diff options
Diffstat (limited to 'thirdparty1/linux/include/opencv2/optflow/sparse_matching_gpc.hpp')
-rw-r--r-- | thirdparty1/linux/include/opencv2/optflow/sparse_matching_gpc.hpp | 380 |
1 files changed, 380 insertions, 0 deletions
diff --git a/thirdparty1/linux/include/opencv2/optflow/sparse_matching_gpc.hpp b/thirdparty1/linux/include/opencv2/optflow/sparse_matching_gpc.hpp new file mode 100644 index 0000000..3127710 --- /dev/null +++ b/thirdparty1/linux/include/opencv2/optflow/sparse_matching_gpc.hpp @@ -0,0 +1,380 @@ +/* +By downloading, copying, installing or using the software you agree to this +license. If you do not agree to this license, do not download, install, +copy or use the software. + + + License Agreement + For Open Source Computer Vision Library + (3-clause BSD License) + +Copyright (C) 2016, OpenCV Foundation, all rights reserved. +Third party copyrights are property of their respective owners. + +Redistribution and use in source and binary forms, with or without modification, +are permitted provided that the following conditions are met: + + * Redistributions of source code must retain the above copyright notice, + this list of conditions and the following disclaimer. + + * Redistributions in binary form must reproduce the above copyright notice, + this list of conditions and the following disclaimer in the documentation + and/or other materials provided with the distribution. + + * Neither the names of the copyright holders nor the names of the contributors + may be used to endorse or promote products derived from this software + without specific prior written permission. + +This software is provided by the copyright holders and contributors "as is" and +any express or implied warranties, including, but not limited to, the implied +warranties of merchantability and fitness for a particular purpose are +disclaimed. In no event shall copyright holders or contributors be liable for +any direct, indirect, incidental, special, exemplary, or consequential damages +(including, but not limited to, procurement of substitute goods or services; +loss of use, data, or profits; or business interruption) however caused +and on any theory of liability, whether in contract, strict liability, +or tort (including negligence or otherwise) arising in any way out of +the use of this software, even if advised of the possibility of such damage. +*/ + +/** + * @file sparse_matching_gpc.hpp + * @author Vladislav Samsonov <vvladxx@gmail.com> + * @brief Implementation of the Global Patch Collider. + * + * Implementation of the Global Patch Collider algorithm from the following paper: + * http://research.microsoft.com/en-us/um/people/pkohli/papers/wfrik_cvpr2016.pdf + * + * @cite Wang_2016_CVPR + */ + +#ifndef __OPENCV_OPTFLOW_SPARSE_MATCHING_GPC_HPP__ +#define __OPENCV_OPTFLOW_SPARSE_MATCHING_GPC_HPP__ + +#include "opencv2/core.hpp" +#include "opencv2/core/hal/intrin.hpp" +#include "opencv2/imgproc.hpp" + +namespace cv +{ +namespace optflow +{ + +//! @addtogroup optflow +//! @{ + +struct CV_EXPORTS_W GPCPatchDescriptor +{ + static const unsigned nFeatures = 18; //!< number of features in a patch descriptor + Vec< double, nFeatures > feature; + + double dot( const Vec< double, nFeatures > &coef ) const; + + void markAsSeparated() { feature[0] = std::numeric_limits< double >::quiet_NaN(); } + + bool isSeparated() const { return cvIsNaN( feature[0] ) != 0; } +}; + +struct CV_EXPORTS_W GPCPatchSample +{ + GPCPatchDescriptor ref; + GPCPatchDescriptor pos; + GPCPatchDescriptor neg; + + void getDirections( bool &refdir, bool &posdir, bool &negdir, const Vec< double, GPCPatchDescriptor::nFeatures > &coef, double rhs ) const; +}; + +typedef std::vector< GPCPatchSample > GPCSamplesVector; + +/** @brief Descriptor types for the Global Patch Collider. + */ +enum GPCDescType +{ + GPC_DESCRIPTOR_DCT = 0, //!< Better quality but slow + GPC_DESCRIPTOR_WHT //!< Worse quality but much faster +}; + +/** @brief Class encapsulating training samples. + */ +class CV_EXPORTS_W GPCTrainingSamples +{ +private: + GPCSamplesVector samples; + int descriptorType; + +public: + /** @brief This function can be used to extract samples from a pair of images and a ground truth flow. + * Sizes of all the provided vectors must be equal. + */ + static Ptr< GPCTrainingSamples > create( const std::vector< String > &imagesFrom, const std::vector< String > &imagesTo, + const std::vector< String > >, int descriptorType ); + + static Ptr< GPCTrainingSamples > create( InputArrayOfArrays imagesFrom, InputArrayOfArrays imagesTo, InputArrayOfArrays gt, + int descriptorType ); + + size_t size() const { return samples.size(); } + + int type() const { return descriptorType; } + + operator GPCSamplesVector &() { return samples; } +}; + +/** @brief Class encapsulating training parameters. + */ +struct GPCTrainingParams +{ + unsigned maxTreeDepth; //!< Maximum tree depth to stop partitioning. + int minNumberOfSamples; //!< Minimum number of samples in the node to stop partitioning. + int descriptorType; //!< Type of descriptors to use. + bool printProgress; //!< Print progress to stdout. + + GPCTrainingParams( unsigned _maxTreeDepth = 20, int _minNumberOfSamples = 3, GPCDescType _descriptorType = GPC_DESCRIPTOR_DCT, + bool _printProgress = true ) + : maxTreeDepth( _maxTreeDepth ), minNumberOfSamples( _minNumberOfSamples ), descriptorType( _descriptorType ), + printProgress( _printProgress ) + { + CV_Assert( check() ); + } + + GPCTrainingParams( const GPCTrainingParams ¶ms ) + : maxTreeDepth( params.maxTreeDepth ), minNumberOfSamples( params.minNumberOfSamples ), descriptorType( params.descriptorType ), + printProgress( params.printProgress ) + { + CV_Assert( check() ); + } + + bool check() const { return maxTreeDepth > 1 && minNumberOfSamples > 1; } +}; + +/** @brief Class encapsulating matching parameters. + */ +struct GPCMatchingParams +{ + bool useOpenCL; //!< Whether to use OpenCL to speed up the matching. + + GPCMatchingParams( bool _useOpenCL = false ) : useOpenCL( _useOpenCL ) {} + + GPCMatchingParams( const GPCMatchingParams ¶ms ) : useOpenCL( params.useOpenCL ) {} +}; + +/** @brief Class for individual tree. + */ +class CV_EXPORTS_W GPCTree : public Algorithm +{ +public: + struct Node + { + Vec< double, GPCPatchDescriptor::nFeatures > coef; //!< Hyperplane coefficients + double rhs; //!< Bias term of the hyperplane + unsigned left; + unsigned right; + + bool operator==( const Node &n ) const { return coef == n.coef && rhs == n.rhs && left == n.left && right == n.right; } + }; + +private: + typedef GPCSamplesVector::iterator SIter; + + std::vector< Node > nodes; + GPCTrainingParams params; + + bool trainNode( size_t nodeId, SIter begin, SIter end, unsigned depth ); + +public: + void train( GPCTrainingSamples &samples, const GPCTrainingParams params = GPCTrainingParams() ); + + void write( FileStorage &fs ) const; + + void read( const FileNode &fn ); + + unsigned findLeafForPatch( const GPCPatchDescriptor &descr ) const; + + static Ptr< GPCTree > create() { return makePtr< GPCTree >(); } + + bool operator==( const GPCTree &t ) const { return nodes == t.nodes; } + + int getDescriptorType() const { return params.descriptorType; } +}; + +template < int T > class CV_EXPORTS_W GPCForest : public Algorithm +{ +private: + struct Trail + { + unsigned leaf[T]; //!< Inside which leaf of the tree 0..T the patch fell? + Point2i coord; //!< Patch coordinates. + + bool operator==( const Trail &trail ) const { return memcmp( leaf, trail.leaf, sizeof( leaf ) ) == 0; } + + bool operator<( const Trail &trail ) const + { + for ( int i = 0; i < T - 1; ++i ) + if ( leaf[i] != trail.leaf[i] ) + return leaf[i] < trail.leaf[i]; + return leaf[T - 1] < trail.leaf[T - 1]; + } + }; + + class ParallelTrailsFilling : public ParallelLoopBody + { + private: + const GPCForest *forest; + const std::vector< GPCPatchDescriptor > *descr; + std::vector< Trail > *trails; + + ParallelTrailsFilling &operator=( const ParallelTrailsFilling & ); + + public: + ParallelTrailsFilling( const GPCForest *_forest, const std::vector< GPCPatchDescriptor > *_descr, std::vector< Trail > *_trails ) + : forest( _forest ), descr( _descr ), trails( _trails ){}; + + void operator()( const Range &range ) const + { + for ( int t = range.start; t < range.end; ++t ) + for ( size_t i = 0; i < descr->size(); ++i ) + trails->at( i ).leaf[t] = forest->tree[t].findLeafForPatch( descr->at( i ) ); + } + }; + + GPCTree tree[T]; + +public: + /** @brief Train the forest using one sample set for every tree. + * Please, consider using the next method instead of this one for better quality. + */ + void train( GPCTrainingSamples &samples, const GPCTrainingParams params = GPCTrainingParams() ) + { + for ( int i = 0; i < T; ++i ) + tree[i].train( samples, params ); + } + + /** @brief Train the forest using individual samples for each tree. + * It is generally better to use this instead of the first method. + */ + void train( const std::vector< String > &imagesFrom, const std::vector< String > &imagesTo, const std::vector< String > >, + const GPCTrainingParams params = GPCTrainingParams() ) + { + for ( int i = 0; i < T; ++i ) + { + Ptr< GPCTrainingSamples > samples = + GPCTrainingSamples::create( imagesFrom, imagesTo, gt, params.descriptorType ); // Create training set for the tree + tree[i].train( *samples, params ); + } + } + + void train( InputArrayOfArrays imagesFrom, InputArrayOfArrays imagesTo, InputArrayOfArrays gt, + const GPCTrainingParams params = GPCTrainingParams() ) + { + for ( int i = 0; i < T; ++i ) + { + Ptr< GPCTrainingSamples > samples = + GPCTrainingSamples::create( imagesFrom, imagesTo, gt, params.descriptorType ); // Create training set for the tree + tree[i].train( *samples, params ); + } + } + + void write( FileStorage &fs ) const + { + fs << "ntrees" << T << "trees" + << "["; + for ( int i = 0; i < T; ++i ) + { + fs << "{"; + tree[i].write( fs ); + fs << "}"; + } + fs << "]"; + } + + void read( const FileNode &fn ) + { + CV_Assert( T <= (int)fn["ntrees"] ); + FileNodeIterator it = fn["trees"].begin(); + for ( int i = 0; i < T; ++i, ++it ) + tree[i].read( *it ); + } + + /** @brief Find correspondences between two images. + * @param[in] imgFrom First image in a sequence. + * @param[in] imgTo Second image in a sequence. + * @param[out] corr Output vector with pairs of corresponding points. + * @param[in] params Additional matching parameters for fine-tuning. + */ + void findCorrespondences( InputArray imgFrom, InputArray imgTo, std::vector< std::pair< Point2i, Point2i > > &corr, + const GPCMatchingParams params = GPCMatchingParams() ) const; + + static Ptr< GPCForest > create() { return makePtr< GPCForest >(); } +}; + +class CV_EXPORTS_W GPCDetails +{ +public: + static void dropOutliers( std::vector< std::pair< Point2i, Point2i > > &corr ); + + static void getAllDescriptorsForImage( const Mat *imgCh, std::vector< GPCPatchDescriptor > &descr, const GPCMatchingParams &mp, + int type ); + + static void getCoordinatesFromIndex( size_t index, Size sz, int &x, int &y ); +}; + +template < int T > +void GPCForest< T >::findCorrespondences( InputArray imgFrom, InputArray imgTo, std::vector< std::pair< Point2i, Point2i > > &corr, + const GPCMatchingParams params ) const +{ + CV_Assert( imgFrom.channels() == 3 ); + CV_Assert( imgTo.channels() == 3 ); + + Mat from, to; + imgFrom.getMat().convertTo( from, CV_32FC3 ); + imgTo.getMat().convertTo( to, CV_32FC3 ); + cvtColor( from, from, COLOR_BGR2YCrCb ); + cvtColor( to, to, COLOR_BGR2YCrCb ); + + Mat fromCh[3], toCh[3]; + split( from, fromCh ); + split( to, toCh ); + + std::vector< GPCPatchDescriptor > descr; + GPCDetails::getAllDescriptorsForImage( fromCh, descr, params, tree[0].getDescriptorType() ); + std::vector< Trail > trailsFrom( descr.size() ), trailsTo( descr.size() ); + + for ( size_t i = 0; i < descr.size(); ++i ) + GPCDetails::getCoordinatesFromIndex( i, from.size(), trailsFrom[i].coord.x, trailsFrom[i].coord.y ); + parallel_for_( Range( 0, T ), ParallelTrailsFilling( this, &descr, &trailsFrom ) ); + + descr.clear(); + GPCDetails::getAllDescriptorsForImage( toCh, descr, params, tree[0].getDescriptorType() ); + + for ( size_t i = 0; i < descr.size(); ++i ) + GPCDetails::getCoordinatesFromIndex( i, to.size(), trailsTo[i].coord.x, trailsTo[i].coord.y ); + parallel_for_( Range( 0, T ), ParallelTrailsFilling( this, &descr, &trailsTo ) ); + + std::sort( trailsFrom.begin(), trailsFrom.end() ); + std::sort( trailsTo.begin(), trailsTo.end() ); + + for ( size_t i = 0; i < trailsFrom.size(); ++i ) + { + bool uniq = true; + while ( i + 1 < trailsFrom.size() && trailsFrom[i] == trailsFrom[i + 1] ) + ++i, uniq = false; + if ( uniq ) + { + typename std::vector< Trail >::const_iterator lb = std::lower_bound( trailsTo.begin(), trailsTo.end(), trailsFrom[i] ); + if ( lb != trailsTo.end() && *lb == trailsFrom[i] && ( ( lb + 1 ) == trailsTo.end() || !( *lb == *( lb + 1 ) ) ) ) + corr.push_back( std::make_pair( trailsFrom[i].coord, lb->coord ) ); + } + } + + GPCDetails::dropOutliers( corr ); +} + +//! @} + +} // namespace optflow + +CV_EXPORTS void write( FileStorage &fs, const String &name, const optflow::GPCTree::Node &node ); + +CV_EXPORTS void read( const FileNode &fn, optflow::GPCTree::Node &node, optflow::GPCTree::Node ); +} // namespace cv + +#endif |