + depth = DataType::depth, + channels = (int)(sizeof(value_type)/sizeof(channel_type)), // 7 + fmt = DataType::fmt + ((channels - 1) << 8), + type = CV_MAKETYPE(depth, channels) + }; + + typedef Vec vec_type; +}; + + + +//////////////////////////////// DMatch ///////////////////////////////// + +/** @brief Class for matching keypoint descriptors + +query descriptor index, train descriptor index, train image index, and distance between +descriptors. +*/ +class CV_EXPORTS_W_SIMPLE DMatch +{ +public: + CV_WRAP DMatch(); + CV_WRAP DMatch(int _queryIdx, int _trainIdx, float _distance); + CV_WRAP DMatch(int _queryIdx, int _trainIdx, int _imgIdx, float _distance); + + CV_PROP_RW int queryIdx; // query descriptor index + CV_PROP_RW int trainIdx; // train descriptor index + CV_PROP_RW int imgIdx; // train image index + + CV_PROP_RW float distance; + + // less is better + bool operator<(const DMatch &m) const; +}; + +template<> class DataType +{ +public: + typedef DMatch value_type; + typedef int work_type; + typedef int channel_type; + + enum { generic_type = 0, + depth = DataType::depth, + channels = (int)(sizeof(value_type)/sizeof(channel_type)), // 4 + fmt = DataType::fmt + ((channels - 1) << 8), + type = CV_MAKETYPE(depth, channels) + }; + + typedef Vec vec_type; +}; + + + +///////////////////////////// TermCriteria ////////////////////////////// + +/** @brief The class defining termination criteria for iterative algorithms. + +You can initialize it by default constructor and then override any parameters, or the structure may +be fully initialized using the advanced variant of the constructor. +*/ +class CV_EXPORTS TermCriteria +{ +public: + /** + Criteria type, can be one of: COUNT, EPS or COUNT + EPS + */ + enum Type + { + COUNT=1, //!< the maximum number of iterations or elements to compute + MAX_ITER=COUNT, //!< ditto + EPS=2 //!< the desired accuracy or change in parameters at which the iterative algorithm stops + }; + + //! default constructor + TermCriteria(); + /** + @param type The type of termination criteria, one of TermCriteria::Type + @param maxCount The maximum number of iterations or elements to compute. + @param epsilon The desired accuracy or change in parameters at which the iterative algorithm stops. + */ + TermCriteria(int type, int maxCount, double epsilon); + + int type; //!< the type of termination criteria: COUNT, EPS or COUNT + EPS + int maxCount; // the maximum number of iterations/elements + double epsilon; // the desired accuracy +}; + + +//! @} core_basic + +///////////////////////// raster image moments ////////////////////////// + +//! @addtogroup imgproc_shape +//! @{ + +/** @brief struct returned by cv::moments + +The spatial moments \f$\texttt{Moments::m}_{ji}\f$ are computed as: + +\f[\texttt{m} _{ji}= \sum _{x,y} \left ( \texttt{array} (x,y) \cdot x^j \cdot y^i \right )\f] + +The central moments \f$\texttt{Moments::mu}_{ji}\f$ are computed as: + +\f[\texttt{mu} _{ji}= \sum _{x,y} \left ( \texttt{array} (x,y) \cdot (x - \bar{x} )^j \cdot (y - \bar{y} )^i \right )\f] + +where \f$(\bar{x}, \bar{y})\f$ is the mass center: + +\f[\bar{x} = \frac{\texttt{m}_{10}}{\texttt{m}_{00}} , \; \bar{y} = \frac{\texttt{m}_{01}}{\texttt{m}_{00}}\f] + +The normalized central moments \f$\texttt{Moments::nu}_{ij}\f$ are computed as: + +\f[\texttt{nu} _{ji}= \frac{\texttt{mu}_{ji}}{\texttt{m}_{00}^{(i+j)/2+1}} .\f] + +@note +\f$\texttt{mu}_{00}=\texttt{m}_{00}\f$, \f$\texttt{nu}_{00}=1\f$ +\f$\texttt{nu}_{10}=\texttt{mu}_{10}=\texttt{mu}_{01}=\texttt{mu}_{10}=0\f$ , hence the values are not +stored. + +The moments of a contour are defined in the same way but computed using the Green's formula (see +). So, due to a limited raster resolution, the moments +computed for a contour are slightly different from the moments computed for the same rasterized +contour. + +@note +Since the contour moments are computed using Green formula, you may get seemingly odd results for +contours with self-intersections, e.g. a zero area (m00) for butterfly-shaped contours. + */ +class CV_EXPORTS_W_MAP Moments +{ +public: + //! the default constructor + Moments(); + //! the full constructor + Moments(double m00, double m10, double m01, double m20, double m11, + double m02, double m30, double m21, double m12, double m03 ); + ////! the conversion from CvMoments + //Moments( const CvMoments& moments ); + ////! the conversion to CvMoments + //operator CvMoments() const; + + //! @name spatial moments + //! @{ + CV_PROP_RW double m00, m10, m01, m20, m11, m02, m30, m21, m12, m03; + //! @} + + //! @name central moments + //! @{ + CV_PROP_RW double mu20, mu11, mu02, mu30, mu21, mu12, mu03; + //! @} + + //! @name central normalized moments + //! @{ + CV_PROP_RW double nu20, nu11, nu02, nu30, nu21, nu12, nu03; + //! @} +}; + +template<> class DataType +{ +public: + typedef Moments value_type; + typedef double work_type; + typedef double channel_type; + + enum { generic_type = 0, + depth = DataType::depth, + channels = (int)(sizeof(value_type)/sizeof(channel_type)), // 24 + fmt = DataType::fmt + ((channels - 1) << 8), + type = CV_MAKETYPE(depth, channels) + }; + + typedef Vec vec_type; +}; + +//! @} imgproc_shape + +//! @cond IGNORED + +///////////////////////////////////////////////////////////////////////// +///////////////////////////// Implementation //////////////////////////// +///////////////////////////////////////////////////////////////////////// + +//////////////////////////////// Complex //////////////////////////////// + +template inline +Complex<_Tp>::Complex() + : re(0), im(0) {} + +template inline +Complex<_Tp>::Complex( _Tp _re, _Tp _im ) + : re(_re), im(_im) {} + +template template inline +Complex<_Tp>::operator Complex() const +{ + return Complex(saturate_cast(re), saturate_cast(im)); +} + +template inline +Complex<_Tp> Complex<_Tp>::conj() const +{ + return Complex<_Tp>(re, -im); +} + + +template static inline +bool operator == (const Complex<_Tp>& a, const Complex<_Tp>& b) +{ + return a.re == b.re && a.im == b.im; +} + +template static inline +bool operator != (const Complex<_Tp>& a, const Complex<_Tp>& b) +{ + return a.re != b.re || a.im != b.im; +} + +template static inline +Complex<_Tp> operator + (const Complex<_Tp>& a, const Complex<_Tp>& b) +{ + return Complex<_Tp>( a.re + b.re, a.im + b.im ); +} + +template static inline +Complex<_Tp>& operator += (Complex<_Tp>& a, const Complex<_Tp>& b) +{ + a.re += b.re; a.im += b.im; + return a; +} + +template static inline +Complex<_Tp> operator - (const Complex<_Tp>& a, const Complex<_Tp>& b) +{ + return Complex<_Tp>( a.re - b.re, a.im - b.im ); +} + +template static inline +Complex<_Tp>& operator -= (Complex<_Tp>& a, const Complex<_Tp>& b) +{ + a.re -= b.re; a.im -= b.im; + return a; +} + +template static inline +Complex<_Tp> operator - (const Complex<_Tp>& a) +{ + return Complex<_Tp>(-a.re, -a.im); +} + +template static inline +Complex<_Tp> operator * (const Complex<_Tp>& a, const Complex<_Tp>& b) +{ + return Complex<_Tp>( a.re*b.re - a.im*b.im, a.re*b.im + a.im*b.re ); +} + +template static inline +Complex<_Tp> operator * (const Complex<_Tp>& a, _Tp b) +{ + return Complex<_Tp>( a.re*b, a.im*b ); +} + +template static inline +Complex<_Tp> operator * (_Tp b, const Complex<_Tp>& a) +{ + return Complex<_Tp>( a.re*b, a.im*b ); +} + +template static inline +Complex<_Tp> operator + (const Complex<_Tp>& a, _Tp b) +{ + return Complex<_Tp>( a.re + b, a.im ); +} + +template static inline +Complex<_Tp> operator - (const Complex<_Tp>& a, _Tp b) +{ return Complex<_Tp>( a.re - b, a.im ); } + +template static inline +Complex<_Tp> operator + (_Tp b, const Complex<_Tp>& a) +{ + return Complex<_Tp>( a.re + b, a.im ); +} + +template static inline +Complex<_Tp> operator - (_Tp b, const Complex<_Tp>& a) +{ + return Complex<_Tp>( b - a.re, -a.im ); +} + +template static inline +Complex<_Tp>& operator += (Complex<_Tp>& a, _Tp b) +{ + a.re += b; return a; +} + +template static inline +Complex<_Tp>& operator -= (Complex<_Tp>& a, _Tp b) +{ + a.re -= b; return a; +} + +template static inline +Complex<_Tp>& operator *= (Complex<_Tp>& a, _Tp b) +{ + a.re *= b; a.im *= b; return a; +} + +template static inline +double abs(const Complex<_Tp>& a) +{ + return std::sqrt( (double)a.re*a.re + (double)a.im*a.im); +} + +template static inline +Complex<_Tp> operator / (const Complex<_Tp>& a, const Complex<_Tp>& b) +{ + double t = 1./((double)b.re*b.re + (double)b.im*b.im); + return Complex<_Tp>( (_Tp)((a.re*b.re + a.im*b.im)*t), + (_Tp)((-a.re*b.im + a.im*b.re)*t) ); +} + +template static inline +Complex<_Tp>& operator /= (Complex<_Tp>& a, const Complex<_Tp>& b) +{ + return (a = a / b); +} + +template static inline +Complex<_Tp> operator / (const Complex<_Tp>& a, _Tp b) +{ + _Tp t = (_Tp)1/b; + return Complex<_Tp>( a.re*t, a.im*t ); +} + +template static inline +Complex<_Tp> operator / (_Tp b, const Complex<_Tp>& a) +{ + return Complex<_Tp>(b)/a; +} + +template static inline +Complex<_Tp> operator /= (const Complex<_Tp>& a, _Tp b) +{ + _Tp t = (_Tp)1/b; + a.re *= t; a.im *= t; return a; +} + + + +//////////////////////////////// 2D Point /////////////////////////////// + +template inline +Point_<_Tp>::Point_() + : x(0), y(0) {} + +template inline +Point_<_Tp>::Point_(_Tp _x, _Tp _y) + : x(_x), y(_y) {} + +template inline +Point_<_Tp>::Point_(const Point_& pt) + : x(pt.x), y(pt.y) {} + +template inline +Point_<_Tp>::Point_(const Size_<_Tp>& sz) + : x(sz.width), y(sz.height) {} + +template inline +Point_<_Tp>::Point_(const Vec<_Tp,2>& v) + : x(v[0]), y(v[1]) {} + +template inline +Point_<_Tp>& Point_<_Tp>::operator = (const Point_& pt) +{ + x = pt.x; y = pt.y; + return *this; +} + +template template inline +Point_<_Tp>::operator Point_<_Tp2>() const +{ + return Point_<_Tp2>(saturate_cast<_Tp2>(x), saturate_cast<_Tp2>(y)); +} + +template inline +Point_<_Tp>::operator Vec<_Tp, 2>() const +{ + return Vec<_Tp, 2>(x, y); +} + +template inline +_Tp Point_<_Tp>::dot(const Point_& pt) const +{ + return saturate_cast<_Tp>(x*pt.x + y*pt.y); +} + +template inline +double Point_<_Tp>::ddot(const Point_& pt) const +{ + return (double)x*pt.x + (double)y*pt.y; +} + +template inline +double Point_<_Tp>::cross(const Point_& pt) const +{ + return (double)x*pt.y - (double)y*pt.x; +} + +template inline bool +Point_<_Tp>::inside( const Rect_<_Tp>& r ) const +{ + return r.contains(*this); +} + + +template static inline +Point_<_Tp>& operator += (Point_<_Tp>& a, const Point_<_Tp>& b) +{ + a.x += b.x; + a.y += b.y; + return a; +} + +template static inline +Point_<_Tp>& operator -= (Point_<_Tp>& a, const Point_<_Tp>& b) +{ + a.x -= b.x; + a.y -= b.y; + return a; +} + +template static inline +Point_<_Tp>& operator *= (Point_<_Tp>& a, int b) +{ + a.x = saturate_cast<_Tp>(a.x * b); + a.y = saturate_cast<_Tp>(a.y * b); + return a; +} + +template static inline +Point_<_Tp>& operator *= (Point_<_Tp>& a, float b) +{ + a.x = saturate_cast<_Tp>(a.x * b); + a.y = saturate_cast<_Tp>(a.y * b); + return a; +} + +template static inline +Point_<_Tp>& operator *= (Point_<_Tp>& a, double b) +{ + a.x = saturate_cast<_Tp>(a.x * b); + a.y = saturate_cast<_Tp>(a.y * b); + return a; +} + +template static inline +Point_<_Tp>& operator /= (Point_<_Tp>& a, int b) +{ + a.x = saturate_cast<_Tp>(a.x / b); + a.y = saturate_cast<_Tp>(a.y / b); + return a; +} + +template static inline +Point_<_Tp>& operator /= (Point_<_Tp>& a, float b) +{ + a.x = saturate_cast<_Tp>(a.x / b); + a.y = saturate_cast<_Tp>(a.y / b); + return a; +} + +template static inline +Point_<_Tp>& operator /= (Point_<_Tp>& a, double b) +{ + a.x = saturate_cast<_Tp>(a.x / b); + a.y = saturate_cast<_Tp>(a.y / b); + return a; +} + +template static inline +double norm(const Point_<_Tp>& pt) +{ + return std::sqrt((double)pt.x*pt.x + (double)pt.y*pt.y); +} + +template static inline +bool operator == (const Point_<_Tp>& a, const Point_<_Tp>& b) +{ + return a.x == b.x && a.y == b.y; +} + +template static inline +bool operator != (const Point_<_Tp>& a, const Point_<_Tp>& b) +{ + return a.x != b.x || a.y != b.y; +} + +template static inline +Point_<_Tp> operator + (const Point_<_Tp>& a, const Point_<_Tp>& b) +{ + return Point_<_Tp>( saturate_cast<_Tp>(a.x + b.x), saturate_cast<_Tp>(a.y + b.y) ); +} + +template static inline +Point_<_Tp> operator - (const Point_<_Tp>& a, const Point_<_Tp>& b) +{ + return Point_<_Tp>( saturate_cast<_Tp>(a.x - b.x), saturate_cast<_Tp>(a.y - b.y) ); +} + +template static inline +Point_<_Tp> operator - (const Point_<_Tp>& a) +{ + return Point_<_Tp>( saturate_cast<_Tp>(-a.x), saturate_cast<_Tp>(-a.y) ); +} + +template static inline +Point_<_Tp> operator * (const Point_<_Tp>& a, int b) +{ + return Point_<_Tp>( saturate_cast<_Tp>(a.x*b), saturate_cast<_Tp>(a.y*b) ); +} + +template static inline +Point_<_Tp> operator * (int a, const Point_<_Tp>& b) +{ + return Point_<_Tp>( saturate_cast<_Tp>(b.x*a), saturate_cast<_Tp>(b.y*a) ); +} + +template static inline +Point_<_Tp> operator * (const Point_<_Tp>& a, float b) +{ + return Point_<_Tp>( saturate_cast<_Tp>(a.x*b), saturate_cast<_Tp>(a.y*b) ); +} + +template static inline +Point_<_Tp> operator * (float a, const Point_<_Tp>& b) +{ + return Point_<_Tp>( saturate_cast<_Tp>(b.x*a), saturate_cast<_Tp>(b.y*a) ); +} + +template static inline +Point_<_Tp> operator * (const Point_<_Tp>& a, double b) +{ + return Point_<_Tp>( saturate_cast<_Tp>(a.x*b), saturate_cast<_Tp>(a.y*b) ); +} + +template static inline +Point_<_Tp> operator * (double a, const Point_<_Tp>& b) +{ + return Point_<_Tp>( saturate_cast<_Tp>(b.x*a), saturate_cast<_Tp>(b.y*a) ); +} + +template static inline +Point_<_Tp> operator * (const Matx<_Tp, 2, 2>& a, const Point_<_Tp>& b) +{ + Matx<_Tp, 2, 1> tmp = a * Vec<_Tp,2>(b.x, b.y); + return Point_<_Tp>(tmp.val[0], tmp.val[1]); +} + +template static inline +Point3_<_Tp> operator * (const Matx<_Tp, 3, 3>& a, const Point_<_Tp>& b) +{ + Matx<_Tp, 3, 1> tmp = a * Vec<_Tp,3>(b.x, b.y, 1); + return Point3_<_Tp>(tmp.val[0], tmp.val[1], tmp.val[2]); +} + +template static inline +Point_<_Tp> operator / (const Point_<_Tp>& a, int b) +{ + Point_<_Tp> tmp(a); + tmp /= b; + return tmp; +} + +template static inline +Point_<_Tp> operator / (const Point_<_Tp>& a, float b) +{ + Point_<_Tp> tmp(a); + tmp /= b; + return tmp; +} + +template static inline +Point_<_Tp> operator / (const Point_<_Tp>& a, double b) +{ + Point_<_Tp> tmp(a); + tmp /= b; + return tmp; +} + + + +//////////////////////////////// 3D Point /////////////////////////////// + +template inline +Point3_<_Tp>::Point3_() + : x(0), y(0), z(0) {} + +template inline +Point3_<_Tp>::Point3_(_Tp _x, _Tp _y, _Tp _z) + : x(_x), y(_y), z(_z) {} + +template inline +Point3_<_Tp>::Point3_(const Point3_& pt) + : x(pt.x), y(pt.y), z(pt.z) {} + +template inline +Point3_<_Tp>::Point3_(const Point_<_Tp>& pt) + : x(pt.x), y(pt.y), z(_Tp()) {} + +template inline +Point3_<_Tp>::Point3_(const Vec<_Tp, 3>& v) + : x(v[0]), y(v[1]), z(v[2]) {} + +template template inline +Point3_<_Tp>::operator Point3_<_Tp2>() const +{ + return Point3_<_Tp2>(saturate_cast<_Tp2>(x), saturate_cast<_Tp2>(y), saturate_cast<_Tp2>(z)); +} + +#if OPENCV_ABI_COMPATIBILITY > 300 +template template inline +Point3_<_Tp>::operator Vec<_Tp2, 3>() const +{ + return Vec<_Tp2, 3>(x, y, z); +} +#else +template inline +Point3_<_Tp>::operator Vec<_Tp, 3>() const +{ + return Vec<_Tp, 3>(x, y, z); +} +#endif + +template inline +Point3_<_Tp>& Point3_<_Tp>::operator = (const Point3_& pt) +{ + x = pt.x; y = pt.y; z = pt.z; + return *this; +} + +template inline +_Tp Point3_<_Tp>::dot(const Point3_& pt) const +{ + return saturate_cast<_Tp>(x*pt.x + y*pt.y + z*pt.z); +} + +template inline +double Point3_<_Tp>::ddot(const Point3_& pt) const +{ + return (double)x*pt.x + (double)y*pt.y + (double)z*pt.z; +} + +template inline +Point3_<_Tp> Point3_<_Tp>::cross(const Point3_<_Tp>& pt) const +{ + return Point3_<_Tp>(y*pt.z - z*pt.y, z*pt.x - x*pt.z, x*pt.y - y*pt.x); +} + + +template static inline +Point3_<_Tp>& operator += (Point3_<_Tp>& a, const Point3_<_Tp>& b) +{ + a.x += b.x; + a.y += b.y; + a.z += b.z; + return a; +} + +template static inline +Point3_<_Tp>& operator -= (Point3_<_Tp>& a, const Point3_<_Tp>& b) +{ + a.x -= b.x; + a.y -= b.y; + a.z -= b.z; + return a; +} + +template static inline +Point3_<_Tp>& operator *= (Point3_<_Tp>& a, int b) +{ + a.x = saturate_cast<_Tp>(a.x * b); + a.y = saturate_cast<_Tp>(a.y * b); + a.z = saturate_cast<_Tp>(a.z * b); + return a; +} + +template static inline +Point3_<_Tp>& operator *= (Point3_<_Tp>& a, float b) +{ + a.x = saturate_cast<_Tp>(a.x * b); + a.y = saturate_cast<_Tp>(a.y * b); + a.z = saturate_cast<_Tp>(a.z * b); + return a; +} + +template static inline +Point3_<_Tp>& operator *= (Point3_<_Tp>& a, double b) +{ + a.x = saturate_cast<_Tp>(a.x * b); + a.y = saturate_cast<_Tp>(a.y * b); + a.z = saturate_cast<_Tp>(a.z * b); + return a; +} + +template static inline +Point3_<_Tp>& operator /= (Point3_<_Tp>& a, int b) +{ + a.x = saturate_cast<_Tp>(a.x / b); + a.y = saturate_cast<_Tp>(a.y / b); + a.z = saturate_cast<_Tp>(a.z / b); + return a; +} + +template static inline +Point3_<_Tp>& operator /= (Point3_<_Tp>& a, float b) +{ + a.x = saturate_cast<_Tp>(a.x / b); + a.y = saturate_cast<_Tp>(a.y / b); + a.z = saturate_cast<_Tp>(a.z / b); + return a; +} + +template static inline +Point3_<_Tp>& operator /= (Point3_<_Tp>& a, double b) +{ + a.x = saturate_cast<_Tp>(a.x / b); + a.y = saturate_cast<_Tp>(a.y / b); + a.z = saturate_cast<_Tp>(a.z / b); + return a; +} + +template static inline +double norm(const Point3_<_Tp>& pt) +{ + return std::sqrt((double)pt.x*pt.x + (double)pt.y*pt.y + (double)pt.z*pt.z); +} + +template static inline +bool operator == (const Point3_<_Tp>& a, const Point3_<_Tp>& b) +{ + return a.x == b.x && a.y == b.y && a.z == b.z; +} + +template static inline +bool operator != (const Point3_<_Tp>& a, const Point3_<_Tp>& b) +{ + return a.x != b.x || a.y != b.y || a.z != b.z; +} + +template static inline +Point3_<_Tp> operator + (const Point3_<_Tp>& a, const Point3_<_Tp>& b) +{ + return Point3_<_Tp>( saturate_cast<_Tp>(a.x + b.x), saturate_cast<_Tp>(a.y + b.y), saturate_cast<_Tp>(a.z + b.z)); +} + +template static inline +Point3_<_Tp> operator - (const Point3_<_Tp>& a, const Point3_<_Tp>& b) +{ + return Point3_<_Tp>( saturate_cast<_Tp>(a.x - b.x), saturate_cast<_Tp>(a.y - b.y), saturate_cast<_Tp>(a.z - b.z)); +} + +template static inline +Point3_<_Tp> operator - (const Point3_<_Tp>& a) +{ + return Point3_<_Tp>( saturate_cast<_Tp>(-a.x), saturate_cast<_Tp>(-a.y), saturate_cast<_Tp>(-a.z) ); +} + +template static inline +Point3_<_Tp> operator * (const Point3_<_Tp>& a, int b) +{ + return Point3_<_Tp>( saturate_cast<_Tp>(a.x*b), saturate_cast<_Tp>(a.y*b), saturate_cast<_Tp>(a.z*b) ); +} + +template static inline +Point3_<_Tp> operator * (int a, const Point3_<_Tp>& b) +{ + return Point3_<_Tp>( saturate_cast<_Tp>(b.x * a), saturate_cast<_Tp>(b.y * a), saturate_cast<_Tp>(b.z * a) ); +} + +template static inline +Point3_<_Tp> operator * (const Point3_<_Tp>& a, float b) +{ + return Point3_<_Tp>( saturate_cast<_Tp>(a.x * b), saturate_cast<_Tp>(a.y * b), saturate_cast<_Tp>(a.z * b) ); +} + +template static inline +Point3_<_Tp> operator * (float a, const Point3_<_Tp>& b) +{ + return Point3_<_Tp>( saturate_cast<_Tp>(b.x * a), saturate_cast<_Tp>(b.y * a), saturate_cast<_Tp>(b.z * a) ); +} + +template static inline +Point3_<_Tp> operator * (const Point3_<_Tp>& a, double b) +{ + return Point3_<_Tp>( saturate_cast<_Tp>(a.x * b), saturate_cast<_Tp>(a.y * b), saturate_cast<_Tp>(a.z * b) ); +} + +template static inline +Point3_<_Tp> operator * (double a, const Point3_<_Tp>& b) +{ + return Point3_<_Tp>( saturate_cast<_Tp>(b.x * a), saturate_cast<_Tp>(b.y * a), saturate_cast<_Tp>(b.z * a) ); +} + +template static inline +Point3_<_Tp> operator * (const Matx<_Tp, 3, 3>& a, const Point3_<_Tp>& b) +{ + Matx<_Tp, 3, 1> tmp = a * Vec<_Tp,3>(b.x, b.y, b.z); + return Point3_<_Tp>(tmp.val[0], tmp.val[1], tmp.val[2]); +} + +template static inline +Matx<_Tp, 4, 1> operator * (const Matx<_Tp, 4, 4>& a, const Point3_<_Tp>& b) +{ + return a * Matx<_Tp, 4, 1>(b.x, b.y, b.z, 1); +} + +template static inline +Point3_<_Tp> operator / (const Point3_<_Tp>& a, int b) +{ + Point3_<_Tp> tmp(a); + tmp /= b; + return tmp; +} + +template static inline +Point3_<_Tp> operator / (const Point3_<_Tp>& a, float b) +{ + Point3_<_Tp> tmp(a); + tmp /= b; + return tmp; +} + +template static inline +Point3_<_Tp> operator / (const Point3_<_Tp>& a, double b) +{ + Point3_<_Tp> tmp(a); + tmp /= b; + return tmp; +} + + + +////////////////////////////////// Size ///////////////////////////////// + +template inline +Size_<_Tp>::Size_() + : width(0), height(0) {} + +template inline +Size_<_Tp>::Size_(_Tp _width, _Tp _height) + : width(_width), height(_height) {} + +template inline +Size_<_Tp>::Size_(const Size_& sz) + : width(sz.width), height(sz.height) {} + +template inline +Size_<_Tp>::Size_(const Point_<_Tp>& pt) + : width(pt.x), height(pt.y) {} + +template template inline +Size_<_Tp>::operator Size_<_Tp2>() const +{ + return Size_<_Tp2>(saturate_cast<_Tp2>(width), saturate_cast<_Tp2>(height)); +} + +template inline +Size_<_Tp>& Size_<_Tp>::operator = (const Size_<_Tp>& sz) +{ + width = sz.width; height = sz.height; + return *this; +} + +template inline +_Tp Size_<_Tp>::area() const +{ + return width * height; +} + +template static inline +Size_<_Tp>& operator *= (Size_<_Tp>& a, _Tp b) +{ + a.width *= b; + a.height *= b; + return a; +} + +template static inline +Size_<_Tp> operator * (const Size_<_Tp>& a, _Tp b) +{ + Size_<_Tp> tmp(a); + tmp *= b; + return tmp; +} + +template static inline +Size_<_Tp>& operator /= (Size_<_Tp>& a, _Tp b) +{ + a.width /= b; + a.height /= b; + return a; +} + +template static inline +Size_<_Tp> operator / (const Size_<_Tp>& a, _Tp b) +{ + Size_<_Tp> tmp(a); + tmp /= b; + return tmp; +} + +template static inline +Size_<_Tp>& operator += (Size_<_Tp>& a, const Size_<_Tp>& b) +{ + a.width += b.width; + a.height += b.height; + return a; +} + +template static inline +Size_<_Tp> operator + (const Size_<_Tp>& a, const Size_<_Tp>& b) +{ + Size_<_Tp> tmp(a); + tmp += b; + return tmp; +} + +template static inline +Size_<_Tp>& operator -= (Size_<_Tp>& a, const Size_<_Tp>& b) +{ + a.width -= b.width; + a.height -= b.height; + return a; +} + +template static inline +Size_<_Tp> operator - (const Size_<_Tp>& a, const Size_<_Tp>& b) +{ + Size_<_Tp> tmp(a); + tmp -= b; + return tmp; +} + +template static inline +bool operator == (const Size_<_Tp>& a, const Size_<_Tp>& b) +{ + return a.width == b.width && a.height == b.height; +} + +template static inline +bool operator != (const Size_<_Tp>& a, const Size_<_Tp>& b) +{ + return !(a == b); +} + + + +////////////////////////////////// Rect ///////////////////////////////// + +template inline +Rect_<_Tp>::Rect_() + : x(0), y(0), width(0), height(0) {} + +template inline +Rect_<_Tp>::Rect_(_Tp _x, _Tp _y, _Tp _width, _Tp _height) + : x(_x), y(_y), width(_width), height(_height) {} + +template inline +Rect_<_Tp>::Rect_(const Rect_<_Tp>& r) + : x(r.x), y(r.y), width(r.width), height(r.height) {} + +template inline +Rect_<_Tp>::Rect_(const Point_<_Tp>& org, const Size_<_Tp>& sz) + : x(org.x), y(org.y), width(sz.width), height(sz.height) {} + +template inline +Rect_<_Tp>::Rect_(const Point_<_Tp>& pt1, const Point_<_Tp>& pt2) +{ + x = std::min(pt1.x, pt2.x); + y = std::min(pt1.y, pt2.y); + width = std::max(pt1.x, pt2.x) - x; + height = std::max(pt1.y, pt2.y) - y; +} + +template inline +Rect_<_Tp>& Rect_<_Tp>::operator = ( const Rect_<_Tp>& r ) +{ + x = r.x; + y = r.y; + width = r.width; + height = r.height; + return *this; +} + +template inline +Point_<_Tp> Rect_<_Tp>::tl() const +{ + return Point_<_Tp>(x,y); +} + +template inline +Point_<_Tp> Rect_<_Tp>::br() const +{ + return Point_<_Tp>(x + width, y + height); +} + +template inline +Size_<_Tp> Rect_<_Tp>::size() const +{ + return Size_<_Tp>(width, height); +} + +template inline +_Tp Rect_<_Tp>::area() const +{ + return width * height; +} + +template template inline +Rect_<_Tp>::operator Rect_<_Tp2>() const +{ + return Rect_<_Tp2>(saturate_cast<_Tp2>(x), saturate_cast<_Tp2>(y), saturate_cast<_Tp2>(width), saturate_cast<_Tp2>(height)); +} + +template inline +bool Rect_<_Tp>::contains(const Point_<_Tp>& pt) const +{ + return x <= pt.x && pt.x < x + width && y <= pt.y && pt.y < y + height; +} + + +template static inline +Rect_<_Tp>& operator += ( Rect_<_Tp>& a, const Point_<_Tp>& b ) +{ + a.x += b.x; + a.y += b.y; + return a; +} + +template static inline +Rect_<_Tp>& operator -= ( Rect_<_Tp>& a, const Point_<_Tp>& b ) +{ + a.x -= b.x; + a.y -= b.y; + return a; +} + +template static inline +Rect_<_Tp>& operator += ( Rect_<_Tp>& a, const Size_<_Tp>& b ) +{ + a.width += b.width; + a.height += b.height; + return a; +} + +template static inline +Rect_<_Tp>& operator -= ( Rect_<_Tp>& a, const Size_<_Tp>& b ) +{ + a.width -= b.width; + a.height -= b.height; + return a; +} + +template static inline +Rect_<_Tp>& operator &= ( Rect_<_Tp>& a, const Rect_<_Tp>& b ) +{ + _Tp x1 = std::max(a.x, b.x); + _Tp y1 = std::max(a.y, b.y); + a.width = std::min(a.x + a.width, b.x + b.width) - x1; + a.height = std::min(a.y + a.height, b.y + b.height) - y1; + a.x = x1; + a.y = y1; + if( a.width <= 0 || a.height <= 0 ) + a = Rect(); + return a; +} + +template static inline +Rect_<_Tp>& operator |= ( Rect_<_Tp>& a, const Rect_<_Tp>& b ) +{ + _Tp x1 = std::min(a.x, b.x); + _Tp y1 = std::min(a.y, b.y); + a.width = std::max(a.x + a.width, b.x + b.width) - x1; + a.height = std::max(a.y + a.height, b.y + b.height) - y1; + a.x = x1; + a.y = y1; + return a; +} + +template static inline +bool operator == (const Rect_<_Tp>& a, const Rect_<_Tp>& b) +{ + return a.x == b.x && a.y == b.y && a.width == b.width && a.height == b.height; +} + +template static inline +bool operator != (const Rect_<_Tp>& a, const Rect_<_Tp>& b) +{ + return a.x != b.x || a.y != b.y || a.width != b.width || a.height != b.height; +} + +template static inline +Rect_<_Tp> operator + (const Rect_<_Tp>& a, const Point_<_Tp>& b) +{ + return Rect_<_Tp>( a.x + b.x, a.y + b.y, a.width, a.height ); +} + +template static inline +Rect_<_Tp> operator - (const Rect_<_Tp>& a, const Point_<_Tp>& b) +{ + return Rect_<_Tp>( a.x - b.x, a.y - b.y, a.width, a.height ); +} + +template static inline +Rect_<_Tp> operator + (const Rect_<_Tp>& a, const Size_<_Tp>& b) +{ + return Rect_<_Tp>( a.x, a.y, a.width + b.width, a.height + b.height ); +} + +template static inline +Rect_<_Tp> operator & (const Rect_<_Tp>& a, const Rect_<_Tp>& b) +{ + Rect_<_Tp> c = a; + return c &= b; +} + +template static inline +Rect_<_Tp> operator | (const Rect_<_Tp>& a, const Rect_<_Tp>& b) +{ + Rect_<_Tp> c = a; + return c |= b; +} + +/** + * @brief measure dissimilarity between two sample sets + * + * computes the complement of the Jaccard Index as described in . + * For rectangles this reduces to computing the intersection over the union. + */ +template static inline +double jaccardDistance(const Rect_<_Tp>& a, const Rect_<_Tp>& b) { + _Tp Aa = a.area(); + _Tp Ab = b.area(); + + if ((Aa + Ab) <= std::numeric_limits<_Tp>::epsilon()) { + // jaccard_index = 1 -> distance = 0 + return 0.0; + } + + double Aab = (a & b).area(); + // distance = 1 - jaccard_index + return 1.0 - Aab / (Aa + Ab - Aab); +} + +////////////////////////////// RotatedRect ////////////////////////////// + +inline +RotatedRect::RotatedRect() + : center(), size(), angle(0) {} + +inline +RotatedRect::RotatedRect(const Point2f& _center, const Size2f& _size, float _angle) + : center(_center), size(_size), angle(_angle) {} + + + +///////////////////////////////// Range ///////////////////////////////// + +inline +Range::Range() + : start(0), end(0) {} + +inline +Range::Range(int _start, int _end) + : start(_start), end(_end) {} + +inline +int Range::size() const +{ + return end - start; +} + +inline +bool Range::empty() const +{ + return start == end; +} + +inline +Range Range::all() +{ + return Range(INT_MIN, INT_MAX); +} + + +static inline +bool operator == (const Range& r1, const Range& r2) +{ + return r1.start == r2.start && r1.end == r2.end; +} + +static inline +bool operator != (const Range& r1, const Range& r2) +{ + return !(r1 == r2); +} + +static inline +bool operator !(const Range& r) +{ + return r.start == r.end; +} + +static inline +Range operator & (const Range& r1, const Range& r2) +{ + Range r(std::max(r1.start, r2.start), std::min(r1.end, r2.end)); + r.end = std::max(r.end, r.start); + return r; +} + +static inline +Range& operator &= (Range& r1, const Range& r2) +{ + r1 = r1 & r2; + return r1; +} + +static inline +Range operator + (const Range& r1, int delta) +{ + return Range(r1.start + delta, r1.end + delta); +} + +static inline +Range operator + (int delta, const Range& r1) +{ + return Range(r1.start + delta, r1.end + delta); +} + +static inline +Range operator - (const Range& r1, int delta) +{ + return r1 + (-delta); +} + + + +///////////////////////////////// Scalar //////////////////////////////// + +template inline +Scalar_<_Tp>::Scalar_() +{ + this->val[0] = this->val[1] = this->val[2] = this->val[3] = 0; +} + +template inline +Scalar_<_Tp>::Scalar_(_Tp v0, _Tp v1, _Tp v2, _Tp v3) +{ + this->val[0] = v0; + this->val[1] = v1; + this->val[2] = v2; + this->val[3] = v3; +} + +template template inline +Scalar_<_Tp>::Scalar_(const Vec<_Tp2, cn>& v) +{ + int i; + for( i = 0; i < (cn < 4 ? cn : 4); i++ ) + this->val[i] = cv::saturate_cast<_Tp>(v.val[i]); + for( ; i < 4; i++ ) + this->val[i] = 0; +} + +template inline +Scalar_<_Tp>::Scalar_(_Tp v0) +{ + this->val[0] = v0; + this->val[1] = this->val[2] = this->val[3] = 0; +} + +template inline +Scalar_<_Tp> Scalar_<_Tp>::all(_Tp v0) +{ + return Scalar_<_Tp>(v0, v0, v0, v0); +} + + +template inline +Scalar_<_Tp> Scalar_<_Tp>::mul(const Scalar_<_Tp>& a, double scale ) const +{ + return Scalar_<_Tp>(saturate_cast<_Tp>(this->val[0] * a.val[0] * scale), + saturate_cast<_Tp>(this->val[1] * a.val[1] * scale), + saturate_cast<_Tp>(this->val[2] * a.val[2] * scale), + saturate_cast<_Tp>(this->val[3] * a.val[3] * scale)); +} + +template inline +Scalar_<_Tp> Scalar_<_Tp>::conj() const +{ + return Scalar_<_Tp>(saturate_cast<_Tp>( this->val[0]), + saturate_cast<_Tp>(-this->val[1]), + saturate_cast<_Tp>(-this->val[2]), + saturate_cast<_Tp>(-this->val[3])); +} + +template inline +bool Scalar_<_Tp>::isReal() const +{ + return this->val[1] == 0 && this->val[2] == 0 && this->val[3] == 0; +} + + +template template inline +Scalar_<_Tp>::operator Scalar_() const +{ + return Scalar_(saturate_cast(this->val[0]), + saturate_cast(this->val[1]), + saturate_cast(this->val[2]), + saturate_cast(this->val[3])); +} + + +template static inline +Scalar_<_Tp>& operator += (Scalar_<_Tp>& a, const Scalar_<_Tp>& b) +{ + a.val[0] += b.val[0]; + a.val[1] += b.val[1]; + a.val[2] += b.val[2]; + a.val[3] += b.val[3]; + return a; +} + +template static inline +Scalar_<_Tp>& operator -= (Scalar_<_Tp>& a, const Scalar_<_Tp>& b) +{ + a.val[0] -= b.val[0]; + a.val[1] -= b.val[1]; + a.val[2] -= b.val[2]; + a.val[3] -= b.val[3]; + return a; +} + +template static inline +Scalar_<_Tp>& operator *= ( Scalar_<_Tp>& a, _Tp v ) +{ + a.val[0] *= v; + a.val[1] *= v; + a.val[2] *= v; + a.val[3] *= v; + return a; +} + +template static inline +bool operator == ( const Scalar_<_Tp>& a, const Scalar_<_Tp>& b ) +{ + return a.val[0] == b.val[0] && a.val[1] == b.val[1] && + a.val[2] == b.val[2] && a.val[3] == b.val[3]; +} + +template static inline +bool operator != ( const Scalar_<_Tp>& a, const Scalar_<_Tp>& b ) +{ + return a.val[0] != b.val[0] || a.val[1] != b.val[1] || + a.val[2] != b.val[2] || a.val[3] != b.val[3]; +} + +template static inline +Scalar_<_Tp> operator + (const Scalar_<_Tp>& a, const Scalar_<_Tp>& b) +{ + return Scalar_<_Tp>(a.val[0] + b.val[0], + a.val[1] + b.val[1], + a.val[2] + b.val[2], + a.val[3] + b.val[3]); +} + +template static inline +Scalar_<_Tp> operator - (const Scalar_<_Tp>& a, const Scalar_<_Tp>& b) +{ + return Scalar_<_Tp>(saturate_cast<_Tp>(a.val[0] - b.val[0]), + saturate_cast<_Tp>(a.val[1] - b.val[1]), + saturate_cast<_Tp>(a.val[2] - b.val[2]), + saturate_cast<_Tp>(a.val[3] - b.val[3])); +} + +template static inline +Scalar_<_Tp> operator * (const Scalar_<_Tp>& a, _Tp alpha) +{ + return Scalar_<_Tp>(a.val[0] * alpha, + a.val[1] * alpha, + a.val[2] * alpha, + a.val[3] * alpha); +} + +template static inline +Scalar_<_Tp> operator * (_Tp alpha, const Scalar_<_Tp>& a) +{ + return a*alpha; +} + +template static inline +Scalar_<_Tp> operator - (const Scalar_<_Tp>& a) +{ + return Scalar_<_Tp>(saturate_cast<_Tp>(-a.val[0]), + saturate_cast<_Tp>(-a.val[1]), + saturate_cast<_Tp>(-a.val[2]), + saturate_cast<_Tp>(-a.val[3])); +} + + +template static inline +Scalar_<_Tp> operator * (const Scalar_<_Tp>& a, const Scalar_<_Tp>& b) +{ + return Scalar_<_Tp>(saturate_cast<_Tp>(a[0]*b[0] - a[1]*b[1] - a[2]*b[2] - a[3]*b[3]), + saturate_cast<_Tp>(a[0]*b[1] + a[1]*b[0] + a[2]*b[3] - a[3]*b[2]), + saturate_cast<_Tp>(a[0]*b[2] - a[1]*b[3] + a[2]*b[0] + a[3]*b[1]), + saturate_cast<_Tp>(a[0]*b[3] + a[1]*b[2] - a[2]*b[1] + a[3]*b[0])); +} + +template static inline +Scalar_<_Tp>& operator *= (Scalar_<_Tp>& a, const Scalar_<_Tp>& b) +{ + a = a * b; + return a; +} + +template static inline +Scalar_<_Tp> operator / (const Scalar_<_Tp>& a, _Tp alpha) +{ + return Scalar_<_Tp>(a.val[0] / alpha, + a.val[1] / alpha, + a.val[2] / alpha, + a.val[3] / alpha); +} + +template static inline +Scalar_ operator / (const Scalar_& a, float alpha) +{ + float s = 1 / alpha; + return Scalar_(a.val[0] * s, a.val[1] * s, a.val[2] * s, a.val[3] * s); +} + +template static inline +Scalar_ operator / (const Scalar_& a, double alpha) +{ + double s = 1 / alpha; + return Scalar_(a.val[0] * s, a.val[1] * s, a.val[2] * s, a.val[3] * s); +} + +template static inline +Scalar_<_Tp>& operator /= (Scalar_<_Tp>& a, _Tp alpha) +{ + a = a / alpha; + return a; +} + +template static inline +Scalar_<_Tp> operator / (_Tp a, const Scalar_<_Tp>& b) +{ + _Tp s = a / (b[0]*b[0] + b[1]*b[1] + b[2]*b[2] + b[3]*b[3]); + return b.conj() * s; +} + +template static inline +Scalar_<_Tp> operator / (const Scalar_<_Tp>& a, const Scalar_<_Tp>& b) +{ + return a * ((_Tp)1 / b); +} + +template static inline +Scalar_<_Tp>& operator /= (Scalar_<_Tp>& a, const Scalar_<_Tp>& b) +{ + a = a / b; + return a; +} + +template static inline +Scalar operator * (const Matx<_Tp, 4, 4>& a, const Scalar& b) +{ + Matx c((Matx)a, b, Matx_MatMulOp()); + return reinterpret_cast(c); +} + +template<> inline +Scalar operator * (const Matx& a, const Scalar& b) +{ + Matx c(a, b, Matx_MatMulOp()); + return reinterpret_cast(c); +} + + + +//////////////////////////////// KeyPoint /////////////////////////////// + +inline +KeyPoint::KeyPoint() + : pt(0,0), size(0), angle(-1), response(0), octave(0), class_id(-1) {} + +inline +KeyPoint::KeyPoint(Point2f _pt, float _size, float _angle, float _response, int _octave, int _class_id) + : pt(_pt), size(_size), angle(_angle), response(_response), octave(_octave), class_id(_class_id) {} + +inline +KeyPoint::KeyPoint(float x, float y, float _size, float _angle, float _response, int _octave, int _class_id) + : pt(x, y), size(_size), angle(_angle), response(_response), octave(_octave), class_id(_class_id) {} + + + +///////////////////////////////// DMatch //////////////////////////////// + +inline +DMatch::DMatch() + : queryIdx(-1), trainIdx(-1), imgIdx(-1), distance(FLT_MAX) {} + +inline +DMatch::DMatch(int _queryIdx, int _trainIdx, float _distance) + : queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(-1), distance(_distance) {} + +inline +DMatch::DMatch(int _queryIdx, int _trainIdx, int _imgIdx, float _distance) + : queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(_imgIdx), distance(_distance) {} + +inline +bool DMatch::operator < (const DMatch &m) const +{ + return distance < m.distance; +} + + + +////////////////////////////// TermCriteria ///////////////////////////// + +inline +TermCriteria::TermCriteria() + : type(0), maxCount(0), epsilon(0) {} + +inline +TermCriteria::TermCriteria(int _type, int _maxCount, double _epsilon) + : type(_type), maxCount(_maxCount), epsilon(_epsilon) {} + +//! @endcond + +} // cv + +#endif //OPENCV_CORE_TYPES_HPP diff --git a/thirdparty1/linux/include/opencv2/core/types_c.h b/thirdparty1/linux/include/opencv2/core/types_c.h new file mode 100644 index 0000000..f82a59e --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/types_c.h @@ -0,0 +1,1837 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_TYPES_H +#define OPENCV_CORE_TYPES_H + +#ifdef HAVE_IPL +# ifndef __IPL_H__ +# if defined WIN32 || defined _WIN32 +# include +# else +# include +# endif +# endif +#elif defined __IPL_H__ +# define HAVE_IPL +#endif + +#include "opencv2/core/cvdef.h" + +#ifndef SKIP_INCLUDES +#include +#include +#include +#include +#endif // SKIP_INCLUDES + +#if defined WIN32 || defined _WIN32 +# define CV_CDECL __cdecl +# define CV_STDCALL __stdcall +#else +# define CV_CDECL +# define CV_STDCALL +#endif + +#ifndef CV_DEFAULT +# ifdef __cplusplus +# define CV_DEFAULT(val) = val +# else +# define CV_DEFAULT(val) +# endif +#endif + +#ifndef CV_EXTERN_C_FUNCPTR +# ifdef __cplusplus +# define CV_EXTERN_C_FUNCPTR(x) extern "C" { typedef x; } +# else +# define CV_EXTERN_C_FUNCPTR(x) typedef x +# endif +#endif + +#ifndef CVAPI +# define CVAPI(rettype) CV_EXTERN_C CV_EXPORTS rettype CV_CDECL +#endif + +#ifndef CV_IMPL +# define CV_IMPL CV_EXTERN_C +#endif + +#ifdef __cplusplus +# include "opencv2/core.hpp" +#endif + +/** @addtogroup core_c + @{ +*/ + +/** @brief This is the "metatype" used *only* as a function parameter. + +It denotes that the function accepts arrays of multiple types, such as IplImage*, CvMat* or even +CvSeq* sometimes. The particular array type is determined at runtime by analyzing the first 4 +bytes of the header. In C++ interface the role of CvArr is played by InputArray and OutputArray. + */ +typedef void CvArr; + +typedef int CVStatus; + +/** @see cv::Error::Code */ +enum { + CV_StsOk= 0, /**< everything is ok */ + CV_StsBackTrace= -1, /**< pseudo error for back trace */ + CV_StsError= -2, /**< unknown /unspecified error */ + CV_StsInternal= -3, /**< internal error (bad state) */ + CV_StsNoMem= -4, /**< insufficient memory */ + CV_StsBadArg= -5, /**< function arg/param is bad */ + CV_StsBadFunc= -6, /**< unsupported function */ + CV_StsNoConv= -7, /**< iter. didn't converge */ + CV_StsAutoTrace= -8, /**< tracing */ + CV_HeaderIsNull= -9, /**< image header is NULL */ + CV_BadImageSize= -10, /**< image size is invalid */ + CV_BadOffset= -11, /**< offset is invalid */ + CV_BadDataPtr= -12, /**/ + CV_BadStep= -13, /**/ + CV_BadModelOrChSeq= -14, /**/ + CV_BadNumChannels= -15, /**/ + CV_BadNumChannel1U= -16, /**/ + CV_BadDepth= -17, /**/ + CV_BadAlphaChannel= -18, /**/ + CV_BadOrder= -19, /**/ + CV_BadOrigin= -20, /**/ + CV_BadAlign= -21, /**/ + CV_BadCallBack= -22, /**/ + CV_BadTileSize= -23, /**/ + CV_BadCOI= -24, /**/ + CV_BadROISize= -25, /**/ + CV_MaskIsTiled= -26, /**/ + CV_StsNullPtr= -27, /**< null pointer */ + CV_StsVecLengthErr= -28, /**< incorrect vector length */ + CV_StsFilterStructContentErr= -29, /**< incorr. filter structure content */ + CV_StsKernelStructContentErr= -30, /**< incorr. transform kernel content */ + CV_StsFilterOffsetErr= -31, /**< incorrect filter offset value */ + CV_StsBadSize= -201, /**< the input/output structure size is incorrect */ + CV_StsDivByZero= -202, /**< division by zero */ + CV_StsInplaceNotSupported= -203, /**< in-place operation is not supported */ + CV_StsObjectNotFound= -204, /**< request can't be completed */ + CV_StsUnmatchedFormats= -205, /**< formats of input/output arrays differ */ + CV_StsBadFlag= -206, /**< flag is wrong or not supported */ + CV_StsBadPoint= -207, /**< bad CvPoint */ + CV_StsBadMask= -208, /**< bad format of mask (neither 8uC1 nor 8sC1)*/ + CV_StsUnmatchedSizes= -209, /**< sizes of input/output structures do not match */ + CV_StsUnsupportedFormat= -210, /**< the data format/type is not supported by the function*/ + CV_StsOutOfRange= -211, /**< some of parameters are out of range */ + CV_StsParseError= -212, /**< invalid syntax/structure of the parsed file */ + CV_StsNotImplemented= -213, /**< the requested function/feature is not implemented */ + CV_StsBadMemBlock= -214, /**< an allocated block has been corrupted */ + CV_StsAssert= -215, /**< assertion failed */ + CV_GpuNotSupported= -216, + CV_GpuApiCallError= -217, + CV_OpenGlNotSupported= -218, + CV_OpenGlApiCallError= -219, + CV_OpenCLApiCallError= -220, + CV_OpenCLDoubleNotSupported= -221, + CV_OpenCLInitError= -222, + CV_OpenCLNoAMDBlasFft= -223 +}; + +/****************************************************************************************\ +* Common macros and inline functions * +\****************************************************************************************/ + +#define CV_SWAP(a,b,t) ((t) = (a), (a) = (b), (b) = (t)) + +/** min & max without jumps */ +#define CV_IMIN(a, b) ((a) ^ (((a)^(b)) & (((a) < (b)) - 1))) + +#define CV_IMAX(a, b) ((a) ^ (((a)^(b)) & (((a) > (b)) - 1))) + +/** absolute value without jumps */ +#ifndef __cplusplus +# define CV_IABS(a) (((a) ^ ((a) < 0 ? -1 : 0)) - ((a) < 0 ? -1 : 0)) +#else +# define CV_IABS(a) abs(a) +#endif +#define CV_CMP(a,b) (((a) > (b)) - ((a) < (b))) +#define CV_SIGN(a) CV_CMP((a),0) + +#define cvInvSqrt(value) ((float)(1./sqrt(value))) +#define cvSqrt(value) ((float)sqrt(value)) + + +/*************** Random number generation *******************/ + +typedef uint64 CvRNG; + +#define CV_RNG_COEFF 4164903690U + +/** @brief Initializes a random number generator state. + +The function initializes a random number generator and returns the state. The pointer to the state +can be then passed to the cvRandInt, cvRandReal and cvRandArr functions. In the current +implementation a multiply-with-carry generator is used. +@param seed 64-bit value used to initiate a random sequence +@sa the C++ class RNG replaced CvRNG. + */ +CV_INLINE CvRNG cvRNG( int64 seed CV_DEFAULT(-1)) +{ + CvRNG rng = seed ? (uint64)seed : (uint64)(int64)-1; + return rng; +} + +/** @brief Returns a 32-bit unsigned integer and updates RNG. + +The function returns a uniformly-distributed random 32-bit unsigned integer and updates the RNG +state. It is similar to the rand() function from the C runtime library, except that OpenCV functions +always generates a 32-bit random number, regardless of the platform. +@param rng CvRNG state initialized by cvRNG. + */ +CV_INLINE unsigned cvRandInt( CvRNG* rng ) +{ + uint64 temp = *rng; + temp = (uint64)(unsigned)temp*CV_RNG_COEFF + (temp >> 32); + *rng = temp; + return (unsigned)temp; +} + +/** @brief Returns a floating-point random number and updates RNG. + +The function returns a uniformly-distributed random floating-point number between 0 and 1 (1 is not +included). +@param rng RNG state initialized by cvRNG + */ +CV_INLINE double cvRandReal( CvRNG* rng ) +{ + return cvRandInt(rng)*2.3283064365386962890625e-10 /* 2^-32 */; +} + +/****************************************************************************************\ +* Image type (IplImage) * +\****************************************************************************************/ + +#ifndef HAVE_IPL + +/* + * The following definitions (until #endif) + * is an extract from IPL headers. + * Copyright (c) 1995 Intel Corporation. + */ +#define IPL_DEPTH_SIGN 0x80000000 + +#define IPL_DEPTH_1U 1 +#define IPL_DEPTH_8U 8 +#define IPL_DEPTH_16U 16 +#define IPL_DEPTH_32F 32 + +#define IPL_DEPTH_8S (IPL_DEPTH_SIGN| 8) +#define IPL_DEPTH_16S (IPL_DEPTH_SIGN|16) +#define IPL_DEPTH_32S (IPL_DEPTH_SIGN|32) + +#define IPL_DATA_ORDER_PIXEL 0 +#define IPL_DATA_ORDER_PLANE 1 + +#define IPL_ORIGIN_TL 0 +#define IPL_ORIGIN_BL 1 + +#define IPL_ALIGN_4BYTES 4 +#define IPL_ALIGN_8BYTES 8 +#define IPL_ALIGN_16BYTES 16 +#define IPL_ALIGN_32BYTES 32 + +#define IPL_ALIGN_DWORD IPL_ALIGN_4BYTES +#define IPL_ALIGN_QWORD IPL_ALIGN_8BYTES + +#define IPL_BORDER_CONSTANT 0 +#define IPL_BORDER_REPLICATE 1 +#define IPL_BORDER_REFLECT 2 +#define IPL_BORDER_WRAP 3 + +/** The IplImage is taken from the Intel Image Processing Library, in which the format is native. OpenCV +only supports a subset of possible IplImage formats, as outlined in the parameter list above. + +In addition to the above restrictions, OpenCV handles ROIs differently. OpenCV functions require +that the image size or ROI size of all source and destination images match exactly. On the other +hand, the Intel Image Processing Library processes the area of intersection between the source and +destination images (or ROIs), allowing them to vary independently. +*/ +typedef struct +#ifdef __cplusplus + CV_EXPORTS +#endif +_IplImage +{ + int nSize; /**< sizeof(IplImage) */ + int ID; /**< version (=0)*/ + int nChannels; /**< Most of OpenCV functions support 1,2,3 or 4 channels */ + int alphaChannel; /**< Ignored by OpenCV */ + int depth; /**< Pixel depth in bits: IPL_DEPTH_8U, IPL_DEPTH_8S, IPL_DEPTH_16S, + IPL_DEPTH_32S, IPL_DEPTH_32F and IPL_DEPTH_64F are supported. */ + char colorModel[4]; /**< Ignored by OpenCV */ + char channelSeq[4]; /**< ditto */ + int dataOrder; /**< 0 - interleaved color channels, 1 - separate color channels. + cvCreateImage can only create interleaved images */ + int origin; /**< 0 - top-left origin, + 1 - bottom-left origin (Windows bitmaps style). */ + int align; /**< Alignment of image rows (4 or 8). + OpenCV ignores it and uses widthStep instead. */ + int width; /**< Image width in pixels. */ + int height; /**< Image height in pixels. */ + struct _IplROI *roi; /**< Image ROI. If NULL, the whole image is selected. */ + struct _IplImage *maskROI; /**< Must be NULL. */ + void *imageId; /**< " " */ + struct _IplTileInfo *tileInfo; /**< " " */ + int imageSize; /**< Image data size in bytes + (==image->height*image->widthStep + in case of interleaved data)*/ + char *imageData; /**< Pointer to aligned image data. */ + int widthStep; /**< Size of aligned image row in bytes. */ + int BorderMode[4]; /**< Ignored by OpenCV. */ + int BorderConst[4]; /**< Ditto. */ + char *imageDataOrigin; /**< Pointer to very origin of image data + (not necessarily aligned) - + needed for correct deallocation */ + +#ifdef __cplusplus + _IplImage() {} + _IplImage(const cv::Mat& m); +#endif +} +IplImage; + +typedef struct _IplTileInfo IplTileInfo; + +typedef struct _IplROI +{ + int coi; /**< 0 - no COI (all channels are selected), 1 - 0th channel is selected ...*/ + int xOffset; + int yOffset; + int width; + int height; +} +IplROI; + +typedef struct _IplConvKernel +{ + int nCols; + int nRows; + int anchorX; + int anchorY; + int *values; + int nShiftR; +} +IplConvKernel; + +typedef struct _IplConvKernelFP +{ + int nCols; + int nRows; + int anchorX; + int anchorY; + float *values; +} +IplConvKernelFP; + +#define IPL_IMAGE_HEADER 1 +#define IPL_IMAGE_DATA 2 +#define IPL_IMAGE_ROI 4 + +#endif/*HAVE_IPL*/ + +/** extra border mode */ +#define IPL_BORDER_REFLECT_101 4 +#define IPL_BORDER_TRANSPARENT 5 + +#define IPL_IMAGE_MAGIC_VAL ((int)sizeof(IplImage)) +#define CV_TYPE_NAME_IMAGE "opencv-image" + +#define CV_IS_IMAGE_HDR(img) \ + ((img) != NULL && ((const IplImage*)(img))->nSize == sizeof(IplImage)) + +#define CV_IS_IMAGE(img) \ + (CV_IS_IMAGE_HDR(img) && ((IplImage*)img)->imageData != NULL) + +/** for storing double-precision + floating point data in IplImage's */ +#define IPL_DEPTH_64F 64 + +/** get reference to pixel at (col,row), + for multi-channel images (col) should be multiplied by number of channels */ +#define CV_IMAGE_ELEM( image, elemtype, row, col ) \ + (((elemtype*)((image)->imageData + (image)->widthStep*(row)))[(col)]) + +/****************************************************************************************\ +* Matrix type (CvMat) * +\****************************************************************************************/ + +#define CV_AUTO_STEP 0x7fffffff +#define CV_WHOLE_ARR cvSlice( 0, 0x3fffffff ) + +#define CV_MAGIC_MASK 0xFFFF0000 +#define CV_MAT_MAGIC_VAL 0x42420000 +#define CV_TYPE_NAME_MAT "opencv-matrix" + +/** Matrix elements are stored row by row. Element (i, j) (i - 0-based row index, j - 0-based column +index) of a matrix can be retrieved or modified using CV_MAT_ELEM macro: + + uchar pixval = CV_MAT_ELEM(grayimg, uchar, i, j) + CV_MAT_ELEM(cameraMatrix, float, 0, 2) = image.width*0.5f; + +To access multiple-channel matrices, you can use +CV_MAT_ELEM(matrix, type, i, j\*nchannels + channel_idx). + +@deprecated CvMat is now obsolete; consider using Mat instead. + */ +typedef struct CvMat +{ + int type; + int step; + + /* for internal use only */ + int* refcount; + int hdr_refcount; + + union + { + uchar* ptr; + short* s; + int* i; + float* fl; + double* db; + } data; + +#ifdef __cplusplus + union + { + int rows; + int height; + }; + + union + { + int cols; + int width; + }; +#else + int rows; + int cols; +#endif + + +#ifdef __cplusplus + CvMat() {} + CvMat(const CvMat& m) { memcpy(this, &m, sizeof(CvMat));} + CvMat(const cv::Mat& m); +#endif + +} +CvMat; + + +#define CV_IS_MAT_HDR(mat) \ + ((mat) != NULL && \ + (((const CvMat*)(mat))->type & CV_MAGIC_MASK) == CV_MAT_MAGIC_VAL && \ + ((const CvMat*)(mat))->cols > 0 && ((const CvMat*)(mat))->rows > 0) + +#define CV_IS_MAT_HDR_Z(mat) \ + ((mat) != NULL && \ + (((const CvMat*)(mat))->type & CV_MAGIC_MASK) == CV_MAT_MAGIC_VAL && \ + ((const CvMat*)(mat))->cols >= 0 && ((const CvMat*)(mat))->rows >= 0) + +#define CV_IS_MAT(mat) \ + (CV_IS_MAT_HDR(mat) && ((const CvMat*)(mat))->data.ptr != NULL) + +#define CV_IS_MASK_ARR(mat) \ + (((mat)->type & (CV_MAT_TYPE_MASK & ~CV_8SC1)) == 0) + +#define CV_ARE_TYPES_EQ(mat1, mat2) \ + ((((mat1)->type ^ (mat2)->type) & CV_MAT_TYPE_MASK) == 0) + +#define CV_ARE_CNS_EQ(mat1, mat2) \ + ((((mat1)->type ^ (mat2)->type) & CV_MAT_CN_MASK) == 0) + +#define CV_ARE_DEPTHS_EQ(mat1, mat2) \ + ((((mat1)->type ^ (mat2)->type) & CV_MAT_DEPTH_MASK) == 0) + +#define CV_ARE_SIZES_EQ(mat1, mat2) \ + ((mat1)->rows == (mat2)->rows && (mat1)->cols == (mat2)->cols) + +#define CV_IS_MAT_CONST(mat) \ + (((mat)->rows|(mat)->cols) == 1) + +#define IPL2CV_DEPTH(depth) \ + ((((CV_8U)+(CV_16U<<4)+(CV_32F<<8)+(CV_64F<<16)+(CV_8S<<20)+ \ + (CV_16S<<24)+(CV_32S<<28)) >> ((((depth) & 0xF0) >> 2) + \ + (((depth) & IPL_DEPTH_SIGN) ? 20 : 0))) & 15) + +/** Inline constructor. No data is allocated internally!!! + * (Use together with cvCreateData, or use cvCreateMat instead to + * get a matrix with allocated data): + */ +CV_INLINE CvMat cvMat( int rows, int cols, int type, void* data CV_DEFAULT(NULL)) +{ + CvMat m; + + assert( (unsigned)CV_MAT_DEPTH(type) <= CV_64F ); + type = CV_MAT_TYPE(type); + m.type = CV_MAT_MAGIC_VAL | CV_MAT_CONT_FLAG | type; + m.cols = cols; + m.rows = rows; + m.step = m.cols*CV_ELEM_SIZE(type); + m.data.ptr = (uchar*)data; + m.refcount = NULL; + m.hdr_refcount = 0; + + return m; +} + +#ifdef __cplusplus +inline CvMat::CvMat(const cv::Mat& m) +{ + CV_DbgAssert(m.dims <= 2); + *this = cvMat(m.rows, m.dims == 1 ? 1 : m.cols, m.type(), m.data); + step = (int)m.step[0]; + type = (type & ~cv::Mat::CONTINUOUS_FLAG) | (m.flags & cv::Mat::CONTINUOUS_FLAG); +} +#endif + + +#define CV_MAT_ELEM_PTR_FAST( mat, row, col, pix_size ) \ + (assert( (unsigned)(row) < (unsigned)(mat).rows && \ + (unsigned)(col) < (unsigned)(mat).cols ), \ + (mat).data.ptr + (size_t)(mat).step*(row) + (pix_size)*(col)) + +#define CV_MAT_ELEM_PTR( mat, row, col ) \ + CV_MAT_ELEM_PTR_FAST( mat, row, col, CV_ELEM_SIZE((mat).type) ) + +#define CV_MAT_ELEM( mat, elemtype, row, col ) \ + (*(elemtype*)CV_MAT_ELEM_PTR_FAST( mat, row, col, sizeof(elemtype))) + +/** @brief Returns the particular element of single-channel floating-point matrix. + +The function is a fast replacement for cvGetReal2D in the case of single-channel floating-point +matrices. It is faster because it is inline, it does fewer checks for array type and array element +type, and it checks for the row and column ranges only in debug mode. +@param mat Input matrix +@param row The zero-based index of row +@param col The zero-based index of column + */ +CV_INLINE double cvmGet( const CvMat* mat, int row, int col ) +{ + int type; + + type = CV_MAT_TYPE(mat->type); + assert( (unsigned)row < (unsigned)mat->rows && + (unsigned)col < (unsigned)mat->cols ); + + if( type == CV_32FC1 ) + return ((float*)(void*)(mat->data.ptr + (size_t)mat->step*row))[col]; + else + { + assert( type == CV_64FC1 ); + return ((double*)(void*)(mat->data.ptr + (size_t)mat->step*row))[col]; + } +} + +/** @brief Sets a specific element of a single-channel floating-point matrix. + +The function is a fast replacement for cvSetReal2D in the case of single-channel floating-point +matrices. It is faster because it is inline, it does fewer checks for array type and array element +type, and it checks for the row and column ranges only in debug mode. +@param mat The matrix +@param row The zero-based index of row +@param col The zero-based index of column +@param value The new value of the matrix element + */ +CV_INLINE void cvmSet( CvMat* mat, int row, int col, double value ) +{ + int type; + type = CV_MAT_TYPE(mat->type); + assert( (unsigned)row < (unsigned)mat->rows && + (unsigned)col < (unsigned)mat->cols ); + + if( type == CV_32FC1 ) + ((float*)(void*)(mat->data.ptr + (size_t)mat->step*row))[col] = (float)value; + else + { + assert( type == CV_64FC1 ); + ((double*)(void*)(mat->data.ptr + (size_t)mat->step*row))[col] = value; + } +} + + +CV_INLINE int cvIplDepth( int type ) +{ + int depth = CV_MAT_DEPTH(type); + return CV_ELEM_SIZE1(depth)*8 | (depth == CV_8S || depth == CV_16S || + depth == CV_32S ? IPL_DEPTH_SIGN : 0); +} + + +/****************************************************************************************\ +* Multi-dimensional dense array (CvMatND) * +\****************************************************************************************/ + +#define CV_MATND_MAGIC_VAL 0x42430000 +#define CV_TYPE_NAME_MATND "opencv-nd-matrix" + +#define CV_MAX_DIM 32 +#define CV_MAX_DIM_HEAP 1024 + +/** + @deprecated consider using cv::Mat instead + */ +typedef struct +#ifdef __cplusplus + CV_EXPORTS +#endif +CvMatND +{ + int type; + int dims; + + int* refcount; + int hdr_refcount; + + union + { + uchar* ptr; + float* fl; + double* db; + int* i; + short* s; + } data; + + struct + { + int size; + int step; + } + dim[CV_MAX_DIM]; + +#ifdef __cplusplus + CvMatND() {} + CvMatND(const cv::Mat& m); +#endif +} +CvMatND; + +#define CV_IS_MATND_HDR(mat) \ + ((mat) != NULL && (((const CvMatND*)(mat))->type & CV_MAGIC_MASK) == CV_MATND_MAGIC_VAL) + +#define CV_IS_MATND(mat) \ + (CV_IS_MATND_HDR(mat) && ((const CvMatND*)(mat))->data.ptr != NULL) + + +/****************************************************************************************\ +* Multi-dimensional sparse array (CvSparseMat) * +\****************************************************************************************/ + +#define CV_SPARSE_MAT_MAGIC_VAL 0x42440000 +#define CV_TYPE_NAME_SPARSE_MAT "opencv-sparse-matrix" + +struct CvSet; + +typedef struct +#ifdef __cplusplus + CV_EXPORTS +#endif +CvSparseMat +{ + int type; + int dims; + int* refcount; + int hdr_refcount; + + struct CvSet* heap; + void** hashtable; + int hashsize; + int valoffset; + int idxoffset; + int size[CV_MAX_DIM]; + +#ifdef __cplusplus + void copyToSparseMat(cv::SparseMat& m) const; +#endif +} +CvSparseMat; + +#ifdef __cplusplus + CV_EXPORTS CvSparseMat* cvCreateSparseMat(const cv::SparseMat& m); +#endif + +#define CV_IS_SPARSE_MAT_HDR(mat) \ + ((mat) != NULL && \ + (((const CvSparseMat*)(mat))->type & CV_MAGIC_MASK) == CV_SPARSE_MAT_MAGIC_VAL) + +#define CV_IS_SPARSE_MAT(mat) \ + CV_IS_SPARSE_MAT_HDR(mat) + +/**************** iteration through a sparse array *****************/ + +typedef struct CvSparseNode +{ + unsigned hashval; + struct CvSparseNode* next; +} +CvSparseNode; + +typedef struct CvSparseMatIterator +{ + CvSparseMat* mat; + CvSparseNode* node; + int curidx; +} +CvSparseMatIterator; + +#define CV_NODE_VAL(mat,node) ((void*)((uchar*)(node) + (mat)->valoffset)) +#define CV_NODE_IDX(mat,node) ((int*)((uchar*)(node) + (mat)->idxoffset)) + +/****************************************************************************************\ +* Histogram * +\****************************************************************************************/ + +typedef int CvHistType; + +#define CV_HIST_MAGIC_VAL 0x42450000 +#define CV_HIST_UNIFORM_FLAG (1 << 10) + +/** indicates whether bin ranges are set already or not */ +#define CV_HIST_RANGES_FLAG (1 << 11) + +#define CV_HIST_ARRAY 0 +#define CV_HIST_SPARSE 1 +#define CV_HIST_TREE CV_HIST_SPARSE + +/** should be used as a parameter only, + it turns to CV_HIST_UNIFORM_FLAG of hist->type */ +#define CV_HIST_UNIFORM 1 + +typedef struct CvHistogram +{ + int type; + CvArr* bins; + float thresh[CV_MAX_DIM][2]; /**< For uniform histograms. */ + float** thresh2; /**< For non-uniform histograms. */ + CvMatND mat; /**< Embedded matrix header for array histograms. */ +} +CvHistogram; + +#define CV_IS_HIST( hist ) \ + ((hist) != NULL && \ + (((CvHistogram*)(hist))->type & CV_MAGIC_MASK) == CV_HIST_MAGIC_VAL && \ + (hist)->bins != NULL) + +#define CV_IS_UNIFORM_HIST( hist ) \ + (((hist)->type & CV_HIST_UNIFORM_FLAG) != 0) + +#define CV_IS_SPARSE_HIST( hist ) \ + CV_IS_SPARSE_MAT((hist)->bins) + +#define CV_HIST_HAS_RANGES( hist ) \ + (((hist)->type & CV_HIST_RANGES_FLAG) != 0) + +/****************************************************************************************\ +* Other supplementary data type definitions * +\****************************************************************************************/ + +/*************************************** CvRect *****************************************/ +/** @sa Rect_ */ +typedef struct CvRect +{ + int x; + int y; + int width; + int height; + +#ifdef __cplusplus + CvRect(int _x = 0, int _y = 0, int w = 0, int h = 0): x(_x), y(_y), width(w), height(h) {} + template + CvRect(const cv::Rect_<_Tp>& r): x(cv::saturate_cast(r.x)), y(cv::saturate_cast(r.y)), width(cv::saturate_cast(r.width)), height(cv::saturate_cast(r.height)) {} + template + operator cv::Rect_<_Tp>() const { return cv::Rect_<_Tp>((_Tp)x, (_Tp)y, (_Tp)width, (_Tp)height); } +#endif +} +CvRect; + +/** constructs CvRect structure. */ +CV_INLINE CvRect cvRect( int x, int y, int width, int height ) +{ + CvRect r; + + r.x = x; + r.y = y; + r.width = width; + r.height = height; + + return r; +} + + +CV_INLINE IplROI cvRectToROI( CvRect rect, int coi ) +{ + IplROI roi; + roi.xOffset = rect.x; + roi.yOffset = rect.y; + roi.width = rect.width; + roi.height = rect.height; + roi.coi = coi; + + return roi; +} + + +CV_INLINE CvRect cvROIToRect( IplROI roi ) +{ + return cvRect( roi.xOffset, roi.yOffset, roi.width, roi.height ); +} + +/*********************************** CvTermCriteria *************************************/ + +#define CV_TERMCRIT_ITER 1 +#define CV_TERMCRIT_NUMBER CV_TERMCRIT_ITER +#define CV_TERMCRIT_EPS 2 + +/** @sa TermCriteria + */ +typedef struct CvTermCriteria +{ + int type; /**< may be combination of + CV_TERMCRIT_ITER + CV_TERMCRIT_EPS */ + int max_iter; + double epsilon; + +#ifdef __cplusplus + CvTermCriteria(int _type = 0, int _iter = 0, double _eps = 0) : type(_type), max_iter(_iter), epsilon(_eps) {} + CvTermCriteria(const cv::TermCriteria& t) : type(t.type), max_iter(t.maxCount), epsilon(t.epsilon) {} + operator cv::TermCriteria() const { return cv::TermCriteria(type, max_iter, epsilon); } +#endif + +} +CvTermCriteria; + +CV_INLINE CvTermCriteria cvTermCriteria( int type, int max_iter, double epsilon ) +{ + CvTermCriteria t; + + t.type = type; + t.max_iter = max_iter; + t.epsilon = (float)epsilon; + + return t; +} + + +/******************************* CvPoint and variants ***********************************/ + +typedef struct CvPoint +{ + int x; + int y; + +#ifdef __cplusplus + CvPoint(int _x = 0, int _y = 0): x(_x), y(_y) {} + template + CvPoint(const cv::Point_<_Tp>& pt): x((int)pt.x), y((int)pt.y) {} + template + operator cv::Point_<_Tp>() const { return cv::Point_<_Tp>(cv::saturate_cast<_Tp>(x), cv::saturate_cast<_Tp>(y)); } +#endif +} +CvPoint; + +/** constructs CvPoint structure. */ +CV_INLINE CvPoint cvPoint( int x, int y ) +{ + CvPoint p; + + p.x = x; + p.y = y; + + return p; +} + + +typedef struct CvPoint2D32f +{ + float x; + float y; + +#ifdef __cplusplus + CvPoint2D32f(float _x = 0, float _y = 0): x(_x), y(_y) {} + template + CvPoint2D32f(const cv::Point_<_Tp>& pt): x((float)pt.x), y((float)pt.y) {} + template + operator cv::Point_<_Tp>() const { return cv::Point_<_Tp>(cv::saturate_cast<_Tp>(x), cv::saturate_cast<_Tp>(y)); } +#endif +} +CvPoint2D32f; + +/** constructs CvPoint2D32f structure. */ +CV_INLINE CvPoint2D32f cvPoint2D32f( double x, double y ) +{ + CvPoint2D32f p; + + p.x = (float)x; + p.y = (float)y; + + return p; +} + +/** converts CvPoint to CvPoint2D32f. */ +CV_INLINE CvPoint2D32f cvPointTo32f( CvPoint point ) +{ + return cvPoint2D32f( (float)point.x, (float)point.y ); +} + +/** converts CvPoint2D32f to CvPoint. */ +CV_INLINE CvPoint cvPointFrom32f( CvPoint2D32f point ) +{ + CvPoint ipt; + ipt.x = cvRound(point.x); + ipt.y = cvRound(point.y); + + return ipt; +} + + +typedef struct CvPoint3D32f +{ + float x; + float y; + float z; + +#ifdef __cplusplus + CvPoint3D32f(float _x = 0, float _y = 0, float _z = 0): x(_x), y(_y), z(_z) {} + template + CvPoint3D32f(const cv::Point3_<_Tp>& pt): x((float)pt.x), y((float)pt.y), z((float)pt.z) {} + template + operator cv::Point3_<_Tp>() const { return cv::Point3_<_Tp>(cv::saturate_cast<_Tp>(x), cv::saturate_cast<_Tp>(y), cv::saturate_cast<_Tp>(z)); } +#endif +} +CvPoint3D32f; + +/** constructs CvPoint3D32f structure. */ +CV_INLINE CvPoint3D32f cvPoint3D32f( double x, double y, double z ) +{ + CvPoint3D32f p; + + p.x = (float)x; + p.y = (float)y; + p.z = (float)z; + + return p; +} + + +typedef struct CvPoint2D64f +{ + double x; + double y; +} +CvPoint2D64f; + +/** constructs CvPoint2D64f structure.*/ +CV_INLINE CvPoint2D64f cvPoint2D64f( double x, double y ) +{ + CvPoint2D64f p; + + p.x = x; + p.y = y; + + return p; +} + + +typedef struct CvPoint3D64f +{ + double x; + double y; + double z; +} +CvPoint3D64f; + +/** constructs CvPoint3D64f structure. */ +CV_INLINE CvPoint3D64f cvPoint3D64f( double x, double y, double z ) +{ + CvPoint3D64f p; + + p.x = x; + p.y = y; + p.z = z; + + return p; +} + + +/******************************** CvSize's & CvBox **************************************/ + +typedef struct CvSize +{ + int width; + int height; + +#ifdef __cplusplus + CvSize(int w = 0, int h = 0): width(w), height(h) {} + template + CvSize(const cv::Size_<_Tp>& sz): width(cv::saturate_cast(sz.width)), height(cv::saturate_cast(sz.height)) {} + template + operator cv::Size_<_Tp>() const { return cv::Size_<_Tp>(cv::saturate_cast<_Tp>(width), cv::saturate_cast<_Tp>(height)); } +#endif +} +CvSize; + +/** constructs CvSize structure. */ +CV_INLINE CvSize cvSize( int width, int height ) +{ + CvSize s; + + s.width = width; + s.height = height; + + return s; +} + +typedef struct CvSize2D32f +{ + float width; + float height; + +#ifdef __cplusplus + CvSize2D32f(float w = 0, float h = 0): width(w), height(h) {} + template + CvSize2D32f(const cv::Size_<_Tp>& sz): width(cv::saturate_cast(sz.width)), height(cv::saturate_cast(sz.height)) {} + template + operator cv::Size_<_Tp>() const { return cv::Size_<_Tp>(cv::saturate_cast<_Tp>(width), cv::saturate_cast<_Tp>(height)); } +#endif +} +CvSize2D32f; + +/** constructs CvSize2D32f structure. */ +CV_INLINE CvSize2D32f cvSize2D32f( double width, double height ) +{ + CvSize2D32f s; + + s.width = (float)width; + s.height = (float)height; + + return s; +} + +/** @sa RotatedRect + */ +typedef struct CvBox2D +{ + CvPoint2D32f center; /**< Center of the box. */ + CvSize2D32f size; /**< Box width and length. */ + float angle; /**< Angle between the horizontal axis */ + /**< and the first side (i.e. length) in degrees */ + +#ifdef __cplusplus + CvBox2D(CvPoint2D32f c = CvPoint2D32f(), CvSize2D32f s = CvSize2D32f(), float a = 0) : center(c), size(s), angle(a) {} + CvBox2D(const cv::RotatedRect& rr) : center(rr.center), size(rr.size), angle(rr.angle) {} + operator cv::RotatedRect() const { return cv::RotatedRect(center, size, angle); } +#endif +} +CvBox2D; + + +/** Line iterator state: */ +typedef struct CvLineIterator +{ + /** Pointer to the current point: */ + uchar* ptr; + + /* Bresenham algorithm state: */ + int err; + int plus_delta; + int minus_delta; + int plus_step; + int minus_step; +} +CvLineIterator; + + + +/************************************* CvSlice ******************************************/ +#define CV_WHOLE_SEQ_END_INDEX 0x3fffffff +#define CV_WHOLE_SEQ cvSlice(0, CV_WHOLE_SEQ_END_INDEX) + +typedef struct CvSlice +{ + int start_index, end_index; + +#if defined(__cplusplus) && !defined(__CUDACC__) + CvSlice(int start = 0, int end = 0) : start_index(start), end_index(end) {} + CvSlice(const cv::Range& r) { *this = (r.start != INT_MIN && r.end != INT_MAX) ? CvSlice(r.start, r.end) : CvSlice(0, CV_WHOLE_SEQ_END_INDEX); } + operator cv::Range() const { return (start_index == 0 && end_index == CV_WHOLE_SEQ_END_INDEX ) ? cv::Range::all() : cv::Range(start_index, end_index); } +#endif +} +CvSlice; + +CV_INLINE CvSlice cvSlice( int start, int end ) +{ + CvSlice slice; + slice.start_index = start; + slice.end_index = end; + + return slice; +} + + + +/************************************* CvScalar *****************************************/ +/** @sa Scalar_ + */ +typedef struct CvScalar +{ + double val[4]; + +#ifdef __cplusplus + CvScalar() {} + CvScalar(double d0, double d1 = 0, double d2 = 0, double d3 = 0) { val[0] = d0; val[1] = d1; val[2] = d2; val[3] = d3; } + template + CvScalar(const cv::Scalar_<_Tp>& s) { val[0] = s.val[0]; val[1] = s.val[1]; val[2] = s.val[2]; val[3] = s.val[3]; } + template + operator cv::Scalar_<_Tp>() const { return cv::Scalar_<_Tp>(cv::saturate_cast<_Tp>(val[0]), cv::saturate_cast<_Tp>(val[1]), cv::saturate_cast<_Tp>(val[2]), cv::saturate_cast<_Tp>(val[3])); } + template + CvScalar(const cv::Vec<_Tp, cn>& v) + { + int i; + for( i = 0; i < (cn < 4 ? cn : 4); i++ ) val[i] = v.val[i]; + for( ; i < 4; i++ ) val[i] = 0; + } +#endif +} +CvScalar; + +CV_INLINE CvScalar cvScalar( double val0, double val1 CV_DEFAULT(0), + double val2 CV_DEFAULT(0), double val3 CV_DEFAULT(0)) +{ + CvScalar scalar; + scalar.val[0] = val0; scalar.val[1] = val1; + scalar.val[2] = val2; scalar.val[3] = val3; + return scalar; +} + + +CV_INLINE CvScalar cvRealScalar( double val0 ) +{ + CvScalar scalar; + scalar.val[0] = val0; + scalar.val[1] = scalar.val[2] = scalar.val[3] = 0; + return scalar; +} + +CV_INLINE CvScalar cvScalarAll( double val0123 ) +{ + CvScalar scalar; + scalar.val[0] = val0123; + scalar.val[1] = val0123; + scalar.val[2] = val0123; + scalar.val[3] = val0123; + return scalar; +} + +/****************************************************************************************\ +* Dynamic Data structures * +\****************************************************************************************/ + +/******************************** Memory storage ****************************************/ + +typedef struct CvMemBlock +{ + struct CvMemBlock* prev; + struct CvMemBlock* next; +} +CvMemBlock; + +#define CV_STORAGE_MAGIC_VAL 0x42890000 + +typedef struct CvMemStorage +{ + int signature; + CvMemBlock* bottom; /**< First allocated block. */ + CvMemBlock* top; /**< Current memory block - top of the stack. */ + struct CvMemStorage* parent; /**< We get new blocks from parent as needed. */ + int block_size; /**< Block size. */ + int free_space; /**< Remaining free space in current block. */ +} +CvMemStorage; + +#define CV_IS_STORAGE(storage) \ + ((storage) != NULL && \ + (((CvMemStorage*)(storage))->signature & CV_MAGIC_MASK) == CV_STORAGE_MAGIC_VAL) + + +typedef struct CvMemStoragePos +{ + CvMemBlock* top; + int free_space; +} +CvMemStoragePos; + + +/*********************************** Sequence *******************************************/ + +typedef struct CvSeqBlock +{ + struct CvSeqBlock* prev; /**< Previous sequence block. */ + struct CvSeqBlock* next; /**< Next sequence block. */ + int start_index; /**< Index of the first element in the block + */ + /**< sequence->first->start_index. */ + int count; /**< Number of elements in the block. */ + schar* data; /**< Pointer to the first element of the block. */ +} +CvSeqBlock; + + +#define CV_TREE_NODE_FIELDS(node_type) \ + int flags; /**< Miscellaneous flags. */ \ + int header_size; /**< Size of sequence header. */ \ + struct node_type* h_prev; /**< Previous sequence. */ \ + struct node_type* h_next; /**< Next sequence. */ \ + struct node_type* v_prev; /**< 2nd previous sequence. */ \ + struct node_type* v_next /**< 2nd next sequence. */ + +/** + Read/Write sequence. + Elements can be dynamically inserted to or deleted from the sequence. +*/ +#define CV_SEQUENCE_FIELDS() \ + CV_TREE_NODE_FIELDS(CvSeq); \ + int total; /**< Total number of elements. */ \ + int elem_size; /**< Size of sequence element in bytes. */ \ + schar* block_max; /**< Maximal bound of the last block. */ \ + schar* ptr; /**< Current write pointer. */ \ + int delta_elems; /**< Grow seq this many at a time. */ \ + CvMemStorage* storage; /**< Where the seq is stored. */ \ + CvSeqBlock* free_blocks; /**< Free blocks list. */ \ + CvSeqBlock* first; /**< Pointer to the first sequence block. */ + +typedef struct CvSeq +{ + CV_SEQUENCE_FIELDS() +} +CvSeq; + +#define CV_TYPE_NAME_SEQ "opencv-sequence" +#define CV_TYPE_NAME_SEQ_TREE "opencv-sequence-tree" + +/*************************************** Set ********************************************/ +/** @brief Set + Order is not preserved. There can be gaps between sequence elements. + After the element has been inserted it stays in the same place all the time. + The MSB(most-significant or sign bit) of the first field (flags) is 0 iff the element exists. +*/ +#define CV_SET_ELEM_FIELDS(elem_type) \ + int flags; \ + struct elem_type* next_free; + +typedef struct CvSetElem +{ + CV_SET_ELEM_FIELDS(CvSetElem) +} +CvSetElem; + +#define CV_SET_FIELDS() \ + CV_SEQUENCE_FIELDS() \ + CvSetElem* free_elems; \ + int active_count; + +typedef struct CvSet +{ + CV_SET_FIELDS() +} +CvSet; + + +#define CV_SET_ELEM_IDX_MASK ((1 << 26) - 1) +#define CV_SET_ELEM_FREE_FLAG (1 << (sizeof(int)*8-1)) + +/** Checks whether the element pointed by ptr belongs to a set or not */ +#define CV_IS_SET_ELEM( ptr ) (((CvSetElem*)(ptr))->flags >= 0) + +/************************************* Graph ********************************************/ + +/** @name Graph + +We represent a graph as a set of vertices. Vertices contain their adjacency lists (more exactly, +pointers to first incoming or outcoming edge (or 0 if isolated vertex)). Edges are stored in +another set. There is a singly-linked list of incoming/outcoming edges for each vertex. + +Each edge consists of: + +- Two pointers to the starting and ending vertices (vtx[0] and vtx[1] respectively). + + A graph may be oriented or not. In the latter case, edges between vertex i to vertex j are not +distinguished during search operations. + +- Two pointers to next edges for the starting and ending vertices, where next[0] points to the +next edge in the vtx[0] adjacency list and next[1] points to the next edge in the vtx[1] +adjacency list. + +@see CvGraphEdge, CvGraphVtx, CvGraphVtx2D, CvGraph +@{ +*/ +#define CV_GRAPH_EDGE_FIELDS() \ + int flags; \ + float weight; \ + struct CvGraphEdge* next[2]; \ + struct CvGraphVtx* vtx[2]; + + +#define CV_GRAPH_VERTEX_FIELDS() \ + int flags; \ + struct CvGraphEdge* first; + + +typedef struct CvGraphEdge +{ + CV_GRAPH_EDGE_FIELDS() +} +CvGraphEdge; + +typedef struct CvGraphVtx +{ + CV_GRAPH_VERTEX_FIELDS() +} +CvGraphVtx; + +typedef struct CvGraphVtx2D +{ + CV_GRAPH_VERTEX_FIELDS() + CvPoint2D32f* ptr; +} +CvGraphVtx2D; + +/** + Graph is "derived" from the set (this is set a of vertices) + and includes another set (edges) +*/ +#define CV_GRAPH_FIELDS() \ + CV_SET_FIELDS() \ + CvSet* edges; + +typedef struct CvGraph +{ + CV_GRAPH_FIELDS() +} +CvGraph; + +#define CV_TYPE_NAME_GRAPH "opencv-graph" + +/** @} */ + +/*********************************** Chain/Countour *************************************/ + +typedef struct CvChain +{ + CV_SEQUENCE_FIELDS() + CvPoint origin; +} +CvChain; + +#define CV_CONTOUR_FIELDS() \ + CV_SEQUENCE_FIELDS() \ + CvRect rect; \ + int color; \ + int reserved[3]; + +typedef struct CvContour +{ + CV_CONTOUR_FIELDS() +} +CvContour; + +typedef CvContour CvPoint2DSeq; + +/****************************************************************************************\ +* Sequence types * +\****************************************************************************************/ + +#define CV_SEQ_MAGIC_VAL 0x42990000 + +#define CV_IS_SEQ(seq) \ + ((seq) != NULL && (((CvSeq*)(seq))->flags & CV_MAGIC_MASK) == CV_SEQ_MAGIC_VAL) + +#define CV_SET_MAGIC_VAL 0x42980000 +#define CV_IS_SET(set) \ + ((set) != NULL && (((CvSeq*)(set))->flags & CV_MAGIC_MASK) == CV_SET_MAGIC_VAL) + +#define CV_SEQ_ELTYPE_BITS 12 +#define CV_SEQ_ELTYPE_MASK ((1 << CV_SEQ_ELTYPE_BITS) - 1) + +#define CV_SEQ_ELTYPE_POINT CV_32SC2 /**< (x,y) */ +#define CV_SEQ_ELTYPE_CODE CV_8UC1 /**< freeman code: 0..7 */ +#define CV_SEQ_ELTYPE_GENERIC 0 +#define CV_SEQ_ELTYPE_PTR CV_USRTYPE1 +#define CV_SEQ_ELTYPE_PPOINT CV_SEQ_ELTYPE_PTR /**< &(x,y) */ +#define CV_SEQ_ELTYPE_INDEX CV_32SC1 /**< #(x,y) */ +#define CV_SEQ_ELTYPE_GRAPH_EDGE 0 /**< &next_o, &next_d, &vtx_o, &vtx_d */ +#define CV_SEQ_ELTYPE_GRAPH_VERTEX 0 /**< first_edge, &(x,y) */ +#define CV_SEQ_ELTYPE_TRIAN_ATR 0 /**< vertex of the binary tree */ +#define CV_SEQ_ELTYPE_CONNECTED_COMP 0 /**< connected component */ +#define CV_SEQ_ELTYPE_POINT3D CV_32FC3 /**< (x,y,z) */ + +#define CV_SEQ_KIND_BITS 2 +#define CV_SEQ_KIND_MASK (((1 << CV_SEQ_KIND_BITS) - 1)<flags & CV_SEQ_ELTYPE_MASK) +#define CV_SEQ_KIND( seq ) ((seq)->flags & CV_SEQ_KIND_MASK ) + +/** flag checking */ +#define CV_IS_SEQ_INDEX( seq ) ((CV_SEQ_ELTYPE(seq) == CV_SEQ_ELTYPE_INDEX) && \ + (CV_SEQ_KIND(seq) == CV_SEQ_KIND_GENERIC)) + +#define CV_IS_SEQ_CURVE( seq ) (CV_SEQ_KIND(seq) == CV_SEQ_KIND_CURVE) +#define CV_IS_SEQ_CLOSED( seq ) (((seq)->flags & CV_SEQ_FLAG_CLOSED) != 0) +#define CV_IS_SEQ_CONVEX( seq ) 0 +#define CV_IS_SEQ_HOLE( seq ) (((seq)->flags & CV_SEQ_FLAG_HOLE) != 0) +#define CV_IS_SEQ_SIMPLE( seq ) 1 + +/** type checking macros */ +#define CV_IS_SEQ_POINT_SET( seq ) \ + ((CV_SEQ_ELTYPE(seq) == CV_32SC2 || CV_SEQ_ELTYPE(seq) == CV_32FC2)) + +#define CV_IS_SEQ_POINT_SUBSET( seq ) \ + (CV_IS_SEQ_INDEX( seq ) || CV_SEQ_ELTYPE(seq) == CV_SEQ_ELTYPE_PPOINT) + +#define CV_IS_SEQ_POLYLINE( seq ) \ + (CV_SEQ_KIND(seq) == CV_SEQ_KIND_CURVE && CV_IS_SEQ_POINT_SET(seq)) + +#define CV_IS_SEQ_POLYGON( seq ) \ + (CV_IS_SEQ_POLYLINE(seq) && CV_IS_SEQ_CLOSED(seq)) + +#define CV_IS_SEQ_CHAIN( seq ) \ + (CV_SEQ_KIND(seq) == CV_SEQ_KIND_CURVE && (seq)->elem_size == 1) + +#define CV_IS_SEQ_CONTOUR( seq ) \ + (CV_IS_SEQ_CLOSED(seq) && (CV_IS_SEQ_POLYLINE(seq) || CV_IS_SEQ_CHAIN(seq))) + +#define CV_IS_SEQ_CHAIN_CONTOUR( seq ) \ + (CV_IS_SEQ_CHAIN( seq ) && CV_IS_SEQ_CLOSED( seq )) + +#define CV_IS_SEQ_POLYGON_TREE( seq ) \ + (CV_SEQ_ELTYPE (seq) == CV_SEQ_ELTYPE_TRIAN_ATR && \ + CV_SEQ_KIND( seq ) == CV_SEQ_KIND_BIN_TREE ) + +#define CV_IS_GRAPH( seq ) \ + (CV_IS_SET(seq) && CV_SEQ_KIND((CvSet*)(seq)) == CV_SEQ_KIND_GRAPH) + +#define CV_IS_GRAPH_ORIENTED( seq ) \ + (((seq)->flags & CV_GRAPH_FLAG_ORIENTED) != 0) + +#define CV_IS_SUBDIV2D( seq ) \ + (CV_IS_SET(seq) && CV_SEQ_KIND((CvSet*)(seq)) == CV_SEQ_KIND_SUBDIV2D) + +/****************************************************************************************/ +/* Sequence writer & reader */ +/****************************************************************************************/ + +#define CV_SEQ_WRITER_FIELDS() \ + int header_size; \ + CvSeq* seq; /**< the sequence written */ \ + CvSeqBlock* block; /**< current block */ \ + schar* ptr; /**< pointer to free space */ \ + schar* block_min; /**< pointer to the beginning of block*/\ + schar* block_max; /**< pointer to the end of block */ + +typedef struct CvSeqWriter +{ + CV_SEQ_WRITER_FIELDS() +} +CvSeqWriter; + + +#define CV_SEQ_READER_FIELDS() \ + int header_size; \ + CvSeq* seq; /**< sequence, beign read */ \ + CvSeqBlock* block; /**< current block */ \ + schar* ptr; /**< pointer to element be read next */ \ + schar* block_min; /**< pointer to the beginning of block */\ + schar* block_max; /**< pointer to the end of block */ \ + int delta_index;/**< = seq->first->start_index */ \ + schar* prev_elem; /**< pointer to previous element */ + +typedef struct CvSeqReader +{ + CV_SEQ_READER_FIELDS() +} +CvSeqReader; + +/****************************************************************************************/ +/* Operations on sequences */ +/****************************************************************************************/ + +#define CV_SEQ_ELEM( seq, elem_type, index ) \ +/** assert gives some guarantee that parameter is valid */ \ +( assert(sizeof((seq)->first[0]) == sizeof(CvSeqBlock) && \ + (seq)->elem_size == sizeof(elem_type)), \ + (elem_type*)((seq)->first && (unsigned)index < \ + (unsigned)((seq)->first->count) ? \ + (seq)->first->data + (index) * sizeof(elem_type) : \ + cvGetSeqElem( (CvSeq*)(seq), (index) ))) +#define CV_GET_SEQ_ELEM( elem_type, seq, index ) CV_SEQ_ELEM( (seq), elem_type, (index) ) + +/** Add element to sequence: */ +#define CV_WRITE_SEQ_ELEM_VAR( elem_ptr, writer ) \ +{ \ + if( (writer).ptr >= (writer).block_max ) \ + { \ + cvCreateSeqBlock( &writer); \ + } \ + memcpy((writer).ptr, elem_ptr, (writer).seq->elem_size);\ + (writer).ptr += (writer).seq->elem_size; \ +} + +#define CV_WRITE_SEQ_ELEM( elem, writer ) \ +{ \ + assert( (writer).seq->elem_size == sizeof(elem)); \ + if( (writer).ptr >= (writer).block_max ) \ + { \ + cvCreateSeqBlock( &writer); \ + } \ + assert( (writer).ptr <= (writer).block_max - sizeof(elem));\ + memcpy((writer).ptr, &(elem), sizeof(elem)); \ + (writer).ptr += sizeof(elem); \ +} + + +/** Move reader position forward: */ +#define CV_NEXT_SEQ_ELEM( elem_size, reader ) \ +{ \ + if( ((reader).ptr += (elem_size)) >= (reader).block_max ) \ + { \ + cvChangeSeqBlock( &(reader), 1 ); \ + } \ +} + + +/** Move reader position backward: */ +#define CV_PREV_SEQ_ELEM( elem_size, reader ) \ +{ \ + if( ((reader).ptr -= (elem_size)) < (reader).block_min ) \ + { \ + cvChangeSeqBlock( &(reader), -1 ); \ + } \ +} + +/** Read element and move read position forward: */ +#define CV_READ_SEQ_ELEM( elem, reader ) \ +{ \ + assert( (reader).seq->elem_size == sizeof(elem)); \ + memcpy( &(elem), (reader).ptr, sizeof((elem))); \ + CV_NEXT_SEQ_ELEM( sizeof(elem), reader ) \ +} + +/** Read element and move read position backward: */ +#define CV_REV_READ_SEQ_ELEM( elem, reader ) \ +{ \ + assert( (reader).seq->elem_size == sizeof(elem)); \ + memcpy(&(elem), (reader).ptr, sizeof((elem))); \ + CV_PREV_SEQ_ELEM( sizeof(elem), reader ) \ +} + + +#define CV_READ_CHAIN_POINT( _pt, reader ) \ +{ \ + (_pt) = (reader).pt; \ + if( (reader).ptr ) \ + { \ + CV_READ_SEQ_ELEM( (reader).code, (reader)); \ + assert( ((reader).code & ~7) == 0 ); \ + (reader).pt.x += (reader).deltas[(int)(reader).code][0]; \ + (reader).pt.y += (reader).deltas[(int)(reader).code][1]; \ + } \ +} + +#define CV_CURRENT_POINT( reader ) (*((CvPoint*)((reader).ptr))) +#define CV_PREV_POINT( reader ) (*((CvPoint*)((reader).prev_elem))) + +#define CV_READ_EDGE( pt1, pt2, reader ) \ +{ \ + assert( sizeof(pt1) == sizeof(CvPoint) && \ + sizeof(pt2) == sizeof(CvPoint) && \ + reader.seq->elem_size == sizeof(CvPoint)); \ + (pt1) = CV_PREV_POINT( reader ); \ + (pt2) = CV_CURRENT_POINT( reader ); \ + (reader).prev_elem = (reader).ptr; \ + CV_NEXT_SEQ_ELEM( sizeof(CvPoint), (reader)); \ +} + +/************ Graph macros ************/ + +/** Return next graph edge for given vertex: */ +#define CV_NEXT_GRAPH_EDGE( edge, vertex ) \ + (assert((edge)->vtx[0] == (vertex) || (edge)->vtx[1] == (vertex)), \ + (edge)->next[(edge)->vtx[1] == (vertex)]) + + + +/****************************************************************************************\ +* Data structures for persistence (a.k.a serialization) functionality * +\****************************************************************************************/ + +/** "black box" file storage */ +typedef struct CvFileStorage CvFileStorage; + +/** Storage flags: */ +#define CV_STORAGE_READ 0 +#define CV_STORAGE_WRITE 1 +#define CV_STORAGE_WRITE_TEXT CV_STORAGE_WRITE +#define CV_STORAGE_WRITE_BINARY CV_STORAGE_WRITE +#define CV_STORAGE_APPEND 2 +#define CV_STORAGE_MEMORY 4 +#define CV_STORAGE_FORMAT_MASK (7<<3) +#define CV_STORAGE_FORMAT_AUTO 0 +#define CV_STORAGE_FORMAT_XML 8 +#define CV_STORAGE_FORMAT_YAML 16 +#define CV_STORAGE_FORMAT_JSON 24 +#define CV_STORAGE_BASE64 64 +#define CV_STORAGE_WRITE_BASE64 (CV_STORAGE_BASE64 | CV_STORAGE_WRITE) + +/** @brief List of attributes. : + +In the current implementation, attributes are used to pass extra parameters when writing user +objects (see cvWrite). XML attributes inside tags are not supported, aside from the object type +specification (type_id attribute). +@see cvAttrList, cvAttrValue + */ +typedef struct CvAttrList +{ + const char** attr; /**< NULL-terminated array of (attribute_name,attribute_value) pairs. */ + struct CvAttrList* next; /**< Pointer to next chunk of the attributes list. */ +} +CvAttrList; + +/** initializes CvAttrList structure */ +CV_INLINE CvAttrList cvAttrList( const char** attr CV_DEFAULT(NULL), + CvAttrList* next CV_DEFAULT(NULL) ) +{ + CvAttrList l; + l.attr = attr; + l.next = next; + + return l; +} + +struct CvTypeInfo; + +#define CV_NODE_NONE 0 +#define CV_NODE_INT 1 +#define CV_NODE_INTEGER CV_NODE_INT +#define CV_NODE_REAL 2 +#define CV_NODE_FLOAT CV_NODE_REAL +#define CV_NODE_STR 3 +#define CV_NODE_STRING CV_NODE_STR +#define CV_NODE_REF 4 /**< not used */ +#define CV_NODE_SEQ 5 +#define CV_NODE_MAP 6 +#define CV_NODE_TYPE_MASK 7 + +#define CV_NODE_TYPE(flags) ((flags) & CV_NODE_TYPE_MASK) + +/** file node flags */ +#define CV_NODE_FLOW 8 /**= CV_NODE_SEQ) +#define CV_NODE_IS_FLOW(flags) (((flags) & CV_NODE_FLOW) != 0) +#define CV_NODE_IS_EMPTY(flags) (((flags) & CV_NODE_EMPTY) != 0) +#define CV_NODE_IS_USER(flags) (((flags) & CV_NODE_USER) != 0) +#define CV_NODE_HAS_NAME(flags) (((flags) & CV_NODE_NAMED) != 0) + +#define CV_NODE_SEQ_SIMPLE 256 +#define CV_NODE_SEQ_IS_SIMPLE(seq) (((seq)->flags & CV_NODE_SEQ_SIMPLE) != 0) + +typedef struct CvString +{ + int len; + char* ptr; +} +CvString; + +/** All the keys (names) of elements in the readed file storage + are stored in the hash to speed up the lookup operations: */ +typedef struct CvStringHashNode +{ + unsigned hashval; + CvString str; + struct CvStringHashNode* next; +} +CvStringHashNode; + +typedef struct CvGenericHash CvFileNodeHash; + +/** Basic element of the file storage - scalar or collection: */ +typedef struct CvFileNode +{ + int tag; + struct CvTypeInfo* info; /**< type information + (only for user-defined object, for others it is 0) */ + union + { + double f; /**< scalar floating-point number */ + int i; /**< scalar integer number */ + CvString str; /**< text string */ + CvSeq* seq; /**< sequence (ordered collection of file nodes) */ + CvFileNodeHash* map; /**< map (collection of named file nodes) */ + } data; +} +CvFileNode; + +#ifdef __cplusplus +extern "C" { +#endif +typedef int (CV_CDECL *CvIsInstanceFunc)( const void* struct_ptr ); +typedef void (CV_CDECL *CvReleaseFunc)( void** struct_dblptr ); +typedef void* (CV_CDECL *CvReadFunc)( CvFileStorage* storage, CvFileNode* node ); +typedef void (CV_CDECL *CvWriteFunc)( CvFileStorage* storage, const char* name, + const void* struct_ptr, CvAttrList attributes ); +typedef void* (CV_CDECL *CvCloneFunc)( const void* struct_ptr ); +#ifdef __cplusplus +} +#endif + +/** @brief Type information + +The structure contains information about one of the standard or user-defined types. Instances of the +type may or may not contain a pointer to the corresponding CvTypeInfo structure. In any case, there +is a way to find the type info structure for a given object using the cvTypeOf function. +Alternatively, type info can be found by type name using cvFindType, which is used when an object +is read from file storage. The user can register a new type with cvRegisterType that adds the type +information structure into the beginning of the type list. Thus, it is possible to create +specialized types from generic standard types and override the basic methods. + */ +typedef struct CvTypeInfo +{ + int flags; /**< not used */ + int header_size; /**< sizeof(CvTypeInfo) */ + struct CvTypeInfo* prev; /**< previous registered type in the list */ + struct CvTypeInfo* next; /**< next registered type in the list */ + const char* type_name; /**< type name, written to file storage */ + CvIsInstanceFunc is_instance; /**< checks if the passed object belongs to the type */ + CvReleaseFunc release; /**< releases object (memory etc.) */ + CvReadFunc read; /**< reads object from file storage */ + CvWriteFunc write; /**< writes object to file storage */ + CvCloneFunc clone; /**< creates a copy of the object */ +} +CvTypeInfo; + + +/**** System data types ******/ + +typedef struct CvPluginFuncInfo +{ + void** func_addr; + void* default_func_addr; + const char* func_names; + int search_modules; + int loaded_from; +} +CvPluginFuncInfo; + +typedef struct CvModuleInfo +{ + struct CvModuleInfo* next; + const char* name; + const char* version; + CvPluginFuncInfo* func_tab; +} +CvModuleInfo; + +/** @} */ + +#endif /*OPENCV_CORE_TYPES_H*/ + +/* End of file. */ diff --git a/thirdparty1/linux/include/opencv2/core/utility.hpp b/thirdparty1/linux/include/opencv2/core/utility.hpp new file mode 100644 index 0000000..e7a7c2d --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/utility.hpp @@ -0,0 +1,1171 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2015, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_CORE_UTILITY_H +#define OPENCV_CORE_UTILITY_H + +#ifndef __cplusplus +# error utility.hpp header must be compiled as C++ +#endif + +#if defined(check) +# warning Detected Apple 'check' macro definition, it can cause build conflicts. Please, include this header before any Apple headers. +#endif + +#include "opencv2/core.hpp" + +namespace cv +{ + +#ifdef CV_COLLECT_IMPL_DATA +CV_EXPORTS void setImpl(int flags); // set implementation flags and reset storage arrays +CV_EXPORTS void addImpl(int flag, const char* func = 0); // add implementation and function name to storage arrays +// Get stored implementation flags and fucntions names arrays +// Each implementation entry correspond to function name entry, so you can find which implementation was executed in which fucntion +CV_EXPORTS int getImpl(std::vector &impl, std::vector &funName); + +CV_EXPORTS bool useCollection(); // return implementation collection state +CV_EXPORTS void setUseCollection(bool flag); // set implementation collection state + +#define CV_IMPL_PLAIN 0x01 // native CPU OpenCV implementation +#define CV_IMPL_OCL 0x02 // OpenCL implementation +#define CV_IMPL_IPP 0x04 // IPP implementation +#define CV_IMPL_MT 0x10 // multithreaded implementation + +#define CV_IMPL_ADD(impl) \ + if(cv::useCollection()) \ + { \ + cv::addImpl(impl, CV_Func); \ + } +#else +#define CV_IMPL_ADD(impl) +#endif + +//! @addtogroup core_utils +//! @{ + +/** @brief Automatically Allocated Buffer Class + + The class is used for temporary buffers in functions and methods. + If a temporary buffer is usually small (a few K's of memory), + but its size depends on the parameters, it makes sense to create a small + fixed-size array on stack and use it if it's large enough. If the required buffer size + is larger than the fixed size, another buffer of sufficient size is allocated dynamically + and released after the processing. Therefore, in typical cases, when the buffer size is small, + there is no overhead associated with malloc()/free(). + At the same time, there is no limit on the size of processed data. + + This is what AutoBuffer does. The template takes 2 parameters - type of the buffer elements and + the number of stack-allocated elements. Here is how the class is used: + + \code + void my_func(const cv::Mat& m) + { + cv::AutoBuffer buf; // create automatic buffer containing 1000 floats + + buf.allocate(m.rows); // if m.rows <= 1000, the pre-allocated buffer is used, + // otherwise the buffer of "m.rows" floats will be allocated + // dynamically and deallocated in cv::AutoBuffer destructor + ... + } + \endcode +*/ +template class AutoBuffer +{ +public: + typedef _Tp value_type; + + //! the default constructor + AutoBuffer(); + //! constructor taking the real buffer size + AutoBuffer(size_t _size); + + //! the copy constructor + AutoBuffer(const AutoBuffer<_Tp, fixed_size>& buf); + //! the assignment operator + AutoBuffer<_Tp, fixed_size>& operator = (const AutoBuffer<_Tp, fixed_size>& buf); + + //! destructor. calls deallocate() + ~AutoBuffer(); + + //! allocates the new buffer of size _size. if the _size is small enough, stack-allocated buffer is used + void allocate(size_t _size); + //! deallocates the buffer if it was dynamically allocated + void deallocate(); + //! resizes the buffer and preserves the content + void resize(size_t _size); + //! returns the current buffer size + size_t size() const; + //! returns pointer to the real buffer, stack-allocated or head-allocated + operator _Tp* (); + //! returns read-only pointer to the real buffer, stack-allocated or head-allocated + operator const _Tp* () const; + +protected: + //! pointer to the real buffer, can point to buf if the buffer is small enough + _Tp* ptr; + //! size of the real buffer + size_t sz; + //! pre-allocated buffer. At least 1 element to confirm C++ standard reqirements + _Tp buf[(fixed_size > 0) ? fixed_size : 1]; +}; + +/** @brief Sets/resets the break-on-error mode. + +When the break-on-error mode is set, the default error handler issues a hardware exception, which +can make debugging more convenient. + +\return the previous state + */ +CV_EXPORTS bool setBreakOnError(bool flag); + +extern "C" typedef int (*ErrorCallback)( int status, const char* func_name, + const char* err_msg, const char* file_name, + int line, void* userdata ); + + +/** @brief Sets the new error handler and the optional user data. + + The function sets the new error handler, called from cv::error(). + + \param errCallback the new error handler. If NULL, the default error handler is used. + \param userdata the optional user data pointer, passed to the callback. + \param prevUserdata the optional output parameter where the previous user data pointer is stored + + \return the previous error handler +*/ +CV_EXPORTS ErrorCallback redirectError( ErrorCallback errCallback, void* userdata=0, void** prevUserdata=0); + +/** @brief Returns a text string formatted using the printf-like expression. + +The function acts like sprintf but forms and returns an STL string. It can be used to form an error +message in the Exception constructor. +@param fmt printf-compatible formatting specifiers. + */ +CV_EXPORTS String format( const char* fmt, ... ); +CV_EXPORTS String tempfile( const char* suffix = 0); +CV_EXPORTS void glob(String pattern, std::vector& result, bool recursive = false); + +/** @brief OpenCV will try to set the number of threads for the next parallel region. + +If threads == 0, OpenCV will disable threading optimizations and run all it's functions +sequentially. Passing threads \< 0 will reset threads number to system default. This function must +be called outside of parallel region. + +OpenCV will try to run it's functions with specified threads number, but some behaviour differs from +framework: +- `TBB` – User-defined parallel constructions will run with the same threads number, if + another does not specified. If late on user creates own scheduler, OpenCV will be use it. +- `OpenMP` – No special defined behaviour. +- `Concurrency` – If threads == 1, OpenCV will disable threading optimizations and run it's + functions sequentially. +- `GCD` – Supports only values \<= 0. +- `C=` – No special defined behaviour. +@param nthreads Number of threads used by OpenCV. +@sa getNumThreads, getThreadNum + */ +CV_EXPORTS_W void setNumThreads(int nthreads); + +/** @brief Returns the number of threads used by OpenCV for parallel regions. + +Always returns 1 if OpenCV is built without threading support. + +The exact meaning of return value depends on the threading framework used by OpenCV library: +- `TBB` – The number of threads, that OpenCV will try to use for parallel regions. If there is + any tbb::thread_scheduler_init in user code conflicting with OpenCV, then function returns + default number of threads used by TBB library. +- `OpenMP` – An upper bound on the number of threads that could be used to form a new team. +- `Concurrency` – The number of threads, that OpenCV will try to use for parallel regions. +- `GCD` – Unsupported; returns the GCD thread pool limit (512) for compatibility. +- `C=` – The number of threads, that OpenCV will try to use for parallel regions, if before + called setNumThreads with threads \> 0, otherwise returns the number of logical CPUs, + available for the process. +@sa setNumThreads, getThreadNum + */ +CV_EXPORTS_W int getNumThreads(); + +/** @brief Returns the index of the currently executed thread within the current parallel region. Always +returns 0 if called outside of parallel region. + +The exact meaning of return value depends on the threading framework used by OpenCV library: +- `TBB` – Unsupported with current 4.1 TBB release. May be will be supported in future. +- `OpenMP` – The thread number, within the current team, of the calling thread. +- `Concurrency` – An ID for the virtual processor that the current context is executing on (0 + for master thread and unique number for others, but not necessary 1,2,3,...). +- `GCD` – System calling thread's ID. Never returns 0 inside parallel region. +- `C=` – The index of the current parallel task. +@sa setNumThreads, getNumThreads + */ +CV_EXPORTS_W int getThreadNum(); + +/** @brief Returns full configuration time cmake output. + +Returned value is raw cmake output including version control system revision, compiler version, +compiler flags, enabled modules and third party libraries, etc. Output format depends on target +architecture. + */ +CV_EXPORTS_W const String& getBuildInformation(); + +/** @brief Returns the number of ticks. + +The function returns the number of ticks after the certain event (for example, when the machine was +turned on). It can be used to initialize RNG or to measure a function execution time by reading the +tick count before and after the function call. +@sa getTickFrequency, TickMeter + */ +CV_EXPORTS_W int64 getTickCount(); + +/** @brief Returns the number of ticks per second. + +The function returns the number of ticks per second. That is, the following code computes the +execution time in seconds: +@code + double t = (double)getTickCount(); + // do something ... + t = ((double)getTickCount() - t)/getTickFrequency(); +@endcode +@sa getTickCount, TickMeter + */ +CV_EXPORTS_W double getTickFrequency(); + +/** @brief a Class to measure passing time. + +The class computes passing time by counting the number of ticks per second. That is, the following code computes the +execution time in seconds: +@code +TickMeter tm; +tm.start(); +// do something ... +tm.stop(); +std::cout << tm.getTimeSec(); +@endcode +@sa getTickCount, getTickFrequency +*/ + +class CV_EXPORTS_W TickMeter +{ +public: + //! the default constructor + CV_WRAP TickMeter() + { + reset(); + } + + /** + starts counting ticks. + */ + CV_WRAP void start() + { + startTime = cv::getTickCount(); + } + + /** + stops counting ticks. + */ + CV_WRAP void stop() + { + int64 time = cv::getTickCount(); + if (startTime == 0) + return; + ++counter; + sumTime += (time - startTime); + startTime = 0; + } + + /** + returns counted ticks. + */ + CV_WRAP int64 getTimeTicks() const + { + return sumTime; + } + + /** + returns passed time in microseconds. + */ + CV_WRAP double getTimeMicro() const + { + return getTimeMilli()*1e3; + } + + /** + returns passed time in milliseconds. + */ + CV_WRAP double getTimeMilli() const + { + return getTimeSec()*1e3; + } + + /** + returns passed time in seconds. + */ + CV_WRAP double getTimeSec() const + { + return (double)getTimeTicks() / getTickFrequency(); + } + + /** + returns internal counter value. + */ + CV_WRAP int64 getCounter() const + { + return counter; + } + + /** + resets internal values. + */ + CV_WRAP void reset() + { + startTime = 0; + sumTime = 0; + counter = 0; + } + +private: + int64 counter; + int64 sumTime; + int64 startTime; +}; + +/** @brief output operator +@code +TickMeter tm; +tm.start(); +// do something ... +tm.stop(); +std::cout << tm; +@endcode +*/ + +static inline +std::ostream& operator << (std::ostream& out, const TickMeter& tm) +{ + return out << tm.getTimeSec() << "sec"; +} + +/** @brief Returns the number of CPU ticks. + +The function returns the current number of CPU ticks on some architectures (such as x86, x64, +PowerPC). On other platforms the function is equivalent to getTickCount. It can also be used for +very accurate time measurements, as well as for RNG initialization. Note that in case of multi-CPU +systems a thread, from which getCPUTickCount is called, can be suspended and resumed at another CPU +with its own counter. So, theoretically (and practically) the subsequent calls to the function do +not necessary return the monotonously increasing values. Also, since a modern CPU varies the CPU +frequency depending on the load, the number of CPU clocks spent in some code cannot be directly +converted to time units. Therefore, getTickCount is generally a preferable solution for measuring +execution time. + */ +CV_EXPORTS_W int64 getCPUTickCount(); + +/** @brief Returns true if the specified feature is supported by the host hardware. + +The function returns true if the host hardware supports the specified feature. When user calls +setUseOptimized(false), the subsequent calls to checkHardwareSupport() will return false until +setUseOptimized(true) is called. This way user can dynamically switch on and off the optimized code +in OpenCV. +@param feature The feature of interest, one of cv::CpuFeatures + */ +CV_EXPORTS_W bool checkHardwareSupport(int feature); + +/** @brief Returns the number of logical CPUs available for the process. + */ +CV_EXPORTS_W int getNumberOfCPUs(); + + +/** @brief Aligns a pointer to the specified number of bytes. + +The function returns the aligned pointer of the same type as the input pointer: +\f[\texttt{(_Tp*)(((size_t)ptr + n-1) & -n)}\f] +@param ptr Aligned pointer. +@param n Alignment size that must be a power of two. + */ +template static inline _Tp* alignPtr(_Tp* ptr, int n=(int)sizeof(_Tp)) +{ + return (_Tp*)(((size_t)ptr + n-1) & -n); +} + +/** @brief Aligns a buffer size to the specified number of bytes. + +The function returns the minimum number that is greater or equal to sz and is divisible by n : +\f[\texttt{(sz + n-1) & -n}\f] +@param sz Buffer size to align. +@param n Alignment size that must be a power of two. + */ +static inline size_t alignSize(size_t sz, int n) +{ + CV_DbgAssert((n & (n - 1)) == 0); // n is a power of 2 + return (sz + n-1) & -n; +} + +/** @brief Enables or disables the optimized code. + +The function can be used to dynamically turn on and off optimized code (code that uses SSE2, AVX, +and other instructions on the platforms that support it). It sets a global flag that is further +checked by OpenCV functions. Since the flag is not checked in the inner OpenCV loops, it is only +safe to call the function on the very top level in your application where you can be sure that no +other OpenCV function is currently executed. + +By default, the optimized code is enabled unless you disable it in CMake. The current status can be +retrieved using useOptimized. +@param onoff The boolean flag specifying whether the optimized code should be used (onoff=true) +or not (onoff=false). + */ +CV_EXPORTS_W void setUseOptimized(bool onoff); + +/** @brief Returns the status of optimized code usage. + +The function returns true if the optimized code is enabled. Otherwise, it returns false. + */ +CV_EXPORTS_W bool useOptimized(); + +static inline size_t getElemSize(int type) { return CV_ELEM_SIZE(type); } + +/////////////////////////////// Parallel Primitives ////////////////////////////////// + +/** @brief Base class for parallel data processors +*/ +class CV_EXPORTS ParallelLoopBody +{ +public: + virtual ~ParallelLoopBody(); + virtual void operator() (const Range& range) const = 0; +}; + +/** @brief Parallel data processor +*/ +CV_EXPORTS void parallel_for_(const Range& range, const ParallelLoopBody& body, double nstripes=-1.); + +/////////////////////////////// forEach method of cv::Mat //////////////////////////// +template inline +void Mat::forEach_impl(const Functor& operation) { + if (false) { + operation(*reinterpret_cast<_Tp*>(0), reinterpret_cast(0)); + // If your compiler fail in this line. + // Please check that your functor signature is + // (_Tp&, const int*) <- multidimential + // or (_Tp&, void*) <- in case of you don't need current idx. + } + + CV_Assert(this->total() / this->size[this->dims - 1] <= INT_MAX); + const int LINES = static_cast(this->total() / this->size[this->dims - 1]); + + class PixelOperationWrapper :public ParallelLoopBody + { + public: + PixelOperationWrapper(Mat_<_Tp>* const frame, const Functor& _operation) + : mat(frame), op(_operation) {} + virtual ~PixelOperationWrapper(){} + // ! Overloaded virtual operator + // convert range call to row call. + virtual void operator()(const Range &range) const { + const int DIMS = mat->dims; + const int COLS = mat->size[DIMS - 1]; + if (DIMS <= 2) { + for (int row = range.start; row < range.end; ++row) { + this->rowCall2(row, COLS); + } + } else { + std::vector idx(COLS); /// idx is modified in this->rowCall + idx[DIMS - 2] = range.start - 1; + + for (int line_num = range.start; line_num < range.end; ++line_num) { + idx[DIMS - 2]++; + for (int i = DIMS - 2; i >= 0; --i) { + if (idx[i] >= mat->size[i]) { + idx[i - 1] += idx[i] / mat->size[i]; + idx[i] %= mat->size[i]; + continue; // carry-over; + } + else { + break; + } + } + this->rowCall(&idx[0], COLS, DIMS); + } + } + } + private: + Mat_<_Tp>* const mat; + const Functor op; + // ! Call operator for each elements in this row. + inline void rowCall(int* const idx, const int COLS, const int DIMS) const { + int &col = idx[DIMS - 1]; + col = 0; + _Tp* pixel = &(mat->template at<_Tp>(idx)); + + while (col < COLS) { + op(*pixel, const_cast(idx)); + pixel++; col++; + } + col = 0; + } + // ! Call operator for each elements in this row. 2d mat special version. + inline void rowCall2(const int row, const int COLS) const { + union Index{ + int body[2]; + operator const int*() const { + return reinterpret_cast(this); + } + int& operator[](const int i) { + return body[i]; + } + } idx = {{row, 0}}; + // Special union is needed to avoid + // "error: array subscript is above array bounds [-Werror=array-bounds]" + // when call the functor `op` such that access idx[3]. + + _Tp* pixel = &(mat->template at<_Tp>(idx)); + const _Tp* const pixel_end = pixel + COLS; + while(pixel < pixel_end) { + op(*pixel++, static_cast(idx)); + idx[1]++; + } + } + PixelOperationWrapper& operator=(const PixelOperationWrapper &) { + CV_Assert(false); + // We can not remove this implementation because Visual Studio warning C4822. + return *this; + } + }; + + parallel_for_(cv::Range(0, LINES), PixelOperationWrapper(reinterpret_cast*>(this), operation)); +} + +/////////////////////////// Synchronization Primitives /////////////////////////////// + +class CV_EXPORTS Mutex +{ +public: + Mutex(); + ~Mutex(); + Mutex(const Mutex& m); + Mutex& operator = (const Mutex& m); + + void lock(); + bool trylock(); + void unlock(); + + struct Impl; +protected: + Impl* impl; +}; + +class CV_EXPORTS AutoLock +{ +public: + AutoLock(Mutex& m) : mutex(&m) { mutex->lock(); } + ~AutoLock() { mutex->unlock(); } +protected: + Mutex* mutex; +private: + AutoLock(const AutoLock&); + AutoLock& operator = (const AutoLock&); +}; + +// TLS interface +class CV_EXPORTS TLSDataContainer +{ +protected: + TLSDataContainer(); + virtual ~TLSDataContainer(); + + void gatherData(std::vector &data) const; +#if OPENCV_ABI_COMPATIBILITY > 300 + void* getData() const; + void release(); + +private: +#else + void release(); + +public: + void* getData() const; +#endif + virtual void* createDataInstance() const = 0; + virtual void deleteDataInstance(void* pData) const = 0; + + int key_; +}; + +// Main TLS data class +template +class TLSData : protected TLSDataContainer +{ +public: + inline TLSData() {} + inline ~TLSData() { release(); } // Release key and delete associated data + inline T* get() const { return (T*)getData(); } // Get data assosiated with key + + // Get data from all threads + inline void gather(std::vector &data) const + { + std::vector &dataVoid = reinterpret_cast&>(data); + gatherData(dataVoid); + } + +private: + virtual void* createDataInstance() const {return new T;} // Wrapper to allocate data by template + virtual void deleteDataInstance(void* pData) const {delete (T*)pData;} // Wrapper to release data by template + + // Disable TLS copy operations + TLSData(TLSData &) {} + TLSData& operator =(const TLSData &) {return *this;} +}; + +/** @brief Designed for command line parsing + +The sample below demonstrates how to use CommandLineParser: +@code + CommandLineParser parser(argc, argv, keys); + parser.about("Application name v1.0.0"); + + if (parser.has("help")) + { + parser.printMessage(); + return 0; + } + + int N = parser.get("N"); + double fps = parser.get("fps"); + String path = parser.get("path"); + + use_time_stamp = parser.has("timestamp"); + + String img1 = parser.get(0); + String img2 = parser.get(1); + + int repeat = parser.get(2); + + if (!parser.check()) + { + parser.printErrors(); + return 0; + } +@endcode + +### Keys syntax + +The keys parameter is a string containing several blocks, each one is enclosed in curley braces and +describes one argument. Each argument contains three parts separated by the `|` symbol: + +-# argument names is a space-separated list of option synonyms (to mark argument as positional, prefix it with the `@` symbol) +-# default value will be used if the argument was not provided (can be empty) +-# help message (can be empty) + +For example: + +@code{.cpp} + const String keys = + "{help h usage ? | | print this message }" + "{@image1 | | image1 for compare }" + "{@image2 || image2 for compare }" + "{@repeat |1 | number }" + "{path |. | path to file }" + "{fps | -1.0 | fps for output video }" + "{N count |100 | count of objects }" + "{ts timestamp | | use time stamp }" + ; +} +@endcode + +Note that there are no default values for `help` and `timestamp` so we can check their presence using the `has()` method. +Arguments with default values are considered to be always present. Use the `get()` method in these cases to check their +actual value instead. + +String keys like `get("@image1")` return the empty string `""` by default - even with an empty default value. +Use the special `` default value to enforce that the returned string must not be empty. (like in `get("@image2")`) + +### Usage + +For the described keys: + +@code{.sh} + # Good call (3 positional parameters: image1, image2 and repeat; N is 200, ts is true) + $ ./app -N=200 1.png 2.jpg 19 -ts + + # Bad call + $ ./app -fps=aaa + ERRORS: + Parameter 'fps': can not convert: [aaa] to [double] +@endcode + */ +class CV_EXPORTS CommandLineParser +{ +public: + + /** @brief Constructor + + Initializes command line parser object + + @param argc number of command line arguments (from main()) + @param argv array of command line arguments (from main()) + @param keys string describing acceptable command line parameters (see class description for syntax) + */ + CommandLineParser(int argc, const char* const argv[], const String& keys); + + /** @brief Copy constructor */ + CommandLineParser(const CommandLineParser& parser); + + /** @brief Assignment operator */ + CommandLineParser& operator = (const CommandLineParser& parser); + + /** @brief Destructor */ + ~CommandLineParser(); + + /** @brief Returns application path + + This method returns the path to the executable from the command line (`argv[0]`). + + For example, if the application has been started with such command: + @code{.sh} + $ ./bin/my-executable + @endcode + this method will return `./bin`. + */ + String getPathToApplication() const; + + /** @brief Access arguments by name + + Returns argument converted to selected type. If the argument is not known or can not be + converted to selected type, the error flag is set (can be checked with @ref check). + + For example, define: + @code{.cpp} + String keys = "{N count||}"; + @endcode + + Call: + @code{.sh} + $ ./my-app -N=20 + # or + $ ./my-app --count=20 + @endcode + + Access: + @code{.cpp} + int N = parser.get("N"); + @endcode + + @param name name of the argument + @param space_delete remove spaces from the left and right of the string + @tparam T the argument will be converted to this type if possible + + @note You can access positional arguments by their `@`-prefixed name: + @code{.cpp} + parser.get("@image"); + @endcode + */ + template + T get(const String& name, bool space_delete = true) const + { + T val = T(); + getByName(name, space_delete, ParamType::type, (void*)&val); + return val; + } + + /** @brief Access positional arguments by index + + Returns argument converted to selected type. Indexes are counted from zero. + + For example, define: + @code{.cpp} + String keys = "{@arg1||}{@arg2||}" + @endcode + + Call: + @code{.sh} + ./my-app abc qwe + @endcode + + Access arguments: + @code{.cpp} + String val_1 = parser.get(0); // returns "abc", arg1 + String val_2 = parser.get(1); // returns "qwe", arg2 + @endcode + + @param index index of the argument + @param space_delete remove spaces from the left and right of the string + @tparam T the argument will be converted to this type if possible + */ + template + T get(int index, bool space_delete = true) const + { + T val = T(); + getByIndex(index, space_delete, ParamType::type, (void*)&val); + return val; + } + + /** @brief Check if field was provided in the command line + + @param name argument name to check + */ + bool has(const String& name) const; + + /** @brief Check for parsing errors + + Returns true if error occured while accessing the parameters (bad conversion, missing arguments, + etc.). Call @ref printErrors to print error messages list. + */ + bool check() const; + + /** @brief Set the about message + + The about message will be shown when @ref printMessage is called, right before arguments table. + */ + void about(const String& message); + + /** @brief Print help message + + This method will print standard help message containing the about message and arguments description. + + @sa about + */ + void printMessage() const; + + /** @brief Print list of errors occured + + @sa check + */ + void printErrors() const; + +protected: + void getByName(const String& name, bool space_delete, int type, void* dst) const; + void getByIndex(int index, bool space_delete, int type, void* dst) const; + + struct Impl; + Impl* impl; +}; + +//! @} core_utils + +//! @cond IGNORED + +/////////////////////////////// AutoBuffer implementation //////////////////////////////////////// + +template inline +AutoBuffer<_Tp, fixed_size>::AutoBuffer() +{ + ptr = buf; + sz = fixed_size; +} + +template inline +AutoBuffer<_Tp, fixed_size>::AutoBuffer(size_t _size) +{ + ptr = buf; + sz = fixed_size; + allocate(_size); +} + +template inline +AutoBuffer<_Tp, fixed_size>::AutoBuffer(const AutoBuffer<_Tp, fixed_size>& abuf ) +{ + ptr = buf; + sz = fixed_size; + allocate(abuf.size()); + for( size_t i = 0; i < sz; i++ ) + ptr[i] = abuf.ptr[i]; +} + +template inline AutoBuffer<_Tp, fixed_size>& +AutoBuffer<_Tp, fixed_size>::operator = (const AutoBuffer<_Tp, fixed_size>& abuf) +{ + if( this != &abuf ) + { + deallocate(); + allocate(abuf.size()); + for( size_t i = 0; i < sz; i++ ) + ptr[i] = abuf.ptr[i]; + } + return *this; +} + +template inline +AutoBuffer<_Tp, fixed_size>::~AutoBuffer() +{ deallocate(); } + +template inline void +AutoBuffer<_Tp, fixed_size>::allocate(size_t _size) +{ + if(_size <= sz) + { + sz = _size; + return; + } + deallocate(); + sz = _size; + if(_size > fixed_size) + { + ptr = new _Tp[_size]; + } +} + +template inline void +AutoBuffer<_Tp, fixed_size>::deallocate() +{ + if( ptr != buf ) + { + delete[] ptr; + ptr = buf; + sz = fixed_size; + } +} + +template inline void +AutoBuffer<_Tp, fixed_size>::resize(size_t _size) +{ + if(_size <= sz) + { + sz = _size; + return; + } + size_t i, prevsize = sz, minsize = MIN(prevsize, _size); + _Tp* prevptr = ptr; + + ptr = _size > fixed_size ? new _Tp[_size] : buf; + sz = _size; + + if( ptr != prevptr ) + for( i = 0; i < minsize; i++ ) + ptr[i] = prevptr[i]; + for( i = prevsize; i < _size; i++ ) + ptr[i] = _Tp(); + + if( prevptr != buf ) + delete[] prevptr; +} + +template inline size_t +AutoBuffer<_Tp, fixed_size>::size() const +{ return sz; } + +template inline +AutoBuffer<_Tp, fixed_size>::operator _Tp* () +{ return ptr; } + +template inline +AutoBuffer<_Tp, fixed_size>::operator const _Tp* () const +{ return ptr; } + +#ifndef OPENCV_NOSTL +template<> inline std::string CommandLineParser::get(int index, bool space_delete) const +{ + return get(index, space_delete); +} +template<> inline std::string CommandLineParser::get(const String& name, bool space_delete) const +{ + return get(name, space_delete); +} +#endif // OPENCV_NOSTL + +//! @endcond + + +// Basic Node class for tree building +template +class CV_EXPORTS Node +{ +public: + Node() + { + m_pParent = 0; + } + Node(OBJECT& payload) : m_payload(payload) + { + m_pParent = 0; + } + ~Node() + { + removeChilds(); + if (m_pParent) + { + int idx = m_pParent->findChild(this); + if (idx >= 0) + m_pParent->m_childs.erase(m_pParent->m_childs.begin() + idx); + } + } + + Node* findChild(OBJECT& payload) const + { + for(size_t i = 0; i < this->m_childs.size(); i++) + { + if(this->m_childs[i]->m_payload == payload) + return this->m_childs[i]; + } + return NULL; + } + + int findChild(Node *pNode) const + { + for (size_t i = 0; i < this->m_childs.size(); i++) + { + if(this->m_childs[i] == pNode) + return (int)i; + } + return -1; + } + + void addChild(Node *pNode) + { + if(!pNode) + return; + + CV_Assert(pNode->m_pParent == 0); + pNode->m_pParent = this; + this->m_childs.push_back(pNode); + } + + void removeChilds() + { + for(size_t i = 0; i < m_childs.size(); i++) + { + m_childs[i]->m_pParent = 0; // avoid excessive parent vector trimming + delete m_childs[i]; + } + m_childs.clear(); + } + + int getDepth() + { + int count = 0; + Node *pParent = m_pParent; + while(pParent) count++, pParent = pParent->m_pParent; + return count; + } + +public: + OBJECT m_payload; + Node* m_pParent; + std::vector*> m_childs; +}; + +// Instrumentation external interface +namespace instr +{ + +#if !defined OPENCV_ABI_CHECK + +enum TYPE +{ + TYPE_GENERAL = 0, // OpenCV API function, e.g. exported function + TYPE_MARKER, // Information marker + TYPE_WRAPPER, // Wrapper function for implementation + TYPE_FUN, // Simple function call +}; + +enum IMPL +{ + IMPL_PLAIN = 0, + IMPL_IPP, + IMPL_OPENCL, +}; + +struct NodeDataTls +{ + NodeDataTls() + { + m_ticksTotal = 0; + } + uint64 m_ticksTotal; +}; + +class CV_EXPORTS NodeData +{ +public: + NodeData(const char* funName = 0, const char* fileName = NULL, int lineNum = 0, void* retAddress = NULL, bool alwaysExpand = false, cv::instr::TYPE instrType = TYPE_GENERAL, cv::instr::IMPL implType = IMPL_PLAIN); + NodeData(NodeData &ref); + ~NodeData(); + NodeData& operator=(const NodeData&); + + cv::String m_funName; + cv::instr::TYPE m_instrType; + cv::instr::IMPL m_implType; + const char* m_fileName; + int m_lineNum; + void* m_retAddress; + bool m_alwaysExpand; + bool m_funError; + + volatile int m_counter; + volatile uint64 m_ticksTotal; + TLSData m_tls; + int m_threads; + + // No synchronization + double getTotalMs() const { return ((double)m_ticksTotal / cv::getTickFrequency()) * 1000; } + double getMeanMs() const { return (((double)m_ticksTotal/m_counter) / cv::getTickFrequency()) * 1000; } +}; +bool operator==(const NodeData& lhs, const NodeData& rhs); + +typedef Node InstrNode; + +CV_EXPORTS InstrNode* getTrace(); + +#endif // !defined OPENCV_ABI_CHECK + + +CV_EXPORTS bool useInstrumentation(); +CV_EXPORTS void setUseInstrumentation(bool flag); +CV_EXPORTS void resetTrace(); + +enum FLAGS +{ + FLAGS_NONE = 0, + FLAGS_MAPPING = 0x01, + FLAGS_EXPAND_SAME_NAMES = 0x02, +}; + +CV_EXPORTS void setFlags(FLAGS modeFlags); +static inline void setFlags(int modeFlags) { setFlags((FLAGS)modeFlags); } +CV_EXPORTS FLAGS getFlags(); +} + +} //namespace cv + +#ifndef DISABLE_OPENCV_24_COMPATIBILITY +#include "opencv2/core/core_c.h" +#endif + +#endif //OPENCV_CORE_UTILITY_H diff --git a/thirdparty1/linux/include/opencv2/core/va_intel.hpp b/thirdparty1/linux/include/opencv2/core/va_intel.hpp new file mode 100644 index 0000000..3325848 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/va_intel.hpp @@ -0,0 +1,77 @@ +// This file is part of OpenCV project. +// It is subject to the license terms in the LICENSE file found in the top-level directory +// of this distribution and at http://opencv.org/license.html. + +// Copyright (C) 2015, Itseez, Inc., all rights reserved. +// Third party copyrights are property of their respective owners. + +#ifndef OPENCV_CORE_VA_INTEL_HPP +#define OPENCV_CORE_VA_INTEL_HPP + +#ifndef __cplusplus +# error va_intel.hpp header must be compiled as C++ +#endif + +#include "opencv2/core.hpp" +#include "ocl.hpp" + +#if defined(HAVE_VA) +# include "va/va.h" +#else // HAVE_VA +# if !defined(_VA_H_) + typedef void* VADisplay; + typedef unsigned int VASurfaceID; +# endif // !_VA_H_ +#endif // HAVE_VA + +namespace cv { namespace va_intel { + +/** @addtogroup core_va_intel +This section describes Intel VA-API/OpenCL (CL-VA) interoperability. + +To enable CL-VA interoperability support, configure OpenCV using CMake with WITH_VA_INTEL=ON . Currently VA-API is +supported on Linux only. You should also install Intel Media Server Studio (MSS) to use this feature. You may +have to specify the path(s) to MSS components for cmake in environment variables: VA_INTEL_MSDK_ROOT for Media SDK +(default is "/opt/intel/mediasdk"), and VA_INTEL_IOCL_ROOT for Intel OpenCL (default is "/opt/intel/opencl"). + +To use CL-VA interoperability you should first create VADisplay (libva), and then call initializeContextFromVA() +function to create OpenCL context and set up interoperability. +*/ +//! @{ + +/////////////////// CL-VA Interoperability Functions /////////////////// + +namespace ocl { +using namespace cv::ocl; + +// TODO static functions in the Context class +/** @brief Creates OpenCL context from VA. +@param display - VADisplay for which CL interop should be established. +@param tryInterop - try to set up for interoperability, if true; set up for use slow copy if false. +@return Returns reference to OpenCL Context + */ +CV_EXPORTS Context& initializeContextFromVA(VADisplay display, bool tryInterop = true); + +} // namespace cv::va_intel::ocl + +/** @brief Converts InputArray to VASurfaceID object. +@param display - VADisplay object. +@param src - source InputArray. +@param surface - destination VASurfaceID object. +@param size - size of image represented by VASurfaceID object. + */ +CV_EXPORTS void convertToVASurface(VADisplay display, InputArray src, VASurfaceID surface, Size size); + +/** @brief Converts VASurfaceID object to OutputArray. +@param display - VADisplay object. +@param surface - source VASurfaceID object. +@param size - size of image represented by VASurfaceID object. +@param dst - destination OutputArray. + */ +CV_EXPORTS void convertFromVASurface(VADisplay display, VASurfaceID surface, Size size, OutputArray dst); + +//! @} + +}} // namespace cv::va_intel + +#endif /* OPENCV_CORE_VA_INTEL_HPP */ diff --git a/thirdparty1/linux/include/opencv2/core/version.hpp b/thirdparty1/linux/include/opencv2/core/version.hpp new file mode 100644 index 0000000..85c12d8 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/version.hpp @@ -0,0 +1,71 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// Intel License Agreement +// For Open Source Computer Vision Library +// +// Copyright( C) 2000-2015, Intel Corporation, all rights reserved. +// Copyright (C) 2011-2013, NVIDIA Corporation, all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2015, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of Intel Corporation may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +//(including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort(including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +/* + definition of the current version of OpenCV + Usefull to test in user programs +*/ + +#ifndef OPENCV_VERSION_HPP +#define OPENCV_VERSION_HPP + +#define CV_VERSION_MAJOR 3 +#define CV_VERSION_MINOR 2 +#define CV_VERSION_REVISION 0 +#define CV_VERSION_STATUS "-dev" + +#define CVAUX_STR_EXP(__A) #__A +#define CVAUX_STR(__A) CVAUX_STR_EXP(__A) + +#define CVAUX_STRW_EXP(__A) L ## #__A +#define CVAUX_STRW(__A) CVAUX_STRW_EXP(__A) + +#define CV_VERSION CVAUX_STR(CV_VERSION_MAJOR) "." CVAUX_STR(CV_VERSION_MINOR) "." CVAUX_STR(CV_VERSION_REVISION) CV_VERSION_STATUS + +/* old style version constants*/ +#define CV_MAJOR_VERSION CV_VERSION_MAJOR +#define CV_MINOR_VERSION CV_VERSION_MINOR +#define CV_SUBMINOR_VERSION CV_VERSION_REVISION + +#endif diff --git a/thirdparty1/linux/include/opencv2/core/wimage.hpp b/thirdparty1/linux/include/opencv2/core/wimage.hpp new file mode 100644 index 0000000..b246c89 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/core/wimage.hpp @@ -0,0 +1,603 @@ +/*M////////////////////////////////////////////////////////////////////////////// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to +// this license. If you do not agree to this license, do not download, +// install, copy or use the software. +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2008, Google, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of Intel Corporation or contributors may not be used to endorse +// or promote products derived from this software without specific +// prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" +// and any express or implied warranties, including, but not limited to, the +// implied warranties of merchantability and fitness for a particular purpose +// are disclaimed. In no event shall the Intel Corporation or contributors be +// liable for any direct, indirect, incidental, special, exemplary, or +// consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +///////////////////////////////////////////////////////////////////////////////// +//M*/ + +#ifndef OPENCV_CORE_WIMAGE_HPP +#define OPENCV_CORE_WIMAGE_HPP + +#include "opencv2/core/core_c.h" + +#ifdef __cplusplus + +namespace cv { + +//! @addtogroup core +//! @{ + +template class WImage; +template class WImageBuffer; +template class WImageView; + +template class WImageC; +template class WImageBufferC; +template class WImageViewC; + +// Commonly used typedefs. +typedef WImage WImage_b; +typedef WImageView WImageView_b; +typedef WImageBuffer WImageBuffer_b; + +typedef WImageC WImage1_b; +typedef WImageViewC WImageView1_b; +typedef WImageBufferC WImageBuffer1_b; + +typedef WImageC WImage3_b; +typedef WImageViewC WImageView3_b; +typedef WImageBufferC WImageBuffer3_b; + +typedef WImage WImage_f; +typedef WImageView WImageView_f; +typedef WImageBuffer WImageBuffer_f; + +typedef WImageC WImage1_f; +typedef WImageViewC WImageView1_f; +typedef WImageBufferC WImageBuffer1_f; + +typedef WImageC WImage3_f; +typedef WImageViewC WImageView3_f; +typedef WImageBufferC WImageBuffer3_f; + +// There isn't a standard for signed and unsigned short so be more +// explicit in the typename for these cases. +typedef WImage WImage_16s; +typedef WImageView WImageView_16s; +typedef WImageBuffer WImageBuffer_16s; + +typedef WImageC WImage1_16s; +typedef WImageViewC WImageView1_16s; +typedef WImageBufferC WImageBuffer1_16s; + +typedef WImageC WImage3_16s; +typedef WImageViewC WImageView3_16s; +typedef WImageBufferC WImageBuffer3_16s; + +typedef WImage WImage_16u; +typedef WImageView WImageView_16u; +typedef WImageBuffer WImageBuffer_16u; + +typedef WImageC WImage1_16u; +typedef WImageViewC WImageView1_16u; +typedef WImageBufferC WImageBuffer1_16u; + +typedef WImageC WImage3_16u; +typedef WImageViewC WImageView3_16u; +typedef WImageBufferC WImageBuffer3_16u; + +/** @brief Image class which provides a thin layer around an IplImage. + +The goals of the class design are: + + -# All the data has explicit ownership to avoid memory leaks + -# No hidden allocations or copies for performance. + -# Easy access to OpenCV methods (which will access IPP if available) + -# Can easily treat external data as an image + -# Easy to create images which are subsets of other images + -# Fast pixel access which can take advantage of number of channels if known at compile time. + +The WImage class is the image class which provides the data accessors. The 'W' comes from the fact +that it is also a wrapper around the popular but inconvenient IplImage class. A WImage can be +constructed either using a WImageBuffer class which allocates and frees the data, or using a +WImageView class which constructs a subimage or a view into external data. The view class does no +memory management. Each class actually has two versions, one when the number of channels is known +at compile time and one when it isn't. Using the one with the number of channels specified can +provide some compile time optimizations by using the fact that the number of channels is a +constant. + +We use the convention (c,r) to refer to column c and row r with (0,0) being the upper left corner. +This is similar to standard Euclidean coordinates with the first coordinate varying in the +horizontal direction and the second coordinate varying in the vertical direction. Thus (c,r) is +usually in the domain [0, width) X [0, height) + +Example usage: +@code +WImageBuffer3_b im(5,7); // Make a 5X7 3 channel image of type uchar +WImageView3_b sub_im(im, 2,2, 3,3); // 3X3 submatrix +vector vec(10, 3.0f); +WImageView1_f user_im(&vec[0], 2, 5); // 2X5 image w/ supplied data + +im.SetZero(); // same as cvSetZero(im.Ipl()) +*im(2, 3) = 15; // Modify the element at column 2, row 3 +MySetRand(&sub_im); + +// Copy the second row into the first. This can be done with no memory +// allocation and will use SSE if IPP is available. +int w = im.Width(); +im.View(0,0, w,1).CopyFrom(im.View(0,1, w,1)); + +// Doesn't care about source of data since using WImage +void MySetRand(WImage_b* im) { // Works with any number of channels +for (int r = 0; r < im->Height(); ++r) { + float* row = im->Row(r); + for (int c = 0; c < im->Width(); ++c) { + for (int ch = 0; ch < im->Channels(); ++ch, ++row) { + *row = uchar(rand() & 255); + } + } +} +} +@endcode + +Functions that are not part of the basic image allocation, viewing, and access should come from +OpenCV, except some useful functions that are not part of OpenCV can be found in wimage_util.h +*/ +template +class WImage +{ +public: + typedef T BaseType; + + // WImage is an abstract class with no other virtual methods so make the + // destructor virtual. + virtual ~WImage() = 0; + + // Accessors + IplImage* Ipl() {return image_; } + const IplImage* Ipl() const {return image_; } + T* ImageData() { return reinterpret_cast(image_->imageData); } + const T* ImageData() const { + return reinterpret_cast(image_->imageData); + } + + int Width() const {return image_->width; } + int Height() const {return image_->height; } + + // WidthStep is the number of bytes to go to the pixel with the next y coord + int WidthStep() const {return image_->widthStep; } + + int Channels() const {return image_->nChannels; } + int ChannelSize() const {return sizeof(T); } // number of bytes per channel + + // Number of bytes per pixel + int PixelSize() const {return Channels() * ChannelSize(); } + + // Return depth type (e.g. IPL_DEPTH_8U, IPL_DEPTH_32F) which is the number + // of bits per channel and with the signed bit set. + // This is known at compile time using specializations. + int Depth() const; + + inline const T* Row(int r) const { + return reinterpret_cast(image_->imageData + r*image_->widthStep); + } + + inline T* Row(int r) { + return reinterpret_cast(image_->imageData + r*image_->widthStep); + } + + // Pixel accessors which returns a pointer to the start of the channel + inline T* operator() (int c, int r) { + return reinterpret_cast(image_->imageData + r*image_->widthStep) + + c*Channels(); + } + + inline const T* operator() (int c, int r) const { + return reinterpret_cast(image_->imageData + r*image_->widthStep) + + c*Channels(); + } + + // Copy the contents from another image which is just a convenience to cvCopy + void CopyFrom(const WImage& src) { cvCopy(src.Ipl(), image_); } + + // Set contents to zero which is just a convenient to cvSetZero + void SetZero() { cvSetZero(image_); } + + // Construct a view into a region of this image + WImageView View(int c, int r, int width, int height); + +protected: + // Disallow copy and assignment + WImage(const WImage&); + void operator=(const WImage&); + + explicit WImage(IplImage* img) : image_(img) { + assert(!img || img->depth == Depth()); + } + + void SetIpl(IplImage* image) { + assert(!image || image->depth == Depth()); + image_ = image; + } + + IplImage* image_; +}; + + +/** Image class when both the pixel type and number of channels +are known at compile time. This wrapper will speed up some of the operations +like accessing individual pixels using the () operator. +*/ +template +class WImageC : public WImage +{ +public: + typedef typename WImage::BaseType BaseType; + enum { kChannels = C }; + + explicit WImageC(IplImage* img) : WImage(img) { + assert(!img || img->nChannels == Channels()); + } + + // Construct a view into a region of this image + WImageViewC View(int c, int r, int width, int height); + + // Copy the contents from another image which is just a convenience to cvCopy + void CopyFrom(const WImageC& src) { + cvCopy(src.Ipl(), WImage::image_); + } + + // WImageC is an abstract class with no other virtual methods so make the + // destructor virtual. + virtual ~WImageC() = 0; + + int Channels() const {return C; } + +protected: + // Disallow copy and assignment + WImageC(const WImageC&); + void operator=(const WImageC&); + + void SetIpl(IplImage* image) { + assert(!image || image->depth == WImage::Depth()); + WImage::SetIpl(image); + } +}; + +/** Image class which owns the data, so it can be allocated and is always +freed. It cannot be copied but can be explicity cloned. +*/ +template +class WImageBuffer : public WImage +{ +public: + typedef typename WImage::BaseType BaseType; + + // Default constructor which creates an object that can be + WImageBuffer() : WImage(0) {} + + WImageBuffer(int width, int height, int nchannels) : WImage(0) { + Allocate(width, height, nchannels); + } + + // Constructor which takes ownership of a given IplImage so releases + // the image on destruction. + explicit WImageBuffer(IplImage* img) : WImage(img) {} + + // Allocate an image. Does nothing if current size is the same as + // the new size. + void Allocate(int width, int height, int nchannels); + + // Set the data to point to an image, releasing the old data + void SetIpl(IplImage* img) { + ReleaseImage(); + WImage::SetIpl(img); + } + + // Clone an image which reallocates the image if of a different dimension. + void CloneFrom(const WImage& src) { + Allocate(src.Width(), src.Height(), src.Channels()); + CopyFrom(src); + } + + ~WImageBuffer() { + ReleaseImage(); + } + + // Release the image if it isn't null. + void ReleaseImage() { + if (WImage::image_) { + IplImage* image = WImage::image_; + cvReleaseImage(&image); + WImage::SetIpl(0); + } + } + + bool IsNull() const {return WImage::image_ == NULL; } + +private: + // Disallow copy and assignment + WImageBuffer(const WImageBuffer&); + void operator=(const WImageBuffer&); +}; + +/** Like a WImageBuffer class but when the number of channels is known at compile time. +*/ +template +class WImageBufferC : public WImageC +{ +public: + typedef typename WImage::BaseType BaseType; + enum { kChannels = C }; + + // Default constructor which creates an object that can be + WImageBufferC() : WImageC(0) {} + + WImageBufferC(int width, int height) : WImageC(0) { + Allocate(width, height); + } + + // Constructor which takes ownership of a given IplImage so releases + // the image on destruction. + explicit WImageBufferC(IplImage* img) : WImageC(img) {} + + // Allocate an image. Does nothing if current size is the same as + // the new size. + void Allocate(int width, int height); + + // Set the data to point to an image, releasing the old data + void SetIpl(IplImage* img) { + ReleaseImage(); + WImageC::SetIpl(img); + } + + // Clone an image which reallocates the image if of a different dimension. + void CloneFrom(const WImageC& src) { + Allocate(src.Width(), src.Height()); + CopyFrom(src); + } + + ~WImageBufferC() { + ReleaseImage(); + } + + // Release the image if it isn't null. + void ReleaseImage() { + if (WImage::image_) { + IplImage* image = WImage::image_; + cvReleaseImage(&image); + WImageC::SetIpl(0); + } + } + + bool IsNull() const {return WImage::image_ == NULL; } + +private: + // Disallow copy and assignment + WImageBufferC(const WImageBufferC&); + void operator=(const WImageBufferC&); +}; + +/** View into an image class which allows treating a subimage as an image or treating external data +as an image +*/ +template class WImageView : public WImage +{ +public: + typedef typename WImage::BaseType BaseType; + + // Construct a subimage. No checks are done that the subimage lies + // completely inside the original image. + WImageView(WImage* img, int c, int r, int width, int height); + + // Refer to external data. + // If not given width_step assumed to be same as width. + WImageView(T* data, int width, int height, int channels, int width_step = -1); + + // Refer to external data. This does NOT take ownership + // of the supplied IplImage. + WImageView(IplImage* img) : WImage(img) {} + + // Copy constructor + WImageView(const WImage& img) : WImage(0) { + header_ = *(img.Ipl()); + WImage::SetIpl(&header_); + } + + WImageView& operator=(const WImage& img) { + header_ = *(img.Ipl()); + WImage::SetIpl(&header_); + return *this; + } + +protected: + IplImage header_; +}; + + +template +class WImageViewC : public WImageC +{ +public: + typedef typename WImage::BaseType BaseType; + enum { kChannels = C }; + + // Default constructor needed for vectors of views. + WImageViewC(); + + virtual ~WImageViewC() {} + + // Construct a subimage. No checks are done that the subimage lies + // completely inside the original image. + WImageViewC(WImageC* img, + int c, int r, int width, int height); + + // Refer to external data + WImageViewC(T* data, int width, int height, int width_step = -1); + + // Refer to external data. This does NOT take ownership + // of the supplied IplImage. + WImageViewC(IplImage* img) : WImageC(img) {} + + // Copy constructor which does a shallow copy to allow multiple views + // of same data. gcc-4.1.1 gets confused if both versions of + // the constructor and assignment operator are not provided. + WImageViewC(const WImageC& img) : WImageC(0) { + header_ = *(img.Ipl()); + WImageC::SetIpl(&header_); + } + WImageViewC(const WImageViewC& img) : WImageC(0) { + header_ = *(img.Ipl()); + WImageC::SetIpl(&header_); + } + + WImageViewC& operator=(const WImageC& img) { + header_ = *(img.Ipl()); + WImageC::SetIpl(&header_); + return *this; + } + WImageViewC& operator=(const WImageViewC& img) { + header_ = *(img.Ipl()); + WImageC::SetIpl(&header_); + return *this; + } + +protected: + IplImage header_; +}; + + +// Specializations for depth +template<> +inline int WImage::Depth() const {return IPL_DEPTH_8U; } +template<> +inline int WImage::Depth() const {return IPL_DEPTH_8S; } +template<> +inline int WImage::Depth() const {return IPL_DEPTH_16S; } +template<> +inline int WImage::Depth() const {return IPL_DEPTH_16U; } +template<> +inline int WImage::Depth() const {return IPL_DEPTH_32S; } +template<> +inline int WImage::Depth() const {return IPL_DEPTH_32F; } +template<> +inline int WImage::Depth() const {return IPL_DEPTH_64F; } + +template inline WImage::~WImage() {} +template inline WImageC::~WImageC() {} + +template +inline void WImageBuffer::Allocate(int width, int height, int nchannels) +{ + if (IsNull() || WImage::Width() != width || + WImage::Height() != height || WImage::Channels() != nchannels) { + ReleaseImage(); + WImage::image_ = cvCreateImage(cvSize(width, height), + WImage::Depth(), nchannels); + } +} + +template +inline void WImageBufferC::Allocate(int width, int height) +{ + if (IsNull() || WImage::Width() != width || WImage::Height() != height) { + ReleaseImage(); + WImageC::SetIpl(cvCreateImage(cvSize(width, height),WImage::Depth(), C)); + } +} + +template +WImageView::WImageView(WImage* img, int c, int r, int width, int height) + : WImage(0) +{ + header_ = *(img->Ipl()); + header_.imageData = reinterpret_cast((*img)(c, r)); + header_.width = width; + header_.height = height; + WImage::SetIpl(&header_); +} + +template +WImageView::WImageView(T* data, int width, int height, int nchannels, int width_step) + : WImage(0) +{ + cvInitImageHeader(&header_, cvSize(width, height), WImage::Depth(), nchannels); + header_.imageData = reinterpret_cast(data); + if (width_step > 0) { + header_.widthStep = width_step; + } + WImage::SetIpl(&header_); +} + +template +WImageViewC::WImageViewC(WImageC* img, int c, int r, int width, int height) + : WImageC(0) +{ + header_ = *(img->Ipl()); + header_.imageData = reinterpret_cast((*img)(c, r)); + header_.width = width; + header_.height = height; + WImageC::SetIpl(&header_); +} + +template +WImageViewC::WImageViewC() : WImageC(0) { + cvInitImageHeader(&header_, cvSize(0, 0), WImage::Depth(), C); + header_.imageData = reinterpret_cast(0); + WImageC::SetIpl(&header_); +} + +template +WImageViewC::WImageViewC(T* data, int width, int height, int width_step) + : WImageC(0) +{ + cvInitImageHeader(&header_, cvSize(width, height), WImage::Depth(), C); + header_.imageData = reinterpret_cast(data); + if (width_step > 0) { + header_.widthStep = width_step; + } + WImageC::SetIpl(&header_); +} + +// Construct a view into a region of an image +template +WImageView WImage::View(int c, int r, int width, int height) { + return WImageView(this, c, r, width, height); +} + +template +WImageViewC WImageC::View(int c, int r, int width, int height) { + return WImageViewC(this, c, r, width, height); +} + +//! @} core + +} // end of namespace + +#endif // __cplusplus + +#endif diff --git a/thirdparty1/linux/include/opencv2/cvconfig.h b/thirdparty1/linux/include/opencv2/cvconfig.h new file mode 100644 index 0000000..1b55f2a --- /dev/null +++ b/thirdparty1/linux/include/opencv2/cvconfig.h @@ -0,0 +1,208 @@ +/* OpenCV compiled as static or dynamic libs */ +#define BUILD_SHARED_LIBS + +/* Compile for 'real' NVIDIA GPU architectures */ +#define CUDA_ARCH_BIN "" + +/* Create PTX or BIN for 1.0 compute capability */ +/* #undef CUDA_ARCH_BIN_OR_PTX_10 */ + +/* NVIDIA GPU features are used */ +#define CUDA_ARCH_FEATURES "" + +/* Compile for 'virtual' NVIDIA PTX architectures */ +#define CUDA_ARCH_PTX "" + +/* AVFoundation video libraries */ +/* #undef HAVE_AVFOUNDATION */ + +/* V4L capturing support */ +/* #undef HAVE_CAMV4L */ + +/* V4L2 capturing support */ +#define HAVE_CAMV4L2 + +/* Carbon windowing environment */ +/* #undef HAVE_CARBON */ + +/* AMD's Basic Linear Algebra Subprograms Library*/ +/* #undef HAVE_CLAMDBLAS */ + +/* AMD's OpenCL Fast Fourier Transform Library*/ +/* #undef HAVE_CLAMDFFT */ + +/* Clp support */ +/* #undef HAVE_CLP */ + +/* Cocoa API */ +/* #undef HAVE_COCOA */ + +/* C= */ +/* #undef HAVE_CSTRIPES */ + +/* NVidia Cuda Basic Linear Algebra Subprograms (BLAS) API*/ +/* #undef HAVE_CUBLAS */ + +/* NVidia Cuda Runtime API*/ +/* #undef HAVE_CUDA */ + +/* NVidia Cuda Fast Fourier Transform (FFT) API*/ +/* #undef HAVE_CUFFT */ + +/* IEEE1394 capturing support */ +/* #undef HAVE_DC1394 */ + +/* IEEE1394 capturing support - libdc1394 v2.x */ +/* #undef HAVE_DC1394_2 */ + +/* DirectX */ +/* #undef HAVE_DIRECTX */ +/* #undef HAVE_DIRECTX_NV12 */ +/* #undef HAVE_D3D11 */ +/* #undef HAVE_D3D10 */ +/* #undef HAVE_D3D9 */ + +/* DirectShow Video Capture library */ +/* #undef HAVE_DSHOW */ + +/* Eigen Matrix & Linear Algebra Library */ +/* #undef HAVE_EIGEN */ + +/* FFMpeg video library */ +#define HAVE_FFMPEG + +/* Geospatial Data Abstraction Library */ +/* #undef HAVE_GDAL */ + +/* GStreamer multimedia framework */ +#define HAVE_GSTREAMER + +/* GTK+ 2.0 Thread support */ +/* #undef HAVE_GTHREAD */ + +/* GTK+ 2.x toolkit */ +/* #undef HAVE_GTK */ + +/* Define to 1 if you have the header file. */ +/* #undef HAVE_INTTYPES_H */ + +/* Intel Perceptual Computing SDK library */ +/* #undef HAVE_INTELPERC */ + +/* Intel Integrated Performance Primitives */ +/* #undef HAVE_IPP */ +/* #undef HAVE_IPP_ICV_ONLY */ + +/* Intel IPP Async */ +/* #undef HAVE_IPP_A */ + +/* JPEG-2000 codec */ +#define HAVE_JASPER + +/* IJG JPEG codec */ +#define HAVE_JPEG + +/* libpng/png.h needs to be included */ +#define HAVE_LIBPNG_PNG_H + +/* GDCM DICOM codec */ +/* #undef HAVE_GDCM */ + +/* V4L/V4L2 capturing support via libv4l */ +/* #undef HAVE_LIBV4L */ + +/* Microsoft Media Foundation Capture library */ +/* #undef HAVE_MSMF */ + +/* NVidia Video Decoding API*/ +/* #undef HAVE_NVCUVID */ + +/* NVidia Video Encoding API*/ +/* #undef HAVE_NVCUVENC */ + +/* OpenCL Support */ +#define HAVE_OPENCL +/* #undef HAVE_OPENCL_STATIC */ +/* #undef HAVE_OPENCL_SVM */ + +/* OpenEXR codec */ +#define HAVE_OPENEXR + +/* OpenGL support*/ +/* #undef HAVE_OPENGL */ + +/* OpenNI library */ +/* #undef HAVE_OPENNI */ + +/* OpenNI library */ +/* #undef HAVE_OPENNI2 */ + +/* PNG codec */ +#define HAVE_PNG + +/* Posix threads (pthreads) */ +#define HAVE_PTHREADS + +/* parallel_for with pthreads */ +#define HAVE_PTHREADS_PF + +/* Qt support */ +/* #undef HAVE_QT */ + +/* Qt OpenGL support */ +/* #undef HAVE_QT_OPENGL */ + +/* QuickTime video libraries */ +/* #undef HAVE_QUICKTIME */ + +/* QTKit video libraries */ +/* #undef HAVE_QTKIT */ + +/* Intel Threading Building Blocks */ +/* #undef HAVE_TBB */ + +/* TIFF codec */ +#define HAVE_TIFF + +/* Unicap video capture library */ +/* #undef HAVE_UNICAP */ + +/* Video for Windows support */ +/* #undef HAVE_VFW */ + +/* V4L2 capturing support in videoio.h */ +/* #undef HAVE_VIDEOIO */ + +/* Win32 UI */ +/* #undef HAVE_WIN32UI */ + +/* XIMEA camera support */ +/* #undef HAVE_XIMEA */ + +/* Xine video library */ +/* #undef HAVE_XINE */ + +/* Define if your processor stores words with the most significant byte + first (like Motorola and SPARC, unlike Intel and VAX). */ +/* #undef WORDS_BIGENDIAN */ + +/* gPhoto2 library */ +/* #undef HAVE_GPHOTO2 */ + +/* VA library (libva) */ +/* #undef HAVE_VA */ + +/* Intel VA-API/OpenCL */ +/* #undef HAVE_VA_INTEL */ + +/* Lapack */ +/* #undef HAVE_LAPACK */ + +/* FP16 */ +/* #undef HAVE_FP16 */ + +/* Library was compiled with functions instrumentation */ +/* #undef ENABLE_INSTRUMENTATION */ + +/* OpenVX */ +/* #undef HAVE_OPENVX */ diff --git a/thirdparty1/linux/include/opencv2/datasets/ar_hmdb.hpp b/thirdparty1/linux/include/opencv2/datasets/ar_hmdb.hpp new file mode 100644 index 0000000..8941583 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/datasets/ar_hmdb.hpp @@ -0,0 +1,80 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2014, Itseez Inc, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Itseez Inc or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_DATASETS_AR_HMDB_HPP +#define OPENCV_DATASETS_AR_HMDB_HPP + +#include +#include + +#include "opencv2/datasets/dataset.hpp" + +#include + +namespace cv +{ +namespace datasets +{ + +//! @addtogroup datasets_ar +//! @{ + +struct AR_hmdbObj : public Object +{ + int id; + std::string name; + std::string videoName; +}; + +class CV_EXPORTS AR_hmdb : public Dataset +{ +public: + virtual void load(const std::string &path) = 0; + + static Ptr create(); +}; + +//! @} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/datasets/ar_sports.hpp b/thirdparty1/linux/include/opencv2/datasets/ar_sports.hpp new file mode 100644 index 0000000..7f51405 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/datasets/ar_sports.hpp @@ -0,0 +1,79 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2014, Itseez Inc, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Itseez Inc or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_DATASETS_AR_SPORTS_HPP +#define OPENCV_DATASETS_AR_SPORTS_HPP + +#include +#include + +#include "opencv2/datasets/dataset.hpp" + +#include + +namespace cv +{ +namespace datasets +{ + +//! @addtogroup datasets_ar +//! @{ + +struct AR_sportsObj : public Object +{ + std::string videoUrl; + std::vector labels; +}; + +class CV_EXPORTS AR_sports : public Dataset +{ +public: + virtual void load(const std::string &path) = 0; + + static Ptr create(); +}; + +//! @} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/datasets/dataset.hpp b/thirdparty1/linux/include/opencv2/datasets/dataset.hpp new file mode 100644 index 0000000..ccf2b66 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/datasets/dataset.hpp @@ -0,0 +1,545 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2014, Itseez Inc, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Itseez Inc or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_DATASETS_DATASET_HPP +#define OPENCV_DATASETS_DATASET_HPP + +#include +#include + +#include + +/** @defgroup datasets Framework for working with different datasets + +The datasets module includes classes for working with different datasets: load data, evaluate +different algorithms on them, contains benchmarks, etc. + +It is planned to have: + +- basic: loading code for all datasets to help start work with them. +- next stage: quick benchmarks for all datasets to show how to solve them using OpenCV and +implement evaluation code. +- finally: implement on OpenCV state-of-the-art algorithms, which solve these tasks. + +@{ +@defgroup datasets_ar Action Recognition + +### HMDB: A Large Human Motion Database + +Implements loading dataset: + +"HMDB: A Large Human Motion Database": + +Usage: +-# From link above download dataset files: `hmdb51_org.rar` & `test_train_splits.rar`. +-# Unpack them. Unpack all archives from directory: `hmdb51_org/` and remove them. +-# To load data run: +~~~ +./opencv/build/bin/example_datasets_ar_hmdb -p=/home/user/path_to_unpacked_folders/ +~~~ + +#### Benchmark + +For this dataset was implemented benchmark with accuracy: 0.107407 (using precomputed HOG/HOF +"STIP" features from site, averaging for 3 splits) + +To run this benchmark execute: +~~~ +./opencv/build/bin/example_datasets_ar_hmdb_benchmark -p=/home/user/path_to_unpacked_folders/ +~~~ + +@note +Precomputed features should be unpacked in the same folder: `/home/user/path_to_unpacked_folders/hmdb51_org_stips/`. +Also unpack all archives from directory: `hmdb51_org_stips/` and remove them. + +### Sports-1M %Dataset + +Implements loading dataset: + +"Sports-1M Dataset": + +Usage: +-# From link above download dataset files (`git clone https://code.google.com/p/sports-1m-dataset/`). +-# To load data run: +~~~ +./opencv/build/bin/example_datasets_ar_sports -p=/home/user/path_to_downloaded_folders/ +~~~ + +@defgroup datasets_fr Face Recognition + +### Adience + +Implements loading dataset: + +"Adience": + +Usage: +-# From link above download any dataset file: `faces.tar.gz\aligned.tar.gz` and files with splits: +`fold_0_data.txt-fold_4_data.txt`, `fold_frontal_0_data.txt-fold_frontal_4_data.txt`. (For +face recognition task another splits should be created) +-# Unpack dataset file to some folder and place split files into the same folder. +-# To load data run: +~~~ +./opencv/build/bin/example_datasets_fr_adience -p=/home/user/path_to_created_folder/ +~~~ + +### Labeled Faces in the Wild + +Implements loading dataset: + +"Labeled Faces in the Wild": + +Usage: +-# From link above download any dataset file: +`lfw.tgz\lfwa.tar.gz\lfw-deepfunneled.tgz\lfw-funneled.tgz` and files with pairs: 10 test +splits: `pairs.txt` and developer train split: `pairsDevTrain.txt`. +-# Unpack dataset file and place `pairs.txt` and `pairsDevTrain.txt` in created folder. +-# To load data run: +~~~ +./opencv/build/bin/example_datasets_fr_lfw -p=/home/user/path_to_unpacked_folder/lfw2/ +~~~ + +#### Benchmark + +For this dataset was implemented benchmark with accuracy: 0.623833 +- 0.005223 (train split: +`pairsDevTrain.txt`, dataset: lfwa) + +To run this benchmark execute: +~~~ +./opencv/build/bin/example_datasets_fr_lfw_benchmark -p=/home/user/path_to_unpacked_folder/lfw2/ +~~~ + +@defgroup datasets_gr Gesture Recognition + +### ChaLearn Looking at People + +Implements loading dataset: + +"ChaLearn Looking at People": + +Usage +-# Follow instruction from site above, download files for dataset "Track 3: Gesture Recognition": +`Train1.zip`-`Train5.zip`, `Validation1.zip`-`Validation3.zip` (Register on site: www.codalab.org and +accept the terms and conditions of competition: + There are three mirrors for +downloading dataset files. When I downloaded data only mirror: "Universitat Oberta de Catalunya" +works). +-# Unpack train archives `Train1.zip`-`Train5.zip` to folder `Train/`, validation archives +`Validation1.zip`-`Validation3.zip` to folder `Validation/` +-# Unpack all archives in `Train/` & `Validation/` in the folders with the same names, for example: +`Sample0001.zip` to `Sample0001/` +-# To load data run: +~~~ +./opencv/build/bin/example_datasets_gr_chalearn -p=/home/user/path_to_unpacked_folders/ +~~~ + +### Sheffield Kinect Gesture Dataset + +Implements loading dataset: + +"Sheffield Kinect Gesture Dataset": + +Usage: +-# From link above download dataset files: `subject1_dep.7z`-`subject6_dep.7z`, `subject1_rgb.7z`-`subject6_rgb.7z`. +-# Unpack them. +-# To load data run: +~~~ +./opencv/build/bin/example_datasets_gr_skig -p=/home/user/path_to_unpacked_folders/ +~~~ + +@defgroup datasets_hpe Human Pose Estimation + +### HumanEva Dataset + +Implements loading dataset: + +"HumanEva Dataset": + +Usage: +-# From link above download dataset files for `HumanEva-I` (tar) & `HumanEva-II`. +-# Unpack them to `HumanEva_1` & `HumanEva_2` accordingly. +-# To load data run: +~~~ +./opencv/build/bin/example_datasets_hpe_humaneva -p=/home/user/path_to_unpacked_folders/ +~~~ + +### PARSE Dataset + +Implements loading dataset: + +"PARSE Dataset": + +Usage: +-# From link above download dataset file: `people.zip`. +-# Unpack it. +-# To load data run: +~~~ +./opencv/build/bin/example_datasets_hpe_parse -p=/home/user/path_to_unpacked_folder/people_all/ +~~~ + +@defgroup datasets_ir Image Registration + +### Affine Covariant Regions Datasets + +Implements loading dataset: + +"Affine Covariant Regions Datasets": + +Usage: +-# From link above download dataset files: +`bark\bikes\boat\graf\leuven\trees\ubc\wall.tar.gz`. +-# Unpack them. +-# To load data, for example, for "bark", run: +``` +./opencv/build/bin/example_datasets_ir_affine -p=/home/user/path_to_unpacked_folder/bark/ +``` + +### Robot Data Set + +Implements loading dataset: + +"Robot Data Set, Point Feature Data Set – 2010": + +Usage: +-# From link above download dataset files: `SET001_6.tar.gz`-`SET055_60.tar.gz` +-# Unpack them to one folder. +-# To load data run: +~~~ +./opencv/build/bin/example_datasets_ir_robot -p=/home/user/path_to_unpacked_folder/ +~~~ + +@defgroup datasets_is Image Segmentation + +### The Berkeley Segmentation Dataset and Benchmark + +Implements loading dataset: + +"The Berkeley Segmentation Dataset and Benchmark": + +Usage: +-# From link above download dataset files: `BSDS300-human.tgz` & `BSDS300-images.tgz`. +-# Unpack them. +-# To load data run: +~~~ +./opencv/build/bin/example_datasets_is_bsds -p=/home/user/path_to_unpacked_folder/BSDS300/ +~~~ + +### Weizmann Segmentation Evaluation Database + +Implements loading dataset: + +"Weizmann Segmentation Evaluation Database": + +Usage: +-# From link above download dataset files: `Weizmann_Seg_DB_1obj.ZIP` & `Weizmann_Seg_DB_2obj.ZIP`. +-# Unpack them. +-# To load data, for example, for `1 object` dataset, run: +~~~ +./opencv/build/bin/example_datasets_is_weizmann -p=/home/user/path_to_unpacked_folder/1obj/ +~~~ + +@defgroup datasets_msm Multiview Stereo Matching + +### EPFL Multi-View Stereo + +Implements loading dataset: + +"EPFL Multi-View Stereo": + +Usage: +-# From link above download dataset files: +`castle_dense\castle_dense_large\castle_entry\fountain\herzjesu_dense\herzjesu_dense_large_bounding\cameras\images\p.tar.gz`. +-# Unpack them in separate folder for each object. For example, for "fountain", in folder `fountain/` : +`fountain_dense_bounding.tar.gz -> bounding/`, +`fountain_dense_cameras.tar.gz -> camera/`, +`fountain_dense_images.tar.gz -> png/`, +`fountain_dense_p.tar.gz -> P/` +-# To load data, for example, for "fountain", run: +~~~ +./opencv/build/bin/example_datasets_msm_epfl -p=/home/user/path_to_unpacked_folder/fountain/ +~~~ + +### Stereo – Middlebury Computer Vision + +Implements loading dataset: + +"Stereo – Middlebury Computer Vision": + +Usage: +-# From link above download dataset files: +`dino\dinoRing\dinoSparseRing\temple\templeRing\templeSparseRing.zip` +-# Unpack them. +-# To load data, for example "temple" dataset, run: +~~~ +./opencv/build/bin/example_datasets_msm_middlebury -p=/home/user/path_to_unpacked_folder/temple/ +~~~ + +@defgroup datasets_or Object Recognition + +### ImageNet + +Implements loading dataset: "ImageNet": + +Usage: +-# From link above download dataset files: +`ILSVRC2010_images_train.tar\ILSVRC2010_images_test.tar\ILSVRC2010_images_val.tar` & devkit: +`ILSVRC2010_devkit-1.0.tar.gz` (Implemented loading of 2010 dataset as only this dataset has ground +truth for test data, but structure for ILSVRC2014 is similar) +-# Unpack them to: `some_folder/train/`, `some_folder/test/`, `some_folder/val` & +`some_folder/ILSVRC2010_validation_ground_truth.txt`, +`some_folder/ILSVRC2010_test_ground_truth.txt`. +-# Create file with labels: `some_folder/labels.txt`, for example, using python script below (each +file's row format: `synset,labelID,description`. For example: "n07751451,18,plum"). +-# Unpack all tar files in train. +-# To load data run: +~~~ +./opencv/build/bin/example_datasets_or_imagenet -p=/home/user/some_folder/ +~~~ + +Python script to parse `meta.mat`: +~~~{py} + import scipy.io + meta_mat = scipy.io.loadmat("devkit-1.0/data/meta.mat") + + labels_dic = dict((m[0][1][0], m[0][0][0][0]-1) for m in meta_mat['synsets'] + label_names_dic = dict((m[0][1][0], m[0][2][0]) for m in meta_mat['synsets'] + + for label in labels_dic.keys(): + print "{0},{1},{2}".format(label, labels_dic[label], label_names_dic[label]) +~~~ + +### MNIST + +Implements loading dataset: + +"MNIST": + +Usage: +-# From link above download dataset files: +`t10k-images-idx3-ubyte.gz`, `t10k-labels-idx1-ubyte.gz`, `train-images-idx3-ubyte.gz`, `train-labels-idx1-ubyte.gz`. +-# Unpack them. +-# To load data run: +~~~ +./opencv/build/bin/example_datasets_or_mnist -p=/home/user/path_to_unpacked_files/ +~~~ + +### SUN Database + +Implements loading dataset: + +"SUN Database, Scene Recognition Benchmark. SUN397": + +Usage: +-# From link above download dataset file: `SUN397.tar` & file with splits: `Partitions.zip` +-# Unpack `SUN397.tar` into folder: `SUN397/` & `Partitions.zip` into folder: `SUN397/Partitions/` +-# To load data run: +~~~ +./opencv/build/bin/example_datasets_or_sun -p=/home/user/path_to_unpacked_files/SUN397/ +~~~ + +@defgroup datasets_pd Pedestrian Detection + +### Caltech Pedestrian Detection Benchmark + +Implements loading dataset: + +"Caltech Pedestrian Detection Benchmark": + +@note First version of Caltech Pedestrian dataset loading. Code to unpack all frames from seq files +commented as their number is huge! So currently load only meta information without data. Also +ground truth isn't processed, as need to convert it from mat files first. + +Usage: +-# From link above download dataset files: `set00.tar`-`set10.tar`. +-# Unpack them to separate folder. +-# To load data run: +~~~ +./opencv/build/bin/example_datasets_pd_caltech -p=/home/user/path_to_unpacked_folders/ +~~~ + +@defgroup datasets_slam SLAM + +### KITTI Vision Benchmark + +Implements loading dataset: + +"KITTI Vision Benchmark": + +Usage: +-# From link above download "Odometry" dataset files: +`data_odometry_gray\data_odometry_color\data_odometry_velodyne\data_odometry_poses\data_odometry_calib.zip`. +-# Unpack `data_odometry_poses.zip`, it creates folder `dataset/poses/`. After that unpack +`data_odometry_gray.zip`, `data_odometry_color.zip`, `data_odometry_velodyne.zip`. Folder +`dataset/sequences/` will be created with folders `00/..21/`. Each of these folders will contain: +`image_0/`, `image_1/`, `image_2/`, `image_3/`, `velodyne/` and files `calib.txt` & `times.txt`. +These two last files will be replaced after unpacking `data_odometry_calib.zip` at the end. +-# To load data run: +~~~ +./opencv/build/bin/example_datasets_slam_kitti -p=/home/user/path_to_unpacked_folder/dataset/ +~~~ + +### TUMindoor Dataset + +Implements loading dataset: + +"TUMindoor Dataset": + +Usage: +-# From link above download dataset files: `dslr\info\ladybug\pointcloud.tar.bz2` for each dataset: +`11-11-28 (1st floor)\11-12-13 (1st floor N1)\11-12-17a (4th floor)\11-12-17b (3rd floor)\11-12-17c (Ground I)\11-12-18a (Ground II)\11-12-18b (2nd floor)` +-# Unpack them in separate folder for each dataset. +`dslr.tar.bz2 -> dslr/`, +`info.tar.bz2 -> info/`, +`ladybug.tar.bz2 -> ladybug/`, +`pointcloud.tar.bz2 -> pointcloud/`. +-# To load each dataset run: +~~~ +./opencv/build/bin/example_datasets_slam_tumindoor -p=/home/user/path_to_unpacked_folders/ +~~~ + +@defgroup datasets_tr Text Recognition + +### The Chars74K Dataset + +Implements loading dataset: + +"The Chars74K Dataset": + +Usage: +-# From link above download dataset files: +`EnglishFnt\EnglishHnd\EnglishImg\KannadaHnd\KannadaImg.tgz`, `ListsTXT.tgz`. +-# Unpack them. +-# Move `.m` files from folder `ListsTXT/` to appropriate folder. For example, +`English/list_English_Img.m` for `EnglishImg.tgz`. +-# To load data, for example "EnglishImg", run: +~~~ +./opencv/build/bin/example_datasets_tr_chars -p=/home/user/path_to_unpacked_folder/English/ +~~~ + +### The Street View Text Dataset + +Implements loading dataset: + +"The Street View Text Dataset": + +Usage: +-# From link above download dataset file: `svt.zip`. +-# Unpack it. +-# To load data run: +~~~ +./opencv/build/bin/example_datasets_tr_svt -p=/home/user/path_to_unpacked_folder/svt/svt1/ +~~~ + +#### Benchmark + +For this dataset was implemented benchmark with accuracy (mean f1): 0.217 + +To run benchmark execute: +~~~ +./opencv/build/bin/example_datasets_tr_svt_benchmark -p=/home/user/path_to_unpacked_folders/svt/svt1/ +~~~ + +@defgroup datasets_track Tracking + +### VOT 2015 Database + +Implements loading dataset: + +"VOT 2015 dataset comprises 60 short sequences showing various objects in challenging backgrounds. +The sequences were chosen from a large pool of sequences including the ALOV dataset, OTB2 dataset, +non-tracking datasets, Computer Vision Online, Professor Bob Fisher’s Image Database, Videezy, +Center for Research in Computer Vision, University of Central Florida, USA, NYU Center for Genomics +and Systems Biology, Data Wrangling, Open Access Directory and Learning and Recognition in Vision +Group, INRIA, France. The VOT sequence selection protocol was applied to obtain a representative +set of challenging sequences.": + +Usage: +-# From link above download dataset file: `vot2015.zip` +-# Unpack `vot2015.zip` into folder: `VOT2015/` +-# To load data run: +~~~ +./opencv/build/bin/example_datasets_track_vot -p=/home/user/path_to_unpacked_files/VOT2015/ +~~~ +@} + +*/ + +namespace cv +{ +namespace datasets +{ + +//! @addtogroup datasets +//! @{ + +struct Object +{ +}; + +class CV_EXPORTS Dataset +{ +public: + Dataset() {} + virtual ~Dataset() {} + + virtual void load(const std::string &path) = 0; + + std::vector< Ptr >& getTrain(int splitNum = 0); + std::vector< Ptr >& getTest(int splitNum = 0); + std::vector< Ptr >& getValidation(int splitNum = 0); + + int getNumSplits() const; + +protected: + std::vector< std::vector< Ptr > > train; + std::vector< std::vector< Ptr > > test; + std::vector< std::vector< Ptr > > validation; + +private: + std::vector< Ptr > empty; +}; + +//! @} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/datasets/fr_adience.hpp b/thirdparty1/linux/include/opencv2/datasets/fr_adience.hpp new file mode 100644 index 0000000..c84bce1 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/datasets/fr_adience.hpp @@ -0,0 +1,98 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2014, Itseez Inc, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Itseez Inc or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_DATASETS_FR_ADIENCE_HPP +#define OPENCV_DATASETS_FR_ADIENCE_HPP + +#include +#include + +#include "opencv2/datasets/dataset.hpp" + +#include + +namespace cv +{ +namespace datasets +{ + +//! @addtogroup datasets_fr +//! @{ + +enum genderType +{ + male = 0, + female, + none +}; + +struct FR_adienceObj : public Object +{ + std::string user_id; + std::string original_image; + int face_id; + std::string age; + genderType gender; + int x; + int y; + int dx; + int dy; + int tilt_ang; + int fiducial_yaw_angle; + int fiducial_score; +}; + +class CV_EXPORTS FR_adience : public Dataset +{ +public: + virtual void load(const std::string &path) = 0; + + static Ptr create(); + + std::vector paths; +}; + +//! @} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/datasets/fr_lfw.hpp b/thirdparty1/linux/include/opencv2/datasets/fr_lfw.hpp new file mode 100644 index 0000000..7065da7 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/datasets/fr_lfw.hpp @@ -0,0 +1,79 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2014, Itseez Inc, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Itseez Inc or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_DATASETS_FR_LFW_HPP +#define OPENCV_DATASETS_FR_LFW_HPP + +#include +#include + +#include "opencv2/datasets/dataset.hpp" + +#include + +namespace cv +{ +namespace datasets +{ + +//! @addtogroup datasets_fr +//! @{ + +struct FR_lfwObj : public Object +{ + std::string image1, image2; + bool same; +}; + +class CV_EXPORTS FR_lfw : public Dataset +{ +public: + virtual void load(const std::string &path) = 0; + + static Ptr create(); +}; + +//! @} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/datasets/gr_chalearn.hpp b/thirdparty1/linux/include/opencv2/datasets/gr_chalearn.hpp new file mode 100644 index 0000000..a8eaa6c --- /dev/null +++ b/thirdparty1/linux/include/opencv2/datasets/gr_chalearn.hpp @@ -0,0 +1,96 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2014, Itseez Inc, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Itseez Inc or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_DATASETS_GR_CHALEARN_HPP +#define OPENCV_DATASETS_GR_CHALEARN_HPP + +#include +#include + +#include "opencv2/datasets/dataset.hpp" + +#include + +namespace cv +{ +namespace datasets +{ + +//! @addtogroup datasets_gr +//! @{ + +struct groundTruth +{ + int gestureID, initialFrame, lastFrame; +}; + +struct join +{ + double Wx, Wy, Wz, Rx, Ry, Rz, Rw, Px, Py; +}; + +struct skeleton +{ + join s[20]; +}; + +struct GR_chalearnObj : public Object +{ + std::string name, nameColor, nameDepth, nameUser; + int numFrames, fps, depth; + std::vector groundTruths; + std::vector skeletons; +}; + +class CV_EXPORTS GR_chalearn : public Dataset +{ +public: + virtual void load(const std::string &path) = 0; + + static Ptr create(); +}; + +//! @} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/datasets/gr_skig.hpp b/thirdparty1/linux/include/opencv2/datasets/gr_skig.hpp new file mode 100644 index 0000000..9c86224 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/datasets/gr_skig.hpp @@ -0,0 +1,118 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2014, Itseez Inc, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Itseez Inc or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_DATASETS_GR_SKIG_HPP +#define OPENCV_DATASETS_GR_SKIG_HPP + +#include +#include + +#include "opencv2/datasets/dataset.hpp" + +#include + +namespace cv +{ +namespace datasets +{ + +//! @addtogroup datasets_gr +//! @{ + +enum actionType +{ + circle = 1, + triangle, + updown, + rightleft, + wave, + z, + cross, + comehere, + turnaround, + pat +}; + +enum poseType +{ + fist = 1, + index, + flat +}; + +enum illuminationType +{ + light = 1, + dark +}; + +enum backgroundType +{ + woodenBoard = 1, + whitePaper, + paperWithCharacters +}; + +struct GR_skigObj : public Object +{ + std::string rgb; + std::string dep; + char person; // 1..6 + backgroundType background; + illuminationType illumination; + poseType pose; + actionType type; +}; + +class CV_EXPORTS GR_skig : public Dataset +{ +public: + virtual void load(const std::string &path) = 0; + + static Ptr create(); +}; + +//! @} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/datasets/hpe_humaneva.hpp b/thirdparty1/linux/include/opencv2/datasets/hpe_humaneva.hpp new file mode 100644 index 0000000..5366e0d --- /dev/null +++ b/thirdparty1/linux/include/opencv2/datasets/hpe_humaneva.hpp @@ -0,0 +1,90 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2014, Itseez Inc, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Itseez Inc or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_DATASETS_HPE_HUMANEVA_HPP +#define OPENCV_DATASETS_HPE_HUMANEVA_HPP + +#include +#include + +#include "opencv2/datasets/dataset.hpp" + +#include + +namespace cv +{ +namespace datasets +{ + +//! @addtogroup datasets_hpe +//! @{ + +struct HPE_humanevaObj : public Object +{ + char person; // 1..4 + std::string action; + int type1; + std::string type2; + Matx13d ofs; + std::string fileName; + std::vector imageNames; // for HumanEva_II +}; + +enum datasetType +{ + humaneva_1 = 1, + humaneva_2 +}; + +class CV_EXPORTS HPE_humaneva : public Dataset +{ +public: + virtual void load(const std::string &path) = 0; + + static Ptr create(int num=humaneva_1); +}; + +//! @} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/datasets/hpe_parse.hpp b/thirdparty1/linux/include/opencv2/datasets/hpe_parse.hpp new file mode 100644 index 0000000..7629e2c --- /dev/null +++ b/thirdparty1/linux/include/opencv2/datasets/hpe_parse.hpp @@ -0,0 +1,78 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2014, Itseez Inc, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Itseez Inc or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_DATASETS_HPE_PARSE_HPP +#define OPENCV_DATASETS_HPE_PARSE_HPP + +#include +#include + +#include "opencv2/datasets/dataset.hpp" + +#include + +namespace cv +{ +namespace datasets +{ + +//! @addtogroup datasets_hpe +//! @{ + +struct HPE_parseObj : public Object +{ + std::string name; +}; + +class CV_EXPORTS HPE_parse : public Dataset +{ +public: + virtual void load(const std::string &path) = 0; + + static Ptr create(); +}; + +//! @} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/datasets/ir_affine.hpp b/thirdparty1/linux/include/opencv2/datasets/ir_affine.hpp new file mode 100644 index 0000000..3b04a4b --- /dev/null +++ b/thirdparty1/linux/include/opencv2/datasets/ir_affine.hpp @@ -0,0 +1,80 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2014, Itseez Inc, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Itseez Inc or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_DATASETS_IR_AFFINE_HPP +#define OPENCV_DATASETS_IR_AFFINE_HPP + +#include +#include + +#include "opencv2/datasets/dataset.hpp" + +#include +#include + +namespace cv +{ +namespace datasets +{ + +//! @addtogroup datasets_ir +//! @{ + +struct IR_affineObj : public Object +{ + std::string imageName; + Matx33d mat; +}; + +class CV_EXPORTS IR_affine : public Dataset +{ +public: + virtual void load(const std::string &path) = 0; + + static Ptr create(); +}; + +//! @} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/datasets/ir_robot.hpp b/thirdparty1/linux/include/opencv2/datasets/ir_robot.hpp new file mode 100644 index 0000000..0acfe0a --- /dev/null +++ b/thirdparty1/linux/include/opencv2/datasets/ir_robot.hpp @@ -0,0 +1,89 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2014, Itseez Inc, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Itseez Inc or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_DATASETS_IR_ROBOT_HPP +#define OPENCV_DATASETS_IR_ROBOT_HPP + +#include +#include + +#include "opencv2/datasets/dataset.hpp" + +#include + +namespace cv +{ +namespace datasets +{ + +//! @addtogroup datasets_ir +//! @{ + +// calibration matrix from calibrationFile.mat +// 2.8290e+03 0.0000e+00 8.0279e+02 +// 0.0000e+00 2.8285e+03 6.1618e+02 +// 0.0000e+00 0.0000e+00 1.0000e+00 + +struct cameraPos +{ + std::vector images; +}; + +struct IR_robotObj : public Object +{ + std::string name; + std::vector pos; +}; + +class CV_EXPORTS IR_robot : public Dataset +{ +public: + virtual void load(const std::string &path) = 0; + + static Ptr create(); +}; + +//! @} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/datasets/is_bsds.hpp b/thirdparty1/linux/include/opencv2/datasets/is_bsds.hpp new file mode 100644 index 0000000..7357a67 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/datasets/is_bsds.hpp @@ -0,0 +1,78 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2014, Itseez Inc, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Itseez Inc or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_DATASETS_IS_BSDS_HPP +#define OPENCV_DATASETS_IS_BSDS_HPP + +#include +#include + +#include "opencv2/datasets/dataset.hpp" + +#include + +namespace cv +{ +namespace datasets +{ + +//! @addtogroup datasets_is +//! @{ + +struct IS_bsdsObj : public Object +{ + std::string name; +}; + +class CV_EXPORTS IS_bsds : public Dataset +{ +public: + virtual void load(const std::string &path) = 0; + + static Ptr create(); +}; + +//! @} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/datasets/is_weizmann.hpp b/thirdparty1/linux/include/opencv2/datasets/is_weizmann.hpp new file mode 100644 index 0000000..5daa420 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/datasets/is_weizmann.hpp @@ -0,0 +1,81 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2014, Itseez Inc, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Itseez Inc or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_DATASETS_IS_WEIZMANN_HPP +#define OPENCV_DATASETS_IS_WEIZMANN_HPP + +#include +#include + +#include "opencv2/datasets/dataset.hpp" + +#include + +namespace cv +{ +namespace datasets +{ + +//! @addtogroup datasets_is +//! @{ + +struct IS_weizmannObj : public Object +{ + std::string imageName; + std::string srcBw; + std::string srcColor; + std::string humanSeg; // TODO: read human segmented +}; + +class CV_EXPORTS IS_weizmann : public Dataset +{ +public: + virtual void load(const std::string &path) = 0; + + static Ptr create(); +}; + +//! @} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/datasets/msm_epfl.hpp b/thirdparty1/linux/include/opencv2/datasets/msm_epfl.hpp new file mode 100644 index 0000000..a08fc4b --- /dev/null +++ b/thirdparty1/linux/include/opencv2/datasets/msm_epfl.hpp @@ -0,0 +1,90 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2014, Itseez Inc, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Itseez Inc or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_DATASETS_MSM_EPFL_HPP +#define OPENCV_DATASETS_MSM_EPFL_HPP + +#include +#include + +#include "opencv2/datasets/dataset.hpp" + +#include + +namespace cv +{ +namespace datasets +{ + +//! @addtogroup datasets_msm +//! @{ + +struct cameraParam +{ + Matx33d mat1; + double mat2[3]; + Matx33d mat3; + double mat4[3]; + int imageWidth, imageHeight; +}; + +struct MSM_epflObj : public Object +{ + std::string imageName; + Matx23d bounding; + Matx34d p; + cameraParam camera; +}; + +class CV_EXPORTS MSM_epfl : public Dataset +{ +public: + virtual void load(const std::string &path) = 0; + + static Ptr create(); +}; + +//! @} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/datasets/msm_middlebury.hpp b/thirdparty1/linux/include/opencv2/datasets/msm_middlebury.hpp new file mode 100644 index 0000000..2fd67bf --- /dev/null +++ b/thirdparty1/linux/include/opencv2/datasets/msm_middlebury.hpp @@ -0,0 +1,81 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2014, Itseez Inc, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Itseez Inc or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_DATASETS_MSM_MIDDLEBURY_HPP +#define OPENCV_DATASETS_MSM_MIDDLEBURY_HPP + +#include +#include + +#include "opencv2/datasets/dataset.hpp" + +#include + +namespace cv +{ +namespace datasets +{ + +//! @addtogroup datasets_msm +//! @{ + +struct MSM_middleburyObj : public Object +{ + std::string imageName; + Matx33d k; + Matx33d r; + double t[3]; +}; + +class CV_EXPORTS MSM_middlebury : public Dataset +{ +public: + virtual void load(const std::string &path) = 0; + + static Ptr create(); +}; + +//! @} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/datasets/or_imagenet.hpp b/thirdparty1/linux/include/opencv2/datasets/or_imagenet.hpp new file mode 100644 index 0000000..26a8f63 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/datasets/or_imagenet.hpp @@ -0,0 +1,79 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2014, Itseez Inc, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Itseez Inc or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_DATASETS_OR_IMAGENET_HPP +#define OPENCV_DATASETS_OR_IMAGENET_HPP + +#include +#include + +#include "opencv2/datasets/dataset.hpp" + +#include + +namespace cv +{ +namespace datasets +{ + +//! @addtogroup datasets_or +//! @{ + +struct OR_imagenetObj : public Object +{ + int id; + std::string image; +}; + +class CV_EXPORTS OR_imagenet : public Dataset +{ +public: + virtual void load(const std::string &path) = 0; + + static Ptr create(); +}; + +//! @} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/datasets/or_mnist.hpp b/thirdparty1/linux/include/opencv2/datasets/or_mnist.hpp new file mode 100644 index 0000000..ff6bd60 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/datasets/or_mnist.hpp @@ -0,0 +1,79 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2014, Itseez Inc, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Itseez Inc or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_DATASETS_OR_MNIST_HPP +#define OPENCV_DATASETS_OR_MNIST_HPP + +#include +#include + +#include "opencv2/datasets/dataset.hpp" + +#include + +namespace cv +{ +namespace datasets +{ + +//! @addtogroup datasets_or +//! @{ + +struct OR_mnistObj : public Object +{ + char label; // 0..9 + Mat image; // [28][28] +}; + +class CV_EXPORTS OR_mnist : public Dataset +{ +public: + virtual void load(const std::string &path) = 0; + + static Ptr create(); +}; + +//! @} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/datasets/or_pascal.hpp b/thirdparty1/linux/include/opencv2/datasets/or_pascal.hpp new file mode 100644 index 0000000..bca8e62 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/datasets/or_pascal.hpp @@ -0,0 +1,102 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2015, Itseez Inc, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Itseez Inc or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_DATASETS_VOC_PASCAL_HPP +#define OPENCV_DATASETS_VOC_PASCAL_HPP + +#include +#include + +#include "opencv2/datasets/dataset.hpp" + +#include + +namespace cv +{ +namespace datasets +{ + +//! @addtogroup datasets_or +//! @{ +struct PascalPart: public Object +{ + std::string name; + int xmin; + int ymin; + int xmax; + int ymax; +}; + +struct PascalObj: public PascalPart +{ + std::string pose; + bool truncated; + bool difficult; + bool occluded; + + std::vector parts; +}; + +struct OR_pascalObj : public Object +{ + std::string filename; + + int width; + int height; + int depth; + + std::vector objects; +}; + +class CV_EXPORTS OR_pascal : public Dataset +{ +public: + virtual void load(const std::string &path) = 0; + + static Ptr create(); +}; + +//! @} + +}// namespace dataset +}// namespace cv + +#endif diff --git a/thirdparty1/linux/include/opencv2/datasets/or_sun.hpp b/thirdparty1/linux/include/opencv2/datasets/or_sun.hpp new file mode 100644 index 0000000..059c0d4 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/datasets/or_sun.hpp @@ -0,0 +1,81 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2014, Itseez Inc, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Itseez Inc or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_DATASETS_OR_SUN_HPP +#define OPENCV_DATASETS_OR_SUN_HPP + +#include +#include + +#include "opencv2/datasets/dataset.hpp" + +#include + +namespace cv +{ +namespace datasets +{ + +//! @addtogroup datasets_or +//! @{ + +struct OR_sunObj : public Object +{ + int label; + std::string name; +}; + +class CV_EXPORTS OR_sun : public Dataset +{ +public: + virtual void load(const std::string &path) = 0; + + static Ptr create(); + + std::vector paths; +}; + +//! @} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/datasets/pd_caltech.hpp b/thirdparty1/linux/include/opencv2/datasets/pd_caltech.hpp new file mode 100644 index 0000000..9ff7278 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/datasets/pd_caltech.hpp @@ -0,0 +1,89 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2014, Itseez Inc, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Itseez Inc or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_DATASETS_PD_CALTECH_HPP +#define OPENCV_DATASETS_PD_CALTECH_HPP + +#include +#include + +#include "opencv2/datasets/dataset.hpp" + +#include + +namespace cv +{ +namespace datasets +{ + +//! @addtogroup datasets_pd +//! @{ + +struct PD_caltechObj : public Object +{ + //double groundTrue[][]; + //Mat image; + std::string name; + std::vector< std::string > imageNames; +}; + +// +// first version of Caltech Pedestrian dataset loading +// code to unpack all frames from seq files commented as their number is huge +// so currently load only meta information without data +// +// also ground truth isn't processed, as need to convert it from mat files first +// + +class CV_EXPORTS PD_caltech : public Dataset +{ +public: + virtual void load(const std::string &path) = 0; + + static Ptr create(); +}; + +//! @} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/datasets/pd_inria.hpp b/thirdparty1/linux/include/opencv2/datasets/pd_inria.hpp new file mode 100644 index 0000000..7586578 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/datasets/pd_inria.hpp @@ -0,0 +1,96 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2015, Itseez Inc, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Itseez Inc or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_DATASETS_PD_INRIA_HPP +#define OPENCV_DATASETS_PD_INRIA_HPP + +#include +#include + +#include "opencv2/datasets/dataset.hpp" + +#include + +namespace cv +{ +namespace datasets +{ + +//! @addtogroup datasets_pd +//! @{ + +enum sampleType +{ + POS = 0, + NEG = 1 +}; + +struct PD_inriaObj : public Object +{ + // image file name + std::string filename; + + // positive or negative + sampleType sType; + + // image size + int width; + int height; + int depth; + + // bounding boxes + std::vector< Rect > bndboxes; +}; + +class CV_EXPORTS PD_inria : public Dataset +{ +public: + virtual void load(const std::string &path) = 0; + + static Ptr create(); +}; + +//! @} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/datasets/slam_kitti.hpp b/thirdparty1/linux/include/opencv2/datasets/slam_kitti.hpp new file mode 100644 index 0000000..1b7c408 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/datasets/slam_kitti.hpp @@ -0,0 +1,87 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2014, Itseez Inc, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Itseez Inc or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_DATASETS_SLAM_KITTI_HPP +#define OPENCV_DATASETS_SLAM_KITTI_HPP + +#include +#include + +#include "opencv2/datasets/dataset.hpp" + +#include + +namespace cv +{ +namespace datasets +{ + +//! @addtogroup datasets_slam +//! @{ + +struct pose +{ + double elem[12]; +}; + +struct SLAM_kittiObj : public Object +{ + std::string name; + std::vector images[4]; + std::vector velodyne; + std::vector times, p[4]; + std::vector posesArray; +}; + +class CV_EXPORTS SLAM_kitti : public Dataset +{ +public: + virtual void load(const std::string &path) = 0; + + static Ptr create(); +}; + +//! @} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/datasets/slam_tumindoor.hpp b/thirdparty1/linux/include/opencv2/datasets/slam_tumindoor.hpp new file mode 100644 index 0000000..758dd13 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/datasets/slam_tumindoor.hpp @@ -0,0 +1,87 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2014, Itseez Inc, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Itseez Inc or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_DATASETS_SLAM_TUMINDOOR_HPP +#define OPENCV_DATASETS_SLAM_TUMINDOOR_HPP + +#include +#include + +#include "opencv2/datasets/dataset.hpp" + +#include + +namespace cv +{ +namespace datasets +{ + +//! @addtogroup datasets_slam +//! @{ + +enum imageType +{ + LEFT = 0, + RIGHT, + LADYBUG +}; + +struct SLAM_tumindoorObj : public Object +{ + std::string name; + Matx44d transformMat; + imageType type; +}; + +class CV_EXPORTS SLAM_tumindoor : public Dataset +{ +public: + virtual void load(const std::string &path) = 0; + + static Ptr create(); +}; + +//! @} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/datasets/tr_chars.hpp b/thirdparty1/linux/include/opencv2/datasets/tr_chars.hpp new file mode 100644 index 0000000..c213bff --- /dev/null +++ b/thirdparty1/linux/include/opencv2/datasets/tr_chars.hpp @@ -0,0 +1,79 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2014, Itseez Inc, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Itseez Inc or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_DATASETS_TR_CHARS_HPP +#define OPENCV_DATASETS_TR_CHARS_HPP + +#include +#include + +#include "opencv2/datasets/dataset.hpp" + +#include + +namespace cv +{ +namespace datasets +{ + +//! @addtogroup datasets_tr +//! @{ + +struct TR_charsObj : public Object +{ + std::string imgName; + int label; +}; + +class CV_EXPORTS TR_chars : public Dataset +{ +public: + virtual void load(const std::string &path) = 0; + + static Ptr create(); +}; + +//! @} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/datasets/tr_icdar.hpp b/thirdparty1/linux/include/opencv2/datasets/tr_icdar.hpp new file mode 100644 index 0000000..abfd7db --- /dev/null +++ b/thirdparty1/linux/include/opencv2/datasets/tr_icdar.hpp @@ -0,0 +1,87 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2014, Itseez Inc, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Itseez Inc or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_DATASETS_TR_ICDAR_HPP +#define OPENCV_DATASETS_TR_ICDAR_HPP + +#include +#include + +#include "opencv2/datasets/dataset.hpp" + +#include + +namespace cv +{ +namespace datasets +{ + +//! @addtogroup datasets_tr +//! @{ + +struct word +{ + std::string value; + int height, width, x, y; +}; + +struct TR_icdarObj : public Object +{ + std::string fileName; + std::vector lex100; + std::vector lexFull; + std::vector words; +}; + +class CV_EXPORTS TR_icdar : public Dataset +{ +public: + virtual void load(const std::string &path) = 0; + + static Ptr create(); +}; + +//! @} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/datasets/tr_svt.hpp b/thirdparty1/linux/include/opencv2/datasets/tr_svt.hpp new file mode 100644 index 0000000..6c2d533 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/datasets/tr_svt.hpp @@ -0,0 +1,86 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2014, Itseez Inc, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Itseez Inc or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_DATASETS_TR_SVT_HPP +#define OPENCV_DATASETS_TR_SVT_HPP + +#include +#include + +#include "opencv2/datasets/dataset.hpp" + +#include + +namespace cv +{ +namespace datasets +{ + +//! @addtogroup datasets_tr +//! @{ + +struct tag +{ + std::string value; + int height, width, x, y; +}; + +struct TR_svtObj : public Object +{ + std::string fileName; + std::vector lex; + std::vector tags; +}; + +class CV_EXPORTS TR_svt : public Dataset +{ +public: + virtual void load(const std::string &path) = 0; + + static Ptr create(); +}; + +//! @} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/datasets/track_alov.hpp b/thirdparty1/linux/include/opencv2/datasets/track_alov.hpp new file mode 100644 index 0000000..276e2f1 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/datasets/track_alov.hpp @@ -0,0 +1,107 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2014, Itseez Inc, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Itseez Inc or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_DATASETS_TRACK_ALOV_HPP +#define OPENCV_DATASETS_TRACK_ALOV_HPP + +#include +#include + +#include "opencv2/datasets/dataset.hpp" +#include "opencv2/datasets/util.hpp" + +using namespace std; + +namespace cv +{ +namespace datasets +{ + +//! @addtogroup datasets_track +//! @{ + +struct TRACK_alovObj : public Object +{ + int id; + std::string imagePath; + vector gtbb; +}; + +const string sectionNames[] = { "01-Light", "02-SurfaceCover", "03-Specularity", "04-Transparency", "05-Shape", "06-MotionSmoothness", "07-MotionCoherence", +"08-Clutter", "09-Confusion", "10-LowContrast", "11-Occlusion", "12-MovingCamera", "13-ZoomingCamera", "14-LongDuration" }; + +const int sectionSizes[] = { 33, 15, 18, 20, 24, 22, 12, 15, 37, 23, 34, 22, 29, 10 }; + +class CV_EXPORTS TRACK_alov : public Dataset +{ +public: + static Ptr create(); + + virtual void load(const std::string &path) = 0; + + //Load only frames with annotations (~every 5-th frame) + virtual void loadAnnotatedOnly(const std::string &path) = 0; + + virtual int getDatasetsNum() = 0; + + virtual int getDatasetLength(int id) = 0; + + virtual bool initDataset(int id) = 0; + + virtual bool getNextFrame(Mat &frame) = 0; + virtual vector getNextGT() = 0; + + //Get frame/GT by datasetID (1..N) frameID (1..K) + virtual bool getFrame(Mat &frame, int datasetID, int frameID) = 0; + virtual vector getGT(int datasetID, int frameID) = 0; + +protected: + vector > > data; + int activeDatasetID; + int frameCounter; +}; + +//! @} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/datasets/track_vot.hpp b/thirdparty1/linux/include/opencv2/datasets/track_vot.hpp new file mode 100644 index 0000000..6249f02 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/datasets/track_vot.hpp @@ -0,0 +1,96 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2014, Itseez Inc, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Itseez Inc or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_DATASETS_TRACK_VOT_HPP +#define OPENCV_DATASETS_TRACK_VOT_HPP + +#include +#include + +#include "opencv2/datasets/dataset.hpp" +#include "opencv2/datasets/util.hpp" + +using namespace std; + +namespace cv +{ +namespace datasets +{ + +//! @addtogroup datasets_track +//! @{ + +struct TRACK_votObj : public Object +{ + int id; + std::string imagePath; + vector gtbb; +}; + +class CV_EXPORTS TRACK_vot : public Dataset +{ +public: + static Ptr create(); + + virtual void load(const std::string &path) = 0; + + virtual int getDatasetsNum() = 0; + + virtual int getDatasetLength(int id) = 0; + + virtual bool initDataset(int id) = 0; + + virtual bool getNextFrame(Mat &frame) = 0; + + virtual vector getGT() = 0; + +protected: + vector > > data; + int activeDatasetID; + int frameCounter; +}; + +//! @} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/datasets/util.hpp b/thirdparty1/linux/include/opencv2/datasets/util.hpp new file mode 100644 index 0000000..316de3a --- /dev/null +++ b/thirdparty1/linux/include/opencv2/datasets/util.hpp @@ -0,0 +1,74 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2014, Itseez Inc, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Itseez Inc or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_DATASETS_UTIL_HPP +#define OPENCV_DATASETS_UTIL_HPP + +#include +#include + +#include +#include // atoi, atof + +#include + +#include + +namespace cv +{ +namespace datasets +{ + +//! @addtogroup datasets +//! @{ + +void CV_EXPORTS split(const std::string &s, std::vector &elems, char delim); + +void CV_EXPORTS createDirectory(const std::string &path); + +void CV_EXPORTS getDirList(const std::string &dirName, std::vector &fileNames); + +//! @} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/dnn.hpp b/thirdparty1/linux/include/opencv2/dnn.hpp new file mode 100644 index 0000000..37be989 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/dnn.hpp @@ -0,0 +1,64 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef __OPENCV_DNN_HPP__ +#define __OPENCV_DNN_HPP__ + +// This is an umbrealla header to include into you project. +// We are free to change headers layout in dnn subfolder, so please include +// this header for future compartibility + + +/** @defgroup dnn Deep Neural Network module + @{ + This module contains: + - API for new layers creation, layers are building bricks of neural networks; + - set of built-in most-useful Layers; + - API to constuct and modify comprehensive neural networks from layers; + - functionality for loading serialized networks models from differnet frameworks. + + Functionality of this module is designed only for forward pass computations (i. e. network testing). + A network training is in principle not supported. + @} +*/ +#include + +#endif /* __OPENCV_DNN_HPP__ */ diff --git a/thirdparty1/linux/include/opencv2/dnn/all_layers.hpp b/thirdparty1/linux/include/opencv2/dnn/all_layers.hpp new file mode 100644 index 0000000..9d26b35 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/dnn/all_layers.hpp @@ -0,0 +1,423 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef __OPENCV_DNN_DNN_ALL_LAYERS_HPP__ +#define __OPENCV_DNN_DNN_ALL_LAYERS_HPP__ +#include + +namespace cv +{ +namespace dnn +{ +//! @addtogroup dnn +//! @{ + +/** @defgroup dnnLayerList Partial List of Implemented Layers + @{ + This subsection of dnn module contains information about bult-in layers and their descriptions. + + Classes listed here, in fact, provides C++ API for creating intances of bult-in layers. + In addition to this way of layers instantiation, there is a more common factory API (see @ref dnnLayerFactory), it allows to create layers dynamically (by name) and register new ones. + You can use both API, but factory API is less convinient for native C++ programming and basically designed for use inside importers (see @ref Importer, @ref createCaffeImporter(), @ref createTorchImporter()). + + Bult-in layers partially reproduce functionality of corresponding Caffe and Torch7 layers. + In partuclar, the following layers and Caffe @ref Importer were tested to reproduce Caffe functionality: + - Convolution + - Deconvolution + - Pooling + - InnerProduct + - TanH, ReLU, Sigmoid, BNLL, Power, AbsVal + - Softmax + - Reshape, Flatten, Slice, Split + - LRN + - MVN + - Dropout (since it does nothing on forward pass -)) +*/ + + //! LSTM recurrent layer + class CV_EXPORTS_W LSTMLayer : public Layer + { + public: + /** Creates instance of LSTM layer */ + static CV_WRAP Ptr create(); + + /** Set trained weights for LSTM layer. + LSTM behavior on each step is defined by current input, previous output, previous cell state and learned weights. + + Let @f$x_t@f$ be current input, @f$h_t@f$ be current output, @f$c_t@f$ be current state. + Than current output and current cell state is computed as follows: + @f{eqnarray*}{ + h_t &= o_t \odot tanh(c_t), \\ + c_t &= f_t \odot c_{t-1} + i_t \odot g_t, \\ + @f} + where @f$\odot@f$ is per-element multiply operation and @f$i_t, f_t, o_t, g_t@f$ is internal gates that are computed using learned wights. + + Gates are computed as follows: + @f{eqnarray*}{ + i_t &= sigmoid&(W_{xi} x_t + W_{hi} h_{t-1} + b_i), \\ + f_t &= sigmoid&(W_{xf} x_t + W_{hf} h_{t-1} + b_f), \\ + o_t &= sigmoid&(W_{xo} x_t + W_{ho} h_{t-1} + b_o), \\ + g_t &= tanh &(W_{xg} x_t + W_{hg} h_{t-1} + b_g), \\ + @f} + where @f$W_{x?}@f$, @f$W_{h?}@f$ and @f$b_{?}@f$ are learned weights represented as matrices: + @f$W_{x?} \in R^{N_h \times N_x}@f$, @f$W_{h?} \in R^{N_h \times N_h}@f$, @f$b_? \in R^{N_h}@f$. + + For simplicity and performance purposes we use @f$ W_x = [W_{xi}; W_{xf}; W_{xo}, W_{xg}] @f$ + (i.e. @f$W_x@f$ is vertical contacentaion of @f$ W_{x?} @f$), @f$ W_x \in R^{4N_h \times N_x} @f$. + The same for @f$ W_h = [W_{hi}; W_{hf}; W_{ho}, W_{hg}], W_h \in R^{4N_h \times N_h} @f$ + and for @f$ b = [b_i; b_f, b_o, b_g]@f$, @f$b \in R^{4N_h} @f$. + + @param Wh is matrix defining how previous output is transformed to internal gates (i.e. according to abovemtioned notation is @f$ W_h @f$) + @param Wx is matrix defining how current input is transformed to internal gates (i.e. according to abovemtioned notation is @f$ W_x @f$) + @param b is bias vector (i.e. according to abovemtioned notation is @f$ b @f$) + */ + CV_WRAP virtual void setWeights(const Blob &Wh, const Blob &Wx, const Blob &b) = 0; + + /** @brief Specifies shape of output blob which will be [[`T`], `N`] + @p outTailShape. + * @details If this parameter is empty or unset then @p outTailShape = [`Wh`.size(0)] will be used, + * where `Wh` is parameter from setWeights(). + */ + CV_WRAP virtual void setOutShape(const BlobShape &outTailShape = BlobShape::empty()) = 0; + + /** @brief Set @f$ h_{t-1} @f$ value that will be used in next forward() calls. + * @details By-default @f$ h_{t-1} @f$ is inited by zeros and updated after each forward() call. + */ + CV_WRAP virtual void setH(const Blob &H) = 0; + /** @brief Returns current @f$ h_{t-1} @f$ value (deep copy). */ + CV_WRAP virtual Blob getH() const = 0; + + /** @brief Set @f$ c_{t-1} @f$ value that will be used in next forward() calls. + * @details By-default @f$ c_{t-1} @f$ is inited by zeros and updated after each forward() call. + */ + CV_WRAP virtual void setC(const Blob &C) = 0; + /** @brief Returns current @f$ c_{t-1} @f$ value (deep copy). */ + CV_WRAP virtual Blob getC() const = 0; + + /** @brief Specifies either interpet first dimension of input blob as timestamp dimenion either as sample. + * + * If flag is set to true then shape of input blob will be interpeted as [`T`, `N`, `[data dims]`] where `T` specifies number of timpestamps, `N` is number of independent streams. + * In this case each forward() call will iterate through `T` timestamps and update layer's state `T` times. + * + * If flag is set to false then shape of input blob will be interpeted as [`N`, `[data dims]`]. + * In this case each forward() call will make one iteration and produce one timestamp with shape [`N`, `[out dims]`]. + */ + CV_WRAP virtual void setUseTimstampsDim(bool use = true) = 0; + + /** @brief If this flag is set to true then layer will produce @f$ c_t @f$ as second output. + * @details Shape of the second output is the same as first output. + */ + CV_WRAP virtual void setProduceCellOutput(bool produce = false) = 0; + + /** In common case it use single input with @f$x_t@f$ values to compute output(s) @f$h_t@f$ (and @f$c_t@f$). + * @param input should contain packed values @f$x_t@f$ + * @param output contains computed outputs: @f$h_t@f$ (and @f$c_t@f$ if setProduceCellOutput() flag was set to true). + * + * If setUseTimstampsDim() is set to true then @p input[0] should has at least two dimensions with the following shape: [`T`, `N`, `[data dims]`], + * where `T` specifies number of timpestamps, `N` is number of independent streams (i.e. @f$ x_{t_0 + t}^{stream} @f$ is stored inside @p input[0][t, stream, ...]). + * + * If setUseTimstampsDim() is set to fase then @p input[0] should contain single timestamp, its shape should has form [`N`, `[data dims]`] with at least one dimension. + * (i.e. @f$ x_{t}^{stream} @f$ is stored inside @p input[0][stream, ...]). + */ + void forward(std::vector &input, std::vector &output); + + int inputNameToIndex(String inputName); + + int outputNameToIndex(String outputName); + }; + + //! Classical recurrent layer + class CV_EXPORTS_W RNNLayer : public Layer + { + public: + /** Creates instance of RNNLayer */ + static CV_WRAP Ptr create(); + + /** Setups learned weights. + + Recurrent-layer behavior on each step is defined by current input @f$ x_t @f$, previous state @f$ h_t @f$ and learned weights as follows: + @f{eqnarray*}{ + h_t &= tanh&(W_{hh} h_{t-1} + W_{xh} x_t + b_h), \\ + o_t &= tanh&(W_{ho} h_t + b_o), + @f} + + @param Wxh is @f$ W_{xh} @f$ matrix + @param bh is @f$ b_{h} @f$ vector + @param Whh is @f$ W_{hh} @f$ matrix + @param Who is @f$ W_{xo} @f$ matrix + @param bo is @f$ b_{o} @f$ vector + */ + CV_WRAP virtual void setWeights(const Blob &Wxh, const Blob &bh, const Blob &Whh, const Blob &Who, const Blob &bo) = 0; + + /** @brief If this flag is set to true then layer will produce @f$ h_t @f$ as second output. + * @details Shape of the second output is the same as first output. + */ + CV_WRAP virtual void setProduceHiddenOutput(bool produce = false) = 0; + + /** Accepts two inputs @f$x_t@f$ and @f$h_{t-1}@f$ and compute two outputs @f$o_t@f$ and @f$h_t@f$. + + @param input should contain packed input @f$x_t@f$. + @param output should contain output @f$o_t@f$ (and @f$h_t@f$ if setProduceHiddenOutput() is set to true). + + @p input[0] should have shape [`T`, `N`, `data_dims`] where `T` and `N` is number of timestamps and number of independent samples of @f$x_t@f$ respectively. + + @p output[0] will have shape [`T`, `N`, @f$N_o@f$], where @f$N_o@f$ is number of rows in @f$ W_{xo} @f$ matrix. + + If setProduceHiddenOutput() is set to true then @p output[1] will contain a Blob with shape [`T`, `N`, @f$N_h@f$], where @f$N_h@f$ is number of rows in @f$ W_{hh} @f$ matrix. + */ + void forward(std::vector &input, std::vector &output); + }; + + class CV_EXPORTS_W BaseConvolutionLayer : public Layer + { + public: + + CV_PROP_RW Size kernel, stride, pad, dilation, adjustPad; + CV_PROP_RW String padMode; + }; + + class CV_EXPORTS_W ConvolutionLayer : public BaseConvolutionLayer + { + public: + + static CV_WRAP Ptr create(Size kernel = Size(3, 3), Size stride = Size(1, 1), Size pad = Size(0, 0), Size dilation = Size(1, 1)); + }; + + class CV_EXPORTS_W DeconvolutionLayer : public BaseConvolutionLayer + { + public: + + static CV_WRAP Ptr create(Size kernel = Size(3, 3), Size stride = Size(1, 1), Size pad = Size(0, 0), Size dilation = Size(1, 1), Size adjustPad = Size()); + }; + + class CV_EXPORTS_W LRNLayer : public Layer + { + public: + + enum Type + { + CHANNEL_NRM, + SPATIAL_NRM + }; + CV_PROP_RW int type; + + CV_PROP_RW int size; + CV_PROP_RW double alpha, beta, bias; + CV_PROP_RW bool normBySize; + + static CV_WRAP Ptr create(int type = LRNLayer::CHANNEL_NRM, int size = 5, + double alpha = 1, double beta = 0.75, double bias = 1, + bool normBySize = true); + }; + + class CV_EXPORTS_W PoolingLayer : public Layer + { + public: + + enum Type + { + MAX, + AVE, + STOCHASTIC + }; + + CV_PROP_RW int type; + CV_PROP_RW Size kernel, stride, pad; + CV_PROP_RW bool globalPooling; + CV_PROP_RW String padMode; + + static CV_WRAP Ptr create(int type = PoolingLayer::MAX, Size kernel = Size(2, 2), + Size stride = Size(1, 1), Size pad = Size(0, 0), + const cv::String& padMode = ""); + static CV_WRAP Ptr createGlobal(int type = PoolingLayer::MAX); + }; + + class CV_EXPORTS_W SoftmaxLayer : public Layer + { + public: + + static CV_WRAP Ptr create(int axis = 1); + }; + + class CV_EXPORTS_W InnerProductLayer : public Layer + { + public: + CV_PROP_RW int axis; + + static CV_WRAP Ptr create(int axis = 1); + }; + + class CV_EXPORTS_W MVNLayer : public Layer + { + public: + CV_PROP_RW double eps; + CV_PROP_RW bool normVariance, acrossChannels; + + static CV_WRAP Ptr create(bool normVariance = true, bool acrossChannels = false, double eps = 1e-9); + }; + + /* Reshaping */ + + class CV_EXPORTS_W ReshapeLayer : public Layer + { + public: + CV_PROP_RW BlobShape newShapeDesc; + CV_PROP_RW Range newShapeRange; + + static CV_WRAP Ptr create(const BlobShape &newShape, Range applyingRange = Range::all(), + bool enableReordering = false); + }; + + class CV_EXPORTS_W ConcatLayer : public Layer + { + public: + int axis; + + static CV_WRAP Ptr create(int axis = 1); + }; + + class CV_EXPORTS_W SplitLayer : public Layer + { + public: + int outputsCount; //!< Number of copies that will be produced (is ignored when negative). + + static CV_WRAP Ptr create(int outputsCount = -1); + }; + + class CV_EXPORTS_W SliceLayer : public Layer + { + public: + CV_PROP_RW int axis; + CV_PROP std::vector sliceIndices; + + static CV_WRAP Ptr create(int axis); + static CV_WRAP Ptr create(int axis, const std::vector &sliceIndices); + }; + + /* Activations */ + + class CV_EXPORTS_W ReLULayer : public Layer + { + public: + CV_PROP_RW double negativeSlope; + + static CV_WRAP Ptr create(double negativeSlope = 0); + }; + + class CV_EXPORTS_W ChannelsPReLULayer : public Layer + { + public: + static CV_WRAP Ptr create(); + }; + + class CV_EXPORTS_W TanHLayer : public Layer + { + public: + static CV_WRAP Ptr create(); + }; + + class CV_EXPORTS_W SigmoidLayer : public Layer + { + public: + static CV_WRAP Ptr create(); + }; + + class CV_EXPORTS_W BNLLLayer : public Layer + { + public: + static CV_WRAP Ptr create(); + }; + + class CV_EXPORTS_W AbsLayer : public Layer + { + public: + static CV_WRAP Ptr create(); + }; + + class CV_EXPORTS_W PowerLayer : public Layer + { + public: + CV_PROP_RW double power, scale, shift; + + static CV_WRAP Ptr create(double power = 1, double scale = 1, double shift = 0); + }; + + /* Layers using in semantic segmentation */ + + class CV_EXPORTS_W CropLayer : public Layer + { + public: + CV_PROP int startAxis; + CV_PROP std::vector offset; + + static Ptr create(int start_axis, const std::vector &offset); + }; + + class CV_EXPORTS_W EltwiseLayer : public Layer + { + public: + enum EltwiseOp + { + PROD = 0, + SUM = 1, + MAX = 2, + }; + + static Ptr create(EltwiseOp op, const std::vector &coeffs); + }; + + class CV_EXPORTS_W BatchNormLayer : public Layer + { + public: + static CV_WRAP Ptr create(float eps, bool has_weights, bool has_bias); + }; + + class CV_EXPORTS_W MaxUnpoolLayer : public Layer + { + public: + static CV_WRAP Ptr create(Size unpoolSize); + }; + +//! @} +//! @} + +} +} +#endif diff --git a/thirdparty1/linux/include/opencv2/dnn/blob.hpp b/thirdparty1/linux/include/opencv2/dnn/blob.hpp new file mode 100644 index 0000000..71e929d --- /dev/null +++ b/thirdparty1/linux/include/opencv2/dnn/blob.hpp @@ -0,0 +1,341 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef __OPENCV_DNN_DNN_BLOB_HPP__ +#define __OPENCV_DNN_DNN_BLOB_HPP__ +#include +#include +#include +#include + +namespace cv +{ +namespace dnn +{ +//! @addtogroup dnn +//! @{ + + /** @brief Lightweight class for storing and processing a shape of blob (or anything else). */ + struct CV_EXPORTS_W BlobShape + { + BlobShape(); //!< Creates [1, 1, 1, 1] shape @todo Make more clearer behavior. + explicit BlobShape(int s0); //!< Creates 1-dim shape [@p s0] + BlobShape(int s0, int s1); //!< @overload + BlobShape(int s0, int s1, int s2); //!< @overload + BlobShape(int num, int cn, int rows, int cols); //!< Creates 4-dim shape [@p num, @p cn, @p rows, @p cols] + + //! Creates n-dim shape from the @p sizes array; if @p sizes is NULL then shape will contain unspecified data + BlobShape(int ndims, const int *sizes); + BlobShape(const std::vector &sizes); //!< Creates n-dim shape from the @p sizes vector + template + BlobShape(const Vec &shape); //!< Creates n-dim shape from @ref cv::Vec + + //! Creates n-dim shape and fill its by @p fill + static BlobShape all(int ndims, int fill = 1); + + /** @brief Returns number of dimensions. */ + int dims() const; + + /** @brief Returns reference to the size of the specified @p axis. + * + * Negative @p axis is supported, in this case a counting starts from the last axis, + * i. e. -1 corresponds to last axis. + * If non-existing axis was passed then an error will be generated. + */ + int &size(int axis); + + /** @brief Returns the size of the specified @p axis. + * @see size() + */ + int size(int axis) const; + + int operator[](int axis) const; //!< Does the same thing as size(axis). + int &operator[](int axis); //!< Does the same thing as size(int) const. + + /** @brief Returns the size of the specified @p axis. + * + * Does the same thing as size(int) const, but if non-existing axis will be passed then 1 will be returned, + * therefore this function always finishes successfully. + */ + int xsize(int axis) const; + + /** @brief Converts @p axis index to canonical format (where 0 <= @p axis < dims()). */ + int canonicalAxis(int axis) const; + + /** @brief Returns the product of all sizes of axes. */ + ptrdiff_t total() const; + + /** @brief Computes the product of sizes of axes among the specified axes range [@p startAxis; @p endAxis). + * @details Negative axis indexing can be used. @sa Blob::total(int,int) + */ + ptrdiff_t total(int startAxis, int endAxis = INT_MAX) const; + + /** @brief Constructs new shape from axes in range [@p startAxis; @p endAxis). + * @details Negative axis indexing can be used. @sa Blob::total(int,int) + */ + BlobShape slice(int startAxis, int endAxis = INT_MAX) const; + + /** @brief Returns pointer to the first element of continuous size array. */ + const int *ptr() const; + /** @overload */ + int *ptr(); + + bool equal(const BlobShape &other) const; //!< Checks equality of two shapes. + bool operator== (const BlobShape &r) const; //!< @sa equal() + + BlobShape operator+ (const BlobShape &r) const; //!< Contacenates two shapes. + + static BlobShape like(const Mat &m); //!< Returns shape of passed Mat. + static BlobShape like(const UMat &m); //!< Returns shape of passed UMat. + + static BlobShape empty(); //!< Returns empty shape []. + bool isEmpty() const; //!< Returns true if shape is empty (i.e []). + +#ifdef CV_CXX_MOVE_SEMANTICS + //TBD +#endif + + private: + cv::AutoBuffer sz; + }; + + + /** @brief This class provides methods for continuous n-dimensional CPU and GPU array processing. + * + * The class is realized as a wrapper over @ref cv::Mat and @ref cv::UMat. + * It will support methods for switching and logical synchronization between CPU and GPU. + */ + class CV_EXPORTS_W Blob + { + public: + Blob(); + + /** @brief Constructs blob with specified @p shape and @p type. */ + explicit Blob(const BlobShape &shape, int type = CV_32F, int allocFlags = ALLOC_MAT); + + /** @brief Constructs Blob from existing Mat or UMat. */ + Blob(InputArray data); + + /** @brief Constructs 4-dimensional blob (so-called batch) from image or array of images. + * @param image 2-dimensional multi-channel or 3-dimensional single-channel image (or array of such images) + * @param dstCn specifies size of second axis of ouptut blob + */ + static Blob fromImages(InputArray image, int dstCn = -1); + + /** @brief Works like Blob::fromImages() but in-place. */ + void batchFromImages(InputArray image, int dstCn = -1); + + /** @brief Creates blob with specified @p shape and @p type. */ + void create(const BlobShape &shape, int type = CV_32F, int allocFlags = ALLOC_MAT); + + /** @brief Creates blob from Mat or UMat without copying the data. + * @details If in is Mat then Mat data is populated, otherwise - UMat. + */ + void fill(InputArray in); + + /** @brief Creates blob from user data. + * @details If @p deepCopy is false then CPU data will not be allocated. + */ + void fill(const BlobShape &shape, int type, void *data, bool deepCopy = true); + + /** @brief Sets @p value to the last used data (if @p allocFlags = -1). + * @details If @p allocFlags != -1 then destination data (Mat or UMat) is determined by flags from AllocFlag enum like in create(). + */ + void setTo(InputArray value, int allocFlags = -1); + + Mat& matRef(bool writeOnly = true); //!< Returns reference to cv::Mat, containing blob data. + const Mat& matRefConst() const; //!< Returns reference to cv::Mat, containing blob data, for read-only purposes. + UMat &umatRef(bool writeOnly = true); //!< Returns reference to cv::UMat, containing blob data. + const UMat &umatRefConst() const; //!< Returns reference to cv::UMat, containing blob data, for read-only purposes. + + template + XMat &getRef(bool writeOnly = true); + template + const XMat &getRefConst() const; + + void updateMat(bool syncData = true) const; //!< Actualizes data stored inside Mat of Blob; if @p syncData is false then only shape will be actualized. + void updateUMat(bool syncData = true) const; //!< Actualizes data stored inside Mat of Blob; if @p syncData is false then only shape will be actualized. + void sync() const; //!< Updates Mat and UMat of Blob. + + /** @brief Returns number of blob dimensions. */ + int dims() const; + + /** @brief Returns the size of the specified @p axis. + * + * Negative @p axis is supported, in this case a counting starts from the last axis, + * i. e. -1 corresponds to last axis. + * If non-existing axis was passed then an error will be generated. + */ + int size(int axis) const; + + /** @brief Returns the size of the specified @p axis. + * + * Does the same thing as size(int) const, but if non-existing axis will be passed then 1 will be returned, + * therefore this function always finishes successfully. + */ + int xsize(int axis) const; + + /** @brief Computes the product of sizes of axes among the specified axes range [@p startAxis; @p endAxis). + * @param startAxis the first axis to include in the range. + * @param endAxis the first axis to exclude from the range. + * @details Negative axis indexing can be used. + */ + size_t total(int startAxis = 0, int endAxis = INT_MAX) const; + + /** @brief Converts @p axis index to canonical format (where 0 <= @p axis < dims()). */ + int canonicalAxis(int axis) const; + + /** @brief Returns shape of the blob. */ + BlobShape shape() const; + + /** @brief Checks equality of two blobs shapes. */ + bool equalShape(const Blob &other) const; + + /** @brief Returns slice of first two dimensions. + * @details The behaviour is similar to the following numpy code: blob[n, cn, ...] + */ + Mat getPlane(int n, int cn); + + /** @brief Returns slice of first dimension. + * @details The behaviour is similar to getPlane(), but returns all + * channels * rows * cols values, corresponding to the n-th value + * of the first dimension. + */ + Mat getPlanes(int n); + + /* Shape getters of 4-dimensional blobs. */ + int cols() const; //!< Returns size of the fourth axis blob. + int rows() const; //!< Returns size of the thrid axis blob. + int channels() const; //!< Returns size of the second axis blob. + int num() const; //!< Returns size of the first axis blob. + Size size2() const; //!< Returns cv::Size(cols(), rows()) + Vec4i shape4() const; //!< Returns shape of first four blob axes. + + /** @brief Returns linear index of the element with specified coordinates in the blob. + * + * If @p n < dims() then unspecified coordinates will be filled by zeros. + * If @p n > dims() then extra coordinates will be ignored. + */ + template + size_t offset(const Vec &pos) const; + /** @overload */ + size_t offset(int n = 0, int cn = 0, int row = 0, int col = 0) const; + + /* CPU pointer getters */ + /** @brief Returns pointer to the blob element with the specified position, stored in CPU memory. + * + * @p n correspond to the first axis, @p cn - to the second, etc. + * If dims() > 4 then unspecified coordinates will be filled by zeros. + * If dims() < 4 then extra coordinates will be ignored. + */ + uchar *ptr(int n = 0, int cn = 0, int row = 0, int col = 0); + /** @overload */ + template + Type *ptr(int n = 0, int cn = 0, int row = 0, int col = 0); + /** @overload ptr() */ + float *ptrf(int n = 0, int cn = 0, int row = 0, int col = 0); + //TODO: add const ptr methods + + /** @brief Shares data from other @p blob. + * @returns *this + */ + Blob &shareFrom(const Blob &blob); + + /** @brief Changes shape of the blob without copying the data. + * @returns *this + */ + Blob &reshape(const BlobShape &shape); + + /** @brief Changes shape of the blob without copying the data. + * @returns shallow copy of original blob with new shape. + */ + Blob reshaped(const BlobShape &newShape) const; + + int type() const; //!< Returns type of the blob. + int elemSize() const; //!< Returns size of single element in bytes. + int getState() const; //!< Returns current state of the blob, @see DataState. + + private: + const int *sizes() const; + +# define CV_DNN_UMAT //DBG +#ifdef HAVE_OPENCL +# define CV_DNN_UMAT +#endif + +#ifdef CV_DNN_UMAT +# define CV_DNN_UMAT_ONLY(expr) (expr) +#else +# define CV_DNN_UMAT_ONLY(expr) +#endif + +#ifndef CV_DNN_UMAT + Mat m; +#else + mutable Mat m; + mutable UMat um; + mutable uchar state; +#endif + +public: + enum DataState + { + UNINITIALIZED = 0, + HEAD_AT_MAT = 1 << 0, + HEAD_AT_UMAT = 1 << 1, + SYNCED = HEAD_AT_MAT | HEAD_AT_UMAT + }; + + enum AllocFlag + { + ALLOC_MAT = HEAD_AT_MAT, + ALLOC_UMAT = HEAD_AT_UMAT, + ALLOC_BOTH = SYNCED + }; + }; + +//! @} +} +} + +#include "blob.inl.hpp" + +#endif diff --git a/thirdparty1/linux/include/opencv2/dnn/blob.inl.hpp b/thirdparty1/linux/include/opencv2/dnn/blob.inl.hpp new file mode 100644 index 0000000..b7f741e --- /dev/null +++ b/thirdparty1/linux/include/opencv2/dnn/blob.inl.hpp @@ -0,0 +1,533 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef __OPENCV_DNN_DNN_BLOB_INL_HPP__ +#define __OPENCV_DNN_DNN_BLOB_INL_HPP__ +#include "blob.hpp" + +namespace cv +{ +namespace dnn +{ + +inline BlobShape::BlobShape() +{ + sz.allocate(4); + for (size_t i = 0; i < sz.size(); i++) + sz[i] = 1; +} + +inline BlobShape BlobShape::all(int ndims, int fill) +{ + CV_Assert(ndims >= 0); + BlobShape res; + res.sz.allocate(ndims); + for (int i = 0; i < ndims; i++) + res.sz[i] = fill; + return res; +} + +inline BlobShape::BlobShape(int ndims, const int *sizes) : sz( (size_t)std::max(ndims, 0) ) +{ + CV_Assert(ndims >= 0); + if (!sizes) + return; + for (int i = 0; i < ndims; i++) + sz[i] = sizes[i]; +} + +inline BlobShape::BlobShape(int s0) : sz(1) +{ + sz[0] = s0; +} + +inline BlobShape::BlobShape(int s0, int s1) : sz(2) +{ + sz[0] = s0; + sz[1] = s1; +} + +inline BlobShape::BlobShape(int s0, int s1, int s2) : sz(3) +{ + sz[0] = s0; + sz[1] = s1; + sz[2] = s2; +} + +inline BlobShape::BlobShape(int num, int cn, int rows, int cols) : sz(4) +{ + sz[0] = num; + sz[1] = cn; + sz[2] = rows; + sz[3] = cols; +} + +inline BlobShape::BlobShape(const std::vector &sizes) : sz( sizes.size() ) +{ + for (int i = 0; i < (int)sizes.size(); i++) + sz[i] = sizes[i]; +} + +template +inline BlobShape::BlobShape(const Vec &shape) : sz(n) +{ + for (int i = 0; i < n; i++) + sz[i] = shape[i]; +} + +inline int BlobShape::dims() const +{ + return (int)sz.size(); +} + +inline int BlobShape::xsize(int axis) const +{ + if (axis < -dims() || axis >= dims()) + return 1; + + return sz[(axis < 0) ? axis + dims() : axis]; +} + +inline int BlobShape::size(int axis) const +{ + CV_Assert(-dims() <= axis && axis < dims()); + return sz[(axis < 0) ? axis + dims() : axis]; +} + +inline int &BlobShape::size(int axis) +{ + CV_Assert(-dims() <= axis && axis < dims()); + return sz[(axis < 0) ? axis + dims() : axis]; +} + +inline int BlobShape::operator[] (int axis) const +{ + CV_Assert(-dims() <= axis && axis < dims()); + return sz[(axis < 0) ? axis + dims() : axis]; +} + +inline int &BlobShape::operator[] (int axis) +{ + CV_Assert(-dims() <= axis && axis < dims()); + return sz[(axis < 0) ? axis + dims() : axis]; +} + +inline int BlobShape::canonicalAxis(int axis) const +{ + CV_Assert(-dims() <= axis && axis < dims()); + return (axis < 0) ? axis + dims() : axis; +} + +inline ptrdiff_t BlobShape::total() const +{ + if (dims() == 0) + return 0; + + ptrdiff_t res = 1; + for (int i = 0; i < dims(); i++) + res *= sz[i]; + return res; +} + +inline ptrdiff_t BlobShape::total(int startAxis, int endAxis) const +{ + if (isEmpty()) + return 0; + + if (endAxis == INT_MAX) + endAxis = dims(); + else if (endAxis < 0) + endAxis += dims(); + startAxis = (startAxis < 0) ? startAxis + dims() : startAxis; + CV_Assert(0 <= startAxis && startAxis <= endAxis && endAxis <= dims()); + + ptrdiff_t res = 1; + for (int i = startAxis; i < endAxis; i++) + res *= sz[i]; + return res; +} + +inline BlobShape BlobShape::slice(int startAxis, int endAxis) const +{ + if (isEmpty()) + return BlobShape::empty(); + + if (endAxis == INT_MAX) + endAxis = dims(); + else if (endAxis < 0) + endAxis += dims(); + startAxis = (startAxis < 0) ? startAxis + dims() : startAxis; + CV_Assert(0 <= startAxis && startAxis <= endAxis && endAxis <= dims()); + + BlobShape res(endAxis - startAxis, (const int*)NULL); + for (int i = startAxis; i < endAxis; i++) + res[i - startAxis] = sz[i]; + return res; +} + +inline const int *BlobShape::ptr() const +{ + return sz; +} + +inline int *BlobShape::ptr() +{ + return sz; +} + +inline bool BlobShape::equal(const BlobShape &other) const +{ + if (this->dims() != other.dims()) + return false; + + for (int i = 0; i < other.dims(); i++) + { + if (sz[i] != other.sz[i]) + return false; + } + + return true; +} + +inline bool BlobShape::operator==(const BlobShape &r) const +{ + return this->equal(r); +} + +inline BlobShape BlobShape::like(const Mat &m) +{ + return BlobShape(m.dims, (const int*)m.size); +} + +inline BlobShape BlobShape::like(const UMat &m) +{ + return BlobShape(m.dims, (const int*)m.size); +} + +inline BlobShape BlobShape::empty() +{ + return BlobShape(0, (const int*)NULL); +} + +inline bool BlobShape::isEmpty() const +{ + return dims() == 0; +} + +inline BlobShape BlobShape::operator+(const BlobShape &r) const +{ + BlobShape newShape(this->dims() + r.dims(), (int*)NULL); + for (int i = 0; i < this->dims(); i++) + newShape[i] = (*this)[i]; + for (int i = 0; i < r.dims(); i++) + newShape[this->dims() + i] = r[i]; + return newShape; +} + +CV_EXPORTS std::ostream &operator<< (std::ostream &stream, const BlobShape &shape); + +///////////////////////////////////////////////////////////////////// + +#ifndef CV_DNN_UMAT +# define CV_DNN_SWITCH_MU(cpu_expr, gpu_expr) (cpu_expr) +#else +# define CV_DNN_SWITCH_MU(cpu_expr, gpu_expr) ((state == HEAD_AT_UMAT) ? (gpu_expr) : (cpu_expr)) +#endif + + +inline int Blob::dims() const +{ + return CV_DNN_SWITCH_MU(m.dims, um.dims); +} + +inline const int * Blob::sizes() const +{ + return CV_DNN_SWITCH_MU((const int*)m.size, (const int*)um.size); +} + +inline int Blob::type() const +{ + return CV_DNN_SWITCH_MU(m.type(), um.type()); +} + +template +inline size_t Blob::offset(const Vec &pos) const +{ + const MatStep &step = CV_DNN_SWITCH_MU(m.step, um.step); + size_t ofs = 0; + int i; + for (i = 0; i < std::min(n, dims()); i++) + { + CV_DbgAssert(pos[i] >= 0 && pos[i] < size(i)); + ofs += step[i] * pos[i]; + } + for (; i < dims(); i++) + CV_DbgAssert(pos[i] == 0); + CV_DbgAssert(ofs % elemSize() == 0); + return ofs / elemSize(); +} + +inline int Blob::canonicalAxis(int axis) const +{ + CV_Assert(-dims() <= axis && axis < dims()); + return (axis < 0) ? axis + dims() : axis; +} + +inline int Blob::xsize(int axis) const +{ + if (axis < -dims() || axis >= dims()) + return 1; + + return sizes()[(axis < 0) ? axis + dims() : axis]; +} + +inline int Blob::size(int axis) const +{ + CV_Assert(-dims() <= axis && axis < dims()); + return sizes()[(axis < 0) ? axis + dims() : axis]; +} + +inline size_t Blob::total(int startAxis, int endAxis) const +{ + if (startAxis < 0) + startAxis += dims(); + + if (endAxis == INT_MAX) + endAxis = dims(); + else if (endAxis < 0) + endAxis += dims(); + + CV_Assert(0 <= startAxis && startAxis <= endAxis && endAxis <= dims()); + + size_t cnt = 1; //fix: assume that slice isn't empty + for (int i = startAxis; i < endAxis; i++) + cnt *= (size_t)sizes()[i]; + + return cnt; +} + +inline size_t Blob::offset(int n, int cn, int row, int col) const +{ + return offset(Vec4i(n, cn, row, col)); +} + +inline float *Blob::ptrf(int n, int cn, int row, int col) +{ + return matRef(false).ptr() + offset(n, cn, row, col); +} + +inline uchar *Blob::ptr(int n, int cn, int row, int col) +{ + Mat &mat = matRef(false); + return mat.ptr() + mat.elemSize() * offset(n, cn, row, col); +} + +template +inline Dtype* Blob::ptr(int n, int cn, int row, int col) +{ + CV_Assert(type() == cv::DataDepth::value); + return (Dtype*) ptr(n, cn, row, col); +} + +inline BlobShape Blob::shape() const +{ + return BlobShape(dims(), sizes()); +} + +inline bool Blob::equalShape(const Blob &other) const +{ + if (this->dims() != other.dims()) + return false; + + for (int i = 0; i < dims(); i++) + { + if (this->sizes()[i] != other.sizes()[i]) + return false; + } + return true; +} + +inline Mat& Blob::matRef(bool writeOnly) +{ +#ifdef CV_DNN_UMAT + updateMat(!writeOnly); + state = HEAD_AT_MAT; +#else + (void)writeOnly; +#endif + return m; +} + +inline const Mat& Blob::matRefConst() const +{ + CV_DNN_UMAT_ONLY( updateMat() ); + return m; +} + +inline UMat &Blob::umatRef(bool writeOnly) +{ +#ifndef CV_DNN_UMAT + CV_Error(Error::GpuNotSupported, ""); + (void)writeOnly; + return *(new UMat()); +#else + updateUMat(!writeOnly); + state = HEAD_AT_UMAT; + return um; +#endif +} + +inline const UMat &Blob::umatRefConst() const +{ +#ifndef CV_DNN_UMAT + CV_Error(Error::GpuNotSupported, ""); + return *(new UMat()); +#else + updateUMat(); + return um; +#endif +} + +template<> +inline Mat &Blob::getRef(bool writeOnly) +{ + return matRef(writeOnly); +} + +template<> +inline UMat &Blob::getRef(bool writeOnly) +{ + return umatRef(writeOnly); +} + +template<> +inline const Mat &Blob::getRefConst() const +{ + return matRefConst(); +} + +template<> +inline const UMat &Blob::getRefConst() const +{ + return umatRefConst(); +} + +inline Mat Blob::getPlane(int n, int cn) +{ + CV_Assert(dims() > 2); + return Mat(dims() - 2, sizes() + 2, type(), ptr(n, cn)); +} + +inline Mat Blob::getPlanes(int n) +{ + CV_Assert(dims() > 3); + return Mat(dims() - 1, sizes() + 1, type(), ptr(n)); +} + +inline int Blob::cols() const +{ + return xsize(3); +} + +inline int Blob::rows() const +{ + return xsize(2); +} + +inline int Blob::channels() const +{ + return xsize(1); +} + +inline int Blob::num() const +{ + return xsize(0); +} + +inline Size Blob::size2() const +{ + return Size(cols(), rows()); +} + +inline Blob &Blob::shareFrom(const Blob &blob) +{ + this->m = blob.m; +#ifdef CV_DNN_UMAT + this->um = blob.um; + this->state = blob.state; +#endif + return *this; +} + +inline Blob &Blob::reshape(const BlobShape &newShape) +{ + if (!m.empty()) m = m.reshape(1, newShape.dims(), newShape.ptr()); +#ifdef CV_DNN_UMAT + if (!um.empty()) um = um.reshape(1, newShape.dims(), newShape.ptr()); +#endif + return *this; +} + +inline Blob Blob::reshaped(const BlobShape &newShape) const +{ + Blob res(*this); //also, res.shareFrom(*this) could be used + res.reshape(newShape); + return res; +} + +inline int Blob::elemSize() const +{ + return CV_ELEM_SIZE(type()); +} + +inline int Blob::getState() const +{ +#ifdef CV_DNN_UMAT + return this->state; +#else + return m.empty() ? UNINITIALIZED : HEAD_AT_MAT; +#endif +} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/dnn/dict.hpp b/thirdparty1/linux/include/opencv2/dnn/dict.hpp new file mode 100644 index 0000000..f7cd0f2 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/dnn/dict.hpp @@ -0,0 +1,143 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef __OPENCV_DNN_DNN_DICT_HPP__ +#define __OPENCV_DNN_DNN_DICT_HPP__ + +#include +#include +#include + +namespace cv +{ +namespace dnn +{ +//! @addtogroup dnn +//! @{ + +/** @brief This struct stores the scalar value (or array) of one of the following type: double, cv::String or int64. + * @todo Maybe int64 is useless because double type exactly stores at least 2^52 integers. + */ +struct DictValue +{ + DictValue(const DictValue &r); + DictValue(int64 i = 0) : type(Param::INT), pi(new AutoBuffer) { (*pi)[0] = i; } //!< Constructs integer scalar + DictValue(int i) : type(Param::INT), pi(new AutoBuffer) { (*pi)[0] = i; } //!< Constructs integer scalar + DictValue(unsigned p) : type(Param::INT), pi(new AutoBuffer) { (*pi)[0] = p; } //!< Constructs integer scalar + DictValue(double p) : type(Param::REAL), pd(new AutoBuffer) { (*pd)[0] = p; } //!< Constructs floating point scalar + DictValue(const String &s) : type(Param::STRING), ps(new AutoBuffer) { (*ps)[0] = s; } //!< Constructs string scalar + DictValue(const char *s) : type(Param::STRING), ps(new AutoBuffer) { (*ps)[0] = s; } //!< @overload + + template + static DictValue arrayInt(TypeIter begin, int size); //!< Constructs integer array + template + static DictValue arrayReal(TypeIter begin, int size); //!< Constructs floating point array + template + static DictValue arrayString(TypeIter begin, int size); //!< Constructs array of strings + + template + T get(int idx = -1) const; //!< Tries to convert array element with specified index to requested type and returns its. + + int size() const; + + bool isInt() const; + bool isString() const; + bool isReal() const; + + DictValue &operator=(const DictValue &r); + + friend std::ostream &operator<<(std::ostream &stream, const DictValue &dictv); + + ~DictValue(); + +private: + + int type; + + union + { + AutoBuffer *pi; + AutoBuffer *pd; + AutoBuffer *ps; + void *pv; + }; + + DictValue(int _type, void *_p) : type(_type), pv(_p) {} + void release(); +}; + +/** @brief This class implements name-value dictionary, values are instances of DictValue. */ +class CV_EXPORTS Dict +{ + typedef std::map _Dict; + _Dict dict; + +public: + + //! Checks a presence of the @p key in the dictionary. + bool has(const String &key) const; + + //! If the @p key in the dictionary then returns pointer to its value, else returns NULL. + DictValue *ptr(const String &key); + + //! If the @p key in the dictionary then returns its value, else an error will be generated. + const DictValue &get(const String &key) const; + + /** @overload */ + template + T get(const String &key) const; + + //! If the @p key in the dictionary then returns its value, else returns @p defaultValue. + template + T get(const String &key, const T &defaultValue) const; + + //! Sets new @p value for the @p key, or adds new key-value pair into the dictionary. + template + const T &set(const String &key, const T &value); + + friend std::ostream &operator<<(std::ostream &stream, const Dict &dict); +}; + +//! @} +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/dnn/dnn.hpp b/thirdparty1/linux/include/opencv2/dnn/dnn.hpp new file mode 100644 index 0000000..41d975b --- /dev/null +++ b/thirdparty1/linux/include/opencv2/dnn/dnn.hpp @@ -0,0 +1,350 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef __OPENCV_DNN_DNN_HPP__ +#define __OPENCV_DNN_DNN_HPP__ + +#include +#include +#include +#include + +namespace cv +{ +namespace dnn //! This namespace is used for dnn module functionlaity. +{ +//! @addtogroup dnn +//! @{ + + /** @brief Initialize dnn module and built-in layers. + * + * This function automatically called on most of OpenCV builds, + * but you need to call it manually on some specific configurations (iOS for example). + */ + CV_EXPORTS_W void initModule(); + + /** @brief This class provides all data needed to initialize layer. + * + * It includes dictionary with scalar params (which can be readed by using Dict interface), + * blob params #blobs and optional meta information: #name and #type of layer instance. + */ + class CV_EXPORTS LayerParams : public Dict + { + public: + //TODO: Add ability to name blob params + std::vector blobs; //!< List of learned parameters stored as blobs. + + String name; //!< Name of the layer instance (optional, can be used internal purposes). + String type; //!< Type name which was used for creating layer by layer factory (optional). + }; + + /** @brief This interface class allows to build new Layers - are building blocks of networks. + * + * Each class, derived from Layer, must implement allocate() methods to declare own outputs and forward() to compute outputs. + * Also before using the new layer into networks you must register your layer by using one of @ref dnnLayerFactory "LayerFactory" macros. + */ + class CV_EXPORTS_W Layer + { + public: + + //! List of learned parameters must be stored here to allow read them by using Net::getParam(). + CV_PROP_RW std::vector blobs; + + /** @brief Allocates internal buffers and output blobs with respect to the shape of inputs. + * @param[in] input vector of already allocated input blobs + * @param[out] output vector of output blobs, which must be allocated + * + * This method must create each produced blob according to shape of @p input blobs and internal layer params. + * If this method is called first time then @p output vector consists from empty blobs and its size determined by number of output connections. + * This method can be called multiple times if size of any @p input blob was changed. + */ + virtual void allocate(const std::vector &input, std::vector &output) = 0; + + /** @brief Given the @p input blobs, computes the output @p blobs. + * @param[in] input the input blobs. + * @param[out] output allocated output blobs, which will store results of the computation. + */ + virtual void forward(std::vector &input, std::vector &output) = 0; + + /** @brief @overload */ + CV_WRAP void allocate(const std::vector &inputs, CV_OUT std::vector &outputs); + + /** @brief @overload */ + CV_WRAP std::vector allocate(const std::vector &inputs); + + /** @brief @overload */ + CV_WRAP void forward(const std::vector &inputs, CV_IN_OUT std::vector &outputs); + + /** @brief Allocates layer and computes output. */ + CV_WRAP void run(const std::vector &inputs, CV_OUT std::vector &outputs); + + /** @brief Returns index of input blob into the input array. + * @param inputName label of input blob + * + * Each layer input and output can be labeled to easily identify them using "%[.output_name]" notation. + * This method maps label of input blob to its index into input vector. + */ + virtual int inputNameToIndex(String inputName); + /** @brief Returns index of output blob in output array. + * @see inputNameToIndex() + */ + virtual int outputNameToIndex(String outputName); + + CV_PROP String name; //!< Name of the layer instance, can be used for logging or other internal purposes. + CV_PROP String type; //!< Type name which was used for creating layer by layer factory. + + Layer(); + explicit Layer(const LayerParams ¶ms); //!< Initializes only #name, #type and #blobs fields. + void setParamsFrom(const LayerParams ¶ms); //!< Initializes only #name, #type and #blobs fields. + virtual ~Layer(); + }; + + /** @brief This class allows to create and manipulate comprehensive artificial neural networks. + * + * Neural network is presented as directed acyclic graph (DAG), where vertices are Layer instances, + * and edges specify relationships between layers inputs and outputs. + * + * Each network layer has unique integer id and unique string name inside its network. + * LayerId can store either layer name or layer id. + * + * This class supports reference counting of its instances, i. e. copies point to the same instance. + */ + class CV_EXPORTS_W_SIMPLE Net + { + public: + + CV_WRAP Net(); //!< Default constructor. + CV_WRAP ~Net(); //!< Destructor frees the net only if there aren't references to the net anymore. + + /** Returns true if there are no layers in the network. */ + CV_WRAP bool empty() const; + + /** @brief Adds new layer to the net. + * @param name unique name of the adding layer. + * @param type typename of the adding layer (type must be registered in LayerRegister). + * @param params parameters which will be used to initialize the creating layer. + * @returns unique identifier of created layer, or -1 if a failure will happen. + */ + int addLayer(const String &name, const String &type, LayerParams ¶ms); + /** @brief Adds new layer and connects its first input to the first output of previously added layer. + * @see addLayer() + */ + int addLayerToPrev(const String &name, const String &type, LayerParams ¶ms); + + /** @brief Converts string name of the layer to the integer identifier. + * @returns id of the layer, or -1 if the layer wasn't found. + */ + CV_WRAP int getLayerId(const String &layer); + + CV_WRAP std::vector getLayerNames() const; + + /** @brief Container for strings and integers. */ + typedef DictValue LayerId; + + /** @brief Returns pointer to layer with specified name which the network use. */ + CV_WRAP Ptr getLayer(LayerId layerId); + + /** @brief Delete layer for the network (not implemented yet) */ + CV_WRAP void deleteLayer(LayerId layer); + + /** @brief Connects output of the first layer to input of the second layer. + * @param outPin descriptor of the first layer output. + * @param inpPin descriptor of the second layer input. + * + * Descriptors have the following template <layer_name>[.input_number]: + * - the first part of the template layer_name is sting name of the added layer. + * If this part is empty then the network input pseudo layer will be used; + * - the second optional part of the template input_number + * is either number of the layer input, either label one. + * If this part is omitted then the first layer input will be used. + * + * @see setNetInputs(), Layer::inputNameToIndex(), Layer::outputNameToIndex() + */ + CV_WRAP void connect(String outPin, String inpPin); + + /** @brief Connects #@p outNum output of the first layer to #@p inNum input of the second layer. + * @param outLayerId identifier of the first layer + * @param inpLayerId identifier of the second layer + * @param outNum number of the first layer output + * @param inpNum number of the second layer input + */ + void connect(int outLayerId, int outNum, int inpLayerId, int inpNum); + + /** @brief Sets outputs names of the network input pseudo layer. + * + * Each net always has special own the network input pseudo layer with id=0. + * This layer stores the user blobs only and don't make any computations. + * In fact, this layer provides the only way to pass user data into the network. + * As any other layer, this layer can label its outputs and this function provides an easy way to do this. + */ + CV_WRAP void setNetInputs(const std::vector &inputBlobNames); + + /** @brief Initializes and allocates all layers. */ + CV_WRAP void allocate(); + + /** @brief Runs forward pass to compute output of layer @p toLayer. + * @details By default runs forward pass for the whole network. + */ + CV_WRAP void forward(LayerId toLayer = String()); + /** @brief Runs forward pass to compute output of layer @p toLayer, but computations start from @p startLayer */ + void forward(LayerId startLayer, LayerId toLayer); + /** @overload */ + void forward(const std::vector &startLayers, const std::vector &toLayers); + + //TODO: + /** @brief Optimized forward. + * @warning Not implemented yet. + * @details Makes forward only those layers which weren't changed after previous forward(). + */ + void forwardOpt(LayerId toLayer); + /** @overload */ + void forwardOpt(const std::vector &toLayers); + + /** @brief Sets the new value for the layer output blob + * @param outputName descriptor of the updating layer output blob. + * @param blob new blob. + * @see connect(String, String) to know format of the descriptor. + * @note If updating blob is not empty then @p blob must have the same shape, + * because network reshaping is not implemented yet. + */ + CV_WRAP void setBlob(String outputName, const Blob &blob); + + /** @brief Returns the layer output blob. + * @param outputName the descriptor of the returning layer output blob. + * @see connect(String, String) + */ + CV_WRAP Blob getBlob(String outputName); + + /** @brief Sets the new value for the learned param of the layer. + * @param layer name or id of the layer. + * @param numParam index of the layer parameter in the Layer::blobs array. + * @param blob the new value. + * @see Layer::blobs + * @note If shape of the new blob differs from the previous shape, + * then the following forward pass may fail. + */ + CV_WRAP void setParam(LayerId layer, int numParam, const Blob &blob); + + /** @brief Returns parameter blob of the layer. + * @param layer name or id of the layer. + * @param numParam index of the layer parameter in the Layer::blobs array. + * @see Layer::blobs + */ + CV_WRAP Blob getParam(LayerId layer, int numParam = 0); + + /** @brief Returns indexes of layers with unconnected outputs. + */ + CV_WRAP std::vector getUnconnectedOutLayers() const; + private: + + struct Impl; + Ptr impl; + }; + + /** @brief Small interface class for loading trained serialized models of different dnn-frameworks. */ + class CV_EXPORTS_W Importer + { + public: + + /** @brief Adds loaded layers into the @p net and sets connections between them. */ + CV_WRAP virtual void populateNet(Net net) = 0; + + virtual ~Importer(); + }; + + /** @brief Creates the importer of Caffe framework network. + * @param prototxt path to the .prototxt file with text description of the network architecture. + * @param caffeModel path to the .caffemodel file with learned network. + * @returns Pointer to the created importer, NULL in failure cases. + */ + CV_EXPORTS_W Ptr createCaffeImporter(const String &prototxt, const String &caffeModel = String()); + + /** @brief Reads a network model stored in Caffe model files. + * @details This is shortcut consisting from createCaffeImporter and Net::populateNet calls. + */ + CV_EXPORTS_W Net readNetFromCaffe(const String &prototxt, const String &caffeModel = String()); + + /** @brief Creates the importer of TensorFlow framework network. + * @param model path to the .pb file with binary protobuf description of the network architecture. + * @returns Pointer to the created importer, NULL in failure cases. + */ + CV_EXPORTS Ptr createTensorflowImporter(const String &model); + + /** @brief Creates the importer of Torch7 framework network. + * @param filename path to the file, dumped from Torch by using torch.save() function. + * @param isBinary specifies whether the network was serialized in ascii mode or binary. + * @returns Pointer to the created importer, NULL in failure cases. + * + * @warning Torch7 importer is experimental now, you need explicitly set CMake `opencv_dnn_BUILD_TORCH_IMPORTER` flag to compile its. + * + * @note Ascii mode of Torch serializer is more preferable, because binary mode extensively use `long` type of C language, + * which has various bit-length on different systems. + * + * The loading file must contain serialized nn.Module object + * with importing network. Try to eliminate a custom objects from serialazing data to avoid importing errors. + * + * List of supported layers (i.e. object instances derived from Torch nn.Module class): + * - nn.Sequential + * - nn.Parallel + * - nn.Concat + * - nn.Linear + * - nn.SpatialConvolution + * - nn.SpatialMaxPooling, nn.SpatialAveragePooling + * - nn.ReLU, nn.TanH, nn.Sigmoid + * - nn.Reshape + * + * Also some equivalents of these classes from cunn, cudnn, and fbcunn may be successfully imported. + */ + CV_EXPORTS_W Ptr createTorchImporter(const String &filename, bool isBinary = true); + + /** @brief Loads blob which was serialized as torch.Tensor object of Torch7 framework. + * @warning This function has the same limitations as createTorchImporter(). + */ + CV_EXPORTS_W Blob readTorchBlob(const String &filename, bool isBinary = true); + +//! @} +} +} + +#include +#include + +#endif /* __OPENCV_DNN_DNN_HPP__ */ diff --git a/thirdparty1/linux/include/opencv2/dnn/dnn.inl.hpp b/thirdparty1/linux/include/opencv2/dnn/dnn.inl.hpp new file mode 100644 index 0000000..a272044 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/dnn/dnn.inl.hpp @@ -0,0 +1,351 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef __OPENCV_DNN_DNN_INL_HPP__ +#define __OPENCV_DNN_DNN_INL_HPP__ + +#include + +namespace cv +{ +namespace dnn +{ + +template +DictValue DictValue::arrayInt(TypeIter begin, int size) +{ + DictValue res(Param::INT, new AutoBuffer(size)); + for (int j = 0; j < size; begin++, j++) + (*res.pi)[j] = *begin; + return res; +} + +template +DictValue DictValue::arrayReal(TypeIter begin, int size) +{ + DictValue res(Param::REAL, new AutoBuffer(size)); + for (int j = 0; j < size; begin++, j++) + (*res.pd)[j] = *begin; + return res; +} + +template +DictValue DictValue::arrayString(TypeIter begin, int size) +{ + DictValue res(Param::STRING, new AutoBuffer(size)); + for (int j = 0; j < size; begin++, j++) + (*res.ps)[j] = *begin; + return res; +} + +template<> +inline DictValue DictValue::get(int idx) const +{ + CV_Assert(idx == -1); + return *this; +} + +template<> +inline int64 DictValue::get(int idx) const +{ + CV_Assert((idx == -1 && size() == 1) || (idx >= 0 && idx < size())); + idx = (idx == -1) ? 0 : idx; + + if (type == Param::INT) + { + return (*pi)[idx]; + } + else if (type == Param::REAL) + { + double doubleValue = (*pd)[idx]; + + double fracpart, intpart; + fracpart = std::modf(doubleValue, &intpart); + CV_Assert(fracpart == 0.0); + + return (int64)doubleValue; + } + else + { + CV_Assert(isInt() || isReal()); + return 0; + } +} + +template<> +inline int DictValue::get(int idx) const +{ + return (int)get(idx); +} + +template<> +inline unsigned DictValue::get(int idx) const +{ + return (unsigned)get(idx); +} + +template<> +inline bool DictValue::get(int idx) const +{ + return (get(idx) != 0); +} + +template<> +inline double DictValue::get(int idx) const +{ + CV_Assert((idx == -1 && size() == 1) || (idx >= 0 && idx < size())); + idx = (idx == -1) ? 0 : idx; + + if (type == Param::REAL) + { + return (*pd)[idx]; + } + else if (type == Param::INT) + { + return (double)(*pi)[idx]; + } + else + { + CV_Assert(isReal() || isInt()); + return 0; + } +} + +template<> +inline float DictValue::get(int idx) const +{ + return (float)get(idx); +} + +template<> +inline String DictValue::get(int idx) const +{ + CV_Assert(isString()); + CV_Assert((idx == -1 && ps->size() == 1) || (idx >= 0 && idx < (int)ps->size())); + return (*ps)[(idx == -1) ? 0 : idx]; +} + +inline void DictValue::release() +{ + switch (type) + { + case Param::INT: + delete pi; + break; + case Param::STRING: + delete ps; + break; + case Param::REAL: + delete pd; + break; + } +} + +inline DictValue::~DictValue() +{ + release(); +} + +inline DictValue & DictValue::operator=(const DictValue &r) +{ + if (&r == this) + return *this; + + if (r.type == Param::INT) + { + AutoBuffer *tmp = new AutoBuffer(*r.pi); + release(); + pi = tmp; + } + else if (r.type == Param::STRING) + { + AutoBuffer *tmp = new AutoBuffer(*r.ps); + release(); + ps = tmp; + } + else if (r.type == Param::REAL) + { + AutoBuffer *tmp = new AutoBuffer(*r.pd); + release(); + pd = tmp; + } + + type = r.type; + + return *this; +} + +inline DictValue::DictValue(const DictValue &r) +{ + type = r.type; + + if (r.type == Param::INT) + pi = new AutoBuffer(*r.pi); + else if (r.type == Param::STRING) + ps = new AutoBuffer(*r.ps); + else if (r.type == Param::REAL) + pd = new AutoBuffer(*r.pd); +} + +inline bool DictValue::isString() const +{ + return (type == Param::STRING); +} + +inline bool DictValue::isInt() const +{ + return (type == Param::INT); +} + +inline bool DictValue::isReal() const +{ + return (type == Param::REAL || type == Param::INT); +} + +inline int DictValue::size() const +{ + switch (type) + { + case Param::INT: + return (int)pi->size(); + break; + case Param::STRING: + return (int)ps->size(); + break; + case Param::REAL: + return (int)pd->size(); + break; + default: + CV_Error(Error::StsInternal, ""); + return -1; + } +} + +inline std::ostream &operator<<(std::ostream &stream, const DictValue &dictv) +{ + int i; + + if (dictv.isInt()) + { + for (i = 0; i < dictv.size() - 1; i++) + stream << dictv.get(i) << ", "; + stream << dictv.get(i); + } + else if (dictv.isReal()) + { + for (i = 0; i < dictv.size() - 1; i++) + stream << dictv.get(i) << ", "; + stream << dictv.get(i); + } + else if (dictv.isString()) + { + for (i = 0; i < dictv.size() - 1; i++) + stream << "\"" << dictv.get(i) << "\", "; + stream << dictv.get(i); + } + + return stream; +} + +///////////////////////////////////////////////////////////////// + +inline bool Dict::has(const String &key) const +{ + return dict.count(key) != 0; +} + +inline DictValue *Dict::ptr(const String &key) +{ + _Dict::iterator i = dict.find(key); + return (i == dict.end()) ? NULL : &i->second; +} + +inline const DictValue &Dict::get(const String &key) const +{ + _Dict::const_iterator i = dict.find(key); + if (i == dict.end()) + CV_Error(Error::StsObjectNotFound, "Required argument \"" + key + "\" not found into dictionary"); + return i->second; +} + +template +inline T Dict::get(const String &key) const +{ + return this->get(key).get(); +} + +template +inline T Dict::get(const String &key, const T &defaultValue) const +{ + _Dict::const_iterator i = dict.find(key); + + if (i != dict.end()) + return i->second.get(); + else + return defaultValue; +} + +template +inline const T &Dict::set(const String &key, const T &value) +{ + _Dict::iterator i = dict.find(key); + + if (i != dict.end()) + i->second = DictValue(value); + else + dict.insert(std::make_pair(key, DictValue(value))); + + return value; +} + +inline std::ostream &operator<<(std::ostream &stream, const Dict &dict) +{ + Dict::_Dict::const_iterator it; + for (it = dict.dict.begin(); it != dict.dict.end(); it++) + stream << it->first << " : " << it->second << "\n"; + + return stream; +} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/dnn/layer.hpp b/thirdparty1/linux/include/opencv2/dnn/layer.hpp new file mode 100644 index 0000000..e051041 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/dnn/layer.hpp @@ -0,0 +1,148 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef __OPENCV_DNN_LAYER_HPP__ +#define __OPENCV_DNN_LAYER_HPP__ +#include + +namespace cv +{ +namespace dnn +{ +//! @addtogroup dnn +//! @{ +//! +//! @defgroup dnnLayerFactory Utilities for New Layers Registration +//! @{ + +/** @brief %Layer factory allows to create instances of registered layers. */ +class CV_EXPORTS LayerFactory +{ +public: + + //! Each Layer class must provide this function to the factory + typedef Ptr(*Constuctor)(LayerParams ¶ms); + + //! Registers the layer class with typename @p type and specified @p constructor. + static void registerLayer(const String &type, Constuctor constructor); + + //! Unregisters registered layer with specified type name. + static void unregisterLayer(const String &type); + + /** @brief Creates instance of registered layer. + * @param type type name of creating layer. + * @param params parameters which will be used for layer initialization. + */ + static Ptr createLayerInstance(const String &type, LayerParams& params); + +private: + LayerFactory(); + + struct Impl; + static Ptr impl(); +}; + +/** @brief Registers layer constructor in runtime. +* @param type string, containing type name of the layer. +* @param constuctorFunc pointer to the function of type LayerRegister::Constuctor, which creates the layer. +* @details This macros must be placed inside the function code. +*/ +#define REG_RUNTIME_LAYER_FUNC(type, constuctorFunc) \ + cv::dnn::LayerFactory::registerLayer(#type, constuctorFunc); + +/** @brief Registers layer class in runtime. + * @param type string, containing type name of the layer. + * @param class C++ class, derived from Layer. + * @details This macros must be placed inside the function code. + */ +#define REG_RUNTIME_LAYER_CLASS(type, class) \ + cv::dnn::LayerFactory::registerLayer(#type, _layerDynamicRegisterer); + +/** @brief Registers layer constructor on module load time. +* @param type string, containing type name of the layer. +* @param constuctorFunc pointer to the function of type LayerRegister::Constuctor, which creates the layer. +* @details This macros must be placed outside the function code. +*/ +#define REG_STATIC_LAYER_FUNC(type, constuctorFunc) \ +static cv::dnn::_LayerStaticRegisterer __LayerStaticRegisterer_##type(#type, constuctorFunc); + +/** @brief Registers layer class on module load time. + * @param type string, containing type name of the layer. + * @param class C++ class, derived from Layer. + * @details This macros must be placed outside the function code. + */ +#define REG_STATIC_LAYER_CLASS(type, class) \ +Ptr __LayerStaticRegisterer_func_##type(LayerParams ¶ms) \ + { return Ptr(new class(params)); } \ +static _LayerStaticRegisterer __LayerStaticRegisterer_##type(#type, __LayerStaticRegisterer_func_##type); + + +//! @} +//! @} + + +template +Ptr _layerDynamicRegisterer(LayerParams ¶ms) +{ + return Ptr(new LayerClass(params)); +} + +//allows automatically register created layer on module load time +class _LayerStaticRegisterer +{ + String type; +public: + + _LayerStaticRegisterer(const String &layerType, LayerFactory::Constuctor layerConstuctor) + { + this->type = layerType; + LayerFactory::registerLayer(layerType, layerConstuctor); + } + + ~_LayerStaticRegisterer() + { + LayerFactory::unregisterLayer(type); + } +}; + +} +} +#endif diff --git a/thirdparty1/linux/include/opencv2/dnn/shape_utils.hpp b/thirdparty1/linux/include/opencv2/dnn/shape_utils.hpp new file mode 100644 index 0000000..f52e5b9 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/dnn/shape_utils.hpp @@ -0,0 +1,137 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef __OPENCV_DNN_DNN_SHAPE_UTILS_HPP__ +#define __OPENCV_DNN_DNN_SHAPE_UTILS_HPP__ + +#include +#include + +namespace cv { +namespace dnn { + +//Useful shortcut +typedef BlobShape Shape; + +inline std::ostream &operator<< (std::ostream &s, cv::Range &r) +{ + return s << "[" << r.start << ", " << r.end << ")"; +} + +//Reshaping +//TODO: add -1 specifier for automatic size inferring + +template +void reshape(Mat &m, const BlobShape &shape) +{ + m = m.reshape(1, shape.dims(), shape.ptr()); +} + +template +Mat reshaped(const Mat &m, const BlobShape &shape) +{ + return m.reshape(1, shape.dims(), shape.ptr()); +} + + +//Slicing + +struct _Range : public cv::Range +{ + _Range(const Range &r) : cv::Range(r) {} + _Range(int start, int size = 1) : cv::Range(start, start + size) {} +}; + +template +Mat slice(const Mat &m, const _Range &r0) +{ + //CV_Assert(m.dims >= 1); + cv::AutoBuffer ranges(m.dims); + for (int i = 1; i < m.dims; i++) + ranges[i] = Range::all(); + ranges[0] = r0; + return m(&ranges[0]); +} + +template +Mat slice(const Mat &m, const _Range &r0, const _Range &r1) +{ + CV_Assert(m.dims >= 2); + cv::AutoBuffer ranges(m.dims); + for (int i = 2; i < m.dims; i++) + ranges[i] = Range::all(); + ranges[0] = r0; + ranges[1] = r1; + return m(&ranges[0]); +} + +template +Mat slice(const Mat &m, const _Range &r0, const _Range &r1, const _Range &r2) +{ + CV_Assert(m.dims <= 3); + cv::AutoBuffer ranges(m.dims); + for (int i = 3; i < m.dims; i++) + ranges[i] = Range::all(); + ranges[0] = r0; + ranges[1] = r1; + ranges[2] = r2; + return m(&ranges[0]); +} + +template +Mat slice(const Mat &m, const _Range &r0, const _Range &r1, const _Range &r2, const _Range &r3) +{ + CV_Assert(m.dims <= 4); + cv::AutoBuffer ranges(m.dims); + for (int i = 4; i < m.dims; i++) + ranges[i] = Range::all(); + ranges[0] = r0; + ranges[1] = r1; + ranges[2] = r2; + ranges[3] = r3; + return m(&ranges[0]); +} + +BlobShape computeShapeByReshapeMask(const BlobShape &srcShape, const BlobShape &maskShape, Range srcRange = Range::all()); + +} +} +#endif diff --git a/thirdparty1/linux/include/opencv2/dpm.hpp b/thirdparty1/linux/include/opencv2/dpm.hpp new file mode 100644 index 0000000..387a311 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/dpm.hpp @@ -0,0 +1,148 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2015, Itseez Inc, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Itseez Inc or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +// Implementation authors: +// Jiaolong Xu - jiaolongxu@gmail.com +// Evgeniy Kozinov - evgeniy.kozinov@gmail.com +// Valentina Kustikova - valentina.kustikova@gmail.com +// Nikolai Zolotykh - Nikolai.Zolotykh@gmail.com +// Iosif Meyerov - meerov@vmk.unn.ru +// Alexey Polovinkin - polovinkin.alexey@gmail.com +// +//M*/ + +#ifndef __OPENCV_LATENTSVM_HPP__ +#define __OPENCV_LATENTSVM_HPP__ + +#include "opencv2/core.hpp" + +#include +#include +#include + +/** @defgroup dpm Deformable Part-based Models + +Discriminatively Trained Part Based Models for Object Detection +--------------------------------------------------------------- + +The object detector described below has been initially proposed by P.F. Felzenszwalb in +@cite Felzenszwalb2010a . It is based on a Dalal-Triggs detector that uses a single filter on histogram +of oriented gradients (HOG) features to represent an object category. This detector uses a sliding +window approach, where a filter is applied at all positions and scales of an image. The first +innovation is enriching the Dalal-Triggs model using a star-structured part-based model defined by a +"root" filter (analogous to the Dalal-Triggs filter) plus a set of parts filters and associated +deformation models. The score of one of star models at a particular position and scale within an +image is the score of the root filter at the given location plus the sum over parts of the maximum, +over placements of that part, of the part filter score on its location minus a deformation cost +easuring the deviation of the part from its ideal location relative to the root. Both root and part +filter scores are defined by the dot product between a filter (a set of weights) and a subwindow of +a feature pyramid computed from the input image. Another improvement is a representation of the +class of models by a mixture of star models. The score of a mixture model at a particular position +and scale is the maximum over components, of the score of that component model at the given +location. + +The detector was dramatically speeded-up with cascade algorithm proposed by P.F. Felzenszwalb in +@cite Felzenszwalb2010b . The algorithm prunes partial hypotheses using thresholds on their scores.The +basic idea of the algorithm is to use a hierarchy of models defined by an ordering of the original +model's parts. For a model with (n+1) parts, including the root, a sequence of (n+1) models is +obtained. The i-th model in this sequence is defined by the first i parts from the original model. +Using this hierarchy, low scoring hypotheses can be pruned after looking at the best configuration +of a subset of the parts. Hypotheses that score high under a weak model are evaluated further using +a richer model. + +In OpenCV there is an C++ implementation of DPM cascade detector. + +*/ + +namespace cv +{ + +namespace dpm +{ + +/** @brief This is a C++ abstract class, it provides external user API to work with DPM. + */ +class CV_EXPORTS_W DPMDetector +{ +public: + + struct CV_EXPORTS_W ObjectDetection + { + ObjectDetection(); + ObjectDetection( const Rect& rect, float score, int classID=-1 ); + Rect rect; + float score; + int classID; + }; + + virtual bool isEmpty() const = 0; + + /** @brief Find rectangular regions in the given image that are likely to contain objects of loaded classes + (models) and corresponding confidence levels. + @param image An image. + @param objects The detections: rectangulars, scores and class IDs. + */ + virtual void detect(cv::Mat &image, CV_OUT std::vector &objects) = 0; + + /** @brief Return the class (model) names that were passed in constructor or method load or extracted from + models filenames in those methods. + */ + virtual std::vector const& getClassNames() const = 0; + + /** @brief Return a count of loaded models (classes). + */ + virtual size_t getClassCount() const = 0; + + /** @brief Load the trained models from given .xml files and return cv::Ptr\. + @param filenames A set of filenames storing the trained detectors (models). Each file contains one + model. See examples of such files here `/opencv_extra/testdata/cv/dpm/VOC2007_Cascade/`. + @param classNames A set of trained models names. If it's empty then the name of each model will be + constructed from the name of file containing the model. E.g. the model stored in + "/home/user/cat.xml" will get the name "cat". + */ + static cv::Ptr create(std::vector const &filenames, + std::vector const &classNames = std::vector()); + + virtual ~DPMDetector(){} +}; + +} // namespace dpm +} // namespace cv + +#endif diff --git a/thirdparty1/linux/include/opencv2/face.hpp b/thirdparty1/linux/include/opencv2/face.hpp new file mode 100644 index 0000000..a90a1da --- /dev/null +++ b/thirdparty1/linux/include/opencv2/face.hpp @@ -0,0 +1,375 @@ +/* +By downloading, copying, installing or using the software you agree to this +license. If you do not agree to this license, do not download, install, +copy or use the software. + + License Agreement + For Open Source Computer Vision Library + (3-clause BSD License) + +Copyright (C) 2013, OpenCV Foundation, all rights reserved. +Third party copyrights are property of their respective owners. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + + * Neither the names of the copyright holders nor the names of the contributors + may be used to endorse or promote products derived from this software + without specific prior written permission. + +This software is provided by the copyright holders and contributors "as is" and +any express or implied warranties, including, but not limited to, the implied +warranties of merchantability and fitness for a particular purpose are +disclaimed. In no event shall copyright holders or contributors be liable for +any direct, indirect, incidental, special, exemplary, or consequential damages +(including, but not limited to, procurement of substitute goods or services; +loss of use, data, or profits; or business interruption) however caused +and on any theory of liability, whether in contract, strict liability, +or tort (including negligence or otherwise) arising in any way out of +the use of this software, even if advised of the possibility of such damage. +*/ + +#ifndef __OPENCV_FACE_HPP__ +#define __OPENCV_FACE_HPP__ + +/** +@defgroup face Face Recognition + +- @ref face_changelog +- @ref tutorial_face_main + +*/ + +#include "opencv2/core.hpp" +#include "face/predict_collector.hpp" +#include + +namespace cv { namespace face { + +//! @addtogroup face +//! @{ + +/** @brief Abstract base class for all face recognition models + +All face recognition models in OpenCV are derived from the abstract base class FaceRecognizer, which +provides a unified access to all face recongition algorithms in OpenCV. + +### Description + +I'll go a bit more into detail explaining FaceRecognizer, because it doesn't look like a powerful +interface at first sight. But: Every FaceRecognizer is an Algorithm, so you can easily get/set all +model internals (if allowed by the implementation). Algorithm is a relatively new OpenCV concept, +which is available since the 2.4 release. I suggest you take a look at its description. + +Algorithm provides the following features for all derived classes: + +- So called “virtual constructor”. That is, each Algorithm derivative is registered at program + start and you can get the list of registered algorithms and create instance of a particular + algorithm by its name (see Algorithm::create). If you plan to add your own algorithms, it is + good practice to add a unique prefix to your algorithms to distinguish them from other + algorithms. +- Setting/Retrieving algorithm parameters by name. If you used video capturing functionality from + OpenCV highgui module, you are probably familar with cv::cvSetCaptureProperty, +ocvcvGetCaptureProperty, VideoCapture::set and VideoCapture::get. Algorithm provides similar + method where instead of integer id's you specify the parameter names as text Strings. See + Algorithm::set and Algorithm::get for details. +- Reading and writing parameters from/to XML or YAML files. Every Algorithm derivative can store + all its parameters and then read them back. There is no need to re-implement it each time. + +Moreover every FaceRecognizer supports the: + +- **Training** of a FaceRecognizer with FaceRecognizer::train on a given set of images (your face + database!). +- **Prediction** of a given sample image, that means a face. The image is given as a Mat. +- **Loading/Saving** the model state from/to a given XML or YAML. +- **Setting/Getting labels info**, that is stored as a string. String labels info is useful for + keeping names of the recognized people. + +@note When using the FaceRecognizer interface in combination with Python, please stick to Python 2. +Some underlying scripts like create_csv will not work in other versions, like Python 3. Setting the +Thresholds +++++++++++++++++++++++ + +Sometimes you run into the situation, when you want to apply a threshold on the prediction. A common +scenario in face recognition is to tell, whether a face belongs to the training dataset or if it is +unknown. You might wonder, why there's no public API in FaceRecognizer to set the threshold for the +prediction, but rest assured: It's supported. It just means there's no generic way in an abstract +class to provide an interface for setting/getting the thresholds of *every possible* FaceRecognizer +algorithm. The appropriate place to set the thresholds is in the constructor of the specific +FaceRecognizer and since every FaceRecognizer is a Algorithm (see above), you can get/set the +thresholds at runtime! + +Here is an example of setting a threshold for the Eigenfaces method, when creating the model: + +@code +// Let's say we want to keep 10 Eigenfaces and have a threshold value of 10.0 +int num_components = 10; +double threshold = 10.0; +// Then if you want to have a cv::FaceRecognizer with a confidence threshold, +// create the concrete implementation with the appropiate parameters: +Ptr model = createEigenFaceRecognizer(num_components, threshold); +@endcode + +Sometimes it's impossible to train the model, just to experiment with threshold values. Thanks to +Algorithm it's possible to set internal model thresholds during runtime. Let's see how we would +set/get the prediction for the Eigenface model, we've created above: + +@code +// The following line reads the threshold from the Eigenfaces model: +double current_threshold = model->getDouble("threshold"); +// And this line sets the threshold to 0.0: +model->set("threshold", 0.0); +@endcode + +If you've set the threshold to 0.0 as we did above, then: + +@code +// +Mat img = imread("person1/3.jpg", CV_LOAD_IMAGE_GRAYSCALE); +// Get a prediction from the model. Note: We've set a threshold of 0.0 above, +// since the distance is almost always larger than 0.0, you'll get -1 as +// label, which indicates, this face is unknown +int predicted_label = model->predict(img); +// ... +@endcode + +is going to yield -1 as predicted label, which states this face is unknown. + +### Getting the name of a FaceRecognizer + +Since every FaceRecognizer is a Algorithm, you can use Algorithm::name to get the name of a +FaceRecognizer: + +@code +// Create a FaceRecognizer: +Ptr model = createEigenFaceRecognizer(); +// And here's how to get its name: +String name = model->name(); +@endcode + + */ +class CV_EXPORTS_W FaceRecognizer : public Algorithm +{ +public: + /** @brief Trains a FaceRecognizer with given data and associated labels. + + @param src The training images, that means the faces you want to learn. The data has to be + given as a vector\. + @param labels The labels corresponding to the images have to be given either as a vector\ + or a + + The following source code snippet shows you how to learn a Fisherfaces model on a given set of + images. The images are read with imread and pushed into a std::vector\. The labels of each + image are stored within a std::vector\ (you could also use a Mat of type CV_32SC1). Think of + the label as the subject (the person) this image belongs to, so same subjects (persons) should have + the same label. For the available FaceRecognizer you don't have to pay any attention to the order of + the labels, just make sure same persons have the same label: + + @code + // holds images and labels + vector images; + vector labels; + // images for first person + images.push_back(imread("person0/0.jpg", CV_LOAD_IMAGE_GRAYSCALE)); labels.push_back(0); + images.push_back(imread("person0/1.jpg", CV_LOAD_IMAGE_GRAYSCALE)); labels.push_back(0); + images.push_back(imread("person0/2.jpg", CV_LOAD_IMAGE_GRAYSCALE)); labels.push_back(0); + // images for second person + images.push_back(imread("person1/0.jpg", CV_LOAD_IMAGE_GRAYSCALE)); labels.push_back(1); + images.push_back(imread("person1/1.jpg", CV_LOAD_IMAGE_GRAYSCALE)); labels.push_back(1); + images.push_back(imread("person1/2.jpg", CV_LOAD_IMAGE_GRAYSCALE)); labels.push_back(1); + @endcode + + Now that you have read some images, we can create a new FaceRecognizer. In this example I'll create + a Fisherfaces model and decide to keep all of the possible Fisherfaces: + + @code + // Create a new Fisherfaces model and retain all available Fisherfaces, + // this is the most common usage of this specific FaceRecognizer: + // + Ptr model = createFisherFaceRecognizer(); + @endcode + + And finally train it on the given dataset (the face images and labels): + + @code + // This is the common interface to train all of the available cv::FaceRecognizer + // implementations: + // + model->train(images, labels); + @endcode + */ + CV_WRAP virtual void train(InputArrayOfArrays src, InputArray labels) = 0; + + /** @brief Updates a FaceRecognizer with given data and associated labels. + + @param src The training images, that means the faces you want to learn. The data has to be given + as a vector\. + @param labels The labels corresponding to the images have to be given either as a vector\ or + a + + This method updates a (probably trained) FaceRecognizer, but only if the algorithm supports it. The + Local Binary Patterns Histograms (LBPH) recognizer (see createLBPHFaceRecognizer) can be updated. + For the Eigenfaces and Fisherfaces method, this is algorithmically not possible and you have to + re-estimate the model with FaceRecognizer::train. In any case, a call to train empties the existing + model and learns a new model, while update does not delete any model data. + + @code + // Create a new LBPH model (it can be updated) and use the default parameters, + // this is the most common usage of this specific FaceRecognizer: + // + Ptr model = createLBPHFaceRecognizer(); + // This is the common interface to train all of the available cv::FaceRecognizer + // implementations: + // + model->train(images, labels); + // Some containers to hold new image: + vector newImages; + vector newLabels; + // You should add some images to the containers: + // + // ... + // + // Now updating the model is as easy as calling: + model->update(newImages,newLabels); + // This will preserve the old model data and extend the existing model + // with the new features extracted from newImages! + @endcode + + Calling update on an Eigenfaces model (see createEigenFaceRecognizer), which doesn't support + updating, will throw an error similar to: + + @code + OpenCV Error: The function/feature is not implemented (This FaceRecognizer (FaceRecognizer.Eigenfaces) does not support updating, you have to use FaceRecognizer::train to update it.) in update, file /home/philipp/git/opencv/modules/contrib/src/facerec.cpp, line 305 + terminate called after throwing an instance of 'cv::Exception' + @endcode + + @note The FaceRecognizer does not store your training images, because this would be very + memory intense and it's not the responsibility of te FaceRecognizer to do so. The caller is + responsible for maintaining the dataset, he want to work with. + */ + CV_WRAP virtual void update(InputArrayOfArrays src, InputArray labels); + + /** @overload */ + CV_WRAP_AS(predict_label) int predict(InputArray src) const; + + + /** @brief Predicts a label and associated confidence (e.g. distance) for a given input image. + + @param src Sample image to get a prediction from. + @param label The predicted label for the given image. + @param confidence Associated confidence (e.g. distance) for the predicted label. + + The suffix const means that prediction does not affect the internal model state, so the method can + be safely called from within different threads. + + The following example shows how to get a prediction from a trained model: + + @code + using namespace cv; + // Do your initialization here (create the cv::FaceRecognizer model) ... + // ... + // Read in a sample image: + Mat img = imread("person1/3.jpg", CV_LOAD_IMAGE_GRAYSCALE); + // And get a prediction from the cv::FaceRecognizer: + int predicted = model->predict(img); + @endcode + + Or to get a prediction and the associated confidence (e.g. distance): + + @code + using namespace cv; + // Do your initialization here (create the cv::FaceRecognizer model) ... + // ... + Mat img = imread("person1/3.jpg", CV_LOAD_IMAGE_GRAYSCALE); + // Some variables for the predicted label and associated confidence (e.g. distance): + int predicted_label = -1; + double predicted_confidence = 0.0; + // Get the prediction and associated confidence from the model + model->predict(img, predicted_label, predicted_confidence); + @endcode + */ + CV_WRAP void predict(InputArray src, CV_OUT int &label, CV_OUT double &confidence) const; + + + /** @brief - if implemented - send all result of prediction to collector that can be used for somehow custom result handling + @param src Sample image to get a prediction from. + @param collector User-defined collector object that accepts all results + + To implement this method u just have to do same internal cycle as in predict(InputArray src, CV_OUT int &label, CV_OUT double &confidence) but + not try to get "best@ result, just resend it to caller side with given collector + */ + CV_WRAP_AS(predict_collect) virtual void predict(InputArray src, Ptr collector) const = 0; + + /** @brief Saves a FaceRecognizer and its model state. + + Saves this model to a given filename, either as XML or YAML. + @param filename The filename to store this FaceRecognizer to (either XML/YAML). + + Every FaceRecognizer overwrites FaceRecognizer::save(FileStorage& fs) to save the internal model + state. FaceRecognizer::save(const String& filename) saves the state of a model to the given + filename. + + The suffix const means that prediction does not affect the internal model state, so the method can + be safely called from within different threads. + */ + CV_WRAP virtual void save(const String& filename) const; + + /** @brief Loads a FaceRecognizer and its model state. + + Loads a persisted model and state from a given XML or YAML file . Every FaceRecognizer has to + overwrite FaceRecognizer::load(FileStorage& fs) to enable loading the model state. + FaceRecognizer::load(FileStorage& fs) in turn gets called by + FaceRecognizer::load(const String& filename), to ease saving a model. + */ + CV_WRAP virtual void load(const String& filename); + + /** @overload + Saves this model to a given FileStorage. + @param fs The FileStorage to store this FaceRecognizer to. + */ + virtual void save(FileStorage& fs) const = 0; + + /** @overload */ + virtual void load(const FileStorage& fs) = 0; + + /** @brief Sets string info for the specified model's label. + + The string info is replaced by the provided value if it was set before for the specified label. + */ + CV_WRAP virtual void setLabelInfo(int label, const String& strInfo); + + /** @brief Gets string information by label. + + If an unknown label id is provided or there is no label information associated with the specified + label id the method returns an empty string. + */ + CV_WRAP virtual String getLabelInfo(int label) const; + + /** @brief Gets vector of labels by string. + + The function searches for the labels containing the specified sub-string in the associated string + info. + */ + CV_WRAP virtual std::vector getLabelsByString(const String& str) const; + /** @brief threshold parameter accessor - required for default BestMinDist collector */ + virtual double getThreshold() const = 0; + /** @brief Sets threshold of model */ + virtual void setThreshold(double val) = 0; +protected: + // Stored pairs "label id - string info" + std::map _labelsInfo; +}; + +//! @} + +}} + +#include "opencv2/face/facerec.hpp" + +#endif diff --git a/thirdparty1/linux/include/opencv2/face/bif.hpp b/thirdparty1/linux/include/opencv2/face/bif.hpp new file mode 100644 index 0000000..c22c28c --- /dev/null +++ b/thirdparty1/linux/include/opencv2/face/bif.hpp @@ -0,0 +1,83 @@ +/* +By downloading, copying, installing or using the software you agree to this license. +If you do not agree to this license, do not download, install, +copy or use the software. + + + License Agreement + For Open Source Computer Vision Library + (3-clause BSD License) + +Copyright (C) 2000-2015, Intel Corporation, all rights reserved. +Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. +Copyright (C) 2009-2015, NVIDIA Corporation, all rights reserved. +Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved. +Copyright (C) 2015, OpenCV Foundation, all rights reserved. +Copyright (C) 2015, Itseez Inc., all rights reserved. +Third party copyrights are property of their respective owners. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + + * Neither the names of the copyright holders nor the names of the contributors + may be used to endorse or promote products derived from this software + without specific prior written permission. + +This software is provided by the copyright holders and contributors "as is" and +any express or implied warranties, including, but not limited to, the implied +warranties of merchantability and fitness for a particular purpose are disclaimed. +In no event shall copyright holders or contributors be liable for any direct, +indirect, incidental, special, exemplary, or consequential damages +(including, but not limited to, procurement of substitute goods or services; +loss of use, data, or profits; or business interruption) however caused +and on any theory of liability, whether in contract, strict liability, +or tort (including negligence or otherwise) arising in any way out of +the use of this software, even if advised of the possibility of such damage. +*/ + +#ifndef __OPENCV_BIF_HPP__ +#define __OPENCV_BIF_HPP__ + +#include "opencv2/core.hpp" + +namespace cv { +namespace face { + +/** Implementation of bio-inspired features (BIF) from the paper: + * Guo, Guodong, et al. "Human age estimation using bio-inspired features." + * Computer Vision and Pattern Recognition, 2009. CVPR 2009. + */ +class CV_EXPORTS_W BIF : public Algorithm { +public: + /** @returns The number of filter bands used for computing BIF. */ + CV_WRAP virtual int getNumBands() const = 0; + + /** @returns The number of image rotations. */ + CV_WRAP virtual int getNumRotations() const = 0; + + /** Computes features sby input image. + * @param image Input image (CV_32FC1). + * @param features Feature vector (CV_32FC1). + */ + CV_WRAP virtual void compute(InputArray image, + OutputArray features) const = 0; +}; + +/** + * @param num_bands The number of filter bands (<=8) used for computing BIF. + * @param num_rotations The number of image rotations for computing BIF. + * @returns Object for computing BIF. + */ +CV_EXPORTS_W cv::Ptr createBIF(int num_bands = 8, int num_rotations = 12); + +} // namespace cv +} // namespace face + +#endif // #ifndef __OPENCV_FACEREC_HPP__ diff --git a/thirdparty1/linux/include/opencv2/face/facerec.hpp b/thirdparty1/linux/include/opencv2/face/facerec.hpp new file mode 100644 index 0000000..40f62f1 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/face/facerec.hpp @@ -0,0 +1,166 @@ +// This file is part of OpenCV project. +// It is subject to the license terms in the LICENSE file found in the top-level directory +// of this distribution and at http://opencv.org/license.html. + +// Copyright (c) 2011,2012. Philipp Wagner . +// Third party copyrights are property of their respective owners. + +#ifndef __OPENCV_FACEREC_HPP__ +#define __OPENCV_FACEREC_HPP__ + +#include "opencv2/face.hpp" +#include "opencv2/core.hpp" + +namespace cv { namespace face { + +//! @addtogroup face +//! @{ + +// base for two classes +class CV_EXPORTS_W BasicFaceRecognizer : public FaceRecognizer +{ +public: + /** @see setNumComponents */ + CV_WRAP virtual int getNumComponents() const = 0; + /** @copybrief getNumComponents @see getNumComponents */ + CV_WRAP virtual void setNumComponents(int val) = 0; + /** @see setThreshold */ + CV_WRAP virtual double getThreshold() const = 0; + /** @copybrief getThreshold @see getThreshold */ + CV_WRAP virtual void setThreshold(double val) = 0; + CV_WRAP virtual std::vector getProjections() const = 0; + CV_WRAP virtual cv::Mat getLabels() const = 0; + CV_WRAP virtual cv::Mat getEigenValues() const = 0; + CV_WRAP virtual cv::Mat getEigenVectors() const = 0; + CV_WRAP virtual cv::Mat getMean() const = 0; +}; + +/** +@param num_components The number of components (read: Eigenfaces) kept for this Principal +Component Analysis. As a hint: There's no rule how many components (read: Eigenfaces) should be +kept for good reconstruction capabilities. It is based on your input data, so experiment with the +number. Keeping 80 components should almost always be sufficient. +@param threshold The threshold applied in the prediction. + +### Notes: + +- Training and prediction must be done on grayscale images, use cvtColor to convert between the + color spaces. +- **THE EIGENFACES METHOD MAKES THE ASSUMPTION, THAT THE TRAINING AND TEST IMAGES ARE OF EQUAL + SIZE.** (caps-lock, because I got so many mails asking for this). You have to make sure your + input data has the correct shape, else a meaningful exception is thrown. Use resize to resize + the images. +- This model does not support updating. + +### Model internal data: + +- num_components see createEigenFaceRecognizer. +- threshold see createEigenFaceRecognizer. +- eigenvalues The eigenvalues for this Principal Component Analysis (ordered descending). +- eigenvectors The eigenvectors for this Principal Component Analysis (ordered by their + eigenvalue). +- mean The sample mean calculated from the training data. +- projections The projections of the training data. +- labels The threshold applied in the prediction. If the distance to the nearest neighbor is + larger than the threshold, this method returns -1. + */ +CV_EXPORTS_W Ptr createEigenFaceRecognizer(int num_components = 0, double threshold = DBL_MAX); + +/** +@param num_components The number of components (read: Fisherfaces) kept for this Linear +Discriminant Analysis with the Fisherfaces criterion. It's useful to keep all components, that +means the number of your classes c (read: subjects, persons you want to recognize). If you leave +this at the default (0) or set it to a value less-equal 0 or greater (c-1), it will be set to the +correct number (c-1) automatically. +@param threshold The threshold applied in the prediction. If the distance to the nearest neighbor +is larger than the threshold, this method returns -1. + +### Notes: + +- Training and prediction must be done on grayscale images, use cvtColor to convert between the + color spaces. +- **THE FISHERFACES METHOD MAKES THE ASSUMPTION, THAT THE TRAINING AND TEST IMAGES ARE OF EQUAL + SIZE.** (caps-lock, because I got so many mails asking for this). You have to make sure your + input data has the correct shape, else a meaningful exception is thrown. Use resize to resize + the images. +- This model does not support updating. + +### Model internal data: + +- num_components see createFisherFaceRecognizer. +- threshold see createFisherFaceRecognizer. +- eigenvalues The eigenvalues for this Linear Discriminant Analysis (ordered descending). +- eigenvectors The eigenvectors for this Linear Discriminant Analysis (ordered by their + eigenvalue). +- mean The sample mean calculated from the training data. +- projections The projections of the training data. +- labels The labels corresponding to the projections. + */ +CV_EXPORTS_W Ptr createFisherFaceRecognizer(int num_components = 0, double threshold = DBL_MAX); + +class CV_EXPORTS_W LBPHFaceRecognizer : public FaceRecognizer +{ +public: + /** @see setGridX */ + CV_WRAP virtual int getGridX() const = 0; + /** @copybrief getGridX @see getGridX */ + CV_WRAP virtual void setGridX(int val) = 0; + /** @see setGridY */ + CV_WRAP virtual int getGridY() const = 0; + /** @copybrief getGridY @see getGridY */ + CV_WRAP virtual void setGridY(int val) = 0; + /** @see setRadius */ + CV_WRAP virtual int getRadius() const = 0; + /** @copybrief getRadius @see getRadius */ + CV_WRAP virtual void setRadius(int val) = 0; + /** @see setNeighbors */ + CV_WRAP virtual int getNeighbors() const = 0; + /** @copybrief getNeighbors @see getNeighbors */ + CV_WRAP virtual void setNeighbors(int val) = 0; + /** @see setThreshold */ + CV_WRAP virtual double getThreshold() const = 0; + /** @copybrief getThreshold @see getThreshold */ + CV_WRAP virtual void setThreshold(double val) = 0; + CV_WRAP virtual std::vector getHistograms() const = 0; + CV_WRAP virtual cv::Mat getLabels() const = 0; +}; + +/** +@param radius The radius used for building the Circular Local Binary Pattern. The greater the +radius, the +@param neighbors The number of sample points to build a Circular Local Binary Pattern from. An +appropriate value is to use `8` sample points. Keep in mind: the more sample points you include, +the higher the computational cost. +@param grid_x The number of cells in the horizontal direction, 8 is a common value used in +publications. The more cells, the finer the grid, the higher the dimensionality of the resulting +feature vector. +@param grid_y The number of cells in the vertical direction, 8 is a common value used in +publications. The more cells, the finer the grid, the higher the dimensionality of the resulting +feature vector. +@param threshold The threshold applied in the prediction. If the distance to the nearest neighbor +is larger than the threshold, this method returns -1. + +### Notes: + +- The Circular Local Binary Patterns (used in training and prediction) expect the data given as + grayscale images, use cvtColor to convert between the color spaces. +- This model supports updating. + +### Model internal data: + +- radius see createLBPHFaceRecognizer. +- neighbors see createLBPHFaceRecognizer. +- grid_x see createLBPHFaceRecognizer. +- grid_y see createLBPHFaceRecognizer. +- threshold see createLBPHFaceRecognizer. +- histograms Local Binary Patterns Histograms calculated from the given training data (empty if + none was given). +- labels Labels corresponding to the calculated Local Binary Patterns Histograms. + */ +CV_EXPORTS_W Ptr createLBPHFaceRecognizer(int radius=1, int neighbors=8, int grid_x=8, int grid_y=8, double threshold = DBL_MAX); + +//! @} + +}} //namespace cv::face + +#endif //__OPENCV_FACEREC_HPP__ diff --git a/thirdparty1/linux/include/opencv2/face/predict_collector.hpp b/thirdparty1/linux/include/opencv2/face/predict_collector.hpp new file mode 100644 index 0000000..a9f907d --- /dev/null +++ b/thirdparty1/linux/include/opencv2/face/predict_collector.hpp @@ -0,0 +1,127 @@ +/* +By downloading, copying, installing or using the software you agree to this license. +If you do not agree to this license, do not download, install, +copy or use the software. + + + License Agreement + For Open Source Computer Vision Library + (3-clause BSD License) + +Copyright (C) 2000-2015, Intel Corporation, all rights reserved. +Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved. +Copyright (C) 2009-2015, NVIDIA Corporation, all rights reserved. +Copyright (C) 2010-2013, Advanced Micro Devices, Inc., all rights reserved. +Copyright (C) 2015, OpenCV Foundation, all rights reserved. +Copyright (C) 2015, Itseez Inc., all rights reserved. +Third party copyrights are property of their respective owners. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + + * Neither the names of the copyright holders nor the names of the contributors + may be used to endorse or promote products derived from this software + without specific prior written permission. + +This software is provided by the copyright holders and contributors "as is" and +any express or implied warranties, including, but not limited to, the implied +warranties of merchantability and fitness for a particular purpose are disclaimed. +In no event shall copyright holders or contributors be liable for any direct, +indirect, incidental, special, exemplary, or consequential damages +(including, but not limited to, procurement of substitute goods or services; +loss of use, data, or profits; or business interruption) however caused +and on any theory of liability, whether in contract, strict liability, +or tort (including negligence or otherwise) arising in any way out of +the use of this software, even if advised of the possibility of such damage. +*/ + +#ifndef __OPENCV_PREDICT_COLLECTOR_HPP__ +#define __OPENCV_PREDICT_COLLECTOR_HPP__ + +#include +#include +#include +#include + +#include "opencv2/core/cvstd.hpp" + +namespace cv { +namespace face { +//! @addtogroup face +//! @{ +/** @brief Abstract base class for all strategies of prediction result handling +*/ +class CV_EXPORTS_W PredictCollector +{ +public: + virtual ~PredictCollector() {} + + /** @brief Interface method called by face recognizer before results processing + @param size total size of prediction evaluation that recognizer could perform + */ + virtual void init(size_t size) { (void)size; } + + /** @brief Interface method called by face recognizer for each result + @param label current prediction label + @param dist current prediction distance (confidence) + */ + virtual bool collect(int label, double dist) = 0; +}; + +/** @brief Default predict collector + +Trace minimal distance with treshhold checking (that is default behavior for most predict logic) +*/ +class CV_EXPORTS_W StandardCollector : public PredictCollector +{ +public: + struct PredictResult + { + int label; + double distance; + PredictResult(int label_ = -1, double distance_ = DBL_MAX) : label(label_), distance(distance_) {} + }; +protected: + double threshold; + PredictResult minRes; + std::vector data; +public: + /** @brief Constructor + @param threshold_ set threshold + */ + StandardCollector(double threshold_ = DBL_MAX); + /** @brief overloaded interface method */ + void init(size_t size); + /** @brief overloaded interface method */ + bool collect(int label, double dist); + /** @brief Returns label with minimal distance */ + CV_WRAP int getMinLabel() const; + /** @brief Returns minimal distance value */ + CV_WRAP double getMinDist() const; + /** @brief Return results as vector + @param sorted If set, results will be sorted by distance + Each values is a pair of label and distance. + */ + CV_WRAP std::vector< std::pair > getResults(bool sorted = false) const; + /** @brief Return results as map + Labels are keys, values are minimal distances + */ + std::map getResultsMap() const; + /** @brief Static constructor + @param threshold set threshold + */ + CV_WRAP static Ptr create(double threshold = DBL_MAX); +}; + +//! @} +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/features2d.hpp b/thirdparty1/linux/include/opencv2/features2d.hpp new file mode 100644 index 0000000..70fe409 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/features2d.hpp @@ -0,0 +1,1365 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_FEATURES_2D_HPP +#define OPENCV_FEATURES_2D_HPP + +#include "opencv2/core.hpp" +#include "opencv2/flann/miniflann.hpp" + +/** + @defgroup features2d 2D Features Framework + @{ + @defgroup features2d_main Feature Detection and Description + @defgroup features2d_match Descriptor Matchers + +Matchers of keypoint descriptors in OpenCV have wrappers with a common interface that enables you to +easily switch between different algorithms solving the same problem. This section is devoted to +matching descriptors that are represented as vectors in a multidimensional space. All objects that +implement vector descriptor matchers inherit the DescriptorMatcher interface. + +@note + - An example explaining keypoint matching can be found at + opencv_source_code/samples/cpp/descriptor_extractor_matcher.cpp + - An example on descriptor matching evaluation can be found at + opencv_source_code/samples/cpp/detector_descriptor_matcher_evaluation.cpp + - An example on one to many image matching can be found at + opencv_source_code/samples/cpp/matching_to_many_images.cpp + + @defgroup features2d_draw Drawing Function of Keypoints and Matches + @defgroup features2d_category Object Categorization + +This section describes approaches based on local 2D features and used to categorize objects. + +@note + - A complete Bag-Of-Words sample can be found at + opencv_source_code/samples/cpp/bagofwords_classification.cpp + - (Python) An example using the features2D framework to perform object categorization can be + found at opencv_source_code/samples/python/find_obj.py + + @} + */ + +namespace cv +{ + +//! @addtogroup features2d +//! @{ + +// //! writes vector of keypoints to the file storage +// CV_EXPORTS void write(FileStorage& fs, const String& name, const std::vector& keypoints); +// //! reads vector of keypoints from the specified file storage node +// CV_EXPORTS void read(const FileNode& node, CV_OUT std::vector& keypoints); + +/** @brief A class filters a vector of keypoints. + + Because now it is difficult to provide a convenient interface for all usage scenarios of the + keypoints filter class, it has only several needed by now static methods. + */ +class CV_EXPORTS KeyPointsFilter +{ +public: + KeyPointsFilter(){} + + /* + * Remove keypoints within borderPixels of an image edge. + */ + static void runByImageBorder( std::vector& keypoints, Size imageSize, int borderSize ); + /* + * Remove keypoints of sizes out of range. + */ + static void runByKeypointSize( std::vector& keypoints, float minSize, + float maxSize=FLT_MAX ); + /* + * Remove keypoints from some image by mask for pixels of this image. + */ + static void runByPixelsMask( std::vector& keypoints, const Mat& mask ); + /* + * Remove duplicated keypoints. + */ + static void removeDuplicated( std::vector& keypoints ); + + /* + * Retain the specified number of the best keypoints (according to the response) + */ + static void retainBest( std::vector& keypoints, int npoints ); +}; + + +/************************************ Base Classes ************************************/ + +/** @brief Abstract base class for 2D image feature detectors and descriptor extractors +*/ +class CV_EXPORTS_W Feature2D : public virtual Algorithm +{ +public: + virtual ~Feature2D(); + + /** @brief Detects keypoints in an image (first variant) or image set (second variant). + + @param image Image. + @param keypoints The detected keypoints. In the second variant of the method keypoints[i] is a set + of keypoints detected in images[i] . + @param mask Mask specifying where to look for keypoints (optional). It must be a 8-bit integer + matrix with non-zero values in the region of interest. + */ + CV_WRAP virtual void detect( InputArray image, + CV_OUT std::vector& keypoints, + InputArray mask=noArray() ); + + /** @overload + @param images Image set. + @param keypoints The detected keypoints. In the second variant of the method keypoints[i] is a set + of keypoints detected in images[i] . + @param masks Masks for each input image specifying where to look for keypoints (optional). + masks[i] is a mask for images[i]. + */ + CV_WRAP virtual void detect( InputArrayOfArrays images, + CV_OUT std::vector >& keypoints, + InputArrayOfArrays masks=noArray() ); + + /** @brief Computes the descriptors for a set of keypoints detected in an image (first variant) or image set + (second variant). + + @param image Image. + @param keypoints Input collection of keypoints. Keypoints for which a descriptor cannot be + computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint + with several dominant orientations (for each orientation). + @param descriptors Computed descriptors. In the second variant of the method descriptors[i] are + descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the + descriptor for keypoint j-th keypoint. + */ + CV_WRAP virtual void compute( InputArray image, + CV_OUT CV_IN_OUT std::vector& keypoints, + OutputArray descriptors ); + + /** @overload + + @param images Image set. + @param keypoints Input collection of keypoints. Keypoints for which a descriptor cannot be + computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint + with several dominant orientations (for each orientation). + @param descriptors Computed descriptors. In the second variant of the method descriptors[i] are + descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the + descriptor for keypoint j-th keypoint. + */ + CV_WRAP virtual void compute( InputArrayOfArrays images, + CV_OUT CV_IN_OUT std::vector >& keypoints, + OutputArrayOfArrays descriptors ); + + /** Detects keypoints and computes the descriptors */ + CV_WRAP virtual void detectAndCompute( InputArray image, InputArray mask, + CV_OUT std::vector& keypoints, + OutputArray descriptors, + bool useProvidedKeypoints=false ); + + CV_WRAP virtual int descriptorSize() const; + CV_WRAP virtual int descriptorType() const; + CV_WRAP virtual int defaultNorm() const; + + CV_WRAP void write( const String& fileName ) const; + + CV_WRAP void read( const String& fileName ); + + virtual void write( FileStorage&) const; + + virtual void read( const FileNode&); + + //! Return true if detector object is empty + CV_WRAP virtual bool empty() const; +}; + +/** Feature detectors in OpenCV have wrappers with a common interface that enables you to easily switch +between different algorithms solving the same problem. All objects that implement keypoint detectors +inherit the FeatureDetector interface. */ +typedef Feature2D FeatureDetector; + +/** Extractors of keypoint descriptors in OpenCV have wrappers with a common interface that enables you +to easily switch between different algorithms solving the same problem. This section is devoted to +computing descriptors represented as vectors in a multidimensional space. All objects that implement +the vector descriptor extractors inherit the DescriptorExtractor interface. + */ +typedef Feature2D DescriptorExtractor; + +//! @addtogroup features2d_main +//! @{ + +/** @brief Class implementing the BRISK keypoint detector and descriptor extractor, described in @cite LCS11 . + */ +class CV_EXPORTS_W BRISK : public Feature2D +{ +public: + /** @brief The BRISK constructor + + @param thresh AGAST detection threshold score. + @param octaves detection octaves. Use 0 to do single scale. + @param patternScale apply this scale to the pattern used for sampling the neighbourhood of a + keypoint. + */ + CV_WRAP static Ptr create(int thresh=30, int octaves=3, float patternScale=1.0f); + + /** @brief The BRISK constructor for a custom pattern + + @param radiusList defines the radii (in pixels) where the samples around a keypoint are taken (for + keypoint scale 1). + @param numberList defines the number of sampling points on the sampling circle. Must be the same + size as radiusList.. + @param dMax threshold for the short pairings used for descriptor formation (in pixels for keypoint + scale 1). + @param dMin threshold for the long pairings used for orientation determination (in pixels for + keypoint scale 1). + @param indexChange index remapping of the bits. */ + CV_WRAP static Ptr create(const std::vector &radiusList, const std::vector &numberList, + float dMax=5.85f, float dMin=8.2f, const std::vector& indexChange=std::vector()); +}; + +/** @brief Class implementing the ORB (*oriented BRIEF*) keypoint detector and descriptor extractor + +described in @cite RRKB11 . The algorithm uses FAST in pyramids to detect stable keypoints, selects +the strongest features using FAST or Harris response, finds their orientation using first-order +moments and computes the descriptors using BRIEF (where the coordinates of random point pairs (or +k-tuples) are rotated according to the measured orientation). + */ +class CV_EXPORTS_W ORB : public Feature2D +{ +public: + enum { kBytes = 32, HARRIS_SCORE=0, FAST_SCORE=1 }; + + /** @brief The ORB constructor + + @param nfeatures The maximum number of features to retain. + @param scaleFactor Pyramid decimation ratio, greater than 1. scaleFactor==2 means the classical + pyramid, where each next level has 4x less pixels than the previous, but such a big scale factor + will degrade feature matching scores dramatically. On the other hand, too close to 1 scale factor + will mean that to cover certain scale range you will need more pyramid levels and so the speed + will suffer. + @param nlevels The number of pyramid levels. The smallest level will have linear size equal to + input_image_linear_size/pow(scaleFactor, nlevels). + @param edgeThreshold This is size of the border where the features are not detected. It should + roughly match the patchSize parameter. + @param firstLevel It should be 0 in the current implementation. + @param WTA_K The number of points that produce each element of the oriented BRIEF descriptor. The + default value 2 means the BRIEF where we take a random point pair and compare their brightnesses, + so we get 0/1 response. Other possible values are 3 and 4. For example, 3 means that we take 3 + random points (of course, those point coordinates are random, but they are generated from the + pre-defined seed, so each element of BRIEF descriptor is computed deterministically from the pixel + rectangle), find point of maximum brightness and output index of the winner (0, 1 or 2). Such + output will occupy 2 bits, and therefore it will need a special variant of Hamming distance, + denoted as NORM_HAMMING2 (2 bits per bin). When WTA_K=4, we take 4 random points to compute each + bin (that will also occupy 2 bits with possible values 0, 1, 2 or 3). + @param scoreType The default HARRIS_SCORE means that Harris algorithm is used to rank features + (the score is written to KeyPoint::score and is used to retain best nfeatures features); + FAST_SCORE is alternative value of the parameter that produces slightly less stable keypoints, + but it is a little faster to compute. + @param patchSize size of the patch used by the oriented BRIEF descriptor. Of course, on smaller + pyramid layers the perceived image area covered by a feature will be larger. + @param fastThreshold + */ + CV_WRAP static Ptr create(int nfeatures=500, float scaleFactor=1.2f, int nlevels=8, int edgeThreshold=31, + int firstLevel=0, int WTA_K=2, int scoreType=ORB::HARRIS_SCORE, int patchSize=31, int fastThreshold=20); + + CV_WRAP virtual void setMaxFeatures(int maxFeatures) = 0; + CV_WRAP virtual int getMaxFeatures() const = 0; + + CV_WRAP virtual void setScaleFactor(double scaleFactor) = 0; + CV_WRAP virtual double getScaleFactor() const = 0; + + CV_WRAP virtual void setNLevels(int nlevels) = 0; + CV_WRAP virtual int getNLevels() const = 0; + + CV_WRAP virtual void setEdgeThreshold(int edgeThreshold) = 0; + CV_WRAP virtual int getEdgeThreshold() const = 0; + + CV_WRAP virtual void setFirstLevel(int firstLevel) = 0; + CV_WRAP virtual int getFirstLevel() const = 0; + + CV_WRAP virtual void setWTA_K(int wta_k) = 0; + CV_WRAP virtual int getWTA_K() const = 0; + + CV_WRAP virtual void setScoreType(int scoreType) = 0; + CV_WRAP virtual int getScoreType() const = 0; + + CV_WRAP virtual void setPatchSize(int patchSize) = 0; + CV_WRAP virtual int getPatchSize() const = 0; + + CV_WRAP virtual void setFastThreshold(int fastThreshold) = 0; + CV_WRAP virtual int getFastThreshold() const = 0; +}; + +/** @brief Maximally stable extremal region extractor + +The class encapsulates all the parameters of the %MSER extraction algorithm (see [wiki +article](http://en.wikipedia.org/wiki/Maximally_stable_extremal_regions)). + +- there are two different implementation of %MSER: one for grey image, one for color image + +- the grey image algorithm is taken from: @cite nister2008linear ; the paper claims to be faster +than union-find method; it actually get 1.5~2m/s on my centrino L7200 1.2GHz laptop. + +- the color image algorithm is taken from: @cite forssen2007maximally ; it should be much slower +than grey image method ( 3~4 times ); the chi_table.h file is taken directly from paper's source +code which is distributed under GPL. + +- (Python) A complete example showing the use of the %MSER detector can be found at samples/python/mser.py +*/ +class CV_EXPORTS_W MSER : public Feature2D +{ +public: + /** @brief Full consturctor for %MSER detector + + @param _delta it compares \f$(size_{i}-size_{i-delta})/size_{i-delta}\f$ + @param _min_area prune the area which smaller than minArea + @param _max_area prune the area which bigger than maxArea + @param _max_variation prune the area have simliar size to its children + @param _min_diversity for color image, trace back to cut off mser with diversity less than min_diversity + @param _max_evolution for color image, the evolution steps + @param _area_threshold for color image, the area threshold to cause re-initialize + @param _min_margin for color image, ignore too small margin + @param _edge_blur_size for color image, the aperture size for edge blur + */ + CV_WRAP static Ptr create( int _delta=5, int _min_area=60, int _max_area=14400, + double _max_variation=0.25, double _min_diversity=.2, + int _max_evolution=200, double _area_threshold=1.01, + double _min_margin=0.003, int _edge_blur_size=5 ); + + /** @brief Detect %MSER regions + + @param image input image (8UC1, 8UC3 or 8UC4, must be greater or equal than 3x3) + @param msers resulting list of point sets + @param bboxes resulting bounding boxes + */ + CV_WRAP virtual void detectRegions( InputArray image, + CV_OUT std::vector >& msers, + CV_OUT std::vector& bboxes ) = 0; + + CV_WRAP virtual void setDelta(int delta) = 0; + CV_WRAP virtual int getDelta() const = 0; + + CV_WRAP virtual void setMinArea(int minArea) = 0; + CV_WRAP virtual int getMinArea() const = 0; + + CV_WRAP virtual void setMaxArea(int maxArea) = 0; + CV_WRAP virtual int getMaxArea() const = 0; + + CV_WRAP virtual void setPass2Only(bool f) = 0; + CV_WRAP virtual bool getPass2Only() const = 0; +}; + +/** @overload */ +CV_EXPORTS void FAST( InputArray image, CV_OUT std::vector& keypoints, + int threshold, bool nonmaxSuppression=true ); + +/** @brief Detects corners using the FAST algorithm + +@param image grayscale image where keypoints (corners) are detected. +@param keypoints keypoints detected on the image. +@param threshold threshold on difference between intensity of the central pixel and pixels of a +circle around this pixel. +@param nonmaxSuppression if true, non-maximum suppression is applied to detected corners +(keypoints). +@param type one of the three neighborhoods as defined in the paper: +FastFeatureDetector::TYPE_9_16, FastFeatureDetector::TYPE_7_12, +FastFeatureDetector::TYPE_5_8 + +Detects corners using the FAST algorithm by @cite Rosten06 . + +@note In Python API, types are given as cv2.FAST_FEATURE_DETECTOR_TYPE_5_8, +cv2.FAST_FEATURE_DETECTOR_TYPE_7_12 and cv2.FAST_FEATURE_DETECTOR_TYPE_9_16. For corner +detection, use cv2.FAST.detect() method. + */ +CV_EXPORTS void FAST( InputArray image, CV_OUT std::vector& keypoints, + int threshold, bool nonmaxSuppression, int type ); + +//! @} features2d_main + +//! @addtogroup features2d_main +//! @{ + +/** @brief Wrapping class for feature detection using the FAST method. : + */ +class CV_EXPORTS_W FastFeatureDetector : public Feature2D +{ +public: + enum + { + TYPE_5_8 = 0, TYPE_7_12 = 1, TYPE_9_16 = 2, + THRESHOLD = 10000, NONMAX_SUPPRESSION=10001, FAST_N=10002, + }; + + CV_WRAP static Ptr create( int threshold=10, + bool nonmaxSuppression=true, + int type=FastFeatureDetector::TYPE_9_16 ); + + CV_WRAP virtual void setThreshold(int threshold) = 0; + CV_WRAP virtual int getThreshold() const = 0; + + CV_WRAP virtual void setNonmaxSuppression(bool f) = 0; + CV_WRAP virtual bool getNonmaxSuppression() const = 0; + + CV_WRAP virtual void setType(int type) = 0; + CV_WRAP virtual int getType() const = 0; +}; + +/** @overload */ +CV_EXPORTS void AGAST( InputArray image, CV_OUT std::vector& keypoints, + int threshold, bool nonmaxSuppression=true ); + +/** @brief Detects corners using the AGAST algorithm + +@param image grayscale image where keypoints (corners) are detected. +@param keypoints keypoints detected on the image. +@param threshold threshold on difference between intensity of the central pixel and pixels of a +circle around this pixel. +@param nonmaxSuppression if true, non-maximum suppression is applied to detected corners +(keypoints). +@param type one of the four neighborhoods as defined in the paper: +AgastFeatureDetector::AGAST_5_8, AgastFeatureDetector::AGAST_7_12d, +AgastFeatureDetector::AGAST_7_12s, AgastFeatureDetector::OAST_9_16 + +For non-Intel platforms, there is a tree optimised variant of AGAST with same numerical results. +The 32-bit binary tree tables were generated automatically from original code using perl script. +The perl script and examples of tree generation are placed in features2d/doc folder. +Detects corners using the AGAST algorithm by @cite mair2010_agast . + + */ +CV_EXPORTS void AGAST( InputArray image, CV_OUT std::vector& keypoints, + int threshold, bool nonmaxSuppression, int type ); +//! @} features2d_main + +//! @addtogroup features2d_main +//! @{ + +/** @brief Wrapping class for feature detection using the AGAST method. : + */ +class CV_EXPORTS_W AgastFeatureDetector : public Feature2D +{ +public: + enum + { + AGAST_5_8 = 0, AGAST_7_12d = 1, AGAST_7_12s = 2, OAST_9_16 = 3, + THRESHOLD = 10000, NONMAX_SUPPRESSION = 10001, + }; + + CV_WRAP static Ptr create( int threshold=10, + bool nonmaxSuppression=true, + int type=AgastFeatureDetector::OAST_9_16 ); + + CV_WRAP virtual void setThreshold(int threshold) = 0; + CV_WRAP virtual int getThreshold() const = 0; + + CV_WRAP virtual void setNonmaxSuppression(bool f) = 0; + CV_WRAP virtual bool getNonmaxSuppression() const = 0; + + CV_WRAP virtual void setType(int type) = 0; + CV_WRAP virtual int getType() const = 0; +}; + +/** @brief Wrapping class for feature detection using the goodFeaturesToTrack function. : + */ +class CV_EXPORTS_W GFTTDetector : public Feature2D +{ +public: + CV_WRAP static Ptr create( int maxCorners=1000, double qualityLevel=0.01, double minDistance=1, + int blockSize=3, bool useHarrisDetector=false, double k=0.04 ); + CV_WRAP virtual void setMaxFeatures(int maxFeatures) = 0; + CV_WRAP virtual int getMaxFeatures() const = 0; + + CV_WRAP virtual void setQualityLevel(double qlevel) = 0; + CV_WRAP virtual double getQualityLevel() const = 0; + + CV_WRAP virtual void setMinDistance(double minDistance) = 0; + CV_WRAP virtual double getMinDistance() const = 0; + + CV_WRAP virtual void setBlockSize(int blockSize) = 0; + CV_WRAP virtual int getBlockSize() const = 0; + + CV_WRAP virtual void setHarrisDetector(bool val) = 0; + CV_WRAP virtual bool getHarrisDetector() const = 0; + + CV_WRAP virtual void setK(double k) = 0; + CV_WRAP virtual double getK() const = 0; +}; + +/** @brief Class for extracting blobs from an image. : + +The class implements a simple algorithm for extracting blobs from an image: + +1. Convert the source image to binary images by applying thresholding with several thresholds from + minThreshold (inclusive) to maxThreshold (exclusive) with distance thresholdStep between + neighboring thresholds. +2. Extract connected components from every binary image by findContours and calculate their + centers. +3. Group centers from several binary images by their coordinates. Close centers form one group that + corresponds to one blob, which is controlled by the minDistBetweenBlobs parameter. +4. From the groups, estimate final centers of blobs and their radiuses and return as locations and + sizes of keypoints. + +This class performs several filtrations of returned blobs. You should set filterBy\* to true/false +to turn on/off corresponding filtration. Available filtrations: + +- **By color**. This filter compares the intensity of a binary image at the center of a blob to +blobColor. If they differ, the blob is filtered out. Use blobColor = 0 to extract dark blobs +and blobColor = 255 to extract light blobs. +- **By area**. Extracted blobs have an area between minArea (inclusive) and maxArea (exclusive). +- **By circularity**. Extracted blobs have circularity +(\f$\frac{4*\pi*Area}{perimeter * perimeter}\f$) between minCircularity (inclusive) and +maxCircularity (exclusive). +- **By ratio of the minimum inertia to maximum inertia**. Extracted blobs have this ratio +between minInertiaRatio (inclusive) and maxInertiaRatio (exclusive). +- **By convexity**. Extracted blobs have convexity (area / area of blob convex hull) between +minConvexity (inclusive) and maxConvexity (exclusive). + +Default values of parameters are tuned to extract dark circular blobs. + */ +class CV_EXPORTS_W SimpleBlobDetector : public Feature2D +{ +public: + struct CV_EXPORTS_W_SIMPLE Params + { + CV_WRAP Params(); + CV_PROP_RW float thresholdStep; + CV_PROP_RW float minThreshold; + CV_PROP_RW float maxThreshold; + CV_PROP_RW size_t minRepeatability; + CV_PROP_RW float minDistBetweenBlobs; + + CV_PROP_RW bool filterByColor; + CV_PROP_RW uchar blobColor; + + CV_PROP_RW bool filterByArea; + CV_PROP_RW float minArea, maxArea; + + CV_PROP_RW bool filterByCircularity; + CV_PROP_RW float minCircularity, maxCircularity; + + CV_PROP_RW bool filterByInertia; + CV_PROP_RW float minInertiaRatio, maxInertiaRatio; + + CV_PROP_RW bool filterByConvexity; + CV_PROP_RW float minConvexity, maxConvexity; + + void read( const FileNode& fn ); + void write( FileStorage& fs ) const; + }; + + CV_WRAP static Ptr + create(const SimpleBlobDetector::Params ¶meters = SimpleBlobDetector::Params()); +}; + +//! @} features2d_main + +//! @addtogroup features2d_main +//! @{ + +/** @brief Class implementing the KAZE keypoint detector and descriptor extractor, described in @cite ABD12 . + +@note AKAZE descriptor can only be used with KAZE or AKAZE keypoints .. [ABD12] KAZE Features. Pablo +F. Alcantarilla, Adrien Bartoli and Andrew J. Davison. In European Conference on Computer Vision +(ECCV), Fiorenze, Italy, October 2012. +*/ +class CV_EXPORTS_W KAZE : public Feature2D +{ +public: + enum + { + DIFF_PM_G1 = 0, + DIFF_PM_G2 = 1, + DIFF_WEICKERT = 2, + DIFF_CHARBONNIER = 3 + }; + + /** @brief The KAZE constructor + + @param extended Set to enable extraction of extended (128-byte) descriptor. + @param upright Set to enable use of upright descriptors (non rotation-invariant). + @param threshold Detector response threshold to accept point + @param nOctaves Maximum octave evolution of the image + @param nOctaveLayers Default number of sublevels per scale level + @param diffusivity Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or + DIFF_CHARBONNIER + */ + CV_WRAP static Ptr create(bool extended=false, bool upright=false, + float threshold = 0.001f, + int nOctaves = 4, int nOctaveLayers = 4, + int diffusivity = KAZE::DIFF_PM_G2); + + CV_WRAP virtual void setExtended(bool extended) = 0; + CV_WRAP virtual bool getExtended() const = 0; + + CV_WRAP virtual void setUpright(bool upright) = 0; + CV_WRAP virtual bool getUpright() const = 0; + + CV_WRAP virtual void setThreshold(double threshold) = 0; + CV_WRAP virtual double getThreshold() const = 0; + + CV_WRAP virtual void setNOctaves(int octaves) = 0; + CV_WRAP virtual int getNOctaves() const = 0; + + CV_WRAP virtual void setNOctaveLayers(int octaveLayers) = 0; + CV_WRAP virtual int getNOctaveLayers() const = 0; + + CV_WRAP virtual void setDiffusivity(int diff) = 0; + CV_WRAP virtual int getDiffusivity() const = 0; +}; + +/** @brief Class implementing the AKAZE keypoint detector and descriptor extractor, described in @cite ANB13 . : + +@note AKAZE descriptors can only be used with KAZE or AKAZE keypoints. Try to avoid using *extract* +and *detect* instead of *operator()* due to performance reasons. .. [ANB13] Fast Explicit Diffusion +for Accelerated Features in Nonlinear Scale Spaces. Pablo F. Alcantarilla, Jesús Nuevo and Adrien +Bartoli. In British Machine Vision Conference (BMVC), Bristol, UK, September 2013. + */ +class CV_EXPORTS_W AKAZE : public Feature2D +{ +public: + // AKAZE descriptor type + enum + { + DESCRIPTOR_KAZE_UPRIGHT = 2, ///< Upright descriptors, not invariant to rotation + DESCRIPTOR_KAZE = 3, + DESCRIPTOR_MLDB_UPRIGHT = 4, ///< Upright descriptors, not invariant to rotation + DESCRIPTOR_MLDB = 5 + }; + + /** @brief The AKAZE constructor + + @param descriptor_type Type of the extracted descriptor: DESCRIPTOR_KAZE, + DESCRIPTOR_KAZE_UPRIGHT, DESCRIPTOR_MLDB or DESCRIPTOR_MLDB_UPRIGHT. + @param descriptor_size Size of the descriptor in bits. 0 -\> Full size + @param descriptor_channels Number of channels in the descriptor (1, 2, 3) + @param threshold Detector response threshold to accept point + @param nOctaves Maximum octave evolution of the image + @param nOctaveLayers Default number of sublevels per scale level + @param diffusivity Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or + DIFF_CHARBONNIER + */ + CV_WRAP static Ptr create(int descriptor_type=AKAZE::DESCRIPTOR_MLDB, + int descriptor_size = 0, int descriptor_channels = 3, + float threshold = 0.001f, int nOctaves = 4, + int nOctaveLayers = 4, int diffusivity = KAZE::DIFF_PM_G2); + + CV_WRAP virtual void setDescriptorType(int dtype) = 0; + CV_WRAP virtual int getDescriptorType() const = 0; + + CV_WRAP virtual void setDescriptorSize(int dsize) = 0; + CV_WRAP virtual int getDescriptorSize() const = 0; + + CV_WRAP virtual void setDescriptorChannels(int dch) = 0; + CV_WRAP virtual int getDescriptorChannels() const = 0; + + CV_WRAP virtual void setThreshold(double threshold) = 0; + CV_WRAP virtual double getThreshold() const = 0; + + CV_WRAP virtual void setNOctaves(int octaves) = 0; + CV_WRAP virtual int getNOctaves() const = 0; + + CV_WRAP virtual void setNOctaveLayers(int octaveLayers) = 0; + CV_WRAP virtual int getNOctaveLayers() const = 0; + + CV_WRAP virtual void setDiffusivity(int diff) = 0; + CV_WRAP virtual int getDiffusivity() const = 0; +}; + +//! @} features2d_main + +/****************************************************************************************\ +* Distance * +\****************************************************************************************/ + +template +struct CV_EXPORTS Accumulator +{ + typedef T Type; +}; + +template<> struct Accumulator { typedef float Type; }; +template<> struct Accumulator { typedef float Type; }; +template<> struct Accumulator { typedef float Type; }; +template<> struct Accumulator { typedef float Type; }; + +/* + * Squared Euclidean distance functor + */ +template +struct CV_EXPORTS SL2 +{ + enum { normType = NORM_L2SQR }; + typedef T ValueType; + typedef typename Accumulator::Type ResultType; + + ResultType operator()( const T* a, const T* b, int size ) const + { + return normL2Sqr(a, b, size); + } +}; + +/* + * Euclidean distance functor + */ +template +struct CV_EXPORTS L2 +{ + enum { normType = NORM_L2 }; + typedef T ValueType; + typedef typename Accumulator::Type ResultType; + + ResultType operator()( const T* a, const T* b, int size ) const + { + return (ResultType)std::sqrt((double)normL2Sqr(a, b, size)); + } +}; + +/* + * Manhattan distance (city block distance) functor + */ +template +struct CV_EXPORTS L1 +{ + enum { normType = NORM_L1 }; + typedef T ValueType; + typedef typename Accumulator::Type ResultType; + + ResultType operator()( const T* a, const T* b, int size ) const + { + return normL1(a, b, size); + } +}; + +/****************************************************************************************\ +* DescriptorMatcher * +\****************************************************************************************/ + +//! @addtogroup features2d_match +//! @{ + +/** @brief Abstract base class for matching keypoint descriptors. + +It has two groups of match methods: for matching descriptors of an image with another image or with +an image set. + */ +class CV_EXPORTS_W DescriptorMatcher : public Algorithm +{ +public: + enum + { + FLANNBASED = 1, + BRUTEFORCE = 2, + BRUTEFORCE_L1 = 3, + BRUTEFORCE_HAMMING = 4, + BRUTEFORCE_HAMMINGLUT = 5, + BRUTEFORCE_SL2 = 6 + }; + virtual ~DescriptorMatcher(); + + /** @brief Adds descriptors to train a CPU(trainDescCollectionis) or GPU(utrainDescCollectionis) descriptor + collection. + + If the collection is not empty, the new descriptors are added to existing train descriptors. + + @param descriptors Descriptors to add. Each descriptors[i] is a set of descriptors from the same + train image. + */ + CV_WRAP virtual void add( InputArrayOfArrays descriptors ); + + /** @brief Returns a constant link to the train descriptor collection trainDescCollection . + */ + CV_WRAP const std::vector& getTrainDescriptors() const; + + /** @brief Clears the train descriptor collections. + */ + CV_WRAP virtual void clear(); + + /** @brief Returns true if there are no train descriptors in the both collections. + */ + CV_WRAP virtual bool empty() const; + + /** @brief Returns true if the descriptor matcher supports masking permissible matches. + */ + CV_WRAP virtual bool isMaskSupported() const = 0; + + /** @brief Trains a descriptor matcher + + Trains a descriptor matcher (for example, the flann index). In all methods to match, the method + train() is run every time before matching. Some descriptor matchers (for example, BruteForceMatcher) + have an empty implementation of this method. Other matchers really train their inner structures (for + example, FlannBasedMatcher trains flann::Index ). + */ + CV_WRAP virtual void train(); + + /** @brief Finds the best match for each descriptor from a query set. + + @param queryDescriptors Query set of descriptors. + @param trainDescriptors Train set of descriptors. This set is not added to the train descriptors + collection stored in the class object. + @param matches Matches. If a query descriptor is masked out in mask , no match is added for this + descriptor. So, matches size may be smaller than the query descriptors count. + @param mask Mask specifying permissible matches between an input query and train matrices of + descriptors. + + In the first variant of this method, the train descriptors are passed as an input argument. In the + second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is + used. Optional mask (or masks) can be passed to specify which query and training descriptors can be + matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if + mask.at\(i,j) is non-zero. + */ + CV_WRAP void match( InputArray queryDescriptors, InputArray trainDescriptors, + CV_OUT std::vector& matches, InputArray mask=noArray() ) const; + + /** @brief Finds the k best matches for each descriptor from a query set. + + @param queryDescriptors Query set of descriptors. + @param trainDescriptors Train set of descriptors. This set is not added to the train descriptors + collection stored in the class object. + @param mask Mask specifying permissible matches between an input query and train matrices of + descriptors. + @param matches Matches. Each matches[i] is k or less matches for the same query descriptor. + @param k Count of best matches found per each query descriptor or less if a query descriptor has + less than k possible matches in total. + @param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is + false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, + the matches vector does not contain matches for fully masked-out query descriptors. + + These extended variants of DescriptorMatcher::match methods find several best matches for each query + descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match + for the details about query and train descriptors. + */ + CV_WRAP void knnMatch( InputArray queryDescriptors, InputArray trainDescriptors, + CV_OUT std::vector >& matches, int k, + InputArray mask=noArray(), bool compactResult=false ) const; + + /** @brief For each query descriptor, finds the training descriptors not farther than the specified distance. + + @param queryDescriptors Query set of descriptors. + @param trainDescriptors Train set of descriptors. This set is not added to the train descriptors + collection stored in the class object. + @param matches Found matches. + @param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is + false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, + the matches vector does not contain matches for fully masked-out query descriptors. + @param maxDistance Threshold for the distance between matched descriptors. Distance means here + metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured + in Pixels)! + @param mask Mask specifying permissible matches between an input query and train matrices of + descriptors. + + For each query descriptor, the methods find such training descriptors that the distance between the + query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are + returned in the distance increasing order. + */ + CV_WRAP void radiusMatch( InputArray queryDescriptors, InputArray trainDescriptors, + CV_OUT std::vector >& matches, float maxDistance, + InputArray mask=noArray(), bool compactResult=false ) const; + + /** @overload + @param queryDescriptors Query set of descriptors. + @param matches Matches. If a query descriptor is masked out in mask , no match is added for this + descriptor. So, matches size may be smaller than the query descriptors count. + @param masks Set of masks. Each masks[i] specifies permissible matches between the input query + descriptors and stored train descriptors from the i-th image trainDescCollection[i]. + */ + CV_WRAP void match( InputArray queryDescriptors, CV_OUT std::vector& matches, + InputArrayOfArrays masks=noArray() ); + /** @overload + @param queryDescriptors Query set of descriptors. + @param matches Matches. Each matches[i] is k or less matches for the same query descriptor. + @param k Count of best matches found per each query descriptor or less if a query descriptor has + less than k possible matches in total. + @param masks Set of masks. Each masks[i] specifies permissible matches between the input query + descriptors and stored train descriptors from the i-th image trainDescCollection[i]. + @param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is + false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, + the matches vector does not contain matches for fully masked-out query descriptors. + */ + CV_WRAP void knnMatch( InputArray queryDescriptors, CV_OUT std::vector >& matches, int k, + InputArrayOfArrays masks=noArray(), bool compactResult=false ); + /** @overload + @param queryDescriptors Query set of descriptors. + @param matches Found matches. + @param maxDistance Threshold for the distance between matched descriptors. Distance means here + metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured + in Pixels)! + @param masks Set of masks. Each masks[i] specifies permissible matches between the input query + descriptors and stored train descriptors from the i-th image trainDescCollection[i]. + @param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is + false, the matches vector has the same size as queryDescriptors rows. If compactResult is true, + the matches vector does not contain matches for fully masked-out query descriptors. + */ + CV_WRAP void radiusMatch( InputArray queryDescriptors, CV_OUT std::vector >& matches, float maxDistance, + InputArrayOfArrays masks=noArray(), bool compactResult=false ); + + + CV_WRAP void write( const String& fileName ) const + { + FileStorage fs(fileName, FileStorage::WRITE); + write(fs); + } + + CV_WRAP void read( const String& fileName ) + { + FileStorage fs(fileName, FileStorage::READ); + read(fs.root()); + } + // Reads matcher object from a file node + virtual void read( const FileNode& ); + // Writes matcher object to a file storage + virtual void write( FileStorage& ) const; + + /** @brief Clones the matcher. + + @param emptyTrainData If emptyTrainData is false, the method creates a deep copy of the object, + that is, copies both parameters and train data. If emptyTrainData is true, the method creates an + object copy with the current parameters but with empty train data. + */ + CV_WRAP virtual Ptr clone( bool emptyTrainData=false ) const = 0; + + /** @brief Creates a descriptor matcher of a given type with the default parameters (using default + constructor). + + @param descriptorMatcherType Descriptor matcher type. Now the following matcher types are + supported: + - `BruteForce` (it uses L2 ) + - `BruteForce-L1` + - `BruteForce-Hamming` + - `BruteForce-Hamming(2)` + - `FlannBased` + */ + CV_WRAP static Ptr create( const String& descriptorMatcherType ); + + CV_WRAP static Ptr create( int matcherType ); + +protected: + /** + * Class to work with descriptors from several images as with one merged matrix. + * It is used e.g. in FlannBasedMatcher. + */ + class CV_EXPORTS DescriptorCollection + { + public: + DescriptorCollection(); + DescriptorCollection( const DescriptorCollection& collection ); + virtual ~DescriptorCollection(); + + // Vector of matrices "descriptors" will be merged to one matrix "mergedDescriptors" here. + void set( const std::vector& descriptors ); + virtual void clear(); + + const Mat& getDescriptors() const; + const Mat getDescriptor( int imgIdx, int localDescIdx ) const; + const Mat getDescriptor( int globalDescIdx ) const; + void getLocalIdx( int globalDescIdx, int& imgIdx, int& localDescIdx ) const; + + int size() const; + + protected: + Mat mergedDescriptors; + std::vector startIdxs; + }; + + //! In fact the matching is implemented only by the following two methods. These methods suppose + //! that the class object has been trained already. Public match methods call these methods + //! after calling train(). + virtual void knnMatchImpl( InputArray queryDescriptors, std::vector >& matches, int k, + InputArrayOfArrays masks=noArray(), bool compactResult=false ) = 0; + virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector >& matches, float maxDistance, + InputArrayOfArrays masks=noArray(), bool compactResult=false ) = 0; + + static bool isPossibleMatch( InputArray mask, int queryIdx, int trainIdx ); + static bool isMaskedOut( InputArrayOfArrays masks, int queryIdx ); + + static Mat clone_op( Mat m ) { return m.clone(); } + void checkMasks( InputArrayOfArrays masks, int queryDescriptorsCount ) const; + + //! Collection of descriptors from train images. + std::vector trainDescCollection; + std::vector utrainDescCollection; +}; + +/** @brief Brute-force descriptor matcher. + +For each descriptor in the first set, this matcher finds the closest descriptor in the second set +by trying each one. This descriptor matcher supports masking permissible matches of descriptor +sets. + */ +class CV_EXPORTS_W BFMatcher : public DescriptorMatcher +{ +public: + /** @brief Brute-force matcher constructor (obsolete). Please use BFMatcher.create() + * + * + */ + CV_WRAP BFMatcher( int normType=NORM_L2, bool crossCheck=false ); + + virtual ~BFMatcher() {} + + virtual bool isMaskSupported() const { return true; } + + /* @brief Brute-force matcher create method. + @param normType One of NORM_L1, NORM_L2, NORM_HAMMING, NORM_HAMMING2. L1 and L2 norms are + preferable choices for SIFT and SURF descriptors, NORM_HAMMING should be used with ORB, BRISK and + BRIEF, NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4 (see ORB::ORB constructor + description). + @param crossCheck If it is false, this is will be default BFMatcher behaviour when it finds the k + nearest neighbors for each query descriptor. If crossCheck==true, then the knnMatch() method with + k=1 will only return pairs (i,j) such that for i-th query descriptor the j-th descriptor in the + matcher's collection is the nearest and vice versa, i.e. the BFMatcher will only return consistent + pairs. Such technique usually produces best results with minimal number of outliers when there are + enough matches. This is alternative to the ratio test, used by D. Lowe in SIFT paper. + */ + CV_WRAP static Ptr create( int normType=NORM_L2, bool crossCheck=false ) ; + + virtual Ptr clone( bool emptyTrainData=false ) const; +protected: + virtual void knnMatchImpl( InputArray queryDescriptors, std::vector >& matches, int k, + InputArrayOfArrays masks=noArray(), bool compactResult=false ); + virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector >& matches, float maxDistance, + InputArrayOfArrays masks=noArray(), bool compactResult=false ); + + int normType; + bool crossCheck; +}; + + +/** @brief Flann-based descriptor matcher. + +This matcher trains cv::flann::Index on a train descriptor collection and calls its nearest search +methods to find the best matches. So, this matcher may be faster when matching a large train +collection than the brute force matcher. FlannBasedMatcher does not support masking permissible +matches of descriptor sets because flann::Index does not support this. : + */ +class CV_EXPORTS_W FlannBasedMatcher : public DescriptorMatcher +{ +public: + CV_WRAP FlannBasedMatcher( const Ptr& indexParams=makePtr(), + const Ptr& searchParams=makePtr() ); + + virtual void add( InputArrayOfArrays descriptors ); + virtual void clear(); + + // Reads matcher object from a file node + virtual void read( const FileNode& ); + // Writes matcher object to a file storage + virtual void write( FileStorage& ) const; + + virtual void train(); + virtual bool isMaskSupported() const; + + CV_WRAP static Ptr create(); + + virtual Ptr clone( bool emptyTrainData=false ) const; +protected: + static void convertToDMatches( const DescriptorCollection& descriptors, + const Mat& indices, const Mat& distances, + std::vector >& matches ); + + virtual void knnMatchImpl( InputArray queryDescriptors, std::vector >& matches, int k, + InputArrayOfArrays masks=noArray(), bool compactResult=false ); + virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector >& matches, float maxDistance, + InputArrayOfArrays masks=noArray(), bool compactResult=false ); + + Ptr indexParams; + Ptr searchParams; + Ptr flannIndex; + + DescriptorCollection mergedDescriptors; + int addedDescCount; +}; + +//! @} features2d_match + +/****************************************************************************************\ +* Drawing functions * +\****************************************************************************************/ + +//! @addtogroup features2d_draw +//! @{ + +struct CV_EXPORTS DrawMatchesFlags +{ + enum{ DEFAULT = 0, //!< Output image matrix will be created (Mat::create), + //!< i.e. existing memory of output image may be reused. + //!< Two source image, matches and single keypoints will be drawn. + //!< For each keypoint only the center point will be drawn (without + //!< the circle around keypoint with keypoint size and orientation). + DRAW_OVER_OUTIMG = 1, //!< Output image matrix will not be created (Mat::create). + //!< Matches will be drawn on existing content of output image. + NOT_DRAW_SINGLE_POINTS = 2, //!< Single keypoints will not be drawn. + DRAW_RICH_KEYPOINTS = 4 //!< For each keypoint the circle around keypoint with keypoint size and + //!< orientation will be drawn. + }; +}; + +/** @brief Draws keypoints. + +@param image Source image. +@param keypoints Keypoints from the source image. +@param outImage Output image. Its content depends on the flags value defining what is drawn in the +output image. See possible flags bit values below. +@param color Color of keypoints. +@param flags Flags setting drawing features. Possible flags bit values are defined by +DrawMatchesFlags. See details above in drawMatches . + +@note +For Python API, flags are modified as cv2.DRAW_MATCHES_FLAGS_DEFAULT, +cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS, cv2.DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG, +cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS + */ +CV_EXPORTS_W void drawKeypoints( InputArray image, const std::vector& keypoints, InputOutputArray outImage, + const Scalar& color=Scalar::all(-1), int flags=DrawMatchesFlags::DEFAULT ); + +/** @brief Draws the found matches of keypoints from two images. + +@param img1 First source image. +@param keypoints1 Keypoints from the first source image. +@param img2 Second source image. +@param keypoints2 Keypoints from the second source image. +@param matches1to2 Matches from the first image to the second one, which means that keypoints1[i] +has a corresponding point in keypoints2[matches[i]] . +@param outImg Output image. Its content depends on the flags value defining what is drawn in the +output image. See possible flags bit values below. +@param matchColor Color of matches (lines and connected keypoints). If matchColor==Scalar::all(-1) +, the color is generated randomly. +@param singlePointColor Color of single keypoints (circles), which means that keypoints do not +have the matches. If singlePointColor==Scalar::all(-1) , the color is generated randomly. +@param matchesMask Mask determining which matches are drawn. If the mask is empty, all matches are +drawn. +@param flags Flags setting drawing features. Possible flags bit values are defined by +DrawMatchesFlags. + +This function draws matches of keypoints from two images in the output image. Match is a line +connecting two keypoints (circles). See cv::DrawMatchesFlags. + */ +CV_EXPORTS_W void drawMatches( InputArray img1, const std::vector& keypoints1, + InputArray img2, const std::vector& keypoints2, + const std::vector& matches1to2, InputOutputArray outImg, + const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1), + const std::vector& matchesMask=std::vector(), int flags=DrawMatchesFlags::DEFAULT ); + +/** @overload */ +CV_EXPORTS_AS(drawMatchesKnn) void drawMatches( InputArray img1, const std::vector& keypoints1, + InputArray img2, const std::vector& keypoints2, + const std::vector >& matches1to2, InputOutputArray outImg, + const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1), + const std::vector >& matchesMask=std::vector >(), int flags=DrawMatchesFlags::DEFAULT ); + +//! @} features2d_draw + +/****************************************************************************************\ +* Functions to evaluate the feature detectors and [generic] descriptor extractors * +\****************************************************************************************/ + +CV_EXPORTS void evaluateFeatureDetector( const Mat& img1, const Mat& img2, const Mat& H1to2, + std::vector* keypoints1, std::vector* keypoints2, + float& repeatability, int& correspCount, + const Ptr& fdetector=Ptr() ); + +CV_EXPORTS void computeRecallPrecisionCurve( const std::vector >& matches1to2, + const std::vector >& correctMatches1to2Mask, + std::vector& recallPrecisionCurve ); + +CV_EXPORTS float getRecall( const std::vector& recallPrecisionCurve, float l_precision ); +CV_EXPORTS int getNearestPoint( const std::vector& recallPrecisionCurve, float l_precision ); + +/****************************************************************************************\ +* Bag of visual words * +\****************************************************************************************/ + +//! @addtogroup features2d_category +//! @{ + +/** @brief Abstract base class for training the *bag of visual words* vocabulary from a set of descriptors. + +For details, see, for example, *Visual Categorization with Bags of Keypoints* by Gabriella Csurka, +Christopher R. Dance, Lixin Fan, Jutta Willamowski, Cedric Bray, 2004. : + */ +class CV_EXPORTS_W BOWTrainer +{ +public: + BOWTrainer(); + virtual ~BOWTrainer(); + + /** @brief Adds descriptors to a training set. + + @param descriptors Descriptors to add to a training set. Each row of the descriptors matrix is a + descriptor. + + The training set is clustered using clustermethod to construct the vocabulary. + */ + CV_WRAP void add( const Mat& descriptors ); + + /** @brief Returns a training set of descriptors. + */ + CV_WRAP const std::vector& getDescriptors() const; + + /** @brief Returns the count of all descriptors stored in the training set. + */ + CV_WRAP int descriptorsCount() const; + + CV_WRAP virtual void clear(); + + /** @overload */ + CV_WRAP virtual Mat cluster() const = 0; + + /** @brief Clusters train descriptors. + + @param descriptors Descriptors to cluster. Each row of the descriptors matrix is a descriptor. + Descriptors are not added to the inner train descriptor set. + + The vocabulary consists of cluster centers. So, this method returns the vocabulary. In the first + variant of the method, train descriptors stored in the object are clustered. In the second variant, + input descriptors are clustered. + */ + CV_WRAP virtual Mat cluster( const Mat& descriptors ) const = 0; + +protected: + std::vector descriptors; + int size; +}; + +/** @brief kmeans -based class to train visual vocabulary using the *bag of visual words* approach. : + */ +class CV_EXPORTS_W BOWKMeansTrainer : public BOWTrainer +{ +public: + /** @brief The constructor. + + @see cv::kmeans + */ + CV_WRAP BOWKMeansTrainer( int clusterCount, const TermCriteria& termcrit=TermCriteria(), + int attempts=3, int flags=KMEANS_PP_CENTERS ); + virtual ~BOWKMeansTrainer(); + + // Returns trained vocabulary (i.e. cluster centers). + CV_WRAP virtual Mat cluster() const; + CV_WRAP virtual Mat cluster( const Mat& descriptors ) const; + +protected: + + int clusterCount; + TermCriteria termcrit; + int attempts; + int flags; +}; + +/** @brief Class to compute an image descriptor using the *bag of visual words*. + +Such a computation consists of the following steps: + +1. Compute descriptors for a given image and its keypoints set. +2. Find the nearest visual words from the vocabulary for each keypoint descriptor. +3. Compute the bag-of-words image descriptor as is a normalized histogram of vocabulary words +encountered in the image. The i-th bin of the histogram is a frequency of i-th word of the +vocabulary in the given image. + */ +class CV_EXPORTS_W BOWImgDescriptorExtractor +{ +public: + /** @brief The constructor. + + @param dextractor Descriptor extractor that is used to compute descriptors for an input image and + its keypoints. + @param dmatcher Descriptor matcher that is used to find the nearest word of the trained vocabulary + for each keypoint descriptor of the image. + */ + CV_WRAP BOWImgDescriptorExtractor( const Ptr& dextractor, + const Ptr& dmatcher ); + /** @overload */ + BOWImgDescriptorExtractor( const Ptr& dmatcher ); + virtual ~BOWImgDescriptorExtractor(); + + /** @brief Sets a visual vocabulary. + + @param vocabulary Vocabulary (can be trained using the inheritor of BOWTrainer ). Each row of the + vocabulary is a visual word (cluster center). + */ + CV_WRAP void setVocabulary( const Mat& vocabulary ); + + /** @brief Returns the set vocabulary. + */ + CV_WRAP const Mat& getVocabulary() const; + + /** @brief Computes an image descriptor using the set visual vocabulary. + + @param image Image, for which the descriptor is computed. + @param keypoints Keypoints detected in the input image. + @param imgDescriptor Computed output image descriptor. + @param pointIdxsOfClusters Indices of keypoints that belong to the cluster. This means that + pointIdxsOfClusters[i] are keypoint indices that belong to the i -th cluster (word of vocabulary) + returned if it is non-zero. + @param descriptors Descriptors of the image keypoints that are returned if they are non-zero. + */ + void compute( InputArray image, std::vector& keypoints, OutputArray imgDescriptor, + std::vector >* pointIdxsOfClusters=0, Mat* descriptors=0 ); + /** @overload + @param keypointDescriptors Computed descriptors to match with vocabulary. + @param imgDescriptor Computed output image descriptor. + @param pointIdxsOfClusters Indices of keypoints that belong to the cluster. This means that + pointIdxsOfClusters[i] are keypoint indices that belong to the i -th cluster (word of vocabulary) + returned if it is non-zero. + */ + void compute( InputArray keypointDescriptors, OutputArray imgDescriptor, + std::vector >* pointIdxsOfClusters=0 ); + // compute() is not constant because DescriptorMatcher::match is not constant + + CV_WRAP_AS(compute) void compute2( const Mat& image, std::vector& keypoints, CV_OUT Mat& imgDescriptor ) + { compute(image,keypoints,imgDescriptor); } + + /** @brief Returns an image descriptor size if the vocabulary is set. Otherwise, it returns 0. + */ + CV_WRAP int descriptorSize() const; + + /** @brief Returns an image descriptor type. + */ + CV_WRAP int descriptorType() const; + +protected: + Mat vocabulary; + Ptr dextractor; + Ptr dmatcher; +}; + +//! @} features2d_category + +//! @} features2d + +} /* namespace cv */ + +#endif diff --git a/thirdparty1/linux/include/opencv2/features2d/features2d.hpp b/thirdparty1/linux/include/opencv2/features2d/features2d.hpp new file mode 100644 index 0000000..e81df0a --- /dev/null +++ b/thirdparty1/linux/include/opencv2/features2d/features2d.hpp @@ -0,0 +1,48 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifdef __OPENCV_BUILD +#error this is a compatibility header which should not be used inside the OpenCV library +#endif + +#include "opencv2/features2d.hpp" diff --git a/thirdparty1/linux/include/opencv2/flann.hpp b/thirdparty1/linux/include/opencv2/flann.hpp new file mode 100644 index 0000000..19a98f1 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann.hpp @@ -0,0 +1,531 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_FLANN_HPP +#define OPENCV_FLANN_HPP + +#include "opencv2/core.hpp" +#include "opencv2/flann/miniflann.hpp" +#include "opencv2/flann/flann_base.hpp" + +/** +@defgroup flann Clustering and Search in Multi-Dimensional Spaces + +This section documents OpenCV's interface to the FLANN library. FLANN (Fast Library for Approximate +Nearest Neighbors) is a library that contains a collection of algorithms optimized for fast nearest +neighbor search in large datasets and for high dimensional features. More information about FLANN +can be found in @cite Muja2009 . +*/ + +namespace cvflann +{ + CV_EXPORTS flann_distance_t flann_distance_type(); + FLANN_DEPRECATED CV_EXPORTS void set_distance_type(flann_distance_t distance_type, int order); +} + + +namespace cv +{ +namespace flann +{ + + +//! @addtogroup flann +//! @{ + +template struct CvType {}; +template <> struct CvType { static int type() { return CV_8U; } }; +template <> struct CvType { static int type() { return CV_8S; } }; +template <> struct CvType { static int type() { return CV_16U; } }; +template <> struct CvType { static int type() { return CV_16S; } }; +template <> struct CvType { static int type() { return CV_32S; } }; +template <> struct CvType { static int type() { return CV_32F; } }; +template <> struct CvType { static int type() { return CV_64F; } }; + + +// bring the flann parameters into this namespace +using ::cvflann::get_param; +using ::cvflann::print_params; + +// bring the flann distances into this namespace +using ::cvflann::L2_Simple; +using ::cvflann::L2; +using ::cvflann::L1; +using ::cvflann::MinkowskiDistance; +using ::cvflann::MaxDistance; +using ::cvflann::HammingLUT; +using ::cvflann::Hamming; +using ::cvflann::Hamming2; +using ::cvflann::HistIntersectionDistance; +using ::cvflann::HellingerDistance; +using ::cvflann::ChiSquareDistance; +using ::cvflann::KL_Divergence; + + +/** @brief The FLANN nearest neighbor index class. This class is templated with the type of elements for which +the index is built. + */ +template +class GenericIndex +{ +public: + typedef typename Distance::ElementType ElementType; + typedef typename Distance::ResultType DistanceType; + + /** @brief Constructs a nearest neighbor search index for a given dataset. + + @param features Matrix of containing the features(points) to index. The size of the matrix is + num_features x feature_dimensionality and the data type of the elements in the matrix must + coincide with the type of the index. + @param params Structure containing the index parameters. The type of index that will be + constructed depends on the type of this parameter. See the description. + @param distance + + The method constructs a fast search structure from a set of features using the specified algorithm + with specified parameters, as defined by params. params is a reference to one of the following class + IndexParams descendants: + + - **LinearIndexParams** When passing an object of this type, the index will perform a linear, + brute-force search. : + @code + struct LinearIndexParams : public IndexParams + { + }; + @endcode + - **KDTreeIndexParams** When passing an object of this type the index constructed will consist of + a set of randomized kd-trees which will be searched in parallel. : + @code + struct KDTreeIndexParams : public IndexParams + { + KDTreeIndexParams( int trees = 4 ); + }; + @endcode + - **KMeansIndexParams** When passing an object of this type the index constructed will be a + hierarchical k-means tree. : + @code + struct KMeansIndexParams : public IndexParams + { + KMeansIndexParams( + int branching = 32, + int iterations = 11, + flann_centers_init_t centers_init = CENTERS_RANDOM, + float cb_index = 0.2 ); + }; + @endcode + - **CompositeIndexParams** When using a parameters object of this type the index created + combines the randomized kd-trees and the hierarchical k-means tree. : + @code + struct CompositeIndexParams : public IndexParams + { + CompositeIndexParams( + int trees = 4, + int branching = 32, + int iterations = 11, + flann_centers_init_t centers_init = CENTERS_RANDOM, + float cb_index = 0.2 ); + }; + @endcode + - **LshIndexParams** When using a parameters object of this type the index created uses + multi-probe LSH (by Multi-Probe LSH: Efficient Indexing for High-Dimensional Similarity Search + by Qin Lv, William Josephson, Zhe Wang, Moses Charikar, Kai Li., Proceedings of the 33rd + International Conference on Very Large Data Bases (VLDB). Vienna, Austria. September 2007) : + @code + struct LshIndexParams : public IndexParams + { + LshIndexParams( + unsigned int table_number, + unsigned int key_size, + unsigned int multi_probe_level ); + }; + @endcode + - **AutotunedIndexParams** When passing an object of this type the index created is + automatically tuned to offer the best performance, by choosing the optimal index type + (randomized kd-trees, hierarchical kmeans, linear) and parameters for the dataset provided. : + @code + struct AutotunedIndexParams : public IndexParams + { + AutotunedIndexParams( + float target_precision = 0.9, + float build_weight = 0.01, + float memory_weight = 0, + float sample_fraction = 0.1 ); + }; + @endcode + - **SavedIndexParams** This object type is used for loading a previously saved index from the + disk. : + @code + struct SavedIndexParams : public IndexParams + { + SavedIndexParams( String filename ); + }; + @endcode + */ + GenericIndex(const Mat& features, const ::cvflann::IndexParams& params, Distance distance = Distance()); + + ~GenericIndex(); + + /** @brief Performs a K-nearest neighbor search for a given query point using the index. + + @param query The query point + @param indices Vector that will contain the indices of the K-nearest neighbors found. It must have + at least knn size. + @param dists Vector that will contain the distances to the K-nearest neighbors found. It must have + at least knn size. + @param knn Number of nearest neighbors to search for. + @param params SearchParams + */ + void knnSearch(const std::vector& query, std::vector& indices, + std::vector& dists, int knn, const ::cvflann::SearchParams& params); + void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& params); + + int radiusSearch(const std::vector& query, std::vector& indices, + std::vector& dists, DistanceType radius, const ::cvflann::SearchParams& params); + int radiusSearch(const Mat& query, Mat& indices, Mat& dists, + DistanceType radius, const ::cvflann::SearchParams& params); + + void save(String filename) { nnIndex->save(filename); } + + int veclen() const { return nnIndex->veclen(); } + + int size() const { return nnIndex->size(); } + + ::cvflann::IndexParams getParameters() { return nnIndex->getParameters(); } + + FLANN_DEPRECATED const ::cvflann::IndexParams* getIndexParameters() { return nnIndex->getIndexParameters(); } + +private: + ::cvflann::Index* nnIndex; +}; + +//! @cond IGNORED + +#define FLANN_DISTANCE_CHECK \ + if ( ::cvflann::flann_distance_type() != cvflann::FLANN_DIST_L2) { \ + printf("[WARNING] You are using cv::flann::Index (or cv::flann::GenericIndex) and have also changed "\ + "the distance using cvflann::set_distance_type. This is no longer working as expected "\ + "(cv::flann::Index always uses L2). You should create the index templated on the distance, "\ + "for example for L1 distance use: GenericIndex< L1 > \n"); \ + } + + +template +GenericIndex::GenericIndex(const Mat& dataset, const ::cvflann::IndexParams& params, Distance distance) +{ + CV_Assert(dataset.type() == CvType::type()); + CV_Assert(dataset.isContinuous()); + ::cvflann::Matrix m_dataset((ElementType*)dataset.ptr(0), dataset.rows, dataset.cols); + + nnIndex = new ::cvflann::Index(m_dataset, params, distance); + + FLANN_DISTANCE_CHECK + + nnIndex->buildIndex(); +} + +template +GenericIndex::~GenericIndex() +{ + delete nnIndex; +} + +template +void GenericIndex::knnSearch(const std::vector& query, std::vector& indices, std::vector& dists, int knn, const ::cvflann::SearchParams& searchParams) +{ + ::cvflann::Matrix m_query((ElementType*)&query[0], 1, query.size()); + ::cvflann::Matrix m_indices(&indices[0], 1, indices.size()); + ::cvflann::Matrix m_dists(&dists[0], 1, dists.size()); + + FLANN_DISTANCE_CHECK + + nnIndex->knnSearch(m_query,m_indices,m_dists,knn,searchParams); +} + + +template +void GenericIndex::knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams) +{ + CV_Assert(queries.type() == CvType::type()); + CV_Assert(queries.isContinuous()); + ::cvflann::Matrix m_queries((ElementType*)queries.ptr(0), queries.rows, queries.cols); + + CV_Assert(indices.type() == CV_32S); + CV_Assert(indices.isContinuous()); + ::cvflann::Matrix m_indices((int*)indices.ptr(0), indices.rows, indices.cols); + + CV_Assert(dists.type() == CvType::type()); + CV_Assert(dists.isContinuous()); + ::cvflann::Matrix m_dists((DistanceType*)dists.ptr(0), dists.rows, dists.cols); + + FLANN_DISTANCE_CHECK + + nnIndex->knnSearch(m_queries,m_indices,m_dists,knn, searchParams); +} + +template +int GenericIndex::radiusSearch(const std::vector& query, std::vector& indices, std::vector& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams) +{ + ::cvflann::Matrix m_query((ElementType*)&query[0], 1, query.size()); + ::cvflann::Matrix m_indices(&indices[0], 1, indices.size()); + ::cvflann::Matrix m_dists(&dists[0], 1, dists.size()); + + FLANN_DISTANCE_CHECK + + return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); +} + +template +int GenericIndex::radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams) +{ + CV_Assert(query.type() == CvType::type()); + CV_Assert(query.isContinuous()); + ::cvflann::Matrix m_query((ElementType*)query.ptr(0), query.rows, query.cols); + + CV_Assert(indices.type() == CV_32S); + CV_Assert(indices.isContinuous()); + ::cvflann::Matrix m_indices((int*)indices.ptr(0), indices.rows, indices.cols); + + CV_Assert(dists.type() == CvType::type()); + CV_Assert(dists.isContinuous()); + ::cvflann::Matrix m_dists((DistanceType*)dists.ptr(0), dists.rows, dists.cols); + + FLANN_DISTANCE_CHECK + + return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); +} + +//! @endcond + +/** + * @deprecated Use GenericIndex class instead + */ +template +class Index_ +{ +public: + typedef typename L2::ElementType ElementType; + typedef typename L2::ResultType DistanceType; + + FLANN_DEPRECATED Index_(const Mat& dataset, const ::cvflann::IndexParams& params) + { + printf("[WARNING] The cv::flann::Index_ class is deperecated, use cv::flann::GenericIndex instead\n"); + + CV_Assert(dataset.type() == CvType::type()); + CV_Assert(dataset.isContinuous()); + ::cvflann::Matrix m_dataset((ElementType*)dataset.ptr(0), dataset.rows, dataset.cols); + + if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) { + nnIndex_L1 = NULL; + nnIndex_L2 = new ::cvflann::Index< L2 >(m_dataset, params); + } + else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) { + nnIndex_L1 = new ::cvflann::Index< L1 >(m_dataset, params); + nnIndex_L2 = NULL; + } + else { + printf("[ERROR] cv::flann::Index_ only provides backwards compatibility for the L1 and L2 distances. " + "For other distance types you must use cv::flann::GenericIndex\n"); + CV_Assert(0); + } + if (nnIndex_L1) nnIndex_L1->buildIndex(); + if (nnIndex_L2) nnIndex_L2->buildIndex(); + } + FLANN_DEPRECATED ~Index_() + { + if (nnIndex_L1) delete nnIndex_L1; + if (nnIndex_L2) delete nnIndex_L2; + } + + FLANN_DEPRECATED void knnSearch(const std::vector& query, std::vector& indices, std::vector& dists, int knn, const ::cvflann::SearchParams& searchParams) + { + ::cvflann::Matrix m_query((ElementType*)&query[0], 1, query.size()); + ::cvflann::Matrix m_indices(&indices[0], 1, indices.size()); + ::cvflann::Matrix m_dists(&dists[0], 1, dists.size()); + + if (nnIndex_L1) nnIndex_L1->knnSearch(m_query,m_indices,m_dists,knn,searchParams); + if (nnIndex_L2) nnIndex_L2->knnSearch(m_query,m_indices,m_dists,knn,searchParams); + } + FLANN_DEPRECATED void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams) + { + CV_Assert(queries.type() == CvType::type()); + CV_Assert(queries.isContinuous()); + ::cvflann::Matrix m_queries((ElementType*)queries.ptr(0), queries.rows, queries.cols); + + CV_Assert(indices.type() == CV_32S); + CV_Assert(indices.isContinuous()); + ::cvflann::Matrix m_indices((int*)indices.ptr(0), indices.rows, indices.cols); + + CV_Assert(dists.type() == CvType::type()); + CV_Assert(dists.isContinuous()); + ::cvflann::Matrix m_dists((DistanceType*)dists.ptr(0), dists.rows, dists.cols); + + if (nnIndex_L1) nnIndex_L1->knnSearch(m_queries,m_indices,m_dists,knn, searchParams); + if (nnIndex_L2) nnIndex_L2->knnSearch(m_queries,m_indices,m_dists,knn, searchParams); + } + + FLANN_DEPRECATED int radiusSearch(const std::vector& query, std::vector& indices, std::vector& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams) + { + ::cvflann::Matrix m_query((ElementType*)&query[0], 1, query.size()); + ::cvflann::Matrix m_indices(&indices[0], 1, indices.size()); + ::cvflann::Matrix m_dists(&dists[0], 1, dists.size()); + + if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); + if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); + } + + FLANN_DEPRECATED int radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams) + { + CV_Assert(query.type() == CvType::type()); + CV_Assert(query.isContinuous()); + ::cvflann::Matrix m_query((ElementType*)query.ptr(0), query.rows, query.cols); + + CV_Assert(indices.type() == CV_32S); + CV_Assert(indices.isContinuous()); + ::cvflann::Matrix m_indices((int*)indices.ptr(0), indices.rows, indices.cols); + + CV_Assert(dists.type() == CvType::type()); + CV_Assert(dists.isContinuous()); + ::cvflann::Matrix m_dists((DistanceType*)dists.ptr(0), dists.rows, dists.cols); + + if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); + if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams); + } + + FLANN_DEPRECATED void save(String filename) + { + if (nnIndex_L1) nnIndex_L1->save(filename); + if (nnIndex_L2) nnIndex_L2->save(filename); + } + + FLANN_DEPRECATED int veclen() const + { + if (nnIndex_L1) return nnIndex_L1->veclen(); + if (nnIndex_L2) return nnIndex_L2->veclen(); + } + + FLANN_DEPRECATED int size() const + { + if (nnIndex_L1) return nnIndex_L1->size(); + if (nnIndex_L2) return nnIndex_L2->size(); + } + + FLANN_DEPRECATED ::cvflann::IndexParams getParameters() + { + if (nnIndex_L1) return nnIndex_L1->getParameters(); + if (nnIndex_L2) return nnIndex_L2->getParameters(); + + } + + FLANN_DEPRECATED const ::cvflann::IndexParams* getIndexParameters() + { + if (nnIndex_L1) return nnIndex_L1->getIndexParameters(); + if (nnIndex_L2) return nnIndex_L2->getIndexParameters(); + } + +private: + // providing backwards compatibility for L2 and L1 distances (most common) + ::cvflann::Index< L2 >* nnIndex_L2; + ::cvflann::Index< L1 >* nnIndex_L1; +}; + + +/** @brief Clusters features using hierarchical k-means algorithm. + +@param features The points to be clustered. The matrix must have elements of type +Distance::ElementType. +@param centers The centers of the clusters obtained. The matrix must have type +Distance::ResultType. The number of rows in this matrix represents the number of clusters desired, +however, because of the way the cut in the hierarchical tree is chosen, the number of clusters +computed will be the highest number of the form (branching-1)\*k+1 that's lower than the number of +clusters desired, where branching is the tree's branching factor (see description of the +KMeansIndexParams). +@param params Parameters used in the construction of the hierarchical k-means tree. +@param d Distance to be used for clustering. + +The method clusters the given feature vectors by constructing a hierarchical k-means tree and +choosing a cut in the tree that minimizes the cluster's variance. It returns the number of clusters +found. + */ +template +int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params, + Distance d = Distance()) +{ + typedef typename Distance::ElementType ElementType; + typedef typename Distance::ResultType DistanceType; + + CV_Assert(features.type() == CvType::type()); + CV_Assert(features.isContinuous()); + ::cvflann::Matrix m_features((ElementType*)features.ptr(0), features.rows, features.cols); + + CV_Assert(centers.type() == CvType::type()); + CV_Assert(centers.isContinuous()); + ::cvflann::Matrix m_centers((DistanceType*)centers.ptr(0), centers.rows, centers.cols); + + return ::cvflann::hierarchicalClustering(m_features, m_centers, params, d); +} + +/** @deprecated +*/ +template +FLANN_DEPRECATED int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params) +{ + printf("[WARNING] cv::flann::hierarchicalClustering is deprecated, use " + "cv::flann::hierarchicalClustering instead\n"); + + if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) { + return hierarchicalClustering< L2 >(features, centers, params); + } + else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) { + return hierarchicalClustering< L1 >(features, centers, params); + } + else { + printf("[ERROR] cv::flann::hierarchicalClustering only provides backwards " + "compatibility for the L1 and L2 distances. " + "For other distance types you must use cv::flann::hierarchicalClustering\n"); + CV_Assert(0); + } +} + +//! @} flann + +} } // namespace cv::flann + +#endif diff --git a/thirdparty1/linux/include/opencv2/flann/all_indices.h b/thirdparty1/linux/include/opencv2/flann/all_indices.h new file mode 100644 index 0000000..ff53fd8 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/all_indices.h @@ -0,0 +1,155 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + + +#ifndef OPENCV_FLANN_ALL_INDICES_H_ +#define OPENCV_FLANN_ALL_INDICES_H_ + +#include "general.h" + +#include "nn_index.h" +#include "kdtree_index.h" +#include "kdtree_single_index.h" +#include "kmeans_index.h" +#include "composite_index.h" +#include "linear_index.h" +#include "hierarchical_clustering_index.h" +#include "lsh_index.h" +#include "autotuned_index.h" + + +namespace cvflann +{ + +template +struct index_creator +{ + static NNIndex* create(const Matrix& dataset, const IndexParams& params, const Distance& distance) + { + flann_algorithm_t index_type = get_param(params, "algorithm"); + + NNIndex* nnIndex; + switch (index_type) { + case FLANN_INDEX_LINEAR: + nnIndex = new LinearIndex(dataset, params, distance); + break; + case FLANN_INDEX_KDTREE_SINGLE: + nnIndex = new KDTreeSingleIndex(dataset, params, distance); + break; + case FLANN_INDEX_KDTREE: + nnIndex = new KDTreeIndex(dataset, params, distance); + break; + case FLANN_INDEX_KMEANS: + nnIndex = new KMeansIndex(dataset, params, distance); + break; + case FLANN_INDEX_COMPOSITE: + nnIndex = new CompositeIndex(dataset, params, distance); + break; + case FLANN_INDEX_AUTOTUNED: + nnIndex = new AutotunedIndex(dataset, params, distance); + break; + case FLANN_INDEX_HIERARCHICAL: + nnIndex = new HierarchicalClusteringIndex(dataset, params, distance); + break; + case FLANN_INDEX_LSH: + nnIndex = new LshIndex(dataset, params, distance); + break; + default: + throw FLANNException("Unknown index type"); + } + + return nnIndex; + } +}; + +template +struct index_creator +{ + static NNIndex* create(const Matrix& dataset, const IndexParams& params, const Distance& distance) + { + flann_algorithm_t index_type = get_param(params, "algorithm"); + + NNIndex* nnIndex; + switch (index_type) { + case FLANN_INDEX_LINEAR: + nnIndex = new LinearIndex(dataset, params, distance); + break; + case FLANN_INDEX_KMEANS: + nnIndex = new KMeansIndex(dataset, params, distance); + break; + case FLANN_INDEX_HIERARCHICAL: + nnIndex = new HierarchicalClusteringIndex(dataset, params, distance); + break; + case FLANN_INDEX_LSH: + nnIndex = new LshIndex(dataset, params, distance); + break; + default: + throw FLANNException("Unknown index type"); + } + + return nnIndex; + } +}; + +template +struct index_creator +{ + static NNIndex* create(const Matrix& dataset, const IndexParams& params, const Distance& distance) + { + flann_algorithm_t index_type = get_param(params, "algorithm"); + + NNIndex* nnIndex; + switch (index_type) { + case FLANN_INDEX_LINEAR: + nnIndex = new LinearIndex(dataset, params, distance); + break; + case FLANN_INDEX_HIERARCHICAL: + nnIndex = new HierarchicalClusteringIndex(dataset, params, distance); + break; + case FLANN_INDEX_LSH: + nnIndex = new LshIndex(dataset, params, distance); + break; + default: + throw FLANNException("Unknown index type"); + } + + return nnIndex; + } +}; + +template +NNIndex* create_index_by_type(const Matrix& dataset, const IndexParams& params, const Distance& distance) +{ + return index_creator::create(dataset, params,distance); +} + +} + +#endif /* OPENCV_FLANN_ALL_INDICES_H_ */ diff --git a/thirdparty1/linux/include/opencv2/flann/allocator.h b/thirdparty1/linux/include/opencv2/flann/allocator.h new file mode 100644 index 0000000..26091d0 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/allocator.h @@ -0,0 +1,188 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_ALLOCATOR_H_ +#define OPENCV_FLANN_ALLOCATOR_H_ + +#include +#include + + +namespace cvflann +{ + +/** + * Allocates (using C's malloc) a generic type T. + * + * Params: + * count = number of instances to allocate. + * Returns: pointer (of type T*) to memory buffer + */ +template +T* allocate(size_t count = 1) +{ + T* mem = (T*) ::malloc(sizeof(T)*count); + return mem; +} + + +/** + * Pooled storage allocator + * + * The following routines allow for the efficient allocation of storage in + * small chunks from a specified pool. Rather than allowing each structure + * to be freed individually, an entire pool of storage is freed at once. + * This method has two advantages over just using malloc() and free(). First, + * it is far more efficient for allocating small objects, as there is + * no overhead for remembering all the information needed to free each + * object or consolidating fragmented memory. Second, the decision about + * how long to keep an object is made at the time of allocation, and there + * is no need to track down all the objects to free them. + * + */ + +const size_t WORDSIZE=16; +const size_t BLOCKSIZE=8192; + +class PooledAllocator +{ + /* We maintain memory alignment to word boundaries by requiring that all + allocations be in multiples of the machine wordsize. */ + /* Size of machine word in bytes. Must be power of 2. */ + /* Minimum number of bytes requested at a time from the system. Must be multiple of WORDSIZE. */ + + + int remaining; /* Number of bytes left in current block of storage. */ + void* base; /* Pointer to base of current block of storage. */ + void* loc; /* Current location in block to next allocate memory. */ + int blocksize; + + +public: + int usedMemory; + int wastedMemory; + + /** + Default constructor. Initializes a new pool. + */ + PooledAllocator(int blockSize = BLOCKSIZE) + { + blocksize = blockSize; + remaining = 0; + base = NULL; + + usedMemory = 0; + wastedMemory = 0; + } + + /** + * Destructor. Frees all the memory allocated in this pool. + */ + ~PooledAllocator() + { + void* prev; + + while (base != NULL) { + prev = *((void**) base); /* Get pointer to prev block. */ + ::free(base); + base = prev; + } + } + + /** + * Returns a pointer to a piece of new memory of the given size in bytes + * allocated from the pool. + */ + void* allocateMemory(int size) + { + int blockSize; + + /* Round size up to a multiple of wordsize. The following expression + only works for WORDSIZE that is a power of 2, by masking last bits of + incremented size to zero. + */ + size = (size + (WORDSIZE - 1)) & ~(WORDSIZE - 1); + + /* Check whether a new block must be allocated. Note that the first word + of a block is reserved for a pointer to the previous block. + */ + if (size > remaining) { + + wastedMemory += remaining; + + /* Allocate new storage. */ + blockSize = (size + sizeof(void*) + (WORDSIZE-1) > BLOCKSIZE) ? + size + sizeof(void*) + (WORDSIZE-1) : BLOCKSIZE; + + // use the standard C malloc to allocate memory + void* m = ::malloc(blockSize); + if (!m) { + fprintf(stderr,"Failed to allocate memory.\n"); + return NULL; + } + + /* Fill first word of new block with pointer to previous block. */ + ((void**) m)[0] = base; + base = m; + + int shift = 0; + //int shift = (WORDSIZE - ( (((size_t)m) + sizeof(void*)) & (WORDSIZE-1))) & (WORDSIZE-1); + + remaining = blockSize - sizeof(void*) - shift; + loc = ((char*)m + sizeof(void*) + shift); + } + void* rloc = loc; + loc = (char*)loc + size; + remaining -= size; + + usedMemory += size; + + return rloc; + } + + /** + * Allocates (using this pool) a generic type T. + * + * Params: + * count = number of instances to allocate. + * Returns: pointer (of type T*) to memory buffer + */ + template + T* allocate(size_t count = 1) + { + T* mem = (T*) this->allocateMemory((int)(sizeof(T)*count)); + return mem; + } + +}; + +} + +#endif //OPENCV_FLANN_ALLOCATOR_H_ diff --git a/thirdparty1/linux/include/opencv2/flann/any.h b/thirdparty1/linux/include/opencv2/flann/any.h new file mode 100644 index 0000000..bfe06c8 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/any.h @@ -0,0 +1,324 @@ +#ifndef OPENCV_FLANN_ANY_H_ +#define OPENCV_FLANN_ANY_H_ +/* + * (C) Copyright Christopher Diggins 2005-2011 + * (C) Copyright Pablo Aguilar 2005 + * (C) Copyright Kevlin Henney 2001 + * + * Distributed under the Boost Software License, Version 1.0. (See + * accompanying file LICENSE_1_0.txt or copy at + * http://www.boost.org/LICENSE_1_0.txt + * + * Adapted for FLANN by Marius Muja + */ + +#include "defines.h" +#include +#include +#include + +namespace cvflann +{ + +namespace anyimpl +{ + +struct bad_any_cast +{ +}; + +struct empty_any +{ +}; + +inline std::ostream& operator <<(std::ostream& out, const empty_any&) +{ + out << "[empty_any]"; + return out; +} + +struct base_any_policy +{ + virtual void static_delete(void** x) = 0; + virtual void copy_from_value(void const* src, void** dest) = 0; + virtual void clone(void* const* src, void** dest) = 0; + virtual void move(void* const* src, void** dest) = 0; + virtual void* get_value(void** src) = 0; + virtual const void* get_value(void* const * src) = 0; + virtual ::size_t get_size() = 0; + virtual const std::type_info& type() = 0; + virtual void print(std::ostream& out, void* const* src) = 0; + virtual ~base_any_policy() {} +}; + +template +struct typed_base_any_policy : base_any_policy +{ + virtual ::size_t get_size() { return sizeof(T); } + virtual const std::type_info& type() { return typeid(T); } + +}; + +template +struct small_any_policy : typed_base_any_policy +{ + virtual void static_delete(void**) { } + virtual void copy_from_value(void const* src, void** dest) + { + new (dest) T(* reinterpret_cast(src)); + } + virtual void clone(void* const* src, void** dest) { *dest = *src; } + virtual void move(void* const* src, void** dest) { *dest = *src; } + virtual void* get_value(void** src) { return reinterpret_cast(src); } + virtual const void* get_value(void* const * src) { return reinterpret_cast(src); } + virtual void print(std::ostream& out, void* const* src) { out << *reinterpret_cast(src); } +}; + +template +struct big_any_policy : typed_base_any_policy +{ + virtual void static_delete(void** x) + { + if (* x) delete (* reinterpret_cast(x)); + *x = NULL; + } + virtual void copy_from_value(void const* src, void** dest) + { + *dest = new T(*reinterpret_cast(src)); + } + virtual void clone(void* const* src, void** dest) + { + *dest = new T(**reinterpret_cast(src)); + } + virtual void move(void* const* src, void** dest) + { + (*reinterpret_cast(dest))->~T(); + **reinterpret_cast(dest) = **reinterpret_cast(src); + } + virtual void* get_value(void** src) { return *src; } + virtual const void* get_value(void* const * src) { return *src; } + virtual void print(std::ostream& out, void* const* src) { out << *reinterpret_cast(*src); } +}; + +template<> inline void big_any_policy::print(std::ostream& out, void* const* src) +{ + out << int(*reinterpret_cast(*src)); +} + +template<> inline void big_any_policy::print(std::ostream& out, void* const* src) +{ + out << int(*reinterpret_cast(*src)); +} + +template<> inline void big_any_policy::print(std::ostream& out, void* const* src) +{ + out << (*reinterpret_cast(*src)).c_str(); +} + +template +struct choose_policy +{ + typedef big_any_policy type; +}; + +template +struct choose_policy +{ + typedef small_any_policy type; +}; + +struct any; + +/// Choosing the policy for an any type is illegal, but should never happen. +/// This is designed to throw a compiler error. +template<> +struct choose_policy +{ + typedef void type; +}; + +/// Specializations for small types. +#define SMALL_POLICY(TYPE) \ + template<> \ + struct choose_policy { typedef small_any_policy type; \ + } + +SMALL_POLICY(signed char); +SMALL_POLICY(unsigned char); +SMALL_POLICY(signed short); +SMALL_POLICY(unsigned short); +SMALL_POLICY(signed int); +SMALL_POLICY(unsigned int); +SMALL_POLICY(signed long); +SMALL_POLICY(unsigned long); +SMALL_POLICY(float); +SMALL_POLICY(bool); + +#undef SMALL_POLICY + +template +class SinglePolicy +{ + SinglePolicy(); + SinglePolicy(const SinglePolicy& other); + SinglePolicy& operator=(const SinglePolicy& other); + +public: + static base_any_policy* get_policy(); + +private: + static typename choose_policy::type policy; +}; + +template +typename choose_policy::type SinglePolicy::policy; + +/// This function will return a different policy for each type. +template +inline base_any_policy* SinglePolicy::get_policy() { return &policy; } + +} // namespace anyimpl + +struct any +{ +private: + // fields + anyimpl::base_any_policy* policy; + void* object; + +public: + /// Initializing constructor. + template + any(const T& x) + : policy(anyimpl::SinglePolicy::get_policy()), object(NULL) + { + assign(x); + } + + /// Empty constructor. + any() + : policy(anyimpl::SinglePolicy::get_policy()), object(NULL) + { } + + /// Special initializing constructor for string literals. + any(const char* x) + : policy(anyimpl::SinglePolicy::get_policy()), object(NULL) + { + assign(x); + } + + /// Copy constructor. + any(const any& x) + : policy(anyimpl::SinglePolicy::get_policy()), object(NULL) + { + assign(x); + } + + /// Destructor. + ~any() + { + policy->static_delete(&object); + } + + /// Assignment function from another any. + any& assign(const any& x) + { + reset(); + policy = x.policy; + policy->clone(&x.object, &object); + return *this; + } + + /// Assignment function. + template + any& assign(const T& x) + { + reset(); + policy = anyimpl::SinglePolicy::get_policy(); + policy->copy_from_value(&x, &object); + return *this; + } + + /// Assignment operator. + template + any& operator=(const T& x) + { + return assign(x); + } + + /// Assignment operator, specialed for literal strings. + /// They have types like const char [6] which don't work as expected. + any& operator=(const char* x) + { + return assign(x); + } + + /// Utility functions + any& swap(any& x) + { + std::swap(policy, x.policy); + std::swap(object, x.object); + return *this; + } + + /// Cast operator. You can only cast to the original type. + template + T& cast() + { + if (policy->type() != typeid(T)) throw anyimpl::bad_any_cast(); + T* r = reinterpret_cast(policy->get_value(&object)); + return *r; + } + + /// Cast operator. You can only cast to the original type. + template + const T& cast() const + { + if (policy->type() != typeid(T)) throw anyimpl::bad_any_cast(); + const T* r = reinterpret_cast(policy->get_value(&object)); + return *r; + } + + /// Returns true if the any contains no value. + bool empty() const + { + return policy->type() == typeid(anyimpl::empty_any); + } + + /// Frees any allocated memory, and sets the value to NULL. + void reset() + { + policy->static_delete(&object); + policy = anyimpl::SinglePolicy::get_policy(); + } + + /// Returns true if the two types are the same. + bool compatible(const any& x) const + { + return policy->type() == x.policy->type(); + } + + /// Returns if the type is compatible with the policy + template + bool has_type() + { + return policy->type() == typeid(T); + } + + const std::type_info& type() const + { + return policy->type(); + } + + friend std::ostream& operator <<(std::ostream& out, const any& any_val); +}; + +inline std::ostream& operator <<(std::ostream& out, const any& any_val) +{ + any_val.policy->print(out,&any_val.object); + return out; +} + +} + +#endif // OPENCV_FLANN_ANY_H_ diff --git a/thirdparty1/linux/include/opencv2/flann/autotuned_index.h b/thirdparty1/linux/include/opencv2/flann/autotuned_index.h new file mode 100644 index 0000000..6ffb929 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/autotuned_index.h @@ -0,0 +1,588 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ +#ifndef OPENCV_FLANN_AUTOTUNED_INDEX_H_ +#define OPENCV_FLANN_AUTOTUNED_INDEX_H_ + +#include "general.h" +#include "nn_index.h" +#include "ground_truth.h" +#include "index_testing.h" +#include "sampling.h" +#include "kdtree_index.h" +#include "kdtree_single_index.h" +#include "kmeans_index.h" +#include "composite_index.h" +#include "linear_index.h" +#include "logger.h" + +namespace cvflann +{ + +template +NNIndex* create_index_by_type(const Matrix& dataset, const IndexParams& params, const Distance& distance); + + +struct AutotunedIndexParams : public IndexParams +{ + AutotunedIndexParams(float target_precision = 0.8, float build_weight = 0.01, float memory_weight = 0, float sample_fraction = 0.1) + { + (*this)["algorithm"] = FLANN_INDEX_AUTOTUNED; + // precision desired (used for autotuning, -1 otherwise) + (*this)["target_precision"] = target_precision; + // build tree time weighting factor + (*this)["build_weight"] = build_weight; + // index memory weighting factor + (*this)["memory_weight"] = memory_weight; + // what fraction of the dataset to use for autotuning + (*this)["sample_fraction"] = sample_fraction; + } +}; + + +template +class AutotunedIndex : public NNIndex +{ +public: + typedef typename Distance::ElementType ElementType; + typedef typename Distance::ResultType DistanceType; + + AutotunedIndex(const Matrix& inputData, const IndexParams& params = AutotunedIndexParams(), Distance d = Distance()) : + dataset_(inputData), distance_(d) + { + target_precision_ = get_param(params, "target_precision",0.8f); + build_weight_ = get_param(params,"build_weight", 0.01f); + memory_weight_ = get_param(params, "memory_weight", 0.0f); + sample_fraction_ = get_param(params,"sample_fraction", 0.1f); + bestIndex_ = NULL; + } + + AutotunedIndex(const AutotunedIndex&); + AutotunedIndex& operator=(const AutotunedIndex&); + + virtual ~AutotunedIndex() + { + if (bestIndex_ != NULL) { + delete bestIndex_; + bestIndex_ = NULL; + } + } + + /** + * Method responsible with building the index. + */ + virtual void buildIndex() + { + std::ostringstream stream; + bestParams_ = estimateBuildParams(); + print_params(bestParams_, stream); + Logger::info("----------------------------------------------------\n"); + Logger::info("Autotuned parameters:\n"); + Logger::info("%s", stream.str().c_str()); + Logger::info("----------------------------------------------------\n"); + + bestIndex_ = create_index_by_type(dataset_, bestParams_, distance_); + bestIndex_->buildIndex(); + speedup_ = estimateSearchParams(bestSearchParams_); + stream.str(std::string()); + print_params(bestSearchParams_, stream); + Logger::info("----------------------------------------------------\n"); + Logger::info("Search parameters:\n"); + Logger::info("%s", stream.str().c_str()); + Logger::info("----------------------------------------------------\n"); + } + + /** + * Saves the index to a stream + */ + virtual void saveIndex(FILE* stream) + { + save_value(stream, (int)bestIndex_->getType()); + bestIndex_->saveIndex(stream); + save_value(stream, get_param(bestSearchParams_, "checks")); + } + + /** + * Loads the index from a stream + */ + virtual void loadIndex(FILE* stream) + { + int index_type; + + load_value(stream, index_type); + IndexParams params; + params["algorithm"] = (flann_algorithm_t)index_type; + bestIndex_ = create_index_by_type(dataset_, params, distance_); + bestIndex_->loadIndex(stream); + int checks; + load_value(stream, checks); + bestSearchParams_["checks"] = checks; + } + + /** + * Method that searches for nearest-neighbors + */ + virtual void findNeighbors(ResultSet& result, const ElementType* vec, const SearchParams& searchParams) + { + int checks = get_param(searchParams,"checks",FLANN_CHECKS_AUTOTUNED); + if (checks == FLANN_CHECKS_AUTOTUNED) { + bestIndex_->findNeighbors(result, vec, bestSearchParams_); + } + else { + bestIndex_->findNeighbors(result, vec, searchParams); + } + } + + + IndexParams getParameters() const + { + return bestIndex_->getParameters(); + } + + SearchParams getSearchParameters() const + { + return bestSearchParams_; + } + + float getSpeedup() const + { + return speedup_; + } + + + /** + * Number of features in this index. + */ + virtual size_t size() const + { + return bestIndex_->size(); + } + + /** + * The length of each vector in this index. + */ + virtual size_t veclen() const + { + return bestIndex_->veclen(); + } + + /** + * The amount of memory (in bytes) this index uses. + */ + virtual int usedMemory() const + { + return bestIndex_->usedMemory(); + } + + /** + * Algorithm name + */ + virtual flann_algorithm_t getType() const + { + return FLANN_INDEX_AUTOTUNED; + } + +private: + + struct CostData + { + float searchTimeCost; + float buildTimeCost; + float memoryCost; + float totalCost; + IndexParams params; + }; + + void evaluate_kmeans(CostData& cost) + { + StartStopTimer t; + int checks; + const int nn = 1; + + Logger::info("KMeansTree using params: max_iterations=%d, branching=%d\n", + get_param(cost.params,"iterations"), + get_param(cost.params,"branching")); + KMeansIndex kmeans(sampledDataset_, cost.params, distance_); + // measure index build time + t.start(); + kmeans.buildIndex(); + t.stop(); + float buildTime = (float)t.value; + + // measure search time + float searchTime = test_index_precision(kmeans, sampledDataset_, testDataset_, gt_matches_, target_precision_, checks, distance_, nn); + + float datasetMemory = float(sampledDataset_.rows * sampledDataset_.cols * sizeof(float)); + cost.memoryCost = (kmeans.usedMemory() + datasetMemory) / datasetMemory; + cost.searchTimeCost = searchTime; + cost.buildTimeCost = buildTime; + Logger::info("KMeansTree buildTime=%g, searchTime=%g, build_weight=%g\n", buildTime, searchTime, build_weight_); + } + + + void evaluate_kdtree(CostData& cost) + { + StartStopTimer t; + int checks; + const int nn = 1; + + Logger::info("KDTree using params: trees=%d\n", get_param(cost.params,"trees")); + KDTreeIndex kdtree(sampledDataset_, cost.params, distance_); + + t.start(); + kdtree.buildIndex(); + t.stop(); + float buildTime = (float)t.value; + + //measure search time + float searchTime = test_index_precision(kdtree, sampledDataset_, testDataset_, gt_matches_, target_precision_, checks, distance_, nn); + + float datasetMemory = float(sampledDataset_.rows * sampledDataset_.cols * sizeof(float)); + cost.memoryCost = (kdtree.usedMemory() + datasetMemory) / datasetMemory; + cost.searchTimeCost = searchTime; + cost.buildTimeCost = buildTime; + Logger::info("KDTree buildTime=%g, searchTime=%g\n", buildTime, searchTime); + } + + + // struct KMeansSimpleDownhillFunctor { + // + // Autotune& autotuner; + // KMeansSimpleDownhillFunctor(Autotune& autotuner_) : autotuner(autotuner_) {} + // + // float operator()(int* params) { + // + // float maxFloat = numeric_limits::max(); + // + // if (params[0]<2) return maxFloat; + // if (params[1]<0) return maxFloat; + // + // CostData c; + // c.params["algorithm"] = KMEANS; + // c.params["centers-init"] = CENTERS_RANDOM; + // c.params["branching"] = params[0]; + // c.params["max-iterations"] = params[1]; + // + // autotuner.evaluate_kmeans(c); + // + // return c.timeCost; + // + // } + // }; + // + // struct KDTreeSimpleDownhillFunctor { + // + // Autotune& autotuner; + // KDTreeSimpleDownhillFunctor(Autotune& autotuner_) : autotuner(autotuner_) {} + // + // float operator()(int* params) { + // float maxFloat = numeric_limits::max(); + // + // if (params[0]<1) return maxFloat; + // + // CostData c; + // c.params["algorithm"] = KDTREE; + // c.params["trees"] = params[0]; + // + // autotuner.evaluate_kdtree(c); + // + // return c.timeCost; + // + // } + // }; + + + + void optimizeKMeans(std::vector& costs) + { + Logger::info("KMEANS, Step 1: Exploring parameter space\n"); + + // explore kmeans parameters space using combinations of the parameters below + int maxIterations[] = { 1, 5, 10, 15 }; + int branchingFactors[] = { 16, 32, 64, 128, 256 }; + + int kmeansParamSpaceSize = FLANN_ARRAY_LEN(maxIterations) * FLANN_ARRAY_LEN(branchingFactors); + costs.reserve(costs.size() + kmeansParamSpaceSize); + + // evaluate kmeans for all parameter combinations + for (size_t i = 0; i < FLANN_ARRAY_LEN(maxIterations); ++i) { + for (size_t j = 0; j < FLANN_ARRAY_LEN(branchingFactors); ++j) { + CostData cost; + cost.params["algorithm"] = FLANN_INDEX_KMEANS; + cost.params["centers_init"] = FLANN_CENTERS_RANDOM; + cost.params["iterations"] = maxIterations[i]; + cost.params["branching"] = branchingFactors[j]; + + evaluate_kmeans(cost); + costs.push_back(cost); + } + } + + // Logger::info("KMEANS, Step 2: simplex-downhill optimization\n"); + // + // const int n = 2; + // // choose initial simplex points as the best parameters so far + // int kmeansNMPoints[n*(n+1)]; + // float kmeansVals[n+1]; + // for (int i=0;i& costs) + { + Logger::info("KD-TREE, Step 1: Exploring parameter space\n"); + + // explore kd-tree parameters space using the parameters below + int testTrees[] = { 1, 4, 8, 16, 32 }; + + // evaluate kdtree for all parameter combinations + for (size_t i = 0; i < FLANN_ARRAY_LEN(testTrees); ++i) { + CostData cost; + cost.params["algorithm"] = FLANN_INDEX_KDTREE; + cost.params["trees"] = testTrees[i]; + + evaluate_kdtree(cost); + costs.push_back(cost); + } + + // Logger::info("KD-TREE, Step 2: simplex-downhill optimization\n"); + // + // const int n = 1; + // // choose initial simplex points as the best parameters so far + // int kdtreeNMPoints[n*(n+1)]; + // float kdtreeVals[n+1]; + // for (int i=0;i costs; + + int sampleSize = int(sample_fraction_ * dataset_.rows); + int testSampleSize = std::min(sampleSize / 10, 1000); + + Logger::info("Entering autotuning, dataset size: %d, sampleSize: %d, testSampleSize: %d, target precision: %g\n", dataset_.rows, sampleSize, testSampleSize, target_precision_); + + // For a very small dataset, it makes no sense to build any fancy index, just + // use linear search + if (testSampleSize < 10) { + Logger::info("Choosing linear, dataset too small\n"); + return LinearIndexParams(); + } + + // We use a fraction of the original dataset to speedup the autotune algorithm + sampledDataset_ = random_sample(dataset_, sampleSize); + // We use a cross-validation approach, first we sample a testset from the dataset + testDataset_ = random_sample(sampledDataset_, testSampleSize, true); + + // We compute the ground truth using linear search + Logger::info("Computing ground truth... \n"); + gt_matches_ = Matrix(new int[testDataset_.rows], testDataset_.rows, 1); + StartStopTimer t; + t.start(); + compute_ground_truth(sampledDataset_, testDataset_, gt_matches_, 0, distance_); + t.stop(); + + CostData linear_cost; + linear_cost.searchTimeCost = (float)t.value; + linear_cost.buildTimeCost = 0; + linear_cost.memoryCost = 0; + linear_cost.params["algorithm"] = FLANN_INDEX_LINEAR; + + costs.push_back(linear_cost); + + // Start parameter autotune process + Logger::info("Autotuning parameters...\n"); + + optimizeKMeans(costs); + optimizeKDTree(costs); + + float bestTimeCost = costs[0].searchTimeCost; + for (size_t i = 0; i < costs.size(); ++i) { + float timeCost = costs[i].buildTimeCost * build_weight_ + costs[i].searchTimeCost; + if (timeCost < bestTimeCost) { + bestTimeCost = timeCost; + } + } + + float bestCost = costs[0].searchTimeCost / bestTimeCost; + IndexParams bestParams = costs[0].params; + if (bestTimeCost > 0) { + for (size_t i = 0; i < costs.size(); ++i) { + float crtCost = (costs[i].buildTimeCost * build_weight_ + costs[i].searchTimeCost) / bestTimeCost + + memory_weight_ * costs[i].memoryCost; + if (crtCost < bestCost) { + bestCost = crtCost; + bestParams = costs[i].params; + } + } + } + + delete[] gt_matches_.data; + delete[] testDataset_.data; + delete[] sampledDataset_.data; + + return bestParams; + } + + + + /** + * Estimates the search time parameters needed to get the desired precision. + * Precondition: the index is built + * Postcondition: the searchParams will have the optimum params set, also the speedup obtained over linear search. + */ + float estimateSearchParams(SearchParams& searchParams) + { + const int nn = 1; + const size_t SAMPLE_COUNT = 1000; + + assert(bestIndex_ != NULL); // must have a valid index + + float speedup = 0; + + int samples = (int)std::min(dataset_.rows / 10, SAMPLE_COUNT); + if (samples > 0) { + Matrix testDataset = random_sample(dataset_, samples); + + Logger::info("Computing ground truth\n"); + + // we need to compute the ground truth first + Matrix gt_matches(new int[testDataset.rows], testDataset.rows, 1); + StartStopTimer t; + t.start(); + compute_ground_truth(dataset_, testDataset, gt_matches, 1, distance_); + t.stop(); + float linear = (float)t.value; + + int checks; + Logger::info("Estimating number of checks\n"); + + float searchTime; + float cb_index; + if (bestIndex_->getType() == FLANN_INDEX_KMEANS) { + Logger::info("KMeans algorithm, estimating cluster border factor\n"); + KMeansIndex* kmeans = (KMeansIndex*)bestIndex_; + float bestSearchTime = -1; + float best_cb_index = -1; + int best_checks = -1; + for (cb_index = 0; cb_index < 1.1f; cb_index += 0.2f) { + kmeans->set_cb_index(cb_index); + searchTime = test_index_precision(*kmeans, dataset_, testDataset, gt_matches, target_precision_, checks, distance_, nn, 1); + if ((searchTime < bestSearchTime) || (bestSearchTime == -1)) { + bestSearchTime = searchTime; + best_cb_index = cb_index; + best_checks = checks; + } + } + searchTime = bestSearchTime; + cb_index = best_cb_index; + checks = best_checks; + + kmeans->set_cb_index(best_cb_index); + Logger::info("Optimum cb_index: %g\n", cb_index); + bestParams_["cb_index"] = cb_index; + } + else { + searchTime = test_index_precision(*bestIndex_, dataset_, testDataset, gt_matches, target_precision_, checks, distance_, nn, 1); + } + + Logger::info("Required number of checks: %d \n", checks); + searchParams["checks"] = checks; + + speedup = linear / searchTime; + + delete[] gt_matches.data; + delete[] testDataset.data; + } + + return speedup; + } + +private: + NNIndex* bestIndex_; + + IndexParams bestParams_; + SearchParams bestSearchParams_; + + Matrix sampledDataset_; + Matrix testDataset_; + Matrix gt_matches_; + + float speedup_; + + /** + * The dataset used by this index + */ + const Matrix dataset_; + + /** + * Index parameters + */ + float target_precision_; + float build_weight_; + float memory_weight_; + float sample_fraction_; + + Distance distance_; + + +}; +} + +#endif /* OPENCV_FLANN_AUTOTUNED_INDEX_H_ */ diff --git a/thirdparty1/linux/include/opencv2/flann/composite_index.h b/thirdparty1/linux/include/opencv2/flann/composite_index.h new file mode 100644 index 0000000..527ca1a --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/composite_index.h @@ -0,0 +1,194 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_COMPOSITE_INDEX_H_ +#define OPENCV_FLANN_COMPOSITE_INDEX_H_ + +#include "general.h" +#include "nn_index.h" +#include "kdtree_index.h" +#include "kmeans_index.h" + +namespace cvflann +{ + +/** + * Index parameters for the CompositeIndex. + */ +struct CompositeIndexParams : public IndexParams +{ + CompositeIndexParams(int trees = 4, int branching = 32, int iterations = 11, + flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, float cb_index = 0.2 ) + { + (*this)["algorithm"] = FLANN_INDEX_KMEANS; + // number of randomized trees to use (for kdtree) + (*this)["trees"] = trees; + // branching factor + (*this)["branching"] = branching; + // max iterations to perform in one kmeans clustering (kmeans tree) + (*this)["iterations"] = iterations; + // algorithm used for picking the initial cluster centers for kmeans tree + (*this)["centers_init"] = centers_init; + // cluster boundary index. Used when searching the kmeans tree + (*this)["cb_index"] = cb_index; + } +}; + + +/** + * This index builds a kd-tree index and a k-means index and performs nearest + * neighbour search both indexes. This gives a slight boost in search performance + * as some of the neighbours that are missed by one index are found by the other. + */ +template +class CompositeIndex : public NNIndex +{ +public: + typedef typename Distance::ElementType ElementType; + typedef typename Distance::ResultType DistanceType; + + /** + * Index constructor + * @param inputData dataset containing the points to index + * @param params Index parameters + * @param d Distance functor + * @return + */ + CompositeIndex(const Matrix& inputData, const IndexParams& params = CompositeIndexParams(), + Distance d = Distance()) : index_params_(params) + { + kdtree_index_ = new KDTreeIndex(inputData, params, d); + kmeans_index_ = new KMeansIndex(inputData, params, d); + + } + + CompositeIndex(const CompositeIndex&); + CompositeIndex& operator=(const CompositeIndex&); + + virtual ~CompositeIndex() + { + delete kdtree_index_; + delete kmeans_index_; + } + + /** + * @return The index type + */ + flann_algorithm_t getType() const + { + return FLANN_INDEX_COMPOSITE; + } + + /** + * @return Size of the index + */ + size_t size() const + { + return kdtree_index_->size(); + } + + /** + * \returns The dimensionality of the features in this index. + */ + size_t veclen() const + { + return kdtree_index_->veclen(); + } + + /** + * \returns The amount of memory (in bytes) used by the index. + */ + int usedMemory() const + { + return kmeans_index_->usedMemory() + kdtree_index_->usedMemory(); + } + + /** + * \brief Builds the index + */ + void buildIndex() + { + Logger::info("Building kmeans tree...\n"); + kmeans_index_->buildIndex(); + Logger::info("Building kdtree tree...\n"); + kdtree_index_->buildIndex(); + } + + /** + * \brief Saves the index to a stream + * \param stream The stream to save the index to + */ + void saveIndex(FILE* stream) + { + kmeans_index_->saveIndex(stream); + kdtree_index_->saveIndex(stream); + } + + /** + * \brief Loads the index from a stream + * \param stream The stream from which the index is loaded + */ + void loadIndex(FILE* stream) + { + kmeans_index_->loadIndex(stream); + kdtree_index_->loadIndex(stream); + } + + /** + * \returns The index parameters + */ + IndexParams getParameters() const + { + return index_params_; + } + + /** + * \brief Method that searches for nearest-neighbours + */ + void findNeighbors(ResultSet& result, const ElementType* vec, const SearchParams& searchParams) + { + kmeans_index_->findNeighbors(result, vec, searchParams); + kdtree_index_->findNeighbors(result, vec, searchParams); + } + +private: + /** The k-means index */ + KMeansIndex* kmeans_index_; + + /** The kd-tree index */ + KDTreeIndex* kdtree_index_; + + /** The index parameters */ + const IndexParams index_params_; +}; + +} + +#endif //OPENCV_FLANN_COMPOSITE_INDEX_H_ diff --git a/thirdparty1/linux/include/opencv2/flann/config.h b/thirdparty1/linux/include/opencv2/flann/config.h new file mode 100644 index 0000000..56832fd --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/config.h @@ -0,0 +1,38 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2011 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2011 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + + +#ifndef OPENCV_FLANN_CONFIG_H_ +#define OPENCV_FLANN_CONFIG_H_ + +#ifdef FLANN_VERSION_ +#undef FLANN_VERSION_ +#endif +#define FLANN_VERSION_ "1.6.10" + +#endif /* OPENCV_FLANN_CONFIG_H_ */ diff --git a/thirdparty1/linux/include/opencv2/flann/defines.h b/thirdparty1/linux/include/opencv2/flann/defines.h new file mode 100644 index 0000000..f0264f7 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/defines.h @@ -0,0 +1,177 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2011 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2011 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + + +#ifndef OPENCV_FLANN_DEFINES_H_ +#define OPENCV_FLANN_DEFINES_H_ + +#include "config.h" + +#ifdef FLANN_EXPORT +#undef FLANN_EXPORT +#endif +#ifdef WIN32 +/* win32 dll export/import directives */ + #ifdef FLANN_EXPORTS + #define FLANN_EXPORT __declspec(dllexport) + #elif defined(FLANN_STATIC) + #define FLANN_EXPORT + #else + #define FLANN_EXPORT __declspec(dllimport) + #endif +#else +/* unix needs nothing */ + #define FLANN_EXPORT +#endif + + +#ifdef FLANN_DEPRECATED +#undef FLANN_DEPRECATED +#endif +#ifdef __GNUC__ +#define FLANN_DEPRECATED __attribute__ ((deprecated)) +#elif defined(_MSC_VER) +#define FLANN_DEPRECATED __declspec(deprecated) +#else +#pragma message("WARNING: You need to implement FLANN_DEPRECATED for this compiler") +#define FLANN_DEPRECATED +#endif + + +#undef FLANN_PLATFORM_32_BIT +#undef FLANN_PLATFORM_64_BIT +#if defined __amd64__ || defined __x86_64__ || defined _WIN64 || defined _M_X64 +#define FLANN_PLATFORM_64_BIT +#else +#define FLANN_PLATFORM_32_BIT +#endif + + +#undef FLANN_ARRAY_LEN +#define FLANN_ARRAY_LEN(a) (sizeof(a)/sizeof(a[0])) + +namespace cvflann { + +/* Nearest neighbour index algorithms */ +enum flann_algorithm_t +{ + FLANN_INDEX_LINEAR = 0, + FLANN_INDEX_KDTREE = 1, + FLANN_INDEX_KMEANS = 2, + FLANN_INDEX_COMPOSITE = 3, + FLANN_INDEX_KDTREE_SINGLE = 4, + FLANN_INDEX_HIERARCHICAL = 5, + FLANN_INDEX_LSH = 6, + FLANN_INDEX_SAVED = 254, + FLANN_INDEX_AUTOTUNED = 255, + + // deprecated constants, should use the FLANN_INDEX_* ones instead + LINEAR = 0, + KDTREE = 1, + KMEANS = 2, + COMPOSITE = 3, + KDTREE_SINGLE = 4, + SAVED = 254, + AUTOTUNED = 255 +}; + + + +enum flann_centers_init_t +{ + FLANN_CENTERS_RANDOM = 0, + FLANN_CENTERS_GONZALES = 1, + FLANN_CENTERS_KMEANSPP = 2, + FLANN_CENTERS_GROUPWISE = 3, + + // deprecated constants, should use the FLANN_CENTERS_* ones instead + CENTERS_RANDOM = 0, + CENTERS_GONZALES = 1, + CENTERS_KMEANSPP = 2 +}; + +enum flann_log_level_t +{ + FLANN_LOG_NONE = 0, + FLANN_LOG_FATAL = 1, + FLANN_LOG_ERROR = 2, + FLANN_LOG_WARN = 3, + FLANN_LOG_INFO = 4 +}; + +enum flann_distance_t +{ + FLANN_DIST_EUCLIDEAN = 1, + FLANN_DIST_L2 = 1, + FLANN_DIST_MANHATTAN = 2, + FLANN_DIST_L1 = 2, + FLANN_DIST_MINKOWSKI = 3, + FLANN_DIST_MAX = 4, + FLANN_DIST_HIST_INTERSECT = 5, + FLANN_DIST_HELLINGER = 6, + FLANN_DIST_CHI_SQUARE = 7, + FLANN_DIST_CS = 7, + FLANN_DIST_KULLBACK_LEIBLER = 8, + FLANN_DIST_KL = 8, + FLANN_DIST_HAMMING = 9, + + // deprecated constants, should use the FLANN_DIST_* ones instead + EUCLIDEAN = 1, + MANHATTAN = 2, + MINKOWSKI = 3, + MAX_DIST = 4, + HIST_INTERSECT = 5, + HELLINGER = 6, + CS = 7, + KL = 8, + KULLBACK_LEIBLER = 8 +}; + +enum flann_datatype_t +{ + FLANN_INT8 = 0, + FLANN_INT16 = 1, + FLANN_INT32 = 2, + FLANN_INT64 = 3, + FLANN_UINT8 = 4, + FLANN_UINT16 = 5, + FLANN_UINT32 = 6, + FLANN_UINT64 = 7, + FLANN_FLOAT32 = 8, + FLANN_FLOAT64 = 9 +}; + +enum +{ + FLANN_CHECKS_UNLIMITED = -1, + FLANN_CHECKS_AUTOTUNED = -2 +}; + +} + +#endif /* OPENCV_FLANN_DEFINES_H_ */ diff --git a/thirdparty1/linux/include/opencv2/flann/dist.h b/thirdparty1/linux/include/opencv2/flann/dist.h new file mode 100644 index 0000000..9dbe527 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/dist.h @@ -0,0 +1,905 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_DIST_H_ +#define OPENCV_FLANN_DIST_H_ + +#include +#include +#include +#ifdef _MSC_VER +typedef unsigned __int32 uint32_t; +typedef unsigned __int64 uint64_t; +#else +#include +#endif + +#include "defines.h" + +#if (defined WIN32 || defined _WIN32) && defined(_M_ARM) +# include +#endif + +#ifdef __ARM_NEON__ +# include "arm_neon.h" +#endif + +namespace cvflann +{ + +template +inline T abs(T x) { return (x<0) ? -x : x; } + +template<> +inline int abs(int x) { return ::abs(x); } + +template<> +inline float abs(float x) { return fabsf(x); } + +template<> +inline double abs(double x) { return fabs(x); } + +template +struct Accumulator { typedef T Type; }; +template<> +struct Accumulator { typedef float Type; }; +template<> +struct Accumulator { typedef float Type; }; +template<> +struct Accumulator { typedef float Type; }; +template<> +struct Accumulator { typedef float Type; }; +template<> +struct Accumulator { typedef float Type; }; +template<> +struct Accumulator { typedef float Type; }; + +#undef True +#undef False + +class True +{ +}; + +class False +{ +}; + + +/** + * Squared Euclidean distance functor. + * + * This is the simpler, unrolled version. This is preferable for + * very low dimensionality data (eg 3D points) + */ +template +struct L2_Simple +{ + typedef True is_kdtree_distance; + typedef True is_vector_space_distance; + + typedef T ElementType; + typedef typename Accumulator::Type ResultType; + + template + ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const + { + ResultType result = ResultType(); + ResultType diff; + for(size_t i = 0; i < size; ++i ) { + diff = *a++ - *b++; + result += diff*diff; + } + return result; + } + + template + inline ResultType accum_dist(const U& a, const V& b, int) const + { + return (a-b)*(a-b); + } +}; + + + +/** + * Squared Euclidean distance functor, optimized version + */ +template +struct L2 +{ + typedef True is_kdtree_distance; + typedef True is_vector_space_distance; + + typedef T ElementType; + typedef typename Accumulator::Type ResultType; + + /** + * Compute the squared Euclidean distance between two vectors. + * + * This is highly optimised, with loop unrolling, as it is one + * of the most expensive inner loops. + * + * The computation of squared root at the end is omitted for + * efficiency. + */ + template + ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const + { + ResultType result = ResultType(); + ResultType diff0, diff1, diff2, diff3; + Iterator1 last = a + size; + Iterator1 lastgroup = last - 3; + + /* Process 4 items with each loop for efficiency. */ + while (a < lastgroup) { + diff0 = (ResultType)(a[0] - b[0]); + diff1 = (ResultType)(a[1] - b[1]); + diff2 = (ResultType)(a[2] - b[2]); + diff3 = (ResultType)(a[3] - b[3]); + result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3; + a += 4; + b += 4; + + if ((worst_dist>0)&&(result>worst_dist)) { + return result; + } + } + /* Process last 0-3 pixels. Not needed for standard vector lengths. */ + while (a < last) { + diff0 = (ResultType)(*a++ - *b++); + result += diff0 * diff0; + } + return result; + } + + /** + * Partial euclidean distance, using just one dimension. This is used by the + * kd-tree when computing partial distances while traversing the tree. + * + * Squared root is omitted for efficiency. + */ + template + inline ResultType accum_dist(const U& a, const V& b, int) const + { + return (a-b)*(a-b); + } +}; + + +/* + * Manhattan distance functor, optimized version + */ +template +struct L1 +{ + typedef True is_kdtree_distance; + typedef True is_vector_space_distance; + + typedef T ElementType; + typedef typename Accumulator::Type ResultType; + + /** + * Compute the Manhattan (L_1) distance between two vectors. + * + * This is highly optimised, with loop unrolling, as it is one + * of the most expensive inner loops. + */ + template + ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const + { + ResultType result = ResultType(); + ResultType diff0, diff1, diff2, diff3; + Iterator1 last = a + size; + Iterator1 lastgroup = last - 3; + + /* Process 4 items with each loop for efficiency. */ + while (a < lastgroup) { + diff0 = (ResultType)abs(a[0] - b[0]); + diff1 = (ResultType)abs(a[1] - b[1]); + diff2 = (ResultType)abs(a[2] - b[2]); + diff3 = (ResultType)abs(a[3] - b[3]); + result += diff0 + diff1 + diff2 + diff3; + a += 4; + b += 4; + + if ((worst_dist>0)&&(result>worst_dist)) { + return result; + } + } + /* Process last 0-3 pixels. Not needed for standard vector lengths. */ + while (a < last) { + diff0 = (ResultType)abs(*a++ - *b++); + result += diff0; + } + return result; + } + + /** + * Partial distance, used by the kd-tree. + */ + template + inline ResultType accum_dist(const U& a, const V& b, int) const + { + return abs(a-b); + } +}; + + + +template +struct MinkowskiDistance +{ + typedef True is_kdtree_distance; + typedef True is_vector_space_distance; + + typedef T ElementType; + typedef typename Accumulator::Type ResultType; + + int order; + + MinkowskiDistance(int order_) : order(order_) {} + + /** + * Compute the Minkowsky (L_p) distance between two vectors. + * + * This is highly optimised, with loop unrolling, as it is one + * of the most expensive inner loops. + * + * The computation of squared root at the end is omitted for + * efficiency. + */ + template + ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const + { + ResultType result = ResultType(); + ResultType diff0, diff1, diff2, diff3; + Iterator1 last = a + size; + Iterator1 lastgroup = last - 3; + + /* Process 4 items with each loop for efficiency. */ + while (a < lastgroup) { + diff0 = (ResultType)abs(a[0] - b[0]); + diff1 = (ResultType)abs(a[1] - b[1]); + diff2 = (ResultType)abs(a[2] - b[2]); + diff3 = (ResultType)abs(a[3] - b[3]); + result += pow(diff0,order) + pow(diff1,order) + pow(diff2,order) + pow(diff3,order); + a += 4; + b += 4; + + if ((worst_dist>0)&&(result>worst_dist)) { + return result; + } + } + /* Process last 0-3 pixels. Not needed for standard vector lengths. */ + while (a < last) { + diff0 = (ResultType)abs(*a++ - *b++); + result += pow(diff0,order); + } + return result; + } + + /** + * Partial distance, used by the kd-tree. + */ + template + inline ResultType accum_dist(const U& a, const V& b, int) const + { + return pow(static_cast(abs(a-b)),order); + } +}; + + + +template +struct MaxDistance +{ + typedef False is_kdtree_distance; + typedef True is_vector_space_distance; + + typedef T ElementType; + typedef typename Accumulator::Type ResultType; + + /** + * Compute the max distance (L_infinity) between two vectors. + * + * This distance is not a valid kdtree distance, it's not dimensionwise additive. + */ + template + ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const + { + ResultType result = ResultType(); + ResultType diff0, diff1, diff2, diff3; + Iterator1 last = a + size; + Iterator1 lastgroup = last - 3; + + /* Process 4 items with each loop for efficiency. */ + while (a < lastgroup) { + diff0 = abs(a[0] - b[0]); + diff1 = abs(a[1] - b[1]); + diff2 = abs(a[2] - b[2]); + diff3 = abs(a[3] - b[3]); + if (diff0>result) {result = diff0; } + if (diff1>result) {result = diff1; } + if (diff2>result) {result = diff2; } + if (diff3>result) {result = diff3; } + a += 4; + b += 4; + + if ((worst_dist>0)&&(result>worst_dist)) { + return result; + } + } + /* Process last 0-3 pixels. Not needed for standard vector lengths. */ + while (a < last) { + diff0 = abs(*a++ - *b++); + result = (diff0>result) ? diff0 : result; + } + return result; + } + + /* This distance functor is not dimension-wise additive, which + * makes it an invalid kd-tree distance, not implementing the accum_dist method */ + +}; + +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + +/** + * Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor + * bit count of A exclusive XOR'ed with B + */ +struct HammingLUT +{ + typedef False is_kdtree_distance; + typedef False is_vector_space_distance; + + typedef unsigned char ElementType; + typedef int ResultType; + + /** this will count the bits in a ^ b + */ + ResultType operator()(const unsigned char* a, const unsigned char* b, size_t size) const + { + static const uchar popCountTable[] = + { + 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, + 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, + 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, + 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, + 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8 + }; + ResultType result = 0; + for (size_t i = 0; i < size; i++) { + result += popCountTable[a[i] ^ b[i]]; + } + return result; + } +}; + +/** + * Hamming distance functor (pop count between two binary vectors, i.e. xor them and count the number of bits set) + * That code was taken from brief.cpp in OpenCV + */ +template +struct Hamming +{ + typedef False is_kdtree_distance; + typedef False is_vector_space_distance; + + + typedef T ElementType; + typedef int ResultType; + + template + ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const + { + ResultType result = 0; +#ifdef __ARM_NEON__ + { + uint32x4_t bits = vmovq_n_u32(0); + for (size_t i = 0; i < size; i += 16) { + uint8x16_t A_vec = vld1q_u8 (a + i); + uint8x16_t B_vec = vld1q_u8 (b + i); + uint8x16_t AxorB = veorq_u8 (A_vec, B_vec); + uint8x16_t bitsSet = vcntq_u8 (AxorB); + uint16x8_t bitSet8 = vpaddlq_u8 (bitsSet); + uint32x4_t bitSet4 = vpaddlq_u16 (bitSet8); + bits = vaddq_u32(bits, bitSet4); + } + uint64x2_t bitSet2 = vpaddlq_u32 (bits); + result = vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),0); + result += vgetq_lane_s32 (vreinterpretq_s32_u64(bitSet2),2); + } +#elif __GNUC__ + { + //for portability just use unsigned long -- and use the __builtin_popcountll (see docs for __builtin_popcountll) + typedef unsigned long long pop_t; + const size_t modulo = size % sizeof(pop_t); + const pop_t* a2 = reinterpret_cast (a); + const pop_t* b2 = reinterpret_cast (b); + const pop_t* a2_end = a2 + (size / sizeof(pop_t)); + + for (; a2 != a2_end; ++a2, ++b2) result += __builtin_popcountll((*a2) ^ (*b2)); + + if (modulo) { + //in the case where size is not dividable by sizeof(size_t) + //need to mask off the bits at the end + pop_t a_final = 0, b_final = 0; + memcpy(&a_final, a2, modulo); + memcpy(&b_final, b2, modulo); + result += __builtin_popcountll(a_final ^ b_final); + } + } +#else // NO NEON and NOT GNUC + typedef unsigned long long pop_t; + HammingLUT lut; + result = lut(reinterpret_cast (a), + reinterpret_cast (b), size * sizeof(pop_t)); +#endif + return result; + } +}; + +template +struct Hamming2 +{ + typedef False is_kdtree_distance; + typedef False is_vector_space_distance; + + typedef T ElementType; + typedef int ResultType; + + /** This is popcount_3() from: + * http://en.wikipedia.org/wiki/Hamming_weight */ + unsigned int popcnt32(uint32_t n) const + { + n -= ((n >> 1) & 0x55555555); + n = (n & 0x33333333) + ((n >> 2) & 0x33333333); + return (((n + (n >> 4))& 0xF0F0F0F)* 0x1010101) >> 24; + } + +#ifdef FLANN_PLATFORM_64_BIT + unsigned int popcnt64(uint64_t n) const + { + n -= ((n >> 1) & 0x5555555555555555); + n = (n & 0x3333333333333333) + ((n >> 2) & 0x3333333333333333); + return (((n + (n >> 4))& 0x0f0f0f0f0f0f0f0f)* 0x0101010101010101) >> 56; + } +#endif + + template + ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const + { +#ifdef FLANN_PLATFORM_64_BIT + const uint64_t* pa = reinterpret_cast(a); + const uint64_t* pb = reinterpret_cast(b); + ResultType result = 0; + size /= (sizeof(uint64_t)/sizeof(unsigned char)); + for(size_t i = 0; i < size; ++i ) { + result += popcnt64(*pa ^ *pb); + ++pa; + ++pb; + } +#else + const uint32_t* pa = reinterpret_cast(a); + const uint32_t* pb = reinterpret_cast(b); + ResultType result = 0; + size /= (sizeof(uint32_t)/sizeof(unsigned char)); + for(size_t i = 0; i < size; ++i ) { + result += popcnt32(*pa ^ *pb); + ++pa; + ++pb; + } +#endif + return result; + } +}; + + + +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + +template +struct HistIntersectionDistance +{ + typedef True is_kdtree_distance; + typedef True is_vector_space_distance; + + typedef T ElementType; + typedef typename Accumulator::Type ResultType; + + /** + * Compute the histogram intersection distance + */ + template + ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const + { + ResultType result = ResultType(); + ResultType min0, min1, min2, min3; + Iterator1 last = a + size; + Iterator1 lastgroup = last - 3; + + /* Process 4 items with each loop for efficiency. */ + while (a < lastgroup) { + min0 = (ResultType)(a[0] < b[0] ? a[0] : b[0]); + min1 = (ResultType)(a[1] < b[1] ? a[1] : b[1]); + min2 = (ResultType)(a[2] < b[2] ? a[2] : b[2]); + min3 = (ResultType)(a[3] < b[3] ? a[3] : b[3]); + result += min0 + min1 + min2 + min3; + a += 4; + b += 4; + if ((worst_dist>0)&&(result>worst_dist)) { + return result; + } + } + /* Process last 0-3 pixels. Not needed for standard vector lengths. */ + while (a < last) { + min0 = (ResultType)(*a < *b ? *a : *b); + result += min0; + ++a; + ++b; + } + return result; + } + + /** + * Partial distance, used by the kd-tree. + */ + template + inline ResultType accum_dist(const U& a, const V& b, int) const + { + return a +struct HellingerDistance +{ + typedef True is_kdtree_distance; + typedef True is_vector_space_distance; + + typedef T ElementType; + typedef typename Accumulator::Type ResultType; + + /** + * Compute the Hellinger distance + */ + template + ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType /*worst_dist*/ = -1) const + { + ResultType result = ResultType(); + ResultType diff0, diff1, diff2, diff3; + Iterator1 last = a + size; + Iterator1 lastgroup = last - 3; + + /* Process 4 items with each loop for efficiency. */ + while (a < lastgroup) { + diff0 = sqrt(static_cast(a[0])) - sqrt(static_cast(b[0])); + diff1 = sqrt(static_cast(a[1])) - sqrt(static_cast(b[1])); + diff2 = sqrt(static_cast(a[2])) - sqrt(static_cast(b[2])); + diff3 = sqrt(static_cast(a[3])) - sqrt(static_cast(b[3])); + result += diff0 * diff0 + diff1 * diff1 + diff2 * diff2 + diff3 * diff3; + a += 4; + b += 4; + } + while (a < last) { + diff0 = sqrt(static_cast(*a++)) - sqrt(static_cast(*b++)); + result += diff0 * diff0; + } + return result; + } + + /** + * Partial distance, used by the kd-tree. + */ + template + inline ResultType accum_dist(const U& a, const V& b, int) const + { + ResultType diff = sqrt(static_cast(a)) - sqrt(static_cast(b)); + return diff * diff; + } +}; + + +template +struct ChiSquareDistance +{ + typedef True is_kdtree_distance; + typedef True is_vector_space_distance; + + typedef T ElementType; + typedef typename Accumulator::Type ResultType; + + /** + * Compute the chi-square distance + */ + template + ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const + { + ResultType result = ResultType(); + ResultType sum, diff; + Iterator1 last = a + size; + + while (a < last) { + sum = (ResultType)(*a + *b); + if (sum>0) { + diff = (ResultType)(*a - *b); + result += diff*diff/sum; + } + ++a; + ++b; + + if ((worst_dist>0)&&(result>worst_dist)) { + return result; + } + } + return result; + } + + /** + * Partial distance, used by the kd-tree. + */ + template + inline ResultType accum_dist(const U& a, const V& b, int) const + { + ResultType result = ResultType(); + ResultType sum, diff; + + sum = (ResultType)(a+b); + if (sum>0) { + diff = (ResultType)(a-b); + result = diff*diff/sum; + } + return result; + } +}; + + +template +struct KL_Divergence +{ + typedef True is_kdtree_distance; + typedef True is_vector_space_distance; + + typedef T ElementType; + typedef typename Accumulator::Type ResultType; + + /** + * Compute the Kullback–Leibler divergence + */ + template + ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const + { + ResultType result = ResultType(); + Iterator1 last = a + size; + + while (a < last) { + if (* b != 0) { + ResultType ratio = (ResultType)(*a / *b); + if (ratio>0) { + result += *a * log(ratio); + } + } + ++a; + ++b; + + if ((worst_dist>0)&&(result>worst_dist)) { + return result; + } + } + return result; + } + + /** + * Partial distance, used by the kd-tree. + */ + template + inline ResultType accum_dist(const U& a, const V& b, int) const + { + ResultType result = ResultType(); + if( *b != 0 ) { + ResultType ratio = (ResultType)(a / b); + if (ratio>0) { + result = a * log(ratio); + } + } + return result; + } +}; + + + +/* + * This is a "zero iterator". It basically behaves like a zero filled + * array to all algorithms that use arrays as iterators (STL style). + * It's useful when there's a need to compute the distance between feature + * and origin it and allows for better compiler optimisation than using a + * zero-filled array. + */ +template +struct ZeroIterator +{ + + T operator*() + { + return 0; + } + + T operator[](int) + { + return 0; + } + + const ZeroIterator& operator ++() + { + return *this; + } + + ZeroIterator operator ++(int) + { + return *this; + } + + ZeroIterator& operator+=(int) + { + return *this; + } + +}; + + +/* + * Depending on processed distances, some of them are already squared (e.g. L2) + * and some are not (e.g.Hamming). In KMeans++ for instance we want to be sure + * we are working on ^2 distances, thus following templates to ensure that. + */ +template +struct squareDistance +{ + typedef typename Distance::ResultType ResultType; + ResultType operator()( ResultType dist ) { return dist*dist; } +}; + + +template +struct squareDistance, ElementType> +{ + typedef typename L2_Simple::ResultType ResultType; + ResultType operator()( ResultType dist ) { return dist; } +}; + +template +struct squareDistance, ElementType> +{ + typedef typename L2::ResultType ResultType; + ResultType operator()( ResultType dist ) { return dist; } +}; + + +template +struct squareDistance, ElementType> +{ + typedef typename MinkowskiDistance::ResultType ResultType; + ResultType operator()( ResultType dist ) { return dist; } +}; + +template +struct squareDistance, ElementType> +{ + typedef typename HellingerDistance::ResultType ResultType; + ResultType operator()( ResultType dist ) { return dist; } +}; + +template +struct squareDistance, ElementType> +{ + typedef typename ChiSquareDistance::ResultType ResultType; + ResultType operator()( ResultType dist ) { return dist; } +}; + + +template +typename Distance::ResultType ensureSquareDistance( typename Distance::ResultType dist ) +{ + typedef typename Distance::ElementType ElementType; + + squareDistance dummy; + return dummy( dist ); +} + + +/* + * ...and a template to ensure the user that he will process the normal distance, + * and not squared distance, without loosing processing time calling sqrt(ensureSquareDistance) + * that will result in doing actually sqrt(dist*dist) for L1 distance for instance. + */ +template +struct simpleDistance +{ + typedef typename Distance::ResultType ResultType; + ResultType operator()( ResultType dist ) { return dist; } +}; + + +template +struct simpleDistance, ElementType> +{ + typedef typename L2_Simple::ResultType ResultType; + ResultType operator()( ResultType dist ) { return sqrt(dist); } +}; + +template +struct simpleDistance, ElementType> +{ + typedef typename L2::ResultType ResultType; + ResultType operator()( ResultType dist ) { return sqrt(dist); } +}; + + +template +struct simpleDistance, ElementType> +{ + typedef typename MinkowskiDistance::ResultType ResultType; + ResultType operator()( ResultType dist ) { return sqrt(dist); } +}; + +template +struct simpleDistance, ElementType> +{ + typedef typename HellingerDistance::ResultType ResultType; + ResultType operator()( ResultType dist ) { return sqrt(dist); } +}; + +template +struct simpleDistance, ElementType> +{ + typedef typename ChiSquareDistance::ResultType ResultType; + ResultType operator()( ResultType dist ) { return sqrt(dist); } +}; + + +template +typename Distance::ResultType ensureSimpleDistance( typename Distance::ResultType dist ) +{ + typedef typename Distance::ElementType ElementType; + + simpleDistance dummy; + return dummy( dist ); +} + +} + +#endif //OPENCV_FLANN_DIST_H_ diff --git a/thirdparty1/linux/include/opencv2/flann/dummy.h b/thirdparty1/linux/include/opencv2/flann/dummy.h new file mode 100644 index 0000000..26bd3fa --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/dummy.h @@ -0,0 +1,16 @@ + +#ifndef OPENCV_FLANN_DUMMY_H_ +#define OPENCV_FLANN_DUMMY_H_ + +namespace cvflann +{ + +#if (defined WIN32 || defined _WIN32 || defined WINCE) && defined CVAPI_EXPORTS +__declspec(dllexport) +#endif +void dummyfunc(); + +} + + +#endif /* OPENCV_FLANN_DUMMY_H_ */ diff --git a/thirdparty1/linux/include/opencv2/flann/dynamic_bitset.h b/thirdparty1/linux/include/opencv2/flann/dynamic_bitset.h new file mode 100644 index 0000000..d795b5d --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/dynamic_bitset.h @@ -0,0 +1,159 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +/*********************************************************************** + * Author: Vincent Rabaud + *************************************************************************/ + +#ifndef OPENCV_FLANN_DYNAMIC_BITSET_H_ +#define OPENCV_FLANN_DYNAMIC_BITSET_H_ + +#ifndef FLANN_USE_BOOST +# define FLANN_USE_BOOST 0 +#endif +//#define FLANN_USE_BOOST 1 +#if FLANN_USE_BOOST +#include +typedef boost::dynamic_bitset<> DynamicBitset; +#else + +#include + +#include "dist.h" + +namespace cvflann { + +/** Class re-implementing the boost version of it + * This helps not depending on boost, it also does not do the bound checks + * and has a way to reset a block for speed + */ +class DynamicBitset +{ +public: + /** default constructor + */ + DynamicBitset() + { + } + + /** only constructor we use in our code + * @param sz the size of the bitset (in bits) + */ + DynamicBitset(size_t sz) + { + resize(sz); + reset(); + } + + /** Sets all the bits to 0 + */ + void clear() + { + std::fill(bitset_.begin(), bitset_.end(), 0); + } + + /** @brief checks if the bitset is empty + * @return true if the bitset is empty + */ + bool empty() const + { + return bitset_.empty(); + } + + /** set all the bits to 0 + */ + void reset() + { + std::fill(bitset_.begin(), bitset_.end(), 0); + } + + /** @brief set one bit to 0 + * @param index + */ + void reset(size_t index) + { + bitset_[index / cell_bit_size_] &= ~(size_t(1) << (index % cell_bit_size_)); + } + + /** @brief sets a specific bit to 0, and more bits too + * This function is useful when resetting a given set of bits so that the + * whole bitset ends up being 0: if that's the case, we don't care about setting + * other bits to 0 + * @param index + */ + void reset_block(size_t index) + { + bitset_[index / cell_bit_size_] = 0; + } + + /** resize the bitset so that it contains at least sz bits + * @param sz + */ + void resize(size_t sz) + { + size_ = sz; + bitset_.resize(sz / cell_bit_size_ + 1); + } + + /** set a bit to true + * @param index the index of the bit to set to 1 + */ + void set(size_t index) + { + bitset_[index / cell_bit_size_] |= size_t(1) << (index % cell_bit_size_); + } + + /** gives the number of contained bits + */ + size_t size() const + { + return size_; + } + + /** check if a bit is set + * @param index the index of the bit to check + * @return true if the bit is set + */ + bool test(size_t index) const + { + return (bitset_[index / cell_bit_size_] & (size_t(1) << (index % cell_bit_size_))) != 0; + } + +private: + std::vector bitset_; + size_t size_; + static const unsigned int cell_bit_size_ = CHAR_BIT * sizeof(size_t); +}; + +} // namespace cvflann + +#endif + +#endif // OPENCV_FLANN_DYNAMIC_BITSET_H_ diff --git a/thirdparty1/linux/include/opencv2/flann/flann.hpp b/thirdparty1/linux/include/opencv2/flann/flann.hpp new file mode 100644 index 0000000..227683f --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/flann.hpp @@ -0,0 +1,48 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifdef __OPENCV_BUILD +#error this is a compatibility header which should not be used inside the OpenCV library +#endif + +#include "opencv2/flann.hpp" diff --git a/thirdparty1/linux/include/opencv2/flann/flann_base.hpp b/thirdparty1/linux/include/opencv2/flann/flann_base.hpp new file mode 100644 index 0000000..98c33cf --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/flann_base.hpp @@ -0,0 +1,290 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_BASE_HPP_ +#define OPENCV_FLANN_BASE_HPP_ + +#include +#include +#include + +#include "general.h" +#include "matrix.h" +#include "params.h" +#include "saving.h" + +#include "all_indices.h" + +namespace cvflann +{ + +/** + * Sets the log level used for all flann functions + * @param level Verbosity level + */ +inline void log_verbosity(int level) +{ + if (level >= 0) { + Logger::setLevel(level); + } +} + +/** + * (Deprecated) Index parameters for creating a saved index. + */ +struct SavedIndexParams : public IndexParams +{ + SavedIndexParams(cv::String filename) + { + (* this)["algorithm"] = FLANN_INDEX_SAVED; + (*this)["filename"] = filename; + } +}; + + +template +NNIndex* load_saved_index(const Matrix& dataset, const cv::String& filename, Distance distance) +{ + typedef typename Distance::ElementType ElementType; + + FILE* fin = fopen(filename.c_str(), "rb"); + if (fin == NULL) { + return NULL; + } + IndexHeader header = load_header(fin); + if (header.data_type != Datatype::type()) { + throw FLANNException("Datatype of saved index is different than of the one to be created."); + } + if ((size_t(header.rows) != dataset.rows)||(size_t(header.cols) != dataset.cols)) { + throw FLANNException("The index saved belongs to a different dataset"); + } + + IndexParams params; + params["algorithm"] = header.index_type; + NNIndex* nnIndex = create_index_by_type(dataset, params, distance); + nnIndex->loadIndex(fin); + fclose(fin); + + return nnIndex; +} + + +template +class Index : public NNIndex +{ +public: + typedef typename Distance::ElementType ElementType; + typedef typename Distance::ResultType DistanceType; + + Index(const Matrix& features, const IndexParams& params, Distance distance = Distance() ) + : index_params_(params) + { + flann_algorithm_t index_type = get_param(params,"algorithm"); + loaded_ = false; + + if (index_type == FLANN_INDEX_SAVED) { + nnIndex_ = load_saved_index(features, get_param(params,"filename"), distance); + loaded_ = true; + } + else { + nnIndex_ = create_index_by_type(features, params, distance); + } + } + + ~Index() + { + delete nnIndex_; + } + + /** + * Builds the index. + */ + void buildIndex() + { + if (!loaded_) { + nnIndex_->buildIndex(); + } + } + + void save(cv::String filename) + { + FILE* fout = fopen(filename.c_str(), "wb"); + if (fout == NULL) { + throw FLANNException("Cannot open file"); + } + save_header(fout, *nnIndex_); + saveIndex(fout); + fclose(fout); + } + + /** + * \brief Saves the index to a stream + * \param stream The stream to save the index to + */ + virtual void saveIndex(FILE* stream) + { + nnIndex_->saveIndex(stream); + } + + /** + * \brief Loads the index from a stream + * \param stream The stream from which the index is loaded + */ + virtual void loadIndex(FILE* stream) + { + nnIndex_->loadIndex(stream); + } + + /** + * \returns number of features in this index. + */ + size_t veclen() const + { + return nnIndex_->veclen(); + } + + /** + * \returns The dimensionality of the features in this index. + */ + size_t size() const + { + return nnIndex_->size(); + } + + /** + * \returns The index type (kdtree, kmeans,...) + */ + flann_algorithm_t getType() const + { + return nnIndex_->getType(); + } + + /** + * \returns The amount of memory (in bytes) used by the index. + */ + virtual int usedMemory() const + { + return nnIndex_->usedMemory(); + } + + + /** + * \returns The index parameters + */ + IndexParams getParameters() const + { + return nnIndex_->getParameters(); + } + + /** + * \brief Perform k-nearest neighbor search + * \param[in] queries The query points for which to find the nearest neighbors + * \param[out] indices The indices of the nearest neighbors found + * \param[out] dists Distances to the nearest neighbors found + * \param[in] knn Number of nearest neighbors to return + * \param[in] params Search parameters + */ + void knnSearch(const Matrix& queries, Matrix& indices, Matrix& dists, int knn, const SearchParams& params) + { + nnIndex_->knnSearch(queries, indices, dists, knn, params); + } + + /** + * \brief Perform radius search + * \param[in] query The query point + * \param[out] indices The indinces of the neighbors found within the given radius + * \param[out] dists The distances to the nearest neighbors found + * \param[in] radius The radius used for search + * \param[in] params Search parameters + * \returns Number of neighbors found + */ + int radiusSearch(const Matrix& query, Matrix& indices, Matrix& dists, float radius, const SearchParams& params) + { + return nnIndex_->radiusSearch(query, indices, dists, radius, params); + } + + /** + * \brief Method that searches for nearest-neighbours + */ + void findNeighbors(ResultSet& result, const ElementType* vec, const SearchParams& searchParams) + { + nnIndex_->findNeighbors(result, vec, searchParams); + } + + /** + * \brief Returns actual index + */ + FLANN_DEPRECATED NNIndex* getIndex() + { + return nnIndex_; + } + + /** + * \brief Returns index parameters. + * \deprecated use getParameters() instead. + */ + FLANN_DEPRECATED const IndexParams* getIndexParameters() + { + return &index_params_; + } + +private: + /** Pointer to actual index class */ + NNIndex* nnIndex_; + /** Indices if the index was loaded from a file */ + bool loaded_; + /** Parameters passed to the index */ + IndexParams index_params_; +}; + +/** + * Performs a hierarchical clustering of the points passed as argument and then takes a cut in the + * the clustering tree to return a flat clustering. + * @param[in] points Points to be clustered + * @param centers The computed cluster centres. Matrix should be preallocated and centers.rows is the + * number of clusters requested. + * @param params Clustering parameters (The same as for cvflann::KMeansIndex) + * @param d Distance to be used for clustering (eg: cvflann::L2) + * @return number of clusters computed (can be different than clusters.rows and is the highest number + * of the form (branching-1)*K+1 smaller than clusters.rows). + */ +template +int hierarchicalClustering(const Matrix& points, Matrix& centers, + const KMeansIndexParams& params, Distance d = Distance()) +{ + KMeansIndex kmeans(points, params, d); + kmeans.buildIndex(); + + int clusterNum = kmeans.getClusterCenters(centers); + return clusterNum; +} + +} +#endif /* OPENCV_FLANN_BASE_HPP_ */ diff --git a/thirdparty1/linux/include/opencv2/flann/general.h b/thirdparty1/linux/include/opencv2/flann/general.h new file mode 100644 index 0000000..9d5402a --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/general.h @@ -0,0 +1,50 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_GENERAL_H_ +#define OPENCV_FLANN_GENERAL_H_ + +#include "opencv2/core.hpp" + +namespace cvflann +{ + +class FLANNException : public cv::Exception +{ +public: + FLANNException(const char* message) : cv::Exception(0, message, "", __FILE__, __LINE__) { } + + FLANNException(const cv::String& message) : cv::Exception(0, message, "", __FILE__, __LINE__) { } +}; + +} + + +#endif /* OPENCV_FLANN_GENERAL_H_ */ diff --git a/thirdparty1/linux/include/opencv2/flann/ground_truth.h b/thirdparty1/linux/include/opencv2/flann/ground_truth.h new file mode 100644 index 0000000..fd8f3ae --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/ground_truth.h @@ -0,0 +1,94 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_GROUND_TRUTH_H_ +#define OPENCV_FLANN_GROUND_TRUTH_H_ + +#include "dist.h" +#include "matrix.h" + + +namespace cvflann +{ + +template +void find_nearest(const Matrix& dataset, typename Distance::ElementType* query, int* matches, int nn, + int skip = 0, Distance distance = Distance()) +{ + typedef typename Distance::ResultType DistanceType; + int n = nn + skip; + + std::vector match(n); + std::vector dists(n); + + dists[0] = distance(dataset[0], query, dataset.cols); + match[0] = 0; + int dcnt = 1; + + for (size_t i=1; i=1 && dists[j] +void compute_ground_truth(const Matrix& dataset, const Matrix& testset, Matrix& matches, + int skip=0, Distance d = Distance()) +{ + for (size_t i=0; i(dataset, testset[i], matches[i], (int)matches.cols, skip, d); + } +} + + +} + +#endif //OPENCV_FLANN_GROUND_TRUTH_H_ diff --git a/thirdparty1/linux/include/opencv2/flann/hdf5.h b/thirdparty1/linux/include/opencv2/flann/hdf5.h new file mode 100644 index 0000000..80d23b9 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/hdf5.h @@ -0,0 +1,231 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + + +#ifndef OPENCV_FLANN_HDF5_H_ +#define OPENCV_FLANN_HDF5_H_ + +#include + +#include "matrix.h" + + +namespace cvflann +{ + +namespace +{ + +template +hid_t get_hdf5_type() +{ + throw FLANNException("Unsupported type for IO operations"); +} + +template<> +hid_t get_hdf5_type() { return H5T_NATIVE_CHAR; } +template<> +hid_t get_hdf5_type() { return H5T_NATIVE_UCHAR; } +template<> +hid_t get_hdf5_type() { return H5T_NATIVE_SHORT; } +template<> +hid_t get_hdf5_type() { return H5T_NATIVE_USHORT; } +template<> +hid_t get_hdf5_type() { return H5T_NATIVE_INT; } +template<> +hid_t get_hdf5_type() { return H5T_NATIVE_UINT; } +template<> +hid_t get_hdf5_type() { return H5T_NATIVE_LONG; } +template<> +hid_t get_hdf5_type() { return H5T_NATIVE_ULONG; } +template<> +hid_t get_hdf5_type() { return H5T_NATIVE_FLOAT; } +template<> +hid_t get_hdf5_type() { return H5T_NATIVE_DOUBLE; } +} + + +#define CHECK_ERROR(x,y) if ((x)<0) throw FLANNException((y)); + +template +void save_to_file(const cvflann::Matrix& dataset, const String& filename, const String& name) +{ + +#if H5Eset_auto_vers == 2 + H5Eset_auto( H5E_DEFAULT, NULL, NULL ); +#else + H5Eset_auto( NULL, NULL ); +#endif + + herr_t status; + hid_t file_id; + file_id = H5Fopen(filename.c_str(), H5F_ACC_RDWR, H5P_DEFAULT); + if (file_id < 0) { + file_id = H5Fcreate(filename.c_str(), H5F_ACC_EXCL, H5P_DEFAULT, H5P_DEFAULT); + } + CHECK_ERROR(file_id,"Error creating hdf5 file."); + + hsize_t dimsf[2]; // dataset dimensions + dimsf[0] = dataset.rows; + dimsf[1] = dataset.cols; + + hid_t space_id = H5Screate_simple(2, dimsf, NULL); + hid_t memspace_id = H5Screate_simple(2, dimsf, NULL); + + hid_t dataset_id; +#if H5Dcreate_vers == 2 + dataset_id = H5Dcreate2(file_id, name.c_str(), get_hdf5_type(), space_id, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); +#else + dataset_id = H5Dcreate(file_id, name.c_str(), get_hdf5_type(), space_id, H5P_DEFAULT); +#endif + + if (dataset_id<0) { +#if H5Dopen_vers == 2 + dataset_id = H5Dopen2(file_id, name.c_str(), H5P_DEFAULT); +#else + dataset_id = H5Dopen(file_id, name.c_str()); +#endif + } + CHECK_ERROR(dataset_id,"Error creating or opening dataset in file."); + + status = H5Dwrite(dataset_id, get_hdf5_type(), memspace_id, space_id, H5P_DEFAULT, dataset.data ); + CHECK_ERROR(status, "Error writing to dataset"); + + H5Sclose(memspace_id); + H5Sclose(space_id); + H5Dclose(dataset_id); + H5Fclose(file_id); + +} + + +template +void load_from_file(cvflann::Matrix& dataset, const String& filename, const String& name) +{ + herr_t status; + hid_t file_id = H5Fopen(filename.c_str(), H5F_ACC_RDWR, H5P_DEFAULT); + CHECK_ERROR(file_id,"Error opening hdf5 file."); + + hid_t dataset_id; +#if H5Dopen_vers == 2 + dataset_id = H5Dopen2(file_id, name.c_str(), H5P_DEFAULT); +#else + dataset_id = H5Dopen(file_id, name.c_str()); +#endif + CHECK_ERROR(dataset_id,"Error opening dataset in file."); + + hid_t space_id = H5Dget_space(dataset_id); + + hsize_t dims_out[2]; + H5Sget_simple_extent_dims(space_id, dims_out, NULL); + + dataset = cvflann::Matrix(new T[dims_out[0]*dims_out[1]], dims_out[0], dims_out[1]); + + status = H5Dread(dataset_id, get_hdf5_type(), H5S_ALL, H5S_ALL, H5P_DEFAULT, dataset[0]); + CHECK_ERROR(status, "Error reading dataset"); + + H5Sclose(space_id); + H5Dclose(dataset_id); + H5Fclose(file_id); +} + + +#ifdef HAVE_MPI + +namespace mpi +{ +/** + * Loads a the hyperslice corresponding to this processor from a hdf5 file. + * @param flann_dataset Dataset where the data is loaded + * @param filename HDF5 file name + * @param name Name of dataset inside file + */ +template +void load_from_file(cvflann::Matrix& dataset, const String& filename, const String& name) +{ + MPI_Comm comm = MPI_COMM_WORLD; + MPI_Info info = MPI_INFO_NULL; + + int mpi_size, mpi_rank; + MPI_Comm_size(comm, &mpi_size); + MPI_Comm_rank(comm, &mpi_rank); + + herr_t status; + + hid_t plist_id = H5Pcreate(H5P_FILE_ACCESS); + H5Pset_fapl_mpio(plist_id, comm, info); + hid_t file_id = H5Fopen(filename.c_str(), H5F_ACC_RDWR, plist_id); + CHECK_ERROR(file_id,"Error opening hdf5 file."); + H5Pclose(plist_id); + hid_t dataset_id; +#if H5Dopen_vers == 2 + dataset_id = H5Dopen2(file_id, name.c_str(), H5P_DEFAULT); +#else + dataset_id = H5Dopen(file_id, name.c_str()); +#endif + CHECK_ERROR(dataset_id,"Error opening dataset in file."); + + hid_t space_id = H5Dget_space(dataset_id); + hsize_t dims[2]; + H5Sget_simple_extent_dims(space_id, dims, NULL); + + hsize_t count[2]; + hsize_t offset[2]; + + hsize_t item_cnt = dims[0]/mpi_size+(dims[0]%mpi_size==0 ? 0 : 1); + hsize_t cnt = (mpi_rank(), memspace_id, space_id, plist_id, dataset.data); + CHECK_ERROR(status, "Error reading dataset"); + + H5Pclose(plist_id); + H5Sclose(space_id); + H5Sclose(memspace_id); + H5Dclose(dataset_id); + H5Fclose(file_id); +} +} +#endif // HAVE_MPI +} // namespace cvflann::mpi + +#endif /* OPENCV_FLANN_HDF5_H_ */ diff --git a/thirdparty1/linux/include/opencv2/flann/heap.h b/thirdparty1/linux/include/opencv2/flann/heap.h new file mode 100644 index 0000000..92a6ea6 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/heap.h @@ -0,0 +1,165 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_HEAP_H_ +#define OPENCV_FLANN_HEAP_H_ + +#include +#include + +namespace cvflann +{ + +/** + * Priority Queue Implementation + * + * The priority queue is implemented with a heap. A heap is a complete + * (full) binary tree in which each parent is less than both of its + * children, but the order of the children is unspecified. + */ +template +class Heap +{ + + /** + * Storage array for the heap. + * Type T must be comparable. + */ + std::vector heap; + int length; + + /** + * Number of element in the heap + */ + int count; + + + +public: + /** + * Constructor. + * + * Params: + * sz = heap size + */ + + Heap(int sz) + { + length = sz; + heap.reserve(length); + count = 0; + } + + /** + * + * Returns: heap size + */ + int size() + { + return count; + } + + /** + * Tests if the heap is empty + * + * Returns: true is heap empty, false otherwise + */ + bool empty() + { + return size()==0; + } + + /** + * Clears the heap. + */ + void clear() + { + heap.clear(); + count = 0; + } + + struct CompareT + { + bool operator()(const T& t_1, const T& t_2) const + { + return t_2 < t_1; + } + }; + + /** + * Insert a new element in the heap. + * + * We select the next empty leaf node, and then keep moving any larger + * parents down until the right location is found to store this element. + * + * Params: + * value = the new element to be inserted in the heap + */ + void insert(T value) + { + /* If heap is full, then return without adding this element. */ + if (count == length) { + return; + } + + heap.push_back(value); + static CompareT compareT; + std::push_heap(heap.begin(), heap.end(), compareT); + ++count; + } + + + + /** + * Returns the node of minimum value from the heap (top of the heap). + * + * Params: + * value = out parameter used to return the min element + * Returns: false if heap empty + */ + bool popMin(T& value) + { + if (count == 0) { + return false; + } + + value = heap[0]; + static CompareT compareT; + std::pop_heap(heap.begin(), heap.end(), compareT); + heap.pop_back(); + --count; + + return true; /* Return old last node. */ + } +}; + +} + +#endif //OPENCV_FLANN_HEAP_H_ diff --git a/thirdparty1/linux/include/opencv2/flann/hierarchical_clustering_index.h b/thirdparty1/linux/include/opencv2/flann/hierarchical_clustering_index.h new file mode 100644 index 0000000..9d890d4 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/hierarchical_clustering_index.h @@ -0,0 +1,848 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2011 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2011 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_ +#define OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_ + +#include +#include +#include +#include +#include + +#include "general.h" +#include "nn_index.h" +#include "dist.h" +#include "matrix.h" +#include "result_set.h" +#include "heap.h" +#include "allocator.h" +#include "random.h" +#include "saving.h" + + +namespace cvflann +{ + +struct HierarchicalClusteringIndexParams : public IndexParams +{ + HierarchicalClusteringIndexParams(int branching = 32, + flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, + int trees = 4, int leaf_size = 100) + { + (*this)["algorithm"] = FLANN_INDEX_HIERARCHICAL; + // The branching factor used in the hierarchical clustering + (*this)["branching"] = branching; + // Algorithm used for picking the initial cluster centers + (*this)["centers_init"] = centers_init; + // number of parallel trees to build + (*this)["trees"] = trees; + // maximum leaf size + (*this)["leaf_size"] = leaf_size; + } +}; + + +/** + * Hierarchical index + * + * Contains a tree constructed through a hierarchical clustering + * and other information for indexing a set of points for nearest-neighbour matching. + */ +template +class HierarchicalClusteringIndex : public NNIndex +{ +public: + typedef typename Distance::ElementType ElementType; + typedef typename Distance::ResultType DistanceType; + +private: + + + typedef void (HierarchicalClusteringIndex::* centersAlgFunction)(int, int*, int, int*, int&); + + /** + * The function used for choosing the cluster centers. + */ + centersAlgFunction chooseCenters; + + + + /** + * Chooses the initial centers in the k-means clustering in a random manner. + * + * Params: + * k = number of centers + * vecs = the dataset of points + * indices = indices in the dataset + * indices_length = length of indices vector + * + */ + void chooseCentersRandom(int k, int* dsindices, int indices_length, int* centers, int& centers_length) + { + UniqueRandom r(indices_length); + + int index; + for (index=0; index=0 && rnd < n); + + centers[0] = dsindices[rnd]; + + int index; + for (index=1; indexbest_val) { + best_val = dist; + best_index = j; + } + } + if (best_index!=-1) { + centers[index] = dsindices[best_index]; + } + else { + break; + } + } + centers_length = index; + } + + + /** + * Chooses the initial centers in the k-means using the algorithm + * proposed in the KMeans++ paper: + * Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding + * + * Implementation of this function was converted from the one provided in Arthur's code. + * + * Params: + * k = number of centers + * vecs = the dataset of points + * indices = indices in the dataset + * Returns: + */ + void chooseCentersKMeanspp(int k, int* dsindices, int indices_length, int* centers, int& centers_length) + { + int n = indices_length; + + double currentPot = 0; + DistanceType* closestDistSq = new DistanceType[n]; + + // Choose one random center and set the closestDistSq values + int index = rand_int(n); + assert(index >=0 && index < n); + centers[0] = dsindices[index]; + + // Computing distance^2 will have the advantage of even higher probability further to pick new centers + // far from previous centers (and this complies to "k-means++: the advantages of careful seeding" article) + for (int i = 0; i < n; i++) { + closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols); + closestDistSq[i] = ensureSquareDistance( closestDistSq[i] ); + currentPot += closestDistSq[i]; + } + + + const int numLocalTries = 1; + + // Choose each center + int centerCount; + for (centerCount = 1; centerCount < k; centerCount++) { + + // Repeat several trials + double bestNewPot = -1; + int bestNewIndex = 0; + for (int localTrial = 0; localTrial < numLocalTries; localTrial++) { + + // Choose our center - have to be slightly careful to return a valid answer even accounting + // for possible rounding errors + double randVal = rand_double(currentPot); + for (index = 0; index < n-1; index++) { + if (randVal <= closestDistSq[index]) break; + else randVal -= closestDistSq[index]; + } + + // Compute the new potential + double newPot = 0; + for (int i = 0; i < n; i++) { + DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols); + newPot += std::min( ensureSquareDistance(dist), closestDistSq[i] ); + } + + // Store the best result + if ((bestNewPot < 0)||(newPot < bestNewPot)) { + bestNewPot = newPot; + bestNewIndex = index; + } + } + + // Add the appropriate center + centers[centerCount] = dsindices[bestNewIndex]; + currentPot = bestNewPot; + for (int i = 0; i < n; i++) { + DistanceType dist = distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols); + closestDistSq[i] = std::min( ensureSquareDistance(dist), closestDistSq[i] ); + } + } + + centers_length = centerCount; + + delete[] closestDistSq; + } + + + /** + * Chooses the initial centers in a way inspired by Gonzales (by Pierre-Emmanuel Viel): + * select the first point of the list as a candidate, then parse the points list. If another + * point is further than current candidate from the other centers, test if it is a good center + * of a local aggregation. If it is, replace current candidate by this point. And so on... + * + * Used with KMeansIndex that computes centers coordinates by averaging positions of clusters points, + * this doesn't make a real difference with previous methods. But used with HierarchicalClusteringIndex + * class that pick centers among existing points instead of computing the barycenters, there is a real + * improvement. + * + * Params: + * k = number of centers + * vecs = the dataset of points + * indices = indices in the dataset + * Returns: + */ + void GroupWiseCenterChooser(int k, int* dsindices, int indices_length, int* centers, int& centers_length) + { + const float kSpeedUpFactor = 1.3f; + + int n = indices_length; + + DistanceType* closestDistSq = new DistanceType[n]; + + // Choose one random center and set the closestDistSq values + int index = rand_int(n); + assert(index >=0 && index < n); + centers[0] = dsindices[index]; + + for (int i = 0; i < n; i++) { + closestDistSq[i] = distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols); + } + + + // Choose each center + int centerCount; + for (centerCount = 1; centerCount < k; centerCount++) { + + // Repeat several trials + double bestNewPot = -1; + int bestNewIndex = 0; + DistanceType furthest = 0; + for (index = 0; index < n; index++) { + + // We will test only the potential of the points further than current candidate + if( closestDistSq[index] > kSpeedUpFactor * (float)furthest ) { + + // Compute the new potential + double newPot = 0; + for (int i = 0; i < n; i++) { + newPot += std::min( distance(dataset[dsindices[i]], dataset[dsindices[index]], dataset.cols) + , closestDistSq[i] ); + } + + // Store the best result + if ((bestNewPot < 0)||(newPot <= bestNewPot)) { + bestNewPot = newPot; + bestNewIndex = index; + furthest = closestDistSq[index]; + } + } + } + + // Add the appropriate center + centers[centerCount] = dsindices[bestNewIndex]; + for (int i = 0; i < n; i++) { + closestDistSq[i] = std::min( distance(dataset[dsindices[i]], dataset[dsindices[bestNewIndex]], dataset.cols) + , closestDistSq[i] ); + } + } + + centers_length = centerCount; + + delete[] closestDistSq; + } + + +public: + + + /** + * Index constructor + * + * Params: + * inputData = dataset with the input features + * params = parameters passed to the hierarchical k-means algorithm + */ + HierarchicalClusteringIndex(const Matrix& inputData, const IndexParams& index_params = HierarchicalClusteringIndexParams(), + Distance d = Distance()) + : dataset(inputData), params(index_params), root(NULL), indices(NULL), distance(d) + { + memoryCounter = 0; + + size_ = dataset.rows; + veclen_ = dataset.cols; + + branching_ = get_param(params,"branching",32); + centers_init_ = get_param(params,"centers_init", FLANN_CENTERS_RANDOM); + trees_ = get_param(params,"trees",4); + leaf_size_ = get_param(params,"leaf_size",100); + + if (centers_init_==FLANN_CENTERS_RANDOM) { + chooseCenters = &HierarchicalClusteringIndex::chooseCentersRandom; + } + else if (centers_init_==FLANN_CENTERS_GONZALES) { + chooseCenters = &HierarchicalClusteringIndex::chooseCentersGonzales; + } + else if (centers_init_==FLANN_CENTERS_KMEANSPP) { + chooseCenters = &HierarchicalClusteringIndex::chooseCentersKMeanspp; + } + else if (centers_init_==FLANN_CENTERS_GROUPWISE) { + chooseCenters = &HierarchicalClusteringIndex::GroupWiseCenterChooser; + } + else { + throw FLANNException("Unknown algorithm for choosing initial centers."); + } + + trees_ = get_param(params,"trees",4); + root = new NodePtr[trees_]; + indices = new int*[trees_]; + + for (int i=0; i(); + computeClustering(root[i], indices[i], (int)size_, branching_,0); + } + } + + + flann_algorithm_t getType() const + { + return FLANN_INDEX_HIERARCHICAL; + } + + + void saveIndex(FILE* stream) + { + save_value(stream, branching_); + save_value(stream, trees_); + save_value(stream, centers_init_); + save_value(stream, leaf_size_); + save_value(stream, memoryCounter); + for (int i=0; i& result, const ElementType* vec, const SearchParams& searchParams) + { + + int maxChecks = get_param(searchParams,"checks",32); + + // Priority queue storing intermediate branches in the best-bin-first search + Heap* heap = new Heap((int)size_); + + std::vector checked(size_,false); + int checks = 0; + for (int i=0; ipopMin(branch) && (checks BranchSt; + + + + void save_tree(FILE* stream, NodePtr node, int num) + { + save_value(stream, *node); + if (node->childs==NULL) { + int indices_offset = (int)(node->indices - indices[num]); + save_value(stream, indices_offset); + } + else { + for(int i=0; ichilds[i], num); + } + } + } + + + void load_tree(FILE* stream, NodePtr& node, int num) + { + node = pool.allocate(); + load_value(stream, *node); + if (node->childs==NULL) { + int indices_offset; + load_value(stream, indices_offset); + node->indices = indices[num] + indices_offset; + } + else { + node->childs = pool.allocate(branching_); + for(int i=0; ichilds[i], num); + } + } + } + + + + + void computeLabels(int* dsindices, int indices_length, int* centers, int centers_length, int* labels, DistanceType& cost) + { + cost = 0; + for (int i=0; inew_dist) { + labels[i] = j; + dist = new_dist; + } + } + cost += dist; + } + } + + /** + * The method responsible with actually doing the recursive hierarchical + * clustering + * + * Params: + * node = the node to cluster + * indices = indices of the points belonging to the current node + * branching = the branching factor to use in the clustering + * + * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point) + */ + void computeClustering(NodePtr node, int* dsindices, int indices_length, int branching, int level) + { + node->size = indices_length; + node->level = level; + + if (indices_length < leaf_size_) { // leaf node + node->indices = dsindices; + std::sort(node->indices,node->indices+indices_length); + node->childs = NULL; + return; + } + + std::vector centers(branching); + std::vector labels(indices_length); + + int centers_length; + (this->*chooseCenters)(branching, dsindices, indices_length, ¢ers[0], centers_length); + + if (centers_lengthindices = dsindices; + std::sort(node->indices,node->indices+indices_length); + node->childs = NULL; + return; + } + + + // assign points to clusters + DistanceType cost; + computeLabels(dsindices, indices_length, ¢ers[0], centers_length, &labels[0], cost); + + node->childs = pool.allocate(branching); + int start = 0; + int end = start; + for (int i=0; ichilds[i] = pool.allocate(); + node->childs[i]->pivot = centers[i]; + node->childs[i]->indices = NULL; + computeClustering(node->childs[i],dsindices+start, end-start, branching, level+1); + start=end; + } + } + + + + /** + * Performs one descent in the hierarchical k-means tree. The branches not + * visited are stored in a priority queue. + * + * Params: + * node = node to explore + * result = container for the k-nearest neighbors found + * vec = query points + * checks = how many points in the dataset have been checked so far + * maxChecks = maximum dataset points to checks + */ + + + void findNN(NodePtr node, ResultSet& result, const ElementType* vec, int& checks, int maxChecks, + Heap* heap, std::vector& checked) + { + if (node->childs==NULL) { + if (checks>=maxChecks) { + if (result.full()) return; + } + for (int i=0; isize; ++i) { + int index = node->indices[i]; + if (!checked[index]) { + DistanceType dist = distance(dataset[index], vec, veclen_); + result.addPoint(dist, index); + checked[index] = true; + ++checks; + } + } + } + else { + DistanceType* domain_distances = new DistanceType[branching_]; + int best_index = 0; + domain_distances[best_index] = distance(vec, dataset[node->childs[best_index]->pivot], veclen_); + for (int i=1; ichilds[i]->pivot], veclen_); + if (domain_distances[i]insert(BranchSt(node->childs[i],domain_distances[i])); + } + } + delete[] domain_distances; + findNN(node->childs[best_index],result,vec, checks, maxChecks, heap, checked); + } + } + +private: + + + /** + * The dataset used by this index + */ + const Matrix dataset; + + /** + * Parameters used by this index + */ + IndexParams params; + + + /** + * Number of features in the dataset. + */ + size_t size_; + + /** + * Length of each feature. + */ + size_t veclen_; + + /** + * The root node in the tree. + */ + NodePtr* root; + + /** + * Array of indices to vectors in the dataset. + */ + int** indices; + + + /** + * The distance + */ + Distance distance; + + /** + * Pooled memory allocator. + * + * Using a pooled memory allocator is more efficient + * than allocating memory directly when there is a large + * number small of memory allocations. + */ + PooledAllocator pool; + + /** + * Memory occupied by the index. + */ + int memoryCounter; + + /** index parameters */ + int branching_; + int trees_; + flann_centers_init_t centers_init_; + int leaf_size_; + + +}; + +} + +#endif /* OPENCV_FLANN_HIERARCHICAL_CLUSTERING_INDEX_H_ */ diff --git a/thirdparty1/linux/include/opencv2/flann/index_testing.h b/thirdparty1/linux/include/opencv2/flann/index_testing.h new file mode 100644 index 0000000..d764004 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/index_testing.h @@ -0,0 +1,318 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_INDEX_TESTING_H_ +#define OPENCV_FLANN_INDEX_TESTING_H_ + +#include +#include +#include + +#include "matrix.h" +#include "nn_index.h" +#include "result_set.h" +#include "logger.h" +#include "timer.h" + + +namespace cvflann +{ + +inline int countCorrectMatches(int* neighbors, int* groundTruth, int n) +{ + int count = 0; + for (int i=0; i +typename Distance::ResultType computeDistanceRaport(const Matrix& inputData, typename Distance::ElementType* target, + int* neighbors, int* groundTruth, int veclen, int n, const Distance& distance) +{ + typedef typename Distance::ResultType DistanceType; + + DistanceType ret = 0; + for (int i=0; i +float search_with_ground_truth(NNIndex& index, const Matrix& inputData, + const Matrix& testData, const Matrix& matches, int nn, int checks, + float& time, typename Distance::ResultType& dist, const Distance& distance, int skipMatches) +{ + typedef typename Distance::ResultType DistanceType; + + if (matches.cols resultSet(nn+skipMatches); + SearchParams searchParams(checks); + + std::vector indices(nn+skipMatches); + std::vector dists(nn+skipMatches); + int* neighbors = &indices[skipMatches]; + + int correct = 0; + DistanceType distR = 0; + StartStopTimer t; + int repeats = 0; + while (t.value<0.2) { + repeats++; + t.start(); + correct = 0; + distR = 0; + for (size_t i = 0; i < testData.rows; i++) { + resultSet.init(&indices[0], &dists[0]); + index.findNeighbors(resultSet, testData[i], searchParams); + + correct += countCorrectMatches(neighbors,matches[i], nn); + distR += computeDistanceRaport(inputData, testData[i], neighbors, matches[i], (int)testData.cols, nn, distance); + } + t.stop(); + } + time = float(t.value/repeats); + + float precicion = (float)correct/(nn*testData.rows); + + dist = distR/(testData.rows*nn); + + Logger::info("%8d %10.4g %10.5g %10.5g %10.5g\n", + checks, precicion, time, 1000.0 * time / testData.rows, dist); + + return precicion; +} + + +template +float test_index_checks(NNIndex& index, const Matrix& inputData, + const Matrix& testData, const Matrix& matches, + int checks, float& precision, const Distance& distance, int nn = 1, int skipMatches = 0) +{ + typedef typename Distance::ResultType DistanceType; + + Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n"); + Logger::info("---------------------------------------------------------\n"); + + float time = 0; + DistanceType dist = 0; + precision = search_with_ground_truth(index, inputData, testData, matches, nn, checks, time, dist, distance, skipMatches); + + return time; +} + +template +float test_index_precision(NNIndex& index, const Matrix& inputData, + const Matrix& testData, const Matrix& matches, + float precision, int& checks, const Distance& distance, int nn = 1, int skipMatches = 0) +{ + typedef typename Distance::ResultType DistanceType; + const float SEARCH_EPS = 0.001f; + + Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n"); + Logger::info("---------------------------------------------------------\n"); + + int c2 = 1; + float p2; + int c1 = 1; + //float p1; + float time; + DistanceType dist; + + p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches); + + if (p2>precision) { + Logger::info("Got as close as I can\n"); + checks = c2; + return time; + } + + while (p2SEARCH_EPS) { + Logger::info("Start linear estimation\n"); + // after we got to values in the vecinity of the desired precision + // use linear approximation get a better estimation + + cx = (c1+c2)/2; + realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches); + while (fabs(realPrecision-precision)>SEARCH_EPS) { + + if (realPrecision +void test_index_precisions(NNIndex& index, const Matrix& inputData, + const Matrix& testData, const Matrix& matches, + float* precisions, int precisions_length, const Distance& distance, int nn = 1, int skipMatches = 0, float maxTime = 0) +{ + typedef typename Distance::ResultType DistanceType; + + const float SEARCH_EPS = 0.001; + + // make sure precisions array is sorted + std::sort(precisions, precisions+precisions_length); + + int pindex = 0; + float precision = precisions[pindex]; + + Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n"); + Logger::info("---------------------------------------------------------\n"); + + int c2 = 1; + float p2; + + int c1 = 1; + float p1; + + float time; + DistanceType dist; + + p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches); + + // if precision for 1 run down the tree is already + // better then some of the requested precisions, then + // skip those + while (precisions[pindex] 0)&&(time > maxTime)&&(p2SEARCH_EPS) { + Logger::info("Start linear estimation\n"); + // after we got to values in the vecinity of the desired precision + // use linear approximation get a better estimation + + cx = (c1+c2)/2; + realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches); + while (fabs(realPrecision-precision)>SEARCH_EPS) { + + if (realPrecision +#include +#include +#include + +#include "general.h" +#include "nn_index.h" +#include "dynamic_bitset.h" +#include "matrix.h" +#include "result_set.h" +#include "heap.h" +#include "allocator.h" +#include "random.h" +#include "saving.h" + + +namespace cvflann +{ + +struct KDTreeIndexParams : public IndexParams +{ + KDTreeIndexParams(int trees = 4) + { + (*this)["algorithm"] = FLANN_INDEX_KDTREE; + (*this)["trees"] = trees; + } +}; + + +/** + * Randomized kd-tree index + * + * Contains the k-d trees and other information for indexing a set of points + * for nearest-neighbor matching. + */ +template +class KDTreeIndex : public NNIndex +{ +public: + typedef typename Distance::ElementType ElementType; + typedef typename Distance::ResultType DistanceType; + + + /** + * KDTree constructor + * + * Params: + * inputData = dataset with the input features + * params = parameters passed to the kdtree algorithm + */ + KDTreeIndex(const Matrix& inputData, const IndexParams& params = KDTreeIndexParams(), + Distance d = Distance() ) : + dataset_(inputData), index_params_(params), distance_(d) + { + size_ = dataset_.rows; + veclen_ = dataset_.cols; + + trees_ = get_param(index_params_,"trees",4); + tree_roots_ = new NodePtr[trees_]; + + // Create a permutable array of indices to the input vectors. + vind_.resize(size_); + for (size_t i = 0; i < size_; ++i) { + vind_[i] = int(i); + } + + mean_ = new DistanceType[veclen_]; + var_ = new DistanceType[veclen_]; + } + + + KDTreeIndex(const KDTreeIndex&); + KDTreeIndex& operator=(const KDTreeIndex&); + + /** + * Standard destructor + */ + ~KDTreeIndex() + { + if (tree_roots_!=NULL) { + delete[] tree_roots_; + } + delete[] mean_; + delete[] var_; + } + + /** + * Builds the index + */ + void buildIndex() + { + /* Construct the randomized trees. */ + for (int i = 0; i < trees_; i++) { + /* Randomize the order of vectors to allow for unbiased sampling. */ + std::random_shuffle(vind_.begin(), vind_.end()); + tree_roots_[i] = divideTree(&vind_[0], int(size_) ); + } + } + + + flann_algorithm_t getType() const + { + return FLANN_INDEX_KDTREE; + } + + + void saveIndex(FILE* stream) + { + save_value(stream, trees_); + for (int i=0; i& result, const ElementType* vec, const SearchParams& searchParams) + { + int maxChecks = get_param(searchParams,"checks", 32); + float epsError = 1+get_param(searchParams,"eps",0.0f); + + if (maxChecks==FLANN_CHECKS_UNLIMITED) { + getExactNeighbors(result, vec, epsError); + } + else { + getNeighbors(result, vec, maxChecks, epsError); + } + } + + IndexParams getParameters() const + { + return index_params_; + } + +private: + + + /*--------------------- Internal Data Structures --------------------------*/ + struct Node + { + /** + * Dimension used for subdivision. + */ + int divfeat; + /** + * The values used for subdivision. + */ + DistanceType divval; + /** + * The child nodes. + */ + Node* child1, * child2; + }; + typedef Node* NodePtr; + typedef BranchStruct BranchSt; + typedef BranchSt* Branch; + + + + void save_tree(FILE* stream, NodePtr tree) + { + save_value(stream, *tree); + if (tree->child1!=NULL) { + save_tree(stream, tree->child1); + } + if (tree->child2!=NULL) { + save_tree(stream, tree->child2); + } + } + + + void load_tree(FILE* stream, NodePtr& tree) + { + tree = pool_.allocate(); + load_value(stream, *tree); + if (tree->child1!=NULL) { + load_tree(stream, tree->child1); + } + if (tree->child2!=NULL) { + load_tree(stream, tree->child2); + } + } + + + /** + * Create a tree node that subdivides the list of vecs from vind[first] + * to vind[last]. The routine is called recursively on each sublist. + * Place a pointer to this new tree node in the location pTree. + * + * Params: pTree = the new node to create + * first = index of the first vector + * last = index of the last vector + */ + NodePtr divideTree(int* ind, int count) + { + NodePtr node = pool_.allocate(); // allocate memory + + /* If too few exemplars remain, then make this a leaf node. */ + if ( count == 1) { + node->child1 = node->child2 = NULL; /* Mark as leaf node. */ + node->divfeat = *ind; /* Store index of this vec. */ + } + else { + int idx; + int cutfeat; + DistanceType cutval; + meanSplit(ind, count, idx, cutfeat, cutval); + + node->divfeat = cutfeat; + node->divval = cutval; + node->child1 = divideTree(ind, idx); + node->child2 = divideTree(ind+idx, count-idx); + } + + return node; + } + + + /** + * Choose which feature to use in order to subdivide this set of vectors. + * Make a random choice among those with the highest variance, and use + * its variance as the threshold value. + */ + void meanSplit(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval) + { + memset(mean_,0,veclen_*sizeof(DistanceType)); + memset(var_,0,veclen_*sizeof(DistanceType)); + + /* Compute mean values. Only the first SAMPLE_MEAN values need to be + sampled to get a good estimate. + */ + int cnt = std::min((int)SAMPLE_MEAN+1, count); + for (int j = 0; j < cnt; ++j) { + ElementType* v = dataset_[ind[j]]; + for (size_t k=0; kcount/2) index = lim1; + else if (lim2 v[topind[num-1]])) { + /* Put this element at end of topind. */ + if (num < RAND_DIM) { + topind[num++] = i; /* Add to list. */ + } + else { + topind[num-1] = i; /* Replace last element. */ + } + /* Bubble end value down to right location by repeated swapping. */ + int j = num - 1; + while (j > 0 && v[topind[j]] > v[topind[j-1]]) { + std::swap(topind[j], topind[j-1]); + --j; + } + } + } + /* Select a random integer in range [0,num-1], and return that index. */ + int rnd = rand_int(num); + return (int)topind[rnd]; + } + + + /** + * Subdivide the list of points by a plane perpendicular on axe corresponding + * to the 'cutfeat' dimension at 'cutval' position. + * + * On return: + * dataset[ind[0..lim1-1]][cutfeat]cutval + */ + void planeSplit(int* ind, int count, int cutfeat, DistanceType cutval, int& lim1, int& lim2) + { + /* Move vector indices for left subtree to front of list. */ + int left = 0; + int right = count-1; + for (;; ) { + while (left<=right && dataset_[ind[left]][cutfeat]=cutval) --right; + if (left>right) break; + std::swap(ind[left], ind[right]); ++left; --right; + } + lim1 = left; + right = count-1; + for (;; ) { + while (left<=right && dataset_[ind[left]][cutfeat]<=cutval) ++left; + while (left<=right && dataset_[ind[right]][cutfeat]>cutval) --right; + if (left>right) break; + std::swap(ind[left], ind[right]); ++left; --right; + } + lim2 = left; + } + + /** + * Performs an exact nearest neighbor search. The exact search performs a full + * traversal of the tree. + */ + void getExactNeighbors(ResultSet& result, const ElementType* vec, float epsError) + { + // checkID -= 1; /* Set a different unique ID for each search. */ + + if (trees_ > 1) { + fprintf(stderr,"It doesn't make any sense to use more than one tree for exact search"); + } + if (trees_>0) { + searchLevelExact(result, vec, tree_roots_[0], 0.0, epsError); + } + assert(result.full()); + } + + /** + * Performs the approximate nearest-neighbor search. The search is approximate + * because the tree traversal is abandoned after a given number of descends in + * the tree. + */ + void getNeighbors(ResultSet& result, const ElementType* vec, int maxCheck, float epsError) + { + int i; + BranchSt branch; + + int checkCount = 0; + Heap* heap = new Heap((int)size_); + DynamicBitset checked(size_); + + /* Search once through each tree down to root. */ + for (i = 0; i < trees_; ++i) { + searchLevel(result, vec, tree_roots_[i], 0, checkCount, maxCheck, epsError, heap, checked); + } + + /* Keep searching other branches from heap until finished. */ + while ( heap->popMin(branch) && (checkCount < maxCheck || !result.full() )) { + searchLevel(result, vec, branch.node, branch.mindist, checkCount, maxCheck, epsError, heap, checked); + } + + delete heap; + + assert(result.full()); + } + + + /** + * Search starting from a given node of the tree. Based on any mismatches at + * higher levels, all exemplars below this level must have a distance of + * at least "mindistsq". + */ + void searchLevel(ResultSet& result_set, const ElementType* vec, NodePtr node, DistanceType mindist, int& checkCount, int maxCheck, + float epsError, Heap* heap, DynamicBitset& checked) + { + if (result_set.worstDist()child1 == NULL)&&(node->child2 == NULL)) { + /* Do not check same node more than once when searching multiple trees. + Once a vector is checked, we set its location in vind to the + current checkID. + */ + int index = node->divfeat; + if ( checked.test(index) || ((checkCount>=maxCheck)&& result_set.full()) ) return; + checked.set(index); + checkCount++; + + DistanceType dist = distance_(dataset_[index], vec, veclen_); + result_set.addPoint(dist,index); + + return; + } + + /* Which child branch should be taken first? */ + ElementType val = vec[node->divfeat]; + DistanceType diff = val - node->divval; + NodePtr bestChild = (diff < 0) ? node->child1 : node->child2; + NodePtr otherChild = (diff < 0) ? node->child2 : node->child1; + + /* Create a branch record for the branch not taken. Add distance + of this feature boundary (we don't attempt to correct for any + use of this feature in a parent node, which is unlikely to + happen and would have only a small effect). Don't bother + adding more branches to heap after halfway point, as cost of + adding exceeds their value. + */ + + DistanceType new_distsq = mindist + distance_.accum_dist(val, node->divval, node->divfeat); + // if (2 * checkCount < maxCheck || !result.full()) { + if ((new_distsq*epsError < result_set.worstDist())|| !result_set.full()) { + heap->insert( BranchSt(otherChild, new_distsq) ); + } + + /* Call recursively to search next level down. */ + searchLevel(result_set, vec, bestChild, mindist, checkCount, maxCheck, epsError, heap, checked); + } + + /** + * Performs an exact search in the tree starting from a node. + */ + void searchLevelExact(ResultSet& result_set, const ElementType* vec, const NodePtr node, DistanceType mindist, const float epsError) + { + /* If this is a leaf node, then do check and return. */ + if ((node->child1 == NULL)&&(node->child2 == NULL)) { + int index = node->divfeat; + DistanceType dist = distance_(dataset_[index], vec, veclen_); + result_set.addPoint(dist,index); + return; + } + + /* Which child branch should be taken first? */ + ElementType val = vec[node->divfeat]; + DistanceType diff = val - node->divval; + NodePtr bestChild = (diff < 0) ? node->child1 : node->child2; + NodePtr otherChild = (diff < 0) ? node->child2 : node->child1; + + /* Create a branch record for the branch not taken. Add distance + of this feature boundary (we don't attempt to correct for any + use of this feature in a parent node, which is unlikely to + happen and would have only a small effect). Don't bother + adding more branches to heap after halfway point, as cost of + adding exceeds their value. + */ + + DistanceType new_distsq = mindist + distance_.accum_dist(val, node->divval, node->divfeat); + + /* Call recursively to search next level down. */ + searchLevelExact(result_set, vec, bestChild, mindist, epsError); + + if (new_distsq*epsError<=result_set.worstDist()) { + searchLevelExact(result_set, vec, otherChild, new_distsq, epsError); + } + } + + +private: + + enum + { + /** + * To improve efficiency, only SAMPLE_MEAN random values are used to + * compute the mean and variance at each level when building a tree. + * A value of 100 seems to perform as well as using all values. + */ + SAMPLE_MEAN = 100, + /** + * Top random dimensions to consider + * + * When creating random trees, the dimension on which to subdivide is + * selected at random from among the top RAND_DIM dimensions with the + * highest variance. A value of 5 works well. + */ + RAND_DIM=5 + }; + + + /** + * Number of randomized trees that are used + */ + int trees_; + + /** + * Array of indices to vectors in the dataset. + */ + std::vector vind_; + + /** + * The dataset used by this index + */ + const Matrix dataset_; + + IndexParams index_params_; + + size_t size_; + size_t veclen_; + + + DistanceType* mean_; + DistanceType* var_; + + + /** + * Array of k-d trees used to find neighbours. + */ + NodePtr* tree_roots_; + + /** + * Pooled memory allocator. + * + * Using a pooled memory allocator is more efficient + * than allocating memory directly when there is a large + * number small of memory allocations. + */ + PooledAllocator pool_; + + Distance distance_; + + +}; // class KDTreeForest + +} + +#endif //OPENCV_FLANN_KDTREE_INDEX_H_ diff --git a/thirdparty1/linux/include/opencv2/flann/kdtree_single_index.h b/thirdparty1/linux/include/opencv2/flann/kdtree_single_index.h new file mode 100644 index 0000000..30488ad --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/kdtree_single_index.h @@ -0,0 +1,634 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_ +#define OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_ + +#include +#include +#include +#include + +#include "general.h" +#include "nn_index.h" +#include "matrix.h" +#include "result_set.h" +#include "heap.h" +#include "allocator.h" +#include "random.h" +#include "saving.h" + +namespace cvflann +{ + +struct KDTreeSingleIndexParams : public IndexParams +{ + KDTreeSingleIndexParams(int leaf_max_size = 10, bool reorder = true, int dim = -1) + { + (*this)["algorithm"] = FLANN_INDEX_KDTREE_SINGLE; + (*this)["leaf_max_size"] = leaf_max_size; + (*this)["reorder"] = reorder; + (*this)["dim"] = dim; + } +}; + + +/** + * Randomized kd-tree index + * + * Contains the k-d trees and other information for indexing a set of points + * for nearest-neighbor matching. + */ +template +class KDTreeSingleIndex : public NNIndex +{ +public: + typedef typename Distance::ElementType ElementType; + typedef typename Distance::ResultType DistanceType; + + + /** + * KDTree constructor + * + * Params: + * inputData = dataset with the input features + * params = parameters passed to the kdtree algorithm + */ + KDTreeSingleIndex(const Matrix& inputData, const IndexParams& params = KDTreeSingleIndexParams(), + Distance d = Distance() ) : + dataset_(inputData), index_params_(params), distance_(d) + { + size_ = dataset_.rows; + dim_ = dataset_.cols; + int dim_param = get_param(params,"dim",-1); + if (dim_param>0) dim_ = dim_param; + leaf_max_size_ = get_param(params,"leaf_max_size",10); + reorder_ = get_param(params,"reorder",true); + + // Create a permutable array of indices to the input vectors. + vind_.resize(size_); + for (size_t i = 0; i < size_; i++) { + vind_[i] = (int)i; + } + } + + KDTreeSingleIndex(const KDTreeSingleIndex&); + KDTreeSingleIndex& operator=(const KDTreeSingleIndex&); + + /** + * Standard destructor + */ + ~KDTreeSingleIndex() + { + if (reorder_) delete[] data_.data; + } + + /** + * Builds the index + */ + void buildIndex() + { + computeBoundingBox(root_bbox_); + root_node_ = divideTree(0, (int)size_, root_bbox_ ); // construct the tree + + if (reorder_) { + delete[] data_.data; + data_ = cvflann::Matrix(new ElementType[size_*dim_], size_, dim_); + for (size_t i=0; i& queries, Matrix& indices, Matrix& dists, int knn, const SearchParams& params) + { + assert(queries.cols == veclen()); + assert(indices.rows >= queries.rows); + assert(dists.rows >= queries.rows); + assert(int(indices.cols) >= knn); + assert(int(dists.cols) >= knn); + + KNNSimpleResultSet resultSet(knn); + for (size_t i = 0; i < queries.rows; i++) { + resultSet.init(indices[i], dists[i]); + findNeighbors(resultSet, queries[i], params); + } + } + + IndexParams getParameters() const + { + return index_params_; + } + + /** + * Find set of nearest neighbors to vec. Their indices are stored inside + * the result object. + * + * Params: + * result = the result object in which the indices of the nearest-neighbors are stored + * vec = the vector for which to search the nearest neighbors + * maxCheck = the maximum number of restarts (in a best-bin-first manner) + */ + void findNeighbors(ResultSet& result, const ElementType* vec, const SearchParams& searchParams) + { + float epsError = 1+get_param(searchParams,"eps",0.0f); + + std::vector dists(dim_,0); + DistanceType distsq = computeInitialDistances(vec, dists); + searchLevel(result, vec, root_node_, distsq, dists, epsError); + } + +private: + + + /*--------------------- Internal Data Structures --------------------------*/ + struct Node + { + /** + * Indices of points in leaf node + */ + int left, right; + /** + * Dimension used for subdivision. + */ + int divfeat; + /** + * The values used for subdivision. + */ + DistanceType divlow, divhigh; + /** + * The child nodes. + */ + Node* child1, * child2; + }; + typedef Node* NodePtr; + + + struct Interval + { + DistanceType low, high; + }; + + typedef std::vector BoundingBox; + + typedef BranchStruct BranchSt; + typedef BranchSt* Branch; + + + + + void save_tree(FILE* stream, NodePtr tree) + { + save_value(stream, *tree); + if (tree->child1!=NULL) { + save_tree(stream, tree->child1); + } + if (tree->child2!=NULL) { + save_tree(stream, tree->child2); + } + } + + + void load_tree(FILE* stream, NodePtr& tree) + { + tree = pool_.allocate(); + load_value(stream, *tree); + if (tree->child1!=NULL) { + load_tree(stream, tree->child1); + } + if (tree->child2!=NULL) { + load_tree(stream, tree->child2); + } + } + + + void computeBoundingBox(BoundingBox& bbox) + { + bbox.resize(dim_); + for (size_t i=0; ibbox[i].high) bbox[i].high = (DistanceType)dataset_[k][i]; + } + } + } + + + /** + * Create a tree node that subdivides the list of vecs from vind[first] + * to vind[last]. The routine is called recursively on each sublist. + * Place a pointer to this new tree node in the location pTree. + * + * Params: pTree = the new node to create + * first = index of the first vector + * last = index of the last vector + */ + NodePtr divideTree(int left, int right, BoundingBox& bbox) + { + NodePtr node = pool_.allocate(); // allocate memory + + /* If too few exemplars remain, then make this a leaf node. */ + if ( (right-left) <= leaf_max_size_) { + node->child1 = node->child2 = NULL; /* Mark as leaf node. */ + node->left = left; + node->right = right; + + // compute bounding-box of leaf points + for (size_t i=0; idataset_[vind_[k]][i]) bbox[i].low=(DistanceType)dataset_[vind_[k]][i]; + if (bbox[i].highdivfeat = cutfeat; + + BoundingBox left_bbox(bbox); + left_bbox[cutfeat].high = cutval; + node->child1 = divideTree(left, left+idx, left_bbox); + + BoundingBox right_bbox(bbox); + right_bbox[cutfeat].low = cutval; + node->child2 = divideTree(left+idx, right, right_bbox); + + node->divlow = left_bbox[cutfeat].high; + node->divhigh = right_bbox[cutfeat].low; + + for (size_t i=0; imax_elem) max_elem = val; + } + } + + void middleSplit(int* ind, int count, int& index, int& cutfeat, DistanceType& cutval, const BoundingBox& bbox) + { + // find the largest span from the approximate bounding box + ElementType max_span = bbox[0].high-bbox[0].low; + cutfeat = 0; + cutval = (bbox[0].high+bbox[0].low)/2; + for (size_t i=1; imax_span) { + max_span = span; + cutfeat = i; + cutval = (bbox[i].high+bbox[i].low)/2; + } + } + + // compute exact span on the found dimension + ElementType min_elem, max_elem; + computeMinMax(ind, count, cutfeat, min_elem, max_elem); + cutval = (min_elem+max_elem)/2; + max_span = max_elem - min_elem; + + // check if a dimension of a largest span exists + size_t k = cutfeat; + for (size_t i=0; imax_span) { + computeMinMax(ind, count, i, min_elem, max_elem); + span = max_elem - min_elem; + if (span>max_span) { + max_span = span; + cutfeat = i; + cutval = (min_elem+max_elem)/2; + } + } + } + int lim1, lim2; + planeSplit(ind, count, cutfeat, cutval, lim1, lim2); + + if (lim1>count/2) index = lim1; + else if (lim2max_span) { + max_span = span; + } + } + DistanceType max_spread = -1; + cutfeat = 0; + for (size_t i=0; i(DistanceType)((1-EPS)*max_span)) { + ElementType min_elem, max_elem; + computeMinMax(ind, count, cutfeat, min_elem, max_elem); + DistanceType spread = (DistanceType)(max_elem-min_elem); + if (spread>max_spread) { + cutfeat = (int)i; + max_spread = spread; + } + } + } + // split in the middle + DistanceType split_val = (bbox[cutfeat].low+bbox[cutfeat].high)/2; + ElementType min_elem, max_elem; + computeMinMax(ind, count, cutfeat, min_elem, max_elem); + + if (split_valmax_elem) cutval = (DistanceType)max_elem; + else cutval = split_val; + + int lim1, lim2; + planeSplit(ind, count, cutfeat, cutval, lim1, lim2); + + if (lim1>count/2) index = lim1; + else if (lim2cutval + */ + void planeSplit(int* ind, int count, int cutfeat, DistanceType cutval, int& lim1, int& lim2) + { + /* Move vector indices for left subtree to front of list. */ + int left = 0; + int right = count-1; + for (;; ) { + while (left<=right && dataset_[ind[left]][cutfeat]=cutval) --right; + if (left>right) break; + std::swap(ind[left], ind[right]); ++left; --right; + } + /* If either list is empty, it means that all remaining features + * are identical. Split in the middle to maintain a balanced tree. + */ + lim1 = left; + right = count-1; + for (;; ) { + while (left<=right && dataset_[ind[left]][cutfeat]<=cutval) ++left; + while (left<=right && dataset_[ind[right]][cutfeat]>cutval) --right; + if (left>right) break; + std::swap(ind[left], ind[right]); ++left; --right; + } + lim2 = left; + } + + DistanceType computeInitialDistances(const ElementType* vec, std::vector& dists) + { + DistanceType distsq = 0.0; + + for (size_t i = 0; i < dim_; ++i) { + if (vec[i] < root_bbox_[i].low) { + dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].low, (int)i); + distsq += dists[i]; + } + if (vec[i] > root_bbox_[i].high) { + dists[i] = distance_.accum_dist(vec[i], root_bbox_[i].high, (int)i); + distsq += dists[i]; + } + } + + return distsq; + } + + /** + * Performs an exact search in the tree starting from a node. + */ + void searchLevel(ResultSet& result_set, const ElementType* vec, const NodePtr node, DistanceType mindistsq, + std::vector& dists, const float epsError) + { + /* If this is a leaf node, then do check and return. */ + if ((node->child1 == NULL)&&(node->child2 == NULL)) { + DistanceType worst_dist = result_set.worstDist(); + for (int i=node->left; iright; ++i) { + int index = reorder_ ? i : vind_[i]; + DistanceType dist = distance_(vec, data_[index], dim_, worst_dist); + if (distdivfeat; + ElementType val = vec[idx]; + DistanceType diff1 = val - node->divlow; + DistanceType diff2 = val - node->divhigh; + + NodePtr bestChild; + NodePtr otherChild; + DistanceType cut_dist; + if ((diff1+diff2)<0) { + bestChild = node->child1; + otherChild = node->child2; + cut_dist = distance_.accum_dist(val, node->divhigh, idx); + } + else { + bestChild = node->child2; + otherChild = node->child1; + cut_dist = distance_.accum_dist( val, node->divlow, idx); + } + + /* Call recursively to search next level down. */ + searchLevel(result_set, vec, bestChild, mindistsq, dists, epsError); + + DistanceType dst = dists[idx]; + mindistsq = mindistsq + cut_dist - dst; + dists[idx] = cut_dist; + if (mindistsq*epsError<=result_set.worstDist()) { + searchLevel(result_set, vec, otherChild, mindistsq, dists, epsError); + } + dists[idx] = dst; + } + +private: + + /** + * The dataset used by this index + */ + const Matrix dataset_; + + IndexParams index_params_; + + int leaf_max_size_; + bool reorder_; + + + /** + * Array of indices to vectors in the dataset. + */ + std::vector vind_; + + Matrix data_; + + size_t size_; + size_t dim_; + + /** + * Array of k-d trees used to find neighbours. + */ + NodePtr root_node_; + + BoundingBox root_bbox_; + + /** + * Pooled memory allocator. + * + * Using a pooled memory allocator is more efficient + * than allocating memory directly when there is a large + * number small of memory allocations. + */ + PooledAllocator pool_; + + Distance distance_; +}; // class KDTree + +} + +#endif //OPENCV_FLANN_KDTREE_SINGLE_INDEX_H_ diff --git a/thirdparty1/linux/include/opencv2/flann/kmeans_index.h b/thirdparty1/linux/include/opencv2/flann/kmeans_index.h new file mode 100644 index 0000000..98ad0c8 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/kmeans_index.h @@ -0,0 +1,1171 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_KMEANS_INDEX_H_ +#define OPENCV_FLANN_KMEANS_INDEX_H_ + +#include +#include +#include +#include +#include + +#include "general.h" +#include "nn_index.h" +#include "dist.h" +#include "matrix.h" +#include "result_set.h" +#include "heap.h" +#include "allocator.h" +#include "random.h" +#include "saving.h" +#include "logger.h" + + +namespace cvflann +{ + +struct KMeansIndexParams : public IndexParams +{ + KMeansIndexParams(int branching = 32, int iterations = 11, + flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM, float cb_index = 0.2 ) + { + (*this)["algorithm"] = FLANN_INDEX_KMEANS; + // branching factor + (*this)["branching"] = branching; + // max iterations to perform in one kmeans clustering (kmeans tree) + (*this)["iterations"] = iterations; + // algorithm used for picking the initial cluster centers for kmeans tree + (*this)["centers_init"] = centers_init; + // cluster boundary index. Used when searching the kmeans tree + (*this)["cb_index"] = cb_index; + } +}; + + +/** + * Hierarchical kmeans index + * + * Contains a tree constructed through a hierarchical kmeans clustering + * and other information for indexing a set of points for nearest-neighbour matching. + */ +template +class KMeansIndex : public NNIndex +{ +public: + typedef typename Distance::ElementType ElementType; + typedef typename Distance::ResultType DistanceType; + + + + typedef void (KMeansIndex::* centersAlgFunction)(int, int*, int, int*, int&); + + /** + * The function used for choosing the cluster centers. + */ + centersAlgFunction chooseCenters; + + + + /** + * Chooses the initial centers in the k-means clustering in a random manner. + * + * Params: + * k = number of centers + * vecs = the dataset of points + * indices = indices in the dataset + * indices_length = length of indices vector + * + */ + void chooseCentersRandom(int k, int* indices, int indices_length, int* centers, int& centers_length) + { + UniqueRandom r(indices_length); + + int index; + for (index=0; index=0 && rnd < n); + + centers[0] = indices[rnd]; + + int index; + for (index=1; indexbest_val) { + best_val = dist; + best_index = j; + } + } + if (best_index!=-1) { + centers[index] = indices[best_index]; + } + else { + break; + } + } + centers_length = index; + } + + + /** + * Chooses the initial centers in the k-means using the algorithm + * proposed in the KMeans++ paper: + * Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding + * + * Implementation of this function was converted from the one provided in Arthur's code. + * + * Params: + * k = number of centers + * vecs = the dataset of points + * indices = indices in the dataset + * Returns: + */ + void chooseCentersKMeanspp(int k, int* indices, int indices_length, int* centers, int& centers_length) + { + int n = indices_length; + + double currentPot = 0; + DistanceType* closestDistSq = new DistanceType[n]; + + // Choose one random center and set the closestDistSq values + int index = rand_int(n); + assert(index >=0 && index < n); + centers[0] = indices[index]; + + for (int i = 0; i < n; i++) { + closestDistSq[i] = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols); + closestDistSq[i] = ensureSquareDistance( closestDistSq[i] ); + currentPot += closestDistSq[i]; + } + + + const int numLocalTries = 1; + + // Choose each center + int centerCount; + for (centerCount = 1; centerCount < k; centerCount++) { + + // Repeat several trials + double bestNewPot = -1; + int bestNewIndex = -1; + for (int localTrial = 0; localTrial < numLocalTries; localTrial++) { + + // Choose our center - have to be slightly careful to return a valid answer even accounting + // for possible rounding errors + double randVal = rand_double(currentPot); + for (index = 0; index < n-1; index++) { + if (randVal <= closestDistSq[index]) break; + else randVal -= closestDistSq[index]; + } + + // Compute the new potential + double newPot = 0; + for (int i = 0; i < n; i++) { + DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols); + newPot += std::min( ensureSquareDistance(dist), closestDistSq[i] ); + } + + // Store the best result + if ((bestNewPot < 0)||(newPot < bestNewPot)) { + bestNewPot = newPot; + bestNewIndex = index; + } + } + + // Add the appropriate center + centers[centerCount] = indices[bestNewIndex]; + currentPot = bestNewPot; + for (int i = 0; i < n; i++) { + DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[bestNewIndex]], dataset_.cols); + closestDistSq[i] = std::min( ensureSquareDistance(dist), closestDistSq[i] ); + } + } + + centers_length = centerCount; + + delete[] closestDistSq; + } + + + +public: + + flann_algorithm_t getType() const + { + return FLANN_INDEX_KMEANS; + } + + class KMeansDistanceComputer : public cv::ParallelLoopBody + { + public: + KMeansDistanceComputer(Distance _distance, const Matrix& _dataset, + const int _branching, const int* _indices, const Matrix& _dcenters, const size_t _veclen, + int* _count, int* _belongs_to, std::vector& _radiuses, bool& _converged, cv::Mutex& _mtx) + : distance(_distance) + , dataset(_dataset) + , branching(_branching) + , indices(_indices) + , dcenters(_dcenters) + , veclen(_veclen) + , count(_count) + , belongs_to(_belongs_to) + , radiuses(_radiuses) + , converged(_converged) + , mtx(_mtx) + { + } + + void operator()(const cv::Range& range) const + { + const int begin = range.start; + const int end = range.end; + + for( int i = begin; inew_sq_dist) { + new_centroid = j; + sq_dist = new_sq_dist; + } + } + if (sq_dist > radiuses[new_centroid]) { + radiuses[new_centroid] = sq_dist; + } + if (new_centroid != belongs_to[i]) { + count[belongs_to[i]]--; + count[new_centroid]++; + belongs_to[i] = new_centroid; + mtx.lock(); + converged = false; + mtx.unlock(); + } + } + } + + private: + Distance distance; + const Matrix& dataset; + const int branching; + const int* indices; + const Matrix& dcenters; + const size_t veclen; + int* count; + int* belongs_to; + std::vector& radiuses; + bool& converged; + cv::Mutex& mtx; + KMeansDistanceComputer& operator=( const KMeansDistanceComputer & ) { return *this; } + }; + + /** + * Index constructor + * + * Params: + * inputData = dataset with the input features + * params = parameters passed to the hierarchical k-means algorithm + */ + KMeansIndex(const Matrix& inputData, const IndexParams& params = KMeansIndexParams(), + Distance d = Distance()) + : dataset_(inputData), index_params_(params), root_(NULL), indices_(NULL), distance_(d) + { + memoryCounter_ = 0; + + size_ = dataset_.rows; + veclen_ = dataset_.cols; + + branching_ = get_param(params,"branching",32); + iterations_ = get_param(params,"iterations",11); + if (iterations_<0) { + iterations_ = (std::numeric_limits::max)(); + } + centers_init_ = get_param(params,"centers_init",FLANN_CENTERS_RANDOM); + + if (centers_init_==FLANN_CENTERS_RANDOM) { + chooseCenters = &KMeansIndex::chooseCentersRandom; + } + else if (centers_init_==FLANN_CENTERS_GONZALES) { + chooseCenters = &KMeansIndex::chooseCentersGonzales; + } + else if (centers_init_==FLANN_CENTERS_KMEANSPP) { + chooseCenters = &KMeansIndex::chooseCentersKMeanspp; + } + else { + throw FLANNException("Unknown algorithm for choosing initial centers."); + } + cb_index_ = 0.4f; + + } + + + KMeansIndex(const KMeansIndex&); + KMeansIndex& operator=(const KMeansIndex&); + + + /** + * Index destructor. + * + * Release the memory used by the index. + */ + virtual ~KMeansIndex() + { + if (root_ != NULL) { + free_centers(root_); + } + if (indices_!=NULL) { + delete[] indices_; + } + } + + /** + * Returns size of index. + */ + size_t size() const + { + return size_; + } + + /** + * Returns the length of an index feature. + */ + size_t veclen() const + { + return veclen_; + } + + + void set_cb_index( float index) + { + cb_index_ = index; + } + + /** + * Computes the inde memory usage + * Returns: memory used by the index + */ + int usedMemory() const + { + return pool_.usedMemory+pool_.wastedMemory+memoryCounter_; + } + + /** + * Builds the index + */ + void buildIndex() + { + if (branching_<2) { + throw FLANNException("Branching factor must be at least 2"); + } + + indices_ = new int[size_]; + for (size_t i=0; i(); + std::memset(root_, 0, sizeof(KMeansNode)); + + computeNodeStatistics(root_, indices_, (int)size_); + computeClustering(root_, indices_, (int)size_, branching_,0); + } + + + void saveIndex(FILE* stream) + { + save_value(stream, branching_); + save_value(stream, iterations_); + save_value(stream, memoryCounter_); + save_value(stream, cb_index_); + save_value(stream, *indices_, (int)size_); + + save_tree(stream, root_); + } + + + void loadIndex(FILE* stream) + { + load_value(stream, branching_); + load_value(stream, iterations_); + load_value(stream, memoryCounter_); + load_value(stream, cb_index_); + if (indices_!=NULL) { + delete[] indices_; + } + indices_ = new int[size_]; + load_value(stream, *indices_, size_); + + if (root_!=NULL) { + free_centers(root_); + } + load_tree(stream, root_); + + index_params_["algorithm"] = getType(); + index_params_["branching"] = branching_; + index_params_["iterations"] = iterations_; + index_params_["centers_init"] = centers_init_; + index_params_["cb_index"] = cb_index_; + + } + + + /** + * Find set of nearest neighbors to vec. Their indices are stored inside + * the result object. + * + * Params: + * result = the result object in which the indices of the nearest-neighbors are stored + * vec = the vector for which to search the nearest neighbors + * searchParams = parameters that influence the search algorithm (checks, cb_index) + */ + void findNeighbors(ResultSet& result, const ElementType* vec, const SearchParams& searchParams) + { + + int maxChecks = get_param(searchParams,"checks",32); + + if (maxChecks==FLANN_CHECKS_UNLIMITED) { + findExactNN(root_, result, vec); + } + else { + // Priority queue storing intermediate branches in the best-bin-first search + Heap* heap = new Heap((int)size_); + + int checks = 0; + findNN(root_, result, vec, checks, maxChecks, heap); + + BranchSt branch; + while (heap->popMin(branch) && (checks& centers) + { + int numClusters = centers.rows; + if (numClusters<1) { + throw FLANNException("Number of clusters must be at least 1"); + } + + DistanceType variance; + KMeansNodePtr* clusters = new KMeansNodePtr[numClusters]; + + int clusterCount = getMinVarianceClusters(root_, clusters, numClusters, variance); + + Logger::info("Clusters requested: %d, returning %d\n",numClusters, clusterCount); + + for (int i=0; ipivot; + for (size_t j=0; j BranchSt; + + + + + void save_tree(FILE* stream, KMeansNodePtr node) + { + save_value(stream, *node); + save_value(stream, *(node->pivot), (int)veclen_); + if (node->childs==NULL) { + int indices_offset = (int)(node->indices - indices_); + save_value(stream, indices_offset); + } + else { + for(int i=0; ichilds[i]); + } + } + } + + + void load_tree(FILE* stream, KMeansNodePtr& node) + { + node = pool_.allocate(); + load_value(stream, *node); + node->pivot = new DistanceType[veclen_]; + load_value(stream, *(node->pivot), (int)veclen_); + if (node->childs==NULL) { + int indices_offset; + load_value(stream, indices_offset); + node->indices = indices_ + indices_offset; + } + else { + node->childs = pool_.allocate(branching_); + for(int i=0; ichilds[i]); + } + } + } + + + /** + * Helper function + */ + void free_centers(KMeansNodePtr node) + { + delete[] node->pivot; + if (node->childs!=NULL) { + for (int k=0; kchilds[k]); + } + } + } + + /** + * Computes the statistics of a node (mean, radius, variance). + * + * Params: + * node = the node to use + * indices = the indices of the points belonging to the node + */ + void computeNodeStatistics(KMeansNodePtr node, int* indices, int indices_length) + { + + DistanceType radius = 0; + DistanceType variance = 0; + DistanceType* mean = new DistanceType[veclen_]; + memoryCounter_ += int(veclen_*sizeof(DistanceType)); + + memset(mean,0,veclen_*sizeof(DistanceType)); + + for (size_t i=0; i(), veclen_); + } + for (size_t j=0; j(), veclen_); + + DistanceType tmp = 0; + for (int i=0; iradius) { + radius = tmp; + } + } + + node->variance = variance; + node->radius = radius; + node->pivot = mean; + } + + + /** + * The method responsible with actually doing the recursive hierarchical + * clustering + * + * Params: + * node = the node to cluster + * indices = indices of the points belonging to the current node + * branching = the branching factor to use in the clustering + * + * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point) + */ + void computeClustering(KMeansNodePtr node, int* indices, int indices_length, int branching, int level) + { + node->size = indices_length; + node->level = level; + + if (indices_length < branching) { + node->indices = indices; + std::sort(node->indices,node->indices+indices_length); + node->childs = NULL; + return; + } + + cv::AutoBuffer centers_idx_buf(branching); + int* centers_idx = (int*)centers_idx_buf; + int centers_length; + (this->*chooseCenters)(branching, indices, indices_length, centers_idx, centers_length); + + if (centers_lengthindices = indices; + std::sort(node->indices,node->indices+indices_length); + node->childs = NULL; + return; + } + + + cv::AutoBuffer dcenters_buf(branching*veclen_); + Matrix dcenters((double*)dcenters_buf,branching,veclen_); + for (int i=0; i radiuses(branching); + cv::AutoBuffer count_buf(branching); + int* count = (int*)count_buf; + for (int i=0; i belongs_to_buf(indices_length); + int* belongs_to = (int*)belongs_to_buf; + for (int i=0; inew_sq_dist) { + belongs_to[i] = j; + sq_dist = new_sq_dist; + } + } + if (sq_dist>radiuses[belongs_to[i]]) { + radiuses[belongs_to[i]] = sq_dist; + } + count[belongs_to[i]]++; + } + + bool converged = false; + int iteration = 0; + while (!converged && iterationchilds = pool_.allocate(branching); + int start = 0; + int end = start; + for (int c=0; c(), veclen_); + variance += d; + mean_radius += sqrt(d); + std::swap(indices[i],indices[end]); + std::swap(belongs_to[i],belongs_to[end]); + end++; + } + } + variance /= s; + mean_radius /= s; + variance -= distance_(centers[c], ZeroIterator(), veclen_); + + node->childs[c] = pool_.allocate(); + std::memset(node->childs[c], 0, sizeof(KMeansNode)); + node->childs[c]->radius = radiuses[c]; + node->childs[c]->pivot = centers[c]; + node->childs[c]->variance = variance; + node->childs[c]->mean_radius = mean_radius; + computeClustering(node->childs[c],indices+start, end-start, branching, level+1); + start=end; + } + + delete[] centers; + } + + + + /** + * Performs one descent in the hierarchical k-means tree. The branches not + * visited are stored in a priority queue. + * + * Params: + * node = node to explore + * result = container for the k-nearest neighbors found + * vec = query points + * checks = how many points in the dataset have been checked so far + * maxChecks = maximum dataset points to checks + */ + + + void findNN(KMeansNodePtr node, ResultSet& result, const ElementType* vec, int& checks, int maxChecks, + Heap* heap) + { + // Ignore those clusters that are too far away + { + DistanceType bsq = distance_(vec, node->pivot, veclen_); + DistanceType rsq = node->radius; + DistanceType wsq = result.worstDist(); + + DistanceType val = bsq-rsq-wsq; + DistanceType val2 = val*val-4*rsq*wsq; + + //if (val>0) { + if ((val>0)&&(val2>0)) { + return; + } + } + + if (node->childs==NULL) { + if (checks>=maxChecks) { + if (result.full()) return; + } + checks += node->size; + for (int i=0; isize; ++i) { + int index = node->indices[i]; + DistanceType dist = distance_(dataset_[index], vec, veclen_); + result.addPoint(dist, index); + } + } + else { + DistanceType* domain_distances = new DistanceType[branching_]; + int closest_center = exploreNodeBranches(node, vec, domain_distances, heap); + delete[] domain_distances; + findNN(node->childs[closest_center],result,vec, checks, maxChecks, heap); + } + } + + /** + * Helper function that computes the nearest childs of a node to a given query point. + * Params: + * node = the node + * q = the query point + * distances = array with the distances to each child node. + * Returns: + */ + int exploreNodeBranches(KMeansNodePtr node, const ElementType* q, DistanceType* domain_distances, Heap* heap) + { + + int best_index = 0; + domain_distances[best_index] = distance_(q, node->childs[best_index]->pivot, veclen_); + for (int i=1; ichilds[i]->pivot, veclen_); + if (domain_distances[i]childs[best_index]->pivot; + for (int i=0; ichilds[i]->variance; + + // float dist_to_border = getDistanceToBorder(node.childs[i].pivot,best_center,q); + // if (domain_distances[i]insert(BranchSt(node->childs[i],domain_distances[i])); + } + } + + return best_index; + } + + + /** + * Function the performs exact nearest neighbor search by traversing the entire tree. + */ + void findExactNN(KMeansNodePtr node, ResultSet& result, const ElementType* vec) + { + // Ignore those clusters that are too far away + { + DistanceType bsq = distance_(vec, node->pivot, veclen_); + DistanceType rsq = node->radius; + DistanceType wsq = result.worstDist(); + + DistanceType val = bsq-rsq-wsq; + DistanceType val2 = val*val-4*rsq*wsq; + + // if (val>0) { + if ((val>0)&&(val2>0)) { + return; + } + } + + + if (node->childs==NULL) { + for (int i=0; isize; ++i) { + int index = node->indices[i]; + DistanceType dist = distance_(dataset_[index], vec, veclen_); + result.addPoint(dist, index); + } + } + else { + int* sort_indices = new int[branching_]; + + getCenterOrdering(node, vec, sort_indices); + + for (int i=0; ichilds[sort_indices[i]],result,vec); + } + + delete[] sort_indices; + } + } + + + /** + * Helper function. + * + * I computes the order in which to traverse the child nodes of a particular node. + */ + void getCenterOrdering(KMeansNodePtr node, const ElementType* q, int* sort_indices) + { + DistanceType* domain_distances = new DistanceType[branching_]; + for (int i=0; ichilds[i]->pivot, veclen_); + + int j=0; + while (domain_distances[j]j; --k) { + domain_distances[k] = domain_distances[k-1]; + sort_indices[k] = sort_indices[k-1]; + } + domain_distances[j] = dist; + sort_indices[j] = i; + } + delete[] domain_distances; + } + + /** + * Method that computes the squared distance from the query point q + * from inside region with center c to the border between this + * region and the region with center p + */ + DistanceType getDistanceToBorder(DistanceType* p, DistanceType* c, DistanceType* q) + { + DistanceType sum = 0; + DistanceType sum2 = 0; + + for (int i=0; ivariance*root->size; + + while (clusterCount::max)(); + int splitIndex = -1; + + for (int i=0; ichilds != NULL) { + + DistanceType variance = meanVariance - clusters[i]->variance*clusters[i]->size; + + for (int j=0; jchilds[j]->variance*clusters[i]->childs[j]->size; + } + if (variance clusters_length) break; + + meanVariance = minVariance; + + // split node + KMeansNodePtr toSplit = clusters[splitIndex]; + clusters[splitIndex] = toSplit->childs[0]; + for (int i=1; ichilds[i]; + } + } + + varianceValue = meanVariance/root->size; + return clusterCount; + } + +private: + /** The branching factor used in the hierarchical k-means clustering */ + int branching_; + + /** Maximum number of iterations to use when performing k-means clustering */ + int iterations_; + + /** Algorithm for choosing the cluster centers */ + flann_centers_init_t centers_init_; + + /** + * Cluster border index. This is used in the tree search phase when determining + * the closest cluster to explore next. A zero value takes into account only + * the cluster centres, a value greater then zero also take into account the size + * of the cluster. + */ + float cb_index_; + + /** + * The dataset used by this index + */ + const Matrix dataset_; + + /** Index parameters */ + IndexParams index_params_; + + /** + * Number of features in the dataset. + */ + size_t size_; + + /** + * Length of each feature. + */ + size_t veclen_; + + /** + * The root node in the tree. + */ + KMeansNodePtr root_; + + /** + * Array of indices to vectors in the dataset. + */ + int* indices_; + + /** + * The distance + */ + Distance distance_; + + /** + * Pooled memory allocator. + */ + PooledAllocator pool_; + + /** + * Memory occupied by the index. + */ + int memoryCounter_; +}; + +} + +#endif //OPENCV_FLANN_KMEANS_INDEX_H_ diff --git a/thirdparty1/linux/include/opencv2/flann/linear_index.h b/thirdparty1/linux/include/opencv2/flann/linear_index.h new file mode 100644 index 0000000..5aa7a5c --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/linear_index.h @@ -0,0 +1,132 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_LINEAR_INDEX_H_ +#define OPENCV_FLANN_LINEAR_INDEX_H_ + +#include "general.h" +#include "nn_index.h" + +namespace cvflann +{ + +struct LinearIndexParams : public IndexParams +{ + LinearIndexParams() + { + (* this)["algorithm"] = FLANN_INDEX_LINEAR; + } +}; + +template +class LinearIndex : public NNIndex +{ +public: + + typedef typename Distance::ElementType ElementType; + typedef typename Distance::ResultType DistanceType; + + + LinearIndex(const Matrix& inputData, const IndexParams& params = LinearIndexParams(), + Distance d = Distance()) : + dataset_(inputData), index_params_(params), distance_(d) + { + } + + LinearIndex(const LinearIndex&); + LinearIndex& operator=(const LinearIndex&); + + flann_algorithm_t getType() const + { + return FLANN_INDEX_LINEAR; + } + + + size_t size() const + { + return dataset_.rows; + } + + size_t veclen() const + { + return dataset_.cols; + } + + + int usedMemory() const + { + return 0; + } + + void buildIndex() + { + /* nothing to do here for linear search */ + } + + void saveIndex(FILE*) + { + /* nothing to do here for linear search */ + } + + + void loadIndex(FILE*) + { + /* nothing to do here for linear search */ + + index_params_["algorithm"] = getType(); + } + + void findNeighbors(ResultSet& resultSet, const ElementType* vec, const SearchParams& /*searchParams*/) + { + ElementType* data = dataset_.data; + for (size_t i = 0; i < dataset_.rows; ++i, data += dataset_.cols) { + DistanceType dist = distance_(data, vec, dataset_.cols); + resultSet.addPoint(dist, (int)i); + } + } + + IndexParams getParameters() const + { + return index_params_; + } + +private: + /** The dataset */ + const Matrix dataset_; + /** Index parameters */ + IndexParams index_params_; + /** Index distance */ + Distance distance_; + +}; + +} + +#endif // OPENCV_FLANN_LINEAR_INDEX_H_ diff --git a/thirdparty1/linux/include/opencv2/flann/logger.h b/thirdparty1/linux/include/opencv2/flann/logger.h new file mode 100644 index 0000000..24f3fb6 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/logger.h @@ -0,0 +1,130 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_LOGGER_H +#define OPENCV_FLANN_LOGGER_H + +#include +#include + +#include "defines.h" + + +namespace cvflann +{ + +class Logger +{ + Logger() : stream(stdout), logLevel(FLANN_LOG_WARN) {} + + ~Logger() + { + if ((stream!=NULL)&&(stream!=stdout)) { + fclose(stream); + } + } + + static Logger& instance() + { + static Logger logger; + return logger; + } + + void _setDestination(const char* name) + { + if (name==NULL) { + stream = stdout; + } + else { + stream = fopen(name,"w"); + if (stream == NULL) { + stream = stdout; + } + } + } + + int _log(int level, const char* fmt, va_list arglist) + { + if (level > logLevel ) return -1; + int ret = vfprintf(stream, fmt, arglist); + return ret; + } + +public: + /** + * Sets the logging level. All messages with lower priority will be ignored. + * @param level Logging level + */ + static void setLevel(int level) { instance().logLevel = level; } + + /** + * Sets the logging destination + * @param name Filename or NULL for console + */ + static void setDestination(const char* name) { instance()._setDestination(name); } + + /** + * Print log message + * @param level Log level + * @param fmt Message format + * @return + */ + static int log(int level, const char* fmt, ...) + { + va_list arglist; + va_start(arglist, fmt); + int ret = instance()._log(level,fmt,arglist); + va_end(arglist); + return ret; + } + +#define LOG_METHOD(NAME,LEVEL) \ + static int NAME(const char* fmt, ...) \ + { \ + va_list ap; \ + va_start(ap, fmt); \ + int ret = instance()._log(LEVEL, fmt, ap); \ + va_end(ap); \ + return ret; \ + } + + LOG_METHOD(fatal, FLANN_LOG_FATAL) + LOG_METHOD(error, FLANN_LOG_ERROR) + LOG_METHOD(warn, FLANN_LOG_WARN) + LOG_METHOD(info, FLANN_LOG_INFO) + +private: + FILE* stream; + int logLevel; +}; + +} + +#endif //OPENCV_FLANN_LOGGER_H diff --git a/thirdparty1/linux/include/opencv2/flann/lsh_index.h b/thirdparty1/linux/include/opencv2/flann/lsh_index.h new file mode 100644 index 0000000..4d4670e --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/lsh_index.h @@ -0,0 +1,392 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +/*********************************************************************** + * Author: Vincent Rabaud + *************************************************************************/ + +#ifndef OPENCV_FLANN_LSH_INDEX_H_ +#define OPENCV_FLANN_LSH_INDEX_H_ + +#include +#include +#include +#include +#include + +#include "general.h" +#include "nn_index.h" +#include "matrix.h" +#include "result_set.h" +#include "heap.h" +#include "lsh_table.h" +#include "allocator.h" +#include "random.h" +#include "saving.h" + +namespace cvflann +{ + +struct LshIndexParams : public IndexParams +{ + LshIndexParams(unsigned int table_number = 12, unsigned int key_size = 20, unsigned int multi_probe_level = 2) + { + (* this)["algorithm"] = FLANN_INDEX_LSH; + // The number of hash tables to use + (*this)["table_number"] = table_number; + // The length of the key in the hash tables + (*this)["key_size"] = key_size; + // Number of levels to use in multi-probe (0 for standard LSH) + (*this)["multi_probe_level"] = multi_probe_level; + } +}; + +/** + * Randomized kd-tree index + * + * Contains the k-d trees and other information for indexing a set of points + * for nearest-neighbor matching. + */ +template +class LshIndex : public NNIndex +{ +public: + typedef typename Distance::ElementType ElementType; + typedef typename Distance::ResultType DistanceType; + + /** Constructor + * @param input_data dataset with the input features + * @param params parameters passed to the LSH algorithm + * @param d the distance used + */ + LshIndex(const Matrix& input_data, const IndexParams& params = LshIndexParams(), + Distance d = Distance()) : + dataset_(input_data), index_params_(params), distance_(d) + { + // cv::flann::IndexParams sets integer params as 'int', so it is used with get_param + // in place of 'unsigned int' + table_number_ = (unsigned int)get_param(index_params_,"table_number",12); + key_size_ = (unsigned int)get_param(index_params_,"key_size",20); + multi_probe_level_ = (unsigned int)get_param(index_params_,"multi_probe_level",2); + + feature_size_ = (unsigned)dataset_.cols; + fill_xor_mask(0, key_size_, multi_probe_level_, xor_masks_); + } + + + LshIndex(const LshIndex&); + LshIndex& operator=(const LshIndex&); + + /** + * Builds the index + */ + void buildIndex() + { + tables_.resize(table_number_); + for (unsigned int i = 0; i < table_number_; ++i) { + lsh::LshTable& table = tables_[i]; + table = lsh::LshTable(feature_size_, key_size_); + + // Add the features to the table + table.add(dataset_); + } + } + + flann_algorithm_t getType() const + { + return FLANN_INDEX_LSH; + } + + + void saveIndex(FILE* stream) + { + save_value(stream,table_number_); + save_value(stream,key_size_); + save_value(stream,multi_probe_level_); + save_value(stream, dataset_); + } + + void loadIndex(FILE* stream) + { + load_value(stream, table_number_); + load_value(stream, key_size_); + load_value(stream, multi_probe_level_); + load_value(stream, dataset_); + // Building the index is so fast we can afford not storing it + buildIndex(); + + index_params_["algorithm"] = getType(); + index_params_["table_number"] = table_number_; + index_params_["key_size"] = key_size_; + index_params_["multi_probe_level"] = multi_probe_level_; + } + + /** + * Returns size of index. + */ + size_t size() const + { + return dataset_.rows; + } + + /** + * Returns the length of an index feature. + */ + size_t veclen() const + { + return feature_size_; + } + + /** + * Computes the index memory usage + * Returns: memory used by the index + */ + int usedMemory() const + { + return (int)(dataset_.rows * sizeof(int)); + } + + + IndexParams getParameters() const + { + return index_params_; + } + + /** + * \brief Perform k-nearest neighbor search + * \param[in] queries The query points for which to find the nearest neighbors + * \param[out] indices The indices of the nearest neighbors found + * \param[out] dists Distances to the nearest neighbors found + * \param[in] knn Number of nearest neighbors to return + * \param[in] params Search parameters + */ + virtual void knnSearch(const Matrix& queries, Matrix& indices, Matrix& dists, int knn, const SearchParams& params) + { + assert(queries.cols == veclen()); + assert(indices.rows >= queries.rows); + assert(dists.rows >= queries.rows); + assert(int(indices.cols) >= knn); + assert(int(dists.cols) >= knn); + + + KNNUniqueResultSet resultSet(knn); + for (size_t i = 0; i < queries.rows; i++) { + resultSet.clear(); + std::fill_n(indices[i], knn, -1); + std::fill_n(dists[i], knn, std::numeric_limits::max()); + findNeighbors(resultSet, queries[i], params); + if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices[i], dists[i], knn); + else resultSet.copy(indices[i], dists[i], knn); + } + } + + + /** + * Find set of nearest neighbors to vec. Their indices are stored inside + * the result object. + * + * Params: + * result = the result object in which the indices of the nearest-neighbors are stored + * vec = the vector for which to search the nearest neighbors + * maxCheck = the maximum number of restarts (in a best-bin-first manner) + */ + void findNeighbors(ResultSet& result, const ElementType* vec, const SearchParams& /*searchParams*/) + { + getNeighbors(vec, result); + } + +private: + /** Defines the comparator on score and index + */ + typedef std::pair ScoreIndexPair; + struct SortScoreIndexPairOnSecond + { + bool operator()(const ScoreIndexPair& left, const ScoreIndexPair& right) const + { + return left.second < right.second; + } + }; + + /** Fills the different xor masks to use when getting the neighbors in multi-probe LSH + * @param key the key we build neighbors from + * @param lowest_index the lowest index of the bit set + * @param level the multi-probe level we are at + * @param xor_masks all the xor mask + */ + void fill_xor_mask(lsh::BucketKey key, int lowest_index, unsigned int level, + std::vector& xor_masks) + { + xor_masks.push_back(key); + if (level == 0) return; + for (int index = lowest_index - 1; index >= 0; --index) { + // Create a new key + lsh::BucketKey new_key = key | (1 << index); + fill_xor_mask(new_key, index, level - 1, xor_masks); + } + } + + /** Performs the approximate nearest-neighbor search. + * @param vec the feature to analyze + * @param do_radius flag indicating if we check the radius too + * @param radius the radius if it is a radius search + * @param do_k flag indicating if we limit the number of nn + * @param k_nn the number of nearest neighbors + * @param checked_average used for debugging + */ + void getNeighbors(const ElementType* vec, bool /*do_radius*/, float radius, bool do_k, unsigned int k_nn, + float& /*checked_average*/) + { + static std::vector score_index_heap; + + if (do_k) { + unsigned int worst_score = std::numeric_limits::max(); + typename std::vector >::const_iterator table = tables_.begin(); + typename std::vector >::const_iterator table_end = tables_.end(); + for (; table != table_end; ++table) { + size_t key = table->getKey(vec); + std::vector::const_iterator xor_mask = xor_masks_.begin(); + std::vector::const_iterator xor_mask_end = xor_masks_.end(); + for (; xor_mask != xor_mask_end; ++xor_mask) { + size_t sub_key = key ^ (*xor_mask); + const lsh::Bucket* bucket = table->getBucketFromKey(sub_key); + if (bucket == 0) continue; + + // Go over each descriptor index + std::vector::const_iterator training_index = bucket->begin(); + std::vector::const_iterator last_training_index = bucket->end(); + DistanceType hamming_distance; + + // Process the rest of the candidates + for (; training_index < last_training_index; ++training_index) { + hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols); + + if (hamming_distance < worst_score) { + // Insert the new element + score_index_heap.push_back(ScoreIndexPair(hamming_distance, training_index)); + std::push_heap(score_index_heap.begin(), score_index_heap.end()); + + if (score_index_heap.size() > (unsigned int)k_nn) { + // Remove the highest distance value as we have too many elements + std::pop_heap(score_index_heap.begin(), score_index_heap.end()); + score_index_heap.pop_back(); + // Keep track of the worst score + worst_score = score_index_heap.front().first; + } + } + } + } + } + } + else { + typename std::vector >::const_iterator table = tables_.begin(); + typename std::vector >::const_iterator table_end = tables_.end(); + for (; table != table_end; ++table) { + size_t key = table->getKey(vec); + std::vector::const_iterator xor_mask = xor_masks_.begin(); + std::vector::const_iterator xor_mask_end = xor_masks_.end(); + for (; xor_mask != xor_mask_end; ++xor_mask) { + size_t sub_key = key ^ (*xor_mask); + const lsh::Bucket* bucket = table->getBucketFromKey(sub_key); + if (bucket == 0) continue; + + // Go over each descriptor index + std::vector::const_iterator training_index = bucket->begin(); + std::vector::const_iterator last_training_index = bucket->end(); + DistanceType hamming_distance; + + // Process the rest of the candidates + for (; training_index < last_training_index; ++training_index) { + // Compute the Hamming distance + hamming_distance = distance_(vec, dataset_[*training_index], dataset_.cols); + if (hamming_distance < radius) score_index_heap.push_back(ScoreIndexPair(hamming_distance, training_index)); + } + } + } + } + } + + /** Performs the approximate nearest-neighbor search. + * This is a slower version than the above as it uses the ResultSet + * @param vec the feature to analyze + */ + void getNeighbors(const ElementType* vec, ResultSet& result) + { + typename std::vector >::const_iterator table = tables_.begin(); + typename std::vector >::const_iterator table_end = tables_.end(); + for (; table != table_end; ++table) { + size_t key = table->getKey(vec); + std::vector::const_iterator xor_mask = xor_masks_.begin(); + std::vector::const_iterator xor_mask_end = xor_masks_.end(); + for (; xor_mask != xor_mask_end; ++xor_mask) { + size_t sub_key = key ^ (*xor_mask); + const lsh::Bucket* bucket = table->getBucketFromKey((lsh::BucketKey)sub_key); + if (bucket == 0) continue; + + // Go over each descriptor index + std::vector::const_iterator training_index = bucket->begin(); + std::vector::const_iterator last_training_index = bucket->end(); + DistanceType hamming_distance; + + // Process the rest of the candidates + for (; training_index < last_training_index; ++training_index) { + // Compute the Hamming distance + hamming_distance = distance_(vec, dataset_[*training_index], (int)dataset_.cols); + result.addPoint(hamming_distance, *training_index); + } + } + } + } + + /** The different hash tables */ + std::vector > tables_; + + /** The data the LSH tables where built from */ + Matrix dataset_; + + /** The size of the features (as ElementType[]) */ + unsigned int feature_size_; + + IndexParams index_params_; + + /** table number */ + unsigned int table_number_; + /** key size */ + unsigned int key_size_; + /** How far should we look for neighbors in multi-probe LSH */ + unsigned int multi_probe_level_; + + /** The XOR masks to apply to a key to get the neighboring buckets */ + std::vector xor_masks_; + + Distance distance_; +}; +} + +#endif //OPENCV_FLANN_LSH_INDEX_H_ diff --git a/thirdparty1/linux/include/opencv2/flann/lsh_table.h b/thirdparty1/linux/include/opencv2/flann/lsh_table.h new file mode 100644 index 0000000..8ef2bd3 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/lsh_table.h @@ -0,0 +1,492 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +/*********************************************************************** + * Author: Vincent Rabaud + *************************************************************************/ + +#ifndef OPENCV_FLANN_LSH_TABLE_H_ +#define OPENCV_FLANN_LSH_TABLE_H_ + +#include +#include +#include +#include +// TODO as soon as we use C++0x, use the code in USE_UNORDERED_MAP +#ifdef __GXX_EXPERIMENTAL_CXX0X__ +# define USE_UNORDERED_MAP 1 +#else +# define USE_UNORDERED_MAP 0 +#endif +#if USE_UNORDERED_MAP +#include +#else +#include +#endif +#include +#include + +#include "dynamic_bitset.h" +#include "matrix.h" + +namespace cvflann +{ + +namespace lsh +{ + +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + +/** What is stored in an LSH bucket + */ +typedef uint32_t FeatureIndex; +/** The id from which we can get a bucket back in an LSH table + */ +typedef unsigned int BucketKey; + +/** A bucket in an LSH table + */ +typedef std::vector Bucket; + +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + +/** POD for stats about an LSH table + */ +struct LshStats +{ + std::vector bucket_sizes_; + size_t n_buckets_; + size_t bucket_size_mean_; + size_t bucket_size_median_; + size_t bucket_size_min_; + size_t bucket_size_max_; + size_t bucket_size_std_dev; + /** Each contained vector contains three value: beginning/end for interval, number of elements in the bin + */ + std::vector > size_histogram_; +}; + +/** Overload the << operator for LshStats + * @param out the streams + * @param stats the stats to display + * @return the streams + */ +inline std::ostream& operator <<(std::ostream& out, const LshStats& stats) +{ + int w = 20; + out << "Lsh Table Stats:\n" << std::setw(w) << std::setiosflags(std::ios::right) << "N buckets : " + << stats.n_buckets_ << "\n" << std::setw(w) << std::setiosflags(std::ios::right) << "mean size : " + << std::setiosflags(std::ios::left) << stats.bucket_size_mean_ << "\n" << std::setw(w) + << std::setiosflags(std::ios::right) << "median size : " << stats.bucket_size_median_ << "\n" << std::setw(w) + << std::setiosflags(std::ios::right) << "min size : " << std::setiosflags(std::ios::left) + << stats.bucket_size_min_ << "\n" << std::setw(w) << std::setiosflags(std::ios::right) << "max size : " + << std::setiosflags(std::ios::left) << stats.bucket_size_max_; + + // Display the histogram + out << std::endl << std::setw(w) << std::setiosflags(std::ios::right) << "histogram : " + << std::setiosflags(std::ios::left); + for (std::vector >::const_iterator iterator = stats.size_histogram_.begin(), end = + stats.size_histogram_.end(); iterator != end; ++iterator) out << (*iterator)[0] << "-" << (*iterator)[1] << ": " << (*iterator)[2] << ", "; + + return out; +} + + +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + +/** Lsh hash table. As its key is a sub-feature, and as usually + * the size of it is pretty small, we keep it as a continuous memory array. + * The value is an index in the corpus of features (we keep it as an unsigned + * int for pure memory reasons, it could be a size_t) + */ +template +class LshTable +{ +public: + /** A container of all the feature indices. Optimized for space + */ +#if USE_UNORDERED_MAP + typedef std::unordered_map BucketsSpace; +#else + typedef std::map BucketsSpace; +#endif + + /** A container of all the feature indices. Optimized for speed + */ + typedef std::vector BucketsSpeed; + + /** Default constructor + */ + LshTable() + { + } + + /** Default constructor + * Create the mask and allocate the memory + * @param feature_size is the size of the feature (considered as a ElementType[]) + * @param key_size is the number of bits that are turned on in the feature + */ + LshTable(unsigned int feature_size, unsigned int key_size) + { + (void)feature_size; + (void)key_size; + std::cerr << "LSH is not implemented for that type" << std::endl; + assert(0); + } + + /** Add a feature to the table + * @param value the value to store for that feature + * @param feature the feature itself + */ + void add(unsigned int value, const ElementType* feature) + { + // Add the value to the corresponding bucket + BucketKey key = (lsh::BucketKey)getKey(feature); + + switch (speed_level_) { + case kArray: + // That means we get the buckets from an array + buckets_speed_[key].push_back(value); + break; + case kBitsetHash: + // That means we can check the bitset for the presence of a key + key_bitset_.set(key); + buckets_space_[key].push_back(value); + break; + case kHash: + { + // That means we have to check for the hash table for the presence of a key + buckets_space_[key].push_back(value); + break; + } + } + } + + /** Add a set of features to the table + * @param dataset the values to store + */ + void add(Matrix dataset) + { +#if USE_UNORDERED_MAP + buckets_space_.rehash((buckets_space_.size() + dataset.rows) * 1.2); +#endif + // Add the features to the table + for (unsigned int i = 0; i < dataset.rows; ++i) add(i, dataset[i]); + // Now that the table is full, optimize it for speed/space + optimize(); + } + + /** Get a bucket given the key + * @param key + * @return + */ + inline const Bucket* getBucketFromKey(BucketKey key) const + { + // Generate other buckets + switch (speed_level_) { + case kArray: + // That means we get the buckets from an array + return &buckets_speed_[key]; + break; + case kBitsetHash: + // That means we can check the bitset for the presence of a key + if (key_bitset_.test(key)) return &buckets_space_.find(key)->second; + else return 0; + break; + case kHash: + { + // That means we have to check for the hash table for the presence of a key + BucketsSpace::const_iterator bucket_it, bucket_end = buckets_space_.end(); + bucket_it = buckets_space_.find(key); + // Stop here if that bucket does not exist + if (bucket_it == bucket_end) return 0; + else return &bucket_it->second; + break; + } + } + return 0; + } + + /** Compute the sub-signature of a feature + */ + size_t getKey(const ElementType* /*feature*/) const + { + std::cerr << "LSH is not implemented for that type" << std::endl; + assert(0); + return 1; + } + + /** Get statistics about the table + * @return + */ + LshStats getStats() const; + +private: + /** defines the speed fo the implementation + * kArray uses a vector for storing data + * kBitsetHash uses a hash map but checks for the validity of a key with a bitset + * kHash uses a hash map only + */ + enum SpeedLevel + { + kArray, kBitsetHash, kHash + }; + + /** Initialize some variables + */ + void initialize(size_t key_size) + { + const size_t key_size_lower_bound = 1; + //a value (size_t(1) << key_size) must fit the size_t type so key_size has to be strictly less than size of size_t + const size_t key_size_upper_bound = (std::min)(sizeof(BucketKey) * CHAR_BIT + 1, sizeof(size_t) * CHAR_BIT); + if (key_size < key_size_lower_bound || key_size >= key_size_upper_bound) + { + CV_Error(cv::Error::StsBadArg, cv::format("Invalid key_size (=%d). Valid values for your system are %d <= key_size < %d.", (int)key_size, (int)key_size_lower_bound, (int)key_size_upper_bound)); + } + + speed_level_ = kHash; + key_size_ = (unsigned)key_size; + } + + /** Optimize the table for speed/space + */ + void optimize() + { + // If we are already using the fast storage, no need to do anything + if (speed_level_ == kArray) return; + + // Use an array if it will be more than half full + if (buckets_space_.size() > ((size_t(1) << key_size_) / 2)) { + speed_level_ = kArray; + // Fill the array version of it + buckets_speed_.resize(size_t(1) << key_size_); + for (BucketsSpace::const_iterator key_bucket = buckets_space_.begin(); key_bucket != buckets_space_.end(); ++key_bucket) buckets_speed_[key_bucket->first] = key_bucket->second; + + // Empty the hash table + buckets_space_.clear(); + return; + } + + // If the bitset is going to use less than 10% of the RAM of the hash map (at least 1 size_t for the key and two + // for the vector) or less than 512MB (key_size_ <= 30) + if (((std::max(buckets_space_.size(), buckets_speed_.size()) * CHAR_BIT * 3 * sizeof(BucketKey)) / 10 + >= (size_t(1) << key_size_)) || (key_size_ <= 32)) { + speed_level_ = kBitsetHash; + key_bitset_.resize(size_t(1) << key_size_); + key_bitset_.reset(); + // Try with the BucketsSpace + for (BucketsSpace::const_iterator key_bucket = buckets_space_.begin(); key_bucket != buckets_space_.end(); ++key_bucket) key_bitset_.set(key_bucket->first); + } + else { + speed_level_ = kHash; + key_bitset_.clear(); + } + } + + /** The vector of all the buckets if they are held for speed + */ + BucketsSpeed buckets_speed_; + + /** The hash table of all the buckets in case we cannot use the speed version + */ + BucketsSpace buckets_space_; + + /** What is used to store the data */ + SpeedLevel speed_level_; + + /** If the subkey is small enough, it will keep track of which subkeys are set through that bitset + * That is just a speedup so that we don't look in the hash table (which can be mush slower that checking a bitset) + */ + DynamicBitset key_bitset_; + + /** The size of the sub-signature in bits + */ + unsigned int key_size_; + + // Members only used for the unsigned char specialization + /** The mask to apply to a feature to get the hash key + * Only used in the unsigned char case + */ + std::vector mask_; +}; + +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// +// Specialization for unsigned char + +template<> +inline LshTable::LshTable(unsigned int feature_size, unsigned int subsignature_size) +{ + initialize(subsignature_size); + // Allocate the mask + mask_ = std::vector((size_t)ceil((float)(feature_size * sizeof(char)) / (float)sizeof(size_t)), 0); + + // A bit brutal but fast to code + std::vector indices(feature_size * CHAR_BIT); + for (size_t i = 0; i < feature_size * CHAR_BIT; ++i) indices[i] = i; + std::random_shuffle(indices.begin(), indices.end()); + + // Generate a random set of order of subsignature_size_ bits + for (unsigned int i = 0; i < key_size_; ++i) { + size_t index = indices[i]; + + // Set that bit in the mask + size_t divisor = CHAR_BIT * sizeof(size_t); + size_t idx = index / divisor; //pick the right size_t index + mask_[idx] |= size_t(1) << (index % divisor); //use modulo to find the bit offset + } + + // Set to 1 if you want to display the mask for debug +#if 0 + { + size_t bcount = 0; + BOOST_FOREACH(size_t mask_block, mask_){ + out << std::setw(sizeof(size_t) * CHAR_BIT / 4) << std::setfill('0') << std::hex << mask_block + << std::endl; + bcount += __builtin_popcountll(mask_block); + } + out << "bit count : " << std::dec << bcount << std::endl; + out << "mask size : " << mask_.size() << std::endl; + return out; + } +#endif +} + +/** Return the Subsignature of a feature + * @param feature the feature to analyze + */ +template<> +inline size_t LshTable::getKey(const unsigned char* feature) const +{ + // no need to check if T is dividable by sizeof(size_t) like in the Hamming + // distance computation as we have a mask + const size_t* feature_block_ptr = reinterpret_cast ((const void*)feature); + + // Figure out the subsignature of the feature + // Given the feature ABCDEF, and the mask 001011, the output will be + // 000CEF + size_t subsignature = 0; + size_t bit_index = 1; + + for (std::vector::const_iterator pmask_block = mask_.begin(); pmask_block != mask_.end(); ++pmask_block) { + // get the mask and signature blocks + size_t feature_block = *feature_block_ptr; + size_t mask_block = *pmask_block; + while (mask_block) { + // Get the lowest set bit in the mask block + size_t lowest_bit = mask_block & (-(ptrdiff_t)mask_block); + // Add it to the current subsignature if necessary + subsignature += (feature_block & lowest_bit) ? bit_index : 0; + // Reset the bit in the mask block + mask_block ^= lowest_bit; + // increment the bit index for the subsignature + bit_index <<= 1; + } + // Check the next feature block + ++feature_block_ptr; + } + return subsignature; +} + +template<> +inline LshStats LshTable::getStats() const +{ + LshStats stats; + stats.bucket_size_mean_ = 0; + if ((buckets_speed_.empty()) && (buckets_space_.empty())) { + stats.n_buckets_ = 0; + stats.bucket_size_median_ = 0; + stats.bucket_size_min_ = 0; + stats.bucket_size_max_ = 0; + return stats; + } + + if (!buckets_speed_.empty()) { + for (BucketsSpeed::const_iterator pbucket = buckets_speed_.begin(); pbucket != buckets_speed_.end(); ++pbucket) { + stats.bucket_sizes_.push_back((lsh::FeatureIndex)pbucket->size()); + stats.bucket_size_mean_ += pbucket->size(); + } + stats.bucket_size_mean_ /= buckets_speed_.size(); + stats.n_buckets_ = buckets_speed_.size(); + } + else { + for (BucketsSpace::const_iterator x = buckets_space_.begin(); x != buckets_space_.end(); ++x) { + stats.bucket_sizes_.push_back((lsh::FeatureIndex)x->second.size()); + stats.bucket_size_mean_ += x->second.size(); + } + stats.bucket_size_mean_ /= buckets_space_.size(); + stats.n_buckets_ = buckets_space_.size(); + } + + std::sort(stats.bucket_sizes_.begin(), stats.bucket_sizes_.end()); + + // BOOST_FOREACH(int size, stats.bucket_sizes_) + // std::cout << size << " "; + // std::cout << std::endl; + stats.bucket_size_median_ = stats.bucket_sizes_[stats.bucket_sizes_.size() / 2]; + stats.bucket_size_min_ = stats.bucket_sizes_.front(); + stats.bucket_size_max_ = stats.bucket_sizes_.back(); + + // TODO compute mean and std + /*float mean, stddev; + stats.bucket_size_mean_ = mean; + stats.bucket_size_std_dev = stddev;*/ + + // Include a histogram of the buckets + unsigned int bin_start = 0; + unsigned int bin_end = 20; + bool is_new_bin = true; + for (std::vector::iterator iterator = stats.bucket_sizes_.begin(), end = stats.bucket_sizes_.end(); iterator + != end; ) + if (*iterator < bin_end) { + if (is_new_bin) { + stats.size_histogram_.push_back(std::vector(3, 0)); + stats.size_histogram_.back()[0] = bin_start; + stats.size_histogram_.back()[1] = bin_end - 1; + is_new_bin = false; + } + ++stats.size_histogram_.back()[2]; + ++iterator; + } + else { + bin_start += 20; + bin_end += 20; + is_new_bin = true; + } + + return stats; +} + +// End the two namespaces +} +} + +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + +#endif /* OPENCV_FLANN_LSH_TABLE_H_ */ diff --git a/thirdparty1/linux/include/opencv2/flann/matrix.h b/thirdparty1/linux/include/opencv2/flann/matrix.h new file mode 100644 index 0000000..51b6c63 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/matrix.h @@ -0,0 +1,116 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_DATASET_H_ +#define OPENCV_FLANN_DATASET_H_ + +#include + +#include "general.h" + +namespace cvflann +{ + +/** + * Class that implements a simple rectangular matrix stored in a memory buffer and + * provides convenient matrix-like access using the [] operators. + */ +template +class Matrix +{ +public: + typedef T type; + + size_t rows; + size_t cols; + size_t stride; + T* data; + + Matrix() : rows(0), cols(0), stride(0), data(NULL) + { + } + + Matrix(T* data_, size_t rows_, size_t cols_, size_t stride_ = 0) : + rows(rows_), cols(cols_), stride(stride_), data(data_) + { + if (stride==0) stride = cols; + } + + /** + * Convenience function for deallocating the storage data. + */ + FLANN_DEPRECATED void free() + { + fprintf(stderr, "The cvflann::Matrix::free() method is deprecated " + "and it does not do any memory deallocation any more. You are" + "responsible for deallocating the matrix memory (by doing" + "'delete[] matrix.data' for example)"); + } + + /** + * Operator that return a (pointer to a) row of the data. + */ + T* operator[](size_t index) const + { + return data+index*stride; + } +}; + + +class UntypedMatrix +{ +public: + size_t rows; + size_t cols; + void* data; + flann_datatype_t type; + + UntypedMatrix(void* data_, long rows_, long cols_) : + rows(rows_), cols(cols_), data(data_) + { + } + + ~UntypedMatrix() + { + } + + + template + Matrix as() + { + return Matrix((T*)data, rows, cols); + } +}; + + + +} + +#endif //OPENCV_FLANN_DATASET_H_ diff --git a/thirdparty1/linux/include/opencv2/flann/miniflann.hpp b/thirdparty1/linux/include/opencv2/flann/miniflann.hpp new file mode 100644 index 0000000..5d25f5e --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/miniflann.hpp @@ -0,0 +1,158 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_MINIFLANN_HPP +#define OPENCV_MINIFLANN_HPP + +#include "opencv2/core.hpp" +#include "opencv2/flann/defines.h" + +namespace cv +{ + +namespace flann +{ + +struct CV_EXPORTS IndexParams +{ + IndexParams(); + ~IndexParams(); + + String getString(const String& key, const String& defaultVal=String()) const; + int getInt(const String& key, int defaultVal=-1) const; + double getDouble(const String& key, double defaultVal=-1) const; + + void setString(const String& key, const String& value); + void setInt(const String& key, int value); + void setDouble(const String& key, double value); + void setFloat(const String& key, float value); + void setBool(const String& key, bool value); + void setAlgorithm(int value); + + void getAll(std::vector& names, + std::vector& types, + std::vector& strValues, + std::vector& numValues) const; + + void* params; +}; + +struct CV_EXPORTS KDTreeIndexParams : public IndexParams +{ + KDTreeIndexParams(int trees=4); +}; + +struct CV_EXPORTS LinearIndexParams : public IndexParams +{ + LinearIndexParams(); +}; + +struct CV_EXPORTS CompositeIndexParams : public IndexParams +{ + CompositeIndexParams(int trees = 4, int branching = 32, int iterations = 11, + cvflann::flann_centers_init_t centers_init = cvflann::FLANN_CENTERS_RANDOM, float cb_index = 0.2f ); +}; + +struct CV_EXPORTS AutotunedIndexParams : public IndexParams +{ + AutotunedIndexParams(float target_precision = 0.8f, float build_weight = 0.01f, + float memory_weight = 0, float sample_fraction = 0.1f); +}; + +struct CV_EXPORTS HierarchicalClusteringIndexParams : public IndexParams +{ + HierarchicalClusteringIndexParams(int branching = 32, + cvflann::flann_centers_init_t centers_init = cvflann::FLANN_CENTERS_RANDOM, int trees = 4, int leaf_size = 100 ); +}; + +struct CV_EXPORTS KMeansIndexParams : public IndexParams +{ + KMeansIndexParams(int branching = 32, int iterations = 11, + cvflann::flann_centers_init_t centers_init = cvflann::FLANN_CENTERS_RANDOM, float cb_index = 0.2f ); +}; + +struct CV_EXPORTS LshIndexParams : public IndexParams +{ + LshIndexParams(int table_number, int key_size, int multi_probe_level); +}; + +struct CV_EXPORTS SavedIndexParams : public IndexParams +{ + SavedIndexParams(const String& filename); +}; + +struct CV_EXPORTS SearchParams : public IndexParams +{ + SearchParams( int checks = 32, float eps = 0, bool sorted = true ); +}; + +class CV_EXPORTS_W Index +{ +public: + CV_WRAP Index(); + CV_WRAP Index(InputArray features, const IndexParams& params, cvflann::flann_distance_t distType=cvflann::FLANN_DIST_L2); + virtual ~Index(); + + CV_WRAP virtual void build(InputArray features, const IndexParams& params, cvflann::flann_distance_t distType=cvflann::FLANN_DIST_L2); + CV_WRAP virtual void knnSearch(InputArray query, OutputArray indices, + OutputArray dists, int knn, const SearchParams& params=SearchParams()); + + CV_WRAP virtual int radiusSearch(InputArray query, OutputArray indices, + OutputArray dists, double radius, int maxResults, + const SearchParams& params=SearchParams()); + + CV_WRAP virtual void save(const String& filename) const; + CV_WRAP virtual bool load(InputArray features, const String& filename); + CV_WRAP virtual void release(); + CV_WRAP cvflann::flann_distance_t getDistance() const; + CV_WRAP cvflann::flann_algorithm_t getAlgorithm() const; + +protected: + cvflann::flann_distance_t distType; + cvflann::flann_algorithm_t algo; + int featureType; + void* index; +}; + +} } // namespace cv::flann + +#endif diff --git a/thirdparty1/linux/include/opencv2/flann/nn_index.h b/thirdparty1/linux/include/opencv2/flann/nn_index.h new file mode 100644 index 0000000..381d4bc --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/nn_index.h @@ -0,0 +1,177 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_NNINDEX_H +#define OPENCV_FLANN_NNINDEX_H + +#include "general.h" +#include "matrix.h" +#include "result_set.h" +#include "params.h" + +namespace cvflann +{ + +/** + * Nearest-neighbour index base class + */ +template +class NNIndex +{ + typedef typename Distance::ElementType ElementType; + typedef typename Distance::ResultType DistanceType; + +public: + + virtual ~NNIndex() {} + + /** + * \brief Builds the index + */ + virtual void buildIndex() = 0; + + /** + * \brief Perform k-nearest neighbor search + * \param[in] queries The query points for which to find the nearest neighbors + * \param[out] indices The indices of the nearest neighbors found + * \param[out] dists Distances to the nearest neighbors found + * \param[in] knn Number of nearest neighbors to return + * \param[in] params Search parameters + */ + virtual void knnSearch(const Matrix& queries, Matrix& indices, Matrix& dists, int knn, const SearchParams& params) + { + assert(queries.cols == veclen()); + assert(indices.rows >= queries.rows); + assert(dists.rows >= queries.rows); + assert(int(indices.cols) >= knn); + assert(int(dists.cols) >= knn); + +#if 0 + KNNResultSet resultSet(knn); + for (size_t i = 0; i < queries.rows; i++) { + resultSet.init(indices[i], dists[i]); + findNeighbors(resultSet, queries[i], params); + } +#else + KNNUniqueResultSet resultSet(knn); + for (size_t i = 0; i < queries.rows; i++) { + resultSet.clear(); + findNeighbors(resultSet, queries[i], params); + if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices[i], dists[i], knn); + else resultSet.copy(indices[i], dists[i], knn); + } +#endif + } + + /** + * \brief Perform radius search + * \param[in] query The query point + * \param[out] indices The indinces of the neighbors found within the given radius + * \param[out] dists The distances to the nearest neighbors found + * \param[in] radius The radius used for search + * \param[in] params Search parameters + * \returns Number of neighbors found + */ + virtual int radiusSearch(const Matrix& query, Matrix& indices, Matrix& dists, float radius, const SearchParams& params) + { + if (query.rows != 1) { + fprintf(stderr, "I can only search one feature at a time for range search\n"); + return -1; + } + assert(query.cols == veclen()); + assert(indices.cols == dists.cols); + + int n = 0; + int* indices_ptr = NULL; + DistanceType* dists_ptr = NULL; + if (indices.cols > 0) { + n = (int)indices.cols; + indices_ptr = indices[0]; + dists_ptr = dists[0]; + } + + RadiusUniqueResultSet resultSet((DistanceType)radius); + resultSet.clear(); + findNeighbors(resultSet, query[0], params); + if (n>0) { + if (get_param(params,"sorted",true)) resultSet.sortAndCopy(indices_ptr, dists_ptr, n); + else resultSet.copy(indices_ptr, dists_ptr, n); + } + + return (int)resultSet.size(); + } + + /** + * \brief Saves the index to a stream + * \param stream The stream to save the index to + */ + virtual void saveIndex(FILE* stream) = 0; + + /** + * \brief Loads the index from a stream + * \param stream The stream from which the index is loaded + */ + virtual void loadIndex(FILE* stream) = 0; + + /** + * \returns number of features in this index. + */ + virtual size_t size() const = 0; + + /** + * \returns The dimensionality of the features in this index. + */ + virtual size_t veclen() const = 0; + + /** + * \returns The amount of memory (in bytes) used by the index. + */ + virtual int usedMemory() const = 0; + + /** + * \returns The index type (kdtree, kmeans,...) + */ + virtual flann_algorithm_t getType() const = 0; + + /** + * \returns The index parameters + */ + virtual IndexParams getParameters() const = 0; + + + /** + * \brief Method that searches for nearest-neighbours + */ + virtual void findNeighbors(ResultSet& result, const ElementType* vec, const SearchParams& searchParams) = 0; +}; + +} + +#endif //OPENCV_FLANN_NNINDEX_H diff --git a/thirdparty1/linux/include/opencv2/flann/object_factory.h b/thirdparty1/linux/include/opencv2/flann/object_factory.h new file mode 100644 index 0000000..7f971c5 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/object_factory.h @@ -0,0 +1,91 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_OBJECT_FACTORY_H_ +#define OPENCV_FLANN_OBJECT_FACTORY_H_ + +#include + +namespace cvflann +{ + +class CreatorNotFound +{ +}; + +template +class ObjectFactory +{ + typedef ObjectFactory ThisClass; + typedef std::map ObjectRegistry; + + // singleton class, private constructor + ObjectFactory() {} + +public: + + bool subscribe(UniqueIdType id, ObjectCreator creator) + { + if (object_registry.find(id) != object_registry.end()) return false; + + object_registry[id] = creator; + return true; + } + + bool unregister(UniqueIdType id) + { + return object_registry.erase(id) == 1; + } + + ObjectCreator create(UniqueIdType id) + { + typename ObjectRegistry::const_iterator iter = object_registry.find(id); + + if (iter == object_registry.end()) { + throw CreatorNotFound(); + } + + return iter->second; + } + + static ThisClass& instance() + { + static ThisClass the_factory; + return the_factory; + } +private: + ObjectRegistry object_registry; +}; + +} + +#endif /* OPENCV_FLANN_OBJECT_FACTORY_H_ */ diff --git a/thirdparty1/linux/include/opencv2/flann/params.h b/thirdparty1/linux/include/opencv2/flann/params.h new file mode 100644 index 0000000..95ef4cd --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/params.h @@ -0,0 +1,99 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2011 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2011 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + + +#ifndef OPENCV_FLANN_PARAMS_H_ +#define OPENCV_FLANN_PARAMS_H_ + +#include "any.h" +#include "general.h" +#include +#include + + +namespace cvflann +{ + +typedef std::map IndexParams; + +struct SearchParams : public IndexParams +{ + SearchParams(int checks = 32, float eps = 0, bool sorted = true ) + { + // how many leafs to visit when searching for neighbours (-1 for unlimited) + (*this)["checks"] = checks; + // search for eps-approximate neighbours (default: 0) + (*this)["eps"] = eps; + // only for radius search, require neighbours sorted by distance (default: true) + (*this)["sorted"] = sorted; + } +}; + + +template +T get_param(const IndexParams& params, cv::String name, const T& default_value) +{ + IndexParams::const_iterator it = params.find(name); + if (it != params.end()) { + return it->second.cast(); + } + else { + return default_value; + } +} + +template +T get_param(const IndexParams& params, cv::String name) +{ + IndexParams::const_iterator it = params.find(name); + if (it != params.end()) { + return it->second.cast(); + } + else { + throw FLANNException(cv::String("Missing parameter '")+name+cv::String("' in the parameters given")); + } +} + +inline void print_params(const IndexParams& params, std::ostream& stream) +{ + IndexParams::const_iterator it; + + for(it=params.begin(); it!=params.end(); ++it) { + stream << it->first << " : " << it->second << std::endl; + } +} + +inline void print_params(const IndexParams& params) +{ + print_params(params, std::cout); +} + +} + + +#endif /* OPENCV_FLANN_PARAMS_H_ */ diff --git a/thirdparty1/linux/include/opencv2/flann/random.h b/thirdparty1/linux/include/opencv2/flann/random.h new file mode 100644 index 0000000..a3cf5ec --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/random.h @@ -0,0 +1,133 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_RANDOM_H +#define OPENCV_FLANN_RANDOM_H + +#include +#include +#include + +#include "general.h" + +namespace cvflann +{ + +/** + * Seeds the random number generator + * @param seed Random seed + */ +inline void seed_random(unsigned int seed) +{ + srand(seed); +} + +/* + * Generates a random double value. + */ +/** + * Generates a random double value. + * @param high Upper limit + * @param low Lower limit + * @return Random double value + */ +inline double rand_double(double high = 1.0, double low = 0) +{ + return low + ((high-low) * (std::rand() / (RAND_MAX + 1.0))); +} + +/** + * Generates a random integer value. + * @param high Upper limit + * @param low Lower limit + * @return Random integer value + */ +inline int rand_int(int high = RAND_MAX, int low = 0) +{ + return low + (int) ( double(high-low) * (std::rand() / (RAND_MAX + 1.0))); +} + +/** + * Random number generator that returns a distinct number from + * the [0,n) interval each time. + */ +class UniqueRandom +{ + std::vector vals_; + int size_; + int counter_; + +public: + /** + * Constructor. + * @param n Size of the interval from which to generate + * @return + */ + UniqueRandom(int n) + { + init(n); + } + + /** + * Initializes the number generator. + * @param n the size of the interval from which to generate random numbers. + */ + void init(int n) + { + // create and initialize an array of size n + vals_.resize(n); + size_ = n; + for (int i = 0; i < size_; ++i) vals_[i] = i; + + // shuffle the elements in the array + std::random_shuffle(vals_.begin(), vals_.end()); + + counter_ = 0; + } + + /** + * Return a distinct random integer in greater or equal to 0 and less + * than 'n' on each call. It should be called maximum 'n' times. + * Returns: a random integer + */ + int next() + { + if (counter_ == size_) { + return -1; + } + else { + return vals_[counter_++]; + } + } +}; + +} + +#endif //OPENCV_FLANN_RANDOM_H diff --git a/thirdparty1/linux/include/opencv2/flann/result_set.h b/thirdparty1/linux/include/opencv2/flann/result_set.h new file mode 100644 index 0000000..9750019 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/result_set.h @@ -0,0 +1,543 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_RESULTSET_H +#define OPENCV_FLANN_RESULTSET_H + +#include +#include +#include +#include +#include +#include + +namespace cvflann +{ + +/* This record represents a branch point when finding neighbors in + the tree. It contains a record of the minimum distance to the query + point, as well as the node at which the search resumes. + */ + +template +struct BranchStruct +{ + T node; /* Tree node at which search resumes */ + DistanceType mindist; /* Minimum distance to query for all nodes below. */ + + BranchStruct() {} + BranchStruct(const T& aNode, DistanceType dist) : node(aNode), mindist(dist) {} + + bool operator<(const BranchStruct& rhs) const + { + return mindist +class ResultSet +{ +public: + virtual ~ResultSet() {} + + virtual bool full() const = 0; + + virtual void addPoint(DistanceType dist, int index) = 0; + + virtual DistanceType worstDist() const = 0; + +}; + +/** + * KNNSimpleResultSet does not ensure that the element it holds are unique. + * Is used in those cases where the nearest neighbour algorithm used does not + * attempt to insert the same element multiple times. + */ +template +class KNNSimpleResultSet : public ResultSet +{ + int* indices; + DistanceType* dists; + int capacity; + int count; + DistanceType worst_distance_; + +public: + KNNSimpleResultSet(int capacity_) : capacity(capacity_), count(0) + { + } + + void init(int* indices_, DistanceType* dists_) + { + indices = indices_; + dists = dists_; + count = 0; + worst_distance_ = (std::numeric_limits::max)(); + dists[capacity-1] = worst_distance_; + } + + size_t size() const + { + return count; + } + + bool full() const + { + return count == capacity; + } + + + void addPoint(DistanceType dist, int index) + { + if (dist >= worst_distance_) return; + int i; + for (i=count; i>0; --i) { +#ifdef FLANN_FIRST_MATCH + if ( (dists[i-1]>dist) || ((dist==dists[i-1])&&(indices[i-1]>index)) ) +#else + if (dists[i-1]>dist) +#endif + { + if (i +class KNNResultSet : public ResultSet +{ + int* indices; + DistanceType* dists; + int capacity; + int count; + DistanceType worst_distance_; + +public: + KNNResultSet(int capacity_) : capacity(capacity_), count(0) + { + } + + void init(int* indices_, DistanceType* dists_) + { + indices = indices_; + dists = dists_; + count = 0; + worst_distance_ = (std::numeric_limits::max)(); + dists[capacity-1] = worst_distance_; + } + + size_t size() const + { + return count; + } + + bool full() const + { + return count == capacity; + } + + + void addPoint(DistanceType dist, int index) + { + if (dist >= worst_distance_) return; + int i; + for (i = count; i > 0; --i) { +#ifdef FLANN_FIRST_MATCH + if ( (dists[i-1]<=dist) && ((dist!=dists[i-1])||(indices[i-1]<=index)) ) +#else + if (dists[i-1]<=dist) +#endif + { + // Check for duplicate indices + int j = i - 1; + while ((j >= 0) && (dists[j] == dist)) { + if (indices[j] == index) { + return; + } + --j; + } + break; + } + } + + if (count < capacity) ++count; + for (int j = count-1; j > i; --j) { + dists[j] = dists[j-1]; + indices[j] = indices[j-1]; + } + dists[i] = dist; + indices[i] = index; + worst_distance_ = dists[capacity-1]; + } + + DistanceType worstDist() const + { + return worst_distance_; + } +}; + + +/** + * A result-set class used when performing a radius based search. + */ +template +class RadiusResultSet : public ResultSet +{ + DistanceType radius; + int* indices; + DistanceType* dists; + size_t capacity; + size_t count; + +public: + RadiusResultSet(DistanceType radius_, int* indices_, DistanceType* dists_, int capacity_) : + radius(radius_), indices(indices_), dists(dists_), capacity(capacity_) + { + init(); + } + + ~RadiusResultSet() + { + } + + void init() + { + count = 0; + } + + size_t size() const + { + return count; + } + + bool full() const + { + return true; + } + + void addPoint(DistanceType dist, int index) + { + if (dist0)&&(count < capacity)) { + dists[count] = dist; + indices[count] = index; + } + count++; + } + } + + DistanceType worstDist() const + { + return radius; + } + +}; + +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + +/** Class that holds the k NN neighbors + * Faster than KNNResultSet as it uses a binary heap and does not maintain two arrays + */ +template +class UniqueResultSet : public ResultSet +{ +public: + struct DistIndex + { + DistIndex(DistanceType dist, unsigned int index) : + dist_(dist), index_(index) + { + } + bool operator<(const DistIndex dist_index) const + { + return (dist_ < dist_index.dist_) || ((dist_ == dist_index.dist_) && index_ < dist_index.index_); + } + DistanceType dist_; + unsigned int index_; + }; + + /** Default cosntructor */ + UniqueResultSet() : + worst_distance_(std::numeric_limits::max()) + { + } + + /** Check the status of the set + * @return true if we have k NN + */ + inline bool full() const + { + return is_full_; + } + + /** Remove all elements in the set + */ + virtual void clear() = 0; + + /** Copy the set to two C arrays + * @param indices pointer to a C array of indices + * @param dist pointer to a C array of distances + * @param n_neighbors the number of neighbors to copy + */ + virtual void copy(int* indices, DistanceType* dist, int n_neighbors = -1) const + { + if (n_neighbors < 0) { + for (typename std::set::const_iterator dist_index = dist_indices_.begin(), dist_index_end = + dist_indices_.end(); dist_index != dist_index_end; ++dist_index, ++indices, ++dist) { + *indices = dist_index->index_; + *dist = dist_index->dist_; + } + } + else { + int i = 0; + for (typename std::set::const_iterator dist_index = dist_indices_.begin(), dist_index_end = + dist_indices_.end(); (dist_index != dist_index_end) && (i < n_neighbors); ++dist_index, ++indices, ++dist, ++i) { + *indices = dist_index->index_; + *dist = dist_index->dist_; + } + } + } + + /** Copy the set to two C arrays but sort it according to the distance first + * @param indices pointer to a C array of indices + * @param dist pointer to a C array of distances + * @param n_neighbors the number of neighbors to copy + */ + virtual void sortAndCopy(int* indices, DistanceType* dist, int n_neighbors = -1) const + { + copy(indices, dist, n_neighbors); + } + + /** The number of neighbors in the set + * @return + */ + size_t size() const + { + return dist_indices_.size(); + } + + /** The distance of the furthest neighbor + * If we don't have enough neighbors, it returns the max possible value + * @return + */ + inline DistanceType worstDist() const + { + return worst_distance_; + } +protected: + /** Flag to say if the set is full */ + bool is_full_; + + /** The worst distance found so far */ + DistanceType worst_distance_; + + /** The best candidates so far */ + std::set dist_indices_; +}; + +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + +/** Class that holds the k NN neighbors + * Faster than KNNResultSet as it uses a binary heap and does not maintain two arrays + */ +template +class KNNUniqueResultSet : public UniqueResultSet +{ +public: + /** Constructor + * @param capacity the number of neighbors to store at max + */ + KNNUniqueResultSet(unsigned int capacity) : capacity_(capacity) + { + this->is_full_ = false; + this->clear(); + } + + /** Add a possible candidate to the best neighbors + * @param dist distance for that neighbor + * @param index index of that neighbor + */ + inline void addPoint(DistanceType dist, int index) + { + // Don't do anything if we are worse than the worst + if (dist >= worst_distance_) return; + dist_indices_.insert(DistIndex(dist, index)); + + if (is_full_) { + if (dist_indices_.size() > capacity_) { + dist_indices_.erase(*dist_indices_.rbegin()); + worst_distance_ = dist_indices_.rbegin()->dist_; + } + } + else if (dist_indices_.size() == capacity_) { + is_full_ = true; + worst_distance_ = dist_indices_.rbegin()->dist_; + } + } + + /** Remove all elements in the set + */ + void clear() + { + dist_indices_.clear(); + worst_distance_ = std::numeric_limits::max(); + is_full_ = false; + } + +protected: + typedef typename UniqueResultSet::DistIndex DistIndex; + using UniqueResultSet::is_full_; + using UniqueResultSet::worst_distance_; + using UniqueResultSet::dist_indices_; + + /** The number of neighbors to keep */ + unsigned int capacity_; +}; + +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + +/** Class that holds the radius nearest neighbors + * It is more accurate than RadiusResult as it is not limited in the number of neighbors + */ +template +class RadiusUniqueResultSet : public UniqueResultSet +{ +public: + /** Constructor + * @param radius the maximum distance of a neighbor + */ + RadiusUniqueResultSet(DistanceType radius) : + radius_(radius) + { + is_full_ = true; + } + + /** Add a possible candidate to the best neighbors + * @param dist distance for that neighbor + * @param index index of that neighbor + */ + void addPoint(DistanceType dist, int index) + { + if (dist <= radius_) dist_indices_.insert(DistIndex(dist, index)); + } + + /** Remove all elements in the set + */ + inline void clear() + { + dist_indices_.clear(); + } + + + /** Check the status of the set + * @return alwys false + */ + inline bool full() const + { + return true; + } + + /** The distance of the furthest neighbor + * If we don't have enough neighbors, it returns the max possible value + * @return + */ + inline DistanceType worstDist() const + { + return radius_; + } +private: + typedef typename UniqueResultSet::DistIndex DistIndex; + using UniqueResultSet::dist_indices_; + using UniqueResultSet::is_full_; + + /** The furthest distance a neighbor can be */ + DistanceType radius_; +}; + +//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// + +/** Class that holds the k NN neighbors within a radius distance + */ +template +class KNNRadiusUniqueResultSet : public KNNUniqueResultSet +{ +public: + /** Constructor + * @param capacity the number of neighbors to store at max + * @param radius the maximum distance of a neighbor + */ + KNNRadiusUniqueResultSet(unsigned int capacity, DistanceType radius) + { + this->capacity_ = capacity; + this->radius_ = radius; + this->dist_indices_.reserve(capacity_); + this->clear(); + } + + /** Remove all elements in the set + */ + void clear() + { + dist_indices_.clear(); + worst_distance_ = radius_; + is_full_ = false; + } +private: + using KNNUniqueResultSet::dist_indices_; + using KNNUniqueResultSet::is_full_; + using KNNUniqueResultSet::worst_distance_; + + /** The maximum number of neighbors to consider */ + unsigned int capacity_; + + /** The maximum distance of a neighbor */ + DistanceType radius_; +}; +} + +#endif //OPENCV_FLANN_RESULTSET_H diff --git a/thirdparty1/linux/include/opencv2/flann/sampling.h b/thirdparty1/linux/include/opencv2/flann/sampling.h new file mode 100644 index 0000000..396f177 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/sampling.h @@ -0,0 +1,81 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + + +#ifndef OPENCV_FLANN_SAMPLING_H_ +#define OPENCV_FLANN_SAMPLING_H_ + +#include "matrix.h" +#include "random.h" + +namespace cvflann +{ + +template +Matrix random_sample(Matrix& srcMatrix, long size, bool remove = false) +{ + Matrix newSet(new T[size * srcMatrix.cols], size,srcMatrix.cols); + + T* src,* dest; + for (long i=0; i +Matrix random_sample(const Matrix& srcMatrix, size_t size) +{ + UniqueRandom rand((int)srcMatrix.rows); + Matrix newSet(new T[size * srcMatrix.cols], size,srcMatrix.cols); + + T* src,* dest; + for (size_t i=0; i +#include + +#include "general.h" +#include "nn_index.h" + +#ifdef FLANN_SIGNATURE_ +#undef FLANN_SIGNATURE_ +#endif +#define FLANN_SIGNATURE_ "FLANN_INDEX" + +namespace cvflann +{ + +template +struct Datatype {}; +template<> +struct Datatype { static flann_datatype_t type() { return FLANN_INT8; } }; +template<> +struct Datatype { static flann_datatype_t type() { return FLANN_INT16; } }; +template<> +struct Datatype { static flann_datatype_t type() { return FLANN_INT32; } }; +template<> +struct Datatype { static flann_datatype_t type() { return FLANN_UINT8; } }; +template<> +struct Datatype { static flann_datatype_t type() { return FLANN_UINT16; } }; +template<> +struct Datatype { static flann_datatype_t type() { return FLANN_UINT32; } }; +template<> +struct Datatype { static flann_datatype_t type() { return FLANN_FLOAT32; } }; +template<> +struct Datatype { static flann_datatype_t type() { return FLANN_FLOAT64; } }; + + +/** + * Structure representing the index header. + */ +struct IndexHeader +{ + char signature[16]; + char version[16]; + flann_datatype_t data_type; + flann_algorithm_t index_type; + size_t rows; + size_t cols; +}; + +/** + * Saves index header to stream + * + * @param stream - Stream to save to + * @param index - The index to save + */ +template +void save_header(FILE* stream, const NNIndex& index) +{ + IndexHeader header; + memset(header.signature, 0, sizeof(header.signature)); + strcpy(header.signature, FLANN_SIGNATURE_); + memset(header.version, 0, sizeof(header.version)); + strcpy(header.version, FLANN_VERSION_); + header.data_type = Datatype::type(); + header.index_type = index.getType(); + header.rows = index.size(); + header.cols = index.veclen(); + + std::fwrite(&header, sizeof(header),1,stream); +} + + +/** + * + * @param stream - Stream to load from + * @return Index header + */ +inline IndexHeader load_header(FILE* stream) +{ + IndexHeader header; + size_t read_size = fread(&header,sizeof(header),1,stream); + + if (read_size!=(size_t)1) { + throw FLANNException("Invalid index file, cannot read"); + } + + if (strcmp(header.signature,FLANN_SIGNATURE_)!=0) { + throw FLANNException("Invalid index file, wrong signature"); + } + + return header; + +} + + +template +void save_value(FILE* stream, const T& value, size_t count = 1) +{ + fwrite(&value, sizeof(value),count, stream); +} + +template +void save_value(FILE* stream, const cvflann::Matrix& value) +{ + fwrite(&value, sizeof(value),1, stream); + fwrite(value.data, sizeof(T),value.rows*value.cols, stream); +} + +template +void save_value(FILE* stream, const std::vector& value) +{ + size_t size = value.size(); + fwrite(&size, sizeof(size_t), 1, stream); + fwrite(&value[0], sizeof(T), size, stream); +} + +template +void load_value(FILE* stream, T& value, size_t count = 1) +{ + size_t read_cnt = fread(&value, sizeof(value), count, stream); + if (read_cnt != count) { + throw FLANNException("Cannot read from file"); + } +} + +template +void load_value(FILE* stream, cvflann::Matrix& value) +{ + size_t read_cnt = fread(&value, sizeof(value), 1, stream); + if (read_cnt != 1) { + throw FLANNException("Cannot read from file"); + } + value.data = new T[value.rows*value.cols]; + read_cnt = fread(value.data, sizeof(T), value.rows*value.cols, stream); + if (read_cnt != (size_t)(value.rows*value.cols)) { + throw FLANNException("Cannot read from file"); + } +} + + +template +void load_value(FILE* stream, std::vector& value) +{ + size_t size; + size_t read_cnt = fread(&size, sizeof(size_t), 1, stream); + if (read_cnt!=1) { + throw FLANNException("Cannot read from file"); + } + value.resize(size); + read_cnt = fread(&value[0], sizeof(T), size, stream); + if (read_cnt != size) { + throw FLANNException("Cannot read from file"); + } +} + +} + +#endif /* OPENCV_FLANN_SAVING_H_ */ diff --git a/thirdparty1/linux/include/opencv2/flann/simplex_downhill.h b/thirdparty1/linux/include/opencv2/flann/simplex_downhill.h new file mode 100644 index 0000000..145901a --- /dev/null +++ b/thirdparty1/linux/include/opencv2/flann/simplex_downhill.h @@ -0,0 +1,186 @@ +/*********************************************************************** + * Software License Agreement (BSD License) + * + * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved. + * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved. + * + * THE BSD LICENSE + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + *************************************************************************/ + +#ifndef OPENCV_FLANN_SIMPLEX_DOWNHILL_H_ +#define OPENCV_FLANN_SIMPLEX_DOWNHILL_H_ + +namespace cvflann +{ + +/** + Adds val to array vals (and point to array points) and keeping the arrays sorted by vals. + */ +template +void addValue(int pos, float val, float* vals, T* point, T* points, int n) +{ + vals[pos] = val; + for (int i=0; i0 && vals[j] +float optimizeSimplexDownhill(T* points, int n, F func, float* vals = NULL ) +{ + const int MAX_ITERATIONS = 10; + + assert(n>0); + + T* p_o = new T[n]; + T* p_r = new T[n]; + T* p_e = new T[n]; + + int alpha = 1; + + int iterations = 0; + + bool ownVals = false; + if (vals == NULL) { + ownVals = true; + vals = new float[n+1]; + for (int i=0; i MAX_ITERATIONS) break; + + // compute average of simplex points (except the highest point) + for (int j=0; j=vals[0])&&(val_r=vals[n]) { + for (int i=0; i +#include "opencv2/core.hpp" +#include "opencv2/core/utility.hpp" + +namespace cvflann +{ + +/** + * A start-stop timer class. + * + * Can be used to time portions of code. + */ +class StartStopTimer +{ + int64 startTime; + +public: + /** + * Value of the timer. + */ + double value; + + + /** + * Constructor. + */ + StartStopTimer() + { + reset(); + } + + /** + * Starts the timer. + */ + void start() + { + startTime = cv::getTickCount(); + } + + /** + * Stops the timer and updates timer value. + */ + void stop() + { + int64 stopTime = cv::getTickCount(); + value += ( (double)stopTime - startTime) / cv::getTickFrequency(); + } + + /** + * Resets the timer value to 0. + */ + void reset() + { + value = 0; + } + +}; + +} + +#endif // FLANN_TIMER_H diff --git a/thirdparty1/linux/include/opencv2/freetype.hpp b/thirdparty1/linux/include/opencv2/freetype.hpp new file mode 100644 index 0000000..40cdda6 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/freetype.hpp @@ -0,0 +1,190 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009-2012, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ +//################################################################################ +// +// Created by Kumataro +// +//################################################################################ + +#ifndef _OPENCV_FREETYPE_H_ +#define _OPENCV_FREETYPE_H_ +#ifdef __cplusplus + +#include + +/** +@defgroup freetype Drawing UTF-8 strings with freetype/harfbuzz + +This modules is to draw UTF-8 strings with freetype/harfbuzz. + +1. Install freetype2 and harfbuzz in your system. +2. Create FreeType2 instance with createFreeType2() function. +3. Load font file with loadFontData() function. +4. Draw text with putText() function. + +- If thickness parameter is negative, drawing glyph is filled. +- If thickness parameter is positive, drawing glyph is outlined with thickness. +- If line_type parameter is 16(or CV_AA), drawing glyph is smooth. + +*/ + +namespace cv { +namespace freetype { +//! @addtogroup freetype +//! @{ +class CV_EXPORTS_W FreeType2 : public Algorithm +{ +public: +/** @brief Load font data. + +The function loadFontData loads font data. + +@param fontFileName FontFile Name +@param id face_index to select a font faces in a single file. +*/ + + CV_WRAP virtual void loadFontData(String fontFileName, int id) = 0; + +/** @brief Set Split Number from Bezier-curve to line + +The function setSplitNumber set the number of split points from bezier-curve to line. +If you want to draw large glyph, large is better. +If you want to draw small glyph, small is better. + +@param num number of split points from bezier-curve to line +*/ + + CV_WRAP virtual void setSplitNumber( int num ) = 0; + +/** @brief Draws a text string. + +The function putText renders the specified text string in the image. Symbols that cannot be rendered using the specified font are replaced by "Tofu" or non-drawn. + +@param img Image. +@param text Text string to be drawn. +@param org Bottom-left/Top-left corner of the text string in the image. +@param fontHeight Drawing font size by pixel unit. +@param color Text color. +@param thickness Thickness of the lines used to draw a text when negative, the glyph is filled. Otherwise, the glyph is drawn with this thickness. +@param line_type Line type. See the line for details. +@param bottomLeftOrigin When true, the image data origin is at the bottom-left corner. Otherwise, it is at the top-left corner. +*/ + + CV_WRAP virtual void putText( + InputOutputArray img, const String& text, Point org, + int fontHeight, Scalar color, + int thickness, int line_type, bool bottomLeftOrigin + ) = 0; + +/** @brief Calculates the width and height of a text string. + +The function getTextSize calculates and returns the approximate size of a box that contains the specified text. +That is, the following code renders some text, the tight box surrounding it, and the baseline: : +@code + String text = "Funny text inside the box"; + int fontHeight = 60; + int thickness = -1; + int linestyle = 8; + + Mat img(600, 800, CV_8UC3, Scalar::all(0)); + + int baseline=0; + + cv::Ptr ft2; + ft2 = cv::freetype::createFreeType2(); + ft2->loadFontData( "./mplus-1p-regular.ttf", 0 ); + + Size textSize = ft2->getTextSize(text, + fontHeight, + thickness, + &baseline); + + if(thickness > 0){ + baseline += thickness; + } + + // center the text + Point textOrg((img.cols - textSize.width) / 2, + (img.rows + textSize.height) / 2); + + // draw the box + rectangle(img, textOrg + Point(0, baseline), + textOrg + Point(textSize.width, -textSize.height), + Scalar(0,255,0),1,8); + + // ... and the baseline first + line(img, textOrg + Point(0, thickness), + textOrg + Point(textSize.width, thickness), + Scalar(0, 0, 255),1,8); + + // then put the text itself + ft2->putText(img, text, textOrg, fontHeight, + Scalar::all(255), thickness, linestyle, true ); +@endcode + +@param text Input text string. +@param fontHeight Drawing font size by pixel unit. +@param thickness Thickness of lines used to render the text. See putText for details. +@param[out] baseLine y-coordinate of the baseline relative to the bottom-most text +point. +@return The size of a box that contains the specified text. + +@see cv::putText + */ +CV_WRAP virtual Size getTextSize(const String& text, + int fontHeight, int thickness, + CV_OUT int* baseLine) = 0; + +}; + +/** @brief Create FreeType2 Instance + +The function createFreeType2 create instance to draw UTF-8 strings. + +*/ + CV_EXPORTS_W Ptr createFreeType2(); + +//! @] +} } // namespace freetype + +#endif +#endif diff --git a/thirdparty1/linux/include/opencv2/fuzzy.hpp b/thirdparty1/linux/include/opencv2/fuzzy.hpp new file mode 100644 index 0000000..8a532c0 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/fuzzy.hpp @@ -0,0 +1,66 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2015, University of Ostrava, Institute for Research and Applications of Fuzzy Modeling, +// Pavel Vlasanek, all rights reserved. Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef __OPENCV_FUZZY_H__ +#define __OPENCV_FUZZY_H__ + +#include "opencv2/fuzzy/types.hpp" +#include "opencv2/fuzzy/fuzzy_F0_math.hpp" +#include "opencv2/fuzzy/fuzzy_image.hpp" + +/** +@defgroup fuzzy Image processing based on fuzzy mathematics + +Namespace for all functions is **ft**. The module brings implementation of the last image processing algorithms based on fuzzy mathematics. + + @{ + @defgroup f0_math Math with F0-transfrom support + +Fuzzy transform (F-transform) of the 0th degree transform whole image to a vector of its components. These components are used in latter computation. + + @defgroup f_image Fuzzy image processing + +Image proceesing based on F-transform is fast to process and easy to understand. + @} + +*/ + +#endif // __OPENCV_FUZZY_H__ diff --git a/thirdparty1/linux/include/opencv2/fuzzy/fuzzy_F0_math.hpp b/thirdparty1/linux/include/opencv2/fuzzy/fuzzy_F0_math.hpp new file mode 100644 index 0000000..5b24157 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/fuzzy/fuzzy_F0_math.hpp @@ -0,0 +1,128 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2015, University of Ostrava, Institute for Research and Applications of Fuzzy Modeling, +// Pavel Vlasanek, all rights reserved. Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef __OPENCV_FUZZY_F0_MATH_H__ +#define __OPENCV_FUZZY_F0_MATH_H__ + +#include "opencv2/fuzzy/types.hpp" +#include "opencv2/core.hpp" + +namespace cv +{ + +namespace ft +{ + //! @addtogroup f0_math + //! @{ + + /** @brief Computes components of the array using direct F0-transform. + @param matrix Input array. + @param kernel Kernel used for processing. Function **createKernel** can be used. + @param components Output 32-bit array for the components. + @param mask Mask can be used for unwanted area marking. + + The function computes components using predefined kernel and mask. + + @note + F-transform technique is described in paper @cite Perf:FT. + */ + CV_EXPORTS_AS(FT02D_components1) void FT02D_components(InputArray matrix, InputArray kernel, OutputArray components, InputArray mask); + + /** @brief Computes components of the array using direct F0-transform. + @param matrix Input array. + @param kernel Kernel used for processing. Function **createKernel** can be used. + @param components Output 32-bit array for the components. + + The function computes components using predefined kernel. + + @note + F-transform technique is described in paper @cite Perf:FT. + */ + CV_EXPORTS_W void FT02D_components(InputArray matrix, InputArray kernel, OutputArray components); + + /** @brief Computes inverse F0-transfrom. + @param components Input 32-bit single channel array for the components. + @param kernel Kernel used for processing. Function **createKernel** can be used. + @param output Output 32-bit array. + @param width Width of the output array. + @param height Height of the output array. + + @note + F-transform technique is described in paper @cite Perf:FT. + */ + CV_EXPORTS_W void FT02D_inverseFT(InputArray components, InputArray kernel, OutputArray output, int width, int height); + + /** @brief Computes F0-transfrom and inverse F0-transfrom at once. + @param matrix Input matrix. + @param kernel Kernel used for processing. Function **createKernel** can be used. + @param output Output 32-bit array. + @param mask Mask used for unwanted area marking. + + This function computes F-transfrom and inverse F-transfotm in one step. It is fully sufficient and optimized for **Mat**. + */ + CV_EXPORTS_AS(FT02D_process1) void FT02D_process(InputArray matrix, InputArray kernel, OutputArray output, InputArray mask); + + /** @brief Computes F0-transfrom and inverse F0-transfrom at once. + @param matrix Input matrix. + @param kernel Kernel used for processing. Function **createKernel** can be used. + @param output Output 32-bit array. + + This function computes F-transfrom and inverse F-transfotm in one step. It is fully sufficient and optimized for **Mat**. + */ + CV_EXPORTS_W void FT02D_process(InputArray matrix, InputArray kernel, OutputArray output); + + /** @brief Computes F0-transfrom and inverse F0-transfrom at once and return state. + @param matrix Input matrix. + @param kernel Kernel used for processing. Function **createKernel** can be used. + @param output Output 32-bit array. + @param mask Mask used for unwanted area marking. + @param maskOutput Mask after one iteration. + @param firstStop If **true** function returns -1 when first problem appears. In case of **false**, the process is completed and summation of all problems returned. + + This function computes iteration of F-transfrom and inverse F-transfotm and handle image and mask change. The function is used in *inpaint* function. + */ + CV_EXPORTS_W int FT02D_iteration(InputArray matrix, InputArray kernel, OutputArray output, InputArray mask, OutputArray maskOutput, bool firstStop); + + //! @} +} +} + +#endif // __OPENCV_FUZZY_F0_MATH_H__ diff --git a/thirdparty1/linux/include/opencv2/fuzzy/fuzzy_image.hpp b/thirdparty1/linux/include/opencv2/fuzzy/fuzzy_image.hpp new file mode 100644 index 0000000..e5287a9 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/fuzzy/fuzzy_image.hpp @@ -0,0 +1,109 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2015, University of Ostrava, Institute for Research and Applications of Fuzzy Modeling, +// Pavel Vlasanek, all rights reserved. Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef __OPENCV_FUZZY_IMAGE_H__ +#define __OPENCV_FUZZY_IMAGE_H__ + +#include "types.hpp" +#include "opencv2/core.hpp" + +namespace cv +{ + +namespace ft +{ + //! @addtogroup f_image + //! @{ + + /** @brief Creates kernel from basic functions. + @param A Basic function used in axis **x**. + @param B Basic function used in axis **y**. + @param kernel Final 32-b kernel derived from **A** and **B**. + @param chn Number of kernel channels. + + The function creates kernel usable for latter fuzzy image processing. + */ + CV_EXPORTS_AS(createKernel1) void createKernel(InputArray A, InputArray B, OutputArray kernel, const int chn); + + /** @brief Creates kernel from general functions. + @param function Function type could be one of the following: + - **LINEAR** Linear basic function. + @param radius Radius of the basic function. + @param kernel Final 32-b kernel. + @param chn Number of kernel channels. + + The function creates kernel from predefined functions. + */ + CV_EXPORTS_W void createKernel(int function, int radius, OutputArray kernel, const int chn); + + /** @brief Image inpainting + @param image Input image. + @param mask Mask used for unwanted area marking. + @param output Output 32-bit image. + @param radius Radius of the basic function. + @param function Function type could be one of the following: + - **LINEAR** Linear basic function. + @param algorithm Algorithm could be one of the following: + - **ONE_STEP** One step algorithm. + - **MULTI_STEP** Algorithm automaticaly increasing radius of the basic function. + - **ITERATIVE** Iterative algorithm running in more steps using partial computations. + + This function provides inpainting technique based on the fuzzy mathematic. + + @note + The algorithms are described in paper @cite Perf:rec. + */ + CV_EXPORTS_W void inpaint(InputArray image, InputArray mask, OutputArray output, int radius, int function, int algorithm); + + /** @brief Image filtering + @param image Input image. + @param kernel Final 32-bit kernel. + @param output Output 32-bit image. + + Filtering of the input image by means of F-transform. + */ + CV_EXPORTS_W void filter(InputArray image, InputArray kernel, OutputArray output); + + //! @} +} +} + +#endif // __OPENCV_FUZZY_IMAGE_H__ diff --git a/thirdparty1/linux/include/opencv2/fuzzy/types.hpp b/thirdparty1/linux/include/opencv2/fuzzy/types.hpp new file mode 100644 index 0000000..ec831e6 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/fuzzy/types.hpp @@ -0,0 +1,70 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2015, University of Ostrava, Institute for Research and Applications of Fuzzy Modeling, +// Pavel Vlasanek, all rights reserved. Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef __OPENCV_FUZZY_TYPES_H__ +#define __OPENCV_FUZZY_TYPES_H__ + +namespace cv +{ + +namespace ft +{ + //! @addtogroup fuzzy + //! @{ + + enum + { + LINEAR = 1, + SINUS = 2 + }; + + enum + { + ONE_STEP = 1, + MULTI_STEP = 2, + ITERATIVE = 3 + }; + + //! @} +} +} + +#endif // __OPENCV_FUZZY_TYPES_H__ diff --git a/thirdparty1/linux/include/opencv2/hdf.hpp b/thirdparty1/linux/include/opencv2/hdf.hpp new file mode 100644 index 0000000..4ca6d11 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/hdf.hpp @@ -0,0 +1,54 @@ +/********************************************************************* + * Software License Agreement (BSD License) + * + * Copyright (c) 2015 + * Balint Cristian + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following + * disclaimer in the documentation and/or other materials provided + * with the distribution. + * * Neither the name of the copyright holders nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS + * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE + * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, + * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN + * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + *********************************************************************/ + +#ifndef __OPENCV_HDF_HPP__ +#define __OPENCV_HDF_HPP__ + +#include "opencv2/hdf/hdf5.hpp" + +/** @defgroup hdf Hierarchical Data Format I/O routines + +This module provides storage routines for Hierarchical Data Format objects. + + @{ + @defgroup hdf5 Hierarchical Data Format version 5 + +Hierarchical Data Format version 5 +-------------------------------------------------------- + + + @} +*/ + +#endif diff --git a/thirdparty1/linux/include/opencv2/hdf/hdf5.hpp b/thirdparty1/linux/include/opencv2/hdf/hdf5.hpp new file mode 100644 index 0000000..2c6deaa --- /dev/null +++ b/thirdparty1/linux/include/opencv2/hdf/hdf5.hpp @@ -0,0 +1,707 @@ +/********************************************************************* + * Software License Agreement (BSD License) + * + * Copyright (c) 2015 + * Balint Cristian + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following + * disclaimer in the documentation and/or other materials provided + * with the distribution. + * * Neither the name of the copyright holders nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS + * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE + * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, + * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN + * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + *********************************************************************/ + +#ifndef __OPENCV_HDF5_HPP__ +#define __OPENCV_HDF5_HPP__ + +#include + + +namespace cv +{ +namespace hdf +{ +using namespace std; + +//! @addtogroup hdf5 +//! @{ + + +/** @brief Hierarchical Data Format version 5 interface. + +Notice that module is compiled only when hdf5 is correctly installed. + + */ +class CV_EXPORTS_W HDF5 +{ +public: + + CV_WRAP enum + { + H5_UNLIMITED = -1, H5_NONE = -1, H5_GETDIMS = 100, H5_GETMAXDIMS = 101, H5_GETCHUNKDIMS = 102, + }; + + virtual ~HDF5() {} + + /** @brief Close and release hdf5 object. + */ + CV_WRAP virtual void close( ) = 0; + + /** @brief Create a group. + @param grlabel specify the hdf5 group label. + + Create a hdf5 group. + + @note Groups are useful for better organise multiple datasets. It is possible to create subgroups within any group. + Existence of a particular group can be checked using hlexists(). In case of subgroups label would be e.g: 'Group1/SubGroup1' + where SubGroup1 is within the root group Group1. + + - In this example Group1 will have one subgrup labeled SubGroup1: + @code{.cpp} + // open / autocreate hdf5 file + cv::Ptr h5io = cv::hdf::open( "mytest.h5" ); + // create Group1 if does not exists + if ( ! h5io->hlexists( "Group1" ) ) + h5io->grcreate( "Group1" ); + else + printf("Group1 already created, skipping\n" ); + // create SubGroup1 if does not exists + if ( ! h5io->hlexists( "Group1/SubGroup1" ) ) + h5io->grcreate( "Group1/SubGroup1" ); + else + printf("SubGroup1 already created, skipping\n" ); + // release + h5io->close(); + @endcode + + @note When a dataset is created with dscreate() or kpcreate() it can be created right within a group by specifying + full path within the label, in our example would be: 'Group1/SubGroup1/MyDataSet'. It is not thread safe. + */ + CV_WRAP virtual void grcreate( String grlabel ) = 0; + + /** @brief Check if label exists or not. + @param label specify the hdf5 dataset label. + + Returns **true** if dataset exists, and **false** if does not. + + @note Checks if dataset, group or other object type (hdf5 link) exists under the label name. It is thread safe. + */ + CV_WRAP virtual bool hlexists( String label ) const = 0; + + /* @overload */ + CV_WRAP virtual void dscreate( const int rows, const int cols, const int type, + String dslabel ) const = 0; + /* @overload */ + CV_WRAP virtual void dscreate( const int rows, const int cols, const int type, + String dslabel, const int compresslevel ) const = 0; + /* @overload */ + CV_WRAP virtual void dscreate( const int rows, const int cols, const int type, + String dslabel, const int compresslevel, const vector& dims_chunks ) const = 0; + /** @brief Create and allocate storage for two dimensional single or multi channel dataset. + @param rows declare amount of rows + @param cols declare amount of cols + @param type type to be used + @param dslabel specify the hdf5 dataset label, any existing dataset with the same label will be overwritten. + @param compresslevel specify the compression level 0-9 to be used, H5_NONE is default and means no compression. + @param dims_chunks each array member specify chunking sizes to be used for block i/o, + by default NULL means none at all. + + @note If the dataset already exists an exception will be thrown. + + - Existence of the dataset can be checked using hlexists(), see in this example: + @code{.cpp} + // open / autocreate hdf5 file + cv::Ptr h5io = cv::hdf::open( "mytest.h5" ); + // create space for 100x50 CV_64FC2 matrix + if ( ! h5io->hlexists( "hilbert" ) ) + h5io->dscreate( 100, 50, CV_64FC2, "hilbert" ); + else + printf("DS already created, skipping\n" ); + // release + h5io->close(); + @endcode + + @note Activating compression requires internal chunking. Chunking can significantly improve access + speed booth at read or write time especially for windowed access logic that shifts offset inside dataset. + If no custom chunking is specified default one will be invoked by the size of **whole** dataset + as single big chunk of data. + + - See example of level 9 compression using internal default chunking: + @code{.cpp} + // open / autocreate hdf5 file + cv::Ptr h5io = cv::hdf::open( "mytest.h5" ); + // create level 9 compressed space for CV_64FC2 matrix + if ( ! h5io->hlexists( "hilbert", 9 ) ) + h5io->dscreate( 100, 50, CV_64FC2, "hilbert", 9 ); + else + printf("DS already created, skipping\n" ); + // release + h5io->close(); + @endcode + + @note A value of H5_UNLIMITED for **rows** or **cols** or booth means **unlimited** data on the specified dimension, + thus is possible to expand anytime such dataset on row, col or booth directions. Presence of H5_UNLIMITED on any + dimension **require** to define custom chunking. No default chunking will be defined in unlimited scenario since + default size on that dimension will be zero, and will grow once dataset is written. Writing into dataset that have + H5_UNLIMITED on some of its dimension requires dsinsert() that allow growth on unlimited dimension instead of dswrite() + that allows to write only in predefined data space. + + - Example below shows no compression but unlimited dimension on cols using 100x100 internal chunking: + @code{.cpp} + // open / autocreate hdf5 file + cv::Ptr h5io = cv::hdf::open( "mytest.h5" ); + // create level 9 compressed space for CV_64FC2 matrix + int chunks[2] = { 100, 100 }; + h5io->dscreate( 100, cv::hdf::HDF5::H5_UNLIMITED, CV_64FC2, "hilbert", cv::hdf::HDF5::H5_NONE, chunks ); + // release + h5io->close(); + @endcode + + @note It is **not** thread safe, it must be called only once at dataset creation otherwise exception will occur. + Multiple datasets inside single hdf5 file is allowed. + */ + CV_WRAP virtual void dscreate( const int rows, const int cols, const int type, + String dslabel, const int compresslevel, const int* dims_chunks ) const = 0; + + /* @overload */ + CV_WRAP virtual void dscreate( const int n_dims, const int* sizes, const int type, + String dslabel ) const = 0; + /* @overload */ + CV_WRAP virtual void dscreate( const int n_dims, const int* sizes, const int type, + String dslabel, const int compresslevel ) const = 0; + /* @overload */ + CV_WRAP virtual void dscreate( const vector& sizes, const int type, + String dslabel, const int compresslevel = HDF5::H5_NONE, + const vector& dims_chunks = vector() ) const = 0; + /** @brief Create and allocate storage for n-dimensional dataset, single or mutichannel type. + @param n_dims declare number of dimensions + @param sizes array containing sizes for each dimensions + @param type type to be used + @param dslabel specify the hdf5 dataset label, any existing dataset with the same label will be overwritten. + @param compresslevel specify the compression level 0-9 to be used, H5_NONE is default and means no compression. + @param dims_chunks each array member specify chunking sizes to be used for block i/o, + by default NULL means none at all. + @note If the dataset already exists an exception will be thrown. Existence of the dataset can be checked + using hlexists(). + + - See example below that creates a 6 dimensional storage space: + @code{.cpp} + // open / autocreate hdf5 file + cv::Ptr h5io = cv::hdf::open( "mytest.h5" ); + // create space for 6 dimensional CV_64FC2 matrix + if ( ! h5io->hlexists( "nddata" ) ) + int n_dims = 5; + int dsdims[n_dims] = { 100, 100, 20, 10, 5, 5 }; + h5io->dscreate( n_dims, sizes, CV_64FC2, "nddata" ); + else + printf("DS already created, skipping\n" ); + // release + h5io->close(); + @endcode + + @note Activating compression requires internal chunking. Chunking can significantly improve access + speed booth at read or write time especially for windowed access logic that shifts offset inside dataset. + If no custom chunking is specified default one will be invoked by the size of **whole** dataset + as single big chunk of data. + + - See example of level 0 compression (shallow) using chunking against first + dimension, thus storage will consists by 100 chunks of data: + @code{.cpp} + // open / autocreate hdf5 file + cv::Ptr h5io = cv::hdf::open( "mytest.h5" ); + // create space for 6 dimensional CV_64FC2 matrix + if ( ! h5io->hlexists( "nddata" ) ) + int n_dims = 5; + int dsdims[n_dims] = { 100, 100, 20, 10, 5, 5 }; + int chunks[n_dims] = { 1, 100, 20, 10, 5, 5 }; + h5io->dscreate( n_dims, dsdims, CV_64FC2, "nddata", 0, chunks ); + else + printf("DS already created, skipping\n" ); + // release + h5io->close(); + @endcode + + @note A value of H5_UNLIMITED inside the **sizes** array means **unlimited** data on that dimension, thus is + possible to expand anytime such dataset on those unlimited directions. Presence of H5_UNLIMITED on any dimension + **require** to define custom chunking. No default chunking will be defined in unlimited scenario since default size + on that dimension will be zero, and will grow once dataset is written. Writing into dataset that have H5_UNLIMITED on + some of its dimension requires dsinsert() instead of dswrite() that allow growth on unlimited dimension instead of + dswrite() that allows to write only in predefined data space. + + - Example below shows a 3 dimensional dataset using no compression with all unlimited sizes and one unit chunking: + @code{.cpp} + // open / autocreate hdf5 file + cv::Ptr h5io = cv::hdf::open( "mytest.h5" ); + int n_dims = 3; + int chunks[n_dims] = { 1, 1, 1 }; + int dsdims[n_dims] = { cv::hdf::HDF5::H5_UNLIMITED, cv::hdf::HDF5::H5_UNLIMITED, cv::hdf::HDF5::H5_UNLIMITED }; + h5io->dscreate( n_dims, dsdims, CV_64FC2, "nddata", cv::hdf::HDF5::H5_NONE, chunks ); + // release + h5io->close(); + @endcode + */ + CV_WRAP virtual void dscreate( const int n_dims, const int* sizes, const int type, + String dslabel, const int compresslevel, const int* dims_chunks ) const = 0; + + /** @brief Fetch dataset sizes + @param dslabel specify the hdf5 dataset label to be measured. + @param dims_flag will fetch dataset dimensions on H5_GETDIMS, and dataset maximum dimensions on H5_GETMAXDIMS. + + Returns vector object containing sizes of dataset on each dimensions. + + @note Resulting vector size will match the amount of dataset dimensions. By default H5_GETDIMS will return + actual dataset dimensions. Using H5_GETMAXDIM flag will get maximum allowed dimension which normally match + actual dataset dimension but can hold H5_UNLIMITED value if dataset was prepared in **unlimited** mode on + some of its dimension. It can be useful to check existing dataset dimensions before overwrite it as whole or subset. + Trying to write with oversized source data into dataset target will thrown exception. The H5_GETCHUNKDIMS will + return the dimension of chunk if dataset was created with chunking options otherwise returned vector size + will be zero. + */ + CV_WRAP virtual vector dsgetsize( String dslabel, int dims_flag = HDF5::H5_GETDIMS ) const = 0; + + /** @brief Fetch dataset type + @param dslabel specify the hdf5 dataset label to be checked. + + Returns the stored matrix type. This is an identifier compatible with the CvMat type system, + like e.g. CV_16SC5 (16-bit signed 5-channel array), and so on. + + @note Result can be parsed with CV_MAT_CN() to obtain amount of channels and CV_MAT_DEPTH() to obtain native cvdata type. + It is thread safe. + */ + CV_WRAP virtual int dsgettype( String dslabel ) const = 0; + + /* @overload */ + CV_WRAP virtual void dswrite( InputArray Array, String dslabel ) const = 0; + /* @overload */ + CV_WRAP virtual void dswrite( InputArray Array, String dslabel, + const int* dims_offset ) const = 0; + /* @overload */ + CV_WRAP virtual void dswrite( InputArray Array, String dslabel, + const vector& dims_offset, + const vector& dims_counts = vector() ) const = 0; + /** @brief Write or overwrite a Mat object into specified dataset of hdf5 file. + @param Array specify Mat data array to be written. + @param dslabel specify the target hdf5 dataset label. + @param dims_offset each array member specify the offset location + over dataset's each dimensions from where InputArray will be (over)written into dataset. + @param dims_counts each array member specify the amount of data over dataset's + each dimensions from InputArray that will be written into dataset. + + Writes Mat object into targeted dataset. + + @note If dataset is not created and does not exist it will be created **automatically**. Only Mat is supported and + it must to be **continuous**. It is thread safe but it is recommended that writes to happen over separate non overlapping + regions. Multiple datasets can be written inside single hdf5 file. + + - Example below writes a 100x100 CV_64FC2 matrix into a dataset. No dataset precreation required. If routine + is called multiple times dataset will be just overwritten: + @code{.cpp} + // dual channel hilbert matrix + cv::Mat H(100, 100, CV_64FC2); + for(int i = 0; i < H.rows; i++) + for(int j = 0; j < H.cols; j++) + { + H.at(i,j)[0] = 1./(i+j+1); + H.at(i,j)[1] = -1./(i+j+1); + count++; + } + // open / autocreate hdf5 file + cv::Ptr h5io = cv::hdf::open( "mytest.h5" ); + // write / overwrite dataset + h5io->dswrite( H, "hilbert" ); + // release + h5io->close(); + @endcode + + - Example below writes a smaller 50x100 matrix into 100x100 compressed space optimised by two 50x100 chunks. + Matrix is written twice into first half (0->50) and second half (50->100) of data space using offset. + @code{.cpp} + // dual channel hilbert matrix + cv::Mat H(50, 100, CV_64FC2); + for(int i = 0; i < H.rows; i++) + for(int j = 0; j < H.cols; j++) + { + H.at(i,j)[0] = 1./(i+j+1); + H.at(i,j)[1] = -1./(i+j+1); + count++; + } + // open / autocreate hdf5 file + cv::Ptr h5io = cv::hdf::open( "mytest.h5" ); + // optimise dataset by two chunks + int chunks[2] = { 50, 100 }; + // create 100x100 CV_64FC2 compressed space + h5io->dscreate( 100, 100, CV_64FC2, "hilbert", 9, chunks ); + // write into first half + int offset1[2] = { 0, 0 }; + h5io->dswrite( H, "hilbert", offset1 ); + // write into second half + int offset2[2] = { 50, 0 }; + h5io->dswrite( H, "hilbert", offset2 ); + // release + h5io->close(); + @endcode + */ + CV_WRAP virtual void dswrite( InputArray Array, String dslabel, + const int* dims_offset, const int* dims_counts ) const = 0; + + /* @overload */ + CV_WRAP virtual void dsinsert( InputArray Array, String dslabel ) const = 0; + /* @overload */ + CV_WRAP virtual void dsinsert( InputArray Array, + String dslabel, const int* dims_offset ) const = 0; + /* @overload */ + CV_WRAP virtual void dsinsert( InputArray Array, + String dslabel, const vector& dims_offset, + const vector& dims_counts = vector() ) const = 0; + /** @brief Insert or overwrite a Mat object into specified dataset and autoexpand dataset size if **unlimited** property allows. + @param Array specify Mat data array to be written. + @param dslabel specify the target hdf5 dataset label. + @param dims_offset each array member specify the offset location + over dataset's each dimensions from where InputArray will be (over)written into dataset. + @param dims_counts each array member specify the amount of data over dataset's + each dimensions from InputArray that will be written into dataset. + + Writes Mat object into targeted dataset and **autoexpand** dataset dimension if allowed. + + @note Unlike dswrite(), datasets are **not** created **automatically**. Only Mat is supported and it must to be **continuous**. + If dsinsert() happen over outer regions of dataset dimensions and on that dimension of dataset is in **unlimited** mode then + dataset is expanded, otherwise exception is thrown. To create datasets with **unlimited** property on specific or more + dimensions see dscreate() and the optional H5_UNLIMITED flag at creation time. It is not thread safe over same dataset + but multiple datasets can be merged inside single hdf5 file. + + - Example below creates **unlimited** rows x 100 cols and expand rows 5 times with dsinsert() using single 100x100 CV_64FC2 + over the dataset. Final size will have 5x100 rows and 100 cols, reflecting H matrix five times over row's span. Chunks size is + 100x100 just optimized against the H matrix size having compression disabled. If routine is called multiple times dataset will be + just overwritten: + @code{.cpp} + // dual channel hilbert matrix + cv::Mat H(50, 100, CV_64FC2); + for(int i = 0; i < H.rows; i++) + for(int j = 0; j < H.cols; j++) + { + H.at(i,j)[0] = 1./(i+j+1); + H.at(i,j)[1] = -1./(i+j+1); + count++; + } + // open / autocreate hdf5 file + cv::Ptr h5io = cv::hdf::open( "mytest.h5" ); + // optimise dataset by chunks + int chunks[2] = { 100, 100 }; + // create Unlimited x 100 CV_64FC2 space + h5io->dscreate( cv::hdf::HDF5::H5_UNLIMITED, 100, CV_64FC2, "hilbert", cv::hdf::HDF5::H5_NONE, chunks ); + // write into first half + int offset[2] = { 0, 0 }; + for ( int t = 0; t < 5; t++ ) + { + offset[0] += 100 * t; + h5io->dsinsert( H, "hilbert", offset ); + } + // release + h5io->close(); + @endcode + */ + CV_WRAP virtual void dsinsert( InputArray Array, String dslabel, + const int* dims_offset, const int* dims_counts ) const = 0; + + + /* @overload */ + CV_WRAP virtual void dsread( OutputArray Array, String dslabel ) const = 0; + /* @overload */ + CV_WRAP virtual void dsread( OutputArray Array, + String dslabel, const int* dims_offset ) const = 0; + /* @overload */ + CV_WRAP virtual void dsread( OutputArray Array, String dslabel, + const vector& dims_offset, + const vector& dims_counts = vector() ) const = 0; + /** @brief Read specific dataset from hdf5 file into Mat object. + @param Array Mat container where data reads will be returned. + @param dslabel specify the source hdf5 dataset label. + @param dims_offset each array member specify the offset location over + each dimensions from where dataset starts to read into OutputArray. + @param dims_counts each array member specify the amount over dataset's each + dimensions of dataset to read into OutputArray. + + Reads out Mat object reflecting the stored dataset. + + @note If hdf5 file does not exist an exception will be thrown. Use hlexists() to check dataset presence. + It is thread safe. + + - Example below reads a dataset: + @code{.cpp} + // open hdf5 file + cv::Ptr h5io = cv::hdf::open( "mytest.h5" ); + // blank Mat container + cv::Mat H; + // read hibert dataset + h5io->read( H, "hilbert" ); + // release + h5io->close(); + @endcode + + - Example below perform read of 3x5 submatrix from second row and third element. + @code{.cpp} + // open hdf5 file + cv::Ptr h5io = cv::hdf::open( "mytest.h5" ); + // blank Mat container + cv::Mat H; + int offset[2] = { 1, 2 }; + int counts[2] = { 3, 5 }; + // read hibert dataset + h5io->read( H, "hilbert", offset, counts ); + // release + h5io->close(); + @endcode + */ + CV_WRAP virtual void dsread( OutputArray Array, String dslabel, + const int* dims_offset, const int* dims_counts ) const = 0; + + /** @brief Fetch keypoint dataset size + @param kplabel specify the hdf5 dataset label to be measured. + @param dims_flag will fetch dataset dimensions on H5_GETDIMS, and dataset maximum dimensions on H5_GETMAXDIMS. + + Returns size of keypoints dataset. + + @note Resulting size will match the amount of keypoints. By default H5_GETDIMS will return actual dataset dimension. + Using H5_GETMAXDIM flag will get maximum allowed dimension which normally match actual dataset dimension but can hold + H5_UNLIMITED value if dataset was prepared in **unlimited** mode. It can be useful to check existing dataset dimension + before overwrite it as whole or subset. Trying to write with oversized source data into dataset target will thrown + exception. The H5_GETCHUNKDIMS will return the dimension of chunk if dataset was created with chunking options otherwise + returned vector size will be zero. + */ + CV_WRAP virtual int kpgetsize( String kplabel, int dims_flag = HDF5::H5_GETDIMS ) const = 0; + + /** @brief Create and allocate special storage for cv::KeyPoint dataset. + @param size declare fixed number of KeyPoints + @param kplabel specify the hdf5 dataset label, any existing dataset with the same label will be overwritten. + @param compresslevel specify the compression level 0-9 to be used, H5_NONE is default and means no compression. + @param chunks each array member specify chunking sizes to be used for block i/o, + H5_NONE is default and means no compression. + @note If the dataset already exists an exception will be thrown. Existence of the dataset can be checked + using hlexists(). + + - See example below that creates space for 100 keypoints in the dataset: + @code{.cpp} + // open hdf5 file + cv::Ptr h5io = cv::hdf::open( "mytest.h5" ); + if ( ! h5io->hlexists( "keypoints" ) ) + h5io->kpcreate( 100, "keypoints" ); + else + printf("DS already created, skipping\n" ); + @endcode + + @note A value of H5_UNLIMITED for **size** means **unlimited** keypoints, thus is possible to expand anytime such + dataset by adding or inserting. Presence of H5_UNLIMITED **require** to define custom chunking. No default chunking + will be defined in unlimited scenario since default size on that dimension will be zero, and will grow once dataset + is written. Writing into dataset that have H5_UNLIMITED on some of its dimension requires kpinsert() that allow + growth on unlimited dimension instead of kpwrite() that allows to write only in predefined data space. + + - See example below that creates unlimited space for keypoints chunking size of 100 but no compression: + @code{.cpp} + // open hdf5 file + cv::Ptr h5io = cv::hdf::open( "mytest.h5" ); + if ( ! h5io->hlexists( "keypoints" ) ) + h5io->kpcreate( cv::hdf::HDF5::H5_UNLIMITED, "keypoints", cv::hdf::HDF5::H5_NONE, 100 ); + else + printf("DS already created, skipping\n" ); + @endcode + */ + virtual void kpcreate( const int size, String kplabel, + const int compresslevel = H5_NONE, const int chunks = H5_NONE ) const = 0; + + /** @brief Write or overwrite list of KeyPoint into specified dataset of hdf5 file. + @param keypoints specify keypoints data list to be written. + @param kplabel specify the target hdf5 dataset label. + @param offset specify the offset location on dataset from where keypoints will be (over)written into dataset. + @param counts specify the amount of keypoints that will be written into dataset. + + Writes vector object into targeted dataset. + + @note If dataset is not created and does not exist it will be created **automatically**. It is thread safe but + it is recommended that writes to happen over separate non overlapping regions. Multiple datasets can be written + inside single hdf5 file. + + - Example below writes a 100 keypoints into a dataset. No dataset precreation required. If routine is called multiple + times dataset will be just overwritten: + @code{.cpp} + // generate 100 dummy keypoints + std::vector keypoints; + for(int i = 0; i < 100; i++) + keypoints.push_back( cv::KeyPoint(i, -i, 1, -1, 0, 0, -1) ); + // open / autocreate hdf5 file + cv::Ptr h5io = cv::hdf::open( "mytest.h5" ); + // write / overwrite dataset + h5io->kpwrite( keypoints, "keypoints" ); + // release + h5io->close(); + @endcode + + - Example below uses smaller set of 50 keypoints and writes into compressed space of 100 keypoints optimised by 10 chunks. + Same keypoint set is written three times, first into first half (0->50) and at second half (50->75) then into remaining slots + (75->99) of data space using offset and count parameters to settle the window for write access.If routine is called multiple times + dataset will be just overwritten: + @code{.cpp} + // generate 50 dummy keypoints + std::vector keypoints; + for(int i = 0; i < 50; i++) + keypoints.push_back( cv::KeyPoint(i, -i, 1, -1, 0, 0, -1) ); + // open / autocreate hdf5 file + cv::Ptr h5io = cv::hdf::open( "mytest.h5" ); + // create maximum compressed space of size 100 with chunk size 10 + h5io->kpcreate( 100, "keypoints", 9, 10 ); + // write into first half + h5io->kpwrite( keypoints, "keypoints", 0 ); + // write first 25 keypoints into second half + h5io->kpwrite( keypoints, "keypoints", 50, 25 ); + // write first 25 keypoints into remained space of second half + h5io->kpwrite( keypoints, "keypoints", 75, 25 ); + // release + h5io->close(); + @endcode + */ + virtual void kpwrite( const vector keypoints, String kplabel, + const int offset = H5_NONE, const int counts = H5_NONE ) const = 0; + + /** @brief Insert or overwrite list of KeyPoint into specified dataset and autoexpand dataset size if **unlimited** property allows. + @param keypoints specify keypoints data list to be written. + @param kplabel specify the target hdf5 dataset label. + @param offset specify the offset location on dataset from where keypoints will be (over)written into dataset. + @param counts specify the amount of keypoints that will be written into dataset. + + Writes vector object into targeted dataset and **autoexpand** dataset dimension if allowed. + + @note Unlike kpwrite(), datasets are **not** created **automatically**. If dsinsert() happen over outer region of dataset + and dataset has been created in **unlimited** mode then dataset is expanded, otherwise exception is thrown. To create datasets + with **unlimited** property see kpcreate() and the optional H5_UNLIMITED flag at creation time. It is not thread safe over same + dataset but multiple datasets can be merged inside single hdf5 file. + + - Example below creates **unlimited** space for keypoints storage, and inserts a list of 10 keypoints ten times into that space. + Final dataset will have 100 keypoints. Chunks size is 10 just optimized against list of keypoints. If routine is called multiple + times dataset will be just overwritten: + @code{.cpp} + // generate 10 dummy keypoints + std::vector keypoints; + for(int i = 0; i < 10; i++) + keypoints.push_back( cv::KeyPoint(i, -i, 1, -1, 0, 0, -1) ); + // open / autocreate hdf5 file + cv::Ptr h5io = cv::hdf::open( "mytest.h5" ); + // create unlimited size space with chunk size of 10 + h5io->kpcreate( cv::hdf::HDF5::H5_UNLIMITED, "keypoints", -1, 10 ); + // insert 10 times same 10 keypoints + for(int i = 0; i < 10; i++) + h5io->kpinsert( keypoints, "keypoints", i * 10 ); + // release + h5io->close(); + @endcode + */ + virtual void kpinsert( const vector keypoints, String kplabel, + const int offset = H5_NONE, const int counts = H5_NONE ) const = 0; + + /** @brief Read specific keypoint dataset from hdf5 file into vector object. + @param keypoints vector container where data reads will be returned. + @param kplabel specify the source hdf5 dataset label. + @param offset specify the offset location over dataset from where read starts. + @param counts specify the amount of keypoints from dataset to read. + + Reads out vector object reflecting the stored dataset. + + @note If hdf5 file does not exist an exception will be thrown. Use hlexists() to check dataset presence. + It is thread safe. + + - Example below reads a dataset containing keypoints starting with second entry: + @code{.cpp} + // open hdf5 file + cv::Ptr h5io = cv::hdf::open( "mytest.h5" ); + // blank KeyPoint container + std::vector keypoints; + // read keypoints starting second one + h5io->kpread( keypoints, "keypoints", 1 ); + // release + h5io->close(); + @endcode + + - Example below perform read of 3 keypoints from second entry. + @code{.cpp} + // open hdf5 file + cv::Ptr h5io = cv::hdf::open( "mytest.h5" ); + // blank KeyPoint container + std::vector keypoints; + // read three keypoints starting second one + h5io->kpread( keypoints, "keypoints", 1, 3 ); + // release + h5io->close(); + @endcode + */ + virtual void kpread( vector& keypoints, String kplabel, + const int offset = H5_NONE, const int counts = H5_NONE ) const = 0; + +}; + + /** @brief Open or create hdf5 file + @param HDF5Filename specify the HDF5 filename. + + Returns pointer to the hdf5 object class + + @note If hdf5 file does not exist it will be created. Any operations except dscreate() functions on object + will be thread safe. Multiple datasets can be created inside single hdf5 file, and can be accessed + from same hdf5 object from multiple instances as long read or write operations are done over + non-overlapping regions of dataset. Single hdf5 file also can be opened by multiple instances, + reads and writes can be instantiated at the same time as long non-overlapping regions are involved. Object + is released using close(). + + - Example below open and then release the file. + @code{.cpp} + // open / autocreate hdf5 file + cv::Ptr h5io = cv::hdf::open( "mytest.h5" ); + // ... + // release + h5io->close(); + @endcode + + ![Visualization of 10x10 CV_64FC2 (Hilbert matrix) using HDFView tool](pics/hdfview_demo.gif) + + - Text dump (3x3 Hilbert matrix) of hdf5 dataset using **h5dump** tool: + @code{.txt} + $ h5dump test.h5 + HDF5 "test.h5" { + GROUP "/" { + DATASET "hilbert" { + DATATYPE H5T_ARRAY { [2] H5T_IEEE_F64LE } + DATASPACE SIMPLE { ( 3, 3 ) / ( 3, 3 ) } + DATA { + (0,0): [ 1, -1 ], [ 0.5, -0.5 ], [ 0.333333, -0.333333 ], + (1,0): [ 0.5, -0.5 ], [ 0.333333, -0.333333 ], [ 0.25, -0.25 ], + (2,0): [ 0.333333, -0.333333 ], [ 0.25, -0.25 ], [ 0.2, -0.2 ] + } + } + } + } + @endcode + */ + CV_EXPORTS_W Ptr open( String HDF5Filename ); + +//! @} + +} // end namespace hdf +} // end namespace cv +#endif // _OPENCV_HDF5_HPP_ diff --git a/thirdparty1/linux/include/opencv2/highgui.hpp b/thirdparty1/linux/include/opencv2/highgui.hpp new file mode 100644 index 0000000..16ef8c4 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/highgui.hpp @@ -0,0 +1,790 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_HIGHGUI_HPP +#define OPENCV_HIGHGUI_HPP + +#include "opencv2/core.hpp" +#ifdef HAVE_OPENCV_IMGCODECS +#include "opencv2/imgcodecs.hpp" +#endif +#ifdef HAVE_OPENCV_VIDEOIO +#include "opencv2/videoio.hpp" +#endif + +/** +@defgroup highgui High-level GUI + +While OpenCV was designed for use in full-scale applications and can be used within functionally +rich UI frameworks (such as Qt\*, WinForms\*, or Cocoa\*) or without any UI at all, sometimes there +it is required to try functionality quickly and visualize the results. This is what the HighGUI +module has been designed for. + +It provides easy interface to: + +- Create and manipulate windows that can display images and "remember" their content (no need to + handle repaint events from OS). +- Add trackbars to the windows, handle simple mouse events as well as keyboard commands. + +@{ + @defgroup highgui_opengl OpenGL support + @defgroup highgui_qt Qt New Functions + + ![image](pics/qtgui.png) + + This figure explains new functionality implemented with Qt\* GUI. The new GUI provides a statusbar, + a toolbar, and a control panel. The control panel can have trackbars and buttonbars attached to it. + If you cannot see the control panel, press Ctrl+P or right-click any Qt window and select **Display + properties window**. + + - To attach a trackbar, the window name parameter must be NULL. + + - To attach a buttonbar, a button must be created. If the last bar attached to the control panel + is a buttonbar, the new button is added to the right of the last button. If the last bar + attached to the control panel is a trackbar, or the control panel is empty, a new buttonbar is + created. Then, a new button is attached to it. + + See below the example used to generate the figure: + @code + int main(int argc, char *argv[]) + { + + int value = 50; + int value2 = 0; + + + namedWindow("main1",WINDOW_NORMAL); + namedWindow("main2",WINDOW_AUTOSIZE | CV_GUI_NORMAL); + createTrackbar( "track1", "main1", &value, 255, NULL); + + String nameb1 = "button1"; + String nameb2 = "button2"; + + createButton(nameb1,callbackButton,&nameb1,QT_CHECKBOX,1); + createButton(nameb2,callbackButton,NULL,QT_CHECKBOX,0); + createTrackbar( "track2", NULL, &value2, 255, NULL); + createButton("button5",callbackButton1,NULL,QT_RADIOBOX,0); + createButton("button6",callbackButton2,NULL,QT_RADIOBOX,1); + + setMouseCallback( "main2",on_mouse,NULL ); + + Mat img1 = imread("files/flower.jpg"); + VideoCapture video; + video.open("files/hockey.avi"); + + Mat img2,img3; + + while( waitKey(33) != 27 ) + { + img1.convertTo(img2,-1,1,value); + video >> img3; + + imshow("main1",img2); + imshow("main2",img3); + } + + destroyAllWindows(); + + return 0; + } + @endcode + + + @defgroup highgui_winrt WinRT support + + This figure explains new functionality implemented with WinRT GUI. The new GUI provides an Image control, + and a slider panel. Slider panel holds trackbars attached to it. + + Sliders are attached below the image control. Every new slider is added below the previous one. + + See below the example used to generate the figure: + @code + void sample_app::MainPage::ShowWindow() + { + static cv::String windowName("sample"); + cv::winrt_initContainer(this->cvContainer); + cv::namedWindow(windowName); // not required + + cv::Mat image = cv::imread("Assets/sample.jpg"); + cv::Mat converted = cv::Mat(image.rows, image.cols, CV_8UC4); + cv::cvtColor(image, converted, COLOR_BGR2BGRA); + cv::imshow(windowName, converted); // this will create window if it hasn't been created before + + int state = 42; + cv::TrackbarCallback callback = [](int pos, void* userdata) + { + if (pos == 0) { + cv::destroyWindow(windowName); + } + }; + cv::TrackbarCallback callbackTwin = [](int pos, void* userdata) + { + if (pos >= 70) { + cv::destroyAllWindows(); + } + }; + cv::createTrackbar("Sample trackbar", windowName, &state, 100, callback); + cv::createTrackbar("Twin brother", windowName, &state, 100, callbackTwin); + } + @endcode + + @defgroup highgui_c C API +@} +*/ + +///////////////////////// graphical user interface ////////////////////////// +namespace cv +{ + +//! @addtogroup highgui +//! @{ + +//! Flags for cv::namedWindow +enum WindowFlags { + WINDOW_NORMAL = 0x00000000, //!< the user can resize the window (no constraint) / also use to switch a fullscreen window to a normal size. + WINDOW_AUTOSIZE = 0x00000001, //!< the user cannot resize the window, the size is constrainted by the image displayed. + WINDOW_OPENGL = 0x00001000, //!< window with opengl support. + + WINDOW_FULLSCREEN = 1, //!< change the window to fullscreen. + WINDOW_FREERATIO = 0x00000100, //!< the image expends as much as it can (no ratio constraint). + WINDOW_KEEPRATIO = 0x00000000, //!< the ratio of the image is respected. + WINDOW_GUI_EXPANDED=0x00000000, //!< status bar and tool bar + WINDOW_GUI_NORMAL = 0x00000010, //!< old fashious way + }; + +//! Flags for cv::setWindowProperty / cv::getWindowProperty +enum WindowPropertyFlags { + WND_PROP_FULLSCREEN = 0, //!< fullscreen property (can be WINDOW_NORMAL or WINDOW_FULLSCREEN). + WND_PROP_AUTOSIZE = 1, //!< autosize property (can be WINDOW_NORMAL or WINDOW_AUTOSIZE). + WND_PROP_ASPECT_RATIO = 2, //!< window's aspect ration (can be set to WINDOW_FREERATIO or WINDOW_KEEPRATIO). + WND_PROP_OPENGL = 3, //!< opengl support. + WND_PROP_VISIBLE = 4 //!< checks whether the window exists and is visible + }; + +//! Mouse Events see cv::MouseCallback +enum MouseEventTypes { + EVENT_MOUSEMOVE = 0, //!< indicates that the mouse pointer has moved over the window. + EVENT_LBUTTONDOWN = 1, //!< indicates that the left mouse button is pressed. + EVENT_RBUTTONDOWN = 2, //!< indicates that the right mouse button is pressed. + EVENT_MBUTTONDOWN = 3, //!< indicates that the middle mouse button is pressed. + EVENT_LBUTTONUP = 4, //!< indicates that left mouse button is released. + EVENT_RBUTTONUP = 5, //!< indicates that right mouse button is released. + EVENT_MBUTTONUP = 6, //!< indicates that middle mouse button is released. + EVENT_LBUTTONDBLCLK = 7, //!< indicates that left mouse button is double clicked. + EVENT_RBUTTONDBLCLK = 8, //!< indicates that right mouse button is double clicked. + EVENT_MBUTTONDBLCLK = 9, //!< indicates that middle mouse button is double clicked. + EVENT_MOUSEWHEEL = 10,//!< positive and negative values mean forward and backward scrolling, respectively. + EVENT_MOUSEHWHEEL = 11 //!< positive and negative values mean right and left scrolling, respectively. + }; + +//! Mouse Event Flags see cv::MouseCallback +enum MouseEventFlags { + EVENT_FLAG_LBUTTON = 1, //!< indicates that the left mouse button is down. + EVENT_FLAG_RBUTTON = 2, //!< indicates that the right mouse button is down. + EVENT_FLAG_MBUTTON = 4, //!< indicates that the middle mouse button is down. + EVENT_FLAG_CTRLKEY = 8, //!< indicates that CTRL Key is pressed. + EVENT_FLAG_SHIFTKEY = 16,//!< indicates that SHIFT Key is pressed. + EVENT_FLAG_ALTKEY = 32 //!< indicates that ALT Key is pressed. + }; + +//! Qt font weight +enum QtFontWeights { + QT_FONT_LIGHT = 25, //!< Weight of 25 + QT_FONT_NORMAL = 50, //!< Weight of 50 + QT_FONT_DEMIBOLD = 63, //!< Weight of 63 + QT_FONT_BOLD = 75, //!< Weight of 75 + QT_FONT_BLACK = 87 //!< Weight of 87 + }; + +//! Qt font style +enum QtFontStyles { + QT_STYLE_NORMAL = 0, //!< Normal font. + QT_STYLE_ITALIC = 1, //!< Italic font. + QT_STYLE_OBLIQUE = 2 //!< Oblique font. + }; + +//! Qt "button" type +enum QtButtonTypes { + QT_PUSH_BUTTON = 0, //!< Push button. + QT_CHECKBOX = 1, //!< Checkbox button. + QT_RADIOBOX = 2, //!< Radiobox button. + QT_NEW_BUTTONBAR = 1024 //!< Button should create a new buttonbar + }; + +/** @brief Callback function for mouse events. see cv::setMouseCallback +@param event one of the cv::MouseEventTypes constants. +@param x The x-coordinate of the mouse event. +@param y The y-coordinate of the mouse event. +@param flags one of the cv::MouseEventFlags constants. +@param userdata The optional parameter. + */ +typedef void (*MouseCallback)(int event, int x, int y, int flags, void* userdata); + +/** @brief Callback function for Trackbar see cv::createTrackbar +@param pos current position of the specified trackbar. +@param userdata The optional parameter. + */ +typedef void (*TrackbarCallback)(int pos, void* userdata); + +/** @brief Callback function defined to be called every frame. See cv::setOpenGlDrawCallback +@param userdata The optional parameter. + */ +typedef void (*OpenGlDrawCallback)(void* userdata); + +/** @brief Callback function for a button created by cv::createButton +@param state current state of the button. It could be -1 for a push button, 0 or 1 for a check/radio box button. +@param userdata The optional parameter. + */ +typedef void (*ButtonCallback)(int state, void* userdata); + +/** @brief Creates a window. + +The function namedWindow creates a window that can be used as a placeholder for images and +trackbars. Created windows are referred to by their names. + +If a window with the same name already exists, the function does nothing. + +You can call cv::destroyWindow or cv::destroyAllWindows to close the window and de-allocate any associated +memory usage. For a simple program, you do not really have to call these functions because all the +resources and windows of the application are closed automatically by the operating system upon exit. + +@note + +Qt backend supports additional flags: + - **WINDOW_NORMAL or WINDOW_AUTOSIZE:** WINDOW_NORMAL enables you to resize the + window, whereas WINDOW_AUTOSIZE adjusts automatically the window size to fit the + displayed image (see imshow ), and you cannot change the window size manually. + - **WINDOW_FREERATIO or WINDOW_KEEPRATIO:** WINDOW_FREERATIO adjusts the image + with no respect to its ratio, whereas WINDOW_KEEPRATIO keeps the image ratio. + - **WINDOW_GUI_NORMAL or WINDOW_GUI_EXPANDED:** WINDOW_GUI_NORMAL is the old way to draw the window + without statusbar and toolbar, whereas WINDOW_GUI_EXPANDED is a new enhanced GUI. +By default, flags == WINDOW_AUTOSIZE | WINDOW_KEEPRATIO | WINDOW_GUI_EXPANDED + +@param winname Name of the window in the window caption that may be used as a window identifier. +@param flags Flags of the window. The supported flags are: (cv::WindowFlags) + */ +CV_EXPORTS_W void namedWindow(const String& winname, int flags = WINDOW_AUTOSIZE); + +/** @brief Destroys the specified window. + +The function destroyWindow destroys the window with the given name. + +@param winname Name of the window to be destroyed. + */ +CV_EXPORTS_W void destroyWindow(const String& winname); + +/** @brief Destroys all of the HighGUI windows. + +The function destroyAllWindows destroys all of the opened HighGUI windows. + */ +CV_EXPORTS_W void destroyAllWindows(); + +CV_EXPORTS_W int startWindowThread(); + +/** @brief Similar to #waitKey, but returns full key code. + +@note + +Key code is implementation specific and depends on used backend: QT/GTK/Win32/etc + +*/ +CV_EXPORTS_W int waitKeyEx(int delay = 0); + +/** @brief Waits for a pressed key. + +The function waitKey waits for a key event infinitely (when \f$\texttt{delay}\leq 0\f$ ) or for delay +milliseconds, when it is positive. Since the OS has a minimum time between switching threads, the +function will not wait exactly delay ms, it will wait at least delay ms, depending on what else is +running on your computer at that time. It returns the code of the pressed key or -1 if no key was +pressed before the specified time had elapsed. + +@note + +This function is the only method in HighGUI that can fetch and handle events, so it needs to be +called periodically for normal event processing unless HighGUI is used within an environment that +takes care of event processing. + +@note + +The function only works if there is at least one HighGUI window created and the window is active. +If there are several HighGUI windows, any of them can be active. + +@param delay Delay in milliseconds. 0 is the special value that means "forever". + */ +CV_EXPORTS_W int waitKey(int delay = 0); + +/** @brief Displays an image in the specified window. + +The function imshow displays an image in the specified window. If the window was created with the +cv::WINDOW_AUTOSIZE flag, the image is shown with its original size, however it is still limited by the screen resolution. +Otherwise, the image is scaled to fit the window. The function may scale the image, depending on its depth: + +- If the image is 8-bit unsigned, it is displayed as is. +- If the image is 16-bit unsigned or 32-bit integer, the pixels are divided by 256. That is, the + value range [0,255\*256] is mapped to [0,255]. +- If the image is 32-bit floating-point, the pixel values are multiplied by 255. That is, the + value range [0,1] is mapped to [0,255]. + +If window was created with OpenGL support, cv::imshow also support ogl::Buffer , ogl::Texture2D and +cuda::GpuMat as input. + +If the window was not created before this function, it is assumed creating a window with cv::WINDOW_AUTOSIZE. + +If you need to show an image that is bigger than the screen resolution, you will need to call namedWindow("", WINDOW_NORMAL) before the imshow. + +@note This function should be followed by cv::waitKey function which displays the image for specified +milliseconds. Otherwise, it won't display the image. For example, **waitKey(0)** will display the window +infinitely until any keypress (it is suitable for image display). **waitKey(25)** will display a frame +for 25 ms, after which display will be automatically closed. (If you put it in a loop to read +videos, it will display the video frame-by-frame) + +@note + +[__Windows Backend Only__] Pressing Ctrl+C will copy the image to the clipboard. + +[__Windows Backend Only__] Pressing Ctrl+S will show a dialog to save the image. + +@param winname Name of the window. +@param mat Image to be shown. + */ +CV_EXPORTS_W void imshow(const String& winname, InputArray mat); + +/** @brief Resizes window to the specified size + +@note + +- The specified window size is for the image area. Toolbars are not counted. +- Only windows created without cv::WINDOW_AUTOSIZE flag can be resized. + +@param winname Window name. +@param width The new window width. +@param height The new window height. + */ +CV_EXPORTS_W void resizeWindow(const String& winname, int width, int height); + +/** @brief Moves window to the specified position + +@param winname Name of the window. +@param x The new x-coordinate of the window. +@param y The new y-coordinate of the window. + */ +CV_EXPORTS_W void moveWindow(const String& winname, int x, int y); + +/** @brief Changes parameters of a window dynamically. + +The function setWindowProperty enables changing properties of a window. + +@param winname Name of the window. +@param prop_id Window property to edit. The supported operation flags are: (cv::WindowPropertyFlags) +@param prop_value New value of the window property. The supported flags are: (cv::WindowFlags) + */ +CV_EXPORTS_W void setWindowProperty(const String& winname, int prop_id, double prop_value); + +/** @brief Updates window title +@param winname Name of the window. +@param title New title. +*/ +CV_EXPORTS_W void setWindowTitle(const String& winname, const String& title); + +/** @brief Provides parameters of a window. + +The function getWindowProperty returns properties of a window. + +@param winname Name of the window. +@param prop_id Window property to retrieve. The following operation flags are available: (cv::WindowPropertyFlags) + +@sa setWindowProperty + */ +CV_EXPORTS_W double getWindowProperty(const String& winname, int prop_id); + +/** @brief Sets mouse handler for the specified window + +@param winname Name of the window. +@param onMouse Mouse callback. See OpenCV samples, such as +, on how to specify and +use the callback. +@param userdata The optional parameter passed to the callback. + */ +CV_EXPORTS void setMouseCallback(const String& winname, MouseCallback onMouse, void* userdata = 0); + +/** @brief Gets the mouse-wheel motion delta, when handling mouse-wheel events cv::EVENT_MOUSEWHEEL and +cv::EVENT_MOUSEHWHEEL. + +For regular mice with a scroll-wheel, delta will be a multiple of 120. The value 120 corresponds to +a one notch rotation of the wheel or the threshold for action to be taken and one such action should +occur for each delta. Some high-precision mice with higher-resolution freely-rotating wheels may +generate smaller values. + +For cv::EVENT_MOUSEWHEEL positive and negative values mean forward and backward scrolling, +respectively. For cv::EVENT_MOUSEHWHEEL, where available, positive and negative values mean right and +left scrolling, respectively. + +With the C API, the macro CV_GET_WHEEL_DELTA(flags) can be used alternatively. + +@note + +Mouse-wheel events are currently supported only on Windows. + +@param flags The mouse callback flags parameter. + */ +CV_EXPORTS int getMouseWheelDelta(int flags); + +/** @brief Creates a trackbar and attaches it to the specified window. + +The function createTrackbar creates a trackbar (a slider or range control) with the specified name +and range, assigns a variable value to be a position synchronized with the trackbar and specifies +the callback function onChange to be called on the trackbar position change. The created trackbar is +displayed in the specified window winname. + +@note + +[__Qt Backend Only__] winname can be empty (or NULL) if the trackbar should be attached to the +control panel. + +Clicking the label of each trackbar enables editing the trackbar values manually. + +@param trackbarname Name of the created trackbar. +@param winname Name of the window that will be used as a parent of the created trackbar. +@param value Optional pointer to an integer variable whose value reflects the position of the +slider. Upon creation, the slider position is defined by this variable. +@param count Maximal position of the slider. The minimal position is always 0. +@param onChange Pointer to the function to be called every time the slider changes position. This +function should be prototyped as void Foo(int,void\*); , where the first parameter is the trackbar +position and the second parameter is the user data (see the next parameter). If the callback is +the NULL pointer, no callbacks are called, but only value is updated. +@param userdata User data that is passed as is to the callback. It can be used to handle trackbar +events without using global variables. + */ +CV_EXPORTS int createTrackbar(const String& trackbarname, const String& winname, + int* value, int count, + TrackbarCallback onChange = 0, + void* userdata = 0); + +/** @brief Returns the trackbar position. + +The function returns the current position of the specified trackbar. + +@note + +[__Qt Backend Only__] winname can be empty (or NULL) if the trackbar is attached to the control +panel. + +@param trackbarname Name of the trackbar. +@param winname Name of the window that is the parent of the trackbar. + */ +CV_EXPORTS_W int getTrackbarPos(const String& trackbarname, const String& winname); + +/** @brief Sets the trackbar position. + +The function sets the position of the specified trackbar in the specified window. + +@note + +[__Qt Backend Only__] winname can be empty (or NULL) if the trackbar is attached to the control +panel. + +@param trackbarname Name of the trackbar. +@param winname Name of the window that is the parent of trackbar. +@param pos New position. + */ +CV_EXPORTS_W void setTrackbarPos(const String& trackbarname, const String& winname, int pos); + +/** @brief Sets the trackbar maximum position. + +The function sets the maximum position of the specified trackbar in the specified window. + +@note + +[__Qt Backend Only__] winname can be empty (or NULL) if the trackbar is attached to the control +panel. + +@param trackbarname Name of the trackbar. +@param winname Name of the window that is the parent of trackbar. +@param maxval New maximum position. + */ +CV_EXPORTS_W void setTrackbarMax(const String& trackbarname, const String& winname, int maxval); + +/** @brief Sets the trackbar minimum position. + +The function sets the minimum position of the specified trackbar in the specified window. + +@note + +[__Qt Backend Only__] winname can be empty (or NULL) if the trackbar is attached to the control +panel. + +@param trackbarname Name of the trackbar. +@param winname Name of the window that is the parent of trackbar. +@param minval New maximum position. + */ +CV_EXPORTS_W void setTrackbarMin(const String& trackbarname, const String& winname, int minval); + +//! @addtogroup highgui_opengl OpenGL support +//! @{ + +/** @brief Displays OpenGL 2D texture in the specified window. + +@param winname Name of the window. +@param tex OpenGL 2D texture data. + */ +CV_EXPORTS void imshow(const String& winname, const ogl::Texture2D& tex); + +/** @brief Sets a callback function to be called to draw on top of displayed image. + +The function setOpenGlDrawCallback can be used to draw 3D data on the window. See the example of +callback function below: +@code + void on_opengl(void* param) + { + glLoadIdentity(); + + glTranslated(0.0, 0.0, -1.0); + + glRotatef( 55, 1, 0, 0 ); + glRotatef( 45, 0, 1, 0 ); + glRotatef( 0, 0, 0, 1 ); + + static const int coords[6][4][3] = { + { { +1, -1, -1 }, { -1, -1, -1 }, { -1, +1, -1 }, { +1, +1, -1 } }, + { { +1, +1, -1 }, { -1, +1, -1 }, { -1, +1, +1 }, { +1, +1, +1 } }, + { { +1, -1, +1 }, { +1, -1, -1 }, { +1, +1, -1 }, { +1, +1, +1 } }, + { { -1, -1, -1 }, { -1, -1, +1 }, { -1, +1, +1 }, { -1, +1, -1 } }, + { { +1, -1, +1 }, { -1, -1, +1 }, { -1, -1, -1 }, { +1, -1, -1 } }, + { { -1, -1, +1 }, { +1, -1, +1 }, { +1, +1, +1 }, { -1, +1, +1 } } + }; + + for (int i = 0; i < 6; ++i) { + glColor3ub( i*20, 100+i*10, i*42 ); + glBegin(GL_QUADS); + for (int j = 0; j < 4; ++j) { + glVertex3d(0.2 * coords[i][j][0], 0.2 * coords[i][j][1], 0.2 * coords[i][j][2]); + } + glEnd(); + } + } +@endcode + +@param winname Name of the window. +@param onOpenGlDraw Pointer to the function to be called every frame. This function should be +prototyped as void Foo(void\*) . +@param userdata Pointer passed to the callback function.(__Optional__) + */ +CV_EXPORTS void setOpenGlDrawCallback(const String& winname, OpenGlDrawCallback onOpenGlDraw, void* userdata = 0); + +/** @brief Sets the specified window as current OpenGL context. + +@param winname Name of the window. + */ +CV_EXPORTS void setOpenGlContext(const String& winname); + +/** @brief Force window to redraw its context and call draw callback ( See cv::setOpenGlDrawCallback ). + +@param winname Name of the window. + */ +CV_EXPORTS void updateWindow(const String& winname); + +//! @} highgui_opengl + +//! @addtogroup highgui_qt +//! @{ + +/** @brief QtFont available only for Qt. See cv::fontQt + */ +struct QtFont +{ + const char* nameFont; //!< Name of the font + Scalar color; //!< Color of the font. Scalar(blue_component, green_component, red_component[, alpha_component]) + int font_face; //!< See cv::QtFontStyles + const int* ascii; //!< font data and metrics + const int* greek; + const int* cyrillic; + float hscale, vscale; + float shear; //!< slope coefficient: 0 - normal, >0 - italic + int thickness; //!< See cv::QtFontWeights + float dx; //!< horizontal interval between letters + int line_type; //!< PointSize +}; + +/** @brief Creates the font to draw a text on an image. + +The function fontQt creates a cv::QtFont object. This cv::QtFont is not compatible with putText . + +A basic usage of this function is the following: : +@code + QtFont font = fontQt("Times"); + addText( img1, "Hello World !", Point(50,50), font); +@endcode + +@param nameFont Name of the font. The name should match the name of a system font (such as +*Times*). If the font is not found, a default one is used. +@param pointSize Size of the font. If not specified, equal zero or negative, the point size of the +font is set to a system-dependent default value. Generally, this is 12 points. +@param color Color of the font in BGRA where A = 255 is fully transparent. Use the macro CV_RGB +for simplicity. +@param weight Font weight. Available operation flags are : cv::QtFontWeights You can also specify a positive integer for better control. +@param style Font style. Available operation flags are : cv::QtFontStyles +@param spacing Spacing between characters. It can be negative or positive. + */ +CV_EXPORTS QtFont fontQt(const String& nameFont, int pointSize = -1, + Scalar color = Scalar::all(0), int weight = QT_FONT_NORMAL, + int style = QT_STYLE_NORMAL, int spacing = 0); + +/** @brief Draws a text on the image. + +The function addText draws *text* on the image *img* using a specific font *font* (see example cv::fontQt +) + +@param img 8-bit 3-channel image where the text should be drawn. +@param text Text to write on an image. +@param org Point(x,y) where the text should start on an image. +@param font Font to use to draw a text. + */ +CV_EXPORTS void addText( const Mat& img, const String& text, Point org, const QtFont& font); + +/** @brief Draws a text on the image. + +@param img 8-bit 3-channel image where the text should be drawn. +@param text Text to write on an image. +@param org Point(x,y) where the text should start on an image. +@param nameFont Name of the font. The name should match the name of a system font (such as +*Times*). If the font is not found, a default one is used. +@param pointSize Size of the font. If not specified, equal zero or negative, the point size of the +font is set to a system-dependent default value. Generally, this is 12 points. +@param color Color of the font in BGRA where A = 255 is fully transparent. +@param weight Font weight. Available operation flags are : cv::QtFontWeights You can also specify a positive integer for better control. +@param style Font style. Available operation flags are : cv::QtFontStyles +@param spacing Spacing between characters. It can be negative or positive. + */ +CV_EXPORTS_W void addText(const Mat& img, const String& text, Point org, const String& nameFont, int pointSize = -1, Scalar color = Scalar::all(0), + int weight = QT_FONT_NORMAL, int style = QT_STYLE_NORMAL, int spacing = 0); + +/** @brief Displays a text on a window image as an overlay for a specified duration. + +The function displayOverlay displays useful information/tips on top of the window for a certain +amount of time *delayms*. The function does not modify the image, displayed in the window, that is, +after the specified delay the original content of the window is restored. + +@param winname Name of the window. +@param text Overlay text to write on a window image. +@param delayms The period (in milliseconds), during which the overlay text is displayed. If this +function is called before the previous overlay text timed out, the timer is restarted and the text +is updated. If this value is zero, the text never disappears. + */ +CV_EXPORTS_W void displayOverlay(const String& winname, const String& text, int delayms = 0); + +/** @brief Displays a text on the window statusbar during the specified period of time. + +The function displayStatusBar displays useful information/tips on top of the window for a certain +amount of time *delayms* . This information is displayed on the window statusbar (the window must be +created with the CV_GUI_EXPANDED flags). + +@param winname Name of the window. +@param text Text to write on the window statusbar. +@param delayms Duration (in milliseconds) to display the text. If this function is called before +the previous text timed out, the timer is restarted and the text is updated. If this value is +zero, the text never disappears. + */ +CV_EXPORTS_W void displayStatusBar(const String& winname, const String& text, int delayms = 0); + +/** @brief Saves parameters of the specified window. + +The function saveWindowParameters saves size, location, flags, trackbars value, zoom and panning +location of the window windowName. + +@param windowName Name of the window. + */ +CV_EXPORTS void saveWindowParameters(const String& windowName); + +/** @brief Loads parameters of the specified window. + +The function loadWindowParameters loads size, location, flags, trackbars value, zoom and panning +location of the window windowName. + +@param windowName Name of the window. + */ +CV_EXPORTS void loadWindowParameters(const String& windowName); + +CV_EXPORTS int startLoop(int (*pt2Func)(int argc, char *argv[]), int argc, char* argv[]); + +CV_EXPORTS void stopLoop(); + +/** @brief Attaches a button to the control panel. + +The function createButton attaches a button to the control panel. Each button is added to a +buttonbar to the right of the last button. A new buttonbar is created if nothing was attached to the +control panel before, or if the last element attached to the control panel was a trackbar or if the +QT_NEW_BUTTONBAR flag is added to the type. + +See below various examples of the cv::createButton function call: : +@code + createButton(NULL,callbackButton);//create a push button "button 0", that will call callbackButton. + createButton("button2",callbackButton,NULL,QT_CHECKBOX,0); + createButton("button3",callbackButton,&value); + createButton("button5",callbackButton1,NULL,QT_RADIOBOX); + createButton("button6",callbackButton2,NULL,QT_PUSH_BUTTON,1); + createButton("button6",callbackButton2,NULL,QT_PUSH_BUTTON|QT_NEW_BUTTONBAR);// create a push button in a new row +@endcode + +@param bar_name Name of the button. +@param on_change Pointer to the function to be called every time the button changes its state. +This function should be prototyped as void Foo(int state,\*void); . *state* is the current state +of the button. It could be -1 for a push button, 0 or 1 for a check/radio box button. +@param userdata Pointer passed to the callback function. +@param type Optional type of the button. Available types are: (cv::QtButtonTypes) +@param initial_button_state Default state of the button. Use for checkbox and radiobox. Its +value could be 0 or 1. (__Optional__) +*/ +CV_EXPORTS int createButton( const String& bar_name, ButtonCallback on_change, + void* userdata = 0, int type = QT_PUSH_BUTTON, + bool initial_button_state = false); + +//! @} highgui_qt + +//! @} highgui + +} // cv + +#ifndef DISABLE_OPENCV_24_COMPATIBILITY +#include "opencv2/highgui/highgui_c.h" +#endif + +#endif diff --git a/thirdparty1/linux/include/opencv2/highgui/highgui.hpp b/thirdparty1/linux/include/opencv2/highgui/highgui.hpp new file mode 100644 index 0000000..160c9cf --- /dev/null +++ b/thirdparty1/linux/include/opencv2/highgui/highgui.hpp @@ -0,0 +1,48 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifdef __OPENCV_BUILD +#error this is a compatibility header which should not be used inside the OpenCV library +#endif + +#include "opencv2/highgui.hpp" diff --git a/thirdparty1/linux/include/opencv2/highgui/highgui_c.h b/thirdparty1/linux/include/opencv2/highgui/highgui_c.h new file mode 100644 index 0000000..71c08ca --- /dev/null +++ b/thirdparty1/linux/include/opencv2/highgui/highgui_c.h @@ -0,0 +1,257 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// Intel License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000, Intel Corporation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of Intel Corporation may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_HIGHGUI_H +#define OPENCV_HIGHGUI_H + +#include "opencv2/core/core_c.h" +#include "opencv2/imgproc/imgproc_c.h" +#ifdef HAVE_OPENCV_IMGCODECS +#include "opencv2/imgcodecs/imgcodecs_c.h" +#endif +#ifdef HAVE_OPENCV_VIDEOIO +#include "opencv2/videoio/videoio_c.h" +#endif + +#ifdef __cplusplus +extern "C" { +#endif /* __cplusplus */ + +/** @addtogroup highgui_c + @{ + */ + +/****************************************************************************************\ +* Basic GUI functions * +\****************************************************************************************/ +//YV +//-----------New for Qt +/* For font */ +enum { CV_FONT_LIGHT = 25,//QFont::Light, + CV_FONT_NORMAL = 50,//QFont::Normal, + CV_FONT_DEMIBOLD = 63,//QFont::DemiBold, + CV_FONT_BOLD = 75,//QFont::Bold, + CV_FONT_BLACK = 87 //QFont::Black +}; + +enum { CV_STYLE_NORMAL = 0,//QFont::StyleNormal, + CV_STYLE_ITALIC = 1,//QFont::StyleItalic, + CV_STYLE_OBLIQUE = 2 //QFont::StyleOblique +}; +/* ---------*/ + +//for color cvScalar(blue_component, green_component, red_component[, alpha_component]) +//and alpha= 0 <-> 0xFF (not transparent <-> transparent) +CVAPI(CvFont) cvFontQt(const char* nameFont, int pointSize CV_DEFAULT(-1), CvScalar color CV_DEFAULT(cvScalarAll(0)), int weight CV_DEFAULT(CV_FONT_NORMAL), int style CV_DEFAULT(CV_STYLE_NORMAL), int spacing CV_DEFAULT(0)); + +CVAPI(void) cvAddText(const CvArr* img, const char* text, CvPoint org, CvFont *arg2); + +CVAPI(void) cvDisplayOverlay(const char* name, const char* text, int delayms CV_DEFAULT(0)); +CVAPI(void) cvDisplayStatusBar(const char* name, const char* text, int delayms CV_DEFAULT(0)); + +CVAPI(void) cvSaveWindowParameters(const char* name); +CVAPI(void) cvLoadWindowParameters(const char* name); +CVAPI(int) cvStartLoop(int (*pt2Func)(int argc, char *argv[]), int argc, char* argv[]); +CVAPI(void) cvStopLoop( void ); + +typedef void (CV_CDECL *CvButtonCallback)(int state, void* userdata); +enum {CV_PUSH_BUTTON = 0, CV_CHECKBOX = 1, CV_RADIOBOX = 2}; +CVAPI(int) cvCreateButton( const char* button_name CV_DEFAULT(NULL),CvButtonCallback on_change CV_DEFAULT(NULL), void* userdata CV_DEFAULT(NULL) , int button_type CV_DEFAULT(CV_PUSH_BUTTON), int initial_button_state CV_DEFAULT(0)); +//---------------------- + + +/* this function is used to set some external parameters in case of X Window */ +CVAPI(int) cvInitSystem( int argc, char** argv ); + +CVAPI(int) cvStartWindowThread( void ); + +// --------- YV --------- +enum +{ + //These 3 flags are used by cvSet/GetWindowProperty + CV_WND_PROP_FULLSCREEN = 0, //to change/get window's fullscreen property + CV_WND_PROP_AUTOSIZE = 1, //to change/get window's autosize property + CV_WND_PROP_ASPECTRATIO= 2, //to change/get window's aspectratio property + CV_WND_PROP_OPENGL = 3, //to change/get window's opengl support + CV_WND_PROP_VISIBLE = 4, + + //These 2 flags are used by cvNamedWindow and cvSet/GetWindowProperty + CV_WINDOW_NORMAL = 0x00000000, //the user can resize the window (no constraint) / also use to switch a fullscreen window to a normal size + CV_WINDOW_AUTOSIZE = 0x00000001, //the user cannot resize the window, the size is constrainted by the image displayed + CV_WINDOW_OPENGL = 0x00001000, //window with opengl support + + //Those flags are only for Qt + CV_GUI_EXPANDED = 0x00000000, //status bar and tool bar + CV_GUI_NORMAL = 0x00000010, //old fashious way + + //These 3 flags are used by cvNamedWindow and cvSet/GetWindowProperty + CV_WINDOW_FULLSCREEN = 1,//change the window to fullscreen + CV_WINDOW_FREERATIO = 0x00000100,//the image expends as much as it can (no ratio constraint) + CV_WINDOW_KEEPRATIO = 0x00000000//the ration image is respected. +}; + +/* create window */ +CVAPI(int) cvNamedWindow( const char* name, int flags CV_DEFAULT(CV_WINDOW_AUTOSIZE) ); + +/* Set and Get Property of the window */ +CVAPI(void) cvSetWindowProperty(const char* name, int prop_id, double prop_value); +CVAPI(double) cvGetWindowProperty(const char* name, int prop_id); + +/* display image within window (highgui windows remember their content) */ +CVAPI(void) cvShowImage( const char* name, const CvArr* image ); + +/* resize/move window */ +CVAPI(void) cvResizeWindow( const char* name, int width, int height ); +CVAPI(void) cvMoveWindow( const char* name, int x, int y ); + + +/* destroy window and all the trackers associated with it */ +CVAPI(void) cvDestroyWindow( const char* name ); + +CVAPI(void) cvDestroyAllWindows(void); + +/* get native window handle (HWND in case of Win32 and Widget in case of X Window) */ +CVAPI(void*) cvGetWindowHandle( const char* name ); + +/* get name of highgui window given its native handle */ +CVAPI(const char*) cvGetWindowName( void* window_handle ); + + +typedef void (CV_CDECL *CvTrackbarCallback)(int pos); + +/* create trackbar and display it on top of given window, set callback */ +CVAPI(int) cvCreateTrackbar( const char* trackbar_name, const char* window_name, + int* value, int count, CvTrackbarCallback on_change CV_DEFAULT(NULL)); + +typedef void (CV_CDECL *CvTrackbarCallback2)(int pos, void* userdata); + +CVAPI(int) cvCreateTrackbar2( const char* trackbar_name, const char* window_name, + int* value, int count, CvTrackbarCallback2 on_change, + void* userdata CV_DEFAULT(0)); + +/* retrieve or set trackbar position */ +CVAPI(int) cvGetTrackbarPos( const char* trackbar_name, const char* window_name ); +CVAPI(void) cvSetTrackbarPos( const char* trackbar_name, const char* window_name, int pos ); +CVAPI(void) cvSetTrackbarMax(const char* trackbar_name, const char* window_name, int maxval); +CVAPI(void) cvSetTrackbarMin(const char* trackbar_name, const char* window_name, int minval); + +enum +{ + CV_EVENT_MOUSEMOVE =0, + CV_EVENT_LBUTTONDOWN =1, + CV_EVENT_RBUTTONDOWN =2, + CV_EVENT_MBUTTONDOWN =3, + CV_EVENT_LBUTTONUP =4, + CV_EVENT_RBUTTONUP =5, + CV_EVENT_MBUTTONUP =6, + CV_EVENT_LBUTTONDBLCLK =7, + CV_EVENT_RBUTTONDBLCLK =8, + CV_EVENT_MBUTTONDBLCLK =9, + CV_EVENT_MOUSEWHEEL =10, + CV_EVENT_MOUSEHWHEEL =11 +}; + +enum +{ + CV_EVENT_FLAG_LBUTTON =1, + CV_EVENT_FLAG_RBUTTON =2, + CV_EVENT_FLAG_MBUTTON =4, + CV_EVENT_FLAG_CTRLKEY =8, + CV_EVENT_FLAG_SHIFTKEY =16, + CV_EVENT_FLAG_ALTKEY =32 +}; + + +#define CV_GET_WHEEL_DELTA(flags) ((short)((flags >> 16) & 0xffff)) // upper 16 bits + +typedef void (CV_CDECL *CvMouseCallback )(int event, int x, int y, int flags, void* param); + +/* assign callback for mouse events */ +CVAPI(void) cvSetMouseCallback( const char* window_name, CvMouseCallback on_mouse, + void* param CV_DEFAULT(NULL)); + +/* wait for key event infinitely (delay<=0) or for "delay" milliseconds */ +CVAPI(int) cvWaitKey(int delay CV_DEFAULT(0)); + +// OpenGL support + +typedef void (CV_CDECL *CvOpenGlDrawCallback)(void* userdata); +CVAPI(void) cvSetOpenGlDrawCallback(const char* window_name, CvOpenGlDrawCallback callback, void* userdata CV_DEFAULT(NULL)); + +CVAPI(void) cvSetOpenGlContext(const char* window_name); +CVAPI(void) cvUpdateWindow(const char* window_name); + + +/****************************************************************************************\ + +* Obsolete functions/synonyms * +\****************************************************************************************/ + +#define cvAddSearchPath(path) +#define cvvInitSystem cvInitSystem +#define cvvNamedWindow cvNamedWindow +#define cvvShowImage cvShowImage +#define cvvResizeWindow cvResizeWindow +#define cvvDestroyWindow cvDestroyWindow +#define cvvCreateTrackbar cvCreateTrackbar +#define cvvAddSearchPath cvAddSearchPath +#define cvvWaitKey(name) cvWaitKey(0) +#define cvvWaitKeyEx(name,delay) cvWaitKey(delay) +#define HG_AUTOSIZE CV_WINDOW_AUTOSIZE +#define set_preprocess_func cvSetPreprocessFuncWin32 +#define set_postprocess_func cvSetPostprocessFuncWin32 + +#if defined WIN32 || defined _WIN32 + +CVAPI(void) cvSetPreprocessFuncWin32_(const void* callback); +CVAPI(void) cvSetPostprocessFuncWin32_(const void* callback); +#define cvSetPreprocessFuncWin32(callback) cvSetPreprocessFuncWin32_((const void*)(callback)) +#define cvSetPostprocessFuncWin32(callback) cvSetPostprocessFuncWin32_((const void*)(callback)) + +#endif + +/** @} highgui_c */ + +#ifdef __cplusplus +} +#endif + +#endif diff --git a/thirdparty1/linux/include/opencv2/imgcodecs.hpp b/thirdparty1/linux/include/opencv2/imgcodecs.hpp new file mode 100644 index 0000000..6359de6 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/imgcodecs.hpp @@ -0,0 +1,281 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_IMGCODECS_HPP +#define OPENCV_IMGCODECS_HPP + +#include "opencv2/core.hpp" + +/** + @defgroup imgcodecs Image file reading and writing + @{ + @defgroup imgcodecs_c C API + @defgroup imgcodecs_ios iOS glue + @} +*/ + +//////////////////////////////// image codec //////////////////////////////// +namespace cv +{ + +//! @addtogroup imgcodecs +//! @{ + +//! Imread flags +enum ImreadModes { + IMREAD_UNCHANGED = -1, //!< If set, return the loaded image as is (with alpha channel, otherwise it gets cropped). + IMREAD_GRAYSCALE = 0, //!< If set, always convert image to the single channel grayscale image. + IMREAD_COLOR = 1, //!< If set, always convert image to the 3 channel BGR color image. + IMREAD_ANYDEPTH = 2, //!< If set, return 16-bit/32-bit image when the input has the corresponding depth, otherwise convert it to 8-bit. + IMREAD_ANYCOLOR = 4, //!< If set, the image is read in any possible color format. + IMREAD_LOAD_GDAL = 8, //!< If set, use the gdal driver for loading the image. + IMREAD_REDUCED_GRAYSCALE_2 = 16, //!< If set, always convert image to the single channel grayscale image and the image size reduced 1/2. + IMREAD_REDUCED_COLOR_2 = 17, //!< If set, always convert image to the 3 channel BGR color image and the image size reduced 1/2. + IMREAD_REDUCED_GRAYSCALE_4 = 32, //!< If set, always convert image to the single channel grayscale image and the image size reduced 1/4. + IMREAD_REDUCED_COLOR_4 = 33, //!< If set, always convert image to the 3 channel BGR color image and the image size reduced 1/4. + IMREAD_REDUCED_GRAYSCALE_8 = 64, //!< If set, always convert image to the single channel grayscale image and the image size reduced 1/8. + IMREAD_REDUCED_COLOR_8 = 65, //!< If set, always convert image to the 3 channel BGR color image and the image size reduced 1/8. + IMREAD_IGNORE_ORIENTATION = 128 //!< If set, do not rotate the image according to EXIF's orientation flag. + }; + +//! Imwrite flags +enum ImwriteFlags { + IMWRITE_JPEG_QUALITY = 1, //!< For JPEG, it can be a quality from 0 to 100 (the higher is the better). Default value is 95. + IMWRITE_JPEG_PROGRESSIVE = 2, //!< Enable JPEG features, 0 or 1, default is False. + IMWRITE_JPEG_OPTIMIZE = 3, //!< Enable JPEG features, 0 or 1, default is False. + IMWRITE_JPEG_RST_INTERVAL = 4, //!< JPEG restart interval, 0 - 65535, default is 0 - no restart. + IMWRITE_JPEG_LUMA_QUALITY = 5, //!< Separate luma quality level, 0 - 100, default is 0 - don't use. + IMWRITE_JPEG_CHROMA_QUALITY = 6, //!< Separate chroma quality level, 0 - 100, default is 0 - don't use. + IMWRITE_PNG_COMPRESSION = 16, //!< For PNG, it can be the compression level from 0 to 9. A higher value means a smaller size and longer compression time. Default value is 3. Also strategy is changed to IMWRITE_PNG_STRATEGY_DEFAULT (Z_DEFAULT_STRATEGY). + IMWRITE_PNG_STRATEGY = 17, //!< One of cv::ImwritePNGFlags, default is IMWRITE_PNG_STRATEGY_DEFAULT. + IMWRITE_PNG_BILEVEL = 18, //!< Binary level PNG, 0 or 1, default is 0. + IMWRITE_PXM_BINARY = 32, //!< For PPM, PGM, or PBM, it can be a binary format flag, 0 or 1. Default value is 1. + IMWRITE_WEBP_QUALITY = 64, //!< For WEBP, it can be a quality from 1 to 100 (the higher is the better). By default (without any parameter) and for quality above 100 the lossless compression is used. + IMWRITE_PAM_TUPLETYPE = 128,//!< For PAM, sets the TUPLETYPE field to the corresponding string value that is defined for the format + }; + +//! Imwrite PNG specific flags used to tune the compression algorithm. +/** These flags will be modify the way of PNG image compression and will be passed to the underlying zlib processing stage. + +- The effect of IMWRITE_PNG_STRATEGY_FILTERED is to force more Huffman coding and less string matching; it is somewhat intermediate between IMWRITE_PNG_STRATEGY_DEFAULT and IMWRITE_PNG_STRATEGY_HUFFMAN_ONLY. +- IMWRITE_PNG_STRATEGY_RLE is designed to be almost as fast as IMWRITE_PNG_STRATEGY_HUFFMAN_ONLY, but give better compression for PNG image data. +- The strategy parameter only affects the compression ratio but not the correctness of the compressed output even if it is not set appropriately. +- IMWRITE_PNG_STRATEGY_FIXED prevents the use of dynamic Huffman codes, allowing for a simpler decoder for special applications. +*/ +enum ImwritePNGFlags { + IMWRITE_PNG_STRATEGY_DEFAULT = 0, //!< Use this value for normal data. + IMWRITE_PNG_STRATEGY_FILTERED = 1, //!< Use this value for data produced by a filter (or predictor).Filtered data consists mostly of small values with a somewhat random distribution. In this case, the compression algorithm is tuned to compress them better. + IMWRITE_PNG_STRATEGY_HUFFMAN_ONLY = 2, //!< Use this value to force Huffman encoding only (no string match). + IMWRITE_PNG_STRATEGY_RLE = 3, //!< Use this value to limit match distances to one (run-length encoding). + IMWRITE_PNG_STRATEGY_FIXED = 4 //!< Using this value prevents the use of dynamic Huffman codes, allowing for a simpler decoder for special applications. + }; + +//! Imwrite PAM specific tupletype flags used to define the 'TUPETYPE' field of a PAM file. +enum ImwritePAMFlags { + IMWRITE_PAM_FORMAT_NULL = 0, + IMWRITE_PAM_FORMAT_BLACKANDWHITE = 1, + IMWRITE_PAM_FORMAT_GRAYSCALE = 2, + IMWRITE_PAM_FORMAT_GRAYSCALE_ALPHA = 3, + IMWRITE_PAM_FORMAT_RGB = 4, + IMWRITE_PAM_FORMAT_RGB_ALPHA = 5, + }; + +/** @brief Loads an image from a file. + +@anchor imread + +The function imread loads an image from the specified file and returns it. If the image cannot be +read (because of missing file, improper permissions, unsupported or invalid format), the function +returns an empty matrix ( Mat::data==NULL ). + +Currently, the following file formats are supported: + +- Windows bitmaps - \*.bmp, \*.dib (always supported) +- JPEG files - \*.jpeg, \*.jpg, \*.jpe (see the *Notes* section) +- JPEG 2000 files - \*.jp2 (see the *Notes* section) +- Portable Network Graphics - \*.png (see the *Notes* section) +- WebP - \*.webp (see the *Notes* section) +- Portable image format - \*.pbm, \*.pgm, \*.ppm \*.pxm, \*.pnm (always supported) +- Sun rasters - \*.sr, \*.ras (always supported) +- TIFF files - \*.tiff, \*.tif (see the *Notes* section) +- OpenEXR Image files - \*.exr (see the *Notes* section) +- Radiance HDR - \*.hdr, \*.pic (always supported) +- Raster and Vector geospatial data supported by Gdal (see the *Notes* section) + +@note + +- The function determines the type of an image by the content, not by the file extension. +- In the case of color images, the decoded images will have the channels stored in **B G R** order. +- On Microsoft Windows\* OS and MacOSX\*, the codecs shipped with an OpenCV image (libjpeg, + libpng, libtiff, and libjasper) are used by default. So, OpenCV can always read JPEGs, PNGs, + and TIFFs. On MacOSX, there is also an option to use native MacOSX image readers. But beware + that currently these native image loaders give images with different pixel values because of + the color management embedded into MacOSX. +- On Linux\*, BSD flavors and other Unix-like open-source operating systems, OpenCV looks for + codecs supplied with an OS image. Install the relevant packages (do not forget the development + files, for example, "libjpeg-dev", in Debian\* and Ubuntu\*) to get the codec support or turn + on the OPENCV_BUILD_3RDPARTY_LIBS flag in CMake. +- In the case you set *WITH_GDAL* flag to true in CMake and @ref IMREAD_LOAD_GDAL to load the image, + then [GDAL](http://www.gdal.org) driver will be used in order to decode the image by supporting + the following formats: [Raster](http://www.gdal.org/formats_list.html), + [Vector](http://www.gdal.org/ogr_formats.html). +- If EXIF information are embedded in the image file, the EXIF orientation will be taken into account + and thus the image will be rotated accordingly except if the flag @ref IMREAD_IGNORE_ORIENTATION is passed. +@param filename Name of file to be loaded. +@param flags Flag that can take values of cv::ImreadModes +*/ +CV_EXPORTS_W Mat imread( const String& filename, int flags = IMREAD_COLOR ); + +/** @brief Loads a multi-page image from a file. + +The function imreadmulti loads a multi-page image from the specified file into a vector of Mat objects. +@param filename Name of file to be loaded. +@param flags Flag that can take values of cv::ImreadModes, default with cv::IMREAD_ANYCOLOR. +@param mats A vector of Mat objects holding each page, if more than one. +@sa cv::imread +*/ +CV_EXPORTS_W bool imreadmulti(const String& filename, std::vector& mats, int flags = IMREAD_ANYCOLOR); + +/** @brief Saves an image to a specified file. + +The function imwrite saves the image to the specified file. The image format is chosen based on the +filename extension (see cv::imread for the list of extensions). Only 8-bit (or 16-bit unsigned (CV_16U) +in case of PNG, JPEG 2000, and TIFF) single-channel or 3-channel (with 'BGR' channel order) images +can be saved using this function. If the format, depth or channel order is different, use +Mat::convertTo , and cv::cvtColor to convert it before saving. Or, use the universal FileStorage I/O +functions to save the image to XML or YAML format. + +It is possible to store PNG images with an alpha channel using this function. To do this, create +8-bit (or 16-bit) 4-channel image BGRA, where the alpha channel goes last. Fully transparent pixels +should have alpha set to 0, fully opaque pixels should have alpha set to 255/65535. + +The sample below shows how to create such a BGRA image and store to PNG file. It also demonstrates how to set custom +compression parameters : +@code + #include + + using namespace cv; + using namespace std; + + void createAlphaMat(Mat &mat) + { + CV_Assert(mat.channels() == 4); + for (int i = 0; i < mat.rows; ++i) { + for (int j = 0; j < mat.cols; ++j) { + Vec4b& bgra = mat.at(i, j); + bgra[0] = UCHAR_MAX; // Blue + bgra[1] = saturate_cast((float (mat.cols - j)) / ((float)mat.cols) * UCHAR_MAX); // Green + bgra[2] = saturate_cast((float (mat.rows - i)) / ((float)mat.rows) * UCHAR_MAX); // Red + bgra[3] = saturate_cast(0.5 * (bgra[1] + bgra[2])); // Alpha + } + } + } + + int main(int argv, char **argc) + { + // Create mat with alpha channel + Mat mat(480, 640, CV_8UC4); + createAlphaMat(mat); + + vector compression_params; + compression_params.push_back(IMWRITE_PNG_COMPRESSION); + compression_params.push_back(9); + + try { + imwrite("alpha.png", mat, compression_params); + } + catch (cv::Exception& ex) { + fprintf(stderr, "Exception converting image to PNG format: %s\n", ex.what()); + return 1; + } + + fprintf(stdout, "Saved PNG file with alpha data.\n"); + return 0; + } +@endcode +@param filename Name of the file. +@param img Image to be saved. +@param params Format-specific parameters encoded as pairs (paramId_1, paramValue_1, paramId_2, paramValue_2, ... .) see cv::ImwriteFlags +*/ +CV_EXPORTS_W bool imwrite( const String& filename, InputArray img, + const std::vector& params = std::vector()); + +/** @brief Reads an image from a buffer in memory. + +The function imdecode reads an image from the specified buffer in the memory. If the buffer is too short or +contains invalid data, the function returns an empty matrix ( Mat::data==NULL ). + +See cv::imread for the list of supported formats and flags description. + +@note In the case of color images, the decoded images will have the channels stored in **B G R** order. +@param buf Input array or vector of bytes. +@param flags The same flags as in cv::imread, see cv::ImreadModes. +*/ +CV_EXPORTS_W Mat imdecode( InputArray buf, int flags ); + +/** @overload +@param buf +@param flags +@param dst The optional output placeholder for the decoded matrix. It can save the image +reallocations when the function is called repeatedly for images of the same size. +*/ +CV_EXPORTS Mat imdecode( InputArray buf, int flags, Mat* dst); + +/** @brief Encodes an image into a memory buffer. + +The function imencode compresses the image and stores it in the memory buffer that is resized to fit the +result. See cv::imwrite for the list of supported formats and flags description. + +@param ext File extension that defines the output format. +@param img Image to be written. +@param buf Output buffer resized to fit the compressed image. +@param params Format-specific parameters. See cv::imwrite and cv::ImwriteFlags. +*/ +CV_EXPORTS_W bool imencode( const String& ext, InputArray img, + CV_OUT std::vector& buf, + const std::vector& params = std::vector()); + +//! @} imgcodecs + +} // cv + +#endif //OPENCV_IMGCODECS_HPP diff --git a/thirdparty1/linux/include/opencv2/imgcodecs/imgcodecs.hpp b/thirdparty1/linux/include/opencv2/imgcodecs/imgcodecs.hpp new file mode 100644 index 0000000..a3cd232 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/imgcodecs/imgcodecs.hpp @@ -0,0 +1,48 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifdef __OPENCV_BUILD +#error this is a compatibility header which should not be used inside the OpenCV library +#endif + +#include "opencv2/imgcodecs.hpp" diff --git a/thirdparty1/linux/include/opencv2/imgcodecs/imgcodecs_c.h b/thirdparty1/linux/include/opencv2/imgcodecs/imgcodecs_c.h new file mode 100644 index 0000000..3130710 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/imgcodecs/imgcodecs_c.h @@ -0,0 +1,148 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// Intel License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000, Intel Corporation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of Intel Corporation may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_IMGCODECS_H +#define OPENCV_IMGCODECS_H + +#include "opencv2/core/core_c.h" + +#ifdef __cplusplus +extern "C" { +#endif /* __cplusplus */ + +/** @addtogroup imgcodecs_c + @{ + */ + +enum +{ +/* 8bit, color or not */ + CV_LOAD_IMAGE_UNCHANGED =-1, +/* 8bit, gray */ + CV_LOAD_IMAGE_GRAYSCALE =0, +/* ?, color */ + CV_LOAD_IMAGE_COLOR =1, +/* any depth, ? */ + CV_LOAD_IMAGE_ANYDEPTH =2, +/* ?, any color */ + CV_LOAD_IMAGE_ANYCOLOR =4, +/* ?, no rotate */ + CV_LOAD_IMAGE_IGNORE_ORIENTATION =128 +}; + +/* load image from file + iscolor can be a combination of above flags where CV_LOAD_IMAGE_UNCHANGED + overrides the other flags + using CV_LOAD_IMAGE_ANYCOLOR alone is equivalent to CV_LOAD_IMAGE_UNCHANGED + unless CV_LOAD_IMAGE_ANYDEPTH is specified images are converted to 8bit +*/ +CVAPI(IplImage*) cvLoadImage( const char* filename, int iscolor CV_DEFAULT(CV_LOAD_IMAGE_COLOR)); +CVAPI(CvMat*) cvLoadImageM( const char* filename, int iscolor CV_DEFAULT(CV_LOAD_IMAGE_COLOR)); + +enum +{ + CV_IMWRITE_JPEG_QUALITY =1, + CV_IMWRITE_JPEG_PROGRESSIVE =2, + CV_IMWRITE_JPEG_OPTIMIZE =3, + CV_IMWRITE_JPEG_RST_INTERVAL =4, + CV_IMWRITE_JPEG_LUMA_QUALITY =5, + CV_IMWRITE_JPEG_CHROMA_QUALITY =6, + CV_IMWRITE_PNG_COMPRESSION =16, + CV_IMWRITE_PNG_STRATEGY =17, + CV_IMWRITE_PNG_BILEVEL =18, + CV_IMWRITE_PNG_STRATEGY_DEFAULT =0, + CV_IMWRITE_PNG_STRATEGY_FILTERED =1, + CV_IMWRITE_PNG_STRATEGY_HUFFMAN_ONLY =2, + CV_IMWRITE_PNG_STRATEGY_RLE =3, + CV_IMWRITE_PNG_STRATEGY_FIXED =4, + CV_IMWRITE_PXM_BINARY =32, + CV_IMWRITE_WEBP_QUALITY =64, + CV_IMWRITE_PAM_TUPLETYPE = 128, + CV_IMWRITE_PAM_FORMAT_NULL = 0, + CV_IMWRITE_PAM_FORMAT_BLACKANDWHITE = 1, + CV_IMWRITE_PAM_FORMAT_GRAYSCALE = 2, + CV_IMWRITE_PAM_FORMAT_GRAYSCALE_ALPHA = 3, + CV_IMWRITE_PAM_FORMAT_RGB = 4, + CV_IMWRITE_PAM_FORMAT_RGB_ALPHA = 5, +}; + + + +/* save image to file */ +CVAPI(int) cvSaveImage( const char* filename, const CvArr* image, + const int* params CV_DEFAULT(0) ); + +/* decode image stored in the buffer */ +CVAPI(IplImage*) cvDecodeImage( const CvMat* buf, int iscolor CV_DEFAULT(CV_LOAD_IMAGE_COLOR)); +CVAPI(CvMat*) cvDecodeImageM( const CvMat* buf, int iscolor CV_DEFAULT(CV_LOAD_IMAGE_COLOR)); + +/* encode image and store the result as a byte vector (single-row 8uC1 matrix) */ +CVAPI(CvMat*) cvEncodeImage( const char* ext, const CvArr* image, + const int* params CV_DEFAULT(0) ); + +enum +{ + CV_CVTIMG_FLIP =1, + CV_CVTIMG_SWAP_RB =2 +}; + +/* utility function: convert one image to another with optional vertical flip */ +CVAPI(void) cvConvertImage( const CvArr* src, CvArr* dst, int flags CV_DEFAULT(0)); + +CVAPI(int) cvHaveImageReader(const char* filename); +CVAPI(int) cvHaveImageWriter(const char* filename); + + +/****************************************************************************************\ +* Obsolete functions/synonyms * +\****************************************************************************************/ + +#define cvvLoadImage(name) cvLoadImage((name),1) +#define cvvSaveImage cvSaveImage +#define cvvConvertImage cvConvertImage + +/** @} imgcodecs_c */ + +#ifdef __cplusplus +} +#endif + +#endif // OPENCV_IMGCODECS_H diff --git a/thirdparty1/linux/include/opencv2/imgcodecs/ios.h b/thirdparty1/linux/include/opencv2/imgcodecs/ios.h new file mode 100644 index 0000000..fbd6371 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/imgcodecs/ios.h @@ -0,0 +1,57 @@ + +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#import +#import +#import +#import +#include "opencv2/core/core.hpp" + +//! @addtogroup imgcodecs_ios +//! @{ + +UIImage* MatToUIImage(const cv::Mat& image); +void UIImageToMat(const UIImage* image, + cv::Mat& m, bool alphaExist = false); + +//! @} diff --git a/thirdparty1/linux/include/opencv2/imgproc.hpp b/thirdparty1/linux/include/opencv2/imgproc.hpp new file mode 100644 index 0000000..243d72b --- /dev/null +++ b/thirdparty1/linux/include/opencv2/imgproc.hpp @@ -0,0 +1,4650 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_IMGPROC_HPP +#define OPENCV_IMGPROC_HPP + +#include "opencv2/core.hpp" + +/** + @defgroup imgproc Image processing + @{ + @defgroup imgproc_filter Image Filtering + +Functions and classes described in this section are used to perform various linear or non-linear +filtering operations on 2D images (represented as Mat's). It means that for each pixel location +\f$(x,y)\f$ in the source image (normally, rectangular), its neighborhood is considered and used to +compute the response. In case of a linear filter, it is a weighted sum of pixel values. In case of +morphological operations, it is the minimum or maximum values, and so on. The computed response is +stored in the destination image at the same location \f$(x,y)\f$. It means that the output image +will be of the same size as the input image. Normally, the functions support multi-channel arrays, +in which case every channel is processed independently. Therefore, the output image will also have +the same number of channels as the input one. + +Another common feature of the functions and classes described in this section is that, unlike +simple arithmetic functions, they need to extrapolate values of some non-existing pixels. For +example, if you want to smooth an image using a Gaussian \f$3 \times 3\f$ filter, then, when +processing the left-most pixels in each row, you need pixels to the left of them, that is, outside +of the image. You can let these pixels be the same as the left-most image pixels ("replicated +border" extrapolation method), or assume that all the non-existing pixels are zeros ("constant +border" extrapolation method), and so on. OpenCV enables you to specify the extrapolation method. +For details, see cv::BorderTypes + +@anchor filter_depths +### Depth combinations +Input depth (src.depth()) | Output depth (ddepth) +--------------------------|---------------------- +CV_8U | -1/CV_16S/CV_32F/CV_64F +CV_16U/CV_16S | -1/CV_32F/CV_64F +CV_32F | -1/CV_32F/CV_64F +CV_64F | -1/CV_64F + +@note when ddepth=-1, the output image will have the same depth as the source. + + @defgroup imgproc_transform Geometric Image Transformations + +The functions in this section perform various geometrical transformations of 2D images. They do not +change the image content but deform the pixel grid and map this deformed grid to the destination +image. In fact, to avoid sampling artifacts, the mapping is done in the reverse order, from +destination to the source. That is, for each pixel \f$(x, y)\f$ of the destination image, the +functions compute coordinates of the corresponding "donor" pixel in the source image and copy the +pixel value: + +\f[\texttt{dst} (x,y)= \texttt{src} (f_x(x,y), f_y(x,y))\f] + +In case when you specify the forward mapping \f$\left: \texttt{src} \rightarrow +\texttt{dst}\f$, the OpenCV functions first compute the corresponding inverse mapping +\f$\left: \texttt{dst} \rightarrow \texttt{src}\f$ and then use the above formula. + +The actual implementations of the geometrical transformations, from the most generic remap and to +the simplest and the fastest resize, need to solve two main problems with the above formula: + +- Extrapolation of non-existing pixels. Similarly to the filtering functions described in the +previous section, for some \f$(x,y)\f$, either one of \f$f_x(x,y)\f$, or \f$f_y(x,y)\f$, or both +of them may fall outside of the image. In this case, an extrapolation method needs to be used. +OpenCV provides the same selection of extrapolation methods as in the filtering functions. In +addition, it provides the method BORDER_TRANSPARENT. This means that the corresponding pixels in +the destination image will not be modified at all. + +- Interpolation of pixel values. Usually \f$f_x(x,y)\f$ and \f$f_y(x,y)\f$ are floating-point +numbers. This means that \f$\left\f$ can be either an affine or perspective +transformation, or radial lens distortion correction, and so on. So, a pixel value at fractional +coordinates needs to be retrieved. In the simplest case, the coordinates can be just rounded to the +nearest integer coordinates and the corresponding pixel can be used. This is called a +nearest-neighbor interpolation. However, a better result can be achieved by using more +sophisticated [interpolation methods](http://en.wikipedia.org/wiki/Multivariate_interpolation) , +where a polynomial function is fit into some neighborhood of the computed pixel \f$(f_x(x,y), +f_y(x,y))\f$, and then the value of the polynomial at \f$(f_x(x,y), f_y(x,y))\f$ is taken as the +interpolated pixel value. In OpenCV, you can choose between several interpolation methods. See +resize for details. + + @defgroup imgproc_misc Miscellaneous Image Transformations + @defgroup imgproc_draw Drawing Functions + +Drawing functions work with matrices/images of arbitrary depth. The boundaries of the shapes can be +rendered with antialiasing (implemented only for 8-bit images for now). All the functions include +the parameter color that uses an RGB value (that may be constructed with the Scalar constructor ) +for color images and brightness for grayscale images. For color images, the channel ordering is +normally *Blue, Green, Red*. This is what imshow, imread, and imwrite expect. So, if you form a +color using the Scalar constructor, it should look like: + +\f[\texttt{Scalar} (blue \_ component, green \_ component, red \_ component[, alpha \_ component])\f] + +If you are using your own image rendering and I/O functions, you can use any channel ordering. The +drawing functions process each channel independently and do not depend on the channel order or even +on the used color space. The whole image can be converted from BGR to RGB or to a different color +space using cvtColor . + +If a drawn figure is partially or completely outside the image, the drawing functions clip it. Also, +many drawing functions can handle pixel coordinates specified with sub-pixel accuracy. This means +that the coordinates can be passed as fixed-point numbers encoded as integers. The number of +fractional bits is specified by the shift parameter and the real point coordinates are calculated as +\f$\texttt{Point}(x,y)\rightarrow\texttt{Point2f}(x*2^{-shift},y*2^{-shift})\f$ . This feature is +especially effective when rendering antialiased shapes. + +@note The functions do not support alpha-transparency when the target image is 4-channel. In this +case, the color[3] is simply copied to the repainted pixels. Thus, if you want to paint +semi-transparent shapes, you can paint them in a separate buffer and then blend it with the main +image. + + @defgroup imgproc_colormap ColorMaps in OpenCV + +The human perception isn't built for observing fine changes in grayscale images. Human eyes are more +sensitive to observing changes between colors, so you often need to recolor your grayscale images to +get a clue about them. OpenCV now comes with various colormaps to enhance the visualization in your +computer vision application. + +In OpenCV you only need applyColorMap to apply a colormap on a given image. The following sample +code reads the path to an image from command line, applies a Jet colormap on it and shows the +result: + +@code +#include +#include +#include +#include +using namespace cv; + +#include +using namespace std; + +int main(int argc, const char *argv[]) +{ + // We need an input image. (can be grayscale or color) + if (argc < 2) + { + cerr << "We need an image to process here. Please run: colorMap [path_to_image]" << endl; + return -1; + } + Mat img_in = imread(argv[1]); + if(img_in.empty()) + { + cerr << "Sample image (" << argv[1] << ") is empty. Please adjust your path, so it points to a valid input image!" << endl; + return -1; + } + // Holds the colormap version of the image: + Mat img_color; + // Apply the colormap: + applyColorMap(img_in, img_color, COLORMAP_JET); + // Show the result: + imshow("colorMap", img_color); + waitKey(0); + return 0; +} +@endcode + +@see cv::ColormapTypes + + @defgroup imgproc_subdiv2d Planar Subdivision + +The Subdiv2D class described in this section is used to perform various planar subdivision on +a set of 2D points (represented as vector of Point2f). OpenCV subdivides a plane into triangles +using the Delaunay’s algorithm, which corresponds to the dual graph of the Voronoi diagram. +In the figure below, the Delaunay’s triangulation is marked with black lines and the Voronoi +diagram with red lines. + +![Delaunay triangulation (black) and Voronoi (red)](pics/delaunay_voronoi.png) + +The subdivisions can be used for the 3D piece-wise transformation of a plane, morphing, fast +location of points on the plane, building special graphs (such as NNG,RNG), and so forth. + + @defgroup imgproc_hist Histograms + @defgroup imgproc_shape Structural Analysis and Shape Descriptors + @defgroup imgproc_motion Motion Analysis and Object Tracking + @defgroup imgproc_feature Feature Detection + @defgroup imgproc_object Object Detection + @defgroup imgproc_c C API + @defgroup imgproc_hal Hardware Acceleration Layer + @{ + @defgroup imgproc_hal_functions Functions + @defgroup imgproc_hal_interface Interface + @} + @} +*/ + +namespace cv +{ + +/** @addtogroup imgproc +@{ +*/ + +//! @addtogroup imgproc_filter +//! @{ + +//! type of morphological operation +enum MorphTypes{ + MORPH_ERODE = 0, //!< see cv::erode + MORPH_DILATE = 1, //!< see cv::dilate + MORPH_OPEN = 2, //!< an opening operation + //!< \f[\texttt{dst} = \mathrm{open} ( \texttt{src} , \texttt{element} )= \mathrm{dilate} ( \mathrm{erode} ( \texttt{src} , \texttt{element} ))\f] + MORPH_CLOSE = 3, //!< a closing operation + //!< \f[\texttt{dst} = \mathrm{close} ( \texttt{src} , \texttt{element} )= \mathrm{erode} ( \mathrm{dilate} ( \texttt{src} , \texttt{element} ))\f] + MORPH_GRADIENT = 4, //!< a morphological gradient + //!< \f[\texttt{dst} = \mathrm{morph\_grad} ( \texttt{src} , \texttt{element} )= \mathrm{dilate} ( \texttt{src} , \texttt{element} )- \mathrm{erode} ( \texttt{src} , \texttt{element} )\f] + MORPH_TOPHAT = 5, //!< "top hat" + //!< \f[\texttt{dst} = \mathrm{tophat} ( \texttt{src} , \texttt{element} )= \texttt{src} - \mathrm{open} ( \texttt{src} , \texttt{element} )\f] + MORPH_BLACKHAT = 6, //!< "black hat" + //!< \f[\texttt{dst} = \mathrm{blackhat} ( \texttt{src} , \texttt{element} )= \mathrm{close} ( \texttt{src} , \texttt{element} )- \texttt{src}\f] + MORPH_HITMISS = 7 //!< "hit or miss" + //!< .- Only supported for CV_8UC1 binary images. A tutorial can be found in the documentation +}; + +//! shape of the structuring element +enum MorphShapes { + MORPH_RECT = 0, //!< a rectangular structuring element: \f[E_{ij}=1\f] + MORPH_CROSS = 1, //!< a cross-shaped structuring element: + //!< \f[E_{ij} = \fork{1}{if i=\texttt{anchor.y} or j=\texttt{anchor.x}}{0}{otherwise}\f] + MORPH_ELLIPSE = 2 //!< an elliptic structuring element, that is, a filled ellipse inscribed + //!< into the rectangle Rect(0, 0, esize.width, 0.esize.height) +}; + +//! @} imgproc_filter + +//! @addtogroup imgproc_transform +//! @{ + +//! interpolation algorithm +enum InterpolationFlags{ + /** nearest neighbor interpolation */ + INTER_NEAREST = 0, + /** bilinear interpolation */ + INTER_LINEAR = 1, + /** bicubic interpolation */ + INTER_CUBIC = 2, + /** resampling using pixel area relation. It may be a preferred method for image decimation, as + it gives moire'-free results. But when the image is zoomed, it is similar to the INTER_NEAREST + method. */ + INTER_AREA = 3, + /** Lanczos interpolation over 8x8 neighborhood */ + INTER_LANCZOS4 = 4, + /** mask for interpolation codes */ + INTER_MAX = 7, + /** flag, fills all of the destination image pixels. If some of them correspond to outliers in the + source image, they are set to zero */ + WARP_FILL_OUTLIERS = 8, + /** flag, inverse transformation + + For example, @ref cv::linearPolar or @ref cv::logPolar transforms: + - flag is __not__ set: \f$dst( \rho , \phi ) = src(x,y)\f$ + - flag is set: \f$dst(x,y) = src( \rho , \phi )\f$ + */ + WARP_INVERSE_MAP = 16 +}; + +enum InterpolationMasks { + INTER_BITS = 5, + INTER_BITS2 = INTER_BITS * 2, + INTER_TAB_SIZE = 1 << INTER_BITS, + INTER_TAB_SIZE2 = INTER_TAB_SIZE * INTER_TAB_SIZE + }; + +//! @} imgproc_transform + +//! @addtogroup imgproc_misc +//! @{ + +//! Distance types for Distance Transform and M-estimators +//! @see cv::distanceTransform, cv::fitLine +enum DistanceTypes { + DIST_USER = -1, //!< User defined distance + DIST_L1 = 1, //!< distance = |x1-x2| + |y1-y2| + DIST_L2 = 2, //!< the simple euclidean distance + DIST_C = 3, //!< distance = max(|x1-x2|,|y1-y2|) + DIST_L12 = 4, //!< L1-L2 metric: distance = 2(sqrt(1+x*x/2) - 1)) + DIST_FAIR = 5, //!< distance = c^2(|x|/c-log(1+|x|/c)), c = 1.3998 + DIST_WELSCH = 6, //!< distance = c^2/2(1-exp(-(x/c)^2)), c = 2.9846 + DIST_HUBER = 7 //!< distance = |x| \texttt{thresh}\)}{0}{otherwise}\f] + THRESH_BINARY_INV = 1, //!< \f[\texttt{dst} (x,y) = \fork{0}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{maxval}}{otherwise}\f] + THRESH_TRUNC = 2, //!< \f[\texttt{dst} (x,y) = \fork{\texttt{threshold}}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{src}(x,y)}{otherwise}\f] + THRESH_TOZERO = 3, //!< \f[\texttt{dst} (x,y) = \fork{\texttt{src}(x,y)}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{0}{otherwise}\f] + THRESH_TOZERO_INV = 4, //!< \f[\texttt{dst} (x,y) = \fork{0}{if \(\texttt{src}(x,y) > \texttt{thresh}\)}{\texttt{src}(x,y)}{otherwise}\f] + THRESH_MASK = 7, + THRESH_OTSU = 8, //!< flag, use Otsu algorithm to choose the optimal threshold value + THRESH_TRIANGLE = 16 //!< flag, use Triangle algorithm to choose the optimal threshold value +}; + +//! adaptive threshold algorithm +//! see cv::adaptiveThreshold +enum AdaptiveThresholdTypes { + /** the threshold value \f$T(x,y)\f$ is a mean of the \f$\texttt{blockSize} \times + \texttt{blockSize}\f$ neighborhood of \f$(x, y)\f$ minus C */ + ADAPTIVE_THRESH_MEAN_C = 0, + /** the threshold value \f$T(x, y)\f$ is a weighted sum (cross-correlation with a Gaussian + window) of the \f$\texttt{blockSize} \times \texttt{blockSize}\f$ neighborhood of \f$(x, y)\f$ + minus C . The default sigma (standard deviation) is used for the specified blockSize . See + cv::getGaussianKernel*/ + ADAPTIVE_THRESH_GAUSSIAN_C = 1 +}; + +//! cv::undistort mode +enum UndistortTypes { + PROJ_SPHERICAL_ORTHO = 0, + PROJ_SPHERICAL_EQRECT = 1 + }; + +//! class of the pixel in GrabCut algorithm +enum GrabCutClasses { + GC_BGD = 0, //!< an obvious background pixels + GC_FGD = 1, //!< an obvious foreground (object) pixel + GC_PR_BGD = 2, //!< a possible background pixel + GC_PR_FGD = 3 //!< a possible foreground pixel +}; + +//! GrabCut algorithm flags +enum GrabCutModes { + /** The function initializes the state and the mask using the provided rectangle. After that it + runs iterCount iterations of the algorithm. */ + GC_INIT_WITH_RECT = 0, + /** The function initializes the state using the provided mask. Note that GC_INIT_WITH_RECT + and GC_INIT_WITH_MASK can be combined. Then, all the pixels outside of the ROI are + automatically initialized with GC_BGD .*/ + GC_INIT_WITH_MASK = 1, + /** The value means that the algorithm should just resume. */ + GC_EVAL = 2 +}; + +//! distanceTransform algorithm flags +enum DistanceTransformLabelTypes { + /** each connected component of zeros in src (as well as all the non-zero pixels closest to the + connected component) will be assigned the same label */ + DIST_LABEL_CCOMP = 0, + /** each zero pixel (and all the non-zero pixels closest to it) gets its own label. */ + DIST_LABEL_PIXEL = 1 +}; + +//! floodfill algorithm flags +enum FloodFillFlags { + /** If set, the difference between the current pixel and seed pixel is considered. Otherwise, + the difference between neighbor pixels is considered (that is, the range is floating). */ + FLOODFILL_FIXED_RANGE = 1 << 16, + /** If set, the function does not change the image ( newVal is ignored), and only fills the + mask with the value specified in bits 8-16 of flags as described above. This option only make + sense in function variants that have the mask parameter. */ + FLOODFILL_MASK_ONLY = 1 << 17 +}; + +//! @} imgproc_misc + +//! @addtogroup imgproc_shape +//! @{ + +//! connected components algorithm output formats +enum ConnectedComponentsTypes { + CC_STAT_LEFT = 0, //!< The leftmost (x) coordinate which is the inclusive start of the bounding + //!< box in the horizontal direction. + CC_STAT_TOP = 1, //!< The topmost (y) coordinate which is the inclusive start of the bounding + //!< box in the vertical direction. + CC_STAT_WIDTH = 2, //!< The horizontal size of the bounding box + CC_STAT_HEIGHT = 3, //!< The vertical size of the bounding box + CC_STAT_AREA = 4, //!< The total area (in pixels) of the connected component + CC_STAT_MAX = 5 +}; + +//! connected components algorithm +enum ConnectedComponentsAlgorithmsTypes { + CCL_WU = 0, //!< SAUF algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity + CCL_DEFAULT = -1, //!< BBDT algortihm for 8-way connectivity, SAUF algorithm for 4-way connectivity + CCL_GRANA = 1 //!< BBDT algorithm for 8-way connectivity, SAUF algorithm for 4-way connectivity +}; + +//! mode of the contour retrieval algorithm +enum RetrievalModes { + /** retrieves only the extreme outer contours. It sets `hierarchy[i][2]=hierarchy[i][3]=-1` for + all the contours. */ + RETR_EXTERNAL = 0, + /** retrieves all of the contours without establishing any hierarchical relationships. */ + RETR_LIST = 1, + /** retrieves all of the contours and organizes them into a two-level hierarchy. At the top + level, there are external boundaries of the components. At the second level, there are + boundaries of the holes. If there is another contour inside a hole of a connected component, it + is still put at the top level. */ + RETR_CCOMP = 2, + /** retrieves all of the contours and reconstructs a full hierarchy of nested contours.*/ + RETR_TREE = 3, + RETR_FLOODFILL = 4 //!< +}; + +//! the contour approximation algorithm +enum ContourApproximationModes { + /** stores absolutely all the contour points. That is, any 2 subsequent points (x1,y1) and + (x2,y2) of the contour will be either horizontal, vertical or diagonal neighbors, that is, + max(abs(x1-x2),abs(y2-y1))==1. */ + CHAIN_APPROX_NONE = 1, + /** compresses horizontal, vertical, and diagonal segments and leaves only their end points. + For example, an up-right rectangular contour is encoded with 4 points. */ + CHAIN_APPROX_SIMPLE = 2, + /** applies one of the flavors of the Teh-Chin chain approximation algorithm @cite TehChin89 */ + CHAIN_APPROX_TC89_L1 = 3, + /** applies one of the flavors of the Teh-Chin chain approximation algorithm @cite TehChin89 */ + CHAIN_APPROX_TC89_KCOS = 4 +}; + +//! @} imgproc_shape + +//! Variants of a Hough transform +enum HoughModes { + + /** classical or standard Hough transform. Every line is represented by two floating-point + numbers \f$(\rho, \theta)\f$ , where \f$\rho\f$ is a distance between (0,0) point and the line, + and \f$\theta\f$ is the angle between x-axis and the normal to the line. Thus, the matrix must + be (the created sequence will be) of CV_32FC2 type */ + HOUGH_STANDARD = 0, + /** probabilistic Hough transform (more efficient in case if the picture contains a few long + linear segments). It returns line segments rather than the whole line. Each segment is + represented by starting and ending points, and the matrix must be (the created sequence will + be) of the CV_32SC4 type. */ + HOUGH_PROBABILISTIC = 1, + /** multi-scale variant of the classical Hough transform. The lines are encoded the same way as + HOUGH_STANDARD. */ + HOUGH_MULTI_SCALE = 2, + HOUGH_GRADIENT = 3 //!< basically *21HT*, described in @cite Yuen90 +}; + +//! Variants of Line Segment %Detector +//! @ingroup imgproc_feature +enum LineSegmentDetectorModes { + LSD_REFINE_NONE = 0, //!< No refinement applied + LSD_REFINE_STD = 1, //!< Standard refinement is applied. E.g. breaking arches into smaller straighter line approximations. + LSD_REFINE_ADV = 2 //!< Advanced refinement. Number of false alarms is calculated, lines are + //!< refined through increase of precision, decrement in size, etc. +}; + +/** Histogram comparison methods + @ingroup imgproc_hist +*/ +enum HistCompMethods { + /** Correlation + \f[d(H_1,H_2) = \frac{\sum_I (H_1(I) - \bar{H_1}) (H_2(I) - \bar{H_2})}{\sqrt{\sum_I(H_1(I) - \bar{H_1})^2 \sum_I(H_2(I) - \bar{H_2})^2}}\f] + where + \f[\bar{H_k} = \frac{1}{N} \sum _J H_k(J)\f] + and \f$N\f$ is a total number of histogram bins. */ + HISTCMP_CORREL = 0, + /** Chi-Square + \f[d(H_1,H_2) = \sum _I \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)}\f] */ + HISTCMP_CHISQR = 1, + /** Intersection + \f[d(H_1,H_2) = \sum _I \min (H_1(I), H_2(I))\f] */ + HISTCMP_INTERSECT = 2, + /** Bhattacharyya distance + (In fact, OpenCV computes Hellinger distance, which is related to Bhattacharyya coefficient.) + \f[d(H_1,H_2) = \sqrt{1 - \frac{1}{\sqrt{\bar{H_1} \bar{H_2} N^2}} \sum_I \sqrt{H_1(I) \cdot H_2(I)}}\f] */ + HISTCMP_BHATTACHARYYA = 3, + HISTCMP_HELLINGER = HISTCMP_BHATTACHARYYA, //!< Synonym for HISTCMP_BHATTACHARYYA + /** Alternative Chi-Square + \f[d(H_1,H_2) = 2 * \sum _I \frac{\left(H_1(I)-H_2(I)\right)^2}{H_1(I)+H_2(I)}\f] + This alternative formula is regularly used for texture comparison. See e.g. @cite Puzicha1997 */ + HISTCMP_CHISQR_ALT = 4, + /** Kullback-Leibler divergence + \f[d(H_1,H_2) = \sum _I H_1(I) \log \left(\frac{H_1(I)}{H_2(I)}\right)\f] */ + HISTCMP_KL_DIV = 5 +}; + +/** the color conversion code +@see @ref imgproc_color_conversions +@ingroup imgproc_misc + */ +enum ColorConversionCodes { + COLOR_BGR2BGRA = 0, //!< add alpha channel to RGB or BGR image + COLOR_RGB2RGBA = COLOR_BGR2BGRA, + + COLOR_BGRA2BGR = 1, //!< remove alpha channel from RGB or BGR image + COLOR_RGBA2RGB = COLOR_BGRA2BGR, + + COLOR_BGR2RGBA = 2, //!< convert between RGB and BGR color spaces (with or without alpha channel) + COLOR_RGB2BGRA = COLOR_BGR2RGBA, + + COLOR_RGBA2BGR = 3, + COLOR_BGRA2RGB = COLOR_RGBA2BGR, + + COLOR_BGR2RGB = 4, + COLOR_RGB2BGR = COLOR_BGR2RGB, + + COLOR_BGRA2RGBA = 5, + COLOR_RGBA2BGRA = COLOR_BGRA2RGBA, + + COLOR_BGR2GRAY = 6, //!< convert between RGB/BGR and grayscale, @ref color_convert_rgb_gray "color conversions" + COLOR_RGB2GRAY = 7, + COLOR_GRAY2BGR = 8, + COLOR_GRAY2RGB = COLOR_GRAY2BGR, + COLOR_GRAY2BGRA = 9, + COLOR_GRAY2RGBA = COLOR_GRAY2BGRA, + COLOR_BGRA2GRAY = 10, + COLOR_RGBA2GRAY = 11, + + COLOR_BGR2BGR565 = 12, //!< convert between RGB/BGR and BGR565 (16-bit images) + COLOR_RGB2BGR565 = 13, + COLOR_BGR5652BGR = 14, + COLOR_BGR5652RGB = 15, + COLOR_BGRA2BGR565 = 16, + COLOR_RGBA2BGR565 = 17, + COLOR_BGR5652BGRA = 18, + COLOR_BGR5652RGBA = 19, + + COLOR_GRAY2BGR565 = 20, //!< convert between grayscale to BGR565 (16-bit images) + COLOR_BGR5652GRAY = 21, + + COLOR_BGR2BGR555 = 22, //!< convert between RGB/BGR and BGR555 (16-bit images) + COLOR_RGB2BGR555 = 23, + COLOR_BGR5552BGR = 24, + COLOR_BGR5552RGB = 25, + COLOR_BGRA2BGR555 = 26, + COLOR_RGBA2BGR555 = 27, + COLOR_BGR5552BGRA = 28, + COLOR_BGR5552RGBA = 29, + + COLOR_GRAY2BGR555 = 30, //!< convert between grayscale and BGR555 (16-bit images) + COLOR_BGR5552GRAY = 31, + + COLOR_BGR2XYZ = 32, //!< convert RGB/BGR to CIE XYZ, @ref color_convert_rgb_xyz "color conversions" + COLOR_RGB2XYZ = 33, + COLOR_XYZ2BGR = 34, + COLOR_XYZ2RGB = 35, + + COLOR_BGR2YCrCb = 36, //!< convert RGB/BGR to luma-chroma (aka YCC), @ref color_convert_rgb_ycrcb "color conversions" + COLOR_RGB2YCrCb = 37, + COLOR_YCrCb2BGR = 38, + COLOR_YCrCb2RGB = 39, + + COLOR_BGR2HSV = 40, //!< convert RGB/BGR to HSV (hue saturation value), @ref color_convert_rgb_hsv "color conversions" + COLOR_RGB2HSV = 41, + + COLOR_BGR2Lab = 44, //!< convert RGB/BGR to CIE Lab, @ref color_convert_rgb_lab "color conversions" + COLOR_RGB2Lab = 45, + + COLOR_BGR2Luv = 50, //!< convert RGB/BGR to CIE Luv, @ref color_convert_rgb_luv "color conversions" + COLOR_RGB2Luv = 51, + COLOR_BGR2HLS = 52, //!< convert RGB/BGR to HLS (hue lightness saturation), @ref color_convert_rgb_hls "color conversions" + COLOR_RGB2HLS = 53, + + COLOR_HSV2BGR = 54, //!< backward conversions to RGB/BGR + COLOR_HSV2RGB = 55, + + COLOR_Lab2BGR = 56, + COLOR_Lab2RGB = 57, + COLOR_Luv2BGR = 58, + COLOR_Luv2RGB = 59, + COLOR_HLS2BGR = 60, + COLOR_HLS2RGB = 61, + + COLOR_BGR2HSV_FULL = 66, //!< + COLOR_RGB2HSV_FULL = 67, + COLOR_BGR2HLS_FULL = 68, + COLOR_RGB2HLS_FULL = 69, + + COLOR_HSV2BGR_FULL = 70, + COLOR_HSV2RGB_FULL = 71, + COLOR_HLS2BGR_FULL = 72, + COLOR_HLS2RGB_FULL = 73, + + COLOR_LBGR2Lab = 74, + COLOR_LRGB2Lab = 75, + COLOR_LBGR2Luv = 76, + COLOR_LRGB2Luv = 77, + + COLOR_Lab2LBGR = 78, + COLOR_Lab2LRGB = 79, + COLOR_Luv2LBGR = 80, + COLOR_Luv2LRGB = 81, + + COLOR_BGR2YUV = 82, //!< convert between RGB/BGR and YUV + COLOR_RGB2YUV = 83, + COLOR_YUV2BGR = 84, + COLOR_YUV2RGB = 85, + + //! YUV 4:2:0 family to RGB + COLOR_YUV2RGB_NV12 = 90, + COLOR_YUV2BGR_NV12 = 91, + COLOR_YUV2RGB_NV21 = 92, + COLOR_YUV2BGR_NV21 = 93, + COLOR_YUV420sp2RGB = COLOR_YUV2RGB_NV21, + COLOR_YUV420sp2BGR = COLOR_YUV2BGR_NV21, + + COLOR_YUV2RGBA_NV12 = 94, + COLOR_YUV2BGRA_NV12 = 95, + COLOR_YUV2RGBA_NV21 = 96, + COLOR_YUV2BGRA_NV21 = 97, + COLOR_YUV420sp2RGBA = COLOR_YUV2RGBA_NV21, + COLOR_YUV420sp2BGRA = COLOR_YUV2BGRA_NV21, + + COLOR_YUV2RGB_YV12 = 98, + COLOR_YUV2BGR_YV12 = 99, + COLOR_YUV2RGB_IYUV = 100, + COLOR_YUV2BGR_IYUV = 101, + COLOR_YUV2RGB_I420 = COLOR_YUV2RGB_IYUV, + COLOR_YUV2BGR_I420 = COLOR_YUV2BGR_IYUV, + COLOR_YUV420p2RGB = COLOR_YUV2RGB_YV12, + COLOR_YUV420p2BGR = COLOR_YUV2BGR_YV12, + + COLOR_YUV2RGBA_YV12 = 102, + COLOR_YUV2BGRA_YV12 = 103, + COLOR_YUV2RGBA_IYUV = 104, + COLOR_YUV2BGRA_IYUV = 105, + COLOR_YUV2RGBA_I420 = COLOR_YUV2RGBA_IYUV, + COLOR_YUV2BGRA_I420 = COLOR_YUV2BGRA_IYUV, + COLOR_YUV420p2RGBA = COLOR_YUV2RGBA_YV12, + COLOR_YUV420p2BGRA = COLOR_YUV2BGRA_YV12, + + COLOR_YUV2GRAY_420 = 106, + COLOR_YUV2GRAY_NV21 = COLOR_YUV2GRAY_420, + COLOR_YUV2GRAY_NV12 = COLOR_YUV2GRAY_420, + COLOR_YUV2GRAY_YV12 = COLOR_YUV2GRAY_420, + COLOR_YUV2GRAY_IYUV = COLOR_YUV2GRAY_420, + COLOR_YUV2GRAY_I420 = COLOR_YUV2GRAY_420, + COLOR_YUV420sp2GRAY = COLOR_YUV2GRAY_420, + COLOR_YUV420p2GRAY = COLOR_YUV2GRAY_420, + + //! YUV 4:2:2 family to RGB + COLOR_YUV2RGB_UYVY = 107, + COLOR_YUV2BGR_UYVY = 108, + //COLOR_YUV2RGB_VYUY = 109, + //COLOR_YUV2BGR_VYUY = 110, + COLOR_YUV2RGB_Y422 = COLOR_YUV2RGB_UYVY, + COLOR_YUV2BGR_Y422 = COLOR_YUV2BGR_UYVY, + COLOR_YUV2RGB_UYNV = COLOR_YUV2RGB_UYVY, + COLOR_YUV2BGR_UYNV = COLOR_YUV2BGR_UYVY, + + COLOR_YUV2RGBA_UYVY = 111, + COLOR_YUV2BGRA_UYVY = 112, + //COLOR_YUV2RGBA_VYUY = 113, + //COLOR_YUV2BGRA_VYUY = 114, + COLOR_YUV2RGBA_Y422 = COLOR_YUV2RGBA_UYVY, + COLOR_YUV2BGRA_Y422 = COLOR_YUV2BGRA_UYVY, + COLOR_YUV2RGBA_UYNV = COLOR_YUV2RGBA_UYVY, + COLOR_YUV2BGRA_UYNV = COLOR_YUV2BGRA_UYVY, + + COLOR_YUV2RGB_YUY2 = 115, + COLOR_YUV2BGR_YUY2 = 116, + COLOR_YUV2RGB_YVYU = 117, + COLOR_YUV2BGR_YVYU = 118, + COLOR_YUV2RGB_YUYV = COLOR_YUV2RGB_YUY2, + COLOR_YUV2BGR_YUYV = COLOR_YUV2BGR_YUY2, + COLOR_YUV2RGB_YUNV = COLOR_YUV2RGB_YUY2, + COLOR_YUV2BGR_YUNV = COLOR_YUV2BGR_YUY2, + + COLOR_YUV2RGBA_YUY2 = 119, + COLOR_YUV2BGRA_YUY2 = 120, + COLOR_YUV2RGBA_YVYU = 121, + COLOR_YUV2BGRA_YVYU = 122, + COLOR_YUV2RGBA_YUYV = COLOR_YUV2RGBA_YUY2, + COLOR_YUV2BGRA_YUYV = COLOR_YUV2BGRA_YUY2, + COLOR_YUV2RGBA_YUNV = COLOR_YUV2RGBA_YUY2, + COLOR_YUV2BGRA_YUNV = COLOR_YUV2BGRA_YUY2, + + COLOR_YUV2GRAY_UYVY = 123, + COLOR_YUV2GRAY_YUY2 = 124, + //CV_YUV2GRAY_VYUY = CV_YUV2GRAY_UYVY, + COLOR_YUV2GRAY_Y422 = COLOR_YUV2GRAY_UYVY, + COLOR_YUV2GRAY_UYNV = COLOR_YUV2GRAY_UYVY, + COLOR_YUV2GRAY_YVYU = COLOR_YUV2GRAY_YUY2, + COLOR_YUV2GRAY_YUYV = COLOR_YUV2GRAY_YUY2, + COLOR_YUV2GRAY_YUNV = COLOR_YUV2GRAY_YUY2, + + //! alpha premultiplication + COLOR_RGBA2mRGBA = 125, + COLOR_mRGBA2RGBA = 126, + + //! RGB to YUV 4:2:0 family + COLOR_RGB2YUV_I420 = 127, + COLOR_BGR2YUV_I420 = 128, + COLOR_RGB2YUV_IYUV = COLOR_RGB2YUV_I420, + COLOR_BGR2YUV_IYUV = COLOR_BGR2YUV_I420, + + COLOR_RGBA2YUV_I420 = 129, + COLOR_BGRA2YUV_I420 = 130, + COLOR_RGBA2YUV_IYUV = COLOR_RGBA2YUV_I420, + COLOR_BGRA2YUV_IYUV = COLOR_BGRA2YUV_I420, + COLOR_RGB2YUV_YV12 = 131, + COLOR_BGR2YUV_YV12 = 132, + COLOR_RGBA2YUV_YV12 = 133, + COLOR_BGRA2YUV_YV12 = 134, + + //! Demosaicing + COLOR_BayerBG2BGR = 46, + COLOR_BayerGB2BGR = 47, + COLOR_BayerRG2BGR = 48, + COLOR_BayerGR2BGR = 49, + + COLOR_BayerBG2RGB = COLOR_BayerRG2BGR, + COLOR_BayerGB2RGB = COLOR_BayerGR2BGR, + COLOR_BayerRG2RGB = COLOR_BayerBG2BGR, + COLOR_BayerGR2RGB = COLOR_BayerGB2BGR, + + COLOR_BayerBG2GRAY = 86, + COLOR_BayerGB2GRAY = 87, + COLOR_BayerRG2GRAY = 88, + COLOR_BayerGR2GRAY = 89, + + //! Demosaicing using Variable Number of Gradients + COLOR_BayerBG2BGR_VNG = 62, + COLOR_BayerGB2BGR_VNG = 63, + COLOR_BayerRG2BGR_VNG = 64, + COLOR_BayerGR2BGR_VNG = 65, + + COLOR_BayerBG2RGB_VNG = COLOR_BayerRG2BGR_VNG, + COLOR_BayerGB2RGB_VNG = COLOR_BayerGR2BGR_VNG, + COLOR_BayerRG2RGB_VNG = COLOR_BayerBG2BGR_VNG, + COLOR_BayerGR2RGB_VNG = COLOR_BayerGB2BGR_VNG, + + //! Edge-Aware Demosaicing + COLOR_BayerBG2BGR_EA = 135, + COLOR_BayerGB2BGR_EA = 136, + COLOR_BayerRG2BGR_EA = 137, + COLOR_BayerGR2BGR_EA = 138, + + COLOR_BayerBG2RGB_EA = COLOR_BayerRG2BGR_EA, + COLOR_BayerGB2RGB_EA = COLOR_BayerGR2BGR_EA, + COLOR_BayerRG2RGB_EA = COLOR_BayerBG2BGR_EA, + COLOR_BayerGR2RGB_EA = COLOR_BayerGB2BGR_EA, + + + COLOR_COLORCVT_MAX = 139 +}; + +/** types of intersection between rectangles +@ingroup imgproc_shape +*/ +enum RectanglesIntersectTypes { + INTERSECT_NONE = 0, //!< No intersection + INTERSECT_PARTIAL = 1, //!< There is a partial intersection + INTERSECT_FULL = 2 //!< One of the rectangle is fully enclosed in the other +}; + +//! finds arbitrary template in the grayscale image using Generalized Hough Transform +class CV_EXPORTS GeneralizedHough : public Algorithm +{ +public: + //! set template to search + virtual void setTemplate(InputArray templ, Point templCenter = Point(-1, -1)) = 0; + virtual void setTemplate(InputArray edges, InputArray dx, InputArray dy, Point templCenter = Point(-1, -1)) = 0; + + //! find template on image + virtual void detect(InputArray image, OutputArray positions, OutputArray votes = noArray()) = 0; + virtual void detect(InputArray edges, InputArray dx, InputArray dy, OutputArray positions, OutputArray votes = noArray()) = 0; + + //! Canny low threshold. + virtual void setCannyLowThresh(int cannyLowThresh) = 0; + virtual int getCannyLowThresh() const = 0; + + //! Canny high threshold. + virtual void setCannyHighThresh(int cannyHighThresh) = 0; + virtual int getCannyHighThresh() const = 0; + + //! Minimum distance between the centers of the detected objects. + virtual void setMinDist(double minDist) = 0; + virtual double getMinDist() const = 0; + + //! Inverse ratio of the accumulator resolution to the image resolution. + virtual void setDp(double dp) = 0; + virtual double getDp() const = 0; + + //! Maximal size of inner buffers. + virtual void setMaxBufferSize(int maxBufferSize) = 0; + virtual int getMaxBufferSize() const = 0; +}; + +//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122. +//! Detects position only without traslation and rotation +class CV_EXPORTS GeneralizedHoughBallard : public GeneralizedHough +{ +public: + //! R-Table levels. + virtual void setLevels(int levels) = 0; + virtual int getLevels() const = 0; + + //! The accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected. + virtual void setVotesThreshold(int votesThreshold) = 0; + virtual int getVotesThreshold() const = 0; +}; + +//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038. +//! Detects position, traslation and rotation +class CV_EXPORTS GeneralizedHoughGuil : public GeneralizedHough +{ +public: + //! Angle difference in degrees between two points in feature. + virtual void setXi(double xi) = 0; + virtual double getXi() const = 0; + + //! Feature table levels. + virtual void setLevels(int levels) = 0; + virtual int getLevels() const = 0; + + //! Maximal difference between angles that treated as equal. + virtual void setAngleEpsilon(double angleEpsilon) = 0; + virtual double getAngleEpsilon() const = 0; + + //! Minimal rotation angle to detect in degrees. + virtual void setMinAngle(double minAngle) = 0; + virtual double getMinAngle() const = 0; + + //! Maximal rotation angle to detect in degrees. + virtual void setMaxAngle(double maxAngle) = 0; + virtual double getMaxAngle() const = 0; + + //! Angle step in degrees. + virtual void setAngleStep(double angleStep) = 0; + virtual double getAngleStep() const = 0; + + //! Angle votes threshold. + virtual void setAngleThresh(int angleThresh) = 0; + virtual int getAngleThresh() const = 0; + + //! Minimal scale to detect. + virtual void setMinScale(double minScale) = 0; + virtual double getMinScale() const = 0; + + //! Maximal scale to detect. + virtual void setMaxScale(double maxScale) = 0; + virtual double getMaxScale() const = 0; + + //! Scale step. + virtual void setScaleStep(double scaleStep) = 0; + virtual double getScaleStep() const = 0; + + //! Scale votes threshold. + virtual void setScaleThresh(int scaleThresh) = 0; + virtual int getScaleThresh() const = 0; + + //! Position votes threshold. + virtual void setPosThresh(int posThresh) = 0; + virtual int getPosThresh() const = 0; +}; + + +class CV_EXPORTS_W CLAHE : public Algorithm +{ +public: + CV_WRAP virtual void apply(InputArray src, OutputArray dst) = 0; + + CV_WRAP virtual void setClipLimit(double clipLimit) = 0; + CV_WRAP virtual double getClipLimit() const = 0; + + CV_WRAP virtual void setTilesGridSize(Size tileGridSize) = 0; + CV_WRAP virtual Size getTilesGridSize() const = 0; + + CV_WRAP virtual void collectGarbage() = 0; +}; + + +//! @addtogroup imgproc_subdiv2d +//! @{ + +class CV_EXPORTS_W Subdiv2D +{ +public: + /** Subdiv2D point location cases */ + enum { PTLOC_ERROR = -2, //!< Point location error + PTLOC_OUTSIDE_RECT = -1, //!< Point outside the subdivision bounding rect + PTLOC_INSIDE = 0, //!< Point inside some facet + PTLOC_VERTEX = 1, //!< Point coincides with one of the subdivision vertices + PTLOC_ON_EDGE = 2 //!< Point on some edge + }; + + /** Subdiv2D edge type navigation (see: getEdge()) */ + enum { NEXT_AROUND_ORG = 0x00, + NEXT_AROUND_DST = 0x22, + PREV_AROUND_ORG = 0x11, + PREV_AROUND_DST = 0x33, + NEXT_AROUND_LEFT = 0x13, + NEXT_AROUND_RIGHT = 0x31, + PREV_AROUND_LEFT = 0x20, + PREV_AROUND_RIGHT = 0x02 + }; + + /** creates an empty Subdiv2D object. + To create a new empty Delaunay subdivision you need to use the initDelaunay() function. + */ + CV_WRAP Subdiv2D(); + + /** @overload + + @param rect – Rectangle that includes all of the 2D points that are to be added to the subdivision. + + The function creates an empty Delaunay subdivision where 2D points can be added using the function + insert() . All of the points to be added must be within the specified rectangle, otherwise a runtime + error is raised. + */ + CV_WRAP Subdiv2D(Rect rect); + + /** @brief Creates a new empty Delaunay subdivision + + @param rect – Rectangle that includes all of the 2D points that are to be added to the subdivision. + + */ + CV_WRAP void initDelaunay(Rect rect); + + /** @brief Insert a single point into a Delaunay triangulation. + + @param pt – Point to insert. + + The function inserts a single point into a subdivision and modifies the subdivision topology + appropriately. If a point with the same coordinates exists already, no new point is added. + @returns the ID of the point. + + @note If the point is outside of the triangulation specified rect a runtime error is raised. + */ + CV_WRAP int insert(Point2f pt); + + /** @brief Insert multiple points into a Delaunay triangulation. + + @param ptvec – Points to insert. + + The function inserts a vector of points into a subdivision and modifies the subdivision topology + appropriately. + */ + CV_WRAP void insert(const std::vector& ptvec); + + /** @brief Returns the location of a point within a Delaunay triangulation. + + @param pt – Point to locate. + @param edge – Output edge that the point belongs to or is located to the right of it. + @param vertex – Optional output vertex the input point coincides with. + + The function locates the input point within the subdivision and gives one of the triangle edges + or vertices. + + @returns an integer which specify one of the following five cases for point location: + - The point falls into some facet. The function returns PTLOC_INSIDE and edge will contain one of + edges of the facet. + - The point falls onto the edge. The function returns PTLOC_ON_EDGE and edge will contain this edge. + - The point coincides with one of the subdivision vertices. The function returns PTLOC_VERTEX and + vertex will contain a pointer to the vertex. + - The point is outside the subdivision reference rectangle. The function returns PTLOC_OUTSIDE_RECT + and no pointers are filled. + - One of input arguments is invalid. A runtime error is raised or, if silent or “parent” error + processing mode is selected, CV_PTLOC_ERROR is returnd. + */ + CV_WRAP int locate(Point2f pt, CV_OUT int& edge, CV_OUT int& vertex); + + /** @brief Finds the subdivision vertex closest to the given point. + + @param pt – Input point. + @param nearestPt – Output subdivision vertex point. + + The function is another function that locates the input point within the subdivision. It finds the + subdivision vertex that is the closest to the input point. It is not necessarily one of vertices + of the facet containing the input point, though the facet (located using locate() ) is used as a + starting point. + + @returns vertex ID. + */ + CV_WRAP int findNearest(Point2f pt, CV_OUT Point2f* nearestPt = 0); + + /** @brief Returns a list of all edges. + + @param edgeList – Output vector. + + The function gives each edge as a 4 numbers vector, where each two are one of the edge + vertices. i.e. org_x = v[0], org_y = v[1], dst_x = v[2], dst_y = v[3]. + */ + CV_WRAP void getEdgeList(CV_OUT std::vector& edgeList) const; + + /** @brief Returns a list of the leading edge ID connected to each triangle. + + @param leadingEdgeList – Output vector. + + The function gives one edge ID for each triangle. + */ + CV_WRAP void getLeadingEdgeList(CV_OUT std::vector& leadingEdgeList) const; + + /** @brief Returns a list of all triangles. + + @param triangleList – Output vector. + + The function gives each triangle as a 6 numbers vector, where each two are one of the triangle + vertices. i.e. p1_x = v[0], p1_y = v[1], p2_x = v[2], p2_y = v[3], p3_x = v[4], p3_y = v[5]. + */ + CV_WRAP void getTriangleList(CV_OUT std::vector& triangleList) const; + + /** @brief Returns a list of all Voroni facets. + + @param idx – Vector of vertices IDs to consider. For all vertices you can pass empty vector. + @param facetList – Output vector of the Voroni facets. + @param facetCenters – Output vector of the Voroni facets center points. + + */ + CV_WRAP void getVoronoiFacetList(const std::vector& idx, CV_OUT std::vector >& facetList, + CV_OUT std::vector& facetCenters); + + /** @brief Returns vertex location from vertex ID. + + @param vertex – vertex ID. + @param firstEdge – Optional. The first edge ID which is connected to the vertex. + @returns vertex (x,y) + + */ + CV_WRAP Point2f getVertex(int vertex, CV_OUT int* firstEdge = 0) const; + + /** @brief Returns one of the edges related to the given edge. + + @param edge – Subdivision edge ID. + @param nextEdgeType - Parameter specifying which of the related edges to return. + The following values are possible: + - NEXT_AROUND_ORG next around the edge origin ( eOnext on the picture below if e is the input edge) + - NEXT_AROUND_DST next around the edge vertex ( eDnext ) + - PREV_AROUND_ORG previous around the edge origin (reversed eRnext ) + - PREV_AROUND_DST previous around the edge destination (reversed eLnext ) + - NEXT_AROUND_LEFT next around the left facet ( eLnext ) + - NEXT_AROUND_RIGHT next around the right facet ( eRnext ) + - PREV_AROUND_LEFT previous around the left facet (reversed eOnext ) + - PREV_AROUND_RIGHT previous around the right facet (reversed eDnext ) + + ![sample output](pics/quadedge.png) + + @returns edge ID related to the input edge. + */ + CV_WRAP int getEdge( int edge, int nextEdgeType ) const; + + /** @brief Returns next edge around the edge origin. + + @param edge – Subdivision edge ID. + + @returns an integer which is next edge ID around the edge origin: eOnext on the + picture above if e is the input edge). + */ + CV_WRAP int nextEdge(int edge) const; + + /** @brief Returns another edge of the same quad-edge. + + @param edge – Subdivision edge ID. + @param rotate - Parameter specifying which of the edges of the same quad-edge as the input + one to return. The following values are possible: + - 0 - the input edge ( e on the picture below if e is the input edge) + - 1 - the rotated edge ( eRot ) + - 2 - the reversed edge (reversed e (in green)) + - 3 - the reversed rotated edge (reversed eRot (in green)) + + @returns one of the edges ID of the same quad-edge as the input edge. + */ + CV_WRAP int rotateEdge(int edge, int rotate) const; + CV_WRAP int symEdge(int edge) const; + + /** @brief Returns the edge origin. + + @param edge – Subdivision edge ID. + @param orgpt – Output vertex location. + + @returns vertex ID. + */ + CV_WRAP int edgeOrg(int edge, CV_OUT Point2f* orgpt = 0) const; + + /** @brief Returns the edge destination. + + @param edge – Subdivision edge ID. + @param dstpt – Output vertex location. + + @returns vertex ID. + */ + CV_WRAP int edgeDst(int edge, CV_OUT Point2f* dstpt = 0) const; + +protected: + int newEdge(); + void deleteEdge(int edge); + int newPoint(Point2f pt, bool isvirtual, int firstEdge = 0); + void deletePoint(int vtx); + void setEdgePoints( int edge, int orgPt, int dstPt ); + void splice( int edgeA, int edgeB ); + int connectEdges( int edgeA, int edgeB ); + void swapEdges( int edge ); + int isRightOf(Point2f pt, int edge) const; + void calcVoronoi(); + void clearVoronoi(); + void checkSubdiv() const; + + struct CV_EXPORTS Vertex + { + Vertex(); + Vertex(Point2f pt, bool _isvirtual, int _firstEdge=0); + bool isvirtual() const; + bool isfree() const; + + int firstEdge; + int type; + Point2f pt; + }; + + struct CV_EXPORTS QuadEdge + { + QuadEdge(); + QuadEdge(int edgeidx); + bool isfree() const; + + int next[4]; + int pt[4]; + }; + + //! All of the vertices + std::vector vtx; + //! All of the edges + std::vector qedges; + int freeQEdge; + int freePoint; + bool validGeometry; + + int recentEdge; + //! Top left corner of the bounding rect + Point2f topLeft; + //! Bottom right corner of the bounding rect + Point2f bottomRight; +}; + +//! @} imgproc_subdiv2d + +//! @addtogroup imgproc_feature +//! @{ + +/** @example lsd_lines.cpp +An example using the LineSegmentDetector +*/ + +/** @brief Line segment detector class + +following the algorithm described at @cite Rafael12 . +*/ +class CV_EXPORTS_W LineSegmentDetector : public Algorithm +{ +public: + + /** @brief Finds lines in the input image. + + This is the output of the default parameters of the algorithm on the above shown image. + + ![image](pics/building_lsd.png) + + @param _image A grayscale (CV_8UC1) input image. If only a roi needs to be selected, use: + `lsd_ptr-\>detect(image(roi), lines, ...); lines += Scalar(roi.x, roi.y, roi.x, roi.y);` + @param _lines A vector of Vec4i or Vec4f elements specifying the beginning and ending point of a line. Where + Vec4i/Vec4f is (x1, y1, x2, y2), point 1 is the start, point 2 - end. Returned lines are strictly + oriented depending on the gradient. + @param width Vector of widths of the regions, where the lines are found. E.g. Width of line. + @param prec Vector of precisions with which the lines are found. + @param nfa Vector containing number of false alarms in the line region, with precision of 10%. The + bigger the value, logarithmically better the detection. + - -1 corresponds to 10 mean false alarms + - 0 corresponds to 1 mean false alarm + - 1 corresponds to 0.1 mean false alarms + This vector will be calculated only when the objects type is LSD_REFINE_ADV. + */ + CV_WRAP virtual void detect(InputArray _image, OutputArray _lines, + OutputArray width = noArray(), OutputArray prec = noArray(), + OutputArray nfa = noArray()) = 0; + + /** @brief Draws the line segments on a given image. + @param _image The image, where the liens will be drawn. Should be bigger or equal to the image, + where the lines were found. + @param lines A vector of the lines that needed to be drawn. + */ + CV_WRAP virtual void drawSegments(InputOutputArray _image, InputArray lines) = 0; + + /** @brief Draws two groups of lines in blue and red, counting the non overlapping (mismatching) pixels. + + @param size The size of the image, where lines1 and lines2 were found. + @param lines1 The first group of lines that needs to be drawn. It is visualized in blue color. + @param lines2 The second group of lines. They visualized in red color. + @param _image Optional image, where the lines will be drawn. The image should be color(3-channel) + in order for lines1 and lines2 to be drawn in the above mentioned colors. + */ + CV_WRAP virtual int compareSegments(const Size& size, InputArray lines1, InputArray lines2, InputOutputArray _image = noArray()) = 0; + + virtual ~LineSegmentDetector() { } +}; + +/** @brief Creates a smart pointer to a LineSegmentDetector object and initializes it. + +The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want +to edit those, as to tailor it for their own application. + +@param _refine The way found lines will be refined, see cv::LineSegmentDetectorModes +@param _scale The scale of the image that will be used to find the lines. Range (0..1]. +@param _sigma_scale Sigma for Gaussian filter. It is computed as sigma = _sigma_scale/_scale. +@param _quant Bound to the quantization error on the gradient norm. +@param _ang_th Gradient angle tolerance in degrees. +@param _log_eps Detection threshold: -log10(NFA) \> log_eps. Used only when advancent refinement +is chosen. +@param _density_th Minimal density of aligned region points in the enclosing rectangle. +@param _n_bins Number of bins in pseudo-ordering of gradient modulus. + */ +CV_EXPORTS_W Ptr createLineSegmentDetector( + int _refine = LSD_REFINE_STD, double _scale = 0.8, + double _sigma_scale = 0.6, double _quant = 2.0, double _ang_th = 22.5, + double _log_eps = 0, double _density_th = 0.7, int _n_bins = 1024); + +//! @} imgproc_feature + +//! @addtogroup imgproc_filter +//! @{ + +/** @brief Returns Gaussian filter coefficients. + +The function computes and returns the \f$\texttt{ksize} \times 1\f$ matrix of Gaussian filter +coefficients: + +\f[G_i= \alpha *e^{-(i-( \texttt{ksize} -1)/2)^2/(2* \texttt{sigma}^2)},\f] + +where \f$i=0..\texttt{ksize}-1\f$ and \f$\alpha\f$ is the scale factor chosen so that \f$\sum_i G_i=1\f$. + +Two of such generated kernels can be passed to sepFilter2D. Those functions automatically recognize +smoothing kernels (a symmetrical kernel with sum of weights equal to 1) and handle them accordingly. +You may also use the higher-level GaussianBlur. +@param ksize Aperture size. It should be odd ( \f$\texttt{ksize} \mod 2 = 1\f$ ) and positive. +@param sigma Gaussian standard deviation. If it is non-positive, it is computed from ksize as +`sigma = 0.3\*((ksize-1)\*0.5 - 1) + 0.8`. +@param ktype Type of filter coefficients. It can be CV_32F or CV_64F . +@sa sepFilter2D, getDerivKernels, getStructuringElement, GaussianBlur + */ +CV_EXPORTS_W Mat getGaussianKernel( int ksize, double sigma, int ktype = CV_64F ); + +/** @brief Returns filter coefficients for computing spatial image derivatives. + +The function computes and returns the filter coefficients for spatial image derivatives. When +`ksize=CV_SCHARR`, the Scharr \f$3 \times 3\f$ kernels are generated (see cv::Scharr). Otherwise, Sobel +kernels are generated (see cv::Sobel). The filters are normally passed to sepFilter2D or to + +@param kx Output matrix of row filter coefficients. It has the type ktype . +@param ky Output matrix of column filter coefficients. It has the type ktype . +@param dx Derivative order in respect of x. +@param dy Derivative order in respect of y. +@param ksize Aperture size. It can be CV_SCHARR, 1, 3, 5, or 7. +@param normalize Flag indicating whether to normalize (scale down) the filter coefficients or not. +Theoretically, the coefficients should have the denominator \f$=2^{ksize*2-dx-dy-2}\f$. If you are +going to filter floating-point images, you are likely to use the normalized kernels. But if you +compute derivatives of an 8-bit image, store the results in a 16-bit image, and wish to preserve +all the fractional bits, you may want to set normalize=false . +@param ktype Type of filter coefficients. It can be CV_32f or CV_64F . + */ +CV_EXPORTS_W void getDerivKernels( OutputArray kx, OutputArray ky, + int dx, int dy, int ksize, + bool normalize = false, int ktype = CV_32F ); + +/** @brief Returns Gabor filter coefficients. + +For more details about gabor filter equations and parameters, see: [Gabor +Filter](http://en.wikipedia.org/wiki/Gabor_filter). + +@param ksize Size of the filter returned. +@param sigma Standard deviation of the gaussian envelope. +@param theta Orientation of the normal to the parallel stripes of a Gabor function. +@param lambd Wavelength of the sinusoidal factor. +@param gamma Spatial aspect ratio. +@param psi Phase offset. +@param ktype Type of filter coefficients. It can be CV_32F or CV_64F . + */ +CV_EXPORTS_W Mat getGaborKernel( Size ksize, double sigma, double theta, double lambd, + double gamma, double psi = CV_PI*0.5, int ktype = CV_64F ); + +//! returns "magic" border value for erosion and dilation. It is automatically transformed to Scalar::all(-DBL_MAX) for dilation. +static inline Scalar morphologyDefaultBorderValue() { return Scalar::all(DBL_MAX); } + +/** @brief Returns a structuring element of the specified size and shape for morphological operations. + +The function constructs and returns the structuring element that can be further passed to cv::erode, +cv::dilate or cv::morphologyEx. But you can also construct an arbitrary binary mask yourself and use it as +the structuring element. + +@param shape Element shape that could be one of cv::MorphShapes +@param ksize Size of the structuring element. +@param anchor Anchor position within the element. The default value \f$(-1, -1)\f$ means that the +anchor is at the center. Note that only the shape of a cross-shaped element depends on the anchor +position. In other cases the anchor just regulates how much the result of the morphological +operation is shifted. + */ +CV_EXPORTS_W Mat getStructuringElement(int shape, Size ksize, Point anchor = Point(-1,-1)); + +/** @brief Blurs an image using the median filter. + +The function smoothes an image using the median filter with the \f$\texttt{ksize} \times +\texttt{ksize}\f$ aperture. Each channel of a multi-channel image is processed independently. +In-place operation is supported. + +@note The median filter uses BORDER_REPLICATE internally to cope with border pixels, see cv::BorderTypes + +@param src input 1-, 3-, or 4-channel image; when ksize is 3 or 5, the image depth should be +CV_8U, CV_16U, or CV_32F, for larger aperture sizes, it can only be CV_8U. +@param dst destination array of the same size and type as src. +@param ksize aperture linear size; it must be odd and greater than 1, for example: 3, 5, 7 ... +@sa bilateralFilter, blur, boxFilter, GaussianBlur + */ +CV_EXPORTS_W void medianBlur( InputArray src, OutputArray dst, int ksize ); + +/** @brief Blurs an image using a Gaussian filter. + +The function convolves the source image with the specified Gaussian kernel. In-place filtering is +supported. + +@param src input image; the image can have any number of channels, which are processed +independently, but the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. +@param dst output image of the same size and type as src. +@param ksize Gaussian kernel size. ksize.width and ksize.height can differ but they both must be +positive and odd. Or, they can be zero's and then they are computed from sigma. +@param sigmaX Gaussian kernel standard deviation in X direction. +@param sigmaY Gaussian kernel standard deviation in Y direction; if sigmaY is zero, it is set to be +equal to sigmaX, if both sigmas are zeros, they are computed from ksize.width and ksize.height, +respectively (see cv::getGaussianKernel for details); to fully control the result regardless of +possible future modifications of all this semantics, it is recommended to specify all of ksize, +sigmaX, and sigmaY. +@param borderType pixel extrapolation method, see cv::BorderTypes + +@sa sepFilter2D, filter2D, blur, boxFilter, bilateralFilter, medianBlur + */ +CV_EXPORTS_W void GaussianBlur( InputArray src, OutputArray dst, Size ksize, + double sigmaX, double sigmaY = 0, + int borderType = BORDER_DEFAULT ); + +/** @brief Applies the bilateral filter to an image. + +The function applies bilateral filtering to the input image, as described in +http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html +bilateralFilter can reduce unwanted noise very well while keeping edges fairly sharp. However, it is +very slow compared to most filters. + +_Sigma values_: For simplicity, you can set the 2 sigma values to be the same. If they are small (\< +10), the filter will not have much effect, whereas if they are large (\> 150), they will have a very +strong effect, making the image look "cartoonish". + +_Filter size_: Large filters (d \> 5) are very slow, so it is recommended to use d=5 for real-time +applications, and perhaps d=9 for offline applications that need heavy noise filtering. + +This filter does not work inplace. +@param src Source 8-bit or floating-point, 1-channel or 3-channel image. +@param dst Destination image of the same size and type as src . +@param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive, +it is computed from sigmaSpace. +@param sigmaColor Filter sigma in the color space. A larger value of the parameter means that +farther colors within the pixel neighborhood (see sigmaSpace) will be mixed together, resulting +in larger areas of semi-equal color. +@param sigmaSpace Filter sigma in the coordinate space. A larger value of the parameter means that +farther pixels will influence each other as long as their colors are close enough (see sigmaColor +). When d\>0, it specifies the neighborhood size regardless of sigmaSpace. Otherwise, d is +proportional to sigmaSpace. +@param borderType border mode used to extrapolate pixels outside of the image, see cv::BorderTypes + */ +CV_EXPORTS_W void bilateralFilter( InputArray src, OutputArray dst, int d, + double sigmaColor, double sigmaSpace, + int borderType = BORDER_DEFAULT ); + +/** @brief Blurs an image using the box filter. + +The function smoothes an image using the kernel: + +\f[\texttt{K} = \alpha \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{bmatrix}\f] + +where + +\f[\alpha = \fork{\frac{1}{\texttt{ksize.width*ksize.height}}}{when \texttt{normalize=true}}{1}{otherwise}\f] + +Unnormalized box filter is useful for computing various integral characteristics over each pixel +neighborhood, such as covariance matrices of image derivatives (used in dense optical flow +algorithms, and so on). If you need to compute pixel sums over variable-size windows, use cv::integral. + +@param src input image. +@param dst output image of the same size and type as src. +@param ddepth the output image depth (-1 to use src.depth()). +@param ksize blurring kernel size. +@param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel +center. +@param normalize flag, specifying whether the kernel is normalized by its area or not. +@param borderType border mode used to extrapolate pixels outside of the image, see cv::BorderTypes +@sa blur, bilateralFilter, GaussianBlur, medianBlur, integral + */ +CV_EXPORTS_W void boxFilter( InputArray src, OutputArray dst, int ddepth, + Size ksize, Point anchor = Point(-1,-1), + bool normalize = true, + int borderType = BORDER_DEFAULT ); + +/** @brief Calculates the normalized sum of squares of the pixel values overlapping the filter. + +For every pixel \f$ (x, y) \f$ in the source image, the function calculates the sum of squares of those neighboring +pixel values which overlap the filter placed over the pixel \f$ (x, y) \f$. + +The unnormalized square box filter can be useful in computing local image statistics such as the the local +variance and standard deviation around the neighborhood of a pixel. + +@param _src input image +@param _dst output image of the same size and type as _src +@param ddepth the output image depth (-1 to use src.depth()) +@param ksize kernel size +@param anchor kernel anchor point. The default value of Point(-1, -1) denotes that the anchor is at the kernel +center. +@param normalize flag, specifying whether the kernel is to be normalized by it's area or not. +@param borderType border mode used to extrapolate pixels outside of the image, see cv::BorderTypes +@sa boxFilter +*/ +CV_EXPORTS_W void sqrBoxFilter( InputArray _src, OutputArray _dst, int ddepth, + Size ksize, Point anchor = Point(-1, -1), + bool normalize = true, + int borderType = BORDER_DEFAULT ); + +/** @brief Blurs an image using the normalized box filter. + +The function smoothes an image using the kernel: + +\f[\texttt{K} = \frac{1}{\texttt{ksize.width*ksize.height}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \end{bmatrix}\f] + +The call `blur(src, dst, ksize, anchor, borderType)` is equivalent to `boxFilter(src, dst, src.type(), +anchor, true, borderType)`. + +@param src input image; it can have any number of channels, which are processed independently, but +the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. +@param dst output image of the same size and type as src. +@param ksize blurring kernel size. +@param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel +center. +@param borderType border mode used to extrapolate pixels outside of the image, see cv::BorderTypes +@sa boxFilter, bilateralFilter, GaussianBlur, medianBlur + */ +CV_EXPORTS_W void blur( InputArray src, OutputArray dst, + Size ksize, Point anchor = Point(-1,-1), + int borderType = BORDER_DEFAULT ); + +/** @brief Convolves an image with the kernel. + +The function applies an arbitrary linear filter to an image. In-place operation is supported. When +the aperture is partially outside the image, the function interpolates outlier pixel values +according to the specified border mode. + +The function does actually compute correlation, not the convolution: + +\f[\texttt{dst} (x,y) = \sum _{ \stackrel{0\leq x' < \texttt{kernel.cols},}{0\leq y' < \texttt{kernel.rows}} } \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )\f] + +That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip +the kernel using cv::flip and set the new anchor to `(kernel.cols - anchor.x - 1, kernel.rows - +anchor.y - 1)`. + +The function uses the DFT-based algorithm in case of sufficiently large kernels (~`11 x 11` or +larger) and the direct algorithm for small kernels. + +@param src input image. +@param dst output image of the same size and the same number of channels as src. +@param ddepth desired depth of the destination image, see @ref filter_depths "combinations" +@param kernel convolution kernel (or rather a correlation kernel), a single-channel floating point +matrix; if you want to apply different kernels to different channels, split the image into +separate color planes using split and process them individually. +@param anchor anchor of the kernel that indicates the relative position of a filtered point within +the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor +is at the kernel center. +@param delta optional value added to the filtered pixels before storing them in dst. +@param borderType pixel extrapolation method, see cv::BorderTypes +@sa sepFilter2D, dft, matchTemplate + */ +CV_EXPORTS_W void filter2D( InputArray src, OutputArray dst, int ddepth, + InputArray kernel, Point anchor = Point(-1,-1), + double delta = 0, int borderType = BORDER_DEFAULT ); + +/** @brief Applies a separable linear filter to an image. + +The function applies a separable linear filter to the image. That is, first, every row of src is +filtered with the 1D kernel kernelX. Then, every column of the result is filtered with the 1D +kernel kernelY. The final result shifted by delta is stored in dst . + +@param src Source image. +@param dst Destination image of the same size and the same number of channels as src . +@param ddepth Destination image depth, see @ref filter_depths "combinations" +@param kernelX Coefficients for filtering each row. +@param kernelY Coefficients for filtering each column. +@param anchor Anchor position within the kernel. The default value \f$(-1,-1)\f$ means that the anchor +is at the kernel center. +@param delta Value added to the filtered results before storing them. +@param borderType Pixel extrapolation method, see cv::BorderTypes +@sa filter2D, Sobel, GaussianBlur, boxFilter, blur + */ +CV_EXPORTS_W void sepFilter2D( InputArray src, OutputArray dst, int ddepth, + InputArray kernelX, InputArray kernelY, + Point anchor = Point(-1,-1), + double delta = 0, int borderType = BORDER_DEFAULT ); + +/** @brief Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator. + +In all cases except one, the \f$\texttt{ksize} \times \texttt{ksize}\f$ separable kernel is used to +calculate the derivative. When \f$\texttt{ksize = 1}\f$, the \f$3 \times 1\f$ or \f$1 \times 3\f$ +kernel is used (that is, no Gaussian smoothing is done). `ksize = 1` can only be used for the first +or the second x- or y- derivatives. + +There is also the special value `ksize = CV_SCHARR (-1)` that corresponds to the \f$3\times3\f$ Scharr +filter that may give more accurate results than the \f$3\times3\f$ Sobel. The Scharr aperture is + +\f[\vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}\f] + +for the x-derivative, or transposed for the y-derivative. + +The function calculates an image derivative by convolving the image with the appropriate kernel: + +\f[\texttt{dst} = \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}\f] + +The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less +resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3) +or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first +case corresponds to a kernel of: + +\f[\vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}\f] + +The second case corresponds to a kernel of: + +\f[\vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}\f] + +@param src input image. +@param dst output image of the same size and the same number of channels as src . +@param ddepth output image depth, see @ref filter_depths "combinations"; in the case of + 8-bit input images it will result in truncated derivatives. +@param dx order of the derivative x. +@param dy order of the derivative y. +@param ksize size of the extended Sobel kernel; it must be 1, 3, 5, or 7. +@param scale optional scale factor for the computed derivative values; by default, no scaling is +applied (see cv::getDerivKernels for details). +@param delta optional delta value that is added to the results prior to storing them in dst. +@param borderType pixel extrapolation method, see cv::BorderTypes +@sa Scharr, Laplacian, sepFilter2D, filter2D, GaussianBlur, cartToPolar + */ +CV_EXPORTS_W void Sobel( InputArray src, OutputArray dst, int ddepth, + int dx, int dy, int ksize = 3, + double scale = 1, double delta = 0, + int borderType = BORDER_DEFAULT ); + +/** @brief Calculates the first order image derivative in both x and y using a Sobel operator + +Equivalent to calling: + +@code +Sobel( src, dx, CV_16SC1, 1, 0, 3 ); +Sobel( src, dy, CV_16SC1, 0, 1, 3 ); +@endcode + +@param src input image. +@param dx output image with first-order derivative in x. +@param dy output image with first-order derivative in y. +@param ksize size of Sobel kernel. It must be 3. +@param borderType pixel extrapolation method, see cv::BorderTypes + +@sa Sobel + */ + +CV_EXPORTS_W void spatialGradient( InputArray src, OutputArray dx, + OutputArray dy, int ksize = 3, + int borderType = BORDER_DEFAULT ); + +/** @brief Calculates the first x- or y- image derivative using Scharr operator. + +The function computes the first x- or y- spatial image derivative using the Scharr operator. The +call + +\f[\texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)}\f] + +is equivalent to + +\f[\texttt{Sobel(src, dst, ddepth, dx, dy, CV\_SCHARR, scale, delta, borderType)} .\f] + +@param src input image. +@param dst output image of the same size and the same number of channels as src. +@param ddepth output image depth, see @ref filter_depths "combinations" +@param dx order of the derivative x. +@param dy order of the derivative y. +@param scale optional scale factor for the computed derivative values; by default, no scaling is +applied (see getDerivKernels for details). +@param delta optional delta value that is added to the results prior to storing them in dst. +@param borderType pixel extrapolation method, see cv::BorderTypes +@sa cartToPolar + */ +CV_EXPORTS_W void Scharr( InputArray src, OutputArray dst, int ddepth, + int dx, int dy, double scale = 1, double delta = 0, + int borderType = BORDER_DEFAULT ); + +/** @example laplace.cpp + An example using Laplace transformations for edge detection +*/ + +/** @brief Calculates the Laplacian of an image. + +The function calculates the Laplacian of the source image by adding up the second x and y +derivatives calculated using the Sobel operator: + +\f[\texttt{dst} = \Delta \texttt{src} = \frac{\partial^2 \texttt{src}}{\partial x^2} + \frac{\partial^2 \texttt{src}}{\partial y^2}\f] + +This is done when `ksize > 1`. When `ksize == 1`, the Laplacian is computed by filtering the image +with the following \f$3 \times 3\f$ aperture: + +\f[\vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}\f] + +@param src Source image. +@param dst Destination image of the same size and the same number of channels as src . +@param ddepth Desired depth of the destination image. +@param ksize Aperture size used to compute the second-derivative filters. See getDerivKernels for +details. The size must be positive and odd. +@param scale Optional scale factor for the computed Laplacian values. By default, no scaling is +applied. See getDerivKernels for details. +@param delta Optional delta value that is added to the results prior to storing them in dst . +@param borderType Pixel extrapolation method, see cv::BorderTypes +@sa Sobel, Scharr + */ +CV_EXPORTS_W void Laplacian( InputArray src, OutputArray dst, int ddepth, + int ksize = 1, double scale = 1, double delta = 0, + int borderType = BORDER_DEFAULT ); + +//! @} imgproc_filter + +//! @addtogroup imgproc_feature +//! @{ + +/** @example edge.cpp + An example on using the canny edge detector +*/ + +/** @brief Finds edges in an image using the Canny algorithm @cite Canny86 . + +The function finds edges in the input image image and marks them in the output map edges using the +Canny algorithm. The smallest value between threshold1 and threshold2 is used for edge linking. The +largest value is used to find initial segments of strong edges. See + + +@param image 8-bit input image. +@param edges output edge map; single channels 8-bit image, which has the same size as image . +@param threshold1 first threshold for the hysteresis procedure. +@param threshold2 second threshold for the hysteresis procedure. +@param apertureSize aperture size for the Sobel operator. +@param L2gradient a flag, indicating whether a more accurate \f$L_2\f$ norm +\f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to calculate the image gradient magnitude ( +L2gradient=true ), or whether the default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough ( +L2gradient=false ). + */ +CV_EXPORTS_W void Canny( InputArray image, OutputArray edges, + double threshold1, double threshold2, + int apertureSize = 3, bool L2gradient = false ); + +/** \overload + +Finds edges in an image using the Canny algorithm with custom image gradient. + +@param dx 16-bit x derivative of input image (CV_16SC1 or CV_16SC3). +@param dy 16-bit y derivative of input image (same type as dx). +@param edges,threshold1,threshold2,L2gradient See cv::Canny + */ +CV_EXPORTS_W void Canny( InputArray dx, InputArray dy, + OutputArray edges, + double threshold1, double threshold2, + bool L2gradient = false ); + +/** @brief Calculates the minimal eigenvalue of gradient matrices for corner detection. + +The function is similar to cornerEigenValsAndVecs but it calculates and stores only the minimal +eigenvalue of the covariance matrix of derivatives, that is, \f$\min(\lambda_1, \lambda_2)\f$ in terms +of the formulae in the cornerEigenValsAndVecs description. + +@param src Input single-channel 8-bit or floating-point image. +@param dst Image to store the minimal eigenvalues. It has the type CV_32FC1 and the same size as +src . +@param blockSize Neighborhood size (see the details on cornerEigenValsAndVecs ). +@param ksize Aperture parameter for the Sobel operator. +@param borderType Pixel extrapolation method. See cv::BorderTypes. + */ +CV_EXPORTS_W void cornerMinEigenVal( InputArray src, OutputArray dst, + int blockSize, int ksize = 3, + int borderType = BORDER_DEFAULT ); + +/** @brief Harris corner detector. + +The function runs the Harris corner detector on the image. Similarly to cornerMinEigenVal and +cornerEigenValsAndVecs , for each pixel \f$(x, y)\f$ it calculates a \f$2\times2\f$ gradient covariance +matrix \f$M^{(x,y)}\f$ over a \f$\texttt{blockSize} \times \texttt{blockSize}\f$ neighborhood. Then, it +computes the following characteristic: + +\f[\texttt{dst} (x,y) = \mathrm{det} M^{(x,y)} - k \cdot \left ( \mathrm{tr} M^{(x,y)} \right )^2\f] + +Corners in the image can be found as the local maxima of this response map. + +@param src Input single-channel 8-bit or floating-point image. +@param dst Image to store the Harris detector responses. It has the type CV_32FC1 and the same +size as src . +@param blockSize Neighborhood size (see the details on cornerEigenValsAndVecs ). +@param ksize Aperture parameter for the Sobel operator. +@param k Harris detector free parameter. See the formula below. +@param borderType Pixel extrapolation method. See cv::BorderTypes. + */ +CV_EXPORTS_W void cornerHarris( InputArray src, OutputArray dst, int blockSize, + int ksize, double k, + int borderType = BORDER_DEFAULT ); + +/** @brief Calculates eigenvalues and eigenvectors of image blocks for corner detection. + +For every pixel \f$p\f$ , the function cornerEigenValsAndVecs considers a blockSize \f$\times\f$ blockSize +neighborhood \f$S(p)\f$ . It calculates the covariation matrix of derivatives over the neighborhood as: + +\f[M = \begin{bmatrix} \sum _{S(p)}(dI/dx)^2 & \sum _{S(p)}dI/dx dI/dy \\ \sum _{S(p)}dI/dx dI/dy & \sum _{S(p)}(dI/dy)^2 \end{bmatrix}\f] + +where the derivatives are computed using the Sobel operator. + +After that, it finds eigenvectors and eigenvalues of \f$M\f$ and stores them in the destination image as +\f$(\lambda_1, \lambda_2, x_1, y_1, x_2, y_2)\f$ where + +- \f$\lambda_1, \lambda_2\f$ are the non-sorted eigenvalues of \f$M\f$ +- \f$x_1, y_1\f$ are the eigenvectors corresponding to \f$\lambda_1\f$ +- \f$x_2, y_2\f$ are the eigenvectors corresponding to \f$\lambda_2\f$ + +The output of the function can be used for robust edge or corner detection. + +@param src Input single-channel 8-bit or floating-point image. +@param dst Image to store the results. It has the same size as src and the type CV_32FC(6) . +@param blockSize Neighborhood size (see details below). +@param ksize Aperture parameter for the Sobel operator. +@param borderType Pixel extrapolation method. See cv::BorderTypes. + +@sa cornerMinEigenVal, cornerHarris, preCornerDetect + */ +CV_EXPORTS_W void cornerEigenValsAndVecs( InputArray src, OutputArray dst, + int blockSize, int ksize, + int borderType = BORDER_DEFAULT ); + +/** @brief Calculates a feature map for corner detection. + +The function calculates the complex spatial derivative-based function of the source image + +\f[\texttt{dst} = (D_x \texttt{src} )^2 \cdot D_{yy} \texttt{src} + (D_y \texttt{src} )^2 \cdot D_{xx} \texttt{src} - 2 D_x \texttt{src} \cdot D_y \texttt{src} \cdot D_{xy} \texttt{src}\f] + +where \f$D_x\f$,\f$D_y\f$ are the first image derivatives, \f$D_{xx}\f$,\f$D_{yy}\f$ are the second image +derivatives, and \f$D_{xy}\f$ is the mixed derivative. + +The corners can be found as local maximums of the functions, as shown below: +@code + Mat corners, dilated_corners; + preCornerDetect(image, corners, 3); + // dilation with 3x3 rectangular structuring element + dilate(corners, dilated_corners, Mat(), 1); + Mat corner_mask = corners == dilated_corners; +@endcode + +@param src Source single-channel 8-bit of floating-point image. +@param dst Output image that has the type CV_32F and the same size as src . +@param ksize %Aperture size of the Sobel . +@param borderType Pixel extrapolation method. See cv::BorderTypes. + */ +CV_EXPORTS_W void preCornerDetect( InputArray src, OutputArray dst, int ksize, + int borderType = BORDER_DEFAULT ); + +/** @brief Refines the corner locations. + +The function iterates to find the sub-pixel accurate location of corners or radial saddle points, as +shown on the figure below. + +![image](pics/cornersubpix.png) + +Sub-pixel accurate corner locator is based on the observation that every vector from the center \f$q\f$ +to a point \f$p\f$ located within a neighborhood of \f$q\f$ is orthogonal to the image gradient at \f$p\f$ +subject to image and measurement noise. Consider the expression: + +\f[\epsilon _i = {DI_{p_i}}^T \cdot (q - p_i)\f] + +where \f${DI_{p_i}}\f$ is an image gradient at one of the points \f$p_i\f$ in a neighborhood of \f$q\f$ . The +value of \f$q\f$ is to be found so that \f$\epsilon_i\f$ is minimized. A system of equations may be set up +with \f$\epsilon_i\f$ set to zero: + +\f[\sum _i(DI_{p_i} \cdot {DI_{p_i}}^T) - \sum _i(DI_{p_i} \cdot {DI_{p_i}}^T \cdot p_i)\f] + +where the gradients are summed within a neighborhood ("search window") of \f$q\f$ . Calling the first +gradient term \f$G\f$ and the second gradient term \f$b\f$ gives: + +\f[q = G^{-1} \cdot b\f] + +The algorithm sets the center of the neighborhood window at this new center \f$q\f$ and then iterates +until the center stays within a set threshold. + +@param image Input image. +@param corners Initial coordinates of the input corners and refined coordinates provided for +output. +@param winSize Half of the side length of the search window. For example, if winSize=Size(5,5) , +then a \f$5*2+1 \times 5*2+1 = 11 \times 11\f$ search window is used. +@param zeroZone Half of the size of the dead region in the middle of the search zone over which +the summation in the formula below is not done. It is used sometimes to avoid possible +singularities of the autocorrelation matrix. The value of (-1,-1) indicates that there is no such +a size. +@param criteria Criteria for termination of the iterative process of corner refinement. That is, +the process of corner position refinement stops either after criteria.maxCount iterations or when +the corner position moves by less than criteria.epsilon on some iteration. + */ +CV_EXPORTS_W void cornerSubPix( InputArray image, InputOutputArray corners, + Size winSize, Size zeroZone, + TermCriteria criteria ); + +/** @brief Determines strong corners on an image. + +The function finds the most prominent corners in the image or in the specified image region, as +described in @cite Shi94 + +- Function calculates the corner quality measure at every source image pixel using the + cornerMinEigenVal or cornerHarris . +- Function performs a non-maximum suppression (the local maximums in *3 x 3* neighborhood are + retained). +- The corners with the minimal eigenvalue less than + \f$\texttt{qualityLevel} \cdot \max_{x,y} qualityMeasureMap(x,y)\f$ are rejected. +- The remaining corners are sorted by the quality measure in the descending order. +- Function throws away each corner for which there is a stronger corner at a distance less than + maxDistance. + +The function can be used to initialize a point-based tracker of an object. + +@note If the function is called with different values A and B of the parameter qualityLevel , and +A \> B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector +with qualityLevel=B . + +@param image Input 8-bit or floating-point 32-bit, single-channel image. +@param corners Output vector of detected corners. +@param maxCorners Maximum number of corners to return. If there are more corners than are found, +the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set +and all detected corners are returned. +@param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The +parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue +(see cornerMinEigenVal ) or the Harris function response (see cornerHarris ). The corners with the +quality measure less than the product are rejected. For example, if the best corner has the +quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure +less than 15 are rejected. +@param minDistance Minimum possible Euclidean distance between the returned corners. +@param mask Optional region of interest. If the image is not empty (it needs to have the type +CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected. +@param blockSize Size of an average block for computing a derivative covariation matrix over each +pixel neighborhood. See cornerEigenValsAndVecs . +@param useHarrisDetector Parameter indicating whether to use a Harris detector (see cornerHarris) +or cornerMinEigenVal. +@param k Free parameter of the Harris detector. + +@sa cornerMinEigenVal, cornerHarris, calcOpticalFlowPyrLK, estimateRigidTransform, + */ +CV_EXPORTS_W void goodFeaturesToTrack( InputArray image, OutputArray corners, + int maxCorners, double qualityLevel, double minDistance, + InputArray mask = noArray(), int blockSize = 3, + bool useHarrisDetector = false, double k = 0.04 ); + +/** @example houghlines.cpp +An example using the Hough line detector +*/ + +/** @brief Finds lines in a binary image using the standard Hough transform. + +The function implements the standard or standard multi-scale Hough transform algorithm for line +detection. See for a good explanation of Hough +transform. + +@param image 8-bit, single-channel binary source image. The image may be modified by the function. +@param lines Output vector of lines. Each line is represented by a two-element vector +\f$(\rho, \theta)\f$ . \f$\rho\f$ is the distance from the coordinate origin \f$(0,0)\f$ (top-left corner of +the image). \f$\theta\f$ is the line rotation angle in radians ( +\f$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\f$ ). +@param rho Distance resolution of the accumulator in pixels. +@param theta Angle resolution of the accumulator in radians. +@param threshold Accumulator threshold parameter. Only those lines are returned that get enough +votes ( \f$>\texttt{threshold}\f$ ). +@param srn For the multi-scale Hough transform, it is a divisor for the distance resolution rho . +The coarse accumulator distance resolution is rho and the accurate accumulator resolution is +rho/srn . If both srn=0 and stn=0 , the classical Hough transform is used. Otherwise, both these +parameters should be positive. +@param stn For the multi-scale Hough transform, it is a divisor for the distance resolution theta. +@param min_theta For standard and multi-scale Hough transform, minimum angle to check for lines. +Must fall between 0 and max_theta. +@param max_theta For standard and multi-scale Hough transform, maximum angle to check for lines. +Must fall between min_theta and CV_PI. + */ +CV_EXPORTS_W void HoughLines( InputArray image, OutputArray lines, + double rho, double theta, int threshold, + double srn = 0, double stn = 0, + double min_theta = 0, double max_theta = CV_PI ); + +/** @brief Finds line segments in a binary image using the probabilistic Hough transform. + +The function implements the probabilistic Hough transform algorithm for line detection, described +in @cite Matas00 + +See the line detection example below: + +@code + #include + #include + + using namespace cv; + using namespace std; + + int main(int argc, char** argv) + { + Mat src, dst, color_dst; + if( argc != 2 || !(src=imread(argv[1], 0)).data) + return -1; + + Canny( src, dst, 50, 200, 3 ); + cvtColor( dst, color_dst, COLOR_GRAY2BGR ); + + #if 0 + vector lines; + HoughLines( dst, lines, 1, CV_PI/180, 100 ); + + for( size_t i = 0; i < lines.size(); i++ ) + { + float rho = lines[i][0]; + float theta = lines[i][1]; + double a = cos(theta), b = sin(theta); + double x0 = a*rho, y0 = b*rho; + Point pt1(cvRound(x0 + 1000*(-b)), + cvRound(y0 + 1000*(a))); + Point pt2(cvRound(x0 - 1000*(-b)), + cvRound(y0 - 1000*(a))); + line( color_dst, pt1, pt2, Scalar(0,0,255), 3, 8 ); + } + #else + vector lines; + HoughLinesP( dst, lines, 1, CV_PI/180, 80, 30, 10 ); + for( size_t i = 0; i < lines.size(); i++ ) + { + line( color_dst, Point(lines[i][0], lines[i][1]), + Point(lines[i][2], lines[i][3]), Scalar(0,0,255), 3, 8 ); + } + #endif + namedWindow( "Source", 1 ); + imshow( "Source", src ); + + namedWindow( "Detected Lines", 1 ); + imshow( "Detected Lines", color_dst ); + + waitKey(0); + return 0; + } +@endcode +This is a sample picture the function parameters have been tuned for: + +![image](pics/building.jpg) + +And this is the output of the above program in case of the probabilistic Hough transform: + +![image](pics/houghp.png) + +@param image 8-bit, single-channel binary source image. The image may be modified by the function. +@param lines Output vector of lines. Each line is represented by a 4-element vector +\f$(x_1, y_1, x_2, y_2)\f$ , where \f$(x_1,y_1)\f$ and \f$(x_2, y_2)\f$ are the ending points of each detected +line segment. +@param rho Distance resolution of the accumulator in pixels. +@param theta Angle resolution of the accumulator in radians. +@param threshold Accumulator threshold parameter. Only those lines are returned that get enough +votes ( \f$>\texttt{threshold}\f$ ). +@param minLineLength Minimum line length. Line segments shorter than that are rejected. +@param maxLineGap Maximum allowed gap between points on the same line to link them. + +@sa LineSegmentDetector + */ +CV_EXPORTS_W void HoughLinesP( InputArray image, OutputArray lines, + double rho, double theta, int threshold, + double minLineLength = 0, double maxLineGap = 0 ); + +/** @example houghcircles.cpp +An example using the Hough circle detector +*/ + +/** @brief Finds circles in a grayscale image using the Hough transform. + +The function finds circles in a grayscale image using a modification of the Hough transform. + +Example: : +@code + #include + #include + #include + + using namespace cv; + using namespace std; + + int main(int argc, char** argv) + { + Mat img, gray; + if( argc != 2 || !(img=imread(argv[1], 1)).data) + return -1; + cvtColor(img, gray, COLOR_BGR2GRAY); + // smooth it, otherwise a lot of false circles may be detected + GaussianBlur( gray, gray, Size(9, 9), 2, 2 ); + vector circles; + HoughCircles(gray, circles, HOUGH_GRADIENT, + 2, gray.rows/4, 200, 100 ); + for( size_t i = 0; i < circles.size(); i++ ) + { + Point center(cvRound(circles[i][0]), cvRound(circles[i][1])); + int radius = cvRound(circles[i][2]); + // draw the circle center + circle( img, center, 3, Scalar(0,255,0), -1, 8, 0 ); + // draw the circle outline + circle( img, center, radius, Scalar(0,0,255), 3, 8, 0 ); + } + namedWindow( "circles", 1 ); + imshow( "circles", img ); + + waitKey(0); + return 0; + } +@endcode + +@note Usually the function detects the centers of circles well. However, it may fail to find correct +radii. You can assist to the function by specifying the radius range ( minRadius and maxRadius ) if +you know it. Or, you may ignore the returned radius, use only the center, and find the correct +radius using an additional procedure. + +@param image 8-bit, single-channel, grayscale input image. +@param circles Output vector of found circles. Each vector is encoded as a 3-element +floating-point vector \f$(x, y, radius)\f$ . +@param method Detection method, see cv::HoughModes. Currently, the only implemented method is HOUGH_GRADIENT +@param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if +dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has +half as big width and height. +@param minDist Minimum distance between the centers of the detected circles. If the parameter is +too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is +too large, some circles may be missed. +@param param1 First method-specific parameter. In case of CV_HOUGH_GRADIENT , it is the higher +threshold of the two passed to the Canny edge detector (the lower one is twice smaller). +@param param2 Second method-specific parameter. In case of CV_HOUGH_GRADIENT , it is the +accumulator threshold for the circle centers at the detection stage. The smaller it is, the more +false circles may be detected. Circles, corresponding to the larger accumulator values, will be +returned first. +@param minRadius Minimum circle radius. +@param maxRadius Maximum circle radius. + +@sa fitEllipse, minEnclosingCircle + */ +CV_EXPORTS_W void HoughCircles( InputArray image, OutputArray circles, + int method, double dp, double minDist, + double param1 = 100, double param2 = 100, + int minRadius = 0, int maxRadius = 0 ); + +//! @} imgproc_feature + +//! @addtogroup imgproc_filter +//! @{ + +/** @example morphology2.cpp + An example using the morphological operations +*/ + +/** @brief Erodes an image by using a specific structuring element. + +The function erodes the source image using the specified structuring element that determines the +shape of a pixel neighborhood over which the minimum is taken: + +\f[\texttt{dst} (x,y) = \min _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f] + +The function supports the in-place mode. Erosion can be applied several ( iterations ) times. In +case of multi-channel images, each channel is processed independently. + +@param src input image; the number of channels can be arbitrary, but the depth should be one of +CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. +@param dst output image of the same size and type as src. +@param kernel structuring element used for erosion; if `element=Mat()`, a `3 x 3` rectangular +structuring element is used. Kernel can be created using getStructuringElement. +@param anchor position of the anchor within the element; default value (-1, -1) means that the +anchor is at the element center. +@param iterations number of times erosion is applied. +@param borderType pixel extrapolation method, see cv::BorderTypes +@param borderValue border value in case of a constant border +@sa dilate, morphologyEx, getStructuringElement + */ +CV_EXPORTS_W void erode( InputArray src, OutputArray dst, InputArray kernel, + Point anchor = Point(-1,-1), int iterations = 1, + int borderType = BORDER_CONSTANT, + const Scalar& borderValue = morphologyDefaultBorderValue() ); + +/** @brief Dilates an image by using a specific structuring element. + +The function dilates the source image using the specified structuring element that determines the +shape of a pixel neighborhood over which the maximum is taken: +\f[\texttt{dst} (x,y) = \max _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')\f] + +The function supports the in-place mode. Dilation can be applied several ( iterations ) times. In +case of multi-channel images, each channel is processed independently. + +@param src input image; the number of channels can be arbitrary, but the depth should be one of +CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. +@param dst output image of the same size and type as src\`. +@param kernel structuring element used for dilation; if elemenat=Mat(), a 3 x 3 rectangular +structuring element is used. Kernel can be created using getStructuringElement +@param anchor position of the anchor within the element; default value (-1, -1) means that the +anchor is at the element center. +@param iterations number of times dilation is applied. +@param borderType pixel extrapolation method, see cv::BorderTypes +@param borderValue border value in case of a constant border +@sa erode, morphologyEx, getStructuringElement + */ +CV_EXPORTS_W void dilate( InputArray src, OutputArray dst, InputArray kernel, + Point anchor = Point(-1,-1), int iterations = 1, + int borderType = BORDER_CONSTANT, + const Scalar& borderValue = morphologyDefaultBorderValue() ); + +/** @brief Performs advanced morphological transformations. + +The function morphologyEx can perform advanced morphological transformations using an erosion and dilation as +basic operations. + +Any of the operations can be done in-place. In case of multi-channel images, each channel is +processed independently. + +@param src Source image. The number of channels can be arbitrary. The depth should be one of +CV_8U, CV_16U, CV_16S, CV_32F or CV_64F. +@param dst Destination image of the same size and type as source image. +@param op Type of a morphological operation, see cv::MorphTypes +@param kernel Structuring element. It can be created using cv::getStructuringElement. +@param anchor Anchor position with the kernel. Negative values mean that the anchor is at the +kernel center. +@param iterations Number of times erosion and dilation are applied. +@param borderType Pixel extrapolation method, see cv::BorderTypes +@param borderValue Border value in case of a constant border. The default value has a special +meaning. +@sa dilate, erode, getStructuringElement + */ +CV_EXPORTS_W void morphologyEx( InputArray src, OutputArray dst, + int op, InputArray kernel, + Point anchor = Point(-1,-1), int iterations = 1, + int borderType = BORDER_CONSTANT, + const Scalar& borderValue = morphologyDefaultBorderValue() ); + +//! @} imgproc_filter + +//! @addtogroup imgproc_transform +//! @{ + +/** @brief Resizes an image. + +The function resize resizes the image src down to or up to the specified size. Note that the +initial dst type or size are not taken into account. Instead, the size and type are derived from +the `src`,`dsize`,`fx`, and `fy`. If you want to resize src so that it fits the pre-created dst, +you may call the function as follows: +@code + // explicitly specify dsize=dst.size(); fx and fy will be computed from that. + resize(src, dst, dst.size(), 0, 0, interpolation); +@endcode +If you want to decimate the image by factor of 2 in each direction, you can call the function this +way: +@code + // specify fx and fy and let the function compute the destination image size. + resize(src, dst, Size(), 0.5, 0.5, interpolation); +@endcode +To shrink an image, it will generally look best with cv::INTER_AREA interpolation, whereas to +enlarge an image, it will generally look best with cv::INTER_CUBIC (slow) or cv::INTER_LINEAR +(faster but still looks OK). + +@param src input image. +@param dst output image; it has the size dsize (when it is non-zero) or the size computed from +src.size(), fx, and fy; the type of dst is the same as of src. +@param dsize output image size; if it equals zero, it is computed as: + \f[\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}\f] + Either dsize or both fx and fy must be non-zero. +@param fx scale factor along the horizontal axis; when it equals 0, it is computed as +\f[\texttt{(double)dsize.width/src.cols}\f] +@param fy scale factor along the vertical axis; when it equals 0, it is computed as +\f[\texttt{(double)dsize.height/src.rows}\f] +@param interpolation interpolation method, see cv::InterpolationFlags + +@sa warpAffine, warpPerspective, remap + */ +CV_EXPORTS_W void resize( InputArray src, OutputArray dst, + Size dsize, double fx = 0, double fy = 0, + int interpolation = INTER_LINEAR ); + +/** @brief Applies an affine transformation to an image. + +The function warpAffine transforms the source image using the specified matrix: + +\f[\texttt{dst} (x,y) = \texttt{src} ( \texttt{M} _{11} x + \texttt{M} _{12} y + \texttt{M} _{13}, \texttt{M} _{21} x + \texttt{M} _{22} y + \texttt{M} _{23})\f] + +when the flag WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted +with cv::invertAffineTransform and then put in the formula above instead of M. The function cannot +operate in-place. + +@param src input image. +@param dst output image that has the size dsize and the same type as src . +@param M \f$2\times 3\f$ transformation matrix. +@param dsize size of the output image. +@param flags combination of interpolation methods (see cv::InterpolationFlags) and the optional +flag WARP_INVERSE_MAP that means that M is the inverse transformation ( +\f$\texttt{dst}\rightarrow\texttt{src}\f$ ). +@param borderMode pixel extrapolation method (see cv::BorderTypes); when +borderMode=BORDER_TRANSPARENT, it means that the pixels in the destination image corresponding to +the "outliers" in the source image are not modified by the function. +@param borderValue value used in case of a constant border; by default, it is 0. + +@sa warpPerspective, resize, remap, getRectSubPix, transform + */ +CV_EXPORTS_W void warpAffine( InputArray src, OutputArray dst, + InputArray M, Size dsize, + int flags = INTER_LINEAR, + int borderMode = BORDER_CONSTANT, + const Scalar& borderValue = Scalar()); + +/** @brief Applies a perspective transformation to an image. + +The function warpPerspective transforms the source image using the specified matrix: + +\f[\texttt{dst} (x,y) = \texttt{src} \left ( \frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} , + \frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right )\f] + +when the flag WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert +and then put in the formula above instead of M. The function cannot operate in-place. + +@param src input image. +@param dst output image that has the size dsize and the same type as src . +@param M \f$3\times 3\f$ transformation matrix. +@param dsize size of the output image. +@param flags combination of interpolation methods (INTER_LINEAR or INTER_NEAREST) and the +optional flag WARP_INVERSE_MAP, that sets M as the inverse transformation ( +\f$\texttt{dst}\rightarrow\texttt{src}\f$ ). +@param borderMode pixel extrapolation method (BORDER_CONSTANT or BORDER_REPLICATE). +@param borderValue value used in case of a constant border; by default, it equals 0. + +@sa warpAffine, resize, remap, getRectSubPix, perspectiveTransform + */ +CV_EXPORTS_W void warpPerspective( InputArray src, OutputArray dst, + InputArray M, Size dsize, + int flags = INTER_LINEAR, + int borderMode = BORDER_CONSTANT, + const Scalar& borderValue = Scalar()); + +/** @brief Applies a generic geometrical transformation to an image. + +The function remap transforms the source image using the specified map: + +\f[\texttt{dst} (x,y) = \texttt{src} (map_x(x,y),map_y(x,y))\f] + +where values of pixels with non-integer coordinates are computed using one of available +interpolation methods. \f$map_x\f$ and \f$map_y\f$ can be encoded as separate floating-point maps +in \f$map_1\f$ and \f$map_2\f$ respectively, or interleaved floating-point maps of \f$(x,y)\f$ in +\f$map_1\f$, or fixed-point maps created by using convertMaps. The reason you might want to +convert from floating to fixed-point representations of a map is that they can yield much faster +(\~2x) remapping operations. In the converted case, \f$map_1\f$ contains pairs (cvFloor(x), +cvFloor(y)) and \f$map_2\f$ contains indices in a table of interpolation coefficients. + +This function cannot operate in-place. + +@param src Source image. +@param dst Destination image. It has the same size as map1 and the same type as src . +@param map1 The first map of either (x,y) points or just x values having the type CV_16SC2 , +CV_32FC1, or CV_32FC2. See convertMaps for details on converting a floating point +representation to fixed-point for speed. +@param map2 The second map of y values having the type CV_16UC1, CV_32FC1, or none (empty map +if map1 is (x,y) points), respectively. +@param interpolation Interpolation method (see cv::InterpolationFlags). The method INTER_AREA is +not supported by this function. +@param borderMode Pixel extrapolation method (see cv::BorderTypes). When +borderMode=BORDER_TRANSPARENT, it means that the pixels in the destination image that +corresponds to the "outliers" in the source image are not modified by the function. +@param borderValue Value used in case of a constant border. By default, it is 0. +@note +Due to current implementaion limitations the size of an input and output images should be less than 32767x32767. + */ +CV_EXPORTS_W void remap( InputArray src, OutputArray dst, + InputArray map1, InputArray map2, + int interpolation, int borderMode = BORDER_CONSTANT, + const Scalar& borderValue = Scalar()); + +/** @brief Converts image transformation maps from one representation to another. + +The function converts a pair of maps for remap from one representation to another. The following +options ( (map1.type(), map2.type()) \f$\rightarrow\f$ (dstmap1.type(), dstmap2.type()) ) are +supported: + +- \f$\texttt{(CV_32FC1, CV_32FC1)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\f$. This is the +most frequently used conversion operation, in which the original floating-point maps (see remap ) +are converted to a more compact and much faster fixed-point representation. The first output array +contains the rounded coordinates and the second array (created only when nninterpolation=false ) +contains indices in the interpolation tables. + +- \f$\texttt{(CV_32FC2)} \rightarrow \texttt{(CV_16SC2, CV_16UC1)}\f$. The same as above but +the original maps are stored in one 2-channel matrix. + +- Reverse conversion. Obviously, the reconstructed floating-point maps will not be exactly the same +as the originals. + +@param map1 The first input map of type CV_16SC2, CV_32FC1, or CV_32FC2 . +@param map2 The second input map of type CV_16UC1, CV_32FC1, or none (empty matrix), +respectively. +@param dstmap1 The first output map that has the type dstmap1type and the same size as src . +@param dstmap2 The second output map. +@param dstmap1type Type of the first output map that should be CV_16SC2, CV_32FC1, or +CV_32FC2 . +@param nninterpolation Flag indicating whether the fixed-point maps are used for the +nearest-neighbor or for a more complex interpolation. + +@sa remap, undistort, initUndistortRectifyMap + */ +CV_EXPORTS_W void convertMaps( InputArray map1, InputArray map2, + OutputArray dstmap1, OutputArray dstmap2, + int dstmap1type, bool nninterpolation = false ); + +/** @brief Calculates an affine matrix of 2D rotation. + +The function calculates the following matrix: + +\f[\begin{bmatrix} \alpha & \beta & (1- \alpha ) \cdot \texttt{center.x} - \beta \cdot \texttt{center.y} \\ - \beta & \alpha & \beta \cdot \texttt{center.x} + (1- \alpha ) \cdot \texttt{center.y} \end{bmatrix}\f] + +where + +\f[\begin{array}{l} \alpha = \texttt{scale} \cdot \cos \texttt{angle} , \\ \beta = \texttt{scale} \cdot \sin \texttt{angle} \end{array}\f] + +The transformation maps the rotation center to itself. If this is not the target, adjust the shift. + +@param center Center of the rotation in the source image. +@param angle Rotation angle in degrees. Positive values mean counter-clockwise rotation (the +coordinate origin is assumed to be the top-left corner). +@param scale Isotropic scale factor. + +@sa getAffineTransform, warpAffine, transform + */ +CV_EXPORTS_W Mat getRotationMatrix2D( Point2f center, double angle, double scale ); + +//! returns 3x3 perspective transformation for the corresponding 4 point pairs. +CV_EXPORTS Mat getPerspectiveTransform( const Point2f src[], const Point2f dst[] ); + +/** @brief Calculates an affine transform from three pairs of the corresponding points. + +The function calculates the \f$2 \times 3\f$ matrix of an affine transform so that: + +\f[\begin{bmatrix} x'_i \\ y'_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\f] + +where + +\f[dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2\f] + +@param src Coordinates of triangle vertices in the source image. +@param dst Coordinates of the corresponding triangle vertices in the destination image. + +@sa warpAffine, transform + */ +CV_EXPORTS Mat getAffineTransform( const Point2f src[], const Point2f dst[] ); + +/** @brief Inverts an affine transformation. + +The function computes an inverse affine transformation represented by \f$2 \times 3\f$ matrix M: + +\f[\begin{bmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \end{bmatrix}\f] + +The result is also a \f$2 \times 3\f$ matrix of the same type as M. + +@param M Original affine transformation. +@param iM Output reverse affine transformation. + */ +CV_EXPORTS_W void invertAffineTransform( InputArray M, OutputArray iM ); + +/** @brief Calculates a perspective transform from four pairs of the corresponding points. + +The function calculates the \f$3 \times 3\f$ matrix of a perspective transform so that: + +\f[\begin{bmatrix} t_i x'_i \\ t_i y'_i \\ t_i \end{bmatrix} = \texttt{map_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}\f] + +where + +\f[dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2,3\f] + +@param src Coordinates of quadrangle vertices in the source image. +@param dst Coordinates of the corresponding quadrangle vertices in the destination image. + +@sa findHomography, warpPerspective, perspectiveTransform + */ +CV_EXPORTS_W Mat getPerspectiveTransform( InputArray src, InputArray dst ); + +CV_EXPORTS_W Mat getAffineTransform( InputArray src, InputArray dst ); + +/** @brief Retrieves a pixel rectangle from an image with sub-pixel accuracy. + +The function getRectSubPix extracts pixels from src: + +\f[dst(x, y) = src(x + \texttt{center.x} - ( \texttt{dst.cols} -1)*0.5, y + \texttt{center.y} - ( \texttt{dst.rows} -1)*0.5)\f] + +where the values of the pixels at non-integer coordinates are retrieved using bilinear +interpolation. Every channel of multi-channel images is processed independently. While the center of +the rectangle must be inside the image, parts of the rectangle may be outside. In this case, the +replication border mode (see cv::BorderTypes) is used to extrapolate the pixel values outside of +the image. + +@param image Source image. +@param patchSize Size of the extracted patch. +@param center Floating point coordinates of the center of the extracted rectangle within the +source image. The center must be inside the image. +@param patch Extracted patch that has the size patchSize and the same number of channels as src . +@param patchType Depth of the extracted pixels. By default, they have the same depth as src . + +@sa warpAffine, warpPerspective + */ +CV_EXPORTS_W void getRectSubPix( InputArray image, Size patchSize, + Point2f center, OutputArray patch, int patchType = -1 ); + +/** @example polar_transforms.cpp +An example using the cv::linearPolar and cv::logPolar operations +*/ + +/** @brief Remaps an image to semilog-polar coordinates space. + +Transform the source image using the following transformation (See @ref polar_remaps_reference_image "Polar remaps reference image"): +\f[\begin{array}{l} + dst( \rho , \phi ) = src(x,y) \\ + dst.size() \leftarrow src.size() +\end{array}\f] + +where +\f[\begin{array}{l} + I = (dx,dy) = (x - center.x,y - center.y) \\ + \rho = M \cdot log_e(\texttt{magnitude} (I)) ,\\ + \phi = Ky \cdot \texttt{angle} (I)_{0..360 deg} \\ +\end{array}\f] + +and +\f[\begin{array}{l} + M = src.cols / log_e(maxRadius) \\ + Ky = src.rows / 360 \\ +\end{array}\f] + +The function emulates the human "foveal" vision and can be used for fast scale and +rotation-invariant template matching, for object tracking and so forth. +@param src Source image +@param dst Destination image. It will have same size and type as src. +@param center The transformation center; where the output precision is maximal +@param M Magnitude scale parameter. It determines the radius of the bounding circle to transform too. +@param flags A combination of interpolation methods, see cv::InterpolationFlags + +@note +- The function can not operate in-place. +- To calculate magnitude and angle in degrees @ref cv::cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees. +*/ +CV_EXPORTS_W void logPolar( InputArray src, OutputArray dst, + Point2f center, double M, int flags ); + +/** @brief Remaps an image to polar coordinates space. + +@anchor polar_remaps_reference_image +![Polar remaps reference](pics/polar_remap_doc.png) + +Transform the source image using the following transformation: +\f[\begin{array}{l} + dst( \rho , \phi ) = src(x,y) \\ + dst.size() \leftarrow src.size() +\end{array}\f] + +where +\f[\begin{array}{l} + I = (dx,dy) = (x - center.x,y - center.y) \\ + \rho = Kx \cdot \texttt{magnitude} (I) ,\\ + \phi = Ky \cdot \texttt{angle} (I)_{0..360 deg} +\end{array}\f] + +and +\f[\begin{array}{l} + Kx = src.cols / maxRadius \\ + Ky = src.rows / 360 +\end{array}\f] + + +@param src Source image +@param dst Destination image. It will have same size and type as src. +@param center The transformation center; +@param maxRadius The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too. +@param flags A combination of interpolation methods, see cv::InterpolationFlags + +@note +- The function can not operate in-place. +- To calculate magnitude and angle in degrees @ref cv::cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees. + +*/ +CV_EXPORTS_W void linearPolar( InputArray src, OutputArray dst, + Point2f center, double maxRadius, int flags ); + +//! @} imgproc_transform + +//! @addtogroup imgproc_misc +//! @{ + +/** @overload */ +CV_EXPORTS_W void integral( InputArray src, OutputArray sum, int sdepth = -1 ); + +/** @overload */ +CV_EXPORTS_AS(integral2) void integral( InputArray src, OutputArray sum, + OutputArray sqsum, int sdepth = -1, int sqdepth = -1 ); + +/** @brief Calculates the integral of an image. + +The function calculates one or more integral images for the source image as follows: + +\f[\texttt{sum} (X,Y) = \sum _{x + +Calculates the cross-power spectrum of two supplied source arrays. The arrays are padded if needed +with getOptimalDFTSize. + +The function performs the following equations: +- First it applies a Hanning window (see ) to each +image to remove possible edge effects. This window is cached until the array size changes to speed +up processing time. +- Next it computes the forward DFTs of each source array: +\f[\mathbf{G}_a = \mathcal{F}\{src_1\}, \; \mathbf{G}_b = \mathcal{F}\{src_2\}\f] +where \f$\mathcal{F}\f$ is the forward DFT. +- It then computes the cross-power spectrum of each frequency domain array: +\f[R = \frac{ \mathbf{G}_a \mathbf{G}_b^*}{|\mathbf{G}_a \mathbf{G}_b^*|}\f] +- Next the cross-correlation is converted back into the time domain via the inverse DFT: +\f[r = \mathcal{F}^{-1}\{R\}\f] +- Finally, it computes the peak location and computes a 5x5 weighted centroid around the peak to +achieve sub-pixel accuracy. +\f[(\Delta x, \Delta y) = \texttt{weightedCentroid} \{\arg \max_{(x, y)}\{r\}\}\f] +- If non-zero, the response parameter is computed as the sum of the elements of r within the 5x5 +centroid around the peak location. It is normalized to a maximum of 1 (meaning there is a single +peak) and will be smaller when there are multiple peaks. + +@param src1 Source floating point array (CV_32FC1 or CV_64FC1) +@param src2 Source floating point array (CV_32FC1 or CV_64FC1) +@param window Floating point array with windowing coefficients to reduce edge effects (optional). +@param response Signal power within the 5x5 centroid around the peak, between 0 and 1 (optional). +@returns detected phase shift (sub-pixel) between the two arrays. + +@sa dft, getOptimalDFTSize, idft, mulSpectrums createHanningWindow + */ +CV_EXPORTS_W Point2d phaseCorrelate(InputArray src1, InputArray src2, + InputArray window = noArray(), CV_OUT double* response = 0); + +/** @brief This function computes a Hanning window coefficients in two dimensions. + +See (http://en.wikipedia.org/wiki/Hann_function) and (http://en.wikipedia.org/wiki/Window_function) +for more information. + +An example is shown below: +@code + // create hanning window of size 100x100 and type CV_32F + Mat hann; + createHanningWindow(hann, Size(100, 100), CV_32F); +@endcode +@param dst Destination array to place Hann coefficients in +@param winSize The window size specifications +@param type Created array type + */ +CV_EXPORTS_W void createHanningWindow(OutputArray dst, Size winSize, int type); + +//! @} imgproc_motion + +//! @addtogroup imgproc_misc +//! @{ + +/** @brief Applies a fixed-level threshold to each array element. + +The function applies fixed-level thresholding to a single-channel array. The function is typically +used to get a bi-level (binary) image out of a grayscale image ( cv::compare could be also used for +this purpose) or for removing a noise, that is, filtering out pixels with too small or too large +values. There are several types of thresholding supported by the function. They are determined by +type parameter. + +Also, the special values cv::THRESH_OTSU or cv::THRESH_TRIANGLE may be combined with one of the +above values. In these cases, the function determines the optimal threshold value using the Otsu's +or Triangle algorithm and uses it instead of the specified thresh . The function returns the +computed threshold value. Currently, the Otsu's and Triangle methods are implemented only for 8-bit +images. + +@param src input array (single-channel, 8-bit or 32-bit floating point). +@param dst output array of the same size and type as src. +@param thresh threshold value. +@param maxval maximum value to use with the THRESH_BINARY and THRESH_BINARY_INV thresholding +types. +@param type thresholding type (see the cv::ThresholdTypes). + +@sa adaptiveThreshold, findContours, compare, min, max + */ +CV_EXPORTS_W double threshold( InputArray src, OutputArray dst, + double thresh, double maxval, int type ); + + +/** @brief Applies an adaptive threshold to an array. + +The function transforms a grayscale image to a binary image according to the formulae: +- **THRESH_BINARY** + \f[dst(x,y) = \fork{\texttt{maxValue}}{if \(src(x,y) > T(x,y)\)}{0}{otherwise}\f] +- **THRESH_BINARY_INV** + \f[dst(x,y) = \fork{0}{if \(src(x,y) > T(x,y)\)}{\texttt{maxValue}}{otherwise}\f] +where \f$T(x,y)\f$ is a threshold calculated individually for each pixel (see adaptiveMethod parameter). + +The function can process the image in-place. + +@param src Source 8-bit single-channel image. +@param dst Destination image of the same size and the same type as src. +@param maxValue Non-zero value assigned to the pixels for which the condition is satisfied +@param adaptiveMethod Adaptive thresholding algorithm to use, see cv::AdaptiveThresholdTypes +@param thresholdType Thresholding type that must be either THRESH_BINARY or THRESH_BINARY_INV, +see cv::ThresholdTypes. +@param blockSize Size of a pixel neighborhood that is used to calculate a threshold value for the +pixel: 3, 5, 7, and so on. +@param C Constant subtracted from the mean or weighted mean (see the details below). Normally, it +is positive but may be zero or negative as well. + +@sa threshold, blur, GaussianBlur + */ +CV_EXPORTS_W void adaptiveThreshold( InputArray src, OutputArray dst, + double maxValue, int adaptiveMethod, + int thresholdType, int blockSize, double C ); + +//! @} imgproc_misc + +//! @addtogroup imgproc_filter +//! @{ + +/** @brief Blurs an image and downsamples it. + +By default, size of the output image is computed as `Size((src.cols+1)/2, (src.rows+1)/2)`, but in +any case, the following conditions should be satisfied: + +\f[\begin{array}{l} | \texttt{dstsize.width} *2-src.cols| \leq 2 \\ | \texttt{dstsize.height} *2-src.rows| \leq 2 \end{array}\f] + +The function performs the downsampling step of the Gaussian pyramid construction. First, it +convolves the source image with the kernel: + +\f[\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}\f] + +Then, it downsamples the image by rejecting even rows and columns. + +@param src input image. +@param dst output image; it has the specified size and the same type as src. +@param dstsize size of the output image. +@param borderType Pixel extrapolation method, see cv::BorderTypes (BORDER_CONSTANT isn't supported) + */ +CV_EXPORTS_W void pyrDown( InputArray src, OutputArray dst, + const Size& dstsize = Size(), int borderType = BORDER_DEFAULT ); + +/** @brief Upsamples an image and then blurs it. + +By default, size of the output image is computed as `Size(src.cols\*2, (src.rows\*2)`, but in any +case, the following conditions should be satisfied: + +\f[\begin{array}{l} | \texttt{dstsize.width} -src.cols*2| \leq ( \texttt{dstsize.width} \mod 2) \\ | \texttt{dstsize.height} -src.rows*2| \leq ( \texttt{dstsize.height} \mod 2) \end{array}\f] + +The function performs the upsampling step of the Gaussian pyramid construction, though it can +actually be used to construct the Laplacian pyramid. First, it upsamples the source image by +injecting even zero rows and columns and then convolves the result with the same kernel as in +pyrDown multiplied by 4. + +@param src input image. +@param dst output image. It has the specified size and the same type as src . +@param dstsize size of the output image. +@param borderType Pixel extrapolation method, see cv::BorderTypes (only BORDER_DEFAULT is supported) + */ +CV_EXPORTS_W void pyrUp( InputArray src, OutputArray dst, + const Size& dstsize = Size(), int borderType = BORDER_DEFAULT ); + +/** @brief Constructs the Gaussian pyramid for an image. + +The function constructs a vector of images and builds the Gaussian pyramid by recursively applying +pyrDown to the previously built pyramid layers, starting from `dst[0]==src`. + +@param src Source image. Check pyrDown for the list of supported types. +@param dst Destination vector of maxlevel+1 images of the same type as src. dst[0] will be the +same as src. dst[1] is the next pyramid layer, a smoothed and down-sized src, and so on. +@param maxlevel 0-based index of the last (the smallest) pyramid layer. It must be non-negative. +@param borderType Pixel extrapolation method, see cv::BorderTypes (BORDER_CONSTANT isn't supported) + */ +CV_EXPORTS void buildPyramid( InputArray src, OutputArrayOfArrays dst, + int maxlevel, int borderType = BORDER_DEFAULT ); + +//! @} imgproc_filter + +//! @addtogroup imgproc_transform +//! @{ + +/** @brief Transforms an image to compensate for lens distortion. + +The function transforms an image to compensate radial and tangential lens distortion. + +The function is simply a combination of cv::initUndistortRectifyMap (with unity R ) and cv::remap +(with bilinear interpolation). See the former function for details of the transformation being +performed. + +Those pixels in the destination image, for which there is no correspondent pixels in the source +image, are filled with zeros (black color). + +A particular subset of the source image that will be visible in the corrected image can be regulated +by newCameraMatrix. You can use cv::getOptimalNewCameraMatrix to compute the appropriate +newCameraMatrix depending on your requirements. + +The camera matrix and the distortion parameters can be determined using cv::calibrateCamera. If +the resolution of images is different from the resolution used at the calibration stage, \f$f_x, +f_y, c_x\f$ and \f$c_y\f$ need to be scaled accordingly, while the distortion coefficients remain +the same. + +@param src Input (distorted) image. +@param dst Output (corrected) image that has the same size and type as src . +@param cameraMatrix Input camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . +@param distCoeffs Input vector of distortion coefficients +\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ +of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed. +@param newCameraMatrix Camera matrix of the distorted image. By default, it is the same as +cameraMatrix but you may additionally scale and shift the result by using a different matrix. + */ +CV_EXPORTS_W void undistort( InputArray src, OutputArray dst, + InputArray cameraMatrix, + InputArray distCoeffs, + InputArray newCameraMatrix = noArray() ); + +/** @brief Computes the undistortion and rectification transformation map. + +The function computes the joint undistortion and rectification transformation and represents the +result in the form of maps for remap. The undistorted image looks like original, as if it is +captured with a camera using the camera matrix =newCameraMatrix and zero distortion. In case of a +monocular camera, newCameraMatrix is usually equal to cameraMatrix, or it can be computed by +cv::getOptimalNewCameraMatrix for a better control over scaling. In case of a stereo camera, +newCameraMatrix is normally set to P1 or P2 computed by cv::stereoRectify . + +Also, this new camera is oriented differently in the coordinate space, according to R. That, for +example, helps to align two heads of a stereo camera so that the epipolar lines on both images +become horizontal and have the same y- coordinate (in case of a horizontally aligned stereo camera). + +The function actually builds the maps for the inverse mapping algorithm that is used by remap. That +is, for each pixel \f$(u, v)\f$ in the destination (corrected and rectified) image, the function +computes the corresponding coordinates in the source image (that is, in the original image from +camera). The following process is applied: +\f[ +\begin{array}{l} +x \leftarrow (u - {c'}_x)/{f'}_x \\ +y \leftarrow (v - {c'}_y)/{f'}_y \\ +{[X\,Y\,W]} ^T \leftarrow R^{-1}*[x \, y \, 1]^T \\ +x' \leftarrow X/W \\ +y' \leftarrow Y/W \\ +r^2 \leftarrow x'^2 + y'^2 \\ +x'' \leftarrow x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} ++ 2p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4\\ +y'' \leftarrow y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} ++ p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\ +s\vecthree{x'''}{y'''}{1} = +\vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}((\tau_x, \tau_y)} +{0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)} +{0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\\ +map_x(u,v) \leftarrow x''' f_x + c_x \\ +map_y(u,v) \leftarrow y''' f_y + c_y +\end{array} +\f] +where \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ +are the distortion coefficients. + +In case of a stereo camera, this function is called twice: once for each camera head, after +stereoRectify, which in its turn is called after cv::stereoCalibrate. But if the stereo camera +was not calibrated, it is still possible to compute the rectification transformations directly from +the fundamental matrix using cv::stereoRectifyUncalibrated. For each camera, the function computes +homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D +space. R can be computed from H as +\f[\texttt{R} = \texttt{cameraMatrix} ^{-1} \cdot \texttt{H} \cdot \texttt{cameraMatrix}\f] +where cameraMatrix can be chosen arbitrarily. + +@param cameraMatrix Input camera matrix \f$A=\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . +@param distCoeffs Input vector of distortion coefficients +\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ +of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed. +@param R Optional rectification transformation in the object space (3x3 matrix). R1 or R2 , +computed by stereoRectify can be passed here. If the matrix is empty, the identity transformation +is assumed. In cvInitUndistortMap R assumed to be an identity matrix. +@param newCameraMatrix New camera matrix \f$A'=\vecthreethree{f_x'}{0}{c_x'}{0}{f_y'}{c_y'}{0}{0}{1}\f$. +@param size Undistorted image size. +@param m1type Type of the first output map that can be CV_32FC1 or CV_16SC2, see cv::convertMaps +@param map1 The first output map. +@param map2 The second output map. + */ +CV_EXPORTS_W void initUndistortRectifyMap( InputArray cameraMatrix, InputArray distCoeffs, + InputArray R, InputArray newCameraMatrix, + Size size, int m1type, OutputArray map1, OutputArray map2 ); + +//! initializes maps for cv::remap() for wide-angle +CV_EXPORTS_W float initWideAngleProjMap( InputArray cameraMatrix, InputArray distCoeffs, + Size imageSize, int destImageWidth, + int m1type, OutputArray map1, OutputArray map2, + int projType = PROJ_SPHERICAL_EQRECT, double alpha = 0); + +/** @brief Returns the default new camera matrix. + +The function returns the camera matrix that is either an exact copy of the input cameraMatrix (when +centerPrinicipalPoint=false ), or the modified one (when centerPrincipalPoint=true). + +In the latter case, the new camera matrix will be: + +\f[\begin{bmatrix} f_x && 0 && ( \texttt{imgSize.width} -1)*0.5 \\ 0 && f_y && ( \texttt{imgSize.height} -1)*0.5 \\ 0 && 0 && 1 \end{bmatrix} ,\f] + +where \f$f_x\f$ and \f$f_y\f$ are \f$(0,0)\f$ and \f$(1,1)\f$ elements of cameraMatrix, respectively. + +By default, the undistortion functions in OpenCV (see initUndistortRectifyMap, undistort) do not +move the principal point. However, when you work with stereo, it is important to move the principal +points in both views to the same y-coordinate (which is required by most of stereo correspondence +algorithms), and may be to the same x-coordinate too. So, you can form the new camera matrix for +each view where the principal points are located at the center. + +@param cameraMatrix Input camera matrix. +@param imgsize Camera view image size in pixels. +@param centerPrincipalPoint Location of the principal point in the new camera matrix. The +parameter indicates whether this location should be at the image center or not. + */ +CV_EXPORTS_W Mat getDefaultNewCameraMatrix( InputArray cameraMatrix, Size imgsize = Size(), + bool centerPrincipalPoint = false ); + +/** @brief Computes the ideal point coordinates from the observed point coordinates. + +The function is similar to cv::undistort and cv::initUndistortRectifyMap but it operates on a +sparse set of points instead of a raster image. Also the function performs a reverse transformation +to projectPoints. In case of a 3D object, it does not reconstruct its 3D coordinates, but for a +planar object, it does, up to a translation vector, if the proper R is specified. + +For each observed point coordinate \f$(u, v)\f$ the function computes: +\f[ +\begin{array}{l} +x^{"} \leftarrow (u - c_x)/f_x \\ +y^{"} \leftarrow (v - c_y)/f_y \\ +(x',y') = undistort(x^{"},y^{"}, \texttt{distCoeffs}) \\ +{[X\,Y\,W]} ^T \leftarrow R*[x' \, y' \, 1]^T \\ +x \leftarrow X/W \\ +y \leftarrow Y/W \\ +\text{only performed if P is specified:} \\ +u' \leftarrow x {f'}_x + {c'}_x \\ +v' \leftarrow y {f'}_y + {c'}_y +\end{array} +\f] + +where *undistort* is an approximate iterative algorithm that estimates the normalized original +point coordinates out of the normalized distorted point coordinates ("normalized" means that the +coordinates do not depend on the camera matrix). + +The function can be used for both a stereo camera head or a monocular camera (when R is empty). + +@param src Observed point coordinates, 1xN or Nx1 2-channel (CV_32FC2 or CV_64FC2). +@param dst Output ideal point coordinates after undistortion and reverse perspective +transformation. If matrix P is identity or omitted, dst will contain normalized point coordinates. +@param cameraMatrix Camera matrix \f$\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . +@param distCoeffs Input vector of distortion coefficients +\f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ +of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed. +@param R Rectification transformation in the object space (3x3 matrix). R1 or R2 computed by +cv::stereoRectify can be passed here. If the matrix is empty, the identity transformation is used. +@param P New camera matrix (3x3) or new projection matrix (3x4) \f$\begin{bmatrix} {f'}_x & 0 & {c'}_x & t_x \\ 0 & {f'}_y & {c'}_y & t_y \\ 0 & 0 & 1 & t_z \end{bmatrix}\f$. P1 or P2 computed by +cv::stereoRectify can be passed here. If the matrix is empty, the identity new camera matrix is used. + */ +CV_EXPORTS_W void undistortPoints( InputArray src, OutputArray dst, + InputArray cameraMatrix, InputArray distCoeffs, + InputArray R = noArray(), InputArray P = noArray()); + +//! @} imgproc_transform + +//! @addtogroup imgproc_hist +//! @{ + +/** @example demhist.cpp +An example for creating histograms of an image +*/ + +/** @brief Calculates a histogram of a set of arrays. + +The function cv::calcHist calculates the histogram of one or more arrays. The elements of a tuple used +to increment a histogram bin are taken from the corresponding input arrays at the same location. The +sample below shows how to compute a 2D Hue-Saturation histogram for a color image. : +@code + #include + #include + + using namespace cv; + + int main( int argc, char** argv ) + { + Mat src, hsv; + if( argc != 2 || !(src=imread(argv[1], 1)).data ) + return -1; + + cvtColor(src, hsv, COLOR_BGR2HSV); + + // Quantize the hue to 30 levels + // and the saturation to 32 levels + int hbins = 30, sbins = 32; + int histSize[] = {hbins, sbins}; + // hue varies from 0 to 179, see cvtColor + float hranges[] = { 0, 180 }; + // saturation varies from 0 (black-gray-white) to + // 255 (pure spectrum color) + float sranges[] = { 0, 256 }; + const float* ranges[] = { hranges, sranges }; + MatND hist; + // we compute the histogram from the 0-th and 1-st channels + int channels[] = {0, 1}; + + calcHist( &hsv, 1, channels, Mat(), // do not use mask + hist, 2, histSize, ranges, + true, // the histogram is uniform + false ); + double maxVal=0; + minMaxLoc(hist, 0, &maxVal, 0, 0); + + int scale = 10; + Mat histImg = Mat::zeros(sbins*scale, hbins*10, CV_8UC3); + + for( int h = 0; h < hbins; h++ ) + for( int s = 0; s < sbins; s++ ) + { + float binVal = hist.at(h, s); + int intensity = cvRound(binVal*255/maxVal); + rectangle( histImg, Point(h*scale, s*scale), + Point( (h+1)*scale - 1, (s+1)*scale - 1), + Scalar::all(intensity), + CV_FILLED ); + } + + namedWindow( "Source", 1 ); + imshow( "Source", src ); + + namedWindow( "H-S Histogram", 1 ); + imshow( "H-S Histogram", histImg ); + waitKey(); + } +@endcode + +@param images Source arrays. They all should have the same depth, CV_8U, CV_16U or CV_32F , and the same +size. Each of them can have an arbitrary number of channels. +@param nimages Number of source images. +@param channels List of the dims channels used to compute the histogram. The first array channels +are numerated from 0 to images[0].channels()-1 , the second array channels are counted from +images[0].channels() to images[0].channels() + images[1].channels()-1, and so on. +@param mask Optional mask. If the matrix is not empty, it must be an 8-bit array of the same size +as images[i] . The non-zero mask elements mark the array elements counted in the histogram. +@param hist Output histogram, which is a dense or sparse dims -dimensional array. +@param dims Histogram dimensionality that must be positive and not greater than CV_MAX_DIMS +(equal to 32 in the current OpenCV version). +@param histSize Array of histogram sizes in each dimension. +@param ranges Array of the dims arrays of the histogram bin boundaries in each dimension. When the +histogram is uniform ( uniform =true), then for each dimension i it is enough to specify the lower +(inclusive) boundary \f$L_0\f$ of the 0-th histogram bin and the upper (exclusive) boundary +\f$U_{\texttt{histSize}[i]-1}\f$ for the last histogram bin histSize[i]-1 . That is, in case of a +uniform histogram each of ranges[i] is an array of 2 elements. When the histogram is not uniform ( +uniform=false ), then each of ranges[i] contains histSize[i]+1 elements: +\f$L_0, U_0=L_1, U_1=L_2, ..., U_{\texttt{histSize[i]}-2}=L_{\texttt{histSize[i]}-1}, U_{\texttt{histSize[i]}-1}\f$ +. The array elements, that are not between \f$L_0\f$ and \f$U_{\texttt{histSize[i]}-1}\f$ , are not +counted in the histogram. +@param uniform Flag indicating whether the histogram is uniform or not (see above). +@param accumulate Accumulation flag. If it is set, the histogram is not cleared in the beginning +when it is allocated. This feature enables you to compute a single histogram from several sets of +arrays, or to update the histogram in time. +*/ +CV_EXPORTS void calcHist( const Mat* images, int nimages, + const int* channels, InputArray mask, + OutputArray hist, int dims, const int* histSize, + const float** ranges, bool uniform = true, bool accumulate = false ); + +/** @overload + +this variant uses cv::SparseMat for output +*/ +CV_EXPORTS void calcHist( const Mat* images, int nimages, + const int* channels, InputArray mask, + SparseMat& hist, int dims, + const int* histSize, const float** ranges, + bool uniform = true, bool accumulate = false ); + +/** @overload */ +CV_EXPORTS_W void calcHist( InputArrayOfArrays images, + const std::vector& channels, + InputArray mask, OutputArray hist, + const std::vector& histSize, + const std::vector& ranges, + bool accumulate = false ); + +/** @brief Calculates the back projection of a histogram. + +The function cv::calcBackProject calculates the back project of the histogram. That is, similarly to +cv::calcHist , at each location (x, y) the function collects the values from the selected channels +in the input images and finds the corresponding histogram bin. But instead of incrementing it, the +function reads the bin value, scales it by scale , and stores in backProject(x,y) . In terms of +statistics, the function computes probability of each element value in respect with the empirical +probability distribution represented by the histogram. See how, for example, you can find and track +a bright-colored object in a scene: + +- Before tracking, show the object to the camera so that it covers almost the whole frame. +Calculate a hue histogram. The histogram may have strong maximums, corresponding to the dominant +colors in the object. + +- When tracking, calculate a back projection of a hue plane of each input video frame using that +pre-computed histogram. Threshold the back projection to suppress weak colors. It may also make +sense to suppress pixels with non-sufficient color saturation and too dark or too bright pixels. + +- Find connected components in the resulting picture and choose, for example, the largest +component. + +This is an approximate algorithm of the CamShift color object tracker. + +@param images Source arrays. They all should have the same depth, CV_8U, CV_16U or CV_32F , and the same +size. Each of them can have an arbitrary number of channels. +@param nimages Number of source images. +@param channels The list of channels used to compute the back projection. The number of channels +must match the histogram dimensionality. The first array channels are numerated from 0 to +images[0].channels()-1 , the second array channels are counted from images[0].channels() to +images[0].channels() + images[1].channels()-1, and so on. +@param hist Input histogram that can be dense or sparse. +@param backProject Destination back projection array that is a single-channel array of the same +size and depth as images[0] . +@param ranges Array of arrays of the histogram bin boundaries in each dimension. See cv::calcHist . +@param scale Optional scale factor for the output back projection. +@param uniform Flag indicating whether the histogram is uniform or not (see above). + +@sa cv::calcHist, cv::compareHist + */ +CV_EXPORTS void calcBackProject( const Mat* images, int nimages, + const int* channels, InputArray hist, + OutputArray backProject, const float** ranges, + double scale = 1, bool uniform = true ); + +/** @overload */ +CV_EXPORTS void calcBackProject( const Mat* images, int nimages, + const int* channels, const SparseMat& hist, + OutputArray backProject, const float** ranges, + double scale = 1, bool uniform = true ); + +/** @overload */ +CV_EXPORTS_W void calcBackProject( InputArrayOfArrays images, const std::vector& channels, + InputArray hist, OutputArray dst, + const std::vector& ranges, + double scale ); + +/** @brief Compares two histograms. + +The function cv::compareHist compares two dense or two sparse histograms using the specified method. + +The function returns \f$d(H_1, H_2)\f$ . + +While the function works well with 1-, 2-, 3-dimensional dense histograms, it may not be suitable +for high-dimensional sparse histograms. In such histograms, because of aliasing and sampling +problems, the coordinates of non-zero histogram bins can slightly shift. To compare such histograms +or more general sparse configurations of weighted points, consider using the cv::EMD function. + +@param H1 First compared histogram. +@param H2 Second compared histogram of the same size as H1 . +@param method Comparison method, see cv::HistCompMethods + */ +CV_EXPORTS_W double compareHist( InputArray H1, InputArray H2, int method ); + +/** @overload */ +CV_EXPORTS double compareHist( const SparseMat& H1, const SparseMat& H2, int method ); + +/** @brief Equalizes the histogram of a grayscale image. + +The function equalizes the histogram of the input image using the following algorithm: + +- Calculate the histogram \f$H\f$ for src . +- Normalize the histogram so that the sum of histogram bins is 255. +- Compute the integral of the histogram: +\f[H'_i = \sum _{0 \le j < i} H(j)\f] +- Transform the image using \f$H'\f$ as a look-up table: \f$\texttt{dst}(x,y) = H'(\texttt{src}(x,y))\f$ + +The algorithm normalizes the brightness and increases the contrast of the image. + +@param src Source 8-bit single channel image. +@param dst Destination image of the same size and type as src . + */ +CV_EXPORTS_W void equalizeHist( InputArray src, OutputArray dst ); + +/** @brief Computes the "minimal work" distance between two weighted point configurations. + +The function computes the earth mover distance and/or a lower boundary of the distance between the +two weighted point configurations. One of the applications described in @cite RubnerSept98, +@cite Rubner2000 is multi-dimensional histogram comparison for image retrieval. EMD is a transportation +problem that is solved using some modification of a simplex algorithm, thus the complexity is +exponential in the worst case, though, on average it is much faster. In the case of a real metric +the lower boundary can be calculated even faster (using linear-time algorithm) and it can be used +to determine roughly whether the two signatures are far enough so that they cannot relate to the +same object. + +@param signature1 First signature, a \f$\texttt{size1}\times \texttt{dims}+1\f$ floating-point matrix. +Each row stores the point weight followed by the point coordinates. The matrix is allowed to have +a single column (weights only) if the user-defined cost matrix is used. The weights must be +non-negative and have at least one non-zero value. +@param signature2 Second signature of the same format as signature1 , though the number of rows +may be different. The total weights may be different. In this case an extra "dummy" point is added +to either signature1 or signature2. The weights must be non-negative and have at least one non-zero +value. +@param distType Used metric. See cv::DistanceTypes. +@param cost User-defined \f$\texttt{size1}\times \texttt{size2}\f$ cost matrix. Also, if a cost matrix +is used, lower boundary lowerBound cannot be calculated because it needs a metric function. +@param lowerBound Optional input/output parameter: lower boundary of a distance between the two +signatures that is a distance between mass centers. The lower boundary may not be calculated if +the user-defined cost matrix is used, the total weights of point configurations are not equal, or +if the signatures consist of weights only (the signature matrices have a single column). You +**must** initialize \*lowerBound . If the calculated distance between mass centers is greater or +equal to \*lowerBound (it means that the signatures are far enough), the function does not +calculate EMD. In any case \*lowerBound is set to the calculated distance between mass centers on +return. Thus, if you want to calculate both distance between mass centers and EMD, \*lowerBound +should be set to 0. +@param flow Resultant \f$\texttt{size1} \times \texttt{size2}\f$ flow matrix: \f$\texttt{flow}_{i,j}\f$ is +a flow from \f$i\f$ -th point of signature1 to \f$j\f$ -th point of signature2 . + */ +CV_EXPORTS float EMD( InputArray signature1, InputArray signature2, + int distType, InputArray cost=noArray(), + float* lowerBound = 0, OutputArray flow = noArray() ); + +//! @} imgproc_hist + +/** @example watershed.cpp +An example using the watershed algorithm + */ + +/** @brief Performs a marker-based image segmentation using the watershed algorithm. + +The function implements one of the variants of watershed, non-parametric marker-based segmentation +algorithm, described in @cite Meyer92 . + +Before passing the image to the function, you have to roughly outline the desired regions in the +image markers with positive (\>0) indices. So, every region is represented as one or more connected +components with the pixel values 1, 2, 3, and so on. Such markers can be retrieved from a binary +mask using findContours and drawContours (see the watershed.cpp demo). The markers are "seeds" of +the future image regions. All the other pixels in markers , whose relation to the outlined regions +is not known and should be defined by the algorithm, should be set to 0's. In the function output, +each pixel in markers is set to a value of the "seed" components or to -1 at boundaries between the +regions. + +@note Any two neighbor connected components are not necessarily separated by a watershed boundary +(-1's pixels); for example, they can touch each other in the initial marker image passed to the +function. + +@param image Input 8-bit 3-channel image. +@param markers Input/output 32-bit single-channel image (map) of markers. It should have the same +size as image . + +@sa findContours + +@ingroup imgproc_misc + */ +CV_EXPORTS_W void watershed( InputArray image, InputOutputArray markers ); + +//! @addtogroup imgproc_filter +//! @{ + +/** @brief Performs initial step of meanshift segmentation of an image. + +The function implements the filtering stage of meanshift segmentation, that is, the output of the +function is the filtered "posterized" image with color gradients and fine-grain texture flattened. +At every pixel (X,Y) of the input image (or down-sized input image, see below) the function executes +meanshift iterations, that is, the pixel (X,Y) neighborhood in the joint space-color hyperspace is +considered: + +\f[(x,y): X- \texttt{sp} \le x \le X+ \texttt{sp} , Y- \texttt{sp} \le y \le Y+ \texttt{sp} , ||(R,G,B)-(r,g,b)|| \le \texttt{sr}\f] + +where (R,G,B) and (r,g,b) are the vectors of color components at (X,Y) and (x,y), respectively +(though, the algorithm does not depend on the color space used, so any 3-component color space can +be used instead). Over the neighborhood the average spatial value (X',Y') and average color vector +(R',G',B') are found and they act as the neighborhood center on the next iteration: + +\f[(X,Y)~(X',Y'), (R,G,B)~(R',G',B').\f] + +After the iterations over, the color components of the initial pixel (that is, the pixel from where +the iterations started) are set to the final value (average color at the last iteration): + +\f[I(X,Y) <- (R*,G*,B*)\f] + +When maxLevel \> 0, the gaussian pyramid of maxLevel+1 levels is built, and the above procedure is +run on the smallest layer first. After that, the results are propagated to the larger layer and the +iterations are run again only on those pixels where the layer colors differ by more than sr from the +lower-resolution layer of the pyramid. That makes boundaries of color regions sharper. Note that the +results will be actually different from the ones obtained by running the meanshift procedure on the +whole original image (i.e. when maxLevel==0). + +@param src The source 8-bit, 3-channel image. +@param dst The destination image of the same format and the same size as the source. +@param sp The spatial window radius. +@param sr The color window radius. +@param maxLevel Maximum level of the pyramid for the segmentation. +@param termcrit Termination criteria: when to stop meanshift iterations. + */ +CV_EXPORTS_W void pyrMeanShiftFiltering( InputArray src, OutputArray dst, + double sp, double sr, int maxLevel = 1, + TermCriteria termcrit=TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5,1) ); + +//! @} + +//! @addtogroup imgproc_misc +//! @{ + +/** @example grabcut.cpp +An example using the GrabCut algorithm + */ + +/** @brief Runs the GrabCut algorithm. + +The function implements the [GrabCut image segmentation algorithm](http://en.wikipedia.org/wiki/GrabCut). + +@param img Input 8-bit 3-channel image. +@param mask Input/output 8-bit single-channel mask. The mask is initialized by the function when +mode is set to GC_INIT_WITH_RECT. Its elements may have one of the cv::GrabCutClasses. +@param rect ROI containing a segmented object. The pixels outside of the ROI are marked as +"obvious background". The parameter is only used when mode==GC_INIT_WITH_RECT . +@param bgdModel Temporary array for the background model. Do not modify it while you are +processing the same image. +@param fgdModel Temporary arrays for the foreground model. Do not modify it while you are +processing the same image. +@param iterCount Number of iterations the algorithm should make before returning the result. Note +that the result can be refined with further calls with mode==GC_INIT_WITH_MASK or +mode==GC_EVAL . +@param mode Operation mode that could be one of the cv::GrabCutModes + */ +CV_EXPORTS_W void grabCut( InputArray img, InputOutputArray mask, Rect rect, + InputOutputArray bgdModel, InputOutputArray fgdModel, + int iterCount, int mode = GC_EVAL ); + +/** @example distrans.cpp +An example on using the distance transform\ +*/ + + +/** @brief Calculates the distance to the closest zero pixel for each pixel of the source image. + +The function cv::distanceTransform calculates the approximate or precise distance from every binary +image pixel to the nearest zero pixel. For zero image pixels, the distance will obviously be zero. + +When maskSize == DIST_MASK_PRECISE and distanceType == DIST_L2 , the function runs the +algorithm described in @cite Felzenszwalb04 . This algorithm is parallelized with the TBB library. + +In other cases, the algorithm @cite Borgefors86 is used. This means that for a pixel the function +finds the shortest path to the nearest zero pixel consisting of basic shifts: horizontal, vertical, +diagonal, or knight's move (the latest is available for a \f$5\times 5\f$ mask). The overall +distance is calculated as a sum of these basic distances. Since the distance function should be +symmetric, all of the horizontal and vertical shifts must have the same cost (denoted as a ), all +the diagonal shifts must have the same cost (denoted as `b`), and all knight's moves must have the +same cost (denoted as `c`). For the cv::DIST_C and cv::DIST_L1 types, the distance is calculated +precisely, whereas for cv::DIST_L2 (Euclidean distance) the distance can be calculated only with a +relative error (a \f$5\times 5\f$ mask gives more accurate results). For `a`,`b`, and `c`, OpenCV +uses the values suggested in the original paper: +- DIST_L1: `a = 1, b = 2` +- DIST_L2: + - `3 x 3`: `a=0.955, b=1.3693` + - `5 x 5`: `a=1, b=1.4, c=2.1969` +- DIST_C: `a = 1, b = 1` + +Typically, for a fast, coarse distance estimation DIST_L2, a \f$3\times 3\f$ mask is used. For a +more accurate distance estimation DIST_L2, a \f$5\times 5\f$ mask or the precise algorithm is used. +Note that both the precise and the approximate algorithms are linear on the number of pixels. + +This variant of the function does not only compute the minimum distance for each pixel \f$(x, y)\f$ +but also identifies the nearest connected component consisting of zero pixels +(labelType==DIST_LABEL_CCOMP) or the nearest zero pixel (labelType==DIST_LABEL_PIXEL). Index of the +component/pixel is stored in `labels(x, y)`. When labelType==DIST_LABEL_CCOMP, the function +automatically finds connected components of zero pixels in the input image and marks them with +distinct labels. When labelType==DIST_LABEL_CCOMP, the function scans through the input image and +marks all the zero pixels with distinct labels. + +In this mode, the complexity is still linear. That is, the function provides a very fast way to +compute the Voronoi diagram for a binary image. Currently, the second variant can use only the +approximate distance transform algorithm, i.e. maskSize=DIST_MASK_PRECISE is not supported +yet. + +@param src 8-bit, single-channel (binary) source image. +@param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point, +single-channel image of the same size as src. +@param labels Output 2D array of labels (the discrete Voronoi diagram). It has the type +CV_32SC1 and the same size as src. +@param distanceType Type of distance, see cv::DistanceTypes +@param maskSize Size of the distance transform mask, see cv::DistanceTransformMasks. +DIST_MASK_PRECISE is not supported by this variant. In case of the DIST_L1 or DIST_C distance type, +the parameter is forced to 3 because a \f$3\times 3\f$ mask gives the same result as \f$5\times +5\f$ or any larger aperture. +@param labelType Type of the label array to build, see cv::DistanceTransformLabelTypes. + */ +CV_EXPORTS_AS(distanceTransformWithLabels) void distanceTransform( InputArray src, OutputArray dst, + OutputArray labels, int distanceType, int maskSize, + int labelType = DIST_LABEL_CCOMP ); + +/** @overload +@param src 8-bit, single-channel (binary) source image. +@param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point, +single-channel image of the same size as src . +@param distanceType Type of distance, see cv::DistanceTypes +@param maskSize Size of the distance transform mask, see cv::DistanceTransformMasks. In case of the +DIST_L1 or DIST_C distance type, the parameter is forced to 3 because a \f$3\times 3\f$ mask gives +the same result as \f$5\times 5\f$ or any larger aperture. +@param dstType Type of output image. It can be CV_8U or CV_32F. Type CV_8U can be used only for +the first variant of the function and distanceType == DIST_L1. +*/ +CV_EXPORTS_W void distanceTransform( InputArray src, OutputArray dst, + int distanceType, int maskSize, int dstType=CV_32F); + +/** @example ffilldemo.cpp + An example using the FloodFill technique +*/ + +/** @overload + +variant without `mask` parameter +*/ +CV_EXPORTS int floodFill( InputOutputArray image, + Point seedPoint, Scalar newVal, CV_OUT Rect* rect = 0, + Scalar loDiff = Scalar(), Scalar upDiff = Scalar(), + int flags = 4 ); + +/** @brief Fills a connected component with the given color. + +The function cv::floodFill fills a connected component starting from the seed point with the specified +color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The +pixel at \f$(x,y)\f$ is considered to belong to the repainted domain if: + +- in case of a grayscale image and floating range +\f[\texttt{src} (x',y')- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} (x',y')+ \texttt{upDiff}\f] + + +- in case of a grayscale image and fixed range +\f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)+ \texttt{upDiff}\f] + + +- in case of a color image and floating range +\f[\texttt{src} (x',y')_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} (x',y')_r+ \texttt{upDiff} _r,\f] +\f[\texttt{src} (x',y')_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} (x',y')_g+ \texttt{upDiff} _g\f] +and +\f[\texttt{src} (x',y')_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} (x',y')_b+ \texttt{upDiff} _b\f] + + +- in case of a color image and fixed range +\f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r+ \texttt{upDiff} _r,\f] +\f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g+ \texttt{upDiff} _g\f] +and +\f[\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b+ \texttt{upDiff} _b\f] + + +where \f$src(x',y')\f$ is the value of one of pixel neighbors that is already known to belong to the +component. That is, to be added to the connected component, a color/brightness of the pixel should +be close enough to: +- Color/brightness of one of its neighbors that already belong to the connected component in case +of a floating range. +- Color/brightness of the seed point in case of a fixed range. + +Use these functions to either mark a connected component with the specified color in-place, or build +a mask and then extract the contour, or copy the region to another image, and so on. + +@param image Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the +function unless the FLOODFILL_MASK_ONLY flag is set in the second variant of the function. See +the details below. +@param mask Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels +taller than image. Since this is both an input and output parameter, you must take responsibility +of initializing it. Flood-filling cannot go across non-zero pixels in the input mask. For example, +an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the +mask corresponding to filled pixels in the image are set to 1 or to the a value specified in flags +as described below. It is therefore possible to use the same mask in multiple calls to the function +to make sure the filled areas do not overlap. +@param seedPoint Starting point. +@param newVal New value of the repainted domain pixels. +@param loDiff Maximal lower brightness/color difference between the currently observed pixel and +one of its neighbors belonging to the component, or a seed pixel being added to the component. +@param upDiff Maximal upper brightness/color difference between the currently observed pixel and +one of its neighbors belonging to the component, or a seed pixel being added to the component. +@param rect Optional output parameter set by the function to the minimum bounding rectangle of the +repainted domain. +@param flags Operation flags. The first 8 bits contain a connectivity value. The default value of +4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A +connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner) +will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill +the mask (the default value is 1). For example, 4 | ( 255 \<\< 8 ) will consider 4 nearest +neighbours and fill the mask with a value of 255. The following additional options occupy higher +bits and therefore may be further combined with the connectivity and mask fill values using +bit-wise or (|), see cv::FloodFillFlags. + +@note Since the mask is larger than the filled image, a pixel \f$(x, y)\f$ in image corresponds to the +pixel \f$(x+1, y+1)\f$ in the mask . + +@sa findContours + */ +CV_EXPORTS_W int floodFill( InputOutputArray image, InputOutputArray mask, + Point seedPoint, Scalar newVal, CV_OUT Rect* rect=0, + Scalar loDiff = Scalar(), Scalar upDiff = Scalar(), + int flags = 4 ); + +/** @brief Converts an image from one color space to another. + +The function converts an input image from one color space to another. In case of a transformation +to-from RGB color space, the order of the channels should be specified explicitly (RGB or BGR). Note +that the default color format in OpenCV is often referred to as RGB but it is actually BGR (the +bytes are reversed). So the first byte in a standard (24-bit) color image will be an 8-bit Blue +component, the second byte will be Green, and the third byte will be Red. The fourth, fifth, and +sixth bytes would then be the second pixel (Blue, then Green, then Red), and so on. + +The conventional ranges for R, G, and B channel values are: +- 0 to 255 for CV_8U images +- 0 to 65535 for CV_16U images +- 0 to 1 for CV_32F images + +In case of linear transformations, the range does not matter. But in case of a non-linear +transformation, an input RGB image should be normalized to the proper value range to get the correct +results, for example, for RGB \f$\rightarrow\f$ L\*u\*v\* transformation. For example, if you have a +32-bit floating-point image directly converted from an 8-bit image without any scaling, then it will +have the 0..255 value range instead of 0..1 assumed by the function. So, before calling cvtColor , +you need first to scale the image down: +@code + img *= 1./255; + cvtColor(img, img, COLOR_BGR2Luv); +@endcode +If you use cvtColor with 8-bit images, the conversion will have some information lost. For many +applications, this will not be noticeable but it is recommended to use 32-bit images in applications +that need the full range of colors or that convert an image before an operation and then convert +back. + +If conversion adds the alpha channel, its value will set to the maximum of corresponding channel +range: 255 for CV_8U, 65535 for CV_16U, 1 for CV_32F. + +@param src input image: 8-bit unsigned, 16-bit unsigned ( CV_16UC... ), or single-precision +floating-point. +@param dst output image of the same size and depth as src. +@param code color space conversion code (see cv::ColorConversionCodes). +@param dstCn number of channels in the destination image; if the parameter is 0, the number of the +channels is derived automatically from src and code. + +@see @ref imgproc_color_conversions + */ +CV_EXPORTS_W void cvtColor( InputArray src, OutputArray dst, int code, int dstCn = 0 ); + +//! @} imgproc_misc + +// main function for all demosaicing procceses +CV_EXPORTS_W void demosaicing(InputArray _src, OutputArray _dst, int code, int dcn = 0); + +//! @addtogroup imgproc_shape +//! @{ + +/** @brief Calculates all of the moments up to the third order of a polygon or rasterized shape. + +The function computes moments, up to the 3rd order, of a vector shape or a rasterized shape. The +results are returned in the structure cv::Moments. + +@param array Raster image (single-channel, 8-bit or floating-point 2D array) or an array ( +\f$1 \times N\f$ or \f$N \times 1\f$ ) of 2D points (Point or Point2f ). +@param binaryImage If it is true, all non-zero image pixels are treated as 1's. The parameter is +used for images only. +@returns moments. + +@note Only applicable to contour moments calculations from Python bindings: Note that the numpy +type for the input array should be either np.int32 or np.float32. + +@sa contourArea, arcLength + */ +CV_EXPORTS_W Moments moments( InputArray array, bool binaryImage = false ); + +/** @brief Calculates seven Hu invariants. + +The function calculates seven Hu invariants (introduced in @cite Hu62; see also +) defined as: + +\f[\begin{array}{l} hu[0]= \eta _{20}+ \eta _{02} \\ hu[1]=( \eta _{20}- \eta _{02})^{2}+4 \eta _{11}^{2} \\ hu[2]=( \eta _{30}-3 \eta _{12})^{2}+ (3 \eta _{21}- \eta _{03})^{2} \\ hu[3]=( \eta _{30}+ \eta _{12})^{2}+ ( \eta _{21}+ \eta _{03})^{2} \\ hu[4]=( \eta _{30}-3 \eta _{12})( \eta _{30}+ \eta _{12})[( \eta _{30}+ \eta _{12})^{2}-3( \eta _{21}+ \eta _{03})^{2}]+(3 \eta _{21}- \eta _{03})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}] \\ hu[5]=( \eta _{20}- \eta _{02})[( \eta _{30}+ \eta _{12})^{2}- ( \eta _{21}+ \eta _{03})^{2}]+4 \eta _{11}( \eta _{30}+ \eta _{12})( \eta _{21}+ \eta _{03}) \\ hu[6]=(3 \eta _{21}- \eta _{03})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}]-( \eta _{30}-3 \eta _{12})( \eta _{21}+ \eta _{03})[3( \eta _{30}+ \eta _{12})^{2}-( \eta _{21}+ \eta _{03})^{2}] \\ \end{array}\f] + +where \f$\eta_{ji}\f$ stands for \f$\texttt{Moments::nu}_{ji}\f$ . + +These values are proved to be invariants to the image scale, rotation, and reflection except the +seventh one, whose sign is changed by reflection. This invariance is proved with the assumption of +infinite image resolution. In case of raster images, the computed Hu invariants for the original and +transformed images are a bit different. + +@param moments Input moments computed with moments . +@param hu Output Hu invariants. + +@sa matchShapes + */ +CV_EXPORTS void HuMoments( const Moments& moments, double hu[7] ); + +/** @overload */ +CV_EXPORTS_W void HuMoments( const Moments& m, OutputArray hu ); + +//! @} imgproc_shape + +//! @addtogroup imgproc_object +//! @{ + +//! type of the template matching operation +enum TemplateMatchModes { + TM_SQDIFF = 0, //!< \f[R(x,y)= \sum _{x',y'} (T(x',y')-I(x+x',y+y'))^2\f] + TM_SQDIFF_NORMED = 1, //!< \f[R(x,y)= \frac{\sum_{x',y'} (T(x',y')-I(x+x',y+y'))^2}{\sqrt{\sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}\f] + TM_CCORR = 2, //!< \f[R(x,y)= \sum _{x',y'} (T(x',y') \cdot I(x+x',y+y'))\f] + TM_CCORR_NORMED = 3, //!< \f[R(x,y)= \frac{\sum_{x',y'} (T(x',y') \cdot I(x+x',y+y'))}{\sqrt{\sum_{x',y'}T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}\f] + TM_CCOEFF = 4, //!< \f[R(x,y)= \sum _{x',y'} (T'(x',y') \cdot I'(x+x',y+y'))\f] + //!< where + //!< \f[\begin{array}{l} T'(x',y')=T(x',y') - 1/(w \cdot h) \cdot \sum _{x'',y''} T(x'',y'') \\ I'(x+x',y+y')=I(x+x',y+y') - 1/(w \cdot h) \cdot \sum _{x'',y''} I(x+x'',y+y'') \end{array}\f] + TM_CCOEFF_NORMED = 5 //!< \f[R(x,y)= \frac{ \sum_{x',y'} (T'(x',y') \cdot I'(x+x',y+y')) }{ \sqrt{\sum_{x',y'}T'(x',y')^2 \cdot \sum_{x',y'} I'(x+x',y+y')^2} }\f] +}; + +/** @brief Compares a template against overlapped image regions. + +The function slides through image , compares the overlapped patches of size \f$w \times h\f$ against +templ using the specified method and stores the comparison results in result . Here are the formulae +for the available comparison methods ( \f$I\f$ denotes image, \f$T\f$ template, \f$R\f$ result ). The summation +is done over template and/or the image patch: \f$x' = 0...w-1, y' = 0...h-1\f$ + +After the function finishes the comparison, the best matches can be found as global minimums (when +TM_SQDIFF was used) or maximums (when TM_CCORR or TM_CCOEFF was used) using the +minMaxLoc function. In case of a color image, template summation in the numerator and each sum in +the denominator is done over all of the channels and separate mean values are used for each channel. +That is, the function can take a color template and a color image. The result will still be a +single-channel image, which is easier to analyze. + +@param image Image where the search is running. It must be 8-bit or 32-bit floating-point. +@param templ Searched template. It must be not greater than the source image and have the same +data type. +@param result Map of comparison results. It must be single-channel 32-bit floating-point. If image +is \f$W \times H\f$ and templ is \f$w \times h\f$ , then result is \f$(W-w+1) \times (H-h+1)\f$ . +@param method Parameter specifying the comparison method, see cv::TemplateMatchModes +@param mask Mask of searched template. It must have the same datatype and size with templ. It is +not set by default. + */ +CV_EXPORTS_W void matchTemplate( InputArray image, InputArray templ, + OutputArray result, int method, InputArray mask = noArray() ); + +//! @} + +//! @addtogroup imgproc_shape +//! @{ + +/** @brief computes the connected components labeled image of boolean image + +image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0 +represents the background label. ltype specifies the output label image type, an important +consideration based on the total number of labels or alternatively the total number of pixels in +the source image. ccltype specifies the connected components labeling algorithm to use, currently +Grana's (BBDT) and Wu's (SAUF) algorithms are supported, see the cv::ConnectedComponentsAlgorithmsTypes +for details. Note that SAUF algorithm forces a row major ordering of labels while BBDT does not. + +@param image the 8-bit single-channel image to be labeled +@param labels destination labeled image +@param connectivity 8 or 4 for 8-way or 4-way connectivity respectively +@param ltype output image label type. Currently CV_32S and CV_16U are supported. +@param ccltype connected components algorithm type (see the cv::ConnectedComponentsAlgorithmsTypes). +*/ +CV_EXPORTS_AS(connectedComponentsWithAlgorithm) int connectedComponents(InputArray image, OutputArray labels, + int connectivity, int ltype, int ccltype); + + +/** @overload + +@param image the 8-bit single-channel image to be labeled +@param labels destination labeled image +@param connectivity 8 or 4 for 8-way or 4-way connectivity respectively +@param ltype output image label type. Currently CV_32S and CV_16U are supported. +*/ +CV_EXPORTS_W int connectedComponents(InputArray image, OutputArray labels, + int connectivity = 8, int ltype = CV_32S); + + +/** @brief computes the connected components labeled image of boolean image and also produces a statistics output for each label + +image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0 +represents the background label. ltype specifies the output label image type, an important +consideration based on the total number of labels or alternatively the total number of pixels in +the source image. ccltype specifies the connected components labeling algorithm to use, currently +Grana's (BBDT) and Wu's (SAUF) algorithms are supported, see the cv::ConnectedComponentsAlgorithmsTypes +for details. Note that SAUF algorithm forces a row major ordering of labels while BBDT does not. + + +@param image the 8-bit single-channel image to be labeled +@param labels destination labeled image +@param stats statistics output for each label, including the background label, see below for +available statistics. Statistics are accessed via stats(label, COLUMN) where COLUMN is one of +cv::ConnectedComponentsTypes. The data type is CV_32S. +@param centroids centroid output for each label, including the background label. Centroids are +accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F. +@param connectivity 8 or 4 for 8-way or 4-way connectivity respectively +@param ltype output image label type. Currently CV_32S and CV_16U are supported. +@param ccltype connected components algorithm type (see the cv::ConnectedComponentsAlgorithmsTypes). +*/ +CV_EXPORTS_AS(connectedComponentsWithStatsWithAlgorithm) int connectedComponentsWithStats(InputArray image, OutputArray labels, + OutputArray stats, OutputArray centroids, + int connectivity, int ltype, int ccltype); + +/** @overload +@param image the 8-bit single-channel image to be labeled +@param labels destination labeled image +@param stats statistics output for each label, including the background label, see below for +available statistics. Statistics are accessed via stats(label, COLUMN) where COLUMN is one of +cv::ConnectedComponentsTypes. The data type is CV_32S. +@param centroids centroid output for each label, including the background label. Centroids are +accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F. +@param connectivity 8 or 4 for 8-way or 4-way connectivity respectively +@param ltype output image label type. Currently CV_32S and CV_16U are supported. +*/ +CV_EXPORTS_W int connectedComponentsWithStats(InputArray image, OutputArray labels, + OutputArray stats, OutputArray centroids, + int connectivity = 8, int ltype = CV_32S); + + +/** @brief Finds contours in a binary image. + +The function retrieves contours from the binary image using the algorithm @cite Suzuki85 . The contours +are a useful tool for shape analysis and object detection and recognition. See squares.cpp in the +OpenCV sample directory. +@note Since opencv 3.2 source image is not modified by this function. + +@param image Source, an 8-bit single-channel image. Non-zero pixels are treated as 1's. Zero +pixels remain 0's, so the image is treated as binary . You can use cv::compare, cv::inRange, cv::threshold , +cv::adaptiveThreshold, cv::Canny, and others to create a binary image out of a grayscale or color one. +If mode equals to cv::RETR_CCOMP or cv::RETR_FLOODFILL, the input can also be a 32-bit integer image of labels (CV_32SC1). +@param contours Detected contours. Each contour is stored as a vector of points (e.g. +std::vector >). +@param hierarchy Optional output vector (e.g. std::vector), containing information about the image topology. It has +as many elements as the number of contours. For each i-th contour contours[i], the elements +hierarchy[i][0] , hiearchy[i][1] , hiearchy[i][2] , and hiearchy[i][3] are set to 0-based indices +in contours of the next and previous contours at the same hierarchical level, the first child +contour and the parent contour, respectively. If for the contour i there are no next, previous, +parent, or nested contours, the corresponding elements of hierarchy[i] will be negative. +@param mode Contour retrieval mode, see cv::RetrievalModes +@param method Contour approximation method, see cv::ContourApproximationModes +@param offset Optional offset by which every contour point is shifted. This is useful if the +contours are extracted from the image ROI and then they should be analyzed in the whole image +context. + */ +CV_EXPORTS_W void findContours( InputOutputArray image, OutputArrayOfArrays contours, + OutputArray hierarchy, int mode, + int method, Point offset = Point()); + +/** @overload */ +CV_EXPORTS void findContours( InputOutputArray image, OutputArrayOfArrays contours, + int mode, int method, Point offset = Point()); + +/** @brief Approximates a polygonal curve(s) with the specified precision. + +The function cv::approxPolyDP approximates a curve or a polygon with another curve/polygon with less +vertices so that the distance between them is less or equal to the specified precision. It uses the +Douglas-Peucker algorithm + +@param curve Input vector of a 2D point stored in std::vector or Mat +@param approxCurve Result of the approximation. The type should match the type of the input curve. +@param epsilon Parameter specifying the approximation accuracy. This is the maximum distance +between the original curve and its approximation. +@param closed If true, the approximated curve is closed (its first and last vertices are +connected). Otherwise, it is not closed. + */ +CV_EXPORTS_W void approxPolyDP( InputArray curve, + OutputArray approxCurve, + double epsilon, bool closed ); + +/** @brief Calculates a contour perimeter or a curve length. + +The function computes a curve length or a closed contour perimeter. + +@param curve Input vector of 2D points, stored in std::vector or Mat. +@param closed Flag indicating whether the curve is closed or not. + */ +CV_EXPORTS_W double arcLength( InputArray curve, bool closed ); + +/** @brief Calculates the up-right bounding rectangle of a point set. + +The function calculates and returns the minimal up-right bounding rectangle for the specified point set. + +@param points Input 2D point set, stored in std::vector or Mat. + */ +CV_EXPORTS_W Rect boundingRect( InputArray points ); + +/** @brief Calculates a contour area. + +The function computes a contour area. Similarly to moments , the area is computed using the Green +formula. Thus, the returned area and the number of non-zero pixels, if you draw the contour using +drawContours or fillPoly , can be different. Also, the function will most certainly give a wrong +results for contours with self-intersections. + +Example: +@code + vector contour; + contour.push_back(Point2f(0, 0)); + contour.push_back(Point2f(10, 0)); + contour.push_back(Point2f(10, 10)); + contour.push_back(Point2f(5, 4)); + + double area0 = contourArea(contour); + vector approx; + approxPolyDP(contour, approx, 5, true); + double area1 = contourArea(approx); + + cout << "area0 =" << area0 << endl << + "area1 =" << area1 << endl << + "approx poly vertices" << approx.size() << endl; +@endcode +@param contour Input vector of 2D points (contour vertices), stored in std::vector or Mat. +@param oriented Oriented area flag. If it is true, the function returns a signed area value, +depending on the contour orientation (clockwise or counter-clockwise). Using this feature you can +determine orientation of a contour by taking the sign of an area. By default, the parameter is +false, which means that the absolute value is returned. + */ +CV_EXPORTS_W double contourArea( InputArray contour, bool oriented = false ); + +/** @brief Finds a rotated rectangle of the minimum area enclosing the input 2D point set. + +The function calculates and returns the minimum-area bounding rectangle (possibly rotated) for a +specified point set. See the OpenCV sample minarea.cpp . Developer should keep in mind that the +returned rotatedRect can contain negative indices when data is close to the containing Mat element +boundary. + +@param points Input vector of 2D points, stored in std::vector\<\> or Mat + */ +CV_EXPORTS_W RotatedRect minAreaRect( InputArray points ); + +/** @brief Finds the four vertices of a rotated rect. Useful to draw the rotated rectangle. + +The function finds the four vertices of a rotated rectangle. This function is useful to draw the +rectangle. In C++, instead of using this function, you can directly use box.points() method. Please +visit the [tutorial on bounding +rectangle](http://docs.opencv.org/doc/tutorials/imgproc/shapedescriptors/bounding_rects_circles/bounding_rects_circles.html#bounding-rects-circles) +for more information. + +@param box The input rotated rectangle. It may be the output of +@param points The output array of four vertices of rectangles. + */ +CV_EXPORTS_W void boxPoints(RotatedRect box, OutputArray points); + +/** @brief Finds a circle of the minimum area enclosing a 2D point set. + +The function finds the minimal enclosing circle of a 2D point set using an iterative algorithm. See +the OpenCV sample minarea.cpp . + +@param points Input vector of 2D points, stored in std::vector\<\> or Mat +@param center Output center of the circle. +@param radius Output radius of the circle. + */ +CV_EXPORTS_W void minEnclosingCircle( InputArray points, + CV_OUT Point2f& center, CV_OUT float& radius ); + +/** @example minarea.cpp + */ + +/** @brief Finds a triangle of minimum area enclosing a 2D point set and returns its area. + +The function finds a triangle of minimum area enclosing the given set of 2D points and returns its +area. The output for a given 2D point set is shown in the image below. 2D points are depicted in +*red* and the enclosing triangle in *yellow*. + +![Sample output of the minimum enclosing triangle function](pics/minenclosingtriangle.png) + +The implementation of the algorithm is based on O'Rourke's @cite ORourke86 and Klee and Laskowski's +@cite KleeLaskowski85 papers. O'Rourke provides a \f$\theta(n)\f$ algorithm for finding the minimal +enclosing triangle of a 2D convex polygon with n vertices. Since the minEnclosingTriangle function +takes a 2D point set as input an additional preprocessing step of computing the convex hull of the +2D point set is required. The complexity of the convexHull function is \f$O(n log(n))\f$ which is higher +than \f$\theta(n)\f$. Thus the overall complexity of the function is \f$O(n log(n))\f$. + +@param points Input vector of 2D points with depth CV_32S or CV_32F, stored in std::vector\<\> or Mat +@param triangle Output vector of three 2D points defining the vertices of the triangle. The depth +of the OutputArray must be CV_32F. + */ +CV_EXPORTS_W double minEnclosingTriangle( InputArray points, CV_OUT OutputArray triangle ); + +/** @brief Compares two shapes. + +The function compares two shapes. All three implemented methods use the Hu invariants (see cv::HuMoments) + +@param contour1 First contour or grayscale image. +@param contour2 Second contour or grayscale image. +@param method Comparison method, see ::ShapeMatchModes +@param parameter Method-specific parameter (not supported now). + */ +CV_EXPORTS_W double matchShapes( InputArray contour1, InputArray contour2, + int method, double parameter ); + +/** @example convexhull.cpp +An example using the convexHull functionality +*/ + +/** @brief Finds the convex hull of a point set. + +The function cv::convexHull finds the convex hull of a 2D point set using the Sklansky's algorithm @cite Sklansky82 +that has *O(N logN)* complexity in the current implementation. See the OpenCV sample convexhull.cpp +that demonstrates the usage of different function variants. + +@param points Input 2D point set, stored in std::vector or Mat. +@param hull Output convex hull. It is either an integer vector of indices or vector of points. In +the first case, the hull elements are 0-based indices of the convex hull points in the original +array (since the set of convex hull points is a subset of the original point set). In the second +case, hull elements are the convex hull points themselves. +@param clockwise Orientation flag. If it is true, the output convex hull is oriented clockwise. +Otherwise, it is oriented counter-clockwise. The assumed coordinate system has its X axis pointing +to the right, and its Y axis pointing upwards. +@param returnPoints Operation flag. In case of a matrix, when the flag is true, the function +returns convex hull points. Otherwise, it returns indices of the convex hull points. When the +output array is std::vector, the flag is ignored, and the output depends on the type of the +vector: std::vector\ implies returnPoints=false, std::vector\ implies +returnPoints=true. + */ +CV_EXPORTS_W void convexHull( InputArray points, OutputArray hull, + bool clockwise = false, bool returnPoints = true ); + +/** @brief Finds the convexity defects of a contour. + +The figure below displays convexity defects of a hand contour: + +![image](pics/defects.png) + +@param contour Input contour. +@param convexhull Convex hull obtained using convexHull that should contain indices of the contour +points that make the hull. +@param convexityDefects The output vector of convexity defects. In C++ and the new Python/Java +interface each convexity defect is represented as 4-element integer vector (a.k.a. cv::Vec4i): +(start_index, end_index, farthest_pt_index, fixpt_depth), where indices are 0-based indices +in the original contour of the convexity defect beginning, end and the farthest point, and +fixpt_depth is fixed-point approximation (with 8 fractional bits) of the distance between the +farthest contour point and the hull. That is, to get the floating-point value of the depth will be +fixpt_depth/256.0. + */ +CV_EXPORTS_W void convexityDefects( InputArray contour, InputArray convexhull, OutputArray convexityDefects ); + +/** @brief Tests a contour convexity. + +The function tests whether the input contour is convex or not. The contour must be simple, that is, +without self-intersections. Otherwise, the function output is undefined. + +@param contour Input vector of 2D points, stored in std::vector\<\> or Mat + */ +CV_EXPORTS_W bool isContourConvex( InputArray contour ); + +//! finds intersection of two convex polygons +CV_EXPORTS_W float intersectConvexConvex( InputArray _p1, InputArray _p2, + OutputArray _p12, bool handleNested = true ); + +/** @example fitellipse.cpp + An example using the fitEllipse technique +*/ + +/** @brief Fits an ellipse around a set of 2D points. + +The function calculates the ellipse that fits (in a least-squares sense) a set of 2D points best of +all. It returns the rotated rectangle in which the ellipse is inscribed. The first algorithm described by @cite Fitzgibbon95 +is used. Developer should keep in mind that it is possible that the returned +ellipse/rotatedRect data contains negative indices, due to the data points being close to the +border of the containing Mat element. + +@param points Input 2D point set, stored in std::vector\<\> or Mat + */ +CV_EXPORTS_W RotatedRect fitEllipse( InputArray points ); + +/** @brief Fits a line to a 2D or 3D point set. + +The function fitLine fits a line to a 2D or 3D point set by minimizing \f$\sum_i \rho(r_i)\f$ where +\f$r_i\f$ is a distance between the \f$i^{th}\f$ point, the line and \f$\rho(r)\f$ is a distance function, one +of the following: +- DIST_L2 +\f[\rho (r) = r^2/2 \quad \text{(the simplest and the fastest least-squares method)}\f] +- DIST_L1 +\f[\rho (r) = r\f] +- DIST_L12 +\f[\rho (r) = 2 \cdot ( \sqrt{1 + \frac{r^2}{2}} - 1)\f] +- DIST_FAIR +\f[\rho \left (r \right ) = C^2 \cdot \left ( \frac{r}{C} - \log{\left(1 + \frac{r}{C}\right)} \right ) \quad \text{where} \quad C=1.3998\f] +- DIST_WELSCH +\f[\rho \left (r \right ) = \frac{C^2}{2} \cdot \left ( 1 - \exp{\left(-\left(\frac{r}{C}\right)^2\right)} \right ) \quad \text{where} \quad C=2.9846\f] +- DIST_HUBER +\f[\rho (r) = \fork{r^2/2}{if \(r < C\)}{C \cdot (r-C/2)}{otherwise} \quad \text{where} \quad C=1.345\f] + +The algorithm is based on the M-estimator ( ) technique +that iteratively fits the line using the weighted least-squares algorithm. After each iteration the +weights \f$w_i\f$ are adjusted to be inversely proportional to \f$\rho(r_i)\f$ . + +@param points Input vector of 2D or 3D points, stored in std::vector\<\> or Mat. +@param line Output line parameters. In case of 2D fitting, it should be a vector of 4 elements +(like Vec4f) - (vx, vy, x0, y0), where (vx, vy) is a normalized vector collinear to the line and +(x0, y0) is a point on the line. In case of 3D fitting, it should be a vector of 6 elements (like +Vec6f) - (vx, vy, vz, x0, y0, z0), where (vx, vy, vz) is a normalized vector collinear to the line +and (x0, y0, z0) is a point on the line. +@param distType Distance used by the M-estimator, see cv::DistanceTypes +@param param Numerical parameter ( C ) for some types of distances. If it is 0, an optimal value +is chosen. +@param reps Sufficient accuracy for the radius (distance between the coordinate origin and the line). +@param aeps Sufficient accuracy for the angle. 0.01 would be a good default value for reps and aeps. + */ +CV_EXPORTS_W void fitLine( InputArray points, OutputArray line, int distType, + double param, double reps, double aeps ); + +/** @brief Performs a point-in-contour test. + +The function determines whether the point is inside a contour, outside, or lies on an edge (or +coincides with a vertex). It returns positive (inside), negative (outside), or zero (on an edge) +value, correspondingly. When measureDist=false , the return value is +1, -1, and 0, respectively. +Otherwise, the return value is a signed distance between the point and the nearest contour edge. + +See below a sample output of the function where each image pixel is tested against the contour: + +![sample output](pics/pointpolygon.png) + +@param contour Input contour. +@param pt Point tested against the contour. +@param measureDist If true, the function estimates the signed distance from the point to the +nearest contour edge. Otherwise, the function only checks if the point is inside a contour or not. + */ +CV_EXPORTS_W double pointPolygonTest( InputArray contour, Point2f pt, bool measureDist ); + +/** @brief Finds out if there is any intersection between two rotated rectangles. + +If there is then the vertices of the interesecting region are returned as well. + +Below are some examples of intersection configurations. The hatched pattern indicates the +intersecting region and the red vertices are returned by the function. + +![intersection examples](pics/intersection.png) + +@param rect1 First rectangle +@param rect2 Second rectangle +@param intersectingRegion The output array of the verticies of the intersecting region. It returns +at most 8 vertices. Stored as std::vector\ or cv::Mat as Mx1 of type CV_32FC2. +@returns One of cv::RectanglesIntersectTypes + */ +CV_EXPORTS_W int rotatedRectangleIntersection( const RotatedRect& rect1, const RotatedRect& rect2, OutputArray intersectingRegion ); + +//! @} imgproc_shape + +CV_EXPORTS_W Ptr createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8)); + +//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122. +//! Detects position only without traslation and rotation +CV_EXPORTS Ptr createGeneralizedHoughBallard(); + +//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038. +//! Detects position, traslation and rotation +CV_EXPORTS Ptr createGeneralizedHoughGuil(); + +//! Performs linear blending of two images +CV_EXPORTS void blendLinear(InputArray src1, InputArray src2, InputArray weights1, InputArray weights2, OutputArray dst); + +//! @addtogroup imgproc_colormap +//! @{ + +//! GNU Octave/MATLAB equivalent colormaps +enum ColormapTypes +{ + COLORMAP_AUTUMN = 0, //!< ![autumn](pics/colormaps/colorscale_autumn.jpg) + COLORMAP_BONE = 1, //!< ![bone](pics/colormaps/colorscale_bone.jpg) + COLORMAP_JET = 2, //!< ![jet](pics/colormaps/colorscale_jet.jpg) + COLORMAP_WINTER = 3, //!< ![winter](pics/colormaps/colorscale_winter.jpg) + COLORMAP_RAINBOW = 4, //!< ![rainbow](pics/colormaps/colorscale_rainbow.jpg) + COLORMAP_OCEAN = 5, //!< ![ocean](pics/colormaps/colorscale_ocean.jpg) + COLORMAP_SUMMER = 6, //!< ![summer](pics/colormaps/colorscale_summer.jpg) + COLORMAP_SPRING = 7, //!< ![spring](pics/colormaps/colorscale_spring.jpg) + COLORMAP_COOL = 8, //!< ![cool](pics/colormaps/colorscale_cool.jpg) + COLORMAP_HSV = 9, //!< ![HSV](pics/colormaps/colorscale_hsv.jpg) + COLORMAP_PINK = 10, //!< ![pink](pics/colormaps/colorscale_pink.jpg) + COLORMAP_HOT = 11, //!< ![hot](pics/colormaps/colorscale_hot.jpg) + COLORMAP_PARULA = 12 //!< ![parula](pics/colormaps/colorscale_parula.jpg) +}; + +/** @brief Applies a GNU Octave/MATLAB equivalent colormap on a given image. + +@param src The source image, grayscale or colored of type CV_8UC1 or CV_8UC3. +@param dst The result is the colormapped source image. Note: Mat::create is called on dst. +@param colormap The colormap to apply, see cv::ColormapTypes + */ +CV_EXPORTS_W void applyColorMap(InputArray src, OutputArray dst, int colormap); + +//! @} imgproc_colormap + +//! @addtogroup imgproc_draw +//! @{ + +/** @brief Draws a line segment connecting two points. + +The function line draws the line segment between pt1 and pt2 points in the image. The line is +clipped by the image boundaries. For non-antialiased lines with integer coordinates, the 8-connected +or 4-connected Bresenham algorithm is used. Thick lines are drawn with rounding endings. Antialiased +lines are drawn using Gaussian filtering. + +@param img Image. +@param pt1 First point of the line segment. +@param pt2 Second point of the line segment. +@param color Line color. +@param thickness Line thickness. +@param lineType Type of the line, see cv::LineTypes. +@param shift Number of fractional bits in the point coordinates. + */ +CV_EXPORTS_W void line(InputOutputArray img, Point pt1, Point pt2, const Scalar& color, + int thickness = 1, int lineType = LINE_8, int shift = 0); + +/** @brief Draws a arrow segment pointing from the first point to the second one. + +The function arrowedLine draws an arrow between pt1 and pt2 points in the image. See also cv::line. + +@param img Image. +@param pt1 The point the arrow starts from. +@param pt2 The point the arrow points to. +@param color Line color. +@param thickness Line thickness. +@param line_type Type of the line, see cv::LineTypes +@param shift Number of fractional bits in the point coordinates. +@param tipLength The length of the arrow tip in relation to the arrow length + */ +CV_EXPORTS_W void arrowedLine(InputOutputArray img, Point pt1, Point pt2, const Scalar& color, + int thickness=1, int line_type=8, int shift=0, double tipLength=0.1); + +/** @brief Draws a simple, thick, or filled up-right rectangle. + +The function rectangle draws a rectangle outline or a filled rectangle whose two opposite corners +are pt1 and pt2. + +@param img Image. +@param pt1 Vertex of the rectangle. +@param pt2 Vertex of the rectangle opposite to pt1 . +@param color Rectangle color or brightness (grayscale image). +@param thickness Thickness of lines that make up the rectangle. Negative values, like CV_FILLED , +mean that the function has to draw a filled rectangle. +@param lineType Type of the line. See the line description. +@param shift Number of fractional bits in the point coordinates. + */ +CV_EXPORTS_W void rectangle(InputOutputArray img, Point pt1, Point pt2, + const Scalar& color, int thickness = 1, + int lineType = LINE_8, int shift = 0); + +/** @overload + +use `rec` parameter as alternative specification of the drawn rectangle: `r.tl() and +r.br()-Point(1,1)` are opposite corners +*/ +CV_EXPORTS void rectangle(CV_IN_OUT Mat& img, Rect rec, + const Scalar& color, int thickness = 1, + int lineType = LINE_8, int shift = 0); + +/** @brief Draws a circle. + +The function circle draws a simple or filled circle with a given center and radius. +@param img Image where the circle is drawn. +@param center Center of the circle. +@param radius Radius of the circle. +@param color Circle color. +@param thickness Thickness of the circle outline, if positive. Negative thickness means that a +filled circle is to be drawn. +@param lineType Type of the circle boundary. See the line description. +@param shift Number of fractional bits in the coordinates of the center and in the radius value. + */ +CV_EXPORTS_W void circle(InputOutputArray img, Point center, int radius, + const Scalar& color, int thickness = 1, + int lineType = LINE_8, int shift = 0); + +/** @brief Draws a simple or thick elliptic arc or fills an ellipse sector. + +The function cv::ellipse with less parameters draws an ellipse outline, a filled ellipse, an elliptic +arc, or a filled ellipse sector. A piecewise-linear curve is used to approximate the elliptic arc +boundary. If you need more control of the ellipse rendering, you can retrieve the curve using +ellipse2Poly and then render it with polylines or fill it with fillPoly . If you use the first +variant of the function and want to draw the whole ellipse, not an arc, pass startAngle=0 and +endAngle=360 . The figure below explains the meaning of the parameters. + +![Parameters of Elliptic Arc](pics/ellipse.png) + +@param img Image. +@param center Center of the ellipse. +@param axes Half of the size of the ellipse main axes. +@param angle Ellipse rotation angle in degrees. +@param startAngle Starting angle of the elliptic arc in degrees. +@param endAngle Ending angle of the elliptic arc in degrees. +@param color Ellipse color. +@param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that +a filled ellipse sector is to be drawn. +@param lineType Type of the ellipse boundary. See the line description. +@param shift Number of fractional bits in the coordinates of the center and values of axes. + */ +CV_EXPORTS_W void ellipse(InputOutputArray img, Point center, Size axes, + double angle, double startAngle, double endAngle, + const Scalar& color, int thickness = 1, + int lineType = LINE_8, int shift = 0); + +/** @overload +@param img Image. +@param box Alternative ellipse representation via RotatedRect. This means that the function draws +an ellipse inscribed in the rotated rectangle. +@param color Ellipse color. +@param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that +a filled ellipse sector is to be drawn. +@param lineType Type of the ellipse boundary. See the line description. +*/ +CV_EXPORTS_W void ellipse(InputOutputArray img, const RotatedRect& box, const Scalar& color, + int thickness = 1, int lineType = LINE_8); + +/* ----------------------------------------------------------------------------------------- */ +/* ADDING A SET OF PREDEFINED MARKERS WHICH COULD BE USED TO HIGHLIGHT POSITIONS IN AN IMAGE */ +/* ----------------------------------------------------------------------------------------- */ + +//! Possible set of marker types used for the cv::drawMarker function +enum MarkerTypes +{ + MARKER_CROSS = 0, //!< A crosshair marker shape + MARKER_TILTED_CROSS = 1, //!< A 45 degree tilted crosshair marker shape + MARKER_STAR = 2, //!< A star marker shape, combination of cross and tilted cross + MARKER_DIAMOND = 3, //!< A diamond marker shape + MARKER_SQUARE = 4, //!< A square marker shape + MARKER_TRIANGLE_UP = 5, //!< An upwards pointing triangle marker shape + MARKER_TRIANGLE_DOWN = 6 //!< A downwards pointing triangle marker shape +}; + +/** @brief Draws a marker on a predefined position in an image. + +The function drawMarker draws a marker on a given position in the image. For the moment several +marker types are supported, see cv::MarkerTypes for more information. + +@param img Image. +@param position The point where the crosshair is positioned. +@param color Line color. +@param markerType The specific type of marker you want to use, see cv::MarkerTypes +@param thickness Line thickness. +@param line_type Type of the line, see cv::LineTypes +@param markerSize The length of the marker axis [default = 20 pixels] + */ +CV_EXPORTS_W void drawMarker(CV_IN_OUT Mat& img, Point position, const Scalar& color, + int markerType = MARKER_CROSS, int markerSize=20, int thickness=1, + int line_type=8); + +/* ----------------------------------------------------------------------------------------- */ +/* END OF MARKER SECTION */ +/* ----------------------------------------------------------------------------------------- */ + +/** @overload */ +CV_EXPORTS void fillConvexPoly(Mat& img, const Point* pts, int npts, + const Scalar& color, int lineType = LINE_8, + int shift = 0); + +/** @brief Fills a convex polygon. + +The function fillConvexPoly draws a filled convex polygon. This function is much faster than the +function cv::fillPoly . It can fill not only convex polygons but any monotonic polygon without +self-intersections, that is, a polygon whose contour intersects every horizontal line (scan line) +twice at the most (though, its top-most and/or the bottom edge could be horizontal). + +@param img Image. +@param points Polygon vertices. +@param color Polygon color. +@param lineType Type of the polygon boundaries. See the line description. +@param shift Number of fractional bits in the vertex coordinates. + */ +CV_EXPORTS_W void fillConvexPoly(InputOutputArray img, InputArray points, + const Scalar& color, int lineType = LINE_8, + int shift = 0); + +/** @overload */ +CV_EXPORTS void fillPoly(Mat& img, const Point** pts, + const int* npts, int ncontours, + const Scalar& color, int lineType = LINE_8, int shift = 0, + Point offset = Point() ); + +/** @brief Fills the area bounded by one or more polygons. + +The function fillPoly fills an area bounded by several polygonal contours. The function can fill +complex areas, for example, areas with holes, contours with self-intersections (some of their +parts), and so forth. + +@param img Image. +@param pts Array of polygons where each polygon is represented as an array of points. +@param color Polygon color. +@param lineType Type of the polygon boundaries. See the line description. +@param shift Number of fractional bits in the vertex coordinates. +@param offset Optional offset of all points of the contours. + */ +CV_EXPORTS_W void fillPoly(InputOutputArray img, InputArrayOfArrays pts, + const Scalar& color, int lineType = LINE_8, int shift = 0, + Point offset = Point() ); + +/** @overload */ +CV_EXPORTS void polylines(Mat& img, const Point* const* pts, const int* npts, + int ncontours, bool isClosed, const Scalar& color, + int thickness = 1, int lineType = LINE_8, int shift = 0 ); + +/** @brief Draws several polygonal curves. + +@param img Image. +@param pts Array of polygonal curves. +@param isClosed Flag indicating whether the drawn polylines are closed or not. If they are closed, +the function draws a line from the last vertex of each curve to its first vertex. +@param color Polyline color. +@param thickness Thickness of the polyline edges. +@param lineType Type of the line segments. See the line description. +@param shift Number of fractional bits in the vertex coordinates. + +The function polylines draws one or more polygonal curves. + */ +CV_EXPORTS_W void polylines(InputOutputArray img, InputArrayOfArrays pts, + bool isClosed, const Scalar& color, + int thickness = 1, int lineType = LINE_8, int shift = 0 ); + +/** @example contours2.cpp + An example using the drawContour functionality +*/ + +/** @example segment_objects.cpp +An example using drawContours to clean up a background segmentation result + */ + +/** @brief Draws contours outlines or filled contours. + +The function draws contour outlines in the image if \f$\texttt{thickness} \ge 0\f$ or fills the area +bounded by the contours if \f$\texttt{thickness}<0\f$ . The example below shows how to retrieve +connected components from the binary image and label them: : +@code + #include "opencv2/imgproc.hpp" + #include "opencv2/highgui.hpp" + + using namespace cv; + using namespace std; + + int main( int argc, char** argv ) + { + Mat src; + // the first command-line parameter must be a filename of the binary + // (black-n-white) image + if( argc != 2 || !(src=imread(argv[1], 0)).data) + return -1; + + Mat dst = Mat::zeros(src.rows, src.cols, CV_8UC3); + + src = src > 1; + namedWindow( "Source", 1 ); + imshow( "Source", src ); + + vector > contours; + vector hierarchy; + + findContours( src, contours, hierarchy, + RETR_CCOMP, CHAIN_APPROX_SIMPLE ); + + // iterate through all the top-level contours, + // draw each connected component with its own random color + int idx = 0; + for( ; idx >= 0; idx = hierarchy[idx][0] ) + { + Scalar color( rand()&255, rand()&255, rand()&255 ); + drawContours( dst, contours, idx, color, FILLED, 8, hierarchy ); + } + + namedWindow( "Components", 1 ); + imshow( "Components", dst ); + waitKey(0); + } +@endcode + +@param image Destination image. +@param contours All the input contours. Each contour is stored as a point vector. +@param contourIdx Parameter indicating a contour to draw. If it is negative, all the contours are drawn. +@param color Color of the contours. +@param thickness Thickness of lines the contours are drawn with. If it is negative (for example, +thickness=CV_FILLED ), the contour interiors are drawn. +@param lineType Line connectivity. See cv::LineTypes. +@param hierarchy Optional information about hierarchy. It is only needed if you want to draw only +some of the contours (see maxLevel ). +@param maxLevel Maximal level for drawn contours. If it is 0, only the specified contour is drawn. +If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function +draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This +parameter is only taken into account when there is hierarchy available. +@param offset Optional contour shift parameter. Shift all the drawn contours by the specified +\f$\texttt{offset}=(dx,dy)\f$ . + */ +CV_EXPORTS_W void drawContours( InputOutputArray image, InputArrayOfArrays contours, + int contourIdx, const Scalar& color, + int thickness = 1, int lineType = LINE_8, + InputArray hierarchy = noArray(), + int maxLevel = INT_MAX, Point offset = Point() ); + +/** @brief Clips the line against the image rectangle. + +The function cv::clipLine calculates a part of the line segment that is entirely within the specified +rectangle. it returns false if the line segment is completely outside the rectangle. Otherwise, +it returns true . +@param imgSize Image size. The image rectangle is Rect(0, 0, imgSize.width, imgSize.height) . +@param pt1 First line point. +@param pt2 Second line point. + */ +CV_EXPORTS bool clipLine(Size imgSize, CV_IN_OUT Point& pt1, CV_IN_OUT Point& pt2); + +/** @overload +@param imgSize Image size. The image rectangle is Rect(0, 0, imgSize.width, imgSize.height) . +@param pt1 First line point. +@param pt2 Second line point. +*/ +CV_EXPORTS bool clipLine(Size2l imgSize, CV_IN_OUT Point2l& pt1, CV_IN_OUT Point2l& pt2); + +/** @overload +@param imgRect Image rectangle. +@param pt1 First line point. +@param pt2 Second line point. +*/ +CV_EXPORTS_W bool clipLine(Rect imgRect, CV_OUT CV_IN_OUT Point& pt1, CV_OUT CV_IN_OUT Point& pt2); + +/** @brief Approximates an elliptic arc with a polyline. + +The function ellipse2Poly computes the vertices of a polyline that approximates the specified +elliptic arc. It is used by cv::ellipse. + +@param center Center of the arc. +@param axes Half of the size of the ellipse main axes. See the ellipse for details. +@param angle Rotation angle of the ellipse in degrees. See the ellipse for details. +@param arcStart Starting angle of the elliptic arc in degrees. +@param arcEnd Ending angle of the elliptic arc in degrees. +@param delta Angle between the subsequent polyline vertices. It defines the approximation +accuracy. +@param pts Output vector of polyline vertices. + */ +CV_EXPORTS_W void ellipse2Poly( Point center, Size axes, int angle, + int arcStart, int arcEnd, int delta, + CV_OUT std::vector& pts ); + +/** @overload +@param center Center of the arc. +@param axes Half of the size of the ellipse main axes. See the ellipse for details. +@param angle Rotation angle of the ellipse in degrees. See the ellipse for details. +@param arcStart Starting angle of the elliptic arc in degrees. +@param arcEnd Ending angle of the elliptic arc in degrees. +@param delta Angle between the subsequent polyline vertices. It defines the approximation +accuracy. +@param pts Output vector of polyline vertices. +*/ +CV_EXPORTS void ellipse2Poly(Point2d center, Size2d axes, int angle, + int arcStart, int arcEnd, int delta, + CV_OUT std::vector& pts); + +/** @brief Draws a text string. + +The function putText renders the specified text string in the image. Symbols that cannot be rendered +using the specified font are replaced by question marks. See getTextSize for a text rendering code +example. + +@param img Image. +@param text Text string to be drawn. +@param org Bottom-left corner of the text string in the image. +@param fontFace Font type, see cv::HersheyFonts. +@param fontScale Font scale factor that is multiplied by the font-specific base size. +@param color Text color. +@param thickness Thickness of the lines used to draw a text. +@param lineType Line type. See the line for details. +@param bottomLeftOrigin When true, the image data origin is at the bottom-left corner. Otherwise, +it is at the top-left corner. + */ +CV_EXPORTS_W void putText( InputOutputArray img, const String& text, Point org, + int fontFace, double fontScale, Scalar color, + int thickness = 1, int lineType = LINE_8, + bool bottomLeftOrigin = false ); + +/** @brief Calculates the width and height of a text string. + +The function getTextSize calculates and returns the size of a box that contains the specified text. +That is, the following code renders some text, the tight box surrounding it, and the baseline: : +@code + String text = "Funny text inside the box"; + int fontFace = FONT_HERSHEY_SCRIPT_SIMPLEX; + double fontScale = 2; + int thickness = 3; + + Mat img(600, 800, CV_8UC3, Scalar::all(0)); + + int baseline=0; + Size textSize = getTextSize(text, fontFace, + fontScale, thickness, &baseline); + baseline += thickness; + + // center the text + Point textOrg((img.cols - textSize.width)/2, + (img.rows + textSize.height)/2); + + // draw the box + rectangle(img, textOrg + Point(0, baseline), + textOrg + Point(textSize.width, -textSize.height), + Scalar(0,0,255)); + // ... and the baseline first + line(img, textOrg + Point(0, thickness), + textOrg + Point(textSize.width, thickness), + Scalar(0, 0, 255)); + + // then put the text itself + putText(img, text, textOrg, fontFace, fontScale, + Scalar::all(255), thickness, 8); +@endcode + +@param text Input text string. +@param fontFace Font to use, see cv::HersheyFonts. +@param fontScale Font scale factor that is multiplied by the font-specific base size. +@param thickness Thickness of lines used to render the text. See putText for details. +@param[out] baseLine y-coordinate of the baseline relative to the bottom-most text +point. +@return The size of a box that contains the specified text. + +@see cv::putText + */ +CV_EXPORTS_W Size getTextSize(const String& text, int fontFace, + double fontScale, int thickness, + CV_OUT int* baseLine); + +/** @brief Line iterator + +The class is used to iterate over all the pixels on the raster line +segment connecting two specified points. + +The class LineIterator is used to get each pixel of a raster line. It +can be treated as versatile implementation of the Bresenham algorithm +where you can stop at each pixel and do some extra processing, for +example, grab pixel values along the line or draw a line with an effect +(for example, with XOR operation). + +The number of pixels along the line is stored in LineIterator::count. +The method LineIterator::pos returns the current position in the image: + +@code{.cpp} +// grabs pixels along the line (pt1, pt2) +// from 8-bit 3-channel image to the buffer +LineIterator it(img, pt1, pt2, 8); +LineIterator it2 = it; +vector buf(it.count); + +for(int i = 0; i < it.count; i++, ++it) + buf[i] = *(const Vec3b)*it; + +// alternative way of iterating through the line +for(int i = 0; i < it2.count; i++, ++it2) +{ + Vec3b val = img.at(it2.pos()); + CV_Assert(buf[i] == val); +} +@endcode +*/ +class CV_EXPORTS LineIterator +{ +public: + /** @brief intializes the iterator + + creates iterators for the line connecting pt1 and pt2 + the line will be clipped on the image boundaries + the line is 8-connected or 4-connected + If leftToRight=true, then the iteration is always done + from the left-most point to the right most, + not to depend on the ordering of pt1 and pt2 parameters + */ + LineIterator( const Mat& img, Point pt1, Point pt2, + int connectivity = 8, bool leftToRight = false ); + /** @brief returns pointer to the current pixel + */ + uchar* operator *(); + /** @brief prefix increment operator (++it). shifts iterator to the next pixel + */ + LineIterator& operator ++(); + /** @brief postfix increment operator (it++). shifts iterator to the next pixel + */ + LineIterator operator ++(int); + /** @brief returns coordinates of the current pixel + */ + Point pos() const; + + uchar* ptr; + const uchar* ptr0; + int step, elemSize; + int err, count; + int minusDelta, plusDelta; + int minusStep, plusStep; +}; + +//! @cond IGNORED + +// === LineIterator implementation === + +inline +uchar* LineIterator::operator *() +{ + return ptr; +} + +inline +LineIterator& LineIterator::operator ++() +{ + int mask = err < 0 ? -1 : 0; + err += minusDelta + (plusDelta & mask); + ptr += minusStep + (plusStep & mask); + return *this; +} + +inline +LineIterator LineIterator::operator ++(int) +{ + LineIterator it = *this; + ++(*this); + return it; +} + +inline +Point LineIterator::pos() const +{ + Point p; + p.y = (int)((ptr - ptr0)/step); + p.x = (int)(((ptr - ptr0) - p.y*step)/elemSize); + return p; +} + +//! @endcond + +//! @} imgproc_draw + +//! @} imgproc + +} // cv + +#ifndef DISABLE_OPENCV_24_COMPATIBILITY +#include "opencv2/imgproc/imgproc_c.h" +#endif + +#endif diff --git a/thirdparty1/linux/include/opencv2/imgproc/detail/distortion_model.hpp b/thirdparty1/linux/include/opencv2/imgproc/detail/distortion_model.hpp new file mode 100644 index 0000000..a9c3dde --- /dev/null +++ b/thirdparty1/linux/include/opencv2/imgproc/detail/distortion_model.hpp @@ -0,0 +1,123 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_IMGPROC_DETAIL_DISTORTION_MODEL_HPP +#define OPENCV_IMGPROC_DETAIL_DISTORTION_MODEL_HPP + +//! @cond IGNORED + +namespace cv { namespace detail { +/** +Computes the matrix for the projection onto a tilted image sensor +\param tauX angular parameter rotation around x-axis +\param tauY angular parameter rotation around y-axis +\param matTilt if not NULL returns the matrix +\f[ +\vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}((\tau_x, \tau_y)} +{0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)} +{0}{0}{1} R(\tau_x, \tau_y) +\f] +where +\f[ +R(\tau_x, \tau_y) = +\vecthreethree{\cos(\tau_y)}{0}{-\sin(\tau_y)}{0}{1}{0}{\sin(\tau_y)}{0}{\cos(\tau_y)} +\vecthreethree{1}{0}{0}{0}{\cos(\tau_x)}{\sin(\tau_x)}{0}{-\sin(\tau_x)}{\cos(\tau_x)} = +\vecthreethree{\cos(\tau_y)}{\sin(\tau_y)\sin(\tau_x)}{-\sin(\tau_y)\cos(\tau_x)} +{0}{\cos(\tau_x)}{\sin(\tau_x)} +{\sin(\tau_y)}{-\cos(\tau_y)\sin(\tau_x)}{\cos(\tau_y)\cos(\tau_x)}. +\f] +\param dMatTiltdTauX if not NULL it returns the derivative of matTilt with +respect to \f$\tau_x\f$. +\param dMatTiltdTauY if not NULL it returns the derivative of matTilt with +respect to \f$\tau_y\f$. +\param invMatTilt if not NULL it returns the inverse of matTilt +**/ +template +void computeTiltProjectionMatrix(FLOAT tauX, + FLOAT tauY, + Matx* matTilt = 0, + Matx* dMatTiltdTauX = 0, + Matx* dMatTiltdTauY = 0, + Matx* invMatTilt = 0) +{ + FLOAT cTauX = cos(tauX); + FLOAT sTauX = sin(tauX); + FLOAT cTauY = cos(tauY); + FLOAT sTauY = sin(tauY); + Matx matRotX = Matx(1,0,0,0,cTauX,sTauX,0,-sTauX,cTauX); + Matx matRotY = Matx(cTauY,0,-sTauY,0,1,0,sTauY,0,cTauY); + Matx matRotXY = matRotY * matRotX; + Matx matProjZ = Matx(matRotXY(2,2),0,-matRotXY(0,2),0,matRotXY(2,2),-matRotXY(1,2),0,0,1); + if (matTilt) + { + // Matrix for trapezoidal distortion of tilted image sensor + *matTilt = matProjZ * matRotXY; + } + if (dMatTiltdTauX) + { + // Derivative with respect to tauX + Matx dMatRotXYdTauX = matRotY * Matx(0,0,0,0,-sTauX,cTauX,0,-cTauX,-sTauX); + Matx dMatProjZdTauX = Matx(dMatRotXYdTauX(2,2),0,-dMatRotXYdTauX(0,2), + 0,dMatRotXYdTauX(2,2),-dMatRotXYdTauX(1,2),0,0,0); + *dMatTiltdTauX = (matProjZ * dMatRotXYdTauX) + (dMatProjZdTauX * matRotXY); + } + if (dMatTiltdTauY) + { + // Derivative with respect to tauY + Matx dMatRotXYdTauY = Matx(-sTauY,0,-cTauY,0,0,0,cTauY,0,-sTauY) * matRotX; + Matx dMatProjZdTauY = Matx(dMatRotXYdTauY(2,2),0,-dMatRotXYdTauY(0,2), + 0,dMatRotXYdTauY(2,2),-dMatRotXYdTauY(1,2),0,0,0); + *dMatTiltdTauY = (matProjZ * dMatRotXYdTauY) + (dMatProjZdTauY * matRotXY); + } + if (invMatTilt) + { + FLOAT inv = 1./matRotXY(2,2); + Matx invMatProjZ = Matx(inv,0,inv*matRotXY(0,2),0,inv,inv*matRotXY(1,2),0,0,1); + *invMatTilt = matRotXY.t()*invMatProjZ; + } +} +}} // namespace detail, cv + + +//! @endcond + +#endif // OPENCV_IMGPROC_DETAIL_DISTORTION_MODEL_HPP diff --git a/thirdparty1/linux/include/opencv2/imgproc/hal/hal.hpp b/thirdparty1/linux/include/opencv2/imgproc/hal/hal.hpp new file mode 100644 index 0000000..fc6b9d8 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/imgproc/hal/hal.hpp @@ -0,0 +1,189 @@ +#ifndef CV_IMGPROC_HAL_HPP +#define CV_IMGPROC_HAL_HPP + +#include "opencv2/core/cvdef.h" +#include "opencv2/core/cvstd.hpp" +#include "opencv2/core/hal/interface.h" + +namespace cv { namespace hal { + +//! @addtogroup imgproc_hal_functions +//! @{ + +struct CV_EXPORTS Filter2D +{ + static Ptr create(uchar * kernel_data, size_t kernel_step, int kernel_type, + int kernel_width, int kernel_height, + int max_width, int max_height, + int stype, int dtype, + int borderType, double delta, + int anchor_x, int anchor_y, + bool isSubmatrix, bool isInplace); + virtual void apply(uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int full_width, int full_height, + int offset_x, int offset_y) = 0; + virtual ~Filter2D() {} +}; + +struct CV_EXPORTS SepFilter2D +{ + static Ptr create(int stype, int dtype, int ktype, + uchar * kernelx_data, int kernelx_len, + uchar * kernely_data, int kernely_len, + int anchor_x, int anchor_y, + double delta, int borderType); + virtual void apply(uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int full_width, int full_height, + int offset_x, int offset_y) = 0; + virtual ~SepFilter2D() {} +}; + + +struct CV_EXPORTS Morph +{ + static Ptr create(int op, int src_type, int dst_type, int max_width, int max_height, + int kernel_type, uchar * kernel_data, size_t kernel_step, + int kernel_width, int kernel_height, + int anchor_x, int anchor_y, + int borderType, const double borderValue[4], + int iterations, bool isSubmatrix, bool allowInplace); + virtual void apply(uchar * src_data, size_t src_step, uchar * dst_data, size_t dst_step, int width, int height, + int roi_width, int roi_height, int roi_x, int roi_y, + int roi_width2, int roi_height2, int roi_x2, int roi_y2) = 0; + virtual ~Morph() {} +}; + + +CV_EXPORTS void resize(int src_type, + const uchar * src_data, size_t src_step, int src_width, int src_height, + uchar * dst_data, size_t dst_step, int dst_width, int dst_height, + double inv_scale_x, double inv_scale_y, int interpolation); + +CV_EXPORTS void warpAffine(int src_type, + const uchar * src_data, size_t src_step, int src_width, int src_height, + uchar * dst_data, size_t dst_step, int dst_width, int dst_height, + const double M[6], int interpolation, int borderType, const double borderValue[4]); + +CV_EXPORTS void warpPerspectve(int src_type, + const uchar * src_data, size_t src_step, int src_width, int src_height, + uchar * dst_data, size_t dst_step, int dst_width, int dst_height, + const double M[9], int interpolation, int borderType, const double borderValue[4]); + +CV_EXPORTS void cvtBGRtoBGR(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int depth, int scn, int dcn, bool swapBlue); + +CV_EXPORTS void cvtBGRtoBGR5x5(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int scn, bool swapBlue, int greenBits); + +CV_EXPORTS void cvtBGR5x5toBGR(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int dcn, bool swapBlue, int greenBits); + +CV_EXPORTS void cvtBGRtoGray(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int depth, int scn, bool swapBlue); + +CV_EXPORTS void cvtGraytoBGR(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int depth, int dcn); + +CV_EXPORTS void cvtBGR5x5toGray(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int greenBits); + +CV_EXPORTS void cvtGraytoBGR5x5(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int greenBits); +CV_EXPORTS void cvtBGRtoYUV(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int depth, int scn, bool swapBlue, bool isCbCr); + +CV_EXPORTS void cvtYUVtoBGR(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int depth, int dcn, bool swapBlue, bool isCbCr); + +CV_EXPORTS void cvtBGRtoXYZ(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int depth, int scn, bool swapBlue); + +CV_EXPORTS void cvtXYZtoBGR(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int depth, int dcn, bool swapBlue); + +CV_EXPORTS void cvtBGRtoHSV(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int depth, int scn, bool swapBlue, bool isFullRange, bool isHSV); + +CV_EXPORTS void cvtHSVtoBGR(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int depth, int dcn, bool swapBlue, bool isFullRange, bool isHSV); + +CV_EXPORTS void cvtBGRtoLab(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int depth, int scn, bool swapBlue, bool isLab, bool srgb); + +CV_EXPORTS void cvtLabtoBGR(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int depth, int dcn, bool swapBlue, bool isLab, bool srgb); + +CV_EXPORTS void cvtTwoPlaneYUVtoBGR(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int dst_width, int dst_height, + int dcn, bool swapBlue, int uIdx); + +CV_EXPORTS void cvtThreePlaneYUVtoBGR(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int dst_width, int dst_height, + int dcn, bool swapBlue, int uIdx); + +CV_EXPORTS void cvtBGRtoThreePlaneYUV(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int scn, bool swapBlue, int uIdx); + +CV_EXPORTS void cvtOnePlaneYUVtoBGR(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height, + int dcn, bool swapBlue, int uIdx, int ycn); + +CV_EXPORTS void cvtRGBAtoMultipliedRGBA(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height); + +CV_EXPORTS void cvtMultipliedRGBAtoRGBA(const uchar * src_data, size_t src_step, + uchar * dst_data, size_t dst_step, + int width, int height); + +CV_EXPORTS void integral(int depth, int sdepth, int sqdepth, + const uchar* src, size_t srcstep, + uchar* sum, size_t sumstep, + uchar* sqsum, size_t sqsumstep, + uchar* tilted, size_t tstep, + int width, int height, int cn); + +//! @} + +}} + +#endif // CV_IMGPROC_HAL_HPP diff --git a/thirdparty1/linux/include/opencv2/imgproc/hal/interface.h b/thirdparty1/linux/include/opencv2/imgproc/hal/interface.h new file mode 100644 index 0000000..9d2a3e5 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/imgproc/hal/interface.h @@ -0,0 +1,26 @@ +#ifndef OPENCV_IMGPROC_HAL_INTERFACE_H +#define OPENCV_IMGPROC_HAL_INTERFACE_H + +//! @addtogroup imgproc_hal_interface +//! @{ + +//! @name Interpolation modes +//! @sa cv::InterpolationFlags +//! @{ +#define CV_HAL_INTER_NEAREST 0 +#define CV_HAL_INTER_LINEAR 1 +#define CV_HAL_INTER_CUBIC 2 +#define CV_HAL_INTER_AREA 3 +#define CV_HAL_INTER_LANCZOS4 4 +//! @} + +//! @name Morphology operations +//! @sa cv::MorphTypes +//! @{ +#define MORPH_ERODE 0 +#define MORPH_DILATE 1 +//! @} + +//! @} + +#endif diff --git a/thirdparty1/linux/include/opencv2/imgproc/imgproc.hpp b/thirdparty1/linux/include/opencv2/imgproc/imgproc.hpp new file mode 100644 index 0000000..4175bd0 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/imgproc/imgproc.hpp @@ -0,0 +1,48 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifdef __OPENCV_BUILD +#error this is a compatibility header which should not be used inside the OpenCV library +#endif + +#include "opencv2/imgproc.hpp" diff --git a/thirdparty1/linux/include/opencv2/imgproc/imgproc_c.h b/thirdparty1/linux/include/opencv2/imgproc/imgproc_c.h new file mode 100644 index 0000000..d11db4b --- /dev/null +++ b/thirdparty1/linux/include/opencv2/imgproc/imgproc_c.h @@ -0,0 +1,1210 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_IMGPROC_IMGPROC_C_H +#define OPENCV_IMGPROC_IMGPROC_C_H + +#include "opencv2/imgproc/types_c.h" + +#ifdef __cplusplus +extern "C" { +#endif + +/** @addtogroup imgproc_c +@{ +*/ + +/*********************** Background statistics accumulation *****************************/ + +/** @brief Adds image to accumulator +@see cv::accumulate +*/ +CVAPI(void) cvAcc( const CvArr* image, CvArr* sum, + const CvArr* mask CV_DEFAULT(NULL) ); + +/** @brief Adds squared image to accumulator +@see cv::accumulateSquare +*/ +CVAPI(void) cvSquareAcc( const CvArr* image, CvArr* sqsum, + const CvArr* mask CV_DEFAULT(NULL) ); + +/** @brief Adds a product of two images to accumulator +@see cv::accumulateProduct +*/ +CVAPI(void) cvMultiplyAcc( const CvArr* image1, const CvArr* image2, CvArr* acc, + const CvArr* mask CV_DEFAULT(NULL) ); + +/** @brief Adds image to accumulator with weights: acc = acc*(1-alpha) + image*alpha +@see cv::accumulateWeighted +*/ +CVAPI(void) cvRunningAvg( const CvArr* image, CvArr* acc, double alpha, + const CvArr* mask CV_DEFAULT(NULL) ); + +/****************************************************************************************\ +* Image Processing * +\****************************************************************************************/ + +/** Copies source 2D array inside of the larger destination array and + makes a border of the specified type (IPL_BORDER_*) around the copied area. */ +CVAPI(void) cvCopyMakeBorder( const CvArr* src, CvArr* dst, CvPoint offset, + int bordertype, CvScalar value CV_DEFAULT(cvScalarAll(0))); + +/** @brief Smooths the image in one of several ways. + +@param src The source image +@param dst The destination image +@param smoothtype Type of the smoothing, see SmoothMethod_c +@param size1 The first parameter of the smoothing operation, the aperture width. Must be a +positive odd number (1, 3, 5, ...) +@param size2 The second parameter of the smoothing operation, the aperture height. Ignored by +CV_MEDIAN and CV_BILATERAL methods. In the case of simple scaled/non-scaled and Gaussian blur if +size2 is zero, it is set to size1. Otherwise it must be a positive odd number. +@param sigma1 In the case of a Gaussian parameter this parameter may specify Gaussian \f$\sigma\f$ +(standard deviation). If it is zero, it is calculated from the kernel size: +\f[\sigma = 0.3 (n/2 - 1) + 0.8 \quad \text{where} \quad n= \begin{array}{l l} \mbox{\texttt{size1} for horizontal kernel} \\ \mbox{\texttt{size2} for vertical kernel} \end{array}\f] +Using standard sigma for small kernels ( \f$3\times 3\f$ to \f$7\times 7\f$ ) gives better speed. If +sigma1 is not zero, while size1 and size2 are zeros, the kernel size is calculated from the +sigma (to provide accurate enough operation). +@param sigma2 additional parameter for bilateral filtering + +@see cv::GaussianBlur, cv::blur, cv::medianBlur, cv::bilateralFilter. + */ +CVAPI(void) cvSmooth( const CvArr* src, CvArr* dst, + int smoothtype CV_DEFAULT(CV_GAUSSIAN), + int size1 CV_DEFAULT(3), + int size2 CV_DEFAULT(0), + double sigma1 CV_DEFAULT(0), + double sigma2 CV_DEFAULT(0)); + +/** @brief Convolves an image with the kernel. + +@param src input image. +@param dst output image of the same size and the same number of channels as src. +@param kernel convolution kernel (or rather a correlation kernel), a single-channel floating point +matrix; if you want to apply different kernels to different channels, split the image into +separate color planes using split and process them individually. +@param anchor anchor of the kernel that indicates the relative position of a filtered point within +the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor +is at the kernel center. + +@see cv::filter2D + */ +CVAPI(void) cvFilter2D( const CvArr* src, CvArr* dst, const CvMat* kernel, + CvPoint anchor CV_DEFAULT(cvPoint(-1,-1))); + +/** @brief Finds integral image: SUM(X,Y) = sum(x \texttt{hist1}(I)\)}{\frac{\texttt{hist2}(I) \cdot \texttt{scale}}{\texttt{hist1}(I)}}{if \(\texttt{hist1}(I) \ne 0\) and \(\texttt{hist2}(I) \le \texttt{hist1}(I)\)}\f] + +@param hist1 First histogram (the divisor). +@param hist2 Second histogram. +@param dst_hist Destination histogram. +@param scale Scale factor for the destination histogram. + */ +CVAPI(void) cvCalcProbDensity( const CvHistogram* hist1, const CvHistogram* hist2, + CvHistogram* dst_hist, double scale CV_DEFAULT(255) ); + +/** @brief equalizes histogram of 8-bit single-channel image +@see cv::equalizeHist +*/ +CVAPI(void) cvEqualizeHist( const CvArr* src, CvArr* dst ); + + +/** @brief Applies distance transform to binary image +@see cv::distanceTransform +*/ +CVAPI(void) cvDistTransform( const CvArr* src, CvArr* dst, + int distance_type CV_DEFAULT(CV_DIST_L2), + int mask_size CV_DEFAULT(3), + const float* mask CV_DEFAULT(NULL), + CvArr* labels CV_DEFAULT(NULL), + int labelType CV_DEFAULT(CV_DIST_LABEL_CCOMP)); + + +/** @brief Applies fixed-level threshold to grayscale image. + + This is a basic operation applied before retrieving contours +@see cv::threshold +*/ +CVAPI(double) cvThreshold( const CvArr* src, CvArr* dst, + double threshold, double max_value, + int threshold_type ); + +/** @brief Applies adaptive threshold to grayscale image. + + The two parameters for methods CV_ADAPTIVE_THRESH_MEAN_C and + CV_ADAPTIVE_THRESH_GAUSSIAN_C are: + neighborhood size (3, 5, 7 etc.), + and a constant subtracted from mean (...,-3,-2,-1,0,1,2,3,...) +@see cv::adaptiveThreshold +*/ +CVAPI(void) cvAdaptiveThreshold( const CvArr* src, CvArr* dst, double max_value, + int adaptive_method CV_DEFAULT(CV_ADAPTIVE_THRESH_MEAN_C), + int threshold_type CV_DEFAULT(CV_THRESH_BINARY), + int block_size CV_DEFAULT(3), + double param1 CV_DEFAULT(5)); + +/** @brief Fills the connected component until the color difference gets large enough +@see cv::floodFill +*/ +CVAPI(void) cvFloodFill( CvArr* image, CvPoint seed_point, + CvScalar new_val, CvScalar lo_diff CV_DEFAULT(cvScalarAll(0)), + CvScalar up_diff CV_DEFAULT(cvScalarAll(0)), + CvConnectedComp* comp CV_DEFAULT(NULL), + int flags CV_DEFAULT(4), + CvArr* mask CV_DEFAULT(NULL)); + +/****************************************************************************************\ +* Feature detection * +\****************************************************************************************/ + +/** @brief Runs canny edge detector +@see cv::Canny +*/ +CVAPI(void) cvCanny( const CvArr* image, CvArr* edges, double threshold1, + double threshold2, int aperture_size CV_DEFAULT(3) ); + +/** @brief Calculates constraint image for corner detection + + Dx^2 * Dyy + Dxx * Dy^2 - 2 * Dx * Dy * Dxy. + Applying threshold to the result gives coordinates of corners +@see cv::preCornerDetect +*/ +CVAPI(void) cvPreCornerDetect( const CvArr* image, CvArr* corners, + int aperture_size CV_DEFAULT(3) ); + +/** @brief Calculates eigen values and vectors of 2x2 + gradient covariation matrix at every image pixel +@see cv::cornerEigenValsAndVecs +*/ +CVAPI(void) cvCornerEigenValsAndVecs( const CvArr* image, CvArr* eigenvv, + int block_size, int aperture_size CV_DEFAULT(3) ); + +/** @brief Calculates minimal eigenvalue for 2x2 gradient covariation matrix at + every image pixel +@see cv::cornerMinEigenVal +*/ +CVAPI(void) cvCornerMinEigenVal( const CvArr* image, CvArr* eigenval, + int block_size, int aperture_size CV_DEFAULT(3) ); + +/** @brief Harris corner detector: + + Calculates det(M) - k*(trace(M)^2), where M is 2x2 gradient covariation matrix for each pixel +@see cv::cornerHarris +*/ +CVAPI(void) cvCornerHarris( const CvArr* image, CvArr* harris_response, + int block_size, int aperture_size CV_DEFAULT(3), + double k CV_DEFAULT(0.04) ); + +/** @brief Adjust corner position using some sort of gradient search +@see cv::cornerSubPix +*/ +CVAPI(void) cvFindCornerSubPix( const CvArr* image, CvPoint2D32f* corners, + int count, CvSize win, CvSize zero_zone, + CvTermCriteria criteria ); + +/** @brief Finds a sparse set of points within the selected region + that seem to be easy to track +@see cv::goodFeaturesToTrack +*/ +CVAPI(void) cvGoodFeaturesToTrack( const CvArr* image, CvArr* eig_image, + CvArr* temp_image, CvPoint2D32f* corners, + int* corner_count, double quality_level, + double min_distance, + const CvArr* mask CV_DEFAULT(NULL), + int block_size CV_DEFAULT(3), + int use_harris CV_DEFAULT(0), + double k CV_DEFAULT(0.04) ); + +/** @brief Finds lines on binary image using one of several methods. + + line_storage is either memory storage or 1 x _max number of lines_ CvMat, its + number of columns is changed by the function. + method is one of CV_HOUGH_*; + rho, theta and threshold are used for each of those methods; + param1 ~ line length, param2 ~ line gap - for probabilistic, + param1 ~ srn, param2 ~ stn - for multi-scale +@see cv::HoughLines +*/ +CVAPI(CvSeq*) cvHoughLines2( CvArr* image, void* line_storage, int method, + double rho, double theta, int threshold, + double param1 CV_DEFAULT(0), double param2 CV_DEFAULT(0), + double min_theta CV_DEFAULT(0), double max_theta CV_DEFAULT(CV_PI)); + +/** @brief Finds circles in the image +@see cv::HoughCircles +*/ +CVAPI(CvSeq*) cvHoughCircles( CvArr* image, void* circle_storage, + int method, double dp, double min_dist, + double param1 CV_DEFAULT(100), + double param2 CV_DEFAULT(100), + int min_radius CV_DEFAULT(0), + int max_radius CV_DEFAULT(0)); + +/** @brief Fits a line into set of 2d or 3d points in a robust way (M-estimator technique) +@see cv::fitLine +*/ +CVAPI(void) cvFitLine( const CvArr* points, int dist_type, double param, + double reps, double aeps, float* line ); + +/****************************************************************************************\ +* Drawing * +\****************************************************************************************/ + +/****************************************************************************************\ +* Drawing functions work with images/matrices of arbitrary type. * +* For color images the channel order is BGR[A] * +* Antialiasing is supported only for 8-bit image now. * +* All the functions include parameter color that means rgb value (that may be * +* constructed with CV_RGB macro) for color images and brightness * +* for grayscale images. * +* If a drawn figure is partially or completely outside of the image, it is clipped.* +\****************************************************************************************/ + +#define CV_RGB( r, g, b ) cvScalar( (b), (g), (r), 0 ) +#define CV_FILLED -1 + +#define CV_AA 16 + +/** @brief Draws 4-connected, 8-connected or antialiased line segment connecting two points +@see cv::line +*/ +CVAPI(void) cvLine( CvArr* img, CvPoint pt1, CvPoint pt2, + CvScalar color, int thickness CV_DEFAULT(1), + int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0) ); + +/** @brief Draws a rectangle given two opposite corners of the rectangle (pt1 & pt2) + + if thickness<0 (e.g. thickness == CV_FILLED), the filled box is drawn +@see cv::rectangle +*/ +CVAPI(void) cvRectangle( CvArr* img, CvPoint pt1, CvPoint pt2, + CvScalar color, int thickness CV_DEFAULT(1), + int line_type CV_DEFAULT(8), + int shift CV_DEFAULT(0)); + +/** @brief Draws a rectangle specified by a CvRect structure +@see cv::rectangle +*/ +CVAPI(void) cvRectangleR( CvArr* img, CvRect r, + CvScalar color, int thickness CV_DEFAULT(1), + int line_type CV_DEFAULT(8), + int shift CV_DEFAULT(0)); + + +/** @brief Draws a circle with specified center and radius. + + Thickness works in the same way as with cvRectangle +@see cv::circle +*/ +CVAPI(void) cvCircle( CvArr* img, CvPoint center, int radius, + CvScalar color, int thickness CV_DEFAULT(1), + int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0)); + +/** @brief Draws ellipse outline, filled ellipse, elliptic arc or filled elliptic sector + + depending on _thickness_, _start_angle_ and _end_angle_ parameters. The resultant figure + is rotated by _angle_. All the angles are in degrees +@see cv::ellipse +*/ +CVAPI(void) cvEllipse( CvArr* img, CvPoint center, CvSize axes, + double angle, double start_angle, double end_angle, + CvScalar color, int thickness CV_DEFAULT(1), + int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0)); + +CV_INLINE void cvEllipseBox( CvArr* img, CvBox2D box, CvScalar color, + int thickness CV_DEFAULT(1), + int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0) ) +{ + CvSize axes; + axes.width = cvRound(box.size.width*0.5); + axes.height = cvRound(box.size.height*0.5); + + cvEllipse( img, cvPointFrom32f( box.center ), axes, box.angle, + 0, 360, color, thickness, line_type, shift ); +} + +/** @brief Fills convex or monotonous polygon. +@see cv::fillConvexPoly +*/ +CVAPI(void) cvFillConvexPoly( CvArr* img, const CvPoint* pts, int npts, CvScalar color, + int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0)); + +/** @brief Fills an area bounded by one or more arbitrary polygons +@see cv::fillPoly +*/ +CVAPI(void) cvFillPoly( CvArr* img, CvPoint** pts, const int* npts, + int contours, CvScalar color, + int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0) ); + +/** @brief Draws one or more polygonal curves +@see cv::polylines +*/ +CVAPI(void) cvPolyLine( CvArr* img, CvPoint** pts, const int* npts, int contours, + int is_closed, CvScalar color, int thickness CV_DEFAULT(1), + int line_type CV_DEFAULT(8), int shift CV_DEFAULT(0) ); + +#define cvDrawRect cvRectangle +#define cvDrawLine cvLine +#define cvDrawCircle cvCircle +#define cvDrawEllipse cvEllipse +#define cvDrawPolyLine cvPolyLine + +/** @brief Clips the line segment connecting *pt1 and *pt2 + by the rectangular window + + (0<=xptr will point to pt1 (or pt2, see left_to_right description) location in +the image. Returns the number of pixels on the line between the ending points. +@see cv::LineIterator +*/ +CVAPI(int) cvInitLineIterator( const CvArr* image, CvPoint pt1, CvPoint pt2, + CvLineIterator* line_iterator, + int connectivity CV_DEFAULT(8), + int left_to_right CV_DEFAULT(0)); + +#define CV_NEXT_LINE_POINT( line_iterator ) \ +{ \ + int _line_iterator_mask = (line_iterator).err < 0 ? -1 : 0; \ + (line_iterator).err += (line_iterator).minus_delta + \ + ((line_iterator).plus_delta & _line_iterator_mask); \ + (line_iterator).ptr += (line_iterator).minus_step + \ + ((line_iterator).plus_step & _line_iterator_mask); \ +} + + +#define CV_FONT_HERSHEY_SIMPLEX 0 +#define CV_FONT_HERSHEY_PLAIN 1 +#define CV_FONT_HERSHEY_DUPLEX 2 +#define CV_FONT_HERSHEY_COMPLEX 3 +#define CV_FONT_HERSHEY_TRIPLEX 4 +#define CV_FONT_HERSHEY_COMPLEX_SMALL 5 +#define CV_FONT_HERSHEY_SCRIPT_SIMPLEX 6 +#define CV_FONT_HERSHEY_SCRIPT_COMPLEX 7 + +#define CV_FONT_ITALIC 16 + +#define CV_FONT_VECTOR0 CV_FONT_HERSHEY_SIMPLEX + + +/** Font structure */ +typedef struct CvFont +{ + const char* nameFont; //Qt:nameFont + CvScalar color; //Qt:ColorFont -> cvScalar(blue_component, green_component, red_component[, alpha_component]) + int font_face; //Qt: bool italic /** =CV_FONT_* */ + const int* ascii; //!< font data and metrics + const int* greek; + const int* cyrillic; + float hscale, vscale; + float shear; //!< slope coefficient: 0 - normal, >0 - italic + int thickness; //!< Qt: weight /** letters thickness */ + float dx; //!< horizontal interval between letters + int line_type; //!< Qt: PointSize +} +CvFont; + +/** @brief Initializes font structure (OpenCV 1.x API). + +The function initializes the font structure that can be passed to text rendering functions. + +@param font Pointer to the font structure initialized by the function +@param font_face Font name identifier. See cv::HersheyFonts and corresponding old CV_* identifiers. +@param hscale Horizontal scale. If equal to 1.0f , the characters have the original width +depending on the font type. If equal to 0.5f , the characters are of half the original width. +@param vscale Vertical scale. If equal to 1.0f , the characters have the original height depending +on the font type. If equal to 0.5f , the characters are of half the original height. +@param shear Approximate tangent of the character slope relative to the vertical line. A zero +value means a non-italic font, 1.0f means about a 45 degree slope, etc. +@param thickness Thickness of the text strokes +@param line_type Type of the strokes, see line description + +@sa cvPutText + */ +CVAPI(void) cvInitFont( CvFont* font, int font_face, + double hscale, double vscale, + double shear CV_DEFAULT(0), + int thickness CV_DEFAULT(1), + int line_type CV_DEFAULT(8)); + +CV_INLINE CvFont cvFont( double scale, int thickness CV_DEFAULT(1) ) +{ + CvFont font; + cvInitFont( &font, CV_FONT_HERSHEY_PLAIN, scale, scale, 0, thickness, CV_AA ); + return font; +} + +/** @brief Renders text stroke with specified font and color at specified location. + CvFont should be initialized with cvInitFont +@see cvInitFont, cvGetTextSize, cvFont, cv::putText +*/ +CVAPI(void) cvPutText( CvArr* img, const char* text, CvPoint org, + const CvFont* font, CvScalar color ); + +/** @brief Calculates bounding box of text stroke (useful for alignment) +@see cv::getTextSize +*/ +CVAPI(void) cvGetTextSize( const char* text_string, const CvFont* font, + CvSize* text_size, int* baseline ); + +/** @brief Unpacks color value + +if arrtype is CV_8UC?, _color_ is treated as packed color value, otherwise the first channels +(depending on arrtype) of destination scalar are set to the same value = _color_ +*/ +CVAPI(CvScalar) cvColorToScalar( double packed_color, int arrtype ); + +/** @brief Returns the polygon points which make up the given ellipse. + +The ellipse is define by the box of size 'axes' rotated 'angle' around the 'center'. A partial +sweep of the ellipse arc can be done by spcifying arc_start and arc_end to be something other than +0 and 360, respectively. The input array 'pts' must be large enough to hold the result. The total +number of points stored into 'pts' is returned by this function. +@see cv::ellipse2Poly +*/ +CVAPI(int) cvEllipse2Poly( CvPoint center, CvSize axes, + int angle, int arc_start, int arc_end, CvPoint * pts, int delta ); + +/** @brief Draws contour outlines or filled interiors on the image +@see cv::drawContours +*/ +CVAPI(void) cvDrawContours( CvArr *img, CvSeq* contour, + CvScalar external_color, CvScalar hole_color, + int max_level, int thickness CV_DEFAULT(1), + int line_type CV_DEFAULT(8), + CvPoint offset CV_DEFAULT(cvPoint(0,0))); + +/** @} */ + +#ifdef __cplusplus +} +#endif + +#endif diff --git a/thirdparty1/linux/include/opencv2/imgproc/types_c.h b/thirdparty1/linux/include/opencv2/imgproc/types_c.h new file mode 100644 index 0000000..eacba02 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/imgproc/types_c.h @@ -0,0 +1,626 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_IMGPROC_TYPES_C_H +#define OPENCV_IMGPROC_TYPES_C_H + +#include "opencv2/core/core_c.h" + +#ifdef __cplusplus +extern "C" { +#endif + +/** @addtogroup imgproc_c + @{ +*/ + +/** Connected component structure */ +typedef struct CvConnectedComp +{ + double area; /** DBL_EPSILON ? 1./std::sqrt(am00) : 0; + } + operator cv::Moments() const + { + return cv::Moments(m00, m10, m01, m20, m11, m02, m30, m21, m12, m03); + } +#endif +} +CvMoments; + +/** Hu invariants */ +typedef struct CvHuMoments +{ + double hu1, hu2, hu3, hu4, hu5, hu6, hu7; /**< Hu invariants */ +} +CvHuMoments; + +/** Template matching methods */ +enum +{ + CV_TM_SQDIFF =0, + CV_TM_SQDIFF_NORMED =1, + CV_TM_CCORR =2, + CV_TM_CCORR_NORMED =3, + CV_TM_CCOEFF =4, + CV_TM_CCOEFF_NORMED =5 +}; + +typedef float (CV_CDECL * CvDistanceFunction)( const float* a, const float* b, void* user_param ); + +/** Contour retrieval modes */ +enum +{ + CV_RETR_EXTERNAL=0, + CV_RETR_LIST=1, + CV_RETR_CCOMP=2, + CV_RETR_TREE=3, + CV_RETR_FLOODFILL=4 +}; + +/** Contour approximation methods */ +enum +{ + CV_CHAIN_CODE=0, + CV_CHAIN_APPROX_NONE=1, + CV_CHAIN_APPROX_SIMPLE=2, + CV_CHAIN_APPROX_TC89_L1=3, + CV_CHAIN_APPROX_TC89_KCOS=4, + CV_LINK_RUNS=5 +}; + +/* +Internal structure that is used for sequential retrieving contours from the image. +It supports both hierarchical and plane variants of Suzuki algorithm. +*/ +typedef struct _CvContourScanner* CvContourScanner; + +/** Freeman chain reader state */ +typedef struct CvChainPtReader +{ + CV_SEQ_READER_FIELDS() + char code; + CvPoint pt; + schar deltas[8][2]; +} +CvChainPtReader; + +/** initializes 8-element array for fast access to 3x3 neighborhood of a pixel */ +#define CV_INIT_3X3_DELTAS( deltas, step, nch ) \ + ((deltas)[0] = (nch), (deltas)[1] = -(step) + (nch), \ + (deltas)[2] = -(step), (deltas)[3] = -(step) - (nch), \ + (deltas)[4] = -(nch), (deltas)[5] = (step) - (nch), \ + (deltas)[6] = (step), (deltas)[7] = (step) + (nch)) + + +/** Contour approximation algorithms */ +enum +{ + CV_POLY_APPROX_DP = 0 +}; + +/** @brief Shape matching methods + +\f$A\f$ denotes object1,\f$B\f$ denotes object2 + +\f$\begin{array}{l} m^A_i = \mathrm{sign} (h^A_i) \cdot \log{h^A_i} \\ m^B_i = \mathrm{sign} (h^B_i) \cdot \log{h^B_i} \end{array}\f$ + +and \f$h^A_i, h^B_i\f$ are the Hu moments of \f$A\f$ and \f$B\f$ , respectively. +*/ +enum ShapeMatchModes +{ + CV_CONTOURS_MATCH_I1 =1, //!< \f[I_1(A,B) = \sum _{i=1...7} \left | \frac{1}{m^A_i} - \frac{1}{m^B_i} \right |\f] + CV_CONTOURS_MATCH_I2 =2, //!< \f[I_2(A,B) = \sum _{i=1...7} \left | m^A_i - m^B_i \right |\f] + CV_CONTOURS_MATCH_I3 =3 //!< \f[I_3(A,B) = \max _{i=1...7} \frac{ \left| m^A_i - m^B_i \right| }{ \left| m^A_i \right| }\f] +}; + +/** Shape orientation */ +enum +{ + CV_CLOCKWISE =1, + CV_COUNTER_CLOCKWISE =2 +}; + + +/** Convexity defect */ +typedef struct CvConvexityDefect +{ + CvPoint* start; /**< point of the contour where the defect begins */ + CvPoint* end; /**< point of the contour where the defect ends */ + CvPoint* depth_point; /**< the farthest from the convex hull point within the defect */ + float depth; /**< distance between the farthest point and the convex hull */ +} CvConvexityDefect; + + +/** Histogram comparison methods */ +enum +{ + CV_COMP_CORREL =0, + CV_COMP_CHISQR =1, + CV_COMP_INTERSECT =2, + CV_COMP_BHATTACHARYYA =3, + CV_COMP_HELLINGER =CV_COMP_BHATTACHARYYA, + CV_COMP_CHISQR_ALT =4, + CV_COMP_KL_DIV =5 +}; + +/** Mask size for distance transform */ +enum +{ + CV_DIST_MASK_3 =3, + CV_DIST_MASK_5 =5, + CV_DIST_MASK_PRECISE =0 +}; + +/** Content of output label array: connected components or pixels */ +enum +{ + CV_DIST_LABEL_CCOMP = 0, + CV_DIST_LABEL_PIXEL = 1 +}; + +/** Distance types for Distance Transform and M-estimators */ +enum +{ + CV_DIST_USER =-1, /**< User defined distance */ + CV_DIST_L1 =1, /**< distance = |x1-x2| + |y1-y2| */ + CV_DIST_L2 =2, /**< the simple euclidean distance */ + CV_DIST_C =3, /**< distance = max(|x1-x2|,|y1-y2|) */ + CV_DIST_L12 =4, /**< L1-L2 metric: distance = 2(sqrt(1+x*x/2) - 1)) */ + CV_DIST_FAIR =5, /**< distance = c^2(|x|/c-log(1+|x|/c)), c = 1.3998 */ + CV_DIST_WELSCH =6, /**< distance = c^2/2(1-exp(-(x/c)^2)), c = 2.9846 */ + CV_DIST_HUBER =7 /**< distance = |x| threshold ? max_value : 0 */ + CV_THRESH_BINARY_INV =1, /**< value = value > threshold ? 0 : max_value */ + CV_THRESH_TRUNC =2, /**< value = value > threshold ? threshold : value */ + CV_THRESH_TOZERO =3, /**< value = value > threshold ? value : 0 */ + CV_THRESH_TOZERO_INV =4, /**< value = value > threshold ? 0 : value */ + CV_THRESH_MASK =7, + CV_THRESH_OTSU =8, /**< use Otsu algorithm to choose the optimal threshold value; + combine the flag with one of the above CV_THRESH_* values */ + CV_THRESH_TRIANGLE =16 /**< use Triangle algorithm to choose the optimal threshold value; + combine the flag with one of the above CV_THRESH_* values, but not + with CV_THRESH_OTSU */ +}; + +/** Adaptive threshold methods */ +enum +{ + CV_ADAPTIVE_THRESH_MEAN_C =0, + CV_ADAPTIVE_THRESH_GAUSSIAN_C =1 +}; + +/** FloodFill flags */ +enum +{ + CV_FLOODFILL_FIXED_RANGE =(1 << 16), + CV_FLOODFILL_MASK_ONLY =(1 << 17) +}; + + +/** Canny edge detector flags */ +enum +{ + CV_CANNY_L2_GRADIENT =(1 << 31) +}; + +/** Variants of a Hough transform */ +enum +{ + CV_HOUGH_STANDARD =0, + CV_HOUGH_PROBABILISTIC =1, + CV_HOUGH_MULTI_SCALE =2, + CV_HOUGH_GRADIENT =3 +}; + + +/* Fast search data structures */ +struct CvFeatureTree; +struct CvLSH; +struct CvLSHOperations; + +/** @} */ + +#ifdef __cplusplus +} +#endif + +#endif diff --git a/thirdparty1/linux/include/opencv2/line_descriptor.hpp b/thirdparty1/linux/include/opencv2/line_descriptor.hpp new file mode 100644 index 0000000..cb2969f --- /dev/null +++ b/thirdparty1/linux/include/opencv2/line_descriptor.hpp @@ -0,0 +1,119 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// + // + // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. + // + // By downloading, copying, installing or using the software you agree to this license. + // If you do not agree to this license, do not download, install, + // copy or use the software. + // + // + // License Agreement + // For Open Source Computer Vision Library + // + // Copyright (C) 2013, OpenCV Foundation, all rights reserved. + // Third party copyrights are property of their respective owners. + // + // Redistribution and use in source and binary forms, with or without modification, + // are permitted provided that the following conditions are met: + // + // * Redistribution's of source code must retain the above copyright notice, + // this list of conditions and the following disclaimer. + // + // * Redistribution's in binary form must reproduce the above copyright notice, + // this list of conditions and the following disclaimer in the documentation + // and/or other materials provided with the distribution. + // + // * The name of the copyright holders may not be used to endorse or promote products + // derived from this software without specific prior written permission. + // + // This software is provided by the copyright holders and contributors "as is" and + // any express or implied warranties, including, but not limited to, the implied + // warranties of merchantability and fitness for a particular purpose are disclaimed. + // In no event shall the Intel Corporation or contributors be liable for any direct, + // indirect, incidental, special, exemplary, or consequential damages + // (including, but not limited to, procurement of substitute goods or services; + // loss of use, data, or profits; or business interruption) however caused + // and on any theory of liability, whether in contract, strict liability, + // or tort (including negligence or otherwise) arising in any way out of + // the use of this software, even if advised of the possibility of such damage. + // + //M*/ + +#ifndef __OPENCV_LINE_DESCRIPTOR_HPP__ +#define __OPENCV_LINE_DESCRIPTOR_HPP__ + +#include "opencv2/line_descriptor/descriptor.hpp" + +/** @defgroup line_descriptor Binary descriptors for lines extracted from an image + +Introduction +------------ + +One of the most challenging activities in computer vision is the extraction of useful information +from a given image. Such information, usually comes in the form of points that preserve some kind of +property (for instance, they are scale-invariant) and are actually representative of input image. + +The goal of this module is seeking a new kind of representative information inside an image and +providing the functionalities for its extraction and representation. In particular, differently from +previous methods for detection of relevant elements inside an image, lines are extracted in place of +points; a new class is defined ad hoc to summarize a line's properties, for reuse and plotting +purposes. + +Computation of binary descriptors +--------------------------------- + +To obtatin a binary descriptor representing a certain line detected from a certain octave of an +image, we first compute a non-binary descriptor as described in @cite LBD . Such algorithm works on +lines extracted using EDLine detector, as explained in @cite EDL . Given a line, we consider a +rectangular region centered at it and called *line support region (LSR)*. Such region is divided +into a set of bands \f$\{B_1, B_2, ..., B_m\}\f$, whose length equals the one of line. + +If we indicate with \f$\bf{d}_L\f$ the direction of line, the orthogonal and clockwise direction to line +\f$\bf{d}_{\perp}\f$ can be determined; these two directions, are used to construct a reference frame +centered in the middle point of line. The gradients of pixels \f$\bf{g'}\f$ inside LSR can be projected +to the newly determined frame, obtaining their local equivalent +\f$\bf{g'} = (\bf{g}^T \cdot \bf{d}_{\perp}, \bf{g}^T \cdot \bf{d}_L)^T \triangleq (\bf{g'}_{d_{\perp}}, \bf{g'}_{d_L})^T\f$. + +Later on, a Gaussian function is applied to all LSR's pixels along \f$\bf{d}_\perp\f$ direction; first, +we assign a global weighting coefficient \f$f_g(i) = (1/\sqrt{2\pi}\sigma_g)e^{-d^2_i/2\sigma^2_g}\f$ to +*i*-th row in LSR, where \f$d_i\f$ is the distance of *i*-th row from the center row in LSR, +\f$\sigma_g = 0.5(m \cdot w - 1)\f$ and \f$w\f$ is the width of bands (the same for every band). Secondly, +considering a band \f$B_j\f$ and its neighbor bands \f$B_{j-1}, B_{j+1}\f$, we assign a local weighting +\f$F_l(k) = (1/\sqrt{2\pi}\sigma_l)e^{-d'^2_k/2\sigma_l^2}\f$, where \f$d'_k\f$ is the distance of *k*-th +row from the center row in \f$B_j\f$ and \f$\sigma_l = w\f$. Using the global and local weights, we obtain, +at the same time, the reduction of role played by gradients far from line and of boundary effect, +respectively. + +Each band \f$B_j\f$ in LSR has an associated *band descriptor(BD)* which is computed considering +previous and next band (top and bottom bands are ignored when computing descriptor for first and +last band). Once each band has been assignen its BD, the LBD descriptor of line is simply given by + +\f[LBD = (BD_1^T, BD_2^T, ... , BD^T_m)^T.\f] + +To compute a band descriptor \f$B_j\f$, each *k*-th row in it is considered and the gradients in such +row are accumulated: + +\f[\begin{matrix} \bf{V1}^k_j = \lambda \sum\limits_{\bf{g}'_{d_\perp}>0}\bf{g}'_{d_\perp}, & \bf{V2}^k_j = \lambda \sum\limits_{\bf{g}'_{d_\perp}<0} -\bf{g}'_{d_\perp}, \\ \bf{V3}^k_j = \lambda \sum\limits_{\bf{g}'_{d_L}>0}\bf{g}'_{d_L}, & \bf{V4}^k_j = \lambda \sum\limits_{\bf{g}'_{d_L}<0} -\bf{g}'_{d_L}\end{matrix}.\f] + +with \f$\lambda = f_g(k)f_l(k)\f$. + +By stacking previous results, we obtain the *band description matrix (BDM)* + +\f[BDM_j = \left(\begin{matrix} \bf{V1}_j^1 & \bf{V1}_j^2 & \ldots & \bf{V1}_j^n \\ \bf{V2}_j^1 & \bf{V2}_j^2 & \ldots & \bf{V2}_j^n \\ \bf{V3}_j^1 & \bf{V3}_j^2 & \ldots & \bf{V3}_j^n \\ \bf{V4}_j^1 & \bf{V4}_j^2 & \ldots & \bf{V4}_j^n \end{matrix} \right) \in \mathbb{R}^{4\times n},\f] + +with \f$n\f$ the number of rows in band \f$B_j\f$: + +\f[n = \begin{cases} 2w, & j = 1||m; \\ 3w, & \mbox{else}. \end{cases}\f] + +Each \f$BD_j\f$ can be obtained using the standard deviation vector \f$S_j\f$ and mean vector \f$M_j\f$ of +\f$BDM_J\f$. Thus, finally: + +\f[LBD = (M_1^T, S_1^T, M_2^T, S_2^T, \ldots, M_m^T, S_m^T)^T \in \mathbb{R}^{8m}\f] + +Once the LBD has been obtained, it must be converted into a binary form. For such purpose, we +consider 32 possible pairs of BD inside it; each couple of BD is compared bit by bit and comparison +generates an 8 bit string. Concatenating 32 comparison strings, we get the 256-bit final binary +representation of a single LBD. +*/ + +#endif diff --git a/thirdparty1/linux/include/opencv2/line_descriptor/descriptor.hpp b/thirdparty1/linux/include/opencv2/line_descriptor/descriptor.hpp new file mode 100644 index 0000000..9f2c639 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/line_descriptor/descriptor.hpp @@ -0,0 +1,1369 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// + // + // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. + // + // By downloading, copying, installing or using the software you agree to this license. + // If you do not agree to this license, do not download, install, + // copy or use the software. + // + // + // License Agreement + // For Open Source Computer Vision Library + // + // Copyright (C) 2014, Biagio Montesano, all rights reserved. + // Third party copyrights are property of their respective owners. + // + // Redistribution and use in source and binary forms, with or without modification, + // are permitted provided that the following conditions are met: + // + // * Redistribution's of source code must retain the above copyright notice, + // this list of conditions and the following disclaimer. + // + // * Redistribution's in binary form must reproduce the above copyright notice, + // this list of conditions and the following disclaimer in the documentation + // and/or other materials provided with the distribution. + // + // * The name of the copyright holders may not be used to endorse or promote products + // derived from this software without specific prior written permission. + // + // This software is provided by the copyright holders and contributors "as is" and + // any express or implied warranties, including, but not limited to, the implied + // warranties of merchantability and fitness for a particular purpose are disclaimed. + // In no event shall the Intel Corporation or contributors be liable for any direct, + // indirect, incidental, special, exemplary, or consequential damages + // (including, but not limited to, procurement of substitute goods or services; + // loss of use, data, or profits; or business interruption) however caused + // and on any theory of liability, whether in contract, strict liability, + // or tort (including negligence or otherwise) arising in any way out of + // the use of this software, even if advised of the possibility of such damage. + // + //M*/ + +#ifndef __OPENCV_DESCRIPTOR_HPP__ +#define __OPENCV_DESCRIPTOR_HPP__ + +#include +#include +#include + +#if defined _MSC_VER && _MSC_VER <= 1700 +#include +#else +#include +#endif + +#include +#include + +#include "opencv2/core/utility.hpp" +//#include "opencv2/core/private.hpp" +#include +#include +#include +#include "opencv2/core.hpp" + +/* define data types */ +typedef uint64_t UINT64; +typedef uint32_t UINT32; +typedef uint16_t UINT16; +typedef uint8_t UINT8; + +/* define constants */ +#define UINT64_1 ((UINT64)0x01) +#define UINT32_1 ((UINT32)0x01) + +namespace cv +{ +namespace line_descriptor +{ + +//! @addtogroup line_descriptor +//! @{ + +/** @brief A class to represent a line + +As aformentioned, it is been necessary to design a class that fully stores the information needed to +characterize completely a line and plot it on image it was extracted from, when required. + +*KeyLine* class has been created for such goal; it is mainly inspired to Feature2d's KeyPoint class, +since KeyLine shares some of *KeyPoint*'s fields, even if a part of them assumes a different +meaning, when speaking about lines. In particular: + +- the *class_id* field is used to gather lines extracted from different octaves which refer to + same line inside original image (such lines and the one they represent in original image share + the same *class_id* value) +- the *angle* field represents line's slope with respect to (positive) X axis +- the *pt* field represents line's midpoint +- the *response* field is computed as the ratio between the line's length and maximum between + image's width and height +- the *size* field is the area of the smallest rectangle containing line + +Apart from fields inspired to KeyPoint class, KeyLines stores information about extremes of line in +original image and in octave it was extracted from, about line's length and number of pixels it +covers. + */ +struct CV_EXPORTS KeyLine +{ + public: + /** orientation of the line */ + float angle; + + /** object ID, that can be used to cluster keylines by the line they represent */ + int class_id; + + /** octave (pyramid layer), from which the keyline has been extracted */ + int octave; + + /** coordinates of the middlepoint */ + Point2f pt; + + /** the response, by which the strongest keylines have been selected. + It's represented by the ratio between line's length and maximum between + image's width and height */ + float response; + + /** minimum area containing line */ + float size; + + /** lines's extremes in original image */ + float startPointX; + float startPointY; + float endPointX; + float endPointY; + + /** line's extremes in image it was extracted from */ + float sPointInOctaveX; + float sPointInOctaveY; + float ePointInOctaveX; + float ePointInOctaveY; + + /** the length of line */ + float lineLength; + + /** number of pixels covered by the line */ + int numOfPixels; + + /** Returns the start point of the line in the original image */ + Point2f getStartPoint() const + { + return Point2f(startPointX, startPointY); + } + + /** Returns the end point of the line in the original image */ + Point2f getEndPoint() const + { + return Point2f(endPointX, endPointY); + } + + /** Returns the start point of the line in the octave it was extracted from */ + Point2f getStartPointInOctave() const + { + return Point2f(sPointInOctaveX, sPointInOctaveY); + } + + /** Returns the end point of the line in the octave it was extracted from */ + Point2f getEndPointInOctave() const + { + return Point2f(ePointInOctaveX, ePointInOctaveY); + } + + /** constructor */ + KeyLine() + { + } +}; + +/** @brief Class implements both functionalities for detection of lines and computation of their +binary descriptor. + +Class' interface is mainly based on the ones of classical detectors and extractors, such as +Feature2d's @ref features2d_main and @ref features2d_match. Retrieved information about lines is +stored in line_descriptor::KeyLine objects. + */ +class CV_EXPORTS BinaryDescriptor : public Algorithm +{ + + public: + /** @brief List of BinaryDescriptor parameters: + */ + struct CV_EXPORTS Params + { + /*CV_WRAP*/ + Params(); + + /** the number of image octaves (default = 1) */ + + int numOfOctave_; + + /** the width of band; (default: 7) */ + + int widthOfBand_; + + /** image's reduction ratio in construction of Gaussian pyramids */ + int reductionRatio; + + int ksize_; + + /** read parameters from a FileNode object and store them (struct function) */ + void read( const FileNode& fn ); + + /** store parameters to a FileStorage object (struct function) */ + void write( FileStorage& fs ) const; + + }; + + /** @brief Constructor + + @param parameters configuration parameters BinaryDescriptor::Params + + If no argument is provided, constructor sets default values (see comments in the code snippet in + previous section). Default values are strongly reccomended. + */ + BinaryDescriptor( const BinaryDescriptor::Params ¶meters = BinaryDescriptor::Params() ); + + /** @brief Create a BinaryDescriptor object with default parameters (or with the ones provided) + and return a smart pointer to it + */ + static Ptr createBinaryDescriptor(); + static Ptr createBinaryDescriptor( Params parameters ); + + /** destructor */ + ~BinaryDescriptor(); + + /** @brief Get current number of octaves + */ + int getNumOfOctaves();/*CV_WRAP*/ + /** @brief Set number of octaves + @param octaves number of octaves + */ + void setNumOfOctaves( int octaves );/*CV_WRAP*/ + /** @brief Get current width of bands + */ + int getWidthOfBand();/*CV_WRAP*/ + /** @brief Set width of bands + @param width width of bands + */ + void setWidthOfBand( int width );/*CV_WRAP*/ + /** @brief Get current reduction ratio (used in Gaussian pyramids) + */ + int getReductionRatio();/*CV_WRAP*/ + /** @brief Set reduction ratio (used in Gaussian pyramids) + @param rRatio reduction ratio + */ + void setReductionRatio( int rRatio ); + + /** @brief Read parameters from a FileNode object and store them + + @param fn source FileNode file + */ + virtual void read( const cv::FileNode& fn ); + + /** @brief Store parameters to a FileStorage object + + @param fs output FileStorage file + */ + virtual void write( cv::FileStorage& fs ) const; + + /** @brief Requires line detection + + @param image input image + @param keypoints vector that will store extracted lines for one or more images + @param mask mask matrix to detect only KeyLines of interest + */ + void detect( const Mat& image, CV_OUT std::vector& keypoints, const Mat& mask = Mat() ); + + /** @overload + + @param images input images + @param keylines set of vectors that will store extracted lines for one or more images + @param masks vector of mask matrices to detect only KeyLines of interest from each input image + */ + void detect( const std::vector& images, std::vector >& keylines, const std::vector& masks = + std::vector() ) const; + + /** @brief Requires descriptors computation + + @param image input image + @param keylines vector containing lines for which descriptors must be computed + @param descriptors + @param returnFloatDescr flag (when set to true, original non-binary descriptors are returned) + */ + void compute( const Mat& image, CV_OUT CV_IN_OUT std::vector& keylines, CV_OUT Mat& descriptors, bool returnFloatDescr = false ) const; + + /** @overload + + @param images input images + @param keylines set of vectors containing lines for which descriptors must be computed + @param descriptors + @param returnFloatDescr flag (when set to true, original non-binary descriptors are returned) + */ + void compute( const std::vector& images, std::vector >& keylines, std::vector& descriptors, bool returnFloatDescr = + false ) const; + + /** @brief Return descriptor size + */ + int descriptorSize() const; + + /** @brief Return data type + */ + int descriptorType() const; + + /** returns norm mode */ + /*CV_WRAP*/ + int defaultNorm() const; + + /** @brief Define operator '()' to perform detection of KeyLines and computation of descriptors in a row. + + @param image input image + @param mask mask matrix to select which lines in KeyLines must be accepted among the ones + extracted (used when *keylines* is not empty) + @param keylines vector that contains input lines (when filled, the detection part will be skipped + and input lines will be passed as input to the algorithm computing descriptors) + @param descriptors matrix that will store final descriptors + @param useProvidedKeyLines flag (when set to true, detection phase will be skipped and only + computation of descriptors will be executed, using lines provided in *keylines*) + @param returnFloatDescr flag (when set to true, original non-binary descriptors are returned) + */ + virtual void operator()( InputArray image, InputArray mask, CV_OUT std::vector& keylines, OutputArray descriptors, + bool useProvidedKeyLines = false, bool returnFloatDescr = false ) const; + + protected: + /** implementation of line detection */ + virtual void detectImpl( const Mat& imageSrc, std::vector& keylines, const Mat& mask = Mat() ) const; + + /** implementation of descriptors' computation */ + virtual void computeImpl( const Mat& imageSrc, std::vector& keylines, Mat& descriptors, bool returnFloatDescr, + bool useDetectionData ) const; + + private: + /** struct to represent lines extracted from an octave */ + struct OctaveLine + { + unsigned int octaveCount; //the octave which this line is detected + unsigned int lineIDInOctave; //the line ID in that octave image + unsigned int lineIDInScaleLineVec; //the line ID in Scale line vector + float lineLength; //the length of line in original image scale + }; + + // A 2D line (normal equation parameters). + struct SingleLine + { + //note: rho and theta are based on coordinate origin, i.e. the top-left corner of image + double rho; //unit: pixel length + double theta; //unit: rad + double linePointX; // = rho * cos(theta); + double linePointY; // = rho * sin(theta); + //for EndPoints, the coordinate origin is the top-left corner of image. + double startPointX; + double startPointY; + double endPointX; + double endPointY; + //direction of a line, the angle between positive line direction (dark side is in the left) and positive X axis. + double direction; + //mean gradient magnitude + double gradientMagnitude; + //mean gray value of pixels in dark side of line + double darkSideGrayValue; + //mean gray value of pixels in light side of line + double lightSideGrayValue; + //the length of line + double lineLength; + //the width of line; + double width; + //number of pixels + int numOfPixels; + //the decriptor of line + std::vector descriptor; + }; + + // Specifies a vector of lines. + typedef std::vector Lines_list; + + struct OctaveSingleLine + { + /*endPoints, the coordinate origin is the top-left corner of the original image. + *startPointX = sPointInOctaveX * (factor)^octaveCount; */ + float startPointX; + float startPointY; + float endPointX; + float endPointY; + //endPoints, the coordinate origin is the top-left corner of the octave image. + float sPointInOctaveX; + float sPointInOctaveY; + float ePointInOctaveX; + float ePointInOctaveY; + //direction of a line, the angle between positive line direction (dark side is in the left) and positive X axis. + float direction; + //the summation of gradient magnitudes of pixels on lines + float salience; + //the length of line + float lineLength; + //number of pixels + unsigned int numOfPixels; + //the octave which this line is detected + unsigned int octaveCount; + //the decriptor of line + std::vector descriptor; + }; + + struct Pixel + { + unsigned int x; //X coordinate + unsigned int y; //Y coordinate + }; + struct EdgeChains + { + std::vector xCors; //all the x coordinates of edge points + std::vector yCors; //all the y coordinates of edge points + std::vector sId; //the start index of each edge in the coordinate arrays + unsigned int numOfEdges; //the number of edges whose length are larger than minLineLen; numOfEdges < sId.size; + }; + + struct LineChains + { + std::vector xCors; //all the x coordinates of line points + std::vector yCors; //all the y coordinates of line points + std::vector sId; //the start index of each line in the coordinate arrays + unsigned int numOfLines; //the number of lines whose length are larger than minLineLen; numOfLines < sId.size; + }; + + typedef std::list PixelChain; //each edge is a pixel chain + + struct EDLineParam + { + int ksize; + float sigma; + float gradientThreshold; + float anchorThreshold; + int scanIntervals; + int minLineLen; + double lineFitErrThreshold; + }; + + #define RELATIVE_ERROR_FACTOR 100.0 + #define MLN10 2.30258509299404568402 + #define log_gamma(x) ((x)>15.0?log_gamma_windschitl(x):log_gamma_lanczos(x)) + + /** This class is used to detect lines from input image. + * First, edges are extracted from input image following the method presented in Cihan Topal and + * Cuneyt Akinlar's paper:"Edge Drawing: A Heuristic Approach to Robust Real-Time Edge Detection", 2010. + * Then, lines are extracted from the edge image following the method presented in Cuneyt Akinlar and + * Cihan Topal's paper:"EDLines: A real-time line segment detector with a false detection control", 2011 + * PS: The linking step of edge detection has a little bit difference with the Edge drawing algorithm + * described in the paper. The edge chain doesn't stop when the pixel direction is changed. + */ + class EDLineDetector + { + public: + EDLineDetector(); + EDLineDetector( EDLineParam param ); + ~EDLineDetector(); + + /*extract edges from image + *image: In, gray image; + *edges: Out, store the edges, each edge is a pixel chain + *return -1: error happen + */ + int EdgeDrawing( cv::Mat &image, EdgeChains &edgeChains ); + + /*extract lines from image + *image: In, gray image; + *lines: Out, store the extracted lines, + *return -1: error happen + */ + int EDline( cv::Mat &image, LineChains &lines ); + + /** extract line from image, and store them */ + int EDline( cv::Mat &image ); + + cv::Mat dxImg_; //store the dxImg; + + cv::Mat dyImg_; //store the dyImg; + + cv::Mat gImgWO_; //store the gradient image without threshold; + + LineChains lines_; //store the detected line chains; + + //store the line Equation coefficients, vec3=[w1,w2,w3] for line w1*x + w2*y + w3=0; + std::vector > lineEquations_; + + //store the line endpoints, [x1,y1,x2,y3] + std::vector > lineEndpoints_; + + //store the line direction + std::vector lineDirection_; + + //store the line salience, which is the summation of gradients of pixels on line + std::vector lineSalience_; + + // image sizes + unsigned int imageWidth; + unsigned int imageHeight; + + /*The threshold of line fit error; + *If lineFitErr is large than this threshold, then + *the pixel chain is not accepted as a single line segment.*/ + double lineFitErrThreshold_; + + /*the threshold of pixel gradient magnitude. + *Only those pixel whose gradient magnitude are larger than this threshold will be + *taken as possible edge points. Default value is 36*/ + short gradienThreshold_; + + /*If the pixel's gradient value is bigger than both of its neighbors by a + *certain threshold (ANCHOR_THRESHOLD), the pixel is marked to be an anchor. + *Default value is 8*/ + unsigned char anchorThreshold_; + + /*anchor testing can be performed at different scan intervals, i.e., + *every row/column, every second row/column etc. + *Default value is 2*/ + unsigned int scanIntervals_; + + int minLineLen_; //minimal acceptable line length + + private: + void InitEDLine_(); + + /*For an input edge chain, find the best fit line, the default chain length is minLineLen_ + *xCors: In, pointer to the X coordinates of pixel chain; + *yCors: In, pointer to the Y coordinates of pixel chain; + *offsetS:In, start index of this chain in vector; + *lineEquation: Out, [a,b] which are the coefficient of lines y=ax+b(horizontal) or x=ay+b(vertical); + *return: line fit error; -1:error happens; + */ + double LeastSquaresLineFit_( unsigned int *xCors, unsigned int *yCors, unsigned int offsetS, std::vector &lineEquation ); + + /*For an input pixel chain, find the best fit line. Only do the update based on new points. + *For A*x=v, Least square estimation of x = Inv(A^T * A) * (A^T * v); + *If some new observations are added, i.e, [A; A'] * x = [v; v'], + *then x' = Inv(A^T * A + (A')^T * A') * (A^T * v + (A')^T * v'); + *xCors: In, pointer to the X coordinates of pixel chain; + *yCors: In, pointer to the Y coordinates of pixel chain; + *offsetS:In, start index of this chain in vector; + *newOffsetS: In, start index of extended part; + *offsetE:In, end index of this chain in vector; + *lineEquation: Out, [a,b] which are the coefficient of lines y=ax+b(horizontal) or x=ay+b(vertical); + *return: line fit error; -1:error happens; + */ + double LeastSquaresLineFit_( unsigned int *xCors, unsigned int *yCors, unsigned int offsetS, unsigned int newOffsetS, unsigned int offsetE, + std::vector &lineEquation ); + + /** Validate line based on the Helmholtz principle, which basically states that + * for a structure to be perceptually meaningful, the expectation of this structure + * by chance must be very low. + */ + bool LineValidation_( unsigned int *xCors, unsigned int *yCors, unsigned int offsetS, unsigned int offsetE, std::vector &lineEquation, + float &direction ); + + bool bValidate_; //flag to decide whether line will be validated + + int ksize_; //the size of Gaussian kernel: ksize X ksize, default value is 5. + + float sigma_; //the sigma of Gaussian kernal, default value is 1.0. + + /*For example, there two edges in the image: + *edge1 = [(7,4), (8,5), (9,6),| (10,7)|, (11, 8), (12,9)] and + *edge2 = [(14,9), (15,10), (16,11), (17,12),| (18, 13)|, (19,14)] ; then we store them as following: + *pFirstPartEdgeX_ = [10, 11, 12, 18, 19];//store the first part of each edge[from middle to end] + *pFirstPartEdgeY_ = [7, 8, 9, 13, 14]; + *pFirstPartEdgeS_ = [0,3,5];// the index of start point of first part of each edge + *pSecondPartEdgeX_ = [10, 9, 8, 7, 18, 17, 16, 15, 14];//store the second part of each edge[from middle to front] + *pSecondPartEdgeY_ = [7, 6, 5, 4, 13, 12, 11, 10, 9];//anchor points(10, 7) and (18, 13) are stored again + *pSecondPartEdgeS_ = [0, 4, 9];// the index of start point of second part of each edge + *This type of storage order is because of the order of edge detection process. + *For each edge, start from one anchor point, first go right, then go left or first go down, then go up*/ + + //store the X coordinates of the first part of the pixels for chains + unsigned int *pFirstPartEdgeX_; + + //store the Y coordinates of the first part of the pixels for chains + unsigned int *pFirstPartEdgeY_; + + //store the start index of every edge chain in the first part arrays + unsigned int *pFirstPartEdgeS_; + + //store the X coordinates of the second part of the pixels for chains + unsigned int *pSecondPartEdgeX_; + + //store the Y coordinates of the second part of the pixels for chains + unsigned int *pSecondPartEdgeY_; + + //store the start index of every edge chain in the second part arrays + unsigned int *pSecondPartEdgeS_; + + //store the X coordinates of anchors + unsigned int *pAnchorX_; + + //store the Y coordinates of anchors + unsigned int *pAnchorY_; + + //edges + cv::Mat edgeImage_; + + cv::Mat gImg_; //store the gradient image; + + cv::Mat dirImg_; //store the direction image + + double logNT_; + + cv::Mat_ ATA; //the previous matrix of A^T * A; + + cv::Mat_ ATV; //the previous vector of A^T * V; + + cv::Mat_ fitMatT; //the matrix used in line fit function; + + cv::Mat_ fitVec; //the vector used in line fit function; + + cv::Mat_ tempMatLineFit; //the matrix used in line fit function; + + cv::Mat_ tempVecLineFit; //the vector used in line fit function; + + /** Compare doubles by relative error. + The resulting rounding error after floating point computations + depend on the specific operations done. The same number computed by + different algorithms could present different rounding errors. For a + useful comparison, an estimation of the relative rounding error + should be considered and compared to a factor times EPS. The factor + should be related to the accumulated rounding error in the chain of + computation. Here, as a simplification, a fixed factor is used. + */ + static int double_equal( double a, double b ) + { + double abs_diff, aa, bb, abs_max; + /* trivial case */ + if( a == b ) + return true; + abs_diff = fabs( a - b ); + aa = fabs( a ); + bb = fabs( b ); + abs_max = aa > bb ? aa : bb; + + /* DBL_MIN is the smallest normalized number, thus, the smallest + number whose relative error is bounded by DBL_EPSILON. For + smaller numbers, the same quantization steps as for DBL_MIN + are used. Then, for smaller numbers, a meaningful "relative" + error should be computed by dividing the difference by DBL_MIN. */ + if( abs_max < DBL_MIN ) + abs_max = DBL_MIN; + + /* equal if relative error <= factor x eps */ + return ( abs_diff / abs_max ) <= ( RELATIVE_ERROR_FACTOR * DBL_EPSILON ); + } + + /** Computes the natural logarithm of the absolute value of + the gamma function of x using the Lanczos approximation. + See http://www.rskey.org/gamma.htm + The formula used is + @f[ + \Gamma(x) = \frac{ \sum_{n=0}^{N} q_n x^n }{ \Pi_{n=0}^{N} (x+n) } + (x+5.5)^{x+0.5} e^{-(x+5.5)} + @f] + so + @f[ + \log\Gamma(x) = \log\left( \sum_{n=0}^{N} q_n x^n \right) + + (x+0.5) \log(x+5.5) - (x+5.5) - \sum_{n=0}^{N} \log(x+n) + @f] + and + q0 = 75122.6331530, + q1 = 80916.6278952, + q2 = 36308.2951477, + q3 = 8687.24529705, + q4 = 1168.92649479, + q5 = 83.8676043424, + q6 = 2.50662827511. + */ + static double log_gamma_lanczos( double x ) + { + static double q[7] = + { 75122.6331530, 80916.6278952, 36308.2951477, 8687.24529705, 1168.92649479, 83.8676043424, 2.50662827511 }; + double a = ( x + 0.5 ) * log( x + 5.5 ) - ( x + 5.5 ); + double b = 0.0; + int n; + for ( n = 0; n < 7; n++ ) + { + a -= log( x + (double) n ); + b += q[n] * pow( x, (double) n ); + } + return a + log( b ); + } + + /** Computes the natural logarithm of the absolute value of + the gamma function of x using Windschitl method. + See http://www.rskey.org/gamma.htm + The formula used is + @f[ + \Gamma(x) = \sqrt{\frac{2\pi}{x}} \left( \frac{x}{e} + \sqrt{ x\sinh(1/x) + \frac{1}{810x^6} } \right)^x + @f] + so + @f[ + \log\Gamma(x) = 0.5\log(2\pi) + (x-0.5)\log(x) - x + + 0.5x\log\left( x\sinh(1/x) + \frac{1}{810x^6} \right). + @f] + This formula is a good approximation when x > 15. + */ + static double log_gamma_windschitl( double x ) + { + return 0.918938533204673 + ( x - 0.5 ) * log( x ) - x + 0.5 * x * log( x * sinh( 1 / x ) + 1 / ( 810.0 * pow( x, 6.0 ) ) ); + } + + /** Computes -log10(NFA). + NFA stands for Number of False Alarms: + @f[ + \mathrm{NFA} = NT \cdot B(n,k,p) + @f] + - NT - number of tests + - B(n,k,p) - tail of binomial distribution with parameters n,k and p: + @f[ + B(n,k,p) = \sum_{j=k}^n + \left(\begin{array}{c}n\\j\end{array}\right) + p^{j} (1-p)^{n-j} + @f] + The value -log10(NFA) is equivalent but more intuitive than NFA: + - -1 corresponds to 10 mean false alarms + - 0 corresponds to 1 mean false alarm + - 1 corresponds to 0.1 mean false alarms + - 2 corresponds to 0.01 mean false alarms + - ... + Used this way, the bigger the value, better the detection, + and a logarithmic scale is used. + @param n,k,p binomial parameters. + @param logNT logarithm of Number of Tests + The computation is based in the gamma function by the following + relation: + @f[ + \left(\begin{array}{c}n\\k\end{array}\right) + = \frac{ \Gamma(n+1) }{ \Gamma(k+1) \cdot \Gamma(n-k+1) }. + @f] + We use efficient algorithms to compute the logarithm of + the gamma function. + To make the computation faster, not all the sum is computed, part + of the terms are neglected based on a bound to the error obtained + (an error of 10% in the result is accepted). + */ + static double nfa( int n, int k, double p, double logNT ) + { + double tolerance = 0.1; /* an error of 10% in the result is accepted */ + double log1term, term, bin_term, mult_term, bin_tail, err, p_term; + int i; + + /* check parameters */ + if( n < 0 || k < 0 || k > n || p <= 0.0 || p >= 1.0 ) + { + std::cout << "nfa: wrong n, k or p values." << std::endl; + exit( 0 ); + } + /* trivial cases */ + if( n == 0 || k == 0 ) + return -logNT; + if( n == k ) + return -logNT - (double) n * log10( p ); + + /* probability term */ + p_term = p / ( 1.0 - p ); + + /* compute the first term of the series */ + /* + binomial_tail(n,k,p) = sum_{i=k}^n bincoef(n,i) * p^i * (1-p)^{n-i} + where bincoef(n,i) are the binomial coefficients. + But + bincoef(n,k) = gamma(n+1) / ( gamma(k+1) * gamma(n-k+1) ). + We use this to compute the first term. Actually the log of it. + */ + log1term = log_gamma( (double) n + 1.0 )- log_gamma( (double ) k + 1.0 )- log_gamma( (double ) ( n - k ) + 1.0 ) ++ (double) k * log( p ) ++ (double) ( n - k ) * log( 1.0 - p ); +term = exp( log1term ); + +/* in some cases no more computations are needed */ +if( double_equal( term, 0.0 ) ) +{ /* the first term is almost zero */ + if( (double) k > (double) n * p ) /* at begin or end of the tail? */ + return -log1term / MLN10 - logNT; /* end: use just the first term */ + else + return -logNT; /* begin: the tail is roughly 1 */ +} + +/* compute more terms if needed */ +bin_tail = term; +for ( i = k + 1; i <= n; i++ ) +{ + /* As + term_i = bincoef(n,i) * p^i * (1-p)^(n-i) + and + bincoef(n,i)/bincoef(n,i-1) = n-i+1 / i, + then, + term_i / term_i-1 = (n-i+1)/i * p/(1-p) + and + term_i = term_i-1 * (n-i+1)/i * p/(1-p). + p/(1-p) is computed only once and stored in 'p_term'. + */ + bin_term = (double) ( n - i + 1 ) / (double) i; + mult_term = bin_term * p_term; + term *= mult_term; + bin_tail += term; + if( bin_term < 1.0 ) + { + /* When bin_term<1 then mult_term_ji. + Then, the error on the binomial tail when truncated at + the i term can be bounded by a geometric series of form + term_i * sum mult_term_i^j. */ + err = term * ( ( 1.0 - pow( mult_term, (double) ( n - i + 1 ) ) ) / ( 1.0 - mult_term ) - 1.0 ); + /* One wants an error at most of tolerance*final_result, or: + tolerance * abs(-log10(bin_tail)-logNT). + Now, the error that can be accepted on bin_tail is + given by tolerance*final_result divided by the derivative + of -log10(x) when x=bin_tail. that is: + tolerance * abs(-log10(bin_tail)-logNT) / (1/bin_tail) + Finally, we truncate the tail if the error is less than: + tolerance * abs(-log10(bin_tail)-logNT) * bin_tail */ + if( err < tolerance * fabs( -log10( bin_tail ) - logNT ) * bin_tail ) + break; + } +} +return -log10( bin_tail ) - logNT; +} +}; + + // Specifies a vector of lines. +typedef std::vector LinesVec; + +// each element in ScaleLines is a vector of lines +// which corresponds the same line detected in different octave images. +typedef std::vector ScaleLines; + +/* compute Gaussian pyramids */ +void computeGaussianPyramid( const Mat& image, const int numOctaves ); + +/* compute Sobel's derivatives */ +void computeSobel( const Mat& image, const int numOctaves ); + +/* conversion of an LBD descriptor to its binary representation */ +unsigned char binaryConversion( float* f1, float* f2 ); + +/* compute LBD descriptors using EDLine extractor */ +int computeLBD( ScaleLines &keyLines, bool useDetectionData = false ); + +/* gathers lines in groups using EDLine extractor. + Each group contains the same line, detected in different octaves */ +int OctaveKeyLines( cv::Mat& image, ScaleLines &keyLines ); + +/* the local gaussian coefficient applied to the orthogonal line direction within each band */ +std::vector gaussCoefL_; + +/* the global gaussian coefficient applied to each row within line support region */ +std::vector gaussCoefG_; + +/* descriptor parameters */ +Params params; + +/* vector of sizes of downsampled and blurred images */ +std::vector images_sizes; + +/*For each octave of image, we define an EDLineDetector, because we can get gradient images (dxImg, dyImg, gImg) + *from the EDLineDetector class without extra computation cost. Another reason is that, if we use + *a single EDLineDetector to detect lines in different octave of images, then we need to allocate and release + *memory for gradient images (dxImg, dyImg, gImg) repeatedly for their varying size*/ +std::vector > edLineVec_; + +/* Sobel's derivatives */ +std::vector dxImg_vector, dyImg_vector; + +/* Gaussian pyramid */ +std::vector octaveImages; + +}; + +/** +Lines extraction methodology +---------------------------- + +The lines extraction methodology described in the following is mainly based on @cite EDL . The +extraction starts with a Gaussian pyramid generated from an original image, downsampled N-1 times, +blurred N times, to obtain N layers (one for each octave), with layer 0 corresponding to input +image. Then, from each layer (octave) in the pyramid, lines are extracted using LSD algorithm. + +Differently from EDLine lines extractor used in original article, LSD furnishes information only +about lines extremes; thus, additional information regarding slope and equation of line are computed +via analytic methods. The number of pixels is obtained using *LineIterator*. Extracted lines are +returned in the form of KeyLine objects, but since extraction is based on a method different from +the one used in *BinaryDescriptor* class, data associated to a line's extremes in original image and +in octave it was extracted from, coincide. KeyLine's field *class_id* is used as an index to +indicate the order of extraction of a line inside a single octave. +*/ +class CV_EXPORTS LSDDetector : public Algorithm +{ +public: + +/* constructor */ +/*CV_WRAP*/ +LSDDetector() +{ +} +; + +/** @brief Creates ad LSDDetector object, using smart pointers. + */ +static Ptr createLSDDetector(); + +/** @brief Detect lines inside an image. + +@param image input image +@param keypoints vector that will store extracted lines for one or more images +@param scale scale factor used in pyramids generation +@param numOctaves number of octaves inside pyramid +@param mask mask matrix to detect only KeyLines of interest + */ +void detect( const Mat& image, CV_OUT std::vector& keypoints, int scale, int numOctaves, const Mat& mask = Mat() ); + +/** @overload +@param images input images +@param keylines set of vectors that will store extracted lines for one or more images +@param scale scale factor used in pyramids generation +@param numOctaves number of octaves inside pyramid +@param masks vector of mask matrices to detect only KeyLines of interest from each input image +*/ +void detect( const std::vector& images, std::vector >& keylines, int scale, int numOctaves, +const std::vector& masks = std::vector() ) const; + +private: +/* compute Gaussian pyramid of input image */ +void computeGaussianPyramid( const Mat& image, int numOctaves, int scale ); + +/* implementation of line detection */ +void detectImpl( const Mat& imageSrc, std::vector& keylines, int numOctaves, int scale, const Mat& mask ) const; + +/* matrices for Gaussian pyramids */ +std::vector gaussianPyrs; +}; + +/** @brief furnishes all functionalities for querying a dataset provided by user or internal to +class (that user must, anyway, populate) on the model of @ref features2d_match + + +Once descriptors have been extracted from an image (both they represent lines and points), it +becomes interesting to be able to match a descriptor with another one extracted from a different +image and representing the same line or point, seen from a differente perspective or on a different +scale. In reaching such goal, the main headache is designing an efficient search algorithm to +associate a query descriptor to one extracted from a dataset. In the following, a matching modality +based on *Multi-Index Hashing (MiHashing)* will be described. + +Multi-Index Hashing +------------------- + +The theory described in this section is based on @cite MIH . Given a dataset populated with binary +codes, each code is indexed *m* times into *m* different hash tables, according to *m* substrings it +has been divided into. Thus, given a query code, all the entries close to it at least in one +substring are returned by search as *neighbor candidates*. Returned entries are then checked for +validity by verifying that their full codes are not distant (in Hamming space) more than *r* bits +from query code. In details, each binary code **h** composed of *b* bits is divided into *m* +disjoint substrings \f$\mathbf{h}^{(1)}, ..., \mathbf{h}^{(m)}\f$, each with length +\f$\lfloor b/m \rfloor\f$ or \f$\lceil b/m \rceil\f$ bits. Formally, when two codes **h** and **g** differ +by at the most *r* bits, in at the least one of their *m* substrings they differ by at the most +\f$\lfloor r/m \rfloor\f$ bits. In particular, when \f$||\mathbf{h}-\mathbf{g}||_H \le r\f$ (where \f$||.||_H\f$ +is the Hamming norm), there must exist a substring *k* (with \f$1 \le k \le m\f$) such that + +\f[||\mathbf{h}^{(k)} - \mathbf{g}^{(k)}||_H \le \left\lfloor \frac{r}{m} \right\rfloor .\f] + +That means that if Hamming distance between each of the *m* substring is strictly greater than +\f$\lfloor r/m \rfloor\f$, then \f$||\mathbf{h}-\mathbf{g}||_H\f$ must be larger that *r* and that is a +contradiction. If the codes in dataset are divided into *m* substrings, then *m* tables will be +built. Given a query **q** with substrings \f$\{\mathbf{q}^{(i)}\}^m_{i=1}\f$, *i*-th hash table is +searched for entries distant at the most \f$\lfloor r/m \rfloor\f$ from \f$\mathbf{q}^{(i)}\f$ and a set of +candidates \f$\mathcal{N}_i(\mathbf{q})\f$ is obtained. The union of sets +\f$\mathcal{N}(\mathbf{q}) = \bigcup_i \mathcal{N}_i(\mathbf{q})\f$ is a superset of the *r*-neighbors +of **q**. Then, last step of algorithm is computing the Hamming distance between **q** and each +element in \f$\mathcal{N}(\mathbf{q})\f$, deleting the codes that are distant more that *r* from **q**. +*/ +class CV_EXPORTS BinaryDescriptorMatcher : public Algorithm +{ + +public: +/** @brief For every input query descriptor, retrieve the best matching one from a dataset provided from user +or from the one internal to class + +@param queryDescriptors query descriptors +@param trainDescriptors dataset of descriptors furnished by user +@param matches vector to host retrieved matches +@param mask mask to select which input descriptors must be matched to one in dataset + */ +void match( const Mat& queryDescriptors, const Mat& trainDescriptors, std::vector& matches, const Mat& mask = Mat() ) const; + +/** @overload +@param queryDescriptors query descriptors +@param matches vector to host retrieved matches +@param masks vector of masks to select which input descriptors must be matched to one in dataset +(the *i*-th mask in vector indicates whether each input query can be matched with descriptors in +dataset relative to *i*-th image) +*/ +void match( const Mat& queryDescriptors, std::vector& matches, const std::vector& masks = std::vector() ); + +/** @brief For every input query descriptor, retrieve the best *k* matching ones from a dataset provided from +user or from the one internal to class + +@param queryDescriptors query descriptors +@param trainDescriptors dataset of descriptors furnished by user +@param matches vector to host retrieved matches +@param k number of the closest descriptors to be returned for every input query +@param mask mask to select which input descriptors must be matched to ones in dataset +@param compactResult flag to obtain a compact result (if true, a vector that doesn't contain any +matches for a given query is not inserted in final result) + */ +void knnMatch( const Mat& queryDescriptors, const Mat& trainDescriptors, std::vector >& matches, int k, const Mat& mask = Mat(), +bool compactResult = false ) const; + +/** @overload +@param queryDescriptors query descriptors +@param matches vector to host retrieved matches +@param k number of the closest descriptors to be returned for every input query +@param masks vector of masks to select which input descriptors must be matched to ones in dataset +(the *i*-th mask in vector indicates whether each input query can be matched with descriptors in +dataset relative to *i*-th image) +@param compactResult flag to obtain a compact result (if true, a vector that doesn't contain any +matches for a given query is not inserted in final result) +*/ +void knnMatch( const Mat& queryDescriptors, std::vector >& matches, int k, const std::vector& masks = std::vector(), +bool compactResult = false ); + +/** @brief For every input query descriptor, retrieve, from a dataset provided from user or from the one +internal to class, all the descriptors that are not further than *maxDist* from input query + +@param queryDescriptors query descriptors +@param trainDescriptors dataset of descriptors furnished by user +@param matches vector to host retrieved matches +@param maxDistance search radius +@param mask mask to select which input descriptors must be matched to ones in dataset +@param compactResult flag to obtain a compact result (if true, a vector that doesn't contain any +matches for a given query is not inserted in final result) + */ +void radiusMatch( const Mat& queryDescriptors, const Mat& trainDescriptors, std::vector >& matches, float maxDistance, +const Mat& mask = Mat(), bool compactResult = false ) const; + +/** @overload +@param queryDescriptors query descriptors +@param matches vector to host retrieved matches +@param maxDistance search radius +@param masks vector of masks to select which input descriptors must be matched to ones in dataset +(the *i*-th mask in vector indicates whether each input query can be matched with descriptors in +dataset relative to *i*-th image) +@param compactResult flag to obtain a compact result (if true, a vector that doesn't contain any +matches for a given query is not inserted in final result) +*/ +void radiusMatch( const Mat& queryDescriptors, std::vector >& matches, float maxDistance, const std::vector& masks = +std::vector(), +bool compactResult = false ); + +/** @brief Store locally new descriptors to be inserted in dataset, without updating dataset. + +@param descriptors matrices containing descriptors to be inserted into dataset + +@note Each matrix *i* in **descriptors** should contain descriptors relative to lines extracted from +*i*-th image. + */ +void add( const std::vector& descriptors ); + +/** @brief Update dataset by inserting into it all descriptors that were stored locally by *add* function. + +@note Every time this function is invoked, current dataset is deleted and locally stored descriptors +are inserted into dataset. The locally stored copy of just inserted descriptors is then removed. + */ +void train(); + +/** @brief Create a BinaryDescriptorMatcher object and return a smart pointer to it. + */ +static Ptr createBinaryDescriptorMatcher(); + +/** @brief Clear dataset and internal data + */ +void clear(); + +/** @brief Constructor. + +The BinaryDescriptorMatcher constructed is able to store and manage 256-bits long entries. + */ +BinaryDescriptorMatcher(); + +/** destructor */ +~BinaryDescriptorMatcher() +{ +} + +private: +class BucketGroup +{ + +public: +/** constructor */ +BucketGroup(bool needAllocateGroup = true); + +/** destructor */ +~BucketGroup(); + +/** insert data into the bucket */ +void insert( int subindex, UINT32 data ); + +/** perform a query to the bucket */ +UINT32* query( int subindex, int *size ); + +/** utility functions */ +void insert_value( std::vector& vec, int index, UINT32 data ); +void push_value( std::vector& vec, UINT32 Data ); + +/** data fields */ +UINT32 empty; +std::vector group; + + +}; + +class SparseHashtable +{ + +private: + +/** Maximum bits per key before folding the table */ +static const int MAX_B; + +/** Bins (each bin is an Array object for duplicates of the same key) */ +std::vector table; + +public: + +/** constructor */ +SparseHashtable(); + +/** destructor */ +~SparseHashtable(); + +/** initializer */ +int init( int _b ); + +/** insert data */ +void insert( UINT64 index, UINT32 data ); + +/** query data */ +UINT32* query( UINT64 index, int* size ); + +/** Bits per index */ +int b; + +/** Number of bins */ +UINT64 size; + +}; + +/** class defining a sequence of bits */ +class bitarray +{ + +public: +/** pointer to bits sequence and sequence's length */ +UINT32 *arr; +UINT32 length; + +/** constructor setting default values */ +bitarray() +{ +arr = NULL; +length = 0; +} + +/** constructor setting sequence's length */ +bitarray( UINT64 _bits ) +{ +arr = NULL; +init( _bits ); +} + +/** initializer of private fields */ +void init( UINT64 _bits ) +{ +if( arr ) +delete[] arr; +length = (UINT32) ceil( _bits / 32.00 ); +arr = new UINT32[length]; +erase(); +} + +/** destructor */ +~bitarray() +{ +if( arr ) +delete[] arr; +} + +inline void flip( UINT64 index ) +{ +arr[index >> 5] ^= ( (UINT32) 0x01 ) << ( index % 32 ); +} + +inline void set( UINT64 index ) +{ +arr[index >> 5] |= ( (UINT32) 0x01 ) << ( index % 32 ); +} + +inline UINT8 get( UINT64 index ) +{ +return ( arr[index >> 5] & ( ( (UINT32) 0x01 ) << ( index % 32 ) ) ) != 0; +} + +/** reserve menory for an UINT32 */ +inline void erase() +{ +memset( arr, 0, sizeof(UINT32) * length ); +} + +}; + +class Mihasher +{ + +public: +/** Bits per code */ +int B; + +/** B/8 */ +int B_over_8; + +/** Bits per chunk (must be less than 64) */ +int b; + +/** Number of chunks */ +int m; + +/** Number of chunks with b bits (have 1 bit more than others) */ +int mplus; + +/** Maximum hamming search radius (we use B/2 by default) */ +int D; + +/** Maximum hamming search radius per substring */ +int d; + +/** Maximum results to return */ +int K; + +/** Number of codes */ +UINT64 N; + +/** Table of original full-length codes */ +cv::Mat codes; + +/** Counter for eliminating duplicate results (it is not thread safe) */ +Ptr counter; + +/** Array of m hashtables */ +std::vector H; + +/** Volume of a b-bit Hamming ball with radius s (for s = 0 to d) */ +std::vector xornum; + +/** Used within generation of binary codes at a certain Hamming distance */ +int power[100]; + +/** constructor */ +Mihasher(); + +/** desctructor */ +~Mihasher(); + +/** constructor 2 */ +Mihasher( int B, int m ); + +/** K setter */ +void setK( int K ); + +/** populate tables */ +void populate( cv::Mat & codes, UINT32 N, int dim1codes ); + +/** execute a batch query */ +void batchquery( UINT32 * results, UINT32 *numres/*, qstat *stats*/, const cv::Mat & q, UINT32 numq, int dim1queries ); + +private: + +/** execute a single query */ +void query( UINT32 * results, UINT32* numres/*, qstat *stats*/, UINT8 *q, UINT64 * chunks, UINT32 * res ); +}; + +/** retrieve Hamming distances */ +void checkKDistances( UINT32 * numres, int k, std::vector& k_distances, int row, int string_length ) const; + +/** matrix to store new descriptors */ +Mat descriptorsMat; + +/** map storing where each bunch of descriptors benins in DS */ +std::map indexesMap; + +/** internal MiHaser representing dataset */ +Ptr dataset; + +/** index from which next added descriptors' bunch must begin */ +int nextAddedIndex; + +/** number of images whose descriptors are stored in DS */ +int numImages; + +/** number of descriptors in dataset */ +int descrInDS; + +}; + +/* -------------------------------------------------------------------------------------------- + UTILITY FUNCTIONS + -------------------------------------------------------------------------------------------- */ + +/** struct for drawing options */ +struct CV_EXPORTS DrawLinesMatchesFlags +{ +enum +{ +DEFAULT = 0, //!< Output image matrix will be created (Mat::create), + //!< i.e. existing memory of output image may be reused. + //!< Two source images, matches, and single keylines + //!< will be drawn. +DRAW_OVER_OUTIMG = 1,//!< Output image matrix will not be +//!< created (using Mat::create). Matches will be drawn +//!< on existing content of output image. +NOT_DRAW_SINGLE_LINES = 2//!< Single keylines will not be drawn. +}; +}; + +/** @brief Draws the found matches of keylines from two images. + +@param img1 first image +@param keylines1 keylines extracted from first image +@param img2 second image +@param keylines2 keylines extracted from second image +@param matches1to2 vector of matches +@param outImg output matrix to draw on +@param matchColor drawing color for matches (chosen randomly in case of default value) +@param singleLineColor drawing color for keylines (chosen randomly in case of default value) +@param matchesMask mask to indicate which matches must be drawn +@param flags drawing flags, see DrawLinesMatchesFlags + +@note If both *matchColor* and *singleLineColor* are set to their default values, function draws +matched lines and line connecting them with same color + */ +CV_EXPORTS void drawLineMatches( const Mat& img1, const std::vector& keylines1, const Mat& img2, const std::vector& keylines2, + const std::vector& matches1to2, Mat& outImg, const Scalar& matchColor = Scalar::all( -1 ), + const Scalar& singleLineColor = Scalar::all( -1 ), const std::vector& matchesMask = std::vector(), + int flags = DrawLinesMatchesFlags::DEFAULT ); + +/** @brief Draws keylines. + +@param image input image +@param keylines keylines to be drawn +@param outImage output image to draw on +@param color color of lines to be drawn (if set to defaul value, color is chosen randomly) +@param flags drawing flags + */ +CV_EXPORTS void drawKeylines( const Mat& image, const std::vector& keylines, Mat& outImage, const Scalar& color = Scalar::all( -1 ), + int flags = DrawLinesMatchesFlags::DEFAULT ); + +//! @} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/ml.hpp b/thirdparty1/linux/include/opencv2/ml.hpp new file mode 100644 index 0000000..99f5883 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/ml.hpp @@ -0,0 +1,1690 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000, Intel Corporation, all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2014, Itseez Inc, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_ML_HPP +#define OPENCV_ML_HPP + +#ifdef __cplusplus +# include "opencv2/core.hpp" +#endif + +#ifdef __cplusplus + +#include +#include +#include + +/** + @defgroup ml Machine Learning + + The Machine Learning Library (MLL) is a set of classes and functions for statistical + classification, regression, and clustering of data. + + Most of the classification and regression algorithms are implemented as C++ classes. As the + algorithms have different sets of features (like an ability to handle missing measurements or + categorical input variables), there is a little common ground between the classes. This common + ground is defined by the class cv::ml::StatModel that all the other ML classes are derived from. + + See detailed overview here: @ref ml_intro. + */ + +namespace cv +{ + +namespace ml +{ + +//! @addtogroup ml +//! @{ + +/** @brief Variable types */ +enum VariableTypes +{ + VAR_NUMERICAL =0, //!< same as VAR_ORDERED + VAR_ORDERED =0, //!< ordered variables + VAR_CATEGORICAL =1 //!< categorical variables +}; + +/** @brief %Error types */ +enum ErrorTypes +{ + TEST_ERROR = 0, + TRAIN_ERROR = 1 +}; + +/** @brief Sample types */ +enum SampleTypes +{ + ROW_SAMPLE = 0, //!< each training sample is a row of samples + COL_SAMPLE = 1 //!< each training sample occupies a column of samples +}; + +/** @brief The structure represents the logarithmic grid range of statmodel parameters. + +It is used for optimizing statmodel accuracy by varying model parameters, the accuracy estimate +being computed by cross-validation. + */ +class CV_EXPORTS ParamGrid +{ +public: + /** @brief Default constructor */ + ParamGrid(); + /** @brief Constructor with parameters */ + ParamGrid(double _minVal, double _maxVal, double _logStep); + + double minVal; //!< Minimum value of the statmodel parameter. Default value is 0. + double maxVal; //!< Maximum value of the statmodel parameter. Default value is 0. + /** @brief Logarithmic step for iterating the statmodel parameter. + + The grid determines the following iteration sequence of the statmodel parameter values: + \f[(minVal, minVal*step, minVal*{step}^2, \dots, minVal*{logStep}^n),\f] + where \f$n\f$ is the maximal index satisfying + \f[\texttt{minVal} * \texttt{logStep} ^n < \texttt{maxVal}\f] + The grid is logarithmic, so logStep must always be greater then 1. Default value is 1. + */ + double logStep; +}; + +/** @brief Class encapsulating training data. + +Please note that the class only specifies the interface of training data, but not implementation. +All the statistical model classes in _ml_ module accepts Ptr\ as parameter. In other +words, you can create your own class derived from TrainData and pass smart pointer to the instance +of this class into StatModel::train. + +@sa @ref ml_intro_data + */ +class CV_EXPORTS_W TrainData +{ +public: + static inline float missingValue() { return FLT_MAX; } + virtual ~TrainData(); + + CV_WRAP virtual int getLayout() const = 0; + CV_WRAP virtual int getNTrainSamples() const = 0; + CV_WRAP virtual int getNTestSamples() const = 0; + CV_WRAP virtual int getNSamples() const = 0; + CV_WRAP virtual int getNVars() const = 0; + CV_WRAP virtual int getNAllVars() const = 0; + + CV_WRAP virtual void getSample(InputArray varIdx, int sidx, float* buf) const = 0; + CV_WRAP virtual Mat getSamples() const = 0; + CV_WRAP virtual Mat getMissing() const = 0; + + /** @brief Returns matrix of train samples + + @param layout The requested layout. If it's different from the initial one, the matrix is + transposed. See ml::SampleTypes. + @param compressSamples if true, the function returns only the training samples (specified by + sampleIdx) + @param compressVars if true, the function returns the shorter training samples, containing only + the active variables. + + In current implementation the function tries to avoid physical data copying and returns the + matrix stored inside TrainData (unless the transposition or compression is needed). + */ + CV_WRAP virtual Mat getTrainSamples(int layout=ROW_SAMPLE, + bool compressSamples=true, + bool compressVars=true) const = 0; + + /** @brief Returns the vector of responses + + The function returns ordered or the original categorical responses. Usually it's used in + regression algorithms. + */ + CV_WRAP virtual Mat getTrainResponses() const = 0; + + /** @brief Returns the vector of normalized categorical responses + + The function returns vector of responses. Each response is integer from `0` to `-1`. The actual label value can be retrieved then from the class label vector, see + TrainData::getClassLabels. + */ + CV_WRAP virtual Mat getTrainNormCatResponses() const = 0; + CV_WRAP virtual Mat getTestResponses() const = 0; + CV_WRAP virtual Mat getTestNormCatResponses() const = 0; + CV_WRAP virtual Mat getResponses() const = 0; + CV_WRAP virtual Mat getNormCatResponses() const = 0; + CV_WRAP virtual Mat getSampleWeights() const = 0; + CV_WRAP virtual Mat getTrainSampleWeights() const = 0; + CV_WRAP virtual Mat getTestSampleWeights() const = 0; + CV_WRAP virtual Mat getVarIdx() const = 0; + CV_WRAP virtual Mat getVarType() const = 0; + CV_WRAP Mat getVarSymbolFlags() const; + CV_WRAP virtual int getResponseType() const = 0; + CV_WRAP virtual Mat getTrainSampleIdx() const = 0; + CV_WRAP virtual Mat getTestSampleIdx() const = 0; + CV_WRAP virtual void getValues(int vi, InputArray sidx, float* values) const = 0; + virtual void getNormCatValues(int vi, InputArray sidx, int* values) const = 0; + CV_WRAP virtual Mat getDefaultSubstValues() const = 0; + + CV_WRAP virtual int getCatCount(int vi) const = 0; + + /** @brief Returns the vector of class labels + + The function returns vector of unique labels occurred in the responses. + */ + CV_WRAP virtual Mat getClassLabels() const = 0; + + CV_WRAP virtual Mat getCatOfs() const = 0; + CV_WRAP virtual Mat getCatMap() const = 0; + + /** @brief Splits the training data into the training and test parts + @sa TrainData::setTrainTestSplitRatio + */ + CV_WRAP virtual void setTrainTestSplit(int count, bool shuffle=true) = 0; + + /** @brief Splits the training data into the training and test parts + + The function selects a subset of specified relative size and then returns it as the training + set. If the function is not called, all the data is used for training. Please, note that for + each of TrainData::getTrain\* there is corresponding TrainData::getTest\*, so that the test + subset can be retrieved and processed as well. + @sa TrainData::setTrainTestSplit + */ + CV_WRAP virtual void setTrainTestSplitRatio(double ratio, bool shuffle=true) = 0; + CV_WRAP virtual void shuffleTrainTest() = 0; + + /** @brief Returns matrix of test samples */ + CV_WRAP Mat getTestSamples() const; + + /** @brief Returns vector of symbolic names captured in loadFromCSV() */ + CV_WRAP void getNames(std::vector& names) const; + + CV_WRAP static Mat getSubVector(const Mat& vec, const Mat& idx); + + /** @brief Reads the dataset from a .csv file and returns the ready-to-use training data. + + @param filename The input file name + @param headerLineCount The number of lines in the beginning to skip; besides the header, the + function also skips empty lines and lines staring with `#` + @param responseStartIdx Index of the first output variable. If -1, the function considers the + last variable as the response + @param responseEndIdx Index of the last output variable + 1. If -1, then there is single + response variable at responseStartIdx. + @param varTypeSpec The optional text string that specifies the variables' types. It has the + format `ord[n1-n2,n3,n4-n5,...]cat[n6,n7-n8,...]`. That is, variables from `n1 to n2` + (inclusive range), `n3`, `n4 to n5` ... are considered ordered and `n6`, `n7 to n8` ... are + considered as categorical. The range `[n1..n2] + [n3] + [n4..n5] + ... + [n6] + [n7..n8]` + should cover all the variables. If varTypeSpec is not specified, then algorithm uses the + following rules: + - all input variables are considered ordered by default. If some column contains has non- + numerical values, e.g. 'apple', 'pear', 'apple', 'apple', 'mango', the corresponding + variable is considered categorical. + - if there are several output variables, they are all considered as ordered. Error is + reported when non-numerical values are used. + - if there is a single output variable, then if its values are non-numerical or are all + integers, then it's considered categorical. Otherwise, it's considered ordered. + @param delimiter The character used to separate values in each line. + @param missch The character used to specify missing measurements. It should not be a digit. + Although it's a non-numerical value, it surely does not affect the decision of whether the + variable ordered or categorical. + @note If the dataset only contains input variables and no responses, use responseStartIdx = -2 + and responseEndIdx = 0. The output variables vector will just contain zeros. + */ + static Ptr loadFromCSV(const String& filename, + int headerLineCount, + int responseStartIdx=-1, + int responseEndIdx=-1, + const String& varTypeSpec=String(), + char delimiter=',', + char missch='?'); + + /** @brief Creates training data from in-memory arrays. + + @param samples matrix of samples. It should have CV_32F type. + @param layout see ml::SampleTypes. + @param responses matrix of responses. If the responses are scalar, they should be stored as a + single row or as a single column. The matrix should have type CV_32F or CV_32S (in the + former case the responses are considered as ordered by default; in the latter case - as + categorical) + @param varIdx vector specifying which variables to use for training. It can be an integer vector + (CV_32S) containing 0-based variable indices or byte vector (CV_8U) containing a mask of + active variables. + @param sampleIdx vector specifying which samples to use for training. It can be an integer + vector (CV_32S) containing 0-based sample indices or byte vector (CV_8U) containing a mask + of training samples. + @param sampleWeights optional vector with weights for each sample. It should have CV_32F type. + @param varType optional vector of type CV_8U and size ` + + `, containing types of each input and output variable. See + ml::VariableTypes. + */ + CV_WRAP static Ptr create(InputArray samples, int layout, InputArray responses, + InputArray varIdx=noArray(), InputArray sampleIdx=noArray(), + InputArray sampleWeights=noArray(), InputArray varType=noArray()); +}; + +/** @brief Base class for statistical models in OpenCV ML. + */ +class CV_EXPORTS_W StatModel : public Algorithm +{ +public: + /** Predict options */ + enum Flags { + UPDATE_MODEL = 1, + RAW_OUTPUT=1, //!< makes the method return the raw results (the sum), not the class label + COMPRESSED_INPUT=2, + PREPROCESSED_INPUT=4 + }; + + /** @brief Returns the number of variables in training samples */ + CV_WRAP virtual int getVarCount() const = 0; + + CV_WRAP virtual bool empty() const; + + /** @brief Returns true if the model is trained */ + CV_WRAP virtual bool isTrained() const = 0; + /** @brief Returns true if the model is classifier */ + CV_WRAP virtual bool isClassifier() const = 0; + + /** @brief Trains the statistical model + + @param trainData training data that can be loaded from file using TrainData::loadFromCSV or + created with TrainData::create. + @param flags optional flags, depending on the model. Some of the models can be updated with the + new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP). + */ + CV_WRAP virtual bool train( const Ptr& trainData, int flags=0 ); + + /** @brief Trains the statistical model + + @param samples training samples + @param layout See ml::SampleTypes. + @param responses vector of responses associated with the training samples. + */ + CV_WRAP virtual bool train( InputArray samples, int layout, InputArray responses ); + + /** @brief Computes error on the training or test dataset + + @param data the training data + @param test if true, the error is computed over the test subset of the data, otherwise it's + computed over the training subset of the data. Please note that if you loaded a completely + different dataset to evaluate already trained classifier, you will probably want not to set + the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so + that the error is computed for the whole new set. Yes, this sounds a bit confusing. + @param resp the optional output responses. + + The method uses StatModel::predict to compute the error. For regression models the error is + computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%). + */ + CV_WRAP virtual float calcError( const Ptr& data, bool test, OutputArray resp ) const; + + /** @brief Predicts response(s) for the provided sample(s) + + @param samples The input samples, floating-point matrix + @param results The optional output matrix of results. + @param flags The optional flags, model-dependent. See cv::ml::StatModel::Flags. + */ + CV_WRAP virtual float predict( InputArray samples, OutputArray results=noArray(), int flags=0 ) const = 0; + + /** @brief Create and train model with default parameters + + The class must implement static `create()` method with no parameters or with all default parameter values + */ + template static Ptr<_Tp> train(const Ptr& data, int flags=0) + { + Ptr<_Tp> model = _Tp::create(); + return !model.empty() && model->train(data, flags) ? model : Ptr<_Tp>(); + } +}; + +/****************************************************************************************\ +* Normal Bayes Classifier * +\****************************************************************************************/ + +/** @brief Bayes classifier for normally distributed data. + +@sa @ref ml_intro_bayes + */ +class CV_EXPORTS_W NormalBayesClassifier : public StatModel +{ +public: + /** @brief Predicts the response for sample(s). + + The method estimates the most probable classes for input vectors. Input vectors (one or more) + are stored as rows of the matrix inputs. In case of multiple input vectors, there should be one + output vector outputs. The predicted class for a single input vector is returned by the method. + The vector outputProbs contains the output probabilities corresponding to each element of + result. + */ + CV_WRAP virtual float predictProb( InputArray inputs, OutputArray outputs, + OutputArray outputProbs, int flags=0 ) const = 0; + + /** Creates empty model + Use StatModel::train to train the model after creation. */ + CV_WRAP static Ptr create(); +}; + +/****************************************************************************************\ +* K-Nearest Neighbour Classifier * +\****************************************************************************************/ + +/** @brief The class implements K-Nearest Neighbors model + +@sa @ref ml_intro_knn + */ +class CV_EXPORTS_W KNearest : public StatModel +{ +public: + + /** Default number of neighbors to use in predict method. */ + /** @see setDefaultK */ + CV_WRAP virtual int getDefaultK() const = 0; + /** @copybrief getDefaultK @see getDefaultK */ + CV_WRAP virtual void setDefaultK(int val) = 0; + + /** Whether classification or regression model should be trained. */ + /** @see setIsClassifier */ + CV_WRAP virtual bool getIsClassifier() const = 0; + /** @copybrief getIsClassifier @see getIsClassifier */ + CV_WRAP virtual void setIsClassifier(bool val) = 0; + + /** Parameter for KDTree implementation. */ + /** @see setEmax */ + CV_WRAP virtual int getEmax() const = 0; + /** @copybrief getEmax @see getEmax */ + CV_WRAP virtual void setEmax(int val) = 0; + + /** %Algorithm type, one of KNearest::Types. */ + /** @see setAlgorithmType */ + CV_WRAP virtual int getAlgorithmType() const = 0; + /** @copybrief getAlgorithmType @see getAlgorithmType */ + CV_WRAP virtual void setAlgorithmType(int val) = 0; + + /** @brief Finds the neighbors and predicts responses for input vectors. + + @param samples Input samples stored by rows. It is a single-precision floating-point matrix of + ` * k` size. + @param k Number of used nearest neighbors. Should be greater than 1. + @param results Vector with results of prediction (regression or classification) for each input + sample. It is a single-precision floating-point vector with `` elements. + @param neighborResponses Optional output values for corresponding neighbors. It is a single- + precision floating-point matrix of ` * k` size. + @param dist Optional output distances from the input vectors to the corresponding neighbors. It + is a single-precision floating-point matrix of ` * k` size. + + For each input vector (a row of the matrix samples), the method finds the k nearest neighbors. + In case of regression, the predicted result is a mean value of the particular vector's neighbor + responses. In case of classification, the class is determined by voting. + + For each input vector, the neighbors are sorted by their distances to the vector. + + In case of C++ interface you can use output pointers to empty matrices and the function will + allocate memory itself. + + If only a single input vector is passed, all output matrices are optional and the predicted + value is returned by the method. + + The function is parallelized with the TBB library. + */ + CV_WRAP virtual float findNearest( InputArray samples, int k, + OutputArray results, + OutputArray neighborResponses=noArray(), + OutputArray dist=noArray() ) const = 0; + + /** @brief Implementations of KNearest algorithm + */ + enum Types + { + BRUTE_FORCE=1, + KDTREE=2 + }; + + /** @brief Creates the empty model + + The static method creates empty %KNearest classifier. It should be then trained using StatModel::train method. + */ + CV_WRAP static Ptr create(); +}; + +/****************************************************************************************\ +* Support Vector Machines * +\****************************************************************************************/ + +/** @brief Support Vector Machines. + +@sa @ref ml_intro_svm + */ +class CV_EXPORTS_W SVM : public StatModel +{ +public: + + class CV_EXPORTS Kernel : public Algorithm + { + public: + virtual int getType() const = 0; + virtual void calc( int vcount, int n, const float* vecs, const float* another, float* results ) = 0; + }; + + /** Type of a %SVM formulation. + See SVM::Types. Default value is SVM::C_SVC. */ + /** @see setType */ + CV_WRAP virtual int getType() const = 0; + /** @copybrief getType @see getType */ + CV_WRAP virtual void setType(int val) = 0; + + /** Parameter \f$\gamma\f$ of a kernel function. + For SVM::POLY, SVM::RBF, SVM::SIGMOID or SVM::CHI2. Default value is 1. */ + /** @see setGamma */ + CV_WRAP virtual double getGamma() const = 0; + /** @copybrief getGamma @see getGamma */ + CV_WRAP virtual void setGamma(double val) = 0; + + /** Parameter _coef0_ of a kernel function. + For SVM::POLY or SVM::SIGMOID. Default value is 0.*/ + /** @see setCoef0 */ + CV_WRAP virtual double getCoef0() const = 0; + /** @copybrief getCoef0 @see getCoef0 */ + CV_WRAP virtual void setCoef0(double val) = 0; + + /** Parameter _degree_ of a kernel function. + For SVM::POLY. Default value is 0. */ + /** @see setDegree */ + CV_WRAP virtual double getDegree() const = 0; + /** @copybrief getDegree @see getDegree */ + CV_WRAP virtual void setDegree(double val) = 0; + + /** Parameter _C_ of a %SVM optimization problem. + For SVM::C_SVC, SVM::EPS_SVR or SVM::NU_SVR. Default value is 0. */ + /** @see setC */ + CV_WRAP virtual double getC() const = 0; + /** @copybrief getC @see getC */ + CV_WRAP virtual void setC(double val) = 0; + + /** Parameter \f$\nu\f$ of a %SVM optimization problem. + For SVM::NU_SVC, SVM::ONE_CLASS or SVM::NU_SVR. Default value is 0. */ + /** @see setNu */ + CV_WRAP virtual double getNu() const = 0; + /** @copybrief getNu @see getNu */ + CV_WRAP virtual void setNu(double val) = 0; + + /** Parameter \f$\epsilon\f$ of a %SVM optimization problem. + For SVM::EPS_SVR. Default value is 0. */ + /** @see setP */ + CV_WRAP virtual double getP() const = 0; + /** @copybrief getP @see getP */ + CV_WRAP virtual void setP(double val) = 0; + + /** Optional weights in the SVM::C_SVC problem, assigned to particular classes. + They are multiplied by _C_ so the parameter _C_ of class _i_ becomes `classWeights(i) * C`. Thus + these weights affect the misclassification penalty for different classes. The larger weight, + the larger penalty on misclassification of data from the corresponding class. Default value is + empty Mat. */ + /** @see setClassWeights */ + CV_WRAP virtual cv::Mat getClassWeights() const = 0; + /** @copybrief getClassWeights @see getClassWeights */ + CV_WRAP virtual void setClassWeights(const cv::Mat &val) = 0; + + /** Termination criteria of the iterative %SVM training procedure which solves a partial + case of constrained quadratic optimization problem. + You can specify tolerance and/or the maximum number of iterations. Default value is + `TermCriteria( TermCriteria::MAX_ITER + TermCriteria::EPS, 1000, FLT_EPSILON )`; */ + /** @see setTermCriteria */ + CV_WRAP virtual cv::TermCriteria getTermCriteria() const = 0; + /** @copybrief getTermCriteria @see getTermCriteria */ + CV_WRAP virtual void setTermCriteria(const cv::TermCriteria &val) = 0; + + /** Type of a %SVM kernel. + See SVM::KernelTypes. Default value is SVM::RBF. */ + CV_WRAP virtual int getKernelType() const = 0; + + /** Initialize with one of predefined kernels. + See SVM::KernelTypes. */ + CV_WRAP virtual void setKernel(int kernelType) = 0; + + /** Initialize with custom kernel. + See SVM::Kernel class for implementation details */ + virtual void setCustomKernel(const Ptr &_kernel) = 0; + + //! %SVM type + enum Types { + /** C-Support Vector Classification. n-class classification (n \f$\geq\f$ 2), allows + imperfect separation of classes with penalty multiplier C for outliers. */ + C_SVC=100, + /** \f$\nu\f$-Support Vector Classification. n-class classification with possible + imperfect separation. Parameter \f$\nu\f$ (in the range 0..1, the larger the value, the smoother + the decision boundary) is used instead of C. */ + NU_SVC=101, + /** Distribution Estimation (One-class %SVM). All the training data are from + the same class, %SVM builds a boundary that separates the class from the rest of the feature + space. */ + ONE_CLASS=102, + /** \f$\epsilon\f$-Support Vector Regression. The distance between feature vectors + from the training set and the fitting hyper-plane must be less than p. For outliers the + penalty multiplier C is used. */ + EPS_SVR=103, + /** \f$\nu\f$-Support Vector Regression. \f$\nu\f$ is used instead of p. + See @cite LibSVM for details. */ + NU_SVR=104 + }; + + /** @brief %SVM kernel type + + A comparison of different kernels on the following 2D test case with four classes. Four + SVM::C_SVC SVMs have been trained (one against rest) with auto_train. Evaluation on three + different kernels (SVM::CHI2, SVM::INTER, SVM::RBF). The color depicts the class with max score. + Bright means max-score \> 0, dark means max-score \< 0. + ![image](pics/SVM_Comparison.png) + */ + enum KernelTypes { + /** Returned by SVM::getKernelType in case when custom kernel has been set */ + CUSTOM=-1, + /** Linear kernel. No mapping is done, linear discrimination (or regression) is + done in the original feature space. It is the fastest option. \f$K(x_i, x_j) = x_i^T x_j\f$. */ + LINEAR=0, + /** Polynomial kernel: + \f$K(x_i, x_j) = (\gamma x_i^T x_j + coef0)^{degree}, \gamma > 0\f$. */ + POLY=1, + /** Radial basis function (RBF), a good choice in most cases. + \f$K(x_i, x_j) = e^{-\gamma ||x_i - x_j||^2}, \gamma > 0\f$. */ + RBF=2, + /** Sigmoid kernel: \f$K(x_i, x_j) = \tanh(\gamma x_i^T x_j + coef0)\f$. */ + SIGMOID=3, + /** Exponential Chi2 kernel, similar to the RBF kernel: + \f$K(x_i, x_j) = e^{-\gamma \chi^2(x_i,x_j)}, \chi^2(x_i,x_j) = (x_i-x_j)^2/(x_i+x_j), \gamma > 0\f$. */ + CHI2=4, + /** Histogram intersection kernel. A fast kernel. \f$K(x_i, x_j) = min(x_i,x_j)\f$. */ + INTER=5 + }; + + //! %SVM params type + enum ParamTypes { + C=0, + GAMMA=1, + P=2, + NU=3, + COEF=4, + DEGREE=5 + }; + + /** @brief Trains an %SVM with optimal parameters. + + @param data the training data that can be constructed using TrainData::create or + TrainData::loadFromCSV. + @param kFold Cross-validation parameter. The training set is divided into kFold subsets. One + subset is used to test the model, the others form the train set. So, the %SVM algorithm is + executed kFold times. + @param Cgrid grid for C + @param gammaGrid grid for gamma + @param pGrid grid for p + @param nuGrid grid for nu + @param coeffGrid grid for coeff + @param degreeGrid grid for degree + @param balanced If true and the problem is 2-class classification then the method creates more + balanced cross-validation subsets that is proportions between classes in subsets are close + to such proportion in the whole train dataset. + + The method trains the %SVM model automatically by choosing the optimal parameters C, gamma, p, + nu, coef0, degree. Parameters are considered optimal when the cross-validation + estimate of the test set error is minimal. + + If there is no need to optimize a parameter, the corresponding grid step should be set to any + value less than or equal to 1. For example, to avoid optimization in gamma, set `gammaGrid.step + = 0`, `gammaGrid.minVal`, `gamma_grid.maxVal` as arbitrary numbers. In this case, the value + `Gamma` is taken for gamma. + + And, finally, if the optimization in a parameter is required but the corresponding grid is + unknown, you may call the function SVM::getDefaultGrid. To generate a grid, for example, for + gamma, call `SVM::getDefaultGrid(SVM::GAMMA)`. + + This function works for the classification (SVM::C_SVC or SVM::NU_SVC) as well as for the + regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and + the usual %SVM with parameters specified in params is executed. + */ + virtual bool trainAuto( const Ptr& data, int kFold = 10, + ParamGrid Cgrid = SVM::getDefaultGrid(SVM::C), + ParamGrid gammaGrid = SVM::getDefaultGrid(SVM::GAMMA), + ParamGrid pGrid = SVM::getDefaultGrid(SVM::P), + ParamGrid nuGrid = SVM::getDefaultGrid(SVM::NU), + ParamGrid coeffGrid = SVM::getDefaultGrid(SVM::COEF), + ParamGrid degreeGrid = SVM::getDefaultGrid(SVM::DEGREE), + bool balanced=false) = 0; + + /** @brief Retrieves all the support vectors + + The method returns all the support vectors as a floating-point matrix, where support vectors are + stored as matrix rows. + */ + CV_WRAP virtual Mat getSupportVectors() const = 0; + + /** @brief Retrieves all the uncompressed support vectors of a linear %SVM + + The method returns all the uncompressed support vectors of a linear %SVM that the compressed + support vector, used for prediction, was derived from. They are returned in a floating-point + matrix, where the support vectors are stored as matrix rows. + */ + CV_WRAP Mat getUncompressedSupportVectors() const; + + /** @brief Retrieves the decision function + + @param i the index of the decision function. If the problem solved is regression, 1-class or + 2-class classification, then there will be just one decision function and the index should + always be 0. Otherwise, in the case of N-class classification, there will be \f$N(N-1)/2\f$ + decision functions. + @param alpha the optional output vector for weights, corresponding to different support vectors. + In the case of linear %SVM all the alpha's will be 1's. + @param svidx the optional output vector of indices of support vectors within the matrix of + support vectors (which can be retrieved by SVM::getSupportVectors). In the case of linear + %SVM each decision function consists of a single "compressed" support vector. + + The method returns rho parameter of the decision function, a scalar subtracted from the weighted + sum of kernel responses. + */ + CV_WRAP virtual double getDecisionFunction(int i, OutputArray alpha, OutputArray svidx) const = 0; + + /** @brief Generates a grid for %SVM parameters. + + @param param_id %SVM parameters IDs that must be one of the SVM::ParamTypes. The grid is + generated for the parameter with this ID. + + The function generates a grid for the specified parameter of the %SVM algorithm. The grid may be + passed to the function SVM::trainAuto. + */ + static ParamGrid getDefaultGrid( int param_id ); + + /** Creates empty model. + Use StatModel::train to train the model. Since %SVM has several parameters, you may want to + find the best parameters for your problem, it can be done with SVM::trainAuto. */ + CV_WRAP static Ptr create(); + + /** @brief Loads and creates a serialized svm from a file + * + * Use SVM::save to serialize and store an SVM to disk. + * Load the SVM from this file again, by calling this function with the path to the file. + * + * @param filepath path to serialized svm + */ + CV_WRAP static Ptr load(const String& filepath); +}; + +/****************************************************************************************\ +* Expectation - Maximization * +\****************************************************************************************/ + +/** @brief The class implements the Expectation Maximization algorithm. + +@sa @ref ml_intro_em + */ +class CV_EXPORTS_W EM : public StatModel +{ +public: + //! Type of covariation matrices + enum Types { + /** A scaled identity matrix \f$\mu_k * I\f$. There is the only + parameter \f$\mu_k\f$ to be estimated for each matrix. The option may be used in special cases, + when the constraint is relevant, or as a first step in the optimization (for example in case + when the data is preprocessed with PCA). The results of such preliminary estimation may be + passed again to the optimization procedure, this time with + covMatType=EM::COV_MAT_DIAGONAL. */ + COV_MAT_SPHERICAL=0, + /** A diagonal matrix with positive diagonal elements. The number of + free parameters is d for each matrix. This is most commonly used option yielding good + estimation results. */ + COV_MAT_DIAGONAL=1, + /** A symmetric positively defined matrix. The number of free + parameters in each matrix is about \f$d^2/2\f$. It is not recommended to use this option, unless + there is pretty accurate initial estimation of the parameters and/or a huge number of + training samples. */ + COV_MAT_GENERIC=2, + COV_MAT_DEFAULT=COV_MAT_DIAGONAL + }; + + //! Default parameters + enum {DEFAULT_NCLUSTERS=5, DEFAULT_MAX_ITERS=100}; + + //! The initial step + enum {START_E_STEP=1, START_M_STEP=2, START_AUTO_STEP=0}; + + /** The number of mixture components in the Gaussian mixture model. + Default value of the parameter is EM::DEFAULT_NCLUSTERS=5. Some of %EM implementation could + determine the optimal number of mixtures within a specified value range, but that is not the + case in ML yet. */ + /** @see setClustersNumber */ + CV_WRAP virtual int getClustersNumber() const = 0; + /** @copybrief getClustersNumber @see getClustersNumber */ + CV_WRAP virtual void setClustersNumber(int val) = 0; + + /** Constraint on covariance matrices which defines type of matrices. + See EM::Types. */ + /** @see setCovarianceMatrixType */ + CV_WRAP virtual int getCovarianceMatrixType() const = 0; + /** @copybrief getCovarianceMatrixType @see getCovarianceMatrixType */ + CV_WRAP virtual void setCovarianceMatrixType(int val) = 0; + + /** The termination criteria of the %EM algorithm. + The %EM algorithm can be terminated by the number of iterations termCrit.maxCount (number of + M-steps) or when relative change of likelihood logarithm is less than termCrit.epsilon. Default + maximum number of iterations is EM::DEFAULT_MAX_ITERS=100. */ + /** @see setTermCriteria */ + CV_WRAP virtual TermCriteria getTermCriteria() const = 0; + /** @copybrief getTermCriteria @see getTermCriteria */ + CV_WRAP virtual void setTermCriteria(const TermCriteria &val) = 0; + + /** @brief Returns weights of the mixtures + + Returns vector with the number of elements equal to the number of mixtures. + */ + CV_WRAP virtual Mat getWeights() const = 0; + /** @brief Returns the cluster centers (means of the Gaussian mixture) + + Returns matrix with the number of rows equal to the number of mixtures and number of columns + equal to the space dimensionality. + */ + CV_WRAP virtual Mat getMeans() const = 0; + /** @brief Returns covariation matrices + + Returns vector of covariation matrices. Number of matrices is the number of gaussian mixtures, + each matrix is a square floating-point matrix NxN, where N is the space dimensionality. + */ + CV_WRAP virtual void getCovs(CV_OUT std::vector& covs) const = 0; + + /** @brief Returns a likelihood logarithm value and an index of the most probable mixture component + for the given sample. + + @param sample A sample for classification. It should be a one-channel matrix of + \f$1 \times dims\f$ or \f$dims \times 1\f$ size. + @param probs Optional output matrix that contains posterior probabilities of each component + given the sample. It has \f$1 \times nclusters\f$ size and CV_64FC1 type. + + The method returns a two-element double vector. Zero element is a likelihood logarithm value for + the sample. First element is an index of the most probable mixture component for the given + sample. + */ + CV_WRAP virtual Vec2d predict2(InputArray sample, OutputArray probs) const = 0; + + /** @brief Estimate the Gaussian mixture parameters from a samples set. + + This variation starts with Expectation step. Initial values of the model parameters will be + estimated by the k-means algorithm. + + Unlike many of the ML models, %EM is an unsupervised learning algorithm and it does not take + responses (class labels or function values) as input. Instead, it computes the *Maximum + Likelihood Estimate* of the Gaussian mixture parameters from an input sample set, stores all the + parameters inside the structure: \f$p_{i,k}\f$ in probs, \f$a_k\f$ in means , \f$S_k\f$ in + covs[k], \f$\pi_k\f$ in weights , and optionally computes the output "class label" for each + sample: \f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most + probable mixture component for each sample). + + The trained model can be used further for prediction, just like any other classifier. The + trained model is similar to the NormalBayesClassifier. + + @param samples Samples from which the Gaussian mixture model will be estimated. It should be a + one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type + it will be converted to the inner matrix of such type for the further computing. + @param logLikelihoods The optional output matrix that contains a likelihood logarithm value for + each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type. + @param labels The optional output "class label" for each sample: + \f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most probable + mixture component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type. + @param probs The optional output matrix that contains posterior probabilities of each Gaussian + mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and + CV_64FC1 type. + */ + CV_WRAP virtual bool trainEM(InputArray samples, + OutputArray logLikelihoods=noArray(), + OutputArray labels=noArray(), + OutputArray probs=noArray()) = 0; + + /** @brief Estimate the Gaussian mixture parameters from a samples set. + + This variation starts with Expectation step. You need to provide initial means \f$a_k\f$ of + mixture components. Optionally you can pass initial weights \f$\pi_k\f$ and covariance matrices + \f$S_k\f$ of mixture components. + + @param samples Samples from which the Gaussian mixture model will be estimated. It should be a + one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type + it will be converted to the inner matrix of such type for the further computing. + @param means0 Initial means \f$a_k\f$ of mixture components. It is a one-channel matrix of + \f$nclusters \times dims\f$ size. If the matrix does not have CV_64F type it will be + converted to the inner matrix of such type for the further computing. + @param covs0 The vector of initial covariance matrices \f$S_k\f$ of mixture components. Each of + covariance matrices is a one-channel matrix of \f$dims \times dims\f$ size. If the matrices + do not have CV_64F type they will be converted to the inner matrices of such type for the + further computing. + @param weights0 Initial weights \f$\pi_k\f$ of mixture components. It should be a one-channel + floating-point matrix with \f$1 \times nclusters\f$ or \f$nclusters \times 1\f$ size. + @param logLikelihoods The optional output matrix that contains a likelihood logarithm value for + each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type. + @param labels The optional output "class label" for each sample: + \f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most probable + mixture component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type. + @param probs The optional output matrix that contains posterior probabilities of each Gaussian + mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and + CV_64FC1 type. + */ + CV_WRAP virtual bool trainE(InputArray samples, InputArray means0, + InputArray covs0=noArray(), + InputArray weights0=noArray(), + OutputArray logLikelihoods=noArray(), + OutputArray labels=noArray(), + OutputArray probs=noArray()) = 0; + + /** @brief Estimate the Gaussian mixture parameters from a samples set. + + This variation starts with Maximization step. You need to provide initial probabilities + \f$p_{i,k}\f$ to use this option. + + @param samples Samples from which the Gaussian mixture model will be estimated. It should be a + one-channel matrix, each row of which is a sample. If the matrix does not have CV_64F type + it will be converted to the inner matrix of such type for the further computing. + @param probs0 + @param logLikelihoods The optional output matrix that contains a likelihood logarithm value for + each sample. It has \f$nsamples \times 1\f$ size and CV_64FC1 type. + @param labels The optional output "class label" for each sample: + \f$\texttt{labels}_i=\texttt{arg max}_k(p_{i,k}), i=1..N\f$ (indices of the most probable + mixture component for each sample). It has \f$nsamples \times 1\f$ size and CV_32SC1 type. + @param probs The optional output matrix that contains posterior probabilities of each Gaussian + mixture component given the each sample. It has \f$nsamples \times nclusters\f$ size and + CV_64FC1 type. + */ + CV_WRAP virtual bool trainM(InputArray samples, InputArray probs0, + OutputArray logLikelihoods=noArray(), + OutputArray labels=noArray(), + OutputArray probs=noArray()) = 0; + + /** Creates empty %EM model. + The model should be trained then using StatModel::train(traindata, flags) method. Alternatively, you + can use one of the EM::train\* methods or load it from file using Algorithm::load\(filename). + */ + CV_WRAP static Ptr create(); +}; + +/****************************************************************************************\ +* Decision Tree * +\****************************************************************************************/ + +/** @brief The class represents a single decision tree or a collection of decision trees. + +The current public interface of the class allows user to train only a single decision tree, however +the class is capable of storing multiple decision trees and using them for prediction (by summing +responses or using a voting schemes), and the derived from DTrees classes (such as RTrees and Boost) +use this capability to implement decision tree ensembles. + +@sa @ref ml_intro_trees +*/ +class CV_EXPORTS_W DTrees : public StatModel +{ +public: + /** Predict options */ + enum Flags { PREDICT_AUTO=0, PREDICT_SUM=(1<<8), PREDICT_MAX_VOTE=(2<<8), PREDICT_MASK=(3<<8) }; + + /** Cluster possible values of a categorical variable into K\<=maxCategories clusters to + find a suboptimal split. + If a discrete variable, on which the training procedure tries to make a split, takes more than + maxCategories values, the precise best subset estimation may take a very long time because the + algorithm is exponential. Instead, many decision trees engines (including our implementation) + try to find sub-optimal split in this case by clustering all the samples into maxCategories + clusters that is some categories are merged together. The clustering is applied only in n \> + 2-class classification problems for categorical variables with N \> max_categories possible + values. In case of regression and 2-class classification the optimal split can be found + efficiently without employing clustering, thus the parameter is not used in these cases. + Default value is 10.*/ + /** @see setMaxCategories */ + CV_WRAP virtual int getMaxCategories() const = 0; + /** @copybrief getMaxCategories @see getMaxCategories */ + CV_WRAP virtual void setMaxCategories(int val) = 0; + + /** The maximum possible depth of the tree. + That is the training algorithms attempts to split a node while its depth is less than maxDepth. + The root node has zero depth. The actual depth may be smaller if the other termination criteria + are met (see the outline of the training procedure @ref ml_intro_trees "here"), and/or if the + tree is pruned. Default value is INT_MAX.*/ + /** @see setMaxDepth */ + CV_WRAP virtual int getMaxDepth() const = 0; + /** @copybrief getMaxDepth @see getMaxDepth */ + CV_WRAP virtual void setMaxDepth(int val) = 0; + + /** If the number of samples in a node is less than this parameter then the node will not be split. + + Default value is 10.*/ + /** @see setMinSampleCount */ + CV_WRAP virtual int getMinSampleCount() const = 0; + /** @copybrief getMinSampleCount @see getMinSampleCount */ + CV_WRAP virtual void setMinSampleCount(int val) = 0; + + /** If CVFolds \> 1 then algorithms prunes the built decision tree using K-fold + cross-validation procedure where K is equal to CVFolds. + Default value is 10.*/ + /** @see setCVFolds */ + CV_WRAP virtual int getCVFolds() const = 0; + /** @copybrief getCVFolds @see getCVFolds */ + CV_WRAP virtual void setCVFolds(int val) = 0; + + /** If true then surrogate splits will be built. + These splits allow to work with missing data and compute variable importance correctly. + Default value is false. + @note currently it's not implemented.*/ + /** @see setUseSurrogates */ + CV_WRAP virtual bool getUseSurrogates() const = 0; + /** @copybrief getUseSurrogates @see getUseSurrogates */ + CV_WRAP virtual void setUseSurrogates(bool val) = 0; + + /** If true then a pruning will be harsher. + This will make a tree more compact and more resistant to the training data noise but a bit less + accurate. Default value is true.*/ + /** @see setUse1SERule */ + CV_WRAP virtual bool getUse1SERule() const = 0; + /** @copybrief getUse1SERule @see getUse1SERule */ + CV_WRAP virtual void setUse1SERule(bool val) = 0; + + /** If true then pruned branches are physically removed from the tree. + Otherwise they are retained and it is possible to get results from the original unpruned (or + pruned less aggressively) tree. Default value is true.*/ + /** @see setTruncatePrunedTree */ + CV_WRAP virtual bool getTruncatePrunedTree() const = 0; + /** @copybrief getTruncatePrunedTree @see getTruncatePrunedTree */ + CV_WRAP virtual void setTruncatePrunedTree(bool val) = 0; + + /** Termination criteria for regression trees. + If all absolute differences between an estimated value in a node and values of train samples + in this node are less than this parameter then the node will not be split further. Default + value is 0.01f*/ + /** @see setRegressionAccuracy */ + CV_WRAP virtual float getRegressionAccuracy() const = 0; + /** @copybrief getRegressionAccuracy @see getRegressionAccuracy */ + CV_WRAP virtual void setRegressionAccuracy(float val) = 0; + + /** @brief The array of a priori class probabilities, sorted by the class label value. + + The parameter can be used to tune the decision tree preferences toward a certain class. For + example, if you want to detect some rare anomaly occurrence, the training base will likely + contain much more normal cases than anomalies, so a very good classification performance + will be achieved just by considering every case as normal. To avoid this, the priors can be + specified, where the anomaly probability is artificially increased (up to 0.5 or even + greater), so the weight of the misclassified anomalies becomes much bigger, and the tree is + adjusted properly. + + You can also think about this parameter as weights of prediction categories which determine + relative weights that you give to misclassification. That is, if the weight of the first + category is 1 and the weight of the second category is 10, then each mistake in predicting + the second category is equivalent to making 10 mistakes in predicting the first category. + Default value is empty Mat.*/ + /** @see setPriors */ + CV_WRAP virtual cv::Mat getPriors() const = 0; + /** @copybrief getPriors @see getPriors */ + CV_WRAP virtual void setPriors(const cv::Mat &val) = 0; + + /** @brief The class represents a decision tree node. + */ + class CV_EXPORTS Node + { + public: + Node(); + double value; //!< Value at the node: a class label in case of classification or estimated + //!< function value in case of regression. + int classIdx; //!< Class index normalized to 0..class_count-1 range and assigned to the + //!< node. It is used internally in classification trees and tree ensembles. + int parent; //!< Index of the parent node + int left; //!< Index of the left child node + int right; //!< Index of right child node + int defaultDir; //!< Default direction where to go (-1: left or +1: right). It helps in the + //!< case of missing values. + int split; //!< Index of the first split + }; + + /** @brief The class represents split in a decision tree. + */ + class CV_EXPORTS Split + { + public: + Split(); + int varIdx; //!< Index of variable on which the split is created. + bool inversed; //!< If true, then the inverse split rule is used (i.e. left and right + //!< branches are exchanged in the rule expressions below). + float quality; //!< The split quality, a positive number. It is used to choose the best split. + int next; //!< Index of the next split in the list of splits for the node + float c; /**< The threshold value in case of split on an ordered variable. + The rule is: + @code{.none} + if var_value < c + then next_node <- left + else next_node <- right + @endcode */ + int subsetOfs; /**< Offset of the bitset used by the split on a categorical variable. + The rule is: + @code{.none} + if bitset[var_value] == 1 + then next_node <- left + else next_node <- right + @endcode */ + }; + + /** @brief Returns indices of root nodes + */ + virtual const std::vector& getRoots() const = 0; + /** @brief Returns all the nodes + + all the node indices are indices in the returned vector + */ + virtual const std::vector& getNodes() const = 0; + /** @brief Returns all the splits + + all the split indices are indices in the returned vector + */ + virtual const std::vector& getSplits() const = 0; + /** @brief Returns all the bitsets for categorical splits + + Split::subsetOfs is an offset in the returned vector + */ + virtual const std::vector& getSubsets() const = 0; + + /** @brief Creates the empty model + + The static method creates empty decision tree with the specified parameters. It should be then + trained using train method (see StatModel::train). Alternatively, you can load the model from + file using Algorithm::load\(filename). + */ + CV_WRAP static Ptr create(); +}; + +/****************************************************************************************\ +* Random Trees Classifier * +\****************************************************************************************/ + +/** @brief The class implements the random forest predictor. + +@sa @ref ml_intro_rtrees + */ +class CV_EXPORTS_W RTrees : public DTrees +{ +public: + + /** If true then variable importance will be calculated and then it can be retrieved by RTrees::getVarImportance. + Default value is false.*/ + /** @see setCalculateVarImportance */ + CV_WRAP virtual bool getCalculateVarImportance() const = 0; + /** @copybrief getCalculateVarImportance @see getCalculateVarImportance */ + CV_WRAP virtual void setCalculateVarImportance(bool val) = 0; + + /** The size of the randomly selected subset of features at each tree node and that are used + to find the best split(s). + If you set it to 0 then the size will be set to the square root of the total number of + features. Default value is 0.*/ + /** @see setActiveVarCount */ + CV_WRAP virtual int getActiveVarCount() const = 0; + /** @copybrief getActiveVarCount @see getActiveVarCount */ + CV_WRAP virtual void setActiveVarCount(int val) = 0; + + /** The termination criteria that specifies when the training algorithm stops. + Either when the specified number of trees is trained and added to the ensemble or when + sufficient accuracy (measured as OOB error) is achieved. Typically the more trees you have the + better the accuracy. However, the improvement in accuracy generally diminishes and asymptotes + pass a certain number of trees. Also to keep in mind, the number of tree increases the + prediction time linearly. Default value is TermCriteria(TermCriteria::MAX_ITERS + + TermCriteria::EPS, 50, 0.1)*/ + /** @see setTermCriteria */ + CV_WRAP virtual TermCriteria getTermCriteria() const = 0; + /** @copybrief getTermCriteria @see getTermCriteria */ + CV_WRAP virtual void setTermCriteria(const TermCriteria &val) = 0; + + /** Returns the variable importance array. + The method returns the variable importance vector, computed at the training stage when + CalculateVarImportance is set to true. If this flag was set to false, the empty matrix is + returned. + */ + CV_WRAP virtual Mat getVarImportance() const = 0; + + /** Creates the empty model. + Use StatModel::train to train the model, StatModel::train to create and train the model, + Algorithm::load to load the pre-trained model. + */ + CV_WRAP static Ptr create(); +}; + +/****************************************************************************************\ +* Boosted tree classifier * +\****************************************************************************************/ + +/** @brief Boosted tree classifier derived from DTrees + +@sa @ref ml_intro_boost + */ +class CV_EXPORTS_W Boost : public DTrees +{ +public: + /** Type of the boosting algorithm. + See Boost::Types. Default value is Boost::REAL. */ + /** @see setBoostType */ + CV_WRAP virtual int getBoostType() const = 0; + /** @copybrief getBoostType @see getBoostType */ + CV_WRAP virtual void setBoostType(int val) = 0; + + /** The number of weak classifiers. + Default value is 100. */ + /** @see setWeakCount */ + CV_WRAP virtual int getWeakCount() const = 0; + /** @copybrief getWeakCount @see getWeakCount */ + CV_WRAP virtual void setWeakCount(int val) = 0; + + /** A threshold between 0 and 1 used to save computational time. + Samples with summary weight \f$\leq 1 - weight_trim_rate\f$ do not participate in the *next* + iteration of training. Set this parameter to 0 to turn off this functionality. Default value is 0.95.*/ + /** @see setWeightTrimRate */ + CV_WRAP virtual double getWeightTrimRate() const = 0; + /** @copybrief getWeightTrimRate @see getWeightTrimRate */ + CV_WRAP virtual void setWeightTrimRate(double val) = 0; + + /** Boosting type. + Gentle AdaBoost and Real AdaBoost are often the preferable choices. */ + enum Types { + DISCRETE=0, //!< Discrete AdaBoost. + REAL=1, //!< Real AdaBoost. It is a technique that utilizes confidence-rated predictions + //!< and works well with categorical data. + LOGIT=2, //!< LogitBoost. It can produce good regression fits. + GENTLE=3 //!< Gentle AdaBoost. It puts less weight on outlier data points and for that + //!(filename) to load the pre-trained model. */ + CV_WRAP static Ptr create(); +}; + +/****************************************************************************************\ +* Gradient Boosted Trees * +\****************************************************************************************/ + +/*class CV_EXPORTS_W GBTrees : public DTrees +{ +public: + struct CV_EXPORTS_W_MAP Params : public DTrees::Params + { + CV_PROP_RW int weakCount; + CV_PROP_RW int lossFunctionType; + CV_PROP_RW float subsamplePortion; + CV_PROP_RW float shrinkage; + + Params(); + Params( int lossFunctionType, int weakCount, float shrinkage, + float subsamplePortion, int maxDepth, bool useSurrogates ); + }; + + enum {SQUARED_LOSS=0, ABSOLUTE_LOSS, HUBER_LOSS=3, DEVIANCE_LOSS}; + + virtual void setK(int k) = 0; + + virtual float predictSerial( InputArray samples, + OutputArray weakResponses, int flags) const = 0; + + static Ptr create(const Params& p); +};*/ + +/****************************************************************************************\ +* Artificial Neural Networks (ANN) * +\****************************************************************************************/ + +/////////////////////////////////// Multi-Layer Perceptrons ////////////////////////////// + +/** @brief Artificial Neural Networks - Multi-Layer Perceptrons. + +Unlike many other models in ML that are constructed and trained at once, in the MLP model these +steps are separated. First, a network with the specified topology is created using the non-default +constructor or the method ANN_MLP::create. All the weights are set to zeros. Then, the network is +trained using a set of input and output vectors. The training procedure can be repeated more than +once, that is, the weights can be adjusted based on the new training data. + +Additional flags for StatModel::train are available: ANN_MLP::TrainFlags. + +@sa @ref ml_intro_ann + */ +class CV_EXPORTS_W ANN_MLP : public StatModel +{ +public: + /** Available training methods */ + enum TrainingMethods { + BACKPROP=0, //!< The back-propagation algorithm. + RPROP=1 //!< The RPROP algorithm. See @cite RPROP93 for details. + }; + + /** Sets training method and common parameters. + @param method Default value is ANN_MLP::RPROP. See ANN_MLP::TrainingMethods. + @param param1 passed to setRpropDW0 for ANN_MLP::RPROP and to setBackpropWeightScale for ANN_MLP::BACKPROP + @param param2 passed to setRpropDWMin for ANN_MLP::RPROP and to setBackpropMomentumScale for ANN_MLP::BACKPROP. + */ + CV_WRAP virtual void setTrainMethod(int method, double param1 = 0, double param2 = 0) = 0; + + /** Returns current training method */ + CV_WRAP virtual int getTrainMethod() const = 0; + + /** Initialize the activation function for each neuron. + Currently the default and the only fully supported activation function is ANN_MLP::SIGMOID_SYM. + @param type The type of activation function. See ANN_MLP::ActivationFunctions. + @param param1 The first parameter of the activation function, \f$\alpha\f$. Default value is 0. + @param param2 The second parameter of the activation function, \f$\beta\f$. Default value is 0. + */ + CV_WRAP virtual void setActivationFunction(int type, double param1 = 0, double param2 = 0) = 0; + + /** Integer vector specifying the number of neurons in each layer including the input and output layers. + The very first element specifies the number of elements in the input layer. + The last element - number of elements in the output layer. Default value is empty Mat. + @sa getLayerSizes */ + CV_WRAP virtual void setLayerSizes(InputArray _layer_sizes) = 0; + + /** Integer vector specifying the number of neurons in each layer including the input and output layers. + The very first element specifies the number of elements in the input layer. + The last element - number of elements in the output layer. + @sa setLayerSizes */ + CV_WRAP virtual cv::Mat getLayerSizes() const = 0; + + /** Termination criteria of the training algorithm. + You can specify the maximum number of iterations (maxCount) and/or how much the error could + change between the iterations to make the algorithm continue (epsilon). Default value is + TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 1000, 0.01).*/ + /** @see setTermCriteria */ + CV_WRAP virtual TermCriteria getTermCriteria() const = 0; + /** @copybrief getTermCriteria @see getTermCriteria */ + CV_WRAP virtual void setTermCriteria(TermCriteria val) = 0; + + /** BPROP: Strength of the weight gradient term. + The recommended value is about 0.1. Default value is 0.1.*/ + /** @see setBackpropWeightScale */ + CV_WRAP virtual double getBackpropWeightScale() const = 0; + /** @copybrief getBackpropWeightScale @see getBackpropWeightScale */ + CV_WRAP virtual void setBackpropWeightScale(double val) = 0; + + /** BPROP: Strength of the momentum term (the difference between weights on the 2 previous iterations). + This parameter provides some inertia to smooth the random fluctuations of the weights. It can + vary from 0 (the feature is disabled) to 1 and beyond. The value 0.1 or so is good enough. + Default value is 0.1.*/ + /** @see setBackpropMomentumScale */ + CV_WRAP virtual double getBackpropMomentumScale() const = 0; + /** @copybrief getBackpropMomentumScale @see getBackpropMomentumScale */ + CV_WRAP virtual void setBackpropMomentumScale(double val) = 0; + + /** RPROP: Initial value \f$\Delta_0\f$ of update-values \f$\Delta_{ij}\f$. + Default value is 0.1.*/ + /** @see setRpropDW0 */ + CV_WRAP virtual double getRpropDW0() const = 0; + /** @copybrief getRpropDW0 @see getRpropDW0 */ + CV_WRAP virtual void setRpropDW0(double val) = 0; + + /** RPROP: Increase factor \f$\eta^+\f$. + It must be \>1. Default value is 1.2.*/ + /** @see setRpropDWPlus */ + CV_WRAP virtual double getRpropDWPlus() const = 0; + /** @copybrief getRpropDWPlus @see getRpropDWPlus */ + CV_WRAP virtual void setRpropDWPlus(double val) = 0; + + /** RPROP: Decrease factor \f$\eta^-\f$. + It must be \<1. Default value is 0.5.*/ + /** @see setRpropDWMinus */ + CV_WRAP virtual double getRpropDWMinus() const = 0; + /** @copybrief getRpropDWMinus @see getRpropDWMinus */ + CV_WRAP virtual void setRpropDWMinus(double val) = 0; + + /** RPROP: Update-values lower limit \f$\Delta_{min}\f$. + It must be positive. Default value is FLT_EPSILON.*/ + /** @see setRpropDWMin */ + CV_WRAP virtual double getRpropDWMin() const = 0; + /** @copybrief getRpropDWMin @see getRpropDWMin */ + CV_WRAP virtual void setRpropDWMin(double val) = 0; + + /** RPROP: Update-values upper limit \f$\Delta_{max}\f$. + It must be \>1. Default value is 50.*/ + /** @see setRpropDWMax */ + CV_WRAP virtual double getRpropDWMax() const = 0; + /** @copybrief getRpropDWMax @see getRpropDWMax */ + CV_WRAP virtual void setRpropDWMax(double val) = 0; + + /** possible activation functions */ + enum ActivationFunctions { + /** Identity function: \f$f(x)=x\f$ */ + IDENTITY = 0, + /** Symmetrical sigmoid: \f$f(x)=\beta*(1-e^{-\alpha x})/(1+e^{-\alpha x}\f$ + @note + If you are using the default sigmoid activation function with the default parameter values + fparam1=0 and fparam2=0 then the function used is y = 1.7159\*tanh(2/3 \* x), so the output + will range from [-1.7159, 1.7159], instead of [0,1].*/ + SIGMOID_SYM = 1, + /** Gaussian function: \f$f(x)=\beta e^{-\alpha x*x}\f$ */ + GAUSSIAN = 2 + }; + + /** Train options */ + enum TrainFlags { + /** Update the network weights, rather than compute them from scratch. In the latter case + the weights are initialized using the Nguyen-Widrow algorithm. */ + UPDATE_WEIGHTS = 1, + /** Do not normalize the input vectors. If this flag is not set, the training algorithm + normalizes each input feature independently, shifting its mean value to 0 and making the + standard deviation equal to 1. If the network is assumed to be updated frequently, the new + training data could be much different from original one. In this case, you should take care + of proper normalization. */ + NO_INPUT_SCALE = 2, + /** Do not normalize the output vectors. If the flag is not set, the training algorithm + normalizes each output feature independently, by transforming it to the certain range + depending on the used activation function. */ + NO_OUTPUT_SCALE = 4 + }; + + CV_WRAP virtual Mat getWeights(int layerIdx) const = 0; + + /** @brief Creates empty model + + Use StatModel::train to train the model, Algorithm::load\(filename) to load the pre-trained model. + Note that the train method has optional flags: ANN_MLP::TrainFlags. + */ + CV_WRAP static Ptr create(); + + /** @brief Loads and creates a serialized ANN from a file + * + * Use ANN::save to serialize and store an ANN to disk. + * Load the ANN from this file again, by calling this function with the path to the file. + * + * @param filepath path to serialized ANN + */ + CV_WRAP static Ptr load(const String& filepath); + +}; + +/****************************************************************************************\ +* Logistic Regression * +\****************************************************************************************/ + +/** @brief Implements Logistic Regression classifier. + +@sa @ref ml_intro_lr + */ +class CV_EXPORTS_W LogisticRegression : public StatModel +{ +public: + + /** Learning rate. */ + /** @see setLearningRate */ + CV_WRAP virtual double getLearningRate() const = 0; + /** @copybrief getLearningRate @see getLearningRate */ + CV_WRAP virtual void setLearningRate(double val) = 0; + + /** Number of iterations. */ + /** @see setIterations */ + CV_WRAP virtual int getIterations() const = 0; + /** @copybrief getIterations @see getIterations */ + CV_WRAP virtual void setIterations(int val) = 0; + + /** Kind of regularization to be applied. See LogisticRegression::RegKinds. */ + /** @see setRegularization */ + CV_WRAP virtual int getRegularization() const = 0; + /** @copybrief getRegularization @see getRegularization */ + CV_WRAP virtual void setRegularization(int val) = 0; + + /** Kind of training method used. See LogisticRegression::Methods. */ + /** @see setTrainMethod */ + CV_WRAP virtual int getTrainMethod() const = 0; + /** @copybrief getTrainMethod @see getTrainMethod */ + CV_WRAP virtual void setTrainMethod(int val) = 0; + + /** Specifies the number of training samples taken in each step of Mini-Batch Gradient + Descent. Will only be used if using LogisticRegression::MINI_BATCH training algorithm. It + has to take values less than the total number of training samples. */ + /** @see setMiniBatchSize */ + CV_WRAP virtual int getMiniBatchSize() const = 0; + /** @copybrief getMiniBatchSize @see getMiniBatchSize */ + CV_WRAP virtual void setMiniBatchSize(int val) = 0; + + /** Termination criteria of the algorithm. */ + /** @see setTermCriteria */ + CV_WRAP virtual TermCriteria getTermCriteria() const = 0; + /** @copybrief getTermCriteria @see getTermCriteria */ + CV_WRAP virtual void setTermCriteria(TermCriteria val) = 0; + + //! Regularization kinds + enum RegKinds { + REG_DISABLE = -1, //!< Regularization disabled + REG_L1 = 0, //!< %L1 norm + REG_L2 = 1 //!< %L2 norm + }; + + //! Training methods + enum Methods { + BATCH = 0, + MINI_BATCH = 1 //!< Set MiniBatchSize to a positive integer when using this method. + }; + + /** @brief Predicts responses for input samples and returns a float type. + + @param samples The input data for the prediction algorithm. Matrix [m x n], where each row + contains variables (features) of one object being classified. Should have data type CV_32F. + @param results Predicted labels as a column matrix of type CV_32S. + @param flags Not used. + */ + CV_WRAP virtual float predict( InputArray samples, OutputArray results=noArray(), int flags=0 ) const = 0; + + /** @brief This function returns the trained paramters arranged across rows. + + For a two class classifcation problem, it returns a row matrix. It returns learnt paramters of + the Logistic Regression as a matrix of type CV_32F. + */ + CV_WRAP virtual Mat get_learnt_thetas() const = 0; + + /** @brief Creates empty model. + + Creates Logistic Regression model with parameters given. + */ + CV_WRAP static Ptr create(); +}; + + +/****************************************************************************************\ +* Stochastic Gradient Descent SVM Classifier * +\****************************************************************************************/ + +/*! +@brief Stochastic Gradient Descent SVM classifier + +SVMSGD provides a fast and easy-to-use implementation of the SVM classifier using the Stochastic Gradient Descent approach, +as presented in @cite bottou2010large. + +The classifier has following parameters: +- model type, +- margin type, +- margin regularization (\f$\lambda\f$), +- initial step size (\f$\gamma_0\f$), +- step decreasing power (\f$c\f$), +- and termination criteria. + +The model type may have one of the following values: \ref SGD and \ref ASGD. + +- \ref SGD is the classic version of SVMSGD classifier: every next step is calculated by the formula + \f[w_{t+1} = w_t - \gamma(t) \frac{dQ_i}{dw} |_{w = w_t}\f] + where + - \f$w_t\f$ is the weights vector for decision function at step \f$t\f$, + - \f$\gamma(t)\f$ is the step size of model parameters at the iteration \f$t\f$, it is decreased on each step by the formula + \f$\gamma(t) = \gamma_0 (1 + \lambda \gamma_0 t) ^ {-c}\f$ + - \f$Q_i\f$ is the target functional from SVM task for sample with number \f$i\f$, this sample is chosen stochastically on each step of the algorithm. + +- \ref ASGD is Average Stochastic Gradient Descent SVM Classifier. ASGD classifier averages weights vector on each step of algorithm by the formula +\f$\widehat{w}_{t+1} = \frac{t}{1+t}\widehat{w}_{t} + \frac{1}{1+t}w_{t+1}\f$ + +The recommended model type is ASGD (following @cite bottou2010large). + +The margin type may have one of the following values: \ref SOFT_MARGIN or \ref HARD_MARGIN. + +- You should use \ref HARD_MARGIN type, if you have linearly separable sets. +- You should use \ref SOFT_MARGIN type, if you have non-linearly separable sets or sets with outliers. +- In the general case (if you know nothing about linear separability of your sets), use SOFT_MARGIN. + +The other parameters may be described as follows: +- Margin regularization parameter is responsible for weights decreasing at each step and for the strength of restrictions on outliers + (the less the parameter, the less probability that an outlier will be ignored). + Recommended value for SGD model is 0.0001, for ASGD model is 0.00001. + +- Initial step size parameter is the initial value for the step size \f$\gamma(t)\f$. + You will have to find the best initial step for your problem. + +- Step decreasing power is the power parameter for \f$\gamma(t)\f$ decreasing by the formula, mentioned above. + Recommended value for SGD model is 1, for ASGD model is 0.75. + +- Termination criteria can be TermCriteria::COUNT, TermCriteria::EPS or TermCriteria::COUNT + TermCriteria::EPS. + You will have to find the best termination criteria for your problem. + +Note that the parameters margin regularization, initial step size, and step decreasing power should be positive. + +To use SVMSGD algorithm do as follows: + +- first, create the SVMSGD object. The algoorithm will set optimal parameters by default, but you can set your own parameters via functions setSvmsgdType(), + setMarginType(), setMarginRegularization(), setInitialStepSize(), and setStepDecreasingPower(). + +- then the SVM model can be trained using the train features and the correspondent labels by the method train(). + +- after that, the label of a new feature vector can be predicted using the method predict(). + +@code +// Create empty object +cv::Ptr svmsgd = SVMSGD::create(); + +// Train the Stochastic Gradient Descent SVM +svmsgd->train(trainData); + +// Predict labels for the new samples +svmsgd->predict(samples, responses); +@endcode + +*/ + +class CV_EXPORTS_W SVMSGD : public cv::ml::StatModel +{ +public: + + /** SVMSGD type. + ASGD is often the preferable choice. */ + enum SvmsgdType + { + SGD, //!< Stochastic Gradient Descent + ASGD //!< Average Stochastic Gradient Descent + }; + + /** Margin type.*/ + enum MarginType + { + SOFT_MARGIN, //!< General case, suits to the case of non-linearly separable sets, allows outliers. + HARD_MARGIN //!< More accurate for the case of linearly separable sets. + }; + + /** + * @return the weights of the trained model (decision function f(x) = weights * x + shift). + */ + CV_WRAP virtual Mat getWeights() = 0; + + /** + * @return the shift of the trained model (decision function f(x) = weights * x + shift). + */ + CV_WRAP virtual float getShift() = 0; + + /** @brief Creates empty model. + * Use StatModel::train to train the model. Since %SVMSGD has several parameters, you may want to + * find the best parameters for your problem or use setOptimalParameters() to set some default parameters. + */ + CV_WRAP static Ptr create(); + + /** @brief Function sets optimal parameters values for chosen SVM SGD model. + * @param svmsgdType is the type of SVMSGD classifier. + * @param marginType is the type of margin constraint. + */ + CV_WRAP virtual void setOptimalParameters(int svmsgdType = SVMSGD::ASGD, int marginType = SVMSGD::SOFT_MARGIN) = 0; + + /** @brief %Algorithm type, one of SVMSGD::SvmsgdType. */ + /** @see setSvmsgdType */ + CV_WRAP virtual int getSvmsgdType() const = 0; + /** @copybrief getSvmsgdType @see getSvmsgdType */ + CV_WRAP virtual void setSvmsgdType(int svmsgdType) = 0; + + /** @brief %Margin type, one of SVMSGD::MarginType. */ + /** @see setMarginType */ + CV_WRAP virtual int getMarginType() const = 0; + /** @copybrief getMarginType @see getMarginType */ + CV_WRAP virtual void setMarginType(int marginType) = 0; + + /** @brief Parameter marginRegularization of a %SVMSGD optimization problem. */ + /** @see setMarginRegularization */ + CV_WRAP virtual float getMarginRegularization() const = 0; + /** @copybrief getMarginRegularization @see getMarginRegularization */ + CV_WRAP virtual void setMarginRegularization(float marginRegularization) = 0; + + /** @brief Parameter initialStepSize of a %SVMSGD optimization problem. */ + /** @see setInitialStepSize */ + CV_WRAP virtual float getInitialStepSize() const = 0; + /** @copybrief getInitialStepSize @see getInitialStepSize */ + CV_WRAP virtual void setInitialStepSize(float InitialStepSize) = 0; + + /** @brief Parameter stepDecreasingPower of a %SVMSGD optimization problem. */ + /** @see setStepDecreasingPower */ + CV_WRAP virtual float getStepDecreasingPower() const = 0; + /** @copybrief getStepDecreasingPower @see getStepDecreasingPower */ + CV_WRAP virtual void setStepDecreasingPower(float stepDecreasingPower) = 0; + + /** @brief Termination criteria of the training algorithm. + You can specify the maximum number of iterations (maxCount) and/or how much the error could + change between the iterations to make the algorithm continue (epsilon).*/ + /** @see setTermCriteria */ + CV_WRAP virtual TermCriteria getTermCriteria() const = 0; + /** @copybrief getTermCriteria @see getTermCriteria */ + CV_WRAP virtual void setTermCriteria(const cv::TermCriteria &val) = 0; +}; + + +/****************************************************************************************\ +* Auxilary functions declarations * +\****************************************************************************************/ + +/** @brief Generates _sample_ from multivariate normal distribution + +@param mean an average row vector +@param cov symmetric covariation matrix +@param nsamples returned samples count +@param samples returned samples array +*/ +CV_EXPORTS void randMVNormal( InputArray mean, InputArray cov, int nsamples, OutputArray samples); + +/** @brief Creates test set */ +CV_EXPORTS void createConcentricSpheresTestSet( int nsamples, int nfeatures, int nclasses, + OutputArray samples, OutputArray responses); + +//! @} ml + +} +} + +#endif // __cplusplus +#endif // OPENCV_ML_HPP + +/* End of file. */ diff --git a/thirdparty1/linux/include/opencv2/ml/ml.hpp b/thirdparty1/linux/include/opencv2/ml/ml.hpp new file mode 100644 index 0000000..f6f9cd8 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/ml/ml.hpp @@ -0,0 +1,48 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifdef __OPENCV_BUILD +#error this is a compatibility header which should not be used inside the OpenCV library +#endif + +#include "opencv2/ml.hpp" diff --git a/thirdparty1/linux/include/opencv2/objdetect.hpp b/thirdparty1/linux/include/opencv2/objdetect.hpp new file mode 100644 index 0000000..cd444d2 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/objdetect.hpp @@ -0,0 +1,466 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_OBJDETECT_HPP +#define OPENCV_OBJDETECT_HPP + +#include "opencv2/core.hpp" + +/** +@defgroup objdetect Object Detection + +Haar Feature-based Cascade Classifier for Object Detection +---------------------------------------------------------- + +The object detector described below has been initially proposed by Paul Viola @cite Viola01 and +improved by Rainer Lienhart @cite Lienhart02 . + +First, a classifier (namely a *cascade of boosted classifiers working with haar-like features*) is +trained with a few hundred sample views of a particular object (i.e., a face or a car), called +positive examples, that are scaled to the same size (say, 20x20), and negative examples - arbitrary +images of the same size. + +After a classifier is trained, it can be applied to a region of interest (of the same size as used +during the training) in an input image. The classifier outputs a "1" if the region is likely to show +the object (i.e., face/car), and "0" otherwise. To search for the object in the whole image one can +move the search window across the image and check every location using the classifier. The +classifier is designed so that it can be easily "resized" in order to be able to find the objects of +interest at different sizes, which is more efficient than resizing the image itself. So, to find an +object of an unknown size in the image the scan procedure should be done several times at different +scales. + +The word "cascade" in the classifier name means that the resultant classifier consists of several +simpler classifiers (*stages*) that are applied subsequently to a region of interest until at some +stage the candidate is rejected or all the stages are passed. The word "boosted" means that the +classifiers at every stage of the cascade are complex themselves and they are built out of basic +classifiers using one of four different boosting techniques (weighted voting). Currently Discrete +Adaboost, Real Adaboost, Gentle Adaboost and Logitboost are supported. The basic classifiers are +decision-tree classifiers with at least 2 leaves. Haar-like features are the input to the basic +classifiers, and are calculated as described below. The current algorithm uses the following +Haar-like features: + +![image](pics/haarfeatures.png) + +The feature used in a particular classifier is specified by its shape (1a, 2b etc.), position within +the region of interest and the scale (this scale is not the same as the scale used at the detection +stage, though these two scales are multiplied). For example, in the case of the third line feature +(2c) the response is calculated as the difference between the sum of image pixels under the +rectangle covering the whole feature (including the two white stripes and the black stripe in the +middle) and the sum of the image pixels under the black stripe multiplied by 3 in order to +compensate for the differences in the size of areas. The sums of pixel values over a rectangular +regions are calculated rapidly using integral images (see below and the integral description). + +To see the object detector at work, have a look at the facedetect demo: + + +The following reference is for the detection part only. There is a separate application called +opencv_traincascade that can train a cascade of boosted classifiers from a set of samples. + +@note In the new C++ interface it is also possible to use LBP (local binary pattern) features in +addition to Haar-like features. .. [Viola01] Paul Viola and Michael J. Jones. Rapid Object Detection +using a Boosted Cascade of Simple Features. IEEE CVPR, 2001. The paper is available online at + + +@{ + @defgroup objdetect_c C API +@} + */ + +typedef struct CvHaarClassifierCascade CvHaarClassifierCascade; + +namespace cv +{ + +//! @addtogroup objdetect +//! @{ + +///////////////////////////// Object Detection //////////////////////////// + +//! class for grouping object candidates, detected by Cascade Classifier, HOG etc. +//! instance of the class is to be passed to cv::partition (see cxoperations.hpp) +class CV_EXPORTS SimilarRects +{ +public: + SimilarRects(double _eps) : eps(_eps) {} + inline bool operator()(const Rect& r1, const Rect& r2) const + { + double delta = eps * ((std::min)(r1.width, r2.width) + (std::min)(r1.height, r2.height)) * 0.5; + return std::abs(r1.x - r2.x) <= delta && + std::abs(r1.y - r2.y) <= delta && + std::abs(r1.x + r1.width - r2.x - r2.width) <= delta && + std::abs(r1.y + r1.height - r2.y - r2.height) <= delta; + } + double eps; +}; + +/** @brief Groups the object candidate rectangles. + +@param rectList Input/output vector of rectangles. Output vector includes retained and grouped +rectangles. (The Python list is not modified in place.) +@param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a +group of rectangles to retain it. +@param eps Relative difference between sides of the rectangles to merge them into a group. + +The function is a wrapper for the generic function partition . It clusters all the input rectangles +using the rectangle equivalence criteria that combines rectangles with similar sizes and similar +locations. The similarity is defined by eps. When eps=0 , no clustering is done at all. If +\f$\texttt{eps}\rightarrow +\inf\f$ , all the rectangles are put in one cluster. Then, the small +clusters containing less than or equal to groupThreshold rectangles are rejected. In each other +cluster, the average rectangle is computed and put into the output rectangle list. + */ +CV_EXPORTS void groupRectangles(std::vector& rectList, int groupThreshold, double eps = 0.2); +/** @overload */ +CV_EXPORTS_W void groupRectangles(CV_IN_OUT std::vector& rectList, CV_OUT std::vector& weights, + int groupThreshold, double eps = 0.2); +/** @overload */ +CV_EXPORTS void groupRectangles(std::vector& rectList, int groupThreshold, + double eps, std::vector* weights, std::vector* levelWeights ); +/** @overload */ +CV_EXPORTS void groupRectangles(std::vector& rectList, std::vector& rejectLevels, + std::vector& levelWeights, int groupThreshold, double eps = 0.2); +/** @overload */ +CV_EXPORTS void groupRectangles_meanshift(std::vector& rectList, std::vector& foundWeights, + std::vector& foundScales, + double detectThreshold = 0.0, Size winDetSize = Size(64, 128)); + +template<> CV_EXPORTS void DefaultDeleter::operator ()(CvHaarClassifierCascade* obj) const; + +enum { CASCADE_DO_CANNY_PRUNING = 1, + CASCADE_SCALE_IMAGE = 2, + CASCADE_FIND_BIGGEST_OBJECT = 4, + CASCADE_DO_ROUGH_SEARCH = 8 + }; + +class CV_EXPORTS_W BaseCascadeClassifier : public Algorithm +{ +public: + virtual ~BaseCascadeClassifier(); + virtual bool empty() const = 0; + virtual bool load( const String& filename ) = 0; + virtual void detectMultiScale( InputArray image, + CV_OUT std::vector& objects, + double scaleFactor, + int minNeighbors, int flags, + Size minSize, Size maxSize ) = 0; + + virtual void detectMultiScale( InputArray image, + CV_OUT std::vector& objects, + CV_OUT std::vector& numDetections, + double scaleFactor, + int minNeighbors, int flags, + Size minSize, Size maxSize ) = 0; + + virtual void detectMultiScale( InputArray image, + CV_OUT std::vector& objects, + CV_OUT std::vector& rejectLevels, + CV_OUT std::vector& levelWeights, + double scaleFactor, + int minNeighbors, int flags, + Size minSize, Size maxSize, + bool outputRejectLevels ) = 0; + + virtual bool isOldFormatCascade() const = 0; + virtual Size getOriginalWindowSize() const = 0; + virtual int getFeatureType() const = 0; + virtual void* getOldCascade() = 0; + + class CV_EXPORTS MaskGenerator + { + public: + virtual ~MaskGenerator() {} + virtual Mat generateMask(const Mat& src)=0; + virtual void initializeMask(const Mat& /*src*/) { } + }; + virtual void setMaskGenerator(const Ptr& maskGenerator) = 0; + virtual Ptr getMaskGenerator() = 0; +}; + +/** @brief Cascade classifier class for object detection. + */ +class CV_EXPORTS_W CascadeClassifier +{ +public: + CV_WRAP CascadeClassifier(); + /** @brief Loads a classifier from a file. + + @param filename Name of the file from which the classifier is loaded. + */ + CV_WRAP CascadeClassifier(const String& filename); + ~CascadeClassifier(); + /** @brief Checks whether the classifier has been loaded. + */ + CV_WRAP bool empty() const; + /** @brief Loads a classifier from a file. + + @param filename Name of the file from which the classifier is loaded. The file may contain an old + HAAR classifier trained by the haartraining application or a new cascade classifier trained by the + traincascade application. + */ + CV_WRAP bool load( const String& filename ); + /** @brief Reads a classifier from a FileStorage node. + + @note The file may contain a new cascade classifier (trained traincascade application) only. + */ + CV_WRAP bool read( const FileNode& node ); + + /** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list + of rectangles. + + @param image Matrix of the type CV_8U containing an image where objects are detected. + @param objects Vector of rectangles where each rectangle contains the detected object, the + rectangles may be partially outside the original image. + @param scaleFactor Parameter specifying how much the image size is reduced at each image scale. + @param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have + to retain it. + @param flags Parameter with the same meaning for an old cascade as in the function + cvHaarDetectObjects. It is not used for a new cascade. + @param minSize Minimum possible object size. Objects smaller than that are ignored. + @param maxSize Maximum possible object size. Objects larger than that are ignored. If `maxSize == minSize` model is evaluated on single scale. + + The function is parallelized with the TBB library. + + @note + - (Python) A face detection example using cascade classifiers can be found at + opencv_source_code/samples/python/facedetect.py + */ + CV_WRAP void detectMultiScale( InputArray image, + CV_OUT std::vector& objects, + double scaleFactor = 1.1, + int minNeighbors = 3, int flags = 0, + Size minSize = Size(), + Size maxSize = Size() ); + + /** @overload + @param image Matrix of the type CV_8U containing an image where objects are detected. + @param objects Vector of rectangles where each rectangle contains the detected object, the + rectangles may be partially outside the original image. + @param numDetections Vector of detection numbers for the corresponding objects. An object's number + of detections is the number of neighboring positively classified rectangles that were joined + together to form the object. + @param scaleFactor Parameter specifying how much the image size is reduced at each image scale. + @param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have + to retain it. + @param flags Parameter with the same meaning for an old cascade as in the function + cvHaarDetectObjects. It is not used for a new cascade. + @param minSize Minimum possible object size. Objects smaller than that are ignored. + @param maxSize Maximum possible object size. Objects larger than that are ignored. If `maxSize == minSize` model is evaluated on single scale. + */ + CV_WRAP_AS(detectMultiScale2) void detectMultiScale( InputArray image, + CV_OUT std::vector& objects, + CV_OUT std::vector& numDetections, + double scaleFactor=1.1, + int minNeighbors=3, int flags=0, + Size minSize=Size(), + Size maxSize=Size() ); + + /** @overload + if `outputRejectLevels` is `true` returns `rejectLevels` and `levelWeights` + */ + CV_WRAP_AS(detectMultiScale3) void detectMultiScale( InputArray image, + CV_OUT std::vector& objects, + CV_OUT std::vector& rejectLevels, + CV_OUT std::vector& levelWeights, + double scaleFactor = 1.1, + int minNeighbors = 3, int flags = 0, + Size minSize = Size(), + Size maxSize = Size(), + bool outputRejectLevels = false ); + + CV_WRAP bool isOldFormatCascade() const; + CV_WRAP Size getOriginalWindowSize() const; + CV_WRAP int getFeatureType() const; + void* getOldCascade(); + + CV_WRAP static bool convert(const String& oldcascade, const String& newcascade); + + void setMaskGenerator(const Ptr& maskGenerator); + Ptr getMaskGenerator(); + + Ptr cc; +}; + +CV_EXPORTS Ptr createFaceDetectionMaskGenerator(); + +//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector ////////////// + +//! struct for detection region of interest (ROI) +struct DetectionROI +{ + //! scale(size) of the bounding box + double scale; + //! set of requrested locations to be evaluated + std::vector locations; + //! vector that will contain confidence values for each location + std::vector confidences; +}; + +struct CV_EXPORTS_W HOGDescriptor +{ +public: + enum { L2Hys = 0 + }; + enum { DEFAULT_NLEVELS = 64 + }; + + CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8), + cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1), + histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true), + free_coef(-1.f), nlevels(HOGDescriptor::DEFAULT_NLEVELS), signedGradient(false) + {} + + CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride, + Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1, + int _histogramNormType=HOGDescriptor::L2Hys, + double _L2HysThreshold=0.2, bool _gammaCorrection=false, + int _nlevels=HOGDescriptor::DEFAULT_NLEVELS, bool _signedGradient=false) + : winSize(_winSize), blockSize(_blockSize), blockStride(_blockStride), cellSize(_cellSize), + nbins(_nbins), derivAperture(_derivAperture), winSigma(_winSigma), + histogramNormType(_histogramNormType), L2HysThreshold(_L2HysThreshold), + gammaCorrection(_gammaCorrection), free_coef(-1.f), nlevels(_nlevels), signedGradient(_signedGradient) + {} + + CV_WRAP HOGDescriptor(const String& filename) + { + load(filename); + } + + HOGDescriptor(const HOGDescriptor& d) + { + d.copyTo(*this); + } + + virtual ~HOGDescriptor() {} + + CV_WRAP size_t getDescriptorSize() const; + CV_WRAP bool checkDetectorSize() const; + CV_WRAP double getWinSigma() const; + + CV_WRAP virtual void setSVMDetector(InputArray _svmdetector); + + virtual bool read(FileNode& fn); + virtual void write(FileStorage& fs, const String& objname) const; + + CV_WRAP virtual bool load(const String& filename, const String& objname = String()); + CV_WRAP virtual void save(const String& filename, const String& objname = String()) const; + virtual void copyTo(HOGDescriptor& c) const; + + CV_WRAP virtual void compute(InputArray img, + CV_OUT std::vector& descriptors, + Size winStride = Size(), Size padding = Size(), + const std::vector& locations = std::vector()) const; + + //! with found weights output + CV_WRAP virtual void detect(const Mat& img, CV_OUT std::vector& foundLocations, + CV_OUT std::vector& weights, + double hitThreshold = 0, Size winStride = Size(), + Size padding = Size(), + const std::vector& searchLocations = std::vector()) const; + //! without found weights output + virtual void detect(const Mat& img, CV_OUT std::vector& foundLocations, + double hitThreshold = 0, Size winStride = Size(), + Size padding = Size(), + const std::vector& searchLocations=std::vector()) const; + + //! with result weights output + CV_WRAP virtual void detectMultiScale(InputArray img, CV_OUT std::vector& foundLocations, + CV_OUT std::vector& foundWeights, double hitThreshold = 0, + Size winStride = Size(), Size padding = Size(), double scale = 1.05, + double finalThreshold = 2.0,bool useMeanshiftGrouping = false) const; + //! without found weights output + virtual void detectMultiScale(InputArray img, CV_OUT std::vector& foundLocations, + double hitThreshold = 0, Size winStride = Size(), + Size padding = Size(), double scale = 1.05, + double finalThreshold = 2.0, bool useMeanshiftGrouping = false) const; + + CV_WRAP virtual void computeGradient(const Mat& img, CV_OUT Mat& grad, CV_OUT Mat& angleOfs, + Size paddingTL = Size(), Size paddingBR = Size()) const; + + CV_WRAP static std::vector getDefaultPeopleDetector(); + CV_WRAP static std::vector getDaimlerPeopleDetector(); + + CV_PROP Size winSize; + CV_PROP Size blockSize; + CV_PROP Size blockStride; + CV_PROP Size cellSize; + CV_PROP int nbins; + CV_PROP int derivAperture; + CV_PROP double winSigma; + CV_PROP int histogramNormType; + CV_PROP double L2HysThreshold; + CV_PROP bool gammaCorrection; + CV_PROP std::vector svmDetector; + UMat oclSvmDetector; + float free_coef; + CV_PROP int nlevels; + CV_PROP bool signedGradient; + + + //! evaluate specified ROI and return confidence value for each location + virtual void detectROI(const cv::Mat& img, const std::vector &locations, + CV_OUT std::vector& foundLocations, CV_OUT std::vector& confidences, + double hitThreshold = 0, cv::Size winStride = Size(), + cv::Size padding = Size()) const; + + //! evaluate specified ROI and return confidence value for each location in multiple scales + virtual void detectMultiScaleROI(const cv::Mat& img, + CV_OUT std::vector& foundLocations, + std::vector& locations, + double hitThreshold = 0, + int groupThreshold = 0) const; + + //! read/parse Dalal's alt model file + void readALTModel(String modelfile); + void groupRectangles(std::vector& rectList, std::vector& weights, int groupThreshold, double eps) const; +}; + +//! @} objdetect + +} + +#include "opencv2/objdetect/detection_based_tracker.hpp" + +#ifndef DISABLE_OPENCV_24_COMPATIBILITY +#include "opencv2/objdetect/objdetect_c.h" +#endif + +#endif diff --git a/thirdparty1/linux/include/opencv2/objdetect/detection_based_tracker.hpp b/thirdparty1/linux/include/opencv2/objdetect/detection_based_tracker.hpp new file mode 100644 index 0000000..b93c8f5 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/objdetect/detection_based_tracker.hpp @@ -0,0 +1,225 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_OBJDETECT_DBT_HPP +#define OPENCV_OBJDETECT_DBT_HPP + +// After this condition removal update blacklist for bindings: modules/python/common.cmake +#if defined(__linux__) || defined(LINUX) || defined(__APPLE__) || defined(__ANDROID__) || \ + (defined(__cplusplus) && __cplusplus > 199711L) || (defined(_MSC_VER) && _MSC_VER >= 1700) + +#include + +namespace cv +{ + +//! @addtogroup objdetect +//! @{ + +class CV_EXPORTS DetectionBasedTracker +{ + public: + struct CV_EXPORTS Parameters + { + int maxTrackLifetime; + int minDetectionPeriod; //the minimal time between run of the big object detector (on the whole frame) in ms (1000 mean 1 sec), default=0 + + Parameters(); + }; + + class IDetector + { + public: + IDetector(): + minObjSize(96, 96), + maxObjSize(INT_MAX, INT_MAX), + minNeighbours(2), + scaleFactor(1.1f) + {} + + virtual void detect(const cv::Mat& image, std::vector& objects) = 0; + + void setMinObjectSize(const cv::Size& min) + { + minObjSize = min; + } + void setMaxObjectSize(const cv::Size& max) + { + maxObjSize = max; + } + cv::Size getMinObjectSize() const + { + return minObjSize; + } + cv::Size getMaxObjectSize() const + { + return maxObjSize; + } + float getScaleFactor() + { + return scaleFactor; + } + void setScaleFactor(float value) + { + scaleFactor = value; + } + int getMinNeighbours() + { + return minNeighbours; + } + void setMinNeighbours(int value) + { + minNeighbours = value; + } + virtual ~IDetector() {} + + protected: + cv::Size minObjSize; + cv::Size maxObjSize; + int minNeighbours; + float scaleFactor; + }; + + DetectionBasedTracker(cv::Ptr mainDetector, cv::Ptr trackingDetector, const Parameters& params); + virtual ~DetectionBasedTracker(); + + virtual bool run(); + virtual void stop(); + virtual void resetTracking(); + + virtual void process(const cv::Mat& imageGray); + + bool setParameters(const Parameters& params); + const Parameters& getParameters() const; + + + typedef std::pair Object; + virtual void getObjects(std::vector& result) const; + virtual void getObjects(std::vector& result) const; + + enum ObjectStatus + { + DETECTED_NOT_SHOWN_YET, + DETECTED, + DETECTED_TEMPORARY_LOST, + WRONG_OBJECT + }; + struct ExtObject + { + int id; + cv::Rect location; + ObjectStatus status; + ExtObject(int _id, cv::Rect _location, ObjectStatus _status) + :id(_id), location(_location), status(_status) + { + } + }; + virtual void getObjects(std::vector& result) const; + + + virtual int addObject(const cv::Rect& location); //returns id of the new object + + protected: + class SeparateDetectionWork; + cv::Ptr separateDetectionWork; + friend void* workcycleObjectDetectorFunction(void* p); + + struct InnerParameters + { + int numLastPositionsToTrack; + int numStepsToWaitBeforeFirstShow; + int numStepsToTrackWithoutDetectingIfObjectHasNotBeenShown; + int numStepsToShowWithoutDetecting; + + float coeffTrackingWindowSize; + float coeffObjectSizeToTrack; + float coeffObjectSpeedUsingInPrediction; + + InnerParameters(); + }; + Parameters parameters; + InnerParameters innerParameters; + + struct TrackedObject + { + typedef std::vector PositionsVector; + + PositionsVector lastPositions; + + int numDetectedFrames; + int numFramesNotDetected; + int id; + + TrackedObject(const cv::Rect& rect):numDetectedFrames(1), numFramesNotDetected(0) + { + lastPositions.push_back(rect); + id=getNextId(); + }; + + static int getNextId() + { + static int _id=0; + return _id++; + } + }; + + int numTrackedSteps; + std::vector trackedObjects; + + std::vector weightsPositionsSmoothing; + std::vector weightsSizesSmoothing; + + cv::Ptr cascadeForTracking; + + void updateTrackedObjects(const std::vector& detectedObjects); + cv::Rect calcTrackedObjectPositionToShow(int i) const; + cv::Rect calcTrackedObjectPositionToShow(int i, ObjectStatus& status) const; + void detectInRegion(const cv::Mat& img, const cv::Rect& r, std::vector& detectedObjectsInRegions); +}; + +//! @} objdetect + +} //end of cv namespace +#endif + +#endif diff --git a/thirdparty1/linux/include/opencv2/objdetect/objdetect.hpp b/thirdparty1/linux/include/opencv2/objdetect/objdetect.hpp new file mode 100644 index 0000000..3ee284f --- /dev/null +++ b/thirdparty1/linux/include/opencv2/objdetect/objdetect.hpp @@ -0,0 +1,48 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifdef __OPENCV_BUILD +#error this is a compatibility header which should not be used inside the OpenCV library +#endif + +#include "opencv2/objdetect.hpp" diff --git a/thirdparty1/linux/include/opencv2/objdetect/objdetect_c.h b/thirdparty1/linux/include/opencv2/objdetect/objdetect_c.h new file mode 100644 index 0000000..b3ee7f4 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/objdetect/objdetect_c.h @@ -0,0 +1,165 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_OBJDETECT_C_H +#define OPENCV_OBJDETECT_C_H + +#include "opencv2/core/core_c.h" + +#ifdef __cplusplus +#include +#include + +extern "C" { +#endif + +/** @addtogroup objdetect_c + @{ + */ + +/****************************************************************************************\ +* Haar-like Object Detection functions * +\****************************************************************************************/ + +#define CV_HAAR_MAGIC_VAL 0x42500000 +#define CV_TYPE_NAME_HAAR "opencv-haar-classifier" + +#define CV_IS_HAAR_CLASSIFIER( haar ) \ + ((haar) != NULL && \ + (((const CvHaarClassifierCascade*)(haar))->flags & CV_MAGIC_MASK)==CV_HAAR_MAGIC_VAL) + +#define CV_HAAR_FEATURE_MAX 3 + +typedef struct CvHaarFeature +{ + int tilted; + struct + { + CvRect r; + float weight; + } rect[CV_HAAR_FEATURE_MAX]; +} CvHaarFeature; + +typedef struct CvHaarClassifier +{ + int count; + CvHaarFeature* haar_feature; + float* threshold; + int* left; + int* right; + float* alpha; +} CvHaarClassifier; + +typedef struct CvHaarStageClassifier +{ + int count; + float threshold; + CvHaarClassifier* classifier; + + int next; + int child; + int parent; +} CvHaarStageClassifier; + +typedef struct CvHidHaarClassifierCascade CvHidHaarClassifierCascade; + +typedef struct CvHaarClassifierCascade +{ + int flags; + int count; + CvSize orig_window_size; + CvSize real_window_size; + double scale; + CvHaarStageClassifier* stage_classifier; + CvHidHaarClassifierCascade* hid_cascade; +} CvHaarClassifierCascade; + +typedef struct CvAvgComp +{ + CvRect rect; + int neighbors; +} CvAvgComp; + +/* Loads haar classifier cascade from a directory. + It is obsolete: convert your cascade to xml and use cvLoad instead */ +CVAPI(CvHaarClassifierCascade*) cvLoadHaarClassifierCascade( + const char* directory, CvSize orig_window_size); + +CVAPI(void) cvReleaseHaarClassifierCascade( CvHaarClassifierCascade** cascade ); + +#define CV_HAAR_DO_CANNY_PRUNING 1 +#define CV_HAAR_SCALE_IMAGE 2 +#define CV_HAAR_FIND_BIGGEST_OBJECT 4 +#define CV_HAAR_DO_ROUGH_SEARCH 8 + +CVAPI(CvSeq*) cvHaarDetectObjects( const CvArr* image, + CvHaarClassifierCascade* cascade, CvMemStorage* storage, + double scale_factor CV_DEFAULT(1.1), + int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0), + CvSize min_size CV_DEFAULT(cvSize(0,0)), CvSize max_size CV_DEFAULT(cvSize(0,0))); + +/* sets images for haar classifier cascade */ +CVAPI(void) cvSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* cascade, + const CvArr* sum, const CvArr* sqsum, + const CvArr* tilted_sum, double scale ); + +/* runs the cascade on the specified window */ +CVAPI(int) cvRunHaarClassifierCascade( const CvHaarClassifierCascade* cascade, + CvPoint pt, int start_stage CV_DEFAULT(0)); + +/** @} objdetect_c */ + +#ifdef __cplusplus +} + +CV_EXPORTS CvSeq* cvHaarDetectObjectsForROC( const CvArr* image, + CvHaarClassifierCascade* cascade, CvMemStorage* storage, + std::vector& rejectLevels, std::vector& levelWeightds, + double scale_factor = 1.1, + int min_neighbors = 3, int flags = 0, + CvSize min_size = cvSize(0, 0), CvSize max_size = cvSize(0, 0), + bool outputRejectLevels = false ); + +#endif + +#endif /* OPENCV_OBJDETECT_C_H */ diff --git a/thirdparty1/linux/include/opencv2/opencv.hpp b/thirdparty1/linux/include/opencv2/opencv.hpp new file mode 100644 index 0000000..532d7a3 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/opencv.hpp @@ -0,0 +1,136 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009-2010, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_ALL_HPP +#define OPENCV_ALL_HPP + +// File that defines what modules where included during the build of OpenCV +// These are purely the defines of the correct HAVE_OPENCV_modulename values +#include "opencv2/opencv_modules.hpp" + +// Then the list of defines is checked to include the correct headers +// Core library is always included --> without no OpenCV functionality available +#include "opencv2/core.hpp" + +// Then the optional modules are checked +#ifdef HAVE_OPENCV_CALIB3D +#include "opencv2/calib3d.hpp" +#endif +#ifdef HAVE_OPENCV_FEATURES2D +#include "opencv2/features2d.hpp" +#endif +#ifdef HAVE_OPENCV_FLANN +#include "opencv2/flann.hpp" +#endif +#ifdef HAVE_OPENCV_HIGHGUI +#include "opencv2/highgui.hpp" +#endif +#ifdef HAVE_OPENCV_IMGCODECS +#include "opencv2/imgcodecs.hpp" +#endif +#ifdef HAVE_OPENCV_IMGPROC +#include "opencv2/imgproc.hpp" +#endif +#ifdef HAVE_OPENCV_ML +#include "opencv2/ml.hpp" +#endif +#ifdef HAVE_OPENCV_OBJDETECT +#include "opencv2/objdetect.hpp" +#endif +#ifdef HAVE_OPENCV_PHOTO +#include "opencv2/photo.hpp" +#endif +#ifdef HAVE_OPENCV_SHAPE +#include "opencv2/shape.hpp" +#endif +#ifdef HAVE_OPENCV_STITCHING +#include "opencv2/stitching.hpp" +#endif +#ifdef HAVE_OPENCV_SUPERRES +#include "opencv2/superres.hpp" +#endif +#ifdef HAVE_OPENCV_VIDEO +#include "opencv2/video.hpp" +#endif +#ifdef HAVE_OPENCV_VIDEOIO +#include "opencv2/videoio.hpp" +#endif +#ifdef HAVE_OPENCV_VIDEOSTAB +#include "opencv2/videostab.hpp" +#endif +#ifdef HAVE_OPENCV_VIZ +#include "opencv2/viz.hpp" +#endif + +// Finally CUDA specific entries are checked and added +#ifdef HAVE_OPENCV_CUDAARITHM +#include "opencv2/cudaarithm.hpp" +#endif +#ifdef HAVE_OPENCV_CUDABGSEGM +#include "opencv2/cudabgsegm.hpp" +#endif +#ifdef HAVE_OPENCV_CUDACODEC +#include "opencv2/cudacodec.hpp" +#endif +#ifdef HAVE_OPENCV_CUDAFEATURES2D +#include "opencv2/cudafeatures2d.hpp" +#endif +#ifdef HAVE_OPENCV_CUDAFILTERS +#include "opencv2/cudafilters.hpp" +#endif +#ifdef HAVE_OPENCV_CUDAIMGPROC +#include "opencv2/cudaimgproc.hpp" +#endif +#ifdef HAVE_OPENCV_CUDAOBJDETECT +#include "opencv2/cudaobjdetect.hpp" +#endif +#ifdef HAVE_OPENCV_CUDAOPTFLOW +#include "opencv2/cudaoptflow.hpp" +#endif +#ifdef HAVE_OPENCV_CUDASTEREO +#include "opencv2/cudastereo.hpp" +#endif +#ifdef HAVE_OPENCV_CUDAWARPING +#include "opencv2/cudawarping.hpp" +#endif + +#endif diff --git a/thirdparty1/linux/include/opencv2/opencv_modules.hpp b/thirdparty1/linux/include/opencv2/opencv_modules.hpp new file mode 100644 index 0000000..f02ce2e --- /dev/null +++ b/thirdparty1/linux/include/opencv2/opencv_modules.hpp @@ -0,0 +1,58 @@ +/* + * ** File generated automatically, do not modify ** + * + * This file defines the list of modules available in current build configuration + * + * +*/ + +// This definition means that OpenCV is built with enabled non-free code. +// For example, patented algorithms for non-profit/non-commercial use only. +/* #undef OPENCV_ENABLE_NONFREE */ + +#define HAVE_OPENCV_ARUCO +#define HAVE_OPENCV_BGSEGM +#define HAVE_OPENCV_BIOINSPIRED +#define HAVE_OPENCV_CALIB3D +#define HAVE_OPENCV_CCALIB +#define HAVE_OPENCV_CORE +#define HAVE_OPENCV_DATASETS +#define HAVE_OPENCV_DNN +#define HAVE_OPENCV_DPM +#define HAVE_OPENCV_FACE +#define HAVE_OPENCV_FEATURES2D +#define HAVE_OPENCV_FLANN +#define HAVE_OPENCV_FREETYPE +#define HAVE_OPENCV_FUZZY +#define HAVE_OPENCV_HDF +#define HAVE_OPENCV_HIGHGUI +#define HAVE_OPENCV_IMGCODECS +#define HAVE_OPENCV_IMGPROC +#define HAVE_OPENCV_LINE_DESCRIPTOR +#define HAVE_OPENCV_ML +#define HAVE_OPENCV_OBJDETECT +#define HAVE_OPENCV_OPTFLOW +#define HAVE_OPENCV_PHASE_UNWRAPPING +#define HAVE_OPENCV_PHOTO +#define HAVE_OPENCV_PLOT +#define HAVE_OPENCV_REG +#define HAVE_OPENCV_RGBD +#define HAVE_OPENCV_SALIENCY +#define HAVE_OPENCV_SHAPE +#define HAVE_OPENCV_STEREO +#define HAVE_OPENCV_STITCHING +#define HAVE_OPENCV_STRUCTURED_LIGHT +#define HAVE_OPENCV_SUPERRES +#define HAVE_OPENCV_SURFACE_MATCHING +#define HAVE_OPENCV_TEXT +#define HAVE_OPENCV_TRACKING +#define HAVE_OPENCV_VIDEO +#define HAVE_OPENCV_VIDEOIO +#define HAVE_OPENCV_VIDEOSTAB +#define HAVE_OPENCV_VIZ +#define HAVE_OPENCV_XFEATURES2D +#define HAVE_OPENCV_XIMGPROC +#define HAVE_OPENCV_XOBJDETECT +#define HAVE_OPENCV_XPHOTO + + diff --git a/thirdparty1/linux/include/opencv2/optflow.hpp b/thirdparty1/linux/include/opencv2/optflow.hpp new file mode 100644 index 0000000..e68d5b7 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/optflow.hpp @@ -0,0 +1,364 @@ +/* +By downloading, copying, installing or using the software you agree to this +license. If you do not agree to this license, do not download, install, +copy or use the software. + + + License Agreement + For Open Source Computer Vision Library + (3-clause BSD License) + +Copyright (C) 2013, OpenCV Foundation, all rights reserved. +Third party copyrights are property of their respective owners. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + + * Neither the names of the copyright holders nor the names of the contributors + may be used to endorse or promote products derived from this software + without specific prior written permission. + +This software is provided by the copyright holders and contributors "as is" and +any express or implied warranties, including, but not limited to, the implied +warranties of merchantability and fitness for a particular purpose are +disclaimed. In no event shall copyright holders or contributors be liable for +any direct, indirect, incidental, special, exemplary, or consequential damages +(including, but not limited to, procurement of substitute goods or services; +loss of use, data, or profits; or business interruption) however caused +and on any theory of liability, whether in contract, strict liability, +or tort (including negligence or otherwise) arising in any way out of +the use of this software, even if advised of the possibility of such damage. +*/ + +#ifndef __OPENCV_OPTFLOW_HPP__ +#define __OPENCV_OPTFLOW_HPP__ + +#include "opencv2/core.hpp" +#include "opencv2/video.hpp" + +/** +@defgroup optflow Optical Flow Algorithms + +Dense optical flow algorithms compute motion for each point: + +- cv::optflow::calcOpticalFlowSF +- cv::optflow::createOptFlow_DeepFlow + +Motion templates is alternative technique for detecting motion and computing its direction. +See samples/motempl.py. + +- cv::motempl::updateMotionHistory +- cv::motempl::calcMotionGradient +- cv::motempl::calcGlobalOrientation +- cv::motempl::segmentMotion + +Functions reading and writing .flo files in "Middlebury" format, see: + +- cv::optflow::readOpticalFlow +- cv::optflow::writeOpticalFlow + + */ + +#include "opencv2/optflow/pcaflow.hpp" +#include "opencv2/optflow/sparse_matching_gpc.hpp" + +namespace cv +{ +namespace optflow +{ + +//! @addtogroup optflow +//! @{ + +/** @overload */ +CV_EXPORTS_W void calcOpticalFlowSF( InputArray from, InputArray to, OutputArray flow, + int layers, int averaging_block_size, int max_flow); + +/** @brief Calculate an optical flow using "SimpleFlow" algorithm. + +@param from First 8-bit 3-channel image. +@param to Second 8-bit 3-channel image of the same size as prev +@param flow computed flow image that has the same size as prev and type CV_32FC2 +@param layers Number of layers +@param averaging_block_size Size of block through which we sum up when calculate cost function +for pixel +@param max_flow maximal flow that we search at each level +@param sigma_dist vector smooth spatial sigma parameter +@param sigma_color vector smooth color sigma parameter +@param postprocess_window window size for postprocess cross bilateral filter +@param sigma_dist_fix spatial sigma for postprocess cross bilateralf filter +@param sigma_color_fix color sigma for postprocess cross bilateral filter +@param occ_thr threshold for detecting occlusions +@param upscale_averaging_radius window size for bilateral upscale operation +@param upscale_sigma_dist spatial sigma for bilateral upscale operation +@param upscale_sigma_color color sigma for bilateral upscale operation +@param speed_up_thr threshold to detect point with irregular flow - where flow should be +recalculated after upscale + +See @cite Tao2012 . And site of project - . + +@note + - An example using the simpleFlow algorithm can be found at samples/simpleflow_demo.cpp + */ +CV_EXPORTS_W void calcOpticalFlowSF( InputArray from, InputArray to, OutputArray flow, int layers, + int averaging_block_size, int max_flow, + double sigma_dist, double sigma_color, int postprocess_window, + double sigma_dist_fix, double sigma_color_fix, double occ_thr, + int upscale_averaging_radius, double upscale_sigma_dist, + double upscale_sigma_color, double speed_up_thr ); + +/** @brief Fast dense optical flow based on PyrLK sparse matches interpolation. + +@param from first 8-bit 3-channel or 1-channel image. +@param to second 8-bit 3-channel or 1-channel image of the same size as from +@param flow computed flow image that has the same size as from and CV_32FC2 type +@param grid_step stride used in sparse match computation. Lower values usually + result in higher quality but slow down the algorithm. +@param k number of nearest-neighbor matches considered, when fitting a locally affine + model. Lower values can make the algorithm noticeably faster at the cost of + some quality degradation. +@param sigma parameter defining how fast the weights decrease in the locally-weighted affine + fitting. Higher values can help preserve fine details, lower values can help to get rid + of the noise in the output flow. +@param use_post_proc defines whether the ximgproc::fastGlobalSmootherFilter() is used + for post-processing after interpolation +@param fgs_lambda see the respective parameter of the ximgproc::fastGlobalSmootherFilter() +@param fgs_sigma see the respective parameter of the ximgproc::fastGlobalSmootherFilter() + */ +CV_EXPORTS_W void calcOpticalFlowSparseToDense ( InputArray from, InputArray to, OutputArray flow, + int grid_step = 8, int k = 128, float sigma = 0.05f, + bool use_post_proc = true, float fgs_lambda = 500.0f, + float fgs_sigma = 1.5f ); + +/** @brief Read a .flo file + +@param path Path to the file to be loaded + +The function readOpticalFlow loads a flow field from a file and returns it as a single matrix. +Resulting Mat has a type CV_32FC2 - floating-point, 2-channel. First channel corresponds to the +flow in the horizontal direction (u), second - vertical (v). + */ +CV_EXPORTS_W Mat readOpticalFlow( const String& path ); +/** @brief Write a .flo to disk + +@param path Path to the file to be written +@param flow Flow field to be stored + +The function stores a flow field in a file, returns true on success, false otherwise. +The flow field must be a 2-channel, floating-point matrix (CV_32FC2). First channel corresponds +to the flow in the horizontal direction (u), second - vertical (v). + */ +CV_EXPORTS_W bool writeOpticalFlow( const String& path, InputArray flow ); + +/** @brief Variational optical flow refinement + +This class implements variational refinement of the input flow field, i.e. +it uses input flow to initialize the minimization of the following functional: +\f$E(U) = \int_{\Omega} \delta \Psi(E_I) + \gamma \Psi(E_G) + \alpha \Psi(E_S) \f$, +where \f$E_I,E_G,E_S\f$ are color constancy, gradient constancy and smoothness terms +respectively. \f$\Psi(s^2)=\sqrt{s^2+\epsilon^2}\f$ is a robust penalizer to limit the +influence of outliers. A complete formulation and a description of the minimization +procedure can be found in @cite Brox2004 +*/ +class CV_EXPORTS_W VariationalRefinement : public DenseOpticalFlow +{ +public: + /** @brief @ref calc function overload to handle separate horizontal (u) and vertical (v) flow components + (to avoid extra splits/merges) */ + CV_WRAP virtual void calcUV(InputArray I0, InputArray I1, InputOutputArray flow_u, InputOutputArray flow_v) = 0; + + /** @brief Number of outer (fixed-point) iterations in the minimization procedure. + @see setFixedPointIterations */ + CV_WRAP virtual int getFixedPointIterations() const = 0; + /** @copybrief getFixedPointIterations @see getFixedPointIterations */ + CV_WRAP virtual void setFixedPointIterations(int val) = 0; + + /** @brief Number of inner successive over-relaxation (SOR) iterations + in the minimization procedure to solve the respective linear system. + @see setSorIterations */ + CV_WRAP virtual int getSorIterations() const = 0; + /** @copybrief getSorIterations @see getSorIterations */ + CV_WRAP virtual void setSorIterations(int val) = 0; + + /** @brief Relaxation factor in SOR + @see setOmega */ + CV_WRAP virtual float getOmega() const = 0; + /** @copybrief getOmega @see getOmega */ + CV_WRAP virtual void setOmega(float val) = 0; + + /** @brief Weight of the smoothness term + @see setAlpha */ + CV_WRAP virtual float getAlpha() const = 0; + /** @copybrief getAlpha @see getAlpha */ + CV_WRAP virtual void setAlpha(float val) = 0; + + /** @brief Weight of the color constancy term + @see setDelta */ + CV_WRAP virtual float getDelta() const = 0; + /** @copybrief getDelta @see getDelta */ + CV_WRAP virtual void setDelta(float val) = 0; + + /** @brief Weight of the gradient constancy term + @see setGamma */ + CV_WRAP virtual float getGamma() const = 0; + /** @copybrief getGamma @see getGamma */ + CV_WRAP virtual void setGamma(float val) = 0; +}; + +/** @brief Creates an instance of VariationalRefinement +*/ +CV_EXPORTS_W Ptr createVariationalFlowRefinement(); + +/** @brief DeepFlow optical flow algorithm implementation. + +The class implements the DeepFlow optical flow algorithm described in @cite Weinzaepfel2013 . See +also . +Parameters - class fields - that may be modified after creating a class instance: +- member float alpha +Smoothness assumption weight +- member float delta +Color constancy assumption weight +- member float gamma +Gradient constancy weight +- member float sigma +Gaussian smoothing parameter +- member int minSize +Minimal dimension of an image in the pyramid (next, smaller images in the pyramid are generated +until one of the dimensions reaches this size) +- member float downscaleFactor +Scaling factor in the image pyramid (must be \< 1) +- member int fixedPointIterations +How many iterations on each level of the pyramid +- member int sorIterations +Iterations of Succesive Over-Relaxation (solver) +- member float omega +Relaxation factor in SOR + */ +CV_EXPORTS_W Ptr createOptFlow_DeepFlow(); + +//! Additional interface to the SimpleFlow algorithm - calcOpticalFlowSF() +CV_EXPORTS_W Ptr createOptFlow_SimpleFlow(); + +//! Additional interface to the Farneback's algorithm - calcOpticalFlowFarneback() +CV_EXPORTS_W Ptr createOptFlow_Farneback(); + +//! Additional interface to the SparseToDenseFlow algorithm - calcOpticalFlowSparseToDense() +CV_EXPORTS_W Ptr createOptFlow_SparseToDense(); + +/** @brief DIS optical flow algorithm. + +This class implements the Dense Inverse Search (DIS) optical flow algorithm. More +details about the algorithm can be found at @cite Kroeger2016 . Includes three presets with preselected +parameters to provide reasonable trade-off between speed and quality. However, even the slowest preset is +still relatively fast, use DeepFlow if you need better quality and don't care about speed. + +This implementation includes several additional features compared to the algorithm described in the paper, +including spatial propagation of flow vectors (@ref getUseSpatialPropagation), as well as an option to +utilize an initial flow approximation passed to @ref calc (which is, essentially, temporal propagation, +if the previous frame's flow field is passed). +*/ +class CV_EXPORTS_W DISOpticalFlow : public DenseOpticalFlow +{ +public: + enum + { + PRESET_ULTRAFAST = 0, + PRESET_FAST = 1, + PRESET_MEDIUM = 2 + }; + + /** @brief Finest level of the Gaussian pyramid on which the flow is computed (zero level + corresponds to the original image resolution). The final flow is obtained by bilinear upscaling. + @see setFinestScale */ + CV_WRAP virtual int getFinestScale() const = 0; + /** @copybrief getFinestScale @see getFinestScale */ + CV_WRAP virtual void setFinestScale(int val) = 0; + + /** @brief Size of an image patch for matching (in pixels). Normally, default 8x8 patches work well + enough in most cases. + @see setPatchSize */ + CV_WRAP virtual int getPatchSize() const = 0; + /** @copybrief getPatchSize @see getPatchSize */ + CV_WRAP virtual void setPatchSize(int val) = 0; + + /** @brief Stride between neighbor patches. Must be less than patch size. Lower values correspond + to higher flow quality. + @see setPatchStride */ + CV_WRAP virtual int getPatchStride() const = 0; + /** @copybrief getPatchStride @see getPatchStride */ + CV_WRAP virtual void setPatchStride(int val) = 0; + + /** @brief Maximum number of gradient descent iterations in the patch inverse search stage. Higher values + may improve quality in some cases. + @see setGradientDescentIterations */ + CV_WRAP virtual int getGradientDescentIterations() const = 0; + /** @copybrief getGradientDescentIterations @see getGradientDescentIterations */ + CV_WRAP virtual void setGradientDescentIterations(int val) = 0; + + /** @brief Number of fixed point iterations of variational refinement per scale. Set to zero to + disable variational refinement completely. Higher values will typically result in more smooth and + high-quality flow. + @see setGradientDescentIterations */ + CV_WRAP virtual int getVariationalRefinementIterations() const = 0; + /** @copybrief getGradientDescentIterations @see getGradientDescentIterations */ + CV_WRAP virtual void setVariationalRefinementIterations(int val) = 0; + + /** @brief Weight of the smoothness term + @see setVariationalRefinementAlpha */ + CV_WRAP virtual float getVariationalRefinementAlpha() const = 0; + /** @copybrief getVariationalRefinementAlpha @see getVariationalRefinementAlpha */ + CV_WRAP virtual void setVariationalRefinementAlpha(float val) = 0; + + /** @brief Weight of the color constancy term + @see setVariationalRefinementDelta */ + CV_WRAP virtual float getVariationalRefinementDelta() const = 0; + /** @copybrief getVariationalRefinementDelta @see getVariationalRefinementDelta */ + CV_WRAP virtual void setVariationalRefinementDelta(float val) = 0; + + /** @brief Weight of the gradient constancy term + @see setVariationalRefinementGamma */ + CV_WRAP virtual float getVariationalRefinementGamma() const = 0; + /** @copybrief getVariationalRefinementGamma @see getVariationalRefinementGamma */ + CV_WRAP virtual void setVariationalRefinementGamma(float val) = 0; + + + /** @brief Whether to use mean-normalization of patches when computing patch distance. It is turned on + by default as it typically provides a noticeable quality boost because of increased robustness to + illumination variations. Turn it off if you are certain that your sequence doesn't contain any changes + in illumination. + @see setUseMeanNormalization */ + CV_WRAP virtual bool getUseMeanNormalization() const = 0; + /** @copybrief getUseMeanNormalization @see getUseMeanNormalization */ + CV_WRAP virtual void setUseMeanNormalization(bool val) = 0; + + /** @brief Whether to use spatial propagation of good optical flow vectors. This option is turned on by + default, as it tends to work better on average and can sometimes help recover from major errors + introduced by the coarse-to-fine scheme employed by the DIS optical flow algorithm. Turning this + option off can make the output flow field a bit smoother, however. + @see setUseSpatialPropagation */ + CV_WRAP virtual bool getUseSpatialPropagation() const = 0; + /** @copybrief getUseSpatialPropagation @see getUseSpatialPropagation */ + CV_WRAP virtual void setUseSpatialPropagation(bool val) = 0; +}; + +/** @brief Creates an instance of DISOpticalFlow + +@param preset one of PRESET_ULTRAFAST, PRESET_FAST and PRESET_MEDIUM +*/ +CV_EXPORTS_W Ptr createOptFlow_DIS(int preset = DISOpticalFlow::PRESET_FAST); + +//! @} + +} //optflow +} + +#include "opencv2/optflow/motempl.hpp" + +#endif diff --git a/thirdparty1/linux/include/opencv2/optflow/motempl.hpp b/thirdparty1/linux/include/opencv2/optflow/motempl.hpp new file mode 100644 index 0000000..aeea9e8 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/optflow/motempl.hpp @@ -0,0 +1,147 @@ +/* +By downloading, copying, installing or using the software you agree to this +license. If you do not agree to this license, do not download, install, +copy or use the software. + + + License Agreement + For Open Source Computer Vision Library + (3-clause BSD License) + +Copyright (C) 2013, OpenCV Foundation, all rights reserved. +Third party copyrights are property of their respective owners. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + + * Neither the names of the copyright holders nor the names of the contributors + may be used to endorse or promote products derived from this software + without specific prior written permission. + +This software is provided by the copyright holders and contributors "as is" and +any express or implied warranties, including, but not limited to, the implied +warranties of merchantability and fitness for a particular purpose are +disclaimed. In no event shall copyright holders or contributors be liable for +any direct, indirect, incidental, special, exemplary, or consequential damages +(including, but not limited to, procurement of substitute goods or services; +loss of use, data, or profits; or business interruption) however caused +and on any theory of liability, whether in contract, strict liability, +or tort (including negligence or otherwise) arising in any way out of +the use of this software, even if advised of the possibility of such damage. +*/ + +#ifndef __OPENCV_OPTFLOW_MOTEMPL_HPP__ +#define __OPENCV_OPTFLOW_MOTEMPL_HPP__ + +#include "opencv2/core.hpp" + +namespace cv +{ +namespace motempl +{ + +//! @addtogroup optflow +//! @{ + +/** @brief Updates the motion history image by a moving silhouette. + +@param silhouette Silhouette mask that has non-zero pixels where the motion occurs. +@param mhi Motion history image that is updated by the function (single-channel, 32-bit +floating-point). +@param timestamp Current time in milliseconds or other units. +@param duration Maximal duration of the motion track in the same units as timestamp . + +The function updates the motion history image as follows: + +\f[\texttt{mhi} (x,y)= \forkthree{\texttt{timestamp}}{if \(\texttt{silhouette}(x,y) \ne 0\)}{0}{if \(\texttt{silhouette}(x,y) = 0\) and \(\texttt{mhi} < (\texttt{timestamp} - \texttt{duration})\)}{\texttt{mhi}(x,y)}{otherwise}\f] + +That is, MHI pixels where the motion occurs are set to the current timestamp , while the pixels +where the motion happened last time a long time ago are cleared. + +The function, together with calcMotionGradient and calcGlobalOrientation , implements a motion +templates technique described in @cite Davis97 and @cite Bradski00 . + */ +CV_EXPORTS_W void updateMotionHistory( InputArray silhouette, InputOutputArray mhi, + double timestamp, double duration ); + +/** @brief Calculates a gradient orientation of a motion history image. + +@param mhi Motion history single-channel floating-point image. +@param mask Output mask image that has the type CV_8UC1 and the same size as mhi . Its non-zero +elements mark pixels where the motion gradient data is correct. +@param orientation Output motion gradient orientation image that has the same type and the same +size as mhi . Each pixel of the image is a motion orientation, from 0 to 360 degrees. +@param delta1 Minimal (or maximal) allowed difference between mhi values within a pixel +neighborhood. +@param delta2 Maximal (or minimal) allowed difference between mhi values within a pixel +neighborhood. That is, the function finds the minimum ( \f$m(x,y)\f$ ) and maximum ( \f$M(x,y)\f$ ) mhi +values over \f$3 \times 3\f$ neighborhood of each pixel and marks the motion orientation at \f$(x, y)\f$ +as valid only if +\f[\min ( \texttt{delta1} , \texttt{delta2} ) \le M(x,y)-m(x,y) \le \max ( \texttt{delta1} , \texttt{delta2} ).\f] +@param apertureSize Aperture size of the Sobel operator. + +The function calculates a gradient orientation at each pixel \f$(x, y)\f$ as: + +\f[\texttt{orientation} (x,y)= \arctan{\frac{d\texttt{mhi}/dy}{d\texttt{mhi}/dx}}\f] + +In fact, fastAtan2 and phase are used so that the computed angle is measured in degrees and covers +the full range 0..360. Also, the mask is filled to indicate pixels where the computed angle is +valid. + +@note + - (Python) An example on how to perform a motion template technique can be found at + opencv_source_code/samples/python2/motempl.py + */ +CV_EXPORTS_W void calcMotionGradient( InputArray mhi, OutputArray mask, OutputArray orientation, + double delta1, double delta2, int apertureSize = 3 ); + +/** @brief Calculates a global motion orientation in a selected region. + +@param orientation Motion gradient orientation image calculated by the function calcMotionGradient +@param mask Mask image. It may be a conjunction of a valid gradient mask, also calculated by +calcMotionGradient , and the mask of a region whose direction needs to be calculated. +@param mhi Motion history image calculated by updateMotionHistory . +@param timestamp Timestamp passed to updateMotionHistory . +@param duration Maximum duration of a motion track in milliseconds, passed to updateMotionHistory + +The function calculates an average motion direction in the selected region and returns the angle +between 0 degrees and 360 degrees. The average direction is computed from the weighted orientation +histogram, where a recent motion has a larger weight and the motion occurred in the past has a +smaller weight, as recorded in mhi . + */ +CV_EXPORTS_W double calcGlobalOrientation( InputArray orientation, InputArray mask, InputArray mhi, + double timestamp, double duration ); + +/** @brief Splits a motion history image into a few parts corresponding to separate independent motions (for +example, left hand, right hand). + +@param mhi Motion history image. +@param segmask Image where the found mask should be stored, single-channel, 32-bit floating-point. +@param boundingRects Vector containing ROIs of motion connected components. +@param timestamp Current time in milliseconds or other units. +@param segThresh Segmentation threshold that is recommended to be equal to the interval between +motion history "steps" or greater. + +The function finds all of the motion segments and marks them in segmask with individual values +(1,2,...). It also computes a vector with ROIs of motion connected components. After that the motion +direction for every component can be calculated with calcGlobalOrientation using the extracted mask +of the particular component. + */ +CV_EXPORTS_W void segmentMotion( InputArray mhi, OutputArray segmask, + CV_OUT std::vector& boundingRects, + double timestamp, double segThresh ); + + +//! @} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/optflow/pcaflow.hpp b/thirdparty1/linux/include/opencv2/optflow/pcaflow.hpp new file mode 100644 index 0000000..6645363 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/optflow/pcaflow.hpp @@ -0,0 +1,149 @@ +/* +By downloading, copying, installing or using the software you agree to this +license. If you do not agree to this license, do not download, install, +copy or use the software. + + + License Agreement + For Open Source Computer Vision Library + (3-clause BSD License) + +Copyright (C) 2016, OpenCV Foundation, all rights reserved. +Third party copyrights are property of their respective owners. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + + * Neither the names of the copyright holders nor the names of the contributors + may be used to endorse or promote products derived from this software + without specific prior written permission. + +This software is provided by the copyright holders and contributors "as is" and +any express or implied warranties, including, but not limited to, the implied +warranties of merchantability and fitness for a particular purpose are +disclaimed. In no event shall copyright holders or contributors be liable for +any direct, indirect, incidental, special, exemplary, or consequential damages +(including, but not limited to, procurement of substitute goods or services; +loss of use, data, or profits; or business interruption) however caused +and on any theory of liability, whether in contract, strict liability, +or tort (including negligence or otherwise) arising in any way out of +the use of this software, even if advised of the possibility of such damage. +*/ + +/** + * @file pcaflow.hpp + * @author Vladislav Samsonov + * @brief Implementation of the PCAFlow algorithm from the following paper: + * http://files.is.tue.mpg.de/black/papers/cvpr2015_pcaflow.pdf + * + * @cite Wulff:CVPR:2015 + * + * There are some key differences which distinguish this algorithm from the original PCAFlow (see paper): + * - Discrete Cosine Transform basis is used instead of basis extracted with PCA. + * Reasoning: DCT basis has comparable performance and it doesn't require additional storage space. + * Also, this decision helps to avoid overloading the algorithm with a lot of external input. + * - Usage of built-in OpenCV feature tracking instead of libviso. +*/ + +#ifndef __OPENCV_OPTFLOW_PCAFLOW_HPP__ +#define __OPENCV_OPTFLOW_PCAFLOW_HPP__ + +#include "opencv2/core.hpp" +#include "opencv2/video.hpp" + +namespace cv +{ +namespace optflow +{ + +//! @addtogroup optflow +//! @{ + +/** @brief + * This class can be used for imposing a learned prior on the resulting optical flow. + * Solution will be regularized according to this prior. + * You need to generate appropriate prior file with "learn_prior.py" script beforehand. + */ +class CV_EXPORTS_W PCAPrior +{ +private: + Mat L1; + Mat L2; + Mat c1; + Mat c2; + +public: + PCAPrior( const char *pathToPrior ); + + int getPadding() const { return L1.size().height; } + + int getBasisSize() const { return L1.size().width; } + + void fillConstraints( float *A1, float *A2, float *b1, float *b2 ) const; +}; + +/** @brief PCAFlow algorithm. + */ +class CV_EXPORTS_W OpticalFlowPCAFlow : public DenseOpticalFlow +{ +protected: + const Ptr prior; + const Size basisSize; + const float sparseRate; // (0 .. 0.1) + const float retainedCornersFraction; // [0 .. 1] + const float occlusionsThreshold; + const float dampingFactor; + const float claheClip; + bool useOpenCL; + +public: + /** @brief Creates an instance of PCAFlow algorithm. + * @param _prior Learned prior or no prior (default). @see cv::optflow::PCAPrior + * @param _basisSize Number of basis vectors. + * @param _sparseRate Controls density of sparse matches. + * @param _retainedCornersFraction Retained corners fraction. + * @param _occlusionsThreshold Occlusion threshold. + * @param _dampingFactor Regularization term for solving least-squares. It is not related to the prior regularization. + * @param _claheClip Clip parameter for CLAHE. + */ + OpticalFlowPCAFlow( Ptr _prior = Ptr(), const Size _basisSize = Size( 18, 14 ), + float _sparseRate = 0.024, float _retainedCornersFraction = 0.2, + float _occlusionsThreshold = 0.0003, float _dampingFactor = 0.00002, float _claheClip = 14 ); + + void calc( InputArray I0, InputArray I1, InputOutputArray flow ); + void collectGarbage(); + +private: + void findSparseFeatures( UMat &from, UMat &to, std::vector &features, + std::vector &predictedFeatures ) const; + + void removeOcclusions( UMat &from, UMat &to, std::vector &features, + std::vector &predictedFeatures ) const; + + void getSystem( OutputArray AOut, OutputArray b1Out, OutputArray b2Out, const std::vector &features, + const std::vector &predictedFeatures, const Size size ); + + void getSystem( OutputArray A1Out, OutputArray A2Out, OutputArray b1Out, OutputArray b2Out, + const std::vector &features, const std::vector &predictedFeatures, + const Size size ); + + OpticalFlowPCAFlow& operator=( const OpticalFlowPCAFlow& ); // make it non-assignable +}; + +/** @brief Creates an instance of PCAFlow +*/ +CV_EXPORTS_W Ptr createOptFlow_PCAFlow(); + +//! @} + +} +} + +#endif diff --git a/thirdparty1/linux/include/opencv2/optflow/sparse_matching_gpc.hpp b/thirdparty1/linux/include/opencv2/optflow/sparse_matching_gpc.hpp new file mode 100644 index 0000000..3127710 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/optflow/sparse_matching_gpc.hpp @@ -0,0 +1,380 @@ +/* +By downloading, copying, installing or using the software you agree to this +license. If you do not agree to this license, do not download, install, +copy or use the software. + + + License Agreement + For Open Source Computer Vision Library + (3-clause BSD License) + +Copyright (C) 2016, OpenCV Foundation, all rights reserved. +Third party copyrights are property of their respective owners. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + + * Neither the names of the copyright holders nor the names of the contributors + may be used to endorse or promote products derived from this software + without specific prior written permission. + +This software is provided by the copyright holders and contributors "as is" and +any express or implied warranties, including, but not limited to, the implied +warranties of merchantability and fitness for a particular purpose are +disclaimed. In no event shall copyright holders or contributors be liable for +any direct, indirect, incidental, special, exemplary, or consequential damages +(including, but not limited to, procurement of substitute goods or services; +loss of use, data, or profits; or business interruption) however caused +and on any theory of liability, whether in contract, strict liability, +or tort (including negligence or otherwise) arising in any way out of +the use of this software, even if advised of the possibility of such damage. +*/ + +/** + * @file sparse_matching_gpc.hpp + * @author Vladislav Samsonov + * @brief Implementation of the Global Patch Collider. + * + * Implementation of the Global Patch Collider algorithm from the following paper: + * http://research.microsoft.com/en-us/um/people/pkohli/papers/wfrik_cvpr2016.pdf + * + * @cite Wang_2016_CVPR + */ + +#ifndef __OPENCV_OPTFLOW_SPARSE_MATCHING_GPC_HPP__ +#define __OPENCV_OPTFLOW_SPARSE_MATCHING_GPC_HPP__ + +#include "opencv2/core.hpp" +#include "opencv2/core/hal/intrin.hpp" +#include "opencv2/imgproc.hpp" + +namespace cv +{ +namespace optflow +{ + +//! @addtogroup optflow +//! @{ + +struct CV_EXPORTS_W GPCPatchDescriptor +{ + static const unsigned nFeatures = 18; //!< number of features in a patch descriptor + Vec< double, nFeatures > feature; + + double dot( const Vec< double, nFeatures > &coef ) const; + + void markAsSeparated() { feature[0] = std::numeric_limits< double >::quiet_NaN(); } + + bool isSeparated() const { return cvIsNaN( feature[0] ) != 0; } +}; + +struct CV_EXPORTS_W GPCPatchSample +{ + GPCPatchDescriptor ref; + GPCPatchDescriptor pos; + GPCPatchDescriptor neg; + + void getDirections( bool &refdir, bool &posdir, bool &negdir, const Vec< double, GPCPatchDescriptor::nFeatures > &coef, double rhs ) const; +}; + +typedef std::vector< GPCPatchSample > GPCSamplesVector; + +/** @brief Descriptor types for the Global Patch Collider. + */ +enum GPCDescType +{ + GPC_DESCRIPTOR_DCT = 0, //!< Better quality but slow + GPC_DESCRIPTOR_WHT //!< Worse quality but much faster +}; + +/** @brief Class encapsulating training samples. + */ +class CV_EXPORTS_W GPCTrainingSamples +{ +private: + GPCSamplesVector samples; + int descriptorType; + +public: + /** @brief This function can be used to extract samples from a pair of images and a ground truth flow. + * Sizes of all the provided vectors must be equal. + */ + static Ptr< GPCTrainingSamples > create( const std::vector< String > &imagesFrom, const std::vector< String > &imagesTo, + const std::vector< String > >, int descriptorType ); + + static Ptr< GPCTrainingSamples > create( InputArrayOfArrays imagesFrom, InputArrayOfArrays imagesTo, InputArrayOfArrays gt, + int descriptorType ); + + size_t size() const { return samples.size(); } + + int type() const { return descriptorType; } + + operator GPCSamplesVector &() { return samples; } +}; + +/** @brief Class encapsulating training parameters. + */ +struct GPCTrainingParams +{ + unsigned maxTreeDepth; //!< Maximum tree depth to stop partitioning. + int minNumberOfSamples; //!< Minimum number of samples in the node to stop partitioning. + int descriptorType; //!< Type of descriptors to use. + bool printProgress; //!< Print progress to stdout. + + GPCTrainingParams( unsigned _maxTreeDepth = 20, int _minNumberOfSamples = 3, GPCDescType _descriptorType = GPC_DESCRIPTOR_DCT, + bool _printProgress = true ) + : maxTreeDepth( _maxTreeDepth ), minNumberOfSamples( _minNumberOfSamples ), descriptorType( _descriptorType ), + printProgress( _printProgress ) + { + CV_Assert( check() ); + } + + GPCTrainingParams( const GPCTrainingParams ¶ms ) + : maxTreeDepth( params.maxTreeDepth ), minNumberOfSamples( params.minNumberOfSamples ), descriptorType( params.descriptorType ), + printProgress( params.printProgress ) + { + CV_Assert( check() ); + } + + bool check() const { return maxTreeDepth > 1 && minNumberOfSamples > 1; } +}; + +/** @brief Class encapsulating matching parameters. + */ +struct GPCMatchingParams +{ + bool useOpenCL; //!< Whether to use OpenCL to speed up the matching. + + GPCMatchingParams( bool _useOpenCL = false ) : useOpenCL( _useOpenCL ) {} + + GPCMatchingParams( const GPCMatchingParams ¶ms ) : useOpenCL( params.useOpenCL ) {} +}; + +/** @brief Class for individual tree. + */ +class CV_EXPORTS_W GPCTree : public Algorithm +{ +public: + struct Node + { + Vec< double, GPCPatchDescriptor::nFeatures > coef; //!< Hyperplane coefficients + double rhs; //!< Bias term of the hyperplane + unsigned left; + unsigned right; + + bool operator==( const Node &n ) const { return coef == n.coef && rhs == n.rhs && left == n.left && right == n.right; } + }; + +private: + typedef GPCSamplesVector::iterator SIter; + + std::vector< Node > nodes; + GPCTrainingParams params; + + bool trainNode( size_t nodeId, SIter begin, SIter end, unsigned depth ); + +public: + void train( GPCTrainingSamples &samples, const GPCTrainingParams params = GPCTrainingParams() ); + + void write( FileStorage &fs ) const; + + void read( const FileNode &fn ); + + unsigned findLeafForPatch( const GPCPatchDescriptor &descr ) const; + + static Ptr< GPCTree > create() { return makePtr< GPCTree >(); } + + bool operator==( const GPCTree &t ) const { return nodes == t.nodes; } + + int getDescriptorType() const { return params.descriptorType; } +}; + +template < int T > class CV_EXPORTS_W GPCForest : public Algorithm +{ +private: + struct Trail + { + unsigned leaf[T]; //!< Inside which leaf of the tree 0..T the patch fell? + Point2i coord; //!< Patch coordinates. + + bool operator==( const Trail &trail ) const { return memcmp( leaf, trail.leaf, sizeof( leaf ) ) == 0; } + + bool operator<( const Trail &trail ) const + { + for ( int i = 0; i < T - 1; ++i ) + if ( leaf[i] != trail.leaf[i] ) + return leaf[i] < trail.leaf[i]; + return leaf[T - 1] < trail.leaf[T - 1]; + } + }; + + class ParallelTrailsFilling : public ParallelLoopBody + { + private: + const GPCForest *forest; + const std::vector< GPCPatchDescriptor > *descr; + std::vector< Trail > *trails; + + ParallelTrailsFilling &operator=( const ParallelTrailsFilling & ); + + public: + ParallelTrailsFilling( const GPCForest *_forest, const std::vector< GPCPatchDescriptor > *_descr, std::vector< Trail > *_trails ) + : forest( _forest ), descr( _descr ), trails( _trails ){}; + + void operator()( const Range &range ) const + { + for ( int t = range.start; t < range.end; ++t ) + for ( size_t i = 0; i < descr->size(); ++i ) + trails->at( i ).leaf[t] = forest->tree[t].findLeafForPatch( descr->at( i ) ); + } + }; + + GPCTree tree[T]; + +public: + /** @brief Train the forest using one sample set for every tree. + * Please, consider using the next method instead of this one for better quality. + */ + void train( GPCTrainingSamples &samples, const GPCTrainingParams params = GPCTrainingParams() ) + { + for ( int i = 0; i < T; ++i ) + tree[i].train( samples, params ); + } + + /** @brief Train the forest using individual samples for each tree. + * It is generally better to use this instead of the first method. + */ + void train( const std::vector< String > &imagesFrom, const std::vector< String > &imagesTo, const std::vector< String > >, + const GPCTrainingParams params = GPCTrainingParams() ) + { + for ( int i = 0; i < T; ++i ) + { + Ptr< GPCTrainingSamples > samples = + GPCTrainingSamples::create( imagesFrom, imagesTo, gt, params.descriptorType ); // Create training set for the tree + tree[i].train( *samples, params ); + } + } + + void train( InputArrayOfArrays imagesFrom, InputArrayOfArrays imagesTo, InputArrayOfArrays gt, + const GPCTrainingParams params = GPCTrainingParams() ) + { + for ( int i = 0; i < T; ++i ) + { + Ptr< GPCTrainingSamples > samples = + GPCTrainingSamples::create( imagesFrom, imagesTo, gt, params.descriptorType ); // Create training set for the tree + tree[i].train( *samples, params ); + } + } + + void write( FileStorage &fs ) const + { + fs << "ntrees" << T << "trees" + << "["; + for ( int i = 0; i < T; ++i ) + { + fs << "{"; + tree[i].write( fs ); + fs << "}"; + } + fs << "]"; + } + + void read( const FileNode &fn ) + { + CV_Assert( T <= (int)fn["ntrees"] ); + FileNodeIterator it = fn["trees"].begin(); + for ( int i = 0; i < T; ++i, ++it ) + tree[i].read( *it ); + } + + /** @brief Find correspondences between two images. + * @param[in] imgFrom First image in a sequence. + * @param[in] imgTo Second image in a sequence. + * @param[out] corr Output vector with pairs of corresponding points. + * @param[in] params Additional matching parameters for fine-tuning. + */ + void findCorrespondences( InputArray imgFrom, InputArray imgTo, std::vector< std::pair< Point2i, Point2i > > &corr, + const GPCMatchingParams params = GPCMatchingParams() ) const; + + static Ptr< GPCForest > create() { return makePtr< GPCForest >(); } +}; + +class CV_EXPORTS_W GPCDetails +{ +public: + static void dropOutliers( std::vector< std::pair< Point2i, Point2i > > &corr ); + + static void getAllDescriptorsForImage( const Mat *imgCh, std::vector< GPCPatchDescriptor > &descr, const GPCMatchingParams &mp, + int type ); + + static void getCoordinatesFromIndex( size_t index, Size sz, int &x, int &y ); +}; + +template < int T > +void GPCForest< T >::findCorrespondences( InputArray imgFrom, InputArray imgTo, std::vector< std::pair< Point2i, Point2i > > &corr, + const GPCMatchingParams params ) const +{ + CV_Assert( imgFrom.channels() == 3 ); + CV_Assert( imgTo.channels() == 3 ); + + Mat from, to; + imgFrom.getMat().convertTo( from, CV_32FC3 ); + imgTo.getMat().convertTo( to, CV_32FC3 ); + cvtColor( from, from, COLOR_BGR2YCrCb ); + cvtColor( to, to, COLOR_BGR2YCrCb ); + + Mat fromCh[3], toCh[3]; + split( from, fromCh ); + split( to, toCh ); + + std::vector< GPCPatchDescriptor > descr; + GPCDetails::getAllDescriptorsForImage( fromCh, descr, params, tree[0].getDescriptorType() ); + std::vector< Trail > trailsFrom( descr.size() ), trailsTo( descr.size() ); + + for ( size_t i = 0; i < descr.size(); ++i ) + GPCDetails::getCoordinatesFromIndex( i, from.size(), trailsFrom[i].coord.x, trailsFrom[i].coord.y ); + parallel_for_( Range( 0, T ), ParallelTrailsFilling( this, &descr, &trailsFrom ) ); + + descr.clear(); + GPCDetails::getAllDescriptorsForImage( toCh, descr, params, tree[0].getDescriptorType() ); + + for ( size_t i = 0; i < descr.size(); ++i ) + GPCDetails::getCoordinatesFromIndex( i, to.size(), trailsTo[i].coord.x, trailsTo[i].coord.y ); + parallel_for_( Range( 0, T ), ParallelTrailsFilling( this, &descr, &trailsTo ) ); + + std::sort( trailsFrom.begin(), trailsFrom.end() ); + std::sort( trailsTo.begin(), trailsTo.end() ); + + for ( size_t i = 0; i < trailsFrom.size(); ++i ) + { + bool uniq = true; + while ( i + 1 < trailsFrom.size() && trailsFrom[i] == trailsFrom[i + 1] ) + ++i, uniq = false; + if ( uniq ) + { + typename std::vector< Trail >::const_iterator lb = std::lower_bound( trailsTo.begin(), trailsTo.end(), trailsFrom[i] ); + if ( lb != trailsTo.end() && *lb == trailsFrom[i] && ( ( lb + 1 ) == trailsTo.end() || !( *lb == *( lb + 1 ) ) ) ) + corr.push_back( std::make_pair( trailsFrom[i].coord, lb->coord ) ); + } + } + + GPCDetails::dropOutliers( corr ); +} + +//! @} + +} // namespace optflow + +CV_EXPORTS void write( FileStorage &fs, const String &name, const optflow::GPCTree::Node &node ); + +CV_EXPORTS void read( const FileNode &fn, optflow::GPCTree::Node &node, optflow::GPCTree::Node ); +} // namespace cv + +#endif diff --git a/thirdparty1/linux/include/opencv2/phase_unwrapping.hpp b/thirdparty1/linux/include/opencv2/phase_unwrapping.hpp new file mode 100644 index 0000000..0e15e71 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/phase_unwrapping.hpp @@ -0,0 +1,61 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// + // + // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. + // + // By downloading, copying, installing or using the software you agree to this license. + // If you do not agree to this license, do not download, install, + // copy or use the software. + // + // + // License Agreement + // For Open Source Computer Vision Library + // + // Copyright (C) 2015, OpenCV Foundation, all rights reserved. + // Third party copyrights are property of their respective owners. + // + // Redistribution and use in source and binary forms, with or without modification, + // are permitted provided that the following conditions are met: + // + // * Redistribution's of source code must retain the above copyright notice, + // this list of conditions and the following disclaimer. + // + // * Redistribution's in binary form must reproduce the above copyright notice, + // this list of conditions and the following disclaimer in the documentation + // and/or other materials provided with the distribution. + // + // * The name of the copyright holders may not be used to endorse or promote products + // derived from this software without specific prior written permission. + // + // This software is provided by the copyright holders and contributors "as is" and + // any express or implied warranties, including, but not limited to, the implied + // warranties of merchantability and fitness for a particular purpose are disclaimed. + // In no event shall the Intel Corporation or contributors be liable for any direct, + // indirect, incidental, special, exemplary, or consequential damages + // (including, but not limited to, procurement of substitute goods or services; + // loss of use, data, or profits; or business interruption) however caused + // and on any theory of liability, whether in contract, strict liability, + // or tort (including negligence or otherwise) arising in any way out of + // the use of this software, even if advised of the possibility of such damage. + // + //M*/ + +#include "opencv2/phase_unwrapping/phase_unwrapping.hpp" +#include "opencv2/phase_unwrapping/histogramphaseunwrapping.hpp" + +/** @defgroup phase_unwrapping Phase Unwrapping API + +Two-dimensional phase unwrapping is found in different applications like terrain elevation estimation +in synthetic aperture radar (SAR), field mapping in magnetic resonance imaging or as a way of finding +corresponding pixels in structured light reconstruction with sinusoidal patterns. + +Given a phase map, wrapped between [-pi; pi], phase unwrapping aims at finding the "true" phase map +by adding the right number of 2*pi to each pixel. + +The problem is straightforward for perfect wrapped phase map, but real data are usually not noise-free. +Among the different algorithms that were developed, quality-guided phase unwrapping methods are fast +and efficient. They follow a path that unwraps high quality pixels first, +avoiding error propagation from the start. + +In this module, a quality-guided phase unwrapping is implemented following the approach described in @cite histogramUnwrapping . + +*/ \ No newline at end of file diff --git a/thirdparty1/linux/include/opencv2/phase_unwrapping/histogramphaseunwrapping.hpp b/thirdparty1/linux/include/opencv2/phase_unwrapping/histogramphaseunwrapping.hpp new file mode 100644 index 0000000..e75d889 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/phase_unwrapping/histogramphaseunwrapping.hpp @@ -0,0 +1,107 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// + // + // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. + // + // By downloading, copying, installing or using the software you agree to this license. + // If you do not agree to this license, do not download, install, + // copy or use the software. + // + // + // License Agreement + // For Open Source Computer Vision Library + // + // Copyright (C) 2015, OpenCV Foundation, all rights reserved. + // Third party copyrights are property of their respective owners. + // + // Redistribution and use in source and binary forms, with or without modification, + // are permitted provided that the following conditions are met: + // + // * Redistribution's of source code must retain the above copyright notice, + // this list of conditions and the following disclaimer. + // + // * Redistribution's in binary form must reproduce the above copyright notice, + // this list of conditions and the following disclaimer in the documentation + // and/or other materials provided with the distribution. + // + // * The name of the copyright holders may not be used to endorse or promote products + // derived from this software without specific prior written permission. + // + // This software is provided by the copyright holders and contributors "as is" and + // any express or implied warranties, including, but not limited to, the implied + // warranties of merchantability and fitness for a particular purpose are disclaimed. + // In no event shall the Intel Corporation or contributors be liable for any direct, + // indirect, incidental, special, exemplary, or consequential damages + // (including, but not limited to, procurement of substitute goods or services; + // loss of use, data, or profits; or business interruption) however caused + // and on any theory of liability, whether in contract, strict liability, + // or tort (including negligence or otherwise) arising in any way out of + // the use of this software, even if advised of the possibility of such damage. + // + //M*/ + +#ifndef __OPENCV_HISTOGRAM_PHASE_UNWRAPPING_HPP__ +#define __OPENCV_HISTOGRAM_PHASE_UNWRAPPING_HPP__ + +#include "opencv2/core.hpp" +#include +#include "opencv2/phase_unwrapping/phase_unwrapping.hpp" + +namespace cv { +namespace phase_unwrapping { +//! @addtogroup phase_unwrapping +//! @{ + + /** @brief Class implementing two-dimensional phase unwrapping based on @cite histogramUnwrapping + * This algorithm belongs to the quality-guided phase unwrapping methods. + * First, it computes a reliability map from second differences between a pixel and its eight neighbours. + * Reliability values lie between 0 and 16*pi*pi. Then, this reliability map is used to compute + * the reliabilities of "edges". An edge is an entity defined by two pixels that are connected + * horizontally or vertically. Its reliability is found by adding the the reliabilities of the + * two pixels connected through it. Edges are sorted in a histogram based on their reliability values. + * This histogram is then used to unwrap pixels, starting from the highest quality pixel. + + * The wrapped phase map and the unwrapped result are stored in CV_32FC1 Mat. + */ +class CV_EXPORTS_W HistogramPhaseUnwrapping : public PhaseUnwrapping +{ + +public: + /** + * @brief Parameters of phaseUnwrapping constructor. + + * @param width Phase map width. + * @param height Phase map height. + * @param histThresh Bins in the histogram are not of equal size. Default value is 3*pi*pi. The one before "histThresh" value are smaller. + * @param nbrOfSmallBins Number of bins between 0 and "histThresh". Default value is 10. + * @param nbrOfLargeBins Number of bins between "histThresh" and 32*pi*pi (highest edge reliability value). Default value is 5. + */ + struct CV_EXPORTS Params + { + Params(); + int width; + int height; + float histThresh; + int nbrOfSmallBins; + int nbrOfLargeBins; + }; + /** + * @brief Constructor + + * @param parameters HistogramPhaseUnwrapping parameters HistogramPhaseUnwrapping::Params: width,height of the phase map and histogram characteristics. + */ + static Ptr create( const HistogramPhaseUnwrapping::Params ¶meters = + HistogramPhaseUnwrapping::Params() ); + + /** + * @brief Get the reliability map computed from the wrapped phase map. + + * @param reliabilityMap Image where the reliability map is stored. + */ + CV_WRAP + virtual void getInverseReliabilityMap( OutputArray reliabilityMap ) = 0; +}; + +//! @} +} +} +#endif \ No newline at end of file diff --git a/thirdparty1/linux/include/opencv2/phase_unwrapping/phase_unwrapping.hpp b/thirdparty1/linux/include/opencv2/phase_unwrapping/phase_unwrapping.hpp new file mode 100644 index 0000000..5b5cb51 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/phase_unwrapping/phase_unwrapping.hpp @@ -0,0 +1,74 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// + // + // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. + // + // By downloading, copying, installing or using the software you agree to this license. + // If you do not agree to this license, do not download, install, + // copy or use the software. + // + // + // License Agreement + // For Open Source Computer Vision Library + // + // Copyright (C) 2015, OpenCV Foundation, all rights reserved. + // Third party copyrights are property of their respective owners. + // + // Redistribution and use in source and binary forms, with or without modification, + // are permitted provided that the following conditions are met: + // + // * Redistribution's of source code must retain the above copyright notice, + // this list of conditions and the following disclaimer. + // + // * Redistribution's in binary form must reproduce the above copyright notice, + // this list of conditions and the following disclaimer in the documentation + // and/or other materials provided with the distribution. + // + // * The name of the copyright holders may not be used to endorse or promote products + // derived from this software without specific prior written permission. + // + // This software is provided by the copyright holders and contributors "as is" and + // any express or implied warranties, including, but not limited to, the implied + // warranties of merchantability and fitness for a particular purpose are disclaimed. + // In no event shall the Intel Corporation or contributors be liable for any direct, + // indirect, incidental, special, exemplary, or consequential damages + // (including, but not limited to, procurement of substitute goods or services; + // loss of use, data, or profits; or business interruption) however caused + // and on any theory of liability, whether in contract, strict liability, + // or tort (including negligence or otherwise) arising in any way out of + // the use of this software, even if advised of the possibility of such damage. + // + //M*/ + +#ifndef __OPENCV_PHASE_UNWRAPPING_HPP__ +#define __OPENCV_PHASE_UNWRAPPING_HPP__ + +#include "opencv2/core.hpp" + +namespace cv { +namespace phase_unwrapping { +//! @addtogroup phase_unwrapping +//! @{ + + /** + @brief Abstract base class for phase unwrapping. + */ +class CV_EXPORTS_W PhaseUnwrapping : public virtual Algorithm +{ +public: + /** + * @brief Unwraps a 2D phase map. + + * @param wrappedPhaseMap The wrapped phase map that needs to be unwrapped. + * @param unwrappedPhaseMap The unwrapped phase map. + * @param shadowMask Optional parameter used when some pixels do not hold any phase information in the wrapped phase map. + */ + CV_WRAP + virtual void unwrapPhaseMap( InputArray wrappedPhaseMap, OutputArray unwrappedPhaseMap, + InputArray shadowMask = noArray() ) = 0; + +}; + +//! @} +} +} +#endif \ No newline at end of file diff --git a/thirdparty1/linux/include/opencv2/photo.hpp b/thirdparty1/linux/include/opencv2/photo.hpp new file mode 100644 index 0000000..a445dd3 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/photo.hpp @@ -0,0 +1,870 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_PHOTO_HPP +#define OPENCV_PHOTO_HPP + +#include "opencv2/core.hpp" +#include "opencv2/imgproc.hpp" + +/** +@defgroup photo Computational Photography +@{ + @defgroup photo_denoise Denoising + @defgroup photo_hdr HDR imaging + +This section describes high dynamic range imaging algorithms namely tonemapping, exposure alignment, +camera calibration with multiple exposures and exposure fusion. + + @defgroup photo_clone Seamless Cloning + @defgroup photo_render Non-Photorealistic Rendering + @defgroup photo_c C API +@} + */ + +namespace cv +{ + +//! @addtogroup photo +//! @{ + +//! the inpainting algorithm +enum +{ + INPAINT_NS = 0, // Navier-Stokes algorithm + INPAINT_TELEA = 1 // A. Telea algorithm +}; + +enum +{ + NORMAL_CLONE = 1, + MIXED_CLONE = 2, + MONOCHROME_TRANSFER = 3 +}; + +enum +{ + RECURS_FILTER = 1, + NORMCONV_FILTER = 2 +}; + +/** @brief Restores the selected region in an image using the region neighborhood. + +@param src Input 8-bit 1-channel or 3-channel image. +@param inpaintMask Inpainting mask, 8-bit 1-channel image. Non-zero pixels indicate the area that +needs to be inpainted. +@param dst Output image with the same size and type as src . +@param inpaintRadius Radius of a circular neighborhood of each point inpainted that is considered +by the algorithm. +@param flags Inpainting method that could be one of the following: +- **INPAINT_NS** Navier-Stokes based method [Navier01] +- **INPAINT_TELEA** Method by Alexandru Telea @cite Telea04 . + +The function reconstructs the selected image area from the pixel near the area boundary. The +function may be used to remove dust and scratches from a scanned photo, or to remove undesirable +objects from still images or video. See for more details. + +@note + - An example using the inpainting technique can be found at + opencv_source_code/samples/cpp/inpaint.cpp + - (Python) An example using the inpainting technique can be found at + opencv_source_code/samples/python/inpaint.py + */ +CV_EXPORTS_W void inpaint( InputArray src, InputArray inpaintMask, + OutputArray dst, double inpaintRadius, int flags ); + +//! @addtogroup photo_denoise +//! @{ + +/** @brief Perform image denoising using Non-local Means Denoising algorithm + with several computational +optimizations. Noise expected to be a gaussian white noise + +@param src Input 8-bit 1-channel, 2-channel, 3-channel or 4-channel image. +@param dst Output image with the same size and type as src . +@param templateWindowSize Size in pixels of the template patch that is used to compute weights. +Should be odd. Recommended value 7 pixels +@param searchWindowSize Size in pixels of the window that is used to compute weighted average for +given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater +denoising time. Recommended value 21 pixels +@param h Parameter regulating filter strength. Big h value perfectly removes noise but also +removes image details, smaller h value preserves details but also preserves some noise + +This function expected to be applied to grayscale images. For colored images look at +fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored +image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting +image to CIELAB colorspace and then separately denoise L and AB components with different h +parameter. + */ +CV_EXPORTS_W void fastNlMeansDenoising( InputArray src, OutputArray dst, float h = 3, + int templateWindowSize = 7, int searchWindowSize = 21); + +/** @brief Perform image denoising using Non-local Means Denoising algorithm + with several computational +optimizations. Noise expected to be a gaussian white noise + +@param src Input 8-bit or 16-bit (only with NORM_L1) 1-channel, +2-channel, 3-channel or 4-channel image. +@param dst Output image with the same size and type as src . +@param templateWindowSize Size in pixels of the template patch that is used to compute weights. +Should be odd. Recommended value 7 pixels +@param searchWindowSize Size in pixels of the window that is used to compute weighted average for +given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater +denoising time. Recommended value 21 pixels +@param h Array of parameters regulating filter strength, either one +parameter applied to all channels or one per channel in dst. Big h value +perfectly removes noise but also removes image details, smaller h +value preserves details but also preserves some noise +@param normType Type of norm used for weight calculation. Can be either NORM_L2 or NORM_L1 + +This function expected to be applied to grayscale images. For colored images look at +fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored +image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting +image to CIELAB colorspace and then separately denoise L and AB components with different h +parameter. + */ +CV_EXPORTS_W void fastNlMeansDenoising( InputArray src, OutputArray dst, + const std::vector& h, + int templateWindowSize = 7, int searchWindowSize = 21, + int normType = NORM_L2); + +/** @brief Modification of fastNlMeansDenoising function for colored images + +@param src Input 8-bit 3-channel image. +@param dst Output image with the same size and type as src . +@param templateWindowSize Size in pixels of the template patch that is used to compute weights. +Should be odd. Recommended value 7 pixels +@param searchWindowSize Size in pixels of the window that is used to compute weighted average for +given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater +denoising time. Recommended value 21 pixels +@param h Parameter regulating filter strength for luminance component. Bigger h value perfectly +removes noise but also removes image details, smaller h value preserves details but also preserves +some noise +@param hColor The same as h but for color components. For most images value equals 10 +will be enough to remove colored noise and do not distort colors + +The function converts image to CIELAB colorspace and then separately denoise L and AB components +with given h parameters using fastNlMeansDenoising function. + */ +CV_EXPORTS_W void fastNlMeansDenoisingColored( InputArray src, OutputArray dst, + float h = 3, float hColor = 3, + int templateWindowSize = 7, int searchWindowSize = 21); + +/** @brief Modification of fastNlMeansDenoising function for images sequence where consequtive images have been +captured in small period of time. For example video. This version of the function is for grayscale +images or for manual manipulation with colorspaces. For more details see + + +@param srcImgs Input 8-bit 1-channel, 2-channel, 3-channel or +4-channel images sequence. All images should have the same type and +size. +@param imgToDenoiseIndex Target image to denoise index in srcImgs sequence +@param temporalWindowSize Number of surrounding images to use for target image denoising. Should +be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to +imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise +srcImgs[imgToDenoiseIndex] image. +@param dst Output image with the same size and type as srcImgs images. +@param templateWindowSize Size in pixels of the template patch that is used to compute weights. +Should be odd. Recommended value 7 pixels +@param searchWindowSize Size in pixels of the window that is used to compute weighted average for +given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater +denoising time. Recommended value 21 pixels +@param h Parameter regulating filter strength. Bigger h value +perfectly removes noise but also removes image details, smaller h +value preserves details but also preserves some noise + */ +CV_EXPORTS_W void fastNlMeansDenoisingMulti( InputArrayOfArrays srcImgs, OutputArray dst, + int imgToDenoiseIndex, int temporalWindowSize, + float h = 3, int templateWindowSize = 7, int searchWindowSize = 21); + +/** @brief Modification of fastNlMeansDenoising function for images sequence where consequtive images have been +captured in small period of time. For example video. This version of the function is for grayscale +images or for manual manipulation with colorspaces. For more details see + + +@param srcImgs Input 8-bit or 16-bit (only with NORM_L1) 1-channel, +2-channel, 3-channel or 4-channel images sequence. All images should +have the same type and size. +@param imgToDenoiseIndex Target image to denoise index in srcImgs sequence +@param temporalWindowSize Number of surrounding images to use for target image denoising. Should +be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to +imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise +srcImgs[imgToDenoiseIndex] image. +@param dst Output image with the same size and type as srcImgs images. +@param templateWindowSize Size in pixels of the template patch that is used to compute weights. +Should be odd. Recommended value 7 pixels +@param searchWindowSize Size in pixels of the window that is used to compute weighted average for +given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater +denoising time. Recommended value 21 pixels +@param h Array of parameters regulating filter strength, either one +parameter applied to all channels or one per channel in dst. Big h value +perfectly removes noise but also removes image details, smaller h +value preserves details but also preserves some noise +@param normType Type of norm used for weight calculation. Can be either NORM_L2 or NORM_L1 + */ +CV_EXPORTS_W void fastNlMeansDenoisingMulti( InputArrayOfArrays srcImgs, OutputArray dst, + int imgToDenoiseIndex, int temporalWindowSize, + const std::vector& h, + int templateWindowSize = 7, int searchWindowSize = 21, + int normType = NORM_L2); + +/** @brief Modification of fastNlMeansDenoisingMulti function for colored images sequences + +@param srcImgs Input 8-bit 3-channel images sequence. All images should have the same type and +size. +@param imgToDenoiseIndex Target image to denoise index in srcImgs sequence +@param temporalWindowSize Number of surrounding images to use for target image denoising. Should +be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to +imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise +srcImgs[imgToDenoiseIndex] image. +@param dst Output image with the same size and type as srcImgs images. +@param templateWindowSize Size in pixels of the template patch that is used to compute weights. +Should be odd. Recommended value 7 pixels +@param searchWindowSize Size in pixels of the window that is used to compute weighted average for +given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater +denoising time. Recommended value 21 pixels +@param h Parameter regulating filter strength for luminance component. Bigger h value perfectly +removes noise but also removes image details, smaller h value preserves details but also preserves +some noise. +@param hColor The same as h but for color components. + +The function converts images to CIELAB colorspace and then separately denoise L and AB components +with given h parameters using fastNlMeansDenoisingMulti function. + */ +CV_EXPORTS_W void fastNlMeansDenoisingColoredMulti( InputArrayOfArrays srcImgs, OutputArray dst, + int imgToDenoiseIndex, int temporalWindowSize, + float h = 3, float hColor = 3, + int templateWindowSize = 7, int searchWindowSize = 21); + +/** @brief Primal-dual algorithm is an algorithm for solving special types of variational problems (that is, +finding a function to minimize some functional). As the image denoising, in particular, may be seen +as the variational problem, primal-dual algorithm then can be used to perform denoising and this is +exactly what is implemented. + +It should be noted, that this implementation was taken from the July 2013 blog entry +@cite MA13 , which also contained (slightly more general) ready-to-use source code on Python. +Subsequently, that code was rewritten on C++ with the usage of openCV by Vadim Pisarevsky at the end +of July 2013 and finally it was slightly adapted by later authors. + +Although the thorough discussion and justification of the algorithm involved may be found in +@cite ChambolleEtAl, it might make sense to skim over it here, following @cite MA13 . To begin +with, we consider the 1-byte gray-level images as the functions from the rectangular domain of +pixels (it may be seen as set +\f$\left\{(x,y)\in\mathbb{N}\times\mathbb{N}\mid 1\leq x\leq n,\;1\leq y\leq m\right\}\f$ for some +\f$m,\;n\in\mathbb{N}\f$) into \f$\{0,1,\dots,255\}\f$. We shall denote the noised images as \f$f_i\f$ and with +this view, given some image \f$x\f$ of the same size, we may measure how bad it is by the formula + +\f[\left\|\left\|\nabla x\right\|\right\| + \lambda\sum_i\left\|\left\|x-f_i\right\|\right\|\f] + +\f$\|\|\cdot\|\|\f$ here denotes \f$L_2\f$-norm and as you see, the first addend states that we want our +image to be smooth (ideally, having zero gradient, thus being constant) and the second states that +we want our result to be close to the observations we've got. If we treat \f$x\f$ as a function, this is +exactly the functional what we seek to minimize and here the Primal-Dual algorithm comes into play. + +@param observations This array should contain one or more noised versions of the image that is to +be restored. +@param result Here the denoised image will be stored. There is no need to do pre-allocation of +storage space, as it will be automatically allocated, if necessary. +@param lambda Corresponds to \f$\lambda\f$ in the formulas above. As it is enlarged, the smooth +(blurred) images are treated more favorably than detailed (but maybe more noised) ones. Roughly +speaking, as it becomes smaller, the result will be more blur but more sever outliers will be +removed. +@param niters Number of iterations that the algorithm will run. Of course, as more iterations as +better, but it is hard to quantitatively refine this statement, so just use the default and +increase it if the results are poor. + */ +CV_EXPORTS_W void denoise_TVL1(const std::vector& observations,Mat& result, double lambda=1.0, int niters=30); + +//! @} photo_denoise + +//! @addtogroup photo_hdr +//! @{ + +enum { LDR_SIZE = 256 }; + +/** @brief Base class for tonemapping algorithms - tools that are used to map HDR image to 8-bit range. + */ +class CV_EXPORTS_W Tonemap : public Algorithm +{ +public: + /** @brief Tonemaps image + + @param src source image - 32-bit 3-channel Mat + @param dst destination image - 32-bit 3-channel Mat with values in [0, 1] range + */ + CV_WRAP virtual void process(InputArray src, OutputArray dst) = 0; + + CV_WRAP virtual float getGamma() const = 0; + CV_WRAP virtual void setGamma(float gamma) = 0; +}; + +/** @brief Creates simple linear mapper with gamma correction + +@param gamma positive value for gamma correction. Gamma value of 1.0 implies no correction, gamma +equal to 2.2f is suitable for most displays. +Generally gamma \> 1 brightens the image and gamma \< 1 darkens it. + */ +CV_EXPORTS_W Ptr createTonemap(float gamma = 1.0f); + +/** @brief Adaptive logarithmic mapping is a fast global tonemapping algorithm that scales the image in +logarithmic domain. + +Since it's a global operator the same function is applied to all the pixels, it is controlled by the +bias parameter. + +Optional saturation enhancement is possible as described in @cite FL02 . + +For more information see @cite DM03 . + */ +class CV_EXPORTS_W TonemapDrago : public Tonemap +{ +public: + + CV_WRAP virtual float getSaturation() const = 0; + CV_WRAP virtual void setSaturation(float saturation) = 0; + + CV_WRAP virtual float getBias() const = 0; + CV_WRAP virtual void setBias(float bias) = 0; +}; + +/** @brief Creates TonemapDrago object + +@param gamma gamma value for gamma correction. See createTonemap +@param saturation positive saturation enhancement value. 1.0 preserves saturation, values greater +than 1 increase saturation and values less than 1 decrease it. +@param bias value for bias function in [0, 1] range. Values from 0.7 to 0.9 usually give best +results, default value is 0.85. + */ +CV_EXPORTS_W Ptr createTonemapDrago(float gamma = 1.0f, float saturation = 1.0f, float bias = 0.85f); + +/** @brief This algorithm decomposes image into two layers: base layer and detail layer using bilateral filter +and compresses contrast of the base layer thus preserving all the details. + +This implementation uses regular bilateral filter from opencv. + +Saturation enhancement is possible as in ocvTonemapDrago. + +For more information see @cite DD02 . + */ +class CV_EXPORTS_W TonemapDurand : public Tonemap +{ +public: + + CV_WRAP virtual float getSaturation() const = 0; + CV_WRAP virtual void setSaturation(float saturation) = 0; + + CV_WRAP virtual float getContrast() const = 0; + CV_WRAP virtual void setContrast(float contrast) = 0; + + CV_WRAP virtual float getSigmaSpace() const = 0; + CV_WRAP virtual void setSigmaSpace(float sigma_space) = 0; + + CV_WRAP virtual float getSigmaColor() const = 0; + CV_WRAP virtual void setSigmaColor(float sigma_color) = 0; +}; + +/** @brief Creates TonemapDurand object + +@param gamma gamma value for gamma correction. See createTonemap +@param contrast resulting contrast on logarithmic scale, i. e. log(max / min), where max and min +are maximum and minimum luminance values of the resulting image. +@param saturation saturation enhancement value. See createTonemapDrago +@param sigma_space bilateral filter sigma in color space +@param sigma_color bilateral filter sigma in coordinate space + */ +CV_EXPORTS_W Ptr +createTonemapDurand(float gamma = 1.0f, float contrast = 4.0f, float saturation = 1.0f, float sigma_space = 2.0f, float sigma_color = 2.0f); + +/** @brief This is a global tonemapping operator that models human visual system. + +Mapping function is controlled by adaptation parameter, that is computed using light adaptation and +color adaptation. + +For more information see @cite RD05 . + */ +class CV_EXPORTS_W TonemapReinhard : public Tonemap +{ +public: + CV_WRAP virtual float getIntensity() const = 0; + CV_WRAP virtual void setIntensity(float intensity) = 0; + + CV_WRAP virtual float getLightAdaptation() const = 0; + CV_WRAP virtual void setLightAdaptation(float light_adapt) = 0; + + CV_WRAP virtual float getColorAdaptation() const = 0; + CV_WRAP virtual void setColorAdaptation(float color_adapt) = 0; +}; + +/** @brief Creates TonemapReinhard object + +@param gamma gamma value for gamma correction. See createTonemap +@param intensity result intensity in [-8, 8] range. Greater intensity produces brighter results. +@param light_adapt light adaptation in [0, 1] range. If 1 adaptation is based only on pixel +value, if 0 it's global, otherwise it's a weighted mean of this two cases. +@param color_adapt chromatic adaptation in [0, 1] range. If 1 channels are treated independently, +if 0 adaptation level is the same for each channel. + */ +CV_EXPORTS_W Ptr +createTonemapReinhard(float gamma = 1.0f, float intensity = 0.0f, float light_adapt = 1.0f, float color_adapt = 0.0f); + +/** @brief This algorithm transforms image to contrast using gradients on all levels of gaussian pyramid, +transforms contrast values to HVS response and scales the response. After this the image is +reconstructed from new contrast values. + +For more information see @cite MM06 . + */ +class CV_EXPORTS_W TonemapMantiuk : public Tonemap +{ +public: + CV_WRAP virtual float getScale() const = 0; + CV_WRAP virtual void setScale(float scale) = 0; + + CV_WRAP virtual float getSaturation() const = 0; + CV_WRAP virtual void setSaturation(float saturation) = 0; +}; + +/** @brief Creates TonemapMantiuk object + +@param gamma gamma value for gamma correction. See createTonemap +@param scale contrast scale factor. HVS response is multiplied by this parameter, thus compressing +dynamic range. Values from 0.6 to 0.9 produce best results. +@param saturation saturation enhancement value. See createTonemapDrago + */ +CV_EXPORTS_W Ptr +createTonemapMantiuk(float gamma = 1.0f, float scale = 0.7f, float saturation = 1.0f); + +/** @brief The base class for algorithms that align images of the same scene with different exposures + */ +class CV_EXPORTS_W AlignExposures : public Algorithm +{ +public: + /** @brief Aligns images + + @param src vector of input images + @param dst vector of aligned images + @param times vector of exposure time values for each image + @param response 256x1 matrix with inverse camera response function for each pixel value, it should + have the same number of channels as images. + */ + CV_WRAP virtual void process(InputArrayOfArrays src, std::vector& dst, + InputArray times, InputArray response) = 0; +}; + +/** @brief This algorithm converts images to median threshold bitmaps (1 for pixels brighter than median +luminance and 0 otherwise) and than aligns the resulting bitmaps using bit operations. + +It is invariant to exposure, so exposure values and camera response are not necessary. + +In this implementation new image regions are filled with zeros. + +For more information see @cite GW03 . + */ +class CV_EXPORTS_W AlignMTB : public AlignExposures +{ +public: + CV_WRAP virtual void process(InputArrayOfArrays src, std::vector& dst, + InputArray times, InputArray response) = 0; + + /** @brief Short version of process, that doesn't take extra arguments. + + @param src vector of input images + @param dst vector of aligned images + */ + CV_WRAP virtual void process(InputArrayOfArrays src, std::vector& dst) = 0; + + /** @brief Calculates shift between two images, i. e. how to shift the second image to correspond it with the + first. + + @param img0 first image + @param img1 second image + */ + CV_WRAP virtual Point calculateShift(InputArray img0, InputArray img1) = 0; + /** @brief Helper function, that shift Mat filling new regions with zeros. + + @param src input image + @param dst result image + @param shift shift value + */ + CV_WRAP virtual void shiftMat(InputArray src, OutputArray dst, const Point shift) = 0; + /** @brief Computes median threshold and exclude bitmaps of given image. + + @param img input image + @param tb median threshold bitmap + @param eb exclude bitmap + */ + CV_WRAP virtual void computeBitmaps(InputArray img, OutputArray tb, OutputArray eb) = 0; + + CV_WRAP virtual int getMaxBits() const = 0; + CV_WRAP virtual void setMaxBits(int max_bits) = 0; + + CV_WRAP virtual int getExcludeRange() const = 0; + CV_WRAP virtual void setExcludeRange(int exclude_range) = 0; + + CV_WRAP virtual bool getCut() const = 0; + CV_WRAP virtual void setCut(bool value) = 0; +}; + +/** @brief Creates AlignMTB object + +@param max_bits logarithm to the base 2 of maximal shift in each dimension. Values of 5 and 6 are +usually good enough (31 and 63 pixels shift respectively). +@param exclude_range range for exclusion bitmap that is constructed to suppress noise around the +median value. +@param cut if true cuts images, otherwise fills the new regions with zeros. + */ +CV_EXPORTS_W Ptr createAlignMTB(int max_bits = 6, int exclude_range = 4, bool cut = true); + +/** @brief The base class for camera response calibration algorithms. + */ +class CV_EXPORTS_W CalibrateCRF : public Algorithm +{ +public: + /** @brief Recovers inverse camera response. + + @param src vector of input images + @param dst 256x1 matrix with inverse camera response function + @param times vector of exposure time values for each image + */ + CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, InputArray times) = 0; +}; + +/** @brief Inverse camera response function is extracted for each brightness value by minimizing an objective +function as linear system. Objective function is constructed using pixel values on the same position +in all images, extra term is added to make the result smoother. + +For more information see @cite DM97 . + */ +class CV_EXPORTS_W CalibrateDebevec : public CalibrateCRF +{ +public: + CV_WRAP virtual float getLambda() const = 0; + CV_WRAP virtual void setLambda(float lambda) = 0; + + CV_WRAP virtual int getSamples() const = 0; + CV_WRAP virtual void setSamples(int samples) = 0; + + CV_WRAP virtual bool getRandom() const = 0; + CV_WRAP virtual void setRandom(bool random) = 0; +}; + +/** @brief Creates CalibrateDebevec object + +@param samples number of pixel locations to use +@param lambda smoothness term weight. Greater values produce smoother results, but can alter the +response. +@param random if true sample pixel locations are chosen at random, otherwise the form a +rectangular grid. + */ +CV_EXPORTS_W Ptr createCalibrateDebevec(int samples = 70, float lambda = 10.0f, bool random = false); + +/** @brief Inverse camera response function is extracted for each brightness value by minimizing an objective +function as linear system. This algorithm uses all image pixels. + +For more information see @cite RB99 . + */ +class CV_EXPORTS_W CalibrateRobertson : public CalibrateCRF +{ +public: + CV_WRAP virtual int getMaxIter() const = 0; + CV_WRAP virtual void setMaxIter(int max_iter) = 0; + + CV_WRAP virtual float getThreshold() const = 0; + CV_WRAP virtual void setThreshold(float threshold) = 0; + + CV_WRAP virtual Mat getRadiance() const = 0; +}; + +/** @brief Creates CalibrateRobertson object + +@param max_iter maximal number of Gauss-Seidel solver iterations. +@param threshold target difference between results of two successive steps of the minimization. + */ +CV_EXPORTS_W Ptr createCalibrateRobertson(int max_iter = 30, float threshold = 0.01f); + +/** @brief The base class algorithms that can merge exposure sequence to a single image. + */ +class CV_EXPORTS_W MergeExposures : public Algorithm +{ +public: + /** @brief Merges images. + + @param src vector of input images + @param dst result image + @param times vector of exposure time values for each image + @param response 256x1 matrix with inverse camera response function for each pixel value, it should + have the same number of channels as images. + */ + CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, + InputArray times, InputArray response) = 0; +}; + +/** @brief The resulting HDR image is calculated as weighted average of the exposures considering exposure +values and camera response. + +For more information see @cite DM97 . + */ +class CV_EXPORTS_W MergeDebevec : public MergeExposures +{ +public: + CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, + InputArray times, InputArray response) = 0; + CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, InputArray times) = 0; +}; + +/** @brief Creates MergeDebevec object + */ +CV_EXPORTS_W Ptr createMergeDebevec(); + +/** @brief Pixels are weighted using contrast, saturation and well-exposedness measures, than images are +combined using laplacian pyramids. + +The resulting image weight is constructed as weighted average of contrast, saturation and +well-exposedness measures. + +The resulting image doesn't require tonemapping and can be converted to 8-bit image by multiplying +by 255, but it's recommended to apply gamma correction and/or linear tonemapping. + +For more information see @cite MK07 . + */ +class CV_EXPORTS_W MergeMertens : public MergeExposures +{ +public: + CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, + InputArray times, InputArray response) = 0; + /** @brief Short version of process, that doesn't take extra arguments. + + @param src vector of input images + @param dst result image + */ + CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst) = 0; + + CV_WRAP virtual float getContrastWeight() const = 0; + CV_WRAP virtual void setContrastWeight(float contrast_weiht) = 0; + + CV_WRAP virtual float getSaturationWeight() const = 0; + CV_WRAP virtual void setSaturationWeight(float saturation_weight) = 0; + + CV_WRAP virtual float getExposureWeight() const = 0; + CV_WRAP virtual void setExposureWeight(float exposure_weight) = 0; +}; + +/** @brief Creates MergeMertens object + +@param contrast_weight contrast measure weight. See MergeMertens. +@param saturation_weight saturation measure weight +@param exposure_weight well-exposedness measure weight + */ +CV_EXPORTS_W Ptr +createMergeMertens(float contrast_weight = 1.0f, float saturation_weight = 1.0f, float exposure_weight = 0.0f); + +/** @brief The resulting HDR image is calculated as weighted average of the exposures considering exposure +values and camera response. + +For more information see @cite RB99 . + */ +class CV_EXPORTS_W MergeRobertson : public MergeExposures +{ +public: + CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, + InputArray times, InputArray response) = 0; + CV_WRAP virtual void process(InputArrayOfArrays src, OutputArray dst, InputArray times) = 0; +}; + +/** @brief Creates MergeRobertson object + */ +CV_EXPORTS_W Ptr createMergeRobertson(); + +//! @} photo_hdr + +/** @brief Transforms a color image to a grayscale image. It is a basic tool in digital printing, stylized +black-and-white photograph rendering, and in many single channel image processing applications +@cite CL12 . + +@param src Input 8-bit 3-channel image. +@param grayscale Output 8-bit 1-channel image. +@param color_boost Output 8-bit 3-channel image. + +This function is to be applied on color images. + */ +CV_EXPORTS_W void decolor( InputArray src, OutputArray grayscale, OutputArray color_boost); + +//! @addtogroup photo_clone +//! @{ + +/** @brief Image editing tasks concern either global changes (color/intensity corrections, filters, +deformations) or local changes concerned to a selection. Here we are interested in achieving local +changes, ones that are restricted to a region manually selected (ROI), in a seamless and effortless +manner. The extent of the changes ranges from slight distortions to complete replacement by novel +content @cite PM03 . + +@param src Input 8-bit 3-channel image. +@param dst Input 8-bit 3-channel image. +@param mask Input 8-bit 1 or 3-channel image. +@param p Point in dst image where object is placed. +@param blend Output image with the same size and type as dst. +@param flags Cloning method that could be one of the following: +- **NORMAL_CLONE** The power of the method is fully expressed when inserting objects with +complex outlines into a new background +- **MIXED_CLONE** The classic method, color-based selection and alpha masking might be time +consuming and often leaves an undesirable halo. Seamless cloning, even averaged with the +original image, is not effective. Mixed seamless cloning based on a loose selection proves +effective. +- **FEATURE_EXCHANGE** Feature exchange allows the user to easily replace certain features of +one object by alternative features. + */ +CV_EXPORTS_W void seamlessClone( InputArray src, InputArray dst, InputArray mask, Point p, + OutputArray blend, int flags); + +/** @brief Given an original color image, two differently colored versions of this image can be mixed +seamlessly. + +@param src Input 8-bit 3-channel image. +@param mask Input 8-bit 1 or 3-channel image. +@param dst Output image with the same size and type as src . +@param red_mul R-channel multiply factor. +@param green_mul G-channel multiply factor. +@param blue_mul B-channel multiply factor. + +Multiplication factor is between .5 to 2.5. + */ +CV_EXPORTS_W void colorChange(InputArray src, InputArray mask, OutputArray dst, float red_mul = 1.0f, + float green_mul = 1.0f, float blue_mul = 1.0f); + +/** @brief Applying an appropriate non-linear transformation to the gradient field inside the selection and +then integrating back with a Poisson solver, modifies locally the apparent illumination of an image. + +@param src Input 8-bit 3-channel image. +@param mask Input 8-bit 1 or 3-channel image. +@param dst Output image with the same size and type as src. +@param alpha Value ranges between 0-2. +@param beta Value ranges between 0-2. + +This is useful to highlight under-exposed foreground objects or to reduce specular reflections. + */ +CV_EXPORTS_W void illuminationChange(InputArray src, InputArray mask, OutputArray dst, + float alpha = 0.2f, float beta = 0.4f); + +/** @brief By retaining only the gradients at edge locations, before integrating with the Poisson solver, one +washes out the texture of the selected region, giving its contents a flat aspect. Here Canny Edge +Detector is used. + +@param src Input 8-bit 3-channel image. +@param mask Input 8-bit 1 or 3-channel image. +@param dst Output image with the same size and type as src. +@param low_threshold Range from 0 to 100. +@param high_threshold Value \> 100. +@param kernel_size The size of the Sobel kernel to be used. + +**NOTE:** + +The algorithm assumes that the color of the source image is close to that of the destination. This +assumption means that when the colors don't match, the source image color gets tinted toward the +color of the destination image. + */ +CV_EXPORTS_W void textureFlattening(InputArray src, InputArray mask, OutputArray dst, + float low_threshold = 30, float high_threshold = 45, + int kernel_size = 3); + +//! @} photo_clone + +//! @addtogroup photo_render +//! @{ + +/** @brief Filtering is the fundamental operation in image and video processing. Edge-preserving smoothing +filters are used in many different applications @cite EM11 . + +@param src Input 8-bit 3-channel image. +@param dst Output 8-bit 3-channel image. +@param flags Edge preserving filters: +- **RECURS_FILTER** = 1 +- **NORMCONV_FILTER** = 2 +@param sigma_s Range between 0 to 200. +@param sigma_r Range between 0 to 1. + */ +CV_EXPORTS_W void edgePreservingFilter(InputArray src, OutputArray dst, int flags = 1, + float sigma_s = 60, float sigma_r = 0.4f); + +/** @brief This filter enhances the details of a particular image. + +@param src Input 8-bit 3-channel image. +@param dst Output image with the same size and type as src. +@param sigma_s Range between 0 to 200. +@param sigma_r Range between 0 to 1. + */ +CV_EXPORTS_W void detailEnhance(InputArray src, OutputArray dst, float sigma_s = 10, + float sigma_r = 0.15f); + +/** @brief Pencil-like non-photorealistic line drawing + +@param src Input 8-bit 3-channel image. +@param dst1 Output 8-bit 1-channel image. +@param dst2 Output image with the same size and type as src. +@param sigma_s Range between 0 to 200. +@param sigma_r Range between 0 to 1. +@param shade_factor Range between 0 to 0.1. + */ +CV_EXPORTS_W void pencilSketch(InputArray src, OutputArray dst1, OutputArray dst2, + float sigma_s = 60, float sigma_r = 0.07f, float shade_factor = 0.02f); + +/** @brief Stylization aims to produce digital imagery with a wide variety of effects not focused on +photorealism. Edge-aware filters are ideal for stylization, as they can abstract regions of low +contrast while preserving, or enhancing, high-contrast features. + +@param src Input 8-bit 3-channel image. +@param dst Output image with the same size and type as src. +@param sigma_s Range between 0 to 200. +@param sigma_r Range between 0 to 1. + */ +CV_EXPORTS_W void stylization(InputArray src, OutputArray dst, float sigma_s = 60, + float sigma_r = 0.45f); + +//! @} photo_render + +//! @} photo + +} // cv + +#ifndef DISABLE_OPENCV_24_COMPATIBILITY +#include "opencv2/photo/photo_c.h" +#endif + +#endif diff --git a/thirdparty1/linux/include/opencv2/photo/cuda.hpp b/thirdparty1/linux/include/opencv2/photo/cuda.hpp new file mode 100644 index 0000000..a2f3816 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/photo/cuda.hpp @@ -0,0 +1,132 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_PHOTO_CUDA_HPP +#define OPENCV_PHOTO_CUDA_HPP + +#include "opencv2/core/cuda.hpp" + +namespace cv { namespace cuda { + +//! @addtogroup photo_denoise +//! @{ + +/** @brief Performs pure non local means denoising without any simplification, and thus it is not fast. + +@param src Source image. Supports only CV_8UC1, CV_8UC2 and CV_8UC3. +@param dst Destination image. +@param h Filter sigma regulating filter strength for color. +@param search_window Size of search window. +@param block_size Size of block used for computing weights. +@param borderMode Border type. See borderInterpolate for details. BORDER_REFLECT101 , +BORDER_REPLICATE , BORDER_CONSTANT , BORDER_REFLECT and BORDER_WRAP are supported for now. +@param stream Stream for the asynchronous version. + +@sa + fastNlMeansDenoising + */ +CV_EXPORTS void nonLocalMeans(InputArray src, OutputArray dst, + float h, + int search_window = 21, + int block_size = 7, + int borderMode = BORDER_DEFAULT, + Stream& stream = Stream::Null()); + +/** @brief Perform image denoising using Non-local Means Denoising algorithm + with several computational +optimizations. Noise expected to be a gaussian white noise + +@param src Input 8-bit 1-channel, 2-channel or 3-channel image. +@param dst Output image with the same size and type as src . +@param h Parameter regulating filter strength. Big h value perfectly removes noise but also +removes image details, smaller h value preserves details but also preserves some noise +@param search_window Size in pixels of the window that is used to compute weighted average for +given pixel. Should be odd. Affect performance linearly: greater search_window - greater +denoising time. Recommended value 21 pixels +@param block_size Size in pixels of the template patch that is used to compute weights. Should be +odd. Recommended value 7 pixels +@param stream Stream for the asynchronous invocations. + +This function expected to be applied to grayscale images. For colored images look at +FastNonLocalMeansDenoising::labMethod. + +@sa + fastNlMeansDenoising + */ +CV_EXPORTS void fastNlMeansDenoising(InputArray src, OutputArray dst, + float h, + int search_window = 21, + int block_size = 7, + Stream& stream = Stream::Null()); + +/** @brief Modification of fastNlMeansDenoising function for colored images + +@param src Input 8-bit 3-channel image. +@param dst Output image with the same size and type as src . +@param h_luminance Parameter regulating filter strength. Big h value perfectly removes noise but +also removes image details, smaller h value preserves details but also preserves some noise +@param photo_render float The same as h but for color components. For most images value equals 10 will be +enough to remove colored noise and do not distort colors +@param search_window Size in pixels of the window that is used to compute weighted average for +given pixel. Should be odd. Affect performance linearly: greater search_window - greater +denoising time. Recommended value 21 pixels +@param block_size Size in pixels of the template patch that is used to compute weights. Should be +odd. Recommended value 7 pixels +@param stream Stream for the asynchronous invocations. + +The function converts image to CIELAB colorspace and then separately denoise L and AB components +with given h parameters using FastNonLocalMeansDenoising::simpleMethod function. + +@sa + fastNlMeansDenoisingColored + */ +CV_EXPORTS void fastNlMeansDenoisingColored(InputArray src, OutputArray dst, + float h_luminance, float photo_render, + int search_window = 21, + int block_size = 7, + Stream& stream = Stream::Null()); + +//! @} photo + +}} // namespace cv { namespace cuda { + +#endif /* OPENCV_PHOTO_CUDA_HPP */ diff --git a/thirdparty1/linux/include/opencv2/photo/photo.hpp b/thirdparty1/linux/include/opencv2/photo/photo.hpp new file mode 100644 index 0000000..8af5e9f --- /dev/null +++ b/thirdparty1/linux/include/opencv2/photo/photo.hpp @@ -0,0 +1,48 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifdef __OPENCV_BUILD +#error this is a compatibility header which should not be used inside the OpenCV library +#endif + +#include "opencv2/photo.hpp" diff --git a/thirdparty1/linux/include/opencv2/photo/photo_c.h b/thirdparty1/linux/include/opencv2/photo/photo_c.h new file mode 100644 index 0000000..cd623c1 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/photo/photo_c.h @@ -0,0 +1,74 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef OPENCV_PHOTO_C_H +#define OPENCV_PHOTO_C_H + +#include "opencv2/core/core_c.h" + +#ifdef __cplusplus +extern "C" { +#endif + +/** @addtogroup photo_c + @{ + */ + +/* Inpainting algorithms */ +enum InpaintingModes +{ + CV_INPAINT_NS =0, + CV_INPAINT_TELEA =1 +}; + + +/* Inpaints the selected region in the image */ +CVAPI(void) cvInpaint( const CvArr* src, const CvArr* inpaint_mask, + CvArr* dst, double inpaintRange, int flags ); + +/** @} */ + +#ifdef __cplusplus +} //extern "C" +#endif + +#endif //OPENCV_PHOTO_C_H diff --git a/thirdparty1/linux/include/opencv2/plot.hpp b/thirdparty1/linux/include/opencv2/plot.hpp new file mode 100644 index 0000000..6673bd1 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/plot.hpp @@ -0,0 +1,109 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009-2012, Willow Garage Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ +//################################################################################ +// +// Created by Nuno Moutinho +// +//################################################################################ + +#ifndef _OPENCV_PLOT_H_ +#define _OPENCV_PLOT_H_ +#ifdef __cplusplus + +#include + +/** +@defgroup plot Plot function for Mat data +*/ + +namespace cv +{ + namespace plot + { + //! @addtogroup plot + //! @{ + + class CV_EXPORTS_W Plot2d : public Algorithm + { + public: + + CV_WRAP virtual void setMinX(double _plotMinX) = 0; + CV_WRAP virtual void setMinY(double _plotMinY) = 0; + CV_WRAP virtual void setMaxX(double _plotMaxX) = 0; + CV_WRAP virtual void setMaxY(double _plotMaxY) = 0; + CV_WRAP virtual void setPlotLineWidth(int _plotLineWidth) = 0; + /** + * @brief Switches data visualization mode + * + * @param _needPlotLine if true then neighbour plot points will be connected by lines. + * In other case data will be plotted as a set of standalone points. + */ + CV_WRAP virtual void setNeedPlotLine(bool _needPlotLine) = 0; + CV_WRAP virtual void setPlotLineColor(Scalar _plotLineColor) = 0; + CV_WRAP virtual void setPlotBackgroundColor(Scalar _plotBackgroundColor) = 0; + CV_WRAP virtual void setPlotAxisColor(Scalar _plotAxisColor) = 0; + CV_WRAP virtual void setPlotGridColor(Scalar _plotGridColor) = 0; + CV_WRAP virtual void setPlotTextColor(Scalar _plotTextColor) = 0; + CV_WRAP virtual void setPlotSize(int _plotSizeWidth, int _plotSizeHeight) = 0; + CV_WRAP virtual void render(OutputArray _plotResult) = 0; + }; + + /** + * @brief Creates Plot2d object + * + * @param data \f$1xN\f$ or \f$Nx1\f$ matrix containing \f$Y\f$ values of points to plot. \f$X\f$ values + * will be equal to indexes of correspondind elements in data matrix. + */ + CV_EXPORTS_W Ptr createPlot2d(InputArray data); + /** + * @brief Creates Plot2d object + * + * @param dataX \f$1xN\f$ or \f$Nx1\f$ matrix \f$X\f$ values of points to plot. + * @param dataY \f$1xN\f$ or \f$Nx1\f$ matrix containing \f$Y\f$ values of points to plot. + */ + CV_EXPORTS_W Ptr createPlot2d(InputArray dataX, InputArray dataY); + //! @} + } +} + +#endif +#endif diff --git a/thirdparty1/linux/include/opencv2/reg/map.hpp b/thirdparty1/linux/include/opencv2/reg/map.hpp new file mode 100644 index 0000000..26b29e3 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/reg/map.hpp @@ -0,0 +1,175 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// Copyright (C) 2013, Alfonso Sanchez-Beato, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef MAP_H_ +#define MAP_H_ + +#include // Basic OpenCV structures (cv::Mat, Scalar) + +/** @defgroup reg Image Registration + +The Registration module implements parametric image registration. The implemented method is direct +alignment, that is, it uses directly the pixel values for calculating the registration between a +pair of images, as opposed to feature-based registration. The implementation follows essentially the +corresponding part of @cite Szeliski06 . + +Feature based methods have some advantages over pixel based methods when we are trying to register +pictures that have been shoot under different lighting conditions or exposition times, or when the +images overlap only partially. On the other hand, the main advantage of pixel-based methods when +compared to feature based methods is their better precision for some pictures (those shoot under +similar lighting conditions and that have a significative overlap), due to the fact that we are +using all the information available in the image, which allows us to achieve subpixel accuracy. This +is particularly important for certain applications like multi-frame denoising or super-resolution. + +In fact, pixel and feature registration methods can complement each other: an application could +first obtain a coarse registration using features and then refine the registration using a pixel +based method on the overlapping area of the images. The code developed allows this use case. + +The module implements classes derived from the abstract classes cv::reg::Map or cv::reg::Mapper. The +former models a coordinate transformation between two reference frames, while the later encapsulates +a way of invoking a method that calculates a Map between two images. Although the objective has been +to implement pixel based methods, the module can be extended to support other methods that can +calculate transformations between images (feature methods, optical flow, etc.). + +Each class derived from Map implements a motion model, as follows: + +- MapShift: Models a simple translation +- MapAffine: Models an affine transformation +- MapProjec: Models a projective transformation + +MapProject can also be used to model affine motion or translations, but some operations on it are +more costly, and that is the reason for defining the other two classes. + +The classes derived from Mapper are + +- MapperGradShift: Gradient based alignment for calculating translations. It produces a MapShift + (two parameters that correspond to the shift vector). +- MapperGradEuclid: Gradient based alignment for euclidean motions, that is, rotations and + translations. It calculates three parameters (angle and shift vector), although the result is + stored in a MapAffine object for convenience. +- MapperGradSimilar: Gradient based alignment for calculating similarities, which adds scaling to + the euclidean motion. It calculates four parameters (two for the anti-symmetric matrix and two + for the shift vector), although the result is stored in a MapAffine object for better + convenience. +- MapperGradAffine: Gradient based alignment for an affine motion model. The number of parameters + is six and the result is stored in a MapAffine object. +- MapperGradProj: Gradient based alignment for calculating projective transformations. The number + of parameters is eight and the result is stored in a MapProject object. +- MapperPyramid: It implements hyerarchical motion estimation using a Gaussian pyramid. Its + constructor accepts as argument any other object that implements the Mapper interface, and it is + that mapper the one called by MapperPyramid for each scale of the pyramid. + +If the motion between the images is not very small, the normal way of using these classes is to +create a MapperGrad\* object and use it as input to create a MapperPyramid, which in turn is called +to perform the calculation. However, if the motion between the images is small enough, we can use +directly the MapperGrad\* classes. Another possibility is to use first a feature based method to +perform a coarse registration and then do a refinement through MapperPyramid or directly a +MapperGrad\* object. The "calculate" method of the mappers accepts an initial estimation of the +motion as input. + +When deciding which MapperGrad to use we must take into account that mappers with more parameters +can handle more complex motions, but involve more calculations and are therefore slower. Also, if we +are confident on the motion model that is followed by the sequence, increasing the number of +parameters beyond what we need will decrease the accuracy: it is better to use the least number of +degrees of freedom that we can. + +In the module tests there are examples that show how to register a pair of images using any of the +implemented mappers. +*/ + +namespace cv { +namespace reg { + +//! @addtogroup reg +//! @{ + +/** @brief Base class for modelling a Map between two images. + +The class is only used to define the common interface for any possible map. + */ +class CV_EXPORTS Map +{ +public: + /*! + * Virtual destructor + */ + virtual ~Map(void); + + /*! + * Warps image to a new coordinate frame. The calculation is img2(x)=img1(T^{-1}(x)), as we + * have to apply the inverse transformation to the points to move them to were the values + * of img2 are. + * \param[in] img1 Original image + * \param[out] img2 Warped image + */ + virtual void warp(const cv::Mat& img1, cv::Mat& img2) const; + + /*! + * Warps image to a new coordinate frame. The calculation is img2(x)=img1(T(x)), so in fact + * this is the inverse warping as we are taking the value of img1 with the forward + * transformation of the points. + * \param[in] img1 Original image + * \param[out] img2 Warped image + */ + virtual void inverseWarp(const cv::Mat& img1, cv::Mat& img2) const = 0; + + /*! + * Calculates the inverse map + * \return Inverse map + */ + virtual cv::Ptr inverseMap(void) const = 0; + + /*! + * Changes the map composing the current transformation with the one provided in the call. + * The order is first the current transformation, then the input argument. + * \param[in] map Transformation to compose with. + */ + virtual void compose(const Map& map) = 0; + + /*! + * Scales the map by a given factor as if the coordinates system is expanded/compressed + * by that factor. + * \param[in] factor Expansion if bigger than one, compression if smaller than one + */ + virtual void scale(double factor) = 0; +}; + +//! @} + +}} // namespace cv::reg + +#endif // MAP_H_ diff --git a/thirdparty1/linux/include/opencv2/reg/mapaffine.hpp b/thirdparty1/linux/include/opencv2/reg/mapaffine.hpp new file mode 100644 index 0000000..1c91326 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/reg/mapaffine.hpp @@ -0,0 +1,105 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// Copyright (C) 2013, Alfonso Sanchez-Beato, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef MAPAFFINE_H_ +#define MAPAFFINE_H_ + +#include "map.hpp" + +namespace cv { +namespace reg { + +//! @addtogroup reg +//! @{ + +/*! + * Defines an affine transformation + */ +class CV_EXPORTS MapAffine : public Map +{ +public: + /*! + * Default constructor builds an identity map + */ + MapAffine(void); + + /*! + * Constructor providing explicit values + * \param[in] linTr Linear part of the affine transformation + * \param[in] shift Displacement part of the affine transformation + */ + MapAffine(const cv::Matx& linTr, const cv::Vec& shift); + + /*! + * Destructor + */ + ~MapAffine(void); + + void inverseWarp(const cv::Mat& img1, cv::Mat& img2) const; + + cv::Ptr inverseMap(void) const; + + void compose(const Map& map); + + void scale(double factor); + + /*! + * Return linear part of the affine transformation + * \return Linear part of the affine transformation + */ + const cv::Matx& getLinTr() const { + return linTr_; + } + + /*! + * Return displacement part of the affine transformation + * \return Displacement part of the affine transformation + */ + const cv::Vec& getShift() const { + return shift_; + } + +private: + cv::Matx linTr_; + cv::Vec shift_; +}; + +//! @} + +}} // namespace cv::reg + +#endif // MAPAFFINE_H_ diff --git a/thirdparty1/linux/include/opencv2/reg/mapper.hpp b/thirdparty1/linux/include/opencv2/reg/mapper.hpp new file mode 100644 index 0000000..8abadd1 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/reg/mapper.hpp @@ -0,0 +1,113 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// Copyright (C) 2013, Alfonso Sanchez-Beato, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef MAPPER_H_ +#define MAPPER_H_ + +#include // Basic OpenCV structures (cv::Mat, Scalar) +#include "map.hpp" + +namespace cv { +namespace reg { + +//! @addtogroup reg +//! @{ + +/** @brief Base class for modelling an algorithm for calculating a + +The class is only used to define the common interface for any possible mapping algorithm. + */ +class CV_EXPORTS Mapper +{ +public: + virtual ~Mapper(void) {} + + /* + * Calculate mapping between two images + * \param[in] img1 Reference image + * \param[in] img2 Warped image + * \param[in,out] res Map from img1 to img2, stored in a smart pointer. If present as input, + * it is an initial rough estimation that the mapper will try to refine. + */ + virtual void calculate(const cv::Mat& img1, const cv::Mat& img2, cv::Ptr& res) const = 0; + + /* + * Returns a map compatible with the Mapper class + * \return Pointer to identity Map + */ + virtual cv::Ptr getMap(void) const = 0; + +protected: + /* + * Calculates gradient and difference between images + * \param[in] img1 Image one + * \param[in] img2 Image two + * \param[out] Ix Gradient x-coordinate + * \param[out] Iy Gradient y-coordinate + * \param[out] It Difference of images + */ + void gradient(const cv::Mat& img1, const cv::Mat& img2, + cv::Mat& Ix, cv::Mat& Iy, cv::Mat& It) const; + + /* + * Fills matrices with pixel coordinates of an image + * \param[in] img Image + * \param[out] grid_r Row (y-coordinate) + * \param[out] grid_c Column (x-coordinate) + */ + void grid(const Mat& img, Mat& grid_r, Mat& grid_c) const; + + /* + * Per-element square of a matrix + * \param[in] mat1 Input matrix + * \return mat1[i,j]^2 + */ + cv::Mat sqr(const cv::Mat& mat1) const + { + cv::Mat res; + res.create(mat1.size(), mat1.type()); + res = mat1.mul(mat1); + return res; + } +}; + +//! @} + +}} // namespace cv::reg + +#endif // MAPPER_H_ + diff --git a/thirdparty1/linux/include/opencv2/reg/mappergradaffine.hpp b/thirdparty1/linux/include/opencv2/reg/mappergradaffine.hpp new file mode 100644 index 0000000..08d5397 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/reg/mappergradaffine.hpp @@ -0,0 +1,67 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// Copyright (C) 2013, Alfonso Sanchez-Beato, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef MAPPERGRADAFFINE_H_ +#define MAPPERGRADAFFINE_H_ + +#include "mapper.hpp" + +namespace cv { +namespace reg { + +//! @addtogroup reg +//! @{ + +/*! + * Mapper for affine motion + */ +class CV_EXPORTS MapperGradAffine: public Mapper +{ +public: + MapperGradAffine(void); + ~MapperGradAffine(void); + + virtual void calculate(const cv::Mat& img1, const cv::Mat& img2, cv::Ptr& res) const; + + cv::Ptr getMap(void) const; +}; + +//! @} + +}} // namespace cv::reg + +#endif // MAPPERGRADAFFINE_H_ diff --git a/thirdparty1/linux/include/opencv2/reg/mappergradeuclid.hpp b/thirdparty1/linux/include/opencv2/reg/mappergradeuclid.hpp new file mode 100644 index 0000000..29c49cb --- /dev/null +++ b/thirdparty1/linux/include/opencv2/reg/mappergradeuclid.hpp @@ -0,0 +1,67 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// Copyright (C) 2013, Alfonso Sanchez-Beato, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef MAPPERGRADEUCLID_H_ +#define MAPPERGRADEUCLID_H_ + +#include "mapper.hpp" + +namespace cv { +namespace reg { + +//! @addtogroup reg +//! @{ + +/*! + * Mapper for euclidean motion: rotation plus shift + */ +class CV_EXPORTS MapperGradEuclid: public Mapper +{ +public: + MapperGradEuclid(void); + ~MapperGradEuclid(void); + + virtual void calculate(const cv::Mat& img1, const cv::Mat& img2, cv::Ptr& res) const; + + cv::Ptr getMap(void) const; +}; + +//! @} + +}} // namespace cv::reg + +#endif // MAPPERGRADEUCLID_H_ diff --git a/thirdparty1/linux/include/opencv2/reg/mappergradproj.hpp b/thirdparty1/linux/include/opencv2/reg/mappergradproj.hpp new file mode 100644 index 0000000..f1721e8 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/reg/mappergradproj.hpp @@ -0,0 +1,67 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// Copyright (C) 2013, Alfonso Sanchez-Beato, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef MAPPERGRADPROJ_H_ +#define MAPPERGRADPROJ_H_ + +#include "mapper.hpp" + +namespace cv { +namespace reg { + +//! @addtogroup reg +//! @{ + +/*! + * Gradient mapper for a projective transformation + */ +class CV_EXPORTS MapperGradProj: public Mapper +{ +public: + MapperGradProj(void); + ~MapperGradProj(void); + + virtual void calculate(const cv::Mat& img1, const cv::Mat& img2, cv::Ptr& res) const; + + cv::Ptr getMap(void) const; +}; + +//! @} + +}} // namespace cv::reg + +#endif // MAPPERGRADPROJ_H_ diff --git a/thirdparty1/linux/include/opencv2/reg/mappergradshift.hpp b/thirdparty1/linux/include/opencv2/reg/mappergradshift.hpp new file mode 100644 index 0000000..a9f75b3 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/reg/mappergradshift.hpp @@ -0,0 +1,67 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// Copyright (C) 2013, Alfonso Sanchez-Beato, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef MAPPERGRADSHIFT_H_ +#define MAPPERGRADSHIFT_H_ + +#include "mapper.hpp" + +namespace cv { +namespace reg { + +//! @addtogroup reg +//! @{ + +/*! + * Gradient mapper for a translation + */ +class CV_EXPORTS MapperGradShift: public Mapper +{ +public: + MapperGradShift(void); + virtual ~MapperGradShift(void); + + virtual void calculate(const cv::Mat& img1, const cv::Mat& img2, cv::Ptr& res) const; + + cv::Ptr getMap(void) const; +}; + +//! @} + +}} // namespace cv::reg + +#endif // MAPPERGRADSHIFT_H_ diff --git a/thirdparty1/linux/include/opencv2/reg/mappergradsimilar.hpp b/thirdparty1/linux/include/opencv2/reg/mappergradsimilar.hpp new file mode 100644 index 0000000..ea45ab9 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/reg/mappergradsimilar.hpp @@ -0,0 +1,67 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// Copyright (C) 2013, Alfonso Sanchez-Beato, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef MAPPERGRADSIMILAR_H_ +#define MAPPERGRADSIMILAR_H_ + +#include "mapper.hpp" + +namespace cv { +namespace reg { + +//! @addtogroup reg +//! @{ + +/*! + * Calculates a similarity transformation between to images (scale, rotation, and shift) + */ +class CV_EXPORTS MapperGradSimilar: public Mapper +{ +public: + MapperGradSimilar(void); + ~MapperGradSimilar(void); + + virtual void calculate(const cv::Mat& img1, const cv::Mat& img2, cv::Ptr& res) const; + + cv::Ptr getMap(void) const; +}; + +//! @} + +}} // namespace cv::reg + +#endif // MAPPERGRADSIMILAR_H_ diff --git a/thirdparty1/linux/include/opencv2/reg/mapperpyramid.hpp b/thirdparty1/linux/include/opencv2/reg/mapperpyramid.hpp new file mode 100644 index 0000000..33440bd --- /dev/null +++ b/thirdparty1/linux/include/opencv2/reg/mapperpyramid.hpp @@ -0,0 +1,78 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// Copyright (C) 2013, Alfonso Sanchez-Beato, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef MAPPERPYRAMID_H_ +#define MAPPERPYRAMID_H_ + +#include "mapper.hpp" + + +namespace cv { +namespace reg { + +//! @addtogroup reg +//! @{ + +/*! + * Calculates a map using a gaussian pyramid + */ +class CV_EXPORTS MapperPyramid: public Mapper +{ +public: + /* + * Constructor + * \param[in] baseMapper Base mapper used for the refinements + */ + MapperPyramid(const Mapper& baseMapper); + + void calculate(const cv::Mat& img1, const cv::Mat& img2, cv::Ptr& res) const; + + cv::Ptr getMap(void) const; + + unsigned numLev_; /*!< Number of levels of the pyramid */ + unsigned numIterPerScale_; /*!< Number of iterations at a given scale of the pyramid */ + +private: + MapperPyramid& operator=(const MapperPyramid&); + const Mapper& baseMapper_; /*!< Mapper used in inner level */ +}; + +//! @} + +}} // namespace cv::reg + +#endif // MAPPERPYRAMID_H_ diff --git a/thirdparty1/linux/include/opencv2/reg/mapprojec.hpp b/thirdparty1/linux/include/opencv2/reg/mapprojec.hpp new file mode 100644 index 0000000..57ef146 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/reg/mapprojec.hpp @@ -0,0 +1,105 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// Copyright (C) 2013, Alfonso Sanchez-Beato, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef MAPPROJEC_H_ +#define MAPPROJEC_H_ + +#include "map.hpp" + + +namespace cv { +namespace reg { + +//! @addtogroup reg +//! @{ + +/*! + * Defines an transformation that consists on a projective transformation + */ +class CV_EXPORTS MapProjec : public Map +{ +public: + /*! + * Default constructor builds an identity map + */ + MapProjec(void); + + /*! + * Constructor providing explicit values + * \param[in] projTr Projective transformation + */ + MapProjec(const cv::Matx& projTr); + + /*! + * Destructor + */ + ~MapProjec(void); + + void inverseWarp(const cv::Mat& img1, cv::Mat& img2) const; + + cv::Ptr inverseMap(void) const; + + void compose(const Map& map); + + void scale(double factor); + + /*! + * Returns projection matrix + * \return Projection matrix + */ + const cv::Matx& getProjTr() const { + return projTr_; + } + + /*! + * Normalizes object's homography + */ + void normalize(void) { + double z = 1./projTr_(2, 2); + for(size_t v_i = 0; v_i < sizeof(projTr_.val)/sizeof(projTr_.val[0]); ++v_i) + projTr_.val[v_i] *= z; + } + +private: + cv::Matx projTr_; /*< Projection matrix */ +}; + +//! @} + +}} // namespace cv::reg + +#endif // MAPPROJEC_H_ diff --git a/thirdparty1/linux/include/opencv2/reg/mapshift.hpp b/thirdparty1/linux/include/opencv2/reg/mapshift.hpp new file mode 100644 index 0000000..e5f54a4 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/reg/mapshift.hpp @@ -0,0 +1,96 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// Copyright (C) 2013, Alfonso Sanchez-Beato, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef MAPSHIFT_H_ +#define MAPSHIFT_H_ + +#include "map.hpp" + + +namespace cv { +namespace reg { + +//! @addtogroup reg +//! @{ + +/*! + * Defines an transformation that consists on a simple displacement + */ +class CV_EXPORTS MapShift : public Map +{ +public: + /*! + * Default constructor builds an identity map + */ + MapShift(void); + + /*! + * Constructor providing explicit values + * \param[in] shift Displacement + */ + MapShift(const cv::Vec& shift); + + /*! + * Destructor + */ + ~MapShift(void); + + void inverseWarp(const cv::Mat& img1, cv::Mat& img2) const; + + cv::Ptr inverseMap(void) const; + + void compose(const Map& map); + + void scale(double factor); + + /*! + * Return displacement + * \return Displacement + */ + const cv::Vec& getShift() const { + return shift_; + } + +private: + cv::Vec shift_; /*< Displacement */ +}; + +//! @} + +}} // namespace cv::reg + +#endif // MAPSHIFT_H_ diff --git a/thirdparty1/linux/include/opencv2/rgbd.hpp b/thirdparty1/linux/include/opencv2/rgbd.hpp new file mode 100644 index 0000000..b25bd3d --- /dev/null +++ b/thirdparty1/linux/include/opencv2/rgbd.hpp @@ -0,0 +1,1049 @@ +/* + * Software License Agreement (BSD License) + * + * Copyright (c) 2009, Willow Garage, Inc. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following + * disclaimer in the documentation and/or other materials provided + * with the distribution. + * * Neither the name of Willow Garage, Inc. nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS + * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE + * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, + * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; + * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN + * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + * + */ + +#ifndef __OPENCV_RGBD_HPP__ +#define __OPENCV_RGBD_HPP__ + +#ifdef __cplusplus + +#include +#include + +/** @defgroup rgbd RGB-Depth Processing +*/ + +namespace cv +{ +namespace rgbd +{ + +//! @addtogroup rgbd +//! @{ + + /** Checks if the value is a valid depth. For CV_16U or CV_16S, the convention is to be invalid if it is + * a limit. For a float/double, we just check if it is a NaN + * @param depth the depth to check for validity + */ + CV_EXPORTS + inline bool + isValidDepth(const float & depth) + { + return !cvIsNaN(depth); + } + CV_EXPORTS + inline bool + isValidDepth(const double & depth) + { + return !cvIsNaN(depth); + } + CV_EXPORTS + inline bool + isValidDepth(const short int & depth) + { + return (depth != std::numeric_limits::min()) && (depth != std::numeric_limits::max()); + } + CV_EXPORTS + inline bool + isValidDepth(const unsigned short int & depth) + { + return (depth != std::numeric_limits::min()) + && (depth != std::numeric_limits::max()); + } + CV_EXPORTS + inline bool + isValidDepth(const int & depth) + { + return (depth != std::numeric_limits::min()) && (depth != std::numeric_limits::max()); + } + CV_EXPORTS + inline bool + isValidDepth(const unsigned int & depth) + { + return (depth != std::numeric_limits::min()) && (depth != std::numeric_limits::max()); + } + + /** Object that can compute the normals in an image. + * It is an object as it can cache data for speed efficiency + * The implemented methods are either: + * - FALS (the fastest) and SRI from + * ``Fast and Accurate Computation of Surface Normals from Range Images`` + * by H. Badino, D. Huber, Y. Park and T. Kanade + * - the normals with bilateral filtering on a depth image from + * ``Gradient Response Maps for Real-Time Detection of Texture-Less Objects`` + * by S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua, and V. Lepetit + */ + class CV_EXPORTS RgbdNormals: public Algorithm + { + public: + enum RGBD_NORMALS_METHOD + { + RGBD_NORMALS_METHOD_FALS, RGBD_NORMALS_METHOD_LINEMOD, RGBD_NORMALS_METHOD_SRI + }; + + RgbdNormals() + : + rows_(0), + cols_(0), + depth_(0), + K_(Mat()), + window_size_(0), + method_(RGBD_NORMALS_METHOD_FALS), + rgbd_normals_impl_(0) + { + } + + /** Constructor + * @param rows the number of rows of the depth image normals will be computed on + * @param cols the number of cols of the depth image normals will be computed on + * @param depth the depth of the normals (only CV_32F or CV_64F) + * @param K the calibration matrix to use + * @param window_size the window size to compute the normals: can only be 1,3,5 or 7 + * @param method one of the methods to use: RGBD_NORMALS_METHOD_SRI, RGBD_NORMALS_METHOD_FALS + */ + RgbdNormals(int rows, int cols, int depth, InputArray K, int window_size = 5, int method = + RGBD_NORMALS_METHOD_FALS); + + ~RgbdNormals(); + + /** Given a set of 3d points in a depth image, compute the normals at each point. + * @param points a rows x cols x 3 matrix of CV_32F/CV64F or a rows x cols x 1 CV_U16S + * @param normals a rows x cols x 3 matrix + */ + void + operator()(InputArray points, OutputArray normals) const; + + /** Initializes some data that is cached for later computation + * If that function is not called, it will be called the first time normals are computed + */ + void + initialize() const; + + int getRows() const + { + return rows_; + } + void setRows(int val) + { + rows_ = val; + } + int getCols() const + { + return cols_; + } + void setCols(int val) + { + cols_ = val; + } + int getWindowSize() const + { + return window_size_; + } + void setWindowSize(int val) + { + window_size_ = val; + } + int getDepth() const + { + return depth_; + } + void setDepth(int val) + { + depth_ = val; + } + cv::Mat getK() const + { + return K_; + } + void setK(const cv::Mat &val) + { + K_ = val; + } + int getMethod() const + { + return method_; + } + void setMethod(int val) + { + method_ = val; + } + + protected: + void + initialize_normals_impl(int rows, int cols, int depth, const Mat & K, int window_size, int method) const; + + int rows_, cols_, depth_; + Mat K_; + int window_size_; + int method_; + mutable void* rgbd_normals_impl_; + }; + + /** Object that can clean a noisy depth image + */ + class CV_EXPORTS DepthCleaner: public Algorithm + { + public: + /** NIL method is from + * ``Modeling Kinect Sensor Noise for Improved 3d Reconstruction and Tracking`` + * by C. Nguyen, S. Izadi, D. Lovel + */ + enum DEPTH_CLEANER_METHOD + { + DEPTH_CLEANER_NIL + }; + + DepthCleaner() + : + depth_(0), + window_size_(0), + method_(DEPTH_CLEANER_NIL), + depth_cleaner_impl_(0) + { + } + + /** Constructor + * @param depth the depth of the normals (only CV_32F or CV_64F) + * @param window_size the window size to compute the normals: can only be 1,3,5 or 7 + * @param method one of the methods to use: RGBD_NORMALS_METHOD_SRI, RGBD_NORMALS_METHOD_FALS + */ + DepthCleaner(int depth, int window_size = 5, int method = DEPTH_CLEANER_NIL); + + ~DepthCleaner(); + + /** Given a set of 3d points in a depth image, compute the normals at each point. + * @param points a rows x cols x 3 matrix of CV_32F/CV64F or a rows x cols x 1 CV_U16S + * @param depth a rows x cols matrix of the cleaned up depth + */ + void + operator()(InputArray points, OutputArray depth) const; + + /** Initializes some data that is cached for later computation + * If that function is not called, it will be called the first time normals are computed + */ + void + initialize() const; + + int getWindowSize() const + { + return window_size_; + } + void setWindowSize(int val) + { + window_size_ = val; + } + int getDepth() const + { + return depth_; + } + void setDepth(int val) + { + depth_ = val; + } + int getMethod() const + { + return method_; + } + void setMethod(int val) + { + method_ = val; + } + + protected: + void + initialize_cleaner_impl() const; + + int depth_; + int window_size_; + int method_; + mutable void* depth_cleaner_impl_; + }; + + + /** Registers depth data to an external camera + * Registration is performed by creating a depth cloud, transforming the cloud by + * the rigid body transformation between the cameras, and then projecting the + * transformed points into the RGB camera. + * + * uv_rgb = K_rgb * [R | t] * z * inv(K_ir) * uv_ir + * + * Currently does not check for negative depth values. + * + * @param unregisteredCameraMatrix the camera matrix of the depth camera + * @param registeredCameraMatrix the camera matrix of the external camera + * @param registeredDistCoeffs the distortion coefficients of the external camera + * @param Rt the rigid body transform between the cameras. Transforms points from depth camera frame to external camera frame. + * @param unregisteredDepth the input depth data + * @param outputImagePlaneSize the image plane dimensions of the external camera (width, height) + * @param registeredDepth the result of transforming the depth into the external camera + * @param depthDilation whether or not the depth is dilated to avoid holes and occlusion errors (optional) + */ + CV_EXPORTS + void + registerDepth(InputArray unregisteredCameraMatrix, InputArray registeredCameraMatrix, InputArray registeredDistCoeffs, + InputArray Rt, InputArray unregisteredDepth, const Size& outputImagePlaneSize, + OutputArray registeredDepth, bool depthDilation=false); + + /** + * @param depth the depth image + * @param in_K + * @param in_points the list of xy coordinates + * @param points3d the resulting 3d points + */ + CV_EXPORTS + void + depthTo3dSparse(InputArray depth, InputArray in_K, InputArray in_points, OutputArray points3d); + + /** Converts a depth image to an organized set of 3d points. + * The coordinate system is x pointing left, y down and z away from the camera + * @param depth the depth image (if given as short int CV_U, it is assumed to be the depth in millimeters + * (as done with the Microsoft Kinect), otherwise, if given as CV_32F or CV_64F, it is assumed in meters) + * @param K The calibration matrix + * @param points3d the resulting 3d points. They are of depth the same as `depth` if it is CV_32F or CV_64F, and the + * depth of `K` if `depth` is of depth CV_U + * @param mask the mask of the points to consider (can be empty) + */ + CV_EXPORTS + void + depthTo3d(InputArray depth, InputArray K, OutputArray points3d, InputArray mask = noArray()); + + /** If the input image is of type CV_16UC1 (like the Kinect one), the image is converted to floats, divided + * by 1000 to get a depth in meters, and the values 0 are converted to std::numeric_limits::quiet_NaN() + * Otherwise, the image is simply converted to floats + * @param in the depth image (if given as short int CV_U, it is assumed to be the depth in millimeters + * (as done with the Microsoft Kinect), it is assumed in meters) + * @param depth the desired output depth (floats or double) + * @param out The rescaled float depth image + */ + CV_EXPORTS + void + rescaleDepth(InputArray in, int depth, OutputArray out); + + /** Object that can compute planes in an image + */ + class CV_EXPORTS RgbdPlane: public Algorithm + { + public: + enum RGBD_PLANE_METHOD + { + RGBD_PLANE_METHOD_DEFAULT + }; + + RgbdPlane(RGBD_PLANE_METHOD method = RGBD_PLANE_METHOD_DEFAULT) + : + method_(method), + block_size_(40), + min_size_(block_size_*block_size_), + threshold_(0.01), + sensor_error_a_(0), + sensor_error_b_(0), + sensor_error_c_(0) + { + } + + /** Find The planes in a depth image + * @param points3d the 3d points organized like the depth image: rows x cols with 3 channels + * @param normals the normals for every point in the depth image + * @param mask An image where each pixel is labeled with the plane it belongs to + * and 255 if it does not belong to any plane + * @param plane_coefficients the coefficients of the corresponding planes (a,b,c,d) such that ax+by+cz+d=0, norm(a,b,c)=1 + * and c < 0 (so that the normal points towards the camera) + */ + void + operator()(InputArray points3d, InputArray normals, OutputArray mask, + OutputArray plane_coefficients); + + /** Find The planes in a depth image but without doing a normal check, which is faster but less accurate + * @param points3d the 3d points organized like the depth image: rows x cols with 3 channels + * @param mask An image where each pixel is labeled with the plane it belongs to + * and 255 if it does not belong to any plane + * @param plane_coefficients the coefficients of the corresponding planes (a,b,c,d) such that ax+by+cz+d=0 + */ + void + operator()(InputArray points3d, OutputArray mask, OutputArray plane_coefficients); + + int getBlockSize() const + { + return block_size_; + } + void setBlockSize(int val) + { + block_size_ = val; + } + int getMinSize() const + { + return min_size_; + } + void setMinSize(int val) + { + min_size_ = val; + } + int getMethod() const + { + return method_; + } + void setMethod(int val) + { + method_ = val; + } + double getThreshold() const + { + return threshold_; + } + void setThreshold(double val) + { + threshold_ = val; + } + double getSensorErrorA() const + { + return sensor_error_a_; + } + void setSensorErrorA(double val) + { + sensor_error_a_ = val; + } + double getSensorErrorB() const + { + return sensor_error_b_; + } + void setSensorErrorB(double val) + { + sensor_error_b_ = val; + } + double getSensorErrorC() const + { + return sensor_error_c_; + } + void setSensorErrorC(double val) + { + sensor_error_c_ = val; + } + + private: + /** The method to use to compute the planes */ + int method_; + /** The size of the blocks to look at for a stable MSE */ + int block_size_; + /** The minimum size of a cluster to be considered a plane */ + int min_size_; + /** How far a point can be from a plane to belong to it (in meters) */ + double threshold_; + /** coefficient of the sensor error with respect to the. All 0 by default but you want a=0.0075 for a Kinect */ + double sensor_error_a_, sensor_error_b_, sensor_error_c_; + }; + + /** Object that contains a frame data. + */ + struct CV_EXPORTS RgbdFrame + { + RgbdFrame(); + RgbdFrame(const Mat& image, const Mat& depth, const Mat& mask=Mat(), const Mat& normals=Mat(), int ID=-1); + virtual ~RgbdFrame(); + + virtual void + release(); + + int ID; + Mat image; + Mat depth; + Mat mask; + Mat normals; + }; + + /** Object that contains a frame data that is possibly needed for the Odometry. + * It's used for the efficiency (to pass precomputed/cached data of the frame that participates + * in the Odometry processing several times). + */ + struct CV_EXPORTS OdometryFrame : public RgbdFrame + { + /** These constants are used to set a type of cache which has to be prepared depending on the frame role: + * srcFrame or dstFrame (see compute method of the Odometry class). For the srcFrame and dstFrame different cache data may be required, + * some part of a cache may be common for both frame roles. + * @param CACHE_SRC The cache data for the srcFrame will be prepared. + * @param CACHE_DST The cache data for the dstFrame will be prepared. + * @param CACHE_ALL The cache data for both srcFrame and dstFrame roles will be computed. + */ + enum + { + CACHE_SRC = 1, CACHE_DST = 2, CACHE_ALL = CACHE_SRC + CACHE_DST + }; + + OdometryFrame(); + OdometryFrame(const Mat& image, const Mat& depth, const Mat& mask=Mat(), const Mat& normals=Mat(), int ID=-1); + + virtual void + release(); + + void + releasePyramids(); + + std::vector pyramidImage; + std::vector pyramidDepth; + std::vector pyramidMask; + + std::vector pyramidCloud; + + std::vector pyramid_dI_dx; + std::vector pyramid_dI_dy; + std::vector pyramidTexturedMask; + + std::vector pyramidNormals; + std::vector pyramidNormalsMask; + }; + + /** Base class for computation of odometry. + */ + class CV_EXPORTS Odometry: public Algorithm + { + public: + + /** A class of transformation*/ + enum + { + ROTATION = 1, TRANSLATION = 2, RIGID_BODY_MOTION = 4 + }; + + static inline float + DEFAULT_MIN_DEPTH() + { + return 0.f; // in meters + } + static inline float + DEFAULT_MAX_DEPTH() + { + return 4.f; // in meters + } + static inline float + DEFAULT_MAX_DEPTH_DIFF() + { + return 0.07f; // in meters + } + static inline float + DEFAULT_MAX_POINTS_PART() + { + return 0.07f; // in [0, 1] + } + static inline float + DEFAULT_MAX_TRANSLATION() + { + return 0.15f; // in meters + } + static inline float + DEFAULT_MAX_ROTATION() + { + return 15; // in degrees + } + + /** Method to compute a transformation from the source frame to the destination one. + * Some odometry algorithms do not used some data of frames (eg. ICP does not use images). + * In such case corresponding arguments can be set as empty Mat. + * The method returns true if all internal computions were possible (e.g. there were enough correspondences, + * system of equations has a solution, etc) and resulting transformation satisfies some test if it's provided + * by the Odometry inheritor implementation (e.g. thresholds for maximum translation and rotation). + * @param srcImage Image data of the source frame (CV_8UC1) + * @param srcDepth Depth data of the source frame (CV_32FC1, in meters) + * @param srcMask Mask that sets which pixels have to be used from the source frame (CV_8UC1) + * @param dstImage Image data of the destination frame (CV_8UC1) + * @param dstDepth Depth data of the destination frame (CV_32FC1, in meters) + * @param dstMask Mask that sets which pixels have to be used from the destination frame (CV_8UC1) + * @param Rt Resulting transformation from the source frame to the destination one (rigid body motion): + dst_p = Rt * src_p, where dst_p is a homogeneous point in the destination frame and src_p is + homogeneous point in the source frame, + Rt is 4x4 matrix of CV_64FC1 type. + * @param initRt Initial transformation from the source frame to the destination one (optional) + */ + bool + compute(const Mat& srcImage, const Mat& srcDepth, const Mat& srcMask, const Mat& dstImage, const Mat& dstDepth, + const Mat& dstMask, Mat& Rt, const Mat& initRt = Mat()) const; + + /** One more method to compute a transformation from the source frame to the destination one. + * It is designed to save on computing the frame data (image pyramids, normals, etc.). + */ + bool + compute(Ptr& srcFrame, Ptr& dstFrame, Mat& Rt, const Mat& initRt = Mat()) const; + + /** Prepare a cache for the frame. The function checks the precomputed/passed data (throws the error if this data + * does not satisfy) and computes all remaining cache data needed for the frame. Returned size is a resolution + * of the prepared frame. + * @param frame The odometry which will process the frame. + * @param cacheType The cache type: CACHE_SRC, CACHE_DST or CACHE_ALL. + */ + virtual Size prepareFrameCache(Ptr& frame, int cacheType) const; + + static Ptr create(const String & odometryType); + + /** @see setCameraMatrix */ + virtual cv::Mat getCameraMatrix() const = 0; + /** @copybrief getCameraMatrix @see getCameraMatrix */ + virtual void setCameraMatrix(const cv::Mat &val) = 0; + /** @see setTransformType */ + virtual int getTransformType() const = 0; + /** @copybrief getTransformType @see getTransformType */ + virtual void setTransformType(int val) = 0; + + protected: + virtual void + checkParams() const = 0; + + virtual bool + computeImpl(const Ptr& srcFrame, const Ptr& dstFrame, Mat& Rt, + const Mat& initRt) const = 0; + }; + + /** Odometry based on the paper "Real-Time Visual Odometry from Dense RGB-D Images", + * F. Steinbucker, J. Strum, D. Cremers, ICCV, 2011. + */ + class CV_EXPORTS RgbdOdometry: public Odometry + { + public: + RgbdOdometry(); + /** Constructor. + * @param cameraMatrix Camera matrix + * @param minDepth Pixels with depth less than minDepth will not be used (in meters) + * @param maxDepth Pixels with depth larger than maxDepth will not be used (in meters) + * @param maxDepthDiff Correspondences between pixels of two given frames will be filtered out + * if their depth difference is larger than maxDepthDiff (in meters) + * @param iterCounts Count of iterations on each pyramid level. + * @param minGradientMagnitudes For each pyramid level the pixels will be filtered out + * if they have gradient magnitude less than minGradientMagnitudes[level]. + * @param maxPointsPart The method uses a random pixels subset of size frameWidth x frameHeight x pointsPart + * @param transformType Class of transformation + */ + RgbdOdometry(const Mat& cameraMatrix, float minDepth = DEFAULT_MIN_DEPTH(), float maxDepth = DEFAULT_MAX_DEPTH(), + float maxDepthDiff = DEFAULT_MAX_DEPTH_DIFF(), const std::vector& iterCounts = std::vector(), + const std::vector& minGradientMagnitudes = std::vector(), float maxPointsPart = DEFAULT_MAX_POINTS_PART(), + int transformType = RIGID_BODY_MOTION); + + virtual Size prepareFrameCache(Ptr& frame, int cacheType) const; + + cv::Mat getCameraMatrix() const + { + return cameraMatrix; + } + void setCameraMatrix(const cv::Mat &val) + { + cameraMatrix = val; + } + double getMinDepth() const + { + return minDepth; + } + void setMinDepth(double val) + { + minDepth = val; + } + double getMaxDepth() const + { + return maxDepth; + } + void setMaxDepth(double val) + { + maxDepth = val; + } + double getMaxDepthDiff() const + { + return maxDepthDiff; + } + void setMaxDepthDiff(double val) + { + maxDepthDiff = val; + } + cv::Mat getIterationCounts() const + { + return iterCounts; + } + void setIterationCounts(const cv::Mat &val) + { + iterCounts = val; + } + cv::Mat getMinGradientMagnitudes() const + { + return minGradientMagnitudes; + } + void setMinGradientMagnitudes(const cv::Mat &val) + { + minGradientMagnitudes = val; + } + double getMaxPointsPart() const + { + return maxPointsPart; + } + void setMaxPointsPart(double val) + { + maxPointsPart = val; + } + int getTransformType() const + { + return transformType; + } + void setTransformType(int val) + { + transformType = val; + } + double getMaxTranslation() const + { + return maxTranslation; + } + void setMaxTranslation(double val) + { + maxTranslation = val; + } + double getMaxRotation() const + { + return maxRotation; + } + void setMaxRotation(double val) + { + maxRotation = val; + } + + protected: + virtual void + checkParams() const; + + virtual bool + computeImpl(const Ptr& srcFrame, const Ptr& dstFrame, Mat& Rt, + const Mat& initRt) const; + + // Some params have commented desired type. It's due to AlgorithmInfo::addParams does not support it now. + /*float*/ + double minDepth, maxDepth, maxDepthDiff; + /*vector*/ + Mat iterCounts; + /*vector*/ + Mat minGradientMagnitudes; + double maxPointsPart; + + Mat cameraMatrix; + int transformType; + + double maxTranslation, maxRotation; + }; + + /** Odometry based on the paper "KinectFusion: Real-Time Dense Surface Mapping and Tracking", + * Richard A. Newcombe, Andrew Fitzgibbon, at al, SIGGRAPH, 2011. + */ + class ICPOdometry: public Odometry + { + public: + ICPOdometry(); + /** Constructor. + * @param cameraMatrix Camera matrix + * @param minDepth Pixels with depth less than minDepth will not be used + * @param maxDepth Pixels with depth larger than maxDepth will not be used + * @param maxDepthDiff Correspondences between pixels of two given frames will be filtered out + * if their depth difference is larger than maxDepthDiff + * @param maxPointsPart The method uses a random pixels subset of size frameWidth x frameHeight x pointsPart + * @param iterCounts Count of iterations on each pyramid level. + * @param transformType Class of trasformation + */ + ICPOdometry(const Mat& cameraMatrix, float minDepth = DEFAULT_MIN_DEPTH(), float maxDepth = DEFAULT_MAX_DEPTH(), + float maxDepthDiff = DEFAULT_MAX_DEPTH_DIFF(), float maxPointsPart = DEFAULT_MAX_POINTS_PART(), + const std::vector& iterCounts = std::vector(), int transformType = RIGID_BODY_MOTION); + + virtual Size prepareFrameCache(Ptr& frame, int cacheType) const; + + cv::Mat getCameraMatrix() const + { + return cameraMatrix; + } + void setCameraMatrix(const cv::Mat &val) + { + cameraMatrix = val; + } + double getMinDepth() const + { + return minDepth; + } + void setMinDepth(double val) + { + minDepth = val; + } + double getMaxDepth() const + { + return maxDepth; + } + void setMaxDepth(double val) + { + maxDepth = val; + } + double getMaxDepthDiff() const + { + return maxDepthDiff; + } + void setMaxDepthDiff(double val) + { + maxDepthDiff = val; + } + cv::Mat getIterationCounts() const + { + return iterCounts; + } + void setIterationCounts(const cv::Mat &val) + { + iterCounts = val; + } + double getMaxPointsPart() const + { + return maxPointsPart; + } + void setMaxPointsPart(double val) + { + maxPointsPart = val; + } + int getTransformType() const + { + return transformType; + } + void setTransformType(int val) + { + transformType = val; + } + double getMaxTranslation() const + { + return maxTranslation; + } + void setMaxTranslation(double val) + { + maxTranslation = val; + } + double getMaxRotation() const + { + return maxRotation; + } + void setMaxRotation(double val) + { + maxRotation = val; + } + Ptr getNormalsComputer() const + { + return normalsComputer; + } + + protected: + virtual void + checkParams() const; + + virtual bool + computeImpl(const Ptr& srcFrame, const Ptr& dstFrame, Mat& Rt, + const Mat& initRt) const; + + // Some params have commented desired type. It's due to AlgorithmInfo::addParams does not support it now. + /*float*/ + double minDepth, maxDepth, maxDepthDiff; + /*float*/ + double maxPointsPart; + /*vector*/ + Mat iterCounts; + + Mat cameraMatrix; + int transformType; + + double maxTranslation, maxRotation; + + mutable Ptr normalsComputer; + }; + + /** Odometry that merges RgbdOdometry and ICPOdometry by minimize sum of their energy functions. + */ + + class RgbdICPOdometry: public Odometry + { + public: + RgbdICPOdometry(); + /** Constructor. + * @param cameraMatrix Camera matrix + * @param minDepth Pixels with depth less than minDepth will not be used + * @param maxDepth Pixels with depth larger than maxDepth will not be used + * @param maxDepthDiff Correspondences between pixels of two given frames will be filtered out + * if their depth difference is larger than maxDepthDiff + * @param maxPointsPart The method uses a random pixels subset of size frameWidth x frameHeight x pointsPart + * @param iterCounts Count of iterations on each pyramid level. + * @param minGradientMagnitudes For each pyramid level the pixels will be filtered out + * if they have gradient magnitude less than minGradientMagnitudes[level]. + * @param transformType Class of trasformation + */ + RgbdICPOdometry(const Mat& cameraMatrix, float minDepth = DEFAULT_MIN_DEPTH(), float maxDepth = DEFAULT_MAX_DEPTH(), + float maxDepthDiff = DEFAULT_MAX_DEPTH_DIFF(), float maxPointsPart = DEFAULT_MAX_POINTS_PART(), + const std::vector& iterCounts = std::vector(), + const std::vector& minGradientMagnitudes = std::vector(), + int transformType = RIGID_BODY_MOTION); + + virtual Size prepareFrameCache(Ptr& frame, int cacheType) const; + + cv::Mat getCameraMatrix() const + { + return cameraMatrix; + } + void setCameraMatrix(const cv::Mat &val) + { + cameraMatrix = val; + } + double getMinDepth() const + { + return minDepth; + } + void setMinDepth(double val) + { + minDepth = val; + } + double getMaxDepth() const + { + return maxDepth; + } + void setMaxDepth(double val) + { + maxDepth = val; + } + double getMaxDepthDiff() const + { + return maxDepthDiff; + } + void setMaxDepthDiff(double val) + { + maxDepthDiff = val; + } + double getMaxPointsPart() const + { + return maxPointsPart; + } + void setMaxPointsPart(double val) + { + maxPointsPart = val; + } + cv::Mat getIterationCounts() const + { + return iterCounts; + } + void setIterationCounts(const cv::Mat &val) + { + iterCounts = val; + } + cv::Mat getMinGradientMagnitudes() const + { + return minGradientMagnitudes; + } + void setMinGradientMagnitudes(const cv::Mat &val) + { + minGradientMagnitudes = val; + } + int getTransformType() const + { + return transformType; + } + void setTransformType(int val) + { + transformType = val; + } + double getMaxTranslation() const + { + return maxTranslation; + } + void setMaxTranslation(double val) + { + maxTranslation = val; + } + double getMaxRotation() const + { + return maxRotation; + } + void setMaxRotation(double val) + { + maxRotation = val; + } + Ptr getNormalsComputer() const + { + return normalsComputer; + } + + protected: + virtual void + checkParams() const; + + virtual bool + computeImpl(const Ptr& srcFrame, const Ptr& dstFrame, Mat& Rt, + const Mat& initRt) const; + + // Some params have commented desired type. It's due to AlgorithmInfo::addParams does not support it now. + /*float*/ + double minDepth, maxDepth, maxDepthDiff; + /*float*/ + double maxPointsPart; + /*vector*/ + Mat iterCounts; + /*vector*/ + Mat minGradientMagnitudes; + + Mat cameraMatrix; + int transformType; + + double maxTranslation, maxRotation; + + mutable Ptr normalsComputer; + }; + + /** Warp the image: compute 3d points from the depth, transform them using given transformation, + * then project color point cloud to an image plane. + * This function can be used to visualize results of the Odometry algorithm. + * @param image The image (of CV_8UC1 or CV_8UC3 type) + * @param depth The depth (of type used in depthTo3d fuction) + * @param mask The mask of used pixels (of CV_8UC1), it can be empty + * @param Rt The transformation that will be applied to the 3d points computed from the depth + * @param cameraMatrix Camera matrix + * @param distCoeff Distortion coefficients + * @param warpedImage The warped image. + * @param warpedDepth The warped depth. + * @param warpedMask The warped mask. + */ + CV_EXPORTS + void + warpFrame(const Mat& image, const Mat& depth, const Mat& mask, const Mat& Rt, const Mat& cameraMatrix, + const Mat& distCoeff, Mat& warpedImage, Mat* warpedDepth = 0, Mat* warpedMask = 0); + +// TODO Depth interpolation +// Curvature +// Get rescaleDepth return dubles if asked for + +//! @} + +} /* namespace rgbd */ +} /* namespace cv */ + +#include "opencv2/rgbd/linemod.hpp" + +#endif /* __cplusplus */ +#endif + +/* End of file. */ + diff --git a/thirdparty1/linux/include/opencv2/rgbd/linemod.hpp b/thirdparty1/linux/include/opencv2/rgbd/linemod.hpp new file mode 100644 index 0000000..ac56291 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/rgbd/linemod.hpp @@ -0,0 +1,458 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef __OPENCV_OBJDETECT_LINEMOD_HPP__ +#define __OPENCV_OBJDETECT_LINEMOD_HPP__ + +#include "opencv2/core.hpp" +#include + +/****************************************************************************************\ +* LINE-MOD * +\****************************************************************************************/ + +namespace cv { +namespace linemod { + +//! @addtogroup rgbd +//! @{ + +/** + * \brief Discriminant feature described by its location and label. + */ +struct CV_EXPORTS Feature +{ + int x; ///< x offset + int y; ///< y offset + int label; ///< Quantization + + Feature() : x(0), y(0), label(0) {} + Feature(int x, int y, int label); + + void read(const FileNode& fn); + void write(FileStorage& fs) const; +}; + +inline Feature::Feature(int _x, int _y, int _label) : x(_x), y(_y), label(_label) {} + +struct CV_EXPORTS Template +{ + int width; + int height; + int pyramid_level; + std::vector features; + + void read(const FileNode& fn); + void write(FileStorage& fs) const; +}; + +/** + * \brief Represents a modality operating over an image pyramid. + */ +class QuantizedPyramid +{ +public: + // Virtual destructor + virtual ~QuantizedPyramid() {} + + /** + * \brief Compute quantized image at current pyramid level for online detection. + * + * \param[out] dst The destination 8-bit image. For each pixel at most one bit is set, + * representing its classification. + */ + virtual void quantize(Mat& dst) const =0; + + /** + * \brief Extract most discriminant features at current pyramid level to form a new template. + * + * \param[out] templ The new template. + */ + virtual bool extractTemplate(Template& templ) const =0; + + /** + * \brief Go to the next pyramid level. + * + * \todo Allow pyramid scale factor other than 2 + */ + virtual void pyrDown() =0; + +protected: + /// Candidate feature with a score + struct Candidate + { + Candidate(int x, int y, int label, float score); + + /// Sort candidates with high score to the front + bool operator<(const Candidate& rhs) const + { + return score > rhs.score; + } + + Feature f; + float score; + }; + + /** + * \brief Choose candidate features so that they are not bunched together. + * + * \param[in] candidates Candidate features sorted by score. + * \param[out] features Destination vector of selected features. + * \param[in] num_features Number of candidates to select. + * \param[in] distance Hint for desired distance between features. + */ + static void selectScatteredFeatures(const std::vector& candidates, + std::vector& features, + size_t num_features, float distance); +}; + +inline QuantizedPyramid::Candidate::Candidate(int x, int y, int label, float _score) : f(x, y, label), score(_score) {} + +/** + * \brief Interface for modalities that plug into the LINE template matching representation. + * + * \todo Max response, to allow optimization of summing (255/MAX) features as uint8 + */ +class CV_EXPORTS Modality +{ +public: + // Virtual destructor + virtual ~Modality() {} + + /** + * \brief Form a quantized image pyramid from a source image. + * + * \param[in] src The source image. Type depends on the modality. + * \param[in] mask Optional mask. If not empty, unmasked pixels are set to zero + * in quantized image and cannot be extracted as features. + */ + Ptr process(const Mat& src, + const Mat& mask = Mat()) const + { + return processImpl(src, mask); + } + + virtual String name() const =0; + + virtual void read(const FileNode& fn) =0; + virtual void write(FileStorage& fs) const =0; + + /** + * \brief Create modality by name. + * + * The following modality types are supported: + * - "ColorGradient" + * - "DepthNormal" + */ + static Ptr create(const String& modality_type); + + /** + * \brief Load a modality from file. + */ + static Ptr create(const FileNode& fn); + +protected: + // Indirection is because process() has a default parameter. + virtual Ptr processImpl(const Mat& src, + const Mat& mask) const =0; +}; + +/** + * \brief Modality that computes quantized gradient orientations from a color image. + */ +class CV_EXPORTS ColorGradient : public Modality +{ +public: + /** + * \brief Default constructor. Uses reasonable default parameter values. + */ + ColorGradient(); + + /** + * \brief Constructor. + * + * \param weak_threshold When quantizing, discard gradients with magnitude less than this. + * \param num_features How many features a template must contain. + * \param strong_threshold Consider as candidate features only gradients whose norms are + * larger than this. + */ + ColorGradient(float weak_threshold, size_t num_features, float strong_threshold); + + virtual String name() const; + + virtual void read(const FileNode& fn); + virtual void write(FileStorage& fs) const; + + float weak_threshold; + size_t num_features; + float strong_threshold; + +protected: + virtual Ptr processImpl(const Mat& src, + const Mat& mask) const; +}; + +/** + * \brief Modality that computes quantized surface normals from a dense depth map. + */ +class CV_EXPORTS DepthNormal : public Modality +{ +public: + /** + * \brief Default constructor. Uses reasonable default parameter values. + */ + DepthNormal(); + + /** + * \brief Constructor. + * + * \param distance_threshold Ignore pixels beyond this distance. + * \param difference_threshold When computing normals, ignore contributions of pixels whose + * depth difference with the central pixel is above this threshold. + * \param num_features How many features a template must contain. + * \param extract_threshold Consider as candidate feature only if there are no differing + * orientations within a distance of extract_threshold. + */ + DepthNormal(int distance_threshold, int difference_threshold, size_t num_features, + int extract_threshold); + + virtual String name() const; + + virtual void read(const FileNode& fn); + virtual void write(FileStorage& fs) const; + + int distance_threshold; + int difference_threshold; + size_t num_features; + int extract_threshold; + +protected: + virtual Ptr processImpl(const Mat& src, + const Mat& mask) const; +}; + +/** + * \brief Debug function to colormap a quantized image for viewing. + */ +void colormap(const Mat& quantized, Mat& dst); + +/** + * \brief Represents a successful template match. + */ +struct CV_EXPORTS Match +{ + Match() + { + } + + Match(int x, int y, float similarity, const String& class_id, int template_id); + + /// Sort matches with high similarity to the front + bool operator<(const Match& rhs) const + { + // Secondarily sort on template_id for the sake of duplicate removal + if (similarity != rhs.similarity) + return similarity > rhs.similarity; + else + return template_id < rhs.template_id; + } + + bool operator==(const Match& rhs) const + { + return x == rhs.x && y == rhs.y && similarity == rhs.similarity && class_id == rhs.class_id; + } + + int x; + int y; + float similarity; + String class_id; + int template_id; +}; + +inline +Match::Match(int _x, int _y, float _similarity, const String& _class_id, int _template_id) + : x(_x), y(_y), similarity(_similarity), class_id(_class_id), template_id(_template_id) +{} + +/** + * \brief Object detector using the LINE template matching algorithm with any set of + * modalities. + */ +class CV_EXPORTS Detector +{ +public: + /** + * \brief Empty constructor, initialize with read(). + */ + Detector(); + + /** + * \brief Constructor. + * + * \param modalities Modalities to use (color gradients, depth normals, ...). + * \param T_pyramid Value of the sampling step T at each pyramid level. The + * number of pyramid levels is T_pyramid.size(). + */ + Detector(const std::vector< Ptr >& modalities, const std::vector& T_pyramid); + + /** + * \brief Detect objects by template matching. + * + * Matches globally at the lowest pyramid level, then refines locally stepping up the pyramid. + * + * \param sources Source images, one for each modality. + * \param threshold Similarity threshold, a percentage between 0 and 100. + * \param[out] matches Template matches, sorted by similarity score. + * \param class_ids If non-empty, only search for the desired object classes. + * \param[out] quantized_images Optionally return vector of quantized images. + * \param masks The masks for consideration during matching. The masks should be CV_8UC1 + * where 255 represents a valid pixel. If non-empty, the vector must be + * the same size as sources. Each element must be + * empty or the same size as its corresponding source. + */ + void match(const std::vector& sources, float threshold, std::vector& matches, + const std::vector& class_ids = std::vector(), + OutputArrayOfArrays quantized_images = noArray(), + const std::vector& masks = std::vector()) const; + + /** + * \brief Add new object template. + * + * \param sources Source images, one for each modality. + * \param class_id Object class ID. + * \param object_mask Mask separating object from background. + * \param[out] bounding_box Optionally return bounding box of the extracted features. + * + * \return Template ID, or -1 if failed to extract a valid template. + */ + int addTemplate(const std::vector& sources, const String& class_id, + const Mat& object_mask, Rect* bounding_box = NULL); + + /** + * \brief Add a new object template computed by external means. + */ + int addSyntheticTemplate(const std::vector