summaryrefslogtreecommitdiff
path: root/drivers/net/wireless/bcmdhd.1.28.23.x.cn_ap6476/sbutils.c
blob: 68cfcb27a9c444a3850fe6668c47e2364dbd06af (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
/*
 * Misc utility routines for accessing chip-specific features
 * of the SiliconBackplane-based Broadcom chips.
 *
 * Copyright (C) 1999-2012, Broadcom Corporation
 * 
 *      Unless you and Broadcom execute a separate written software license
 * agreement governing use of this software, this software is licensed to you
 * under the terms of the GNU General Public License version 2 (the "GPL"),
 * available at http://www.broadcom.com/licenses/GPLv2.php, with the
 * following added to such license:
 * 
 *      As a special exception, the copyright holders of this software give you
 * permission to link this software with independent modules, and to copy and
 * distribute the resulting executable under terms of your choice, provided that
 * you also meet, for each linked independent module, the terms and conditions of
 * the license of that module.  An independent module is a module which is not
 * derived from this software.  The special exception does not apply to any
 * modifications of the software.
 * 
 *      Notwithstanding the above, under no circumstances may you combine this
 * software in any way with any other Broadcom software provided under a license
 * other than the GPL, without Broadcom's express prior written consent.
 *
 * $Id: sbutils.c 310902 2012-01-26 19:45:33Z $
 */

#include <bcm_cfg.h>
#include <typedefs.h>
#include <bcmdefs.h>
#include <osl.h>
#include <bcmutils.h>
#include <siutils.h>
#include <bcmdevs.h>
#include <hndsoc.h>
#include <sbchipc.h>
#include <pcicfg.h>
#include <sbpcmcia.h>

#include "siutils_priv.h"


/* local prototypes */
static uint _sb_coreidx(si_info_t *sii, uint32 sba);
static uint _sb_scan(si_info_t *sii, uint32 sba, void *regs, uint bus, uint32 sbba,
                     uint ncores);
static uint32 _sb_coresba(si_info_t *sii);
static void *_sb_setcoreidx(si_info_t *sii, uint coreidx);

#define	SET_SBREG(sii, r, mask, val)	\
		W_SBREG((sii), (r), ((R_SBREG((sii), (r)) & ~(mask)) | (val)))
#define	REGS2SB(va)	(sbconfig_t*) ((int8*)(va) + SBCONFIGOFF)

/* sonicsrev */
#define	SONICS_2_2	(SBIDL_RV_2_2 >> SBIDL_RV_SHIFT)
#define	SONICS_2_3	(SBIDL_RV_2_3 >> SBIDL_RV_SHIFT)

#define	R_SBREG(sii, sbr)	sb_read_sbreg((sii), (sbr))
#define	W_SBREG(sii, sbr, v)	sb_write_sbreg((sii), (sbr), (v))
#define	AND_SBREG(sii, sbr, v)	W_SBREG((sii), (sbr), (R_SBREG((sii), (sbr)) & (v)))
#define	OR_SBREG(sii, sbr, v)	W_SBREG((sii), (sbr), (R_SBREG((sii), (sbr)) | (v)))

static uint32
sb_read_sbreg(si_info_t *sii, volatile uint32 *sbr)
{
	uint8 tmp;
	uint32 val, intr_val = 0;


	/*
	 * compact flash only has 11 bits address, while we needs 12 bits address.
	 * MEM_SEG will be OR'd with other 11 bits address in hardware,
	 * so we program MEM_SEG with 12th bit when necessary(access sb regsiters).
	 * For normal PCMCIA bus(CFTable_regwinsz > 2k), do nothing special
	 */
	if (PCMCIA(sii)) {
		INTR_OFF(sii, intr_val);
		tmp = 1;
		OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1);
		sbr = (volatile uint32 *)((uintptr)sbr & ~(1 << 11)); /* mask out bit 11 */
	}

	val = R_REG(sii->osh, sbr);

	if (PCMCIA(sii)) {
		tmp = 0;
		OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1);
		INTR_RESTORE(sii, intr_val);
	}

	return (val);
}

static void
sb_write_sbreg(si_info_t *sii, volatile uint32 *sbr, uint32 v)
{
	uint8 tmp;
	volatile uint32 dummy;
	uint32 intr_val = 0;


	/*
	 * compact flash only has 11 bits address, while we needs 12 bits address.
	 * MEM_SEG will be OR'd with other 11 bits address in hardware,
	 * so we program MEM_SEG with 12th bit when necessary(access sb regsiters).
	 * For normal PCMCIA bus(CFTable_regwinsz > 2k), do nothing special
	 */
	if (PCMCIA(sii)) {
		INTR_OFF(sii, intr_val);
		tmp = 1;
		OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1);
		sbr = (volatile uint32 *)((uintptr)sbr & ~(1 << 11)); /* mask out bit 11 */
	}

	if (BUSTYPE(sii->pub.bustype) == PCMCIA_BUS) {
		dummy = R_REG(sii->osh, sbr);
		BCM_REFERENCE(dummy);
		W_REG(sii->osh, (volatile uint16 *)sbr, (uint16)(v & 0xffff));
		dummy = R_REG(sii->osh, sbr);
		BCM_REFERENCE(dummy);
		W_REG(sii->osh, ((volatile uint16 *)sbr + 1), (uint16)((v >> 16) & 0xffff));
	} else
		W_REG(sii->osh, sbr, v);

	if (PCMCIA(sii)) {
		tmp = 0;
		OSL_PCMCIA_WRITE_ATTR(sii->osh, MEM_SEG, &tmp, 1);
		INTR_RESTORE(sii, intr_val);
	}
}

uint
sb_coreid(si_t *sih)
{
	si_info_t *sii;
	sbconfig_t *sb;

	sii = SI_INFO(sih);
	sb = REGS2SB(sii->curmap);

	return ((R_SBREG(sii, &sb->sbidhigh) & SBIDH_CC_MASK) >> SBIDH_CC_SHIFT);
}

uint
sb_intflag(si_t *sih)
{
	si_info_t *sii;
	void *corereg;
	sbconfig_t *sb;
	uint origidx, intflag, intr_val = 0;

	sii = SI_INFO(sih);

	INTR_OFF(sii, intr_val);
	origidx = si_coreidx(sih);
	corereg = si_setcore(sih, CC_CORE_ID, 0);
	ASSERT(corereg != NULL);
	sb = REGS2SB(corereg);
	intflag = R_SBREG(sii, &sb->sbflagst);
	sb_setcoreidx(sih, origidx);
	INTR_RESTORE(sii, intr_val);

	return intflag;
}

uint
sb_flag(si_t *sih)
{
	si_info_t *sii;
	sbconfig_t *sb;

	sii = SI_INFO(sih);
	sb = REGS2SB(sii->curmap);

	return R_SBREG(sii, &sb->sbtpsflag) & SBTPS_NUM0_MASK;
}

void
sb_setint(si_t *sih, int siflag)
{
	si_info_t *sii;
	sbconfig_t *sb;
	uint32 vec;

	sii = SI_INFO(sih);
	sb = REGS2SB(sii->curmap);

	if (siflag == -1)
		vec = 0;
	else
		vec = 1 << siflag;
	W_SBREG(sii, &sb->sbintvec, vec);
}

/* return core index of the core with address 'sba' */
static uint
_sb_coreidx(si_info_t *sii, uint32 sba)
{
	uint i;

	for (i = 0; i < sii->numcores; i ++)
		if (sba == sii->coresba[i])
			return i;
	return BADIDX;
}

/* return core address of the current core */
static uint32
_sb_coresba(si_info_t *sii)
{
	uint32 sbaddr;


	switch (BUSTYPE(sii->pub.bustype)) {
	case SI_BUS: {
		sbconfig_t *sb = REGS2SB(sii->curmap);
		sbaddr = sb_base(R_SBREG(sii, &sb->sbadmatch0));
		break;
	}

	case PCI_BUS:
		sbaddr = OSL_PCI_READ_CONFIG(sii->osh, PCI_BAR0_WIN, sizeof(uint32));
		break;

	case PCMCIA_BUS: {
		uint8 tmp = 0;
		OSL_PCMCIA_READ_ATTR(sii->osh, PCMCIA_ADDR0, &tmp, 1);
		sbaddr  = (uint32)tmp << 12;
		OSL_PCMCIA_READ_ATTR(sii->osh, PCMCIA_ADDR1, &tmp, 1);
		sbaddr |= (uint32)tmp << 16;
		OSL_PCMCIA_READ_ATTR(sii->osh, PCMCIA_ADDR2, &tmp, 1);
		sbaddr |= (uint32)tmp << 24;
		break;
	}

	case SPI_BUS:
	case SDIO_BUS:
		sbaddr = (uint32)(uintptr)sii->curmap;
		break;


	default:
		sbaddr = BADCOREADDR;
		break;
	}

	return sbaddr;
}

uint
sb_corevendor(si_t *sih)
{
	si_info_t *sii;
	sbconfig_t *sb;

	sii = SI_INFO(sih);
	sb = REGS2SB(sii->curmap);

	return ((R_SBREG(sii, &sb->sbidhigh) & SBIDH_VC_MASK) >> SBIDH_VC_SHIFT);
}

uint
sb_corerev(si_t *sih)
{
	si_info_t *sii;
	sbconfig_t *sb;
	uint sbidh;

	sii = SI_INFO(sih);
	sb = REGS2SB(sii->curmap);
	sbidh = R_SBREG(sii, &sb->sbidhigh);

	return (SBCOREREV(sbidh));
}

/* set core-specific control flags */
void
sb_core_cflags_wo(si_t *sih, uint32 mask, uint32 val)
{
	si_info_t *sii;
	sbconfig_t *sb;
	uint32 w;

	sii = SI_INFO(sih);
	sb = REGS2SB(sii->curmap);

	ASSERT((val & ~mask) == 0);

	/* mask and set */
	w = (R_SBREG(sii, &sb->sbtmstatelow) & ~(mask << SBTML_SICF_SHIFT)) |
	        (val << SBTML_SICF_SHIFT);
	W_SBREG(sii, &sb->sbtmstatelow, w);
}

/* set/clear core-specific control flags */
uint32
sb_core_cflags(si_t *sih, uint32 mask, uint32 val)
{
	si_info_t *sii;
	sbconfig_t *sb;
	uint32 w;

	sii = SI_INFO(sih);
	sb = REGS2SB(sii->curmap);

	ASSERT((val & ~mask) == 0);

	/* mask and set */
	if (mask || val) {
		w = (R_SBREG(sii, &sb->sbtmstatelow) & ~(mask << SBTML_SICF_SHIFT)) |
		        (val << SBTML_SICF_SHIFT);
		W_SBREG(sii, &sb->sbtmstatelow, w);
	}

	/* return the new value
	 * for write operation, the following readback ensures the completion of write opration.
	 */
	return (R_SBREG(sii, &sb->sbtmstatelow) >> SBTML_SICF_SHIFT);
}

/* set/clear core-specific status flags */
uint32
sb_core_sflags(si_t *sih, uint32 mask, uint32 val)
{
	si_info_t *sii;
	sbconfig_t *sb;
	uint32 w;

	sii = SI_INFO(sih);
	sb = REGS2SB(sii->curmap);

	ASSERT((val & ~mask) == 0);
	ASSERT((mask & ~SISF_CORE_BITS) == 0);

	/* mask and set */
	if (mask || val) {
		w = (R_SBREG(sii, &sb->sbtmstatehigh) & ~(mask << SBTMH_SISF_SHIFT)) |
		        (val << SBTMH_SISF_SHIFT);
		W_SBREG(sii, &sb->sbtmstatehigh, w);
	}

	/* return the new value */
	return (R_SBREG(sii, &sb->sbtmstatehigh) >> SBTMH_SISF_SHIFT);
}

bool
sb_iscoreup(si_t *sih)
{
	si_info_t *sii;
	sbconfig_t *sb;

	sii = SI_INFO(sih);
	sb = REGS2SB(sii->curmap);

	return ((R_SBREG(sii, &sb->sbtmstatelow) &
	         (SBTML_RESET | SBTML_REJ_MASK | (SICF_CLOCK_EN << SBTML_SICF_SHIFT))) ==
	        (SICF_CLOCK_EN << SBTML_SICF_SHIFT));
}

/*
 * Switch to 'coreidx', issue a single arbitrary 32bit register mask&set operation,
 * switch back to the original core, and return the new value.
 *
 * When using the silicon backplane, no fidleing with interrupts or core switches are needed.
 *
 * Also, when using pci/pcie, we can optimize away the core switching for pci registers
 * and (on newer pci cores) chipcommon registers.
 */
uint
sb_corereg(si_t *sih, uint coreidx, uint regoff, uint mask, uint val)
{
	uint origidx = 0;
	uint32 *r = NULL;
	uint w;
	uint intr_val = 0;
	bool fast = FALSE;
	si_info_t *sii;

	sii = SI_INFO(sih);

	ASSERT(GOODIDX(coreidx));
	ASSERT(regoff < SI_CORE_SIZE);
	ASSERT((val & ~mask) == 0);

	if (coreidx >= SI_MAXCORES)
		return 0;

	if (BUSTYPE(sii->pub.bustype) == SI_BUS) {
		/* If internal bus, we can always get at everything */
		fast = TRUE;
		/* map if does not exist */
		if (!sii->regs[coreidx]) {
			sii->regs[coreidx] = REG_MAP(sii->coresba[coreidx],
			                            SI_CORE_SIZE);
			ASSERT(GOODREGS(sii->regs[coreidx]));
		}
		r = (uint32 *)((uchar *)sii->regs[coreidx] + regoff);
	} else if (BUSTYPE(sii->pub.bustype) == PCI_BUS) {
		/* If pci/pcie, we can get at pci/pcie regs and on newer cores to chipc */

		if ((sii->coreid[coreidx] == CC_CORE_ID) && SI_FAST(sii)) {
			/* Chipc registers are mapped at 12KB */

			fast = TRUE;
			r = (uint32 *)((char *)sii->curmap + PCI_16KB0_CCREGS_OFFSET + regoff);
		} else if (sii->pub.buscoreidx == coreidx) {
			/* pci registers are at either in the last 2KB of an 8KB window
			 * or, in pcie and pci rev 13 at 8KB
			 */
			fast = TRUE;
			if (SI_FAST(sii))
				r = (uint32 *)((char *)sii->curmap +
				               PCI_16KB0_PCIREGS_OFFSET + regoff);
			else
				r = (uint32 *)((char *)sii->curmap +
				               ((regoff >= SBCONFIGOFF) ?
				                PCI_BAR0_PCISBR_OFFSET : PCI_BAR0_PCIREGS_OFFSET) +
				               regoff);
		}
	}

	if (!fast) {
		INTR_OFF(sii, intr_val);

		/* save current core index */
		origidx = si_coreidx(&sii->pub);

		/* switch core */
		r = (uint32*) ((uchar*)sb_setcoreidx(&sii->pub, coreidx) + regoff);
	}
	ASSERT(r != NULL);

	/* mask and set */
	if (mask || val) {
		if (regoff >= SBCONFIGOFF) {
			w = (R_SBREG(sii, r) & ~mask) | val;
			W_SBREG(sii, r, w);
		} else {
			w = (R_REG(sii->osh, r) & ~mask) | val;
			W_REG(sii->osh, r, w);
		}
	}

	/* readback */
	if (regoff >= SBCONFIGOFF)
		w = R_SBREG(sii, r);
	else {
		if ((CHIPID(sii->pub.chip) == BCM5354_CHIP_ID) &&
		    (coreidx == SI_CC_IDX) &&
		    (regoff == OFFSETOF(chipcregs_t, watchdog))) {
			w = val;
		} else
			w = R_REG(sii->osh, r);
	}

	if (!fast) {
		/* restore core index */
		if (origidx != coreidx)
			sb_setcoreidx(&sii->pub, origidx);

		INTR_RESTORE(sii, intr_val);
	}

	return (w);
}

/* Scan the enumeration space to find all cores starting from the given
 * bus 'sbba'. Append coreid and other info to the lists in 'si'. 'sba'
 * is the default core address at chip POR time and 'regs' is the virtual
 * address that the default core is mapped at. 'ncores' is the number of
 * cores expected on bus 'sbba'. It returns the total number of cores
 * starting from bus 'sbba', inclusive.
 */
#define SB_MAXBUSES	2
static uint
_sb_scan(si_info_t *sii, uint32 sba, void *regs, uint bus, uint32 sbba, uint numcores)
{
	uint next;
	uint ncc = 0;
	uint i;

	if (bus >= SB_MAXBUSES) {
		SI_ERROR(("_sb_scan: bus 0x%08x at level %d is too deep to scan\n", sbba, bus));
		return 0;
	}
	SI_MSG(("_sb_scan: scan bus 0x%08x assume %u cores\n", sbba, numcores));

	/* Scan all cores on the bus starting from core 0.
	 * Core addresses must be contiguous on each bus.
	 */
	for (i = 0, next = sii->numcores; i < numcores && next < SB_BUS_MAXCORES; i++, next++) {
		sii->coresba[next] = sbba + (i * SI_CORE_SIZE);

		/* keep and reuse the initial register mapping */
		if ((BUSTYPE(sii->pub.bustype) == SI_BUS) && (sii->coresba[next] == sba)) {
			SI_VMSG(("_sb_scan: reuse mapped regs %p for core %u\n", regs, next));
			sii->regs[next] = regs;
		}

		/* change core to 'next' and read its coreid */
		sii->curmap = _sb_setcoreidx(sii, next);
		sii->curidx = next;

		sii->coreid[next] = sb_coreid(&sii->pub);

		/* core specific processing... */
		/* chipc provides # cores */
		if (sii->coreid[next] == CC_CORE_ID) {
			chipcregs_t *cc = (chipcregs_t *)sii->curmap;
			uint32 ccrev = sb_corerev(&sii->pub);

			/* determine numcores - this is the total # cores in the chip */
			if (((ccrev == 4) || (ccrev >= 6)))
				numcores = (R_REG(sii->osh, &cc->chipid) & CID_CC_MASK) >>
				        CID_CC_SHIFT;
			else {
				/* Older chips */
				uint chip = CHIPID(sii->pub.chip);

				if (chip == BCM4306_CHIP_ID)	/* < 4306c0 */
					numcores = 6;
				else if (chip == BCM4704_CHIP_ID)
					numcores = 9;
				else if (chip == BCM5365_CHIP_ID)
					numcores = 7;
				else {
					SI_ERROR(("sb_chip2numcores: unsupported chip 0x%x\n",
					          chip));
					ASSERT(0);
					numcores = 1;
				}
			}
			SI_VMSG(("_sb_scan: there are %u cores in the chip %s\n", numcores,
				sii->pub.issim ? "QT" : ""));
		}
		/* scan bridged SB(s) and add results to the end of the list */
		else if (sii->coreid[next] == OCP_CORE_ID) {
			sbconfig_t *sb = REGS2SB(sii->curmap);
			uint32 nsbba = R_SBREG(sii, &sb->sbadmatch1);
			uint nsbcc;

			sii->numcores = next + 1;

			if ((nsbba & 0xfff00000) != SI_ENUM_BASE)
				continue;
			nsbba &= 0xfffff000;
			if (_sb_coreidx(sii, nsbba) != BADIDX)
				continue;

			nsbcc = (R_SBREG(sii, &sb->sbtmstatehigh) & 0x000f0000) >> 16;
			nsbcc = _sb_scan(sii, sba, regs, bus + 1, nsbba, nsbcc);
			if (sbba == SI_ENUM_BASE)
				numcores -= nsbcc;
			ncc += nsbcc;
		}
	}

	SI_MSG(("_sb_scan: found %u cores on bus 0x%08x\n", i, sbba));

	sii->numcores = i + ncc;
	return sii->numcores;
}

/* scan the sb enumerated space to identify all cores */
void
sb_scan(si_t *sih, void *regs, uint devid)
{
	si_info_t *sii;
	uint32 origsba;
	sbconfig_t *sb;

	sii = SI_INFO(sih);
	sb = REGS2SB(sii->curmap);

	sii->pub.socirev = (R_SBREG(sii, &sb->sbidlow) & SBIDL_RV_MASK) >> SBIDL_RV_SHIFT;

	/* Save the current core info and validate it later till we know
	 * for sure what is good and what is bad.
	 */
	origsba = _sb_coresba(sii);

	/* scan all SB(s) starting from SI_ENUM_BASE */
	sii->numcores = _sb_scan(sii, origsba, regs, 0, SI_ENUM_BASE, 1);
}

/*
 * This function changes logical "focus" to the indicated core;
 * must be called with interrupts off.
 * Moreover, callers should keep interrupts off during switching out of and back to d11 core
 */
void *
sb_setcoreidx(si_t *sih, uint coreidx)
{
	si_info_t *sii;

	sii = SI_INFO(sih);

	if (coreidx >= sii->numcores)
		return (NULL);

	/*
	 * If the user has provided an interrupt mask enabled function,
	 * then assert interrupts are disabled before switching the core.
	 */
	ASSERT((sii->intrsenabled_fn == NULL) || !(*(sii)->intrsenabled_fn)((sii)->intr_arg));

	sii->curmap = _sb_setcoreidx(sii, coreidx);
	sii->curidx = coreidx;

	return (sii->curmap);
}

/* This function changes the logical "focus" to the indicated core.
 * Return the current core's virtual address.
 */
static void *
_sb_setcoreidx(si_info_t *sii, uint coreidx)
{
	uint32 sbaddr = sii->coresba[coreidx];
	void *regs;

	switch (BUSTYPE(sii->pub.bustype)) {
	case SI_BUS:
		/* map new one */
		if (!sii->regs[coreidx]) {
			sii->regs[coreidx] = REG_MAP(sbaddr, SI_CORE_SIZE);
			ASSERT(GOODREGS(sii->regs[coreidx]));
		}
		regs = sii->regs[coreidx];
		break;

	case PCI_BUS:
		/* point bar0 window */
		OSL_PCI_WRITE_CONFIG(sii->osh, PCI_BAR0_WIN, 4, sbaddr);
		regs = sii->curmap;
		break;

	case PCMCIA_BUS: {
		uint8 tmp = (sbaddr >> 12) & 0x0f;
		OSL_PCMCIA_WRITE_ATTR(sii->osh, PCMCIA_ADDR0, &tmp, 1);
		tmp = (sbaddr >> 16) & 0xff;
		OSL_PCMCIA_WRITE_ATTR(sii->osh, PCMCIA_ADDR1, &tmp, 1);
		tmp = (sbaddr >> 24) & 0xff;
		OSL_PCMCIA_WRITE_ATTR(sii->osh, PCMCIA_ADDR2, &tmp, 1);
		regs = sii->curmap;
		break;
	}
	case SPI_BUS:
	case SDIO_BUS:
		/* map new one */
		if (!sii->regs[coreidx]) {
			sii->regs[coreidx] = (void *)(uintptr)sbaddr;
			ASSERT(GOODREGS(sii->regs[coreidx]));
		}
		regs = sii->regs[coreidx];
		break;


	default:
		ASSERT(0);
		regs = NULL;
		break;
	}

	return regs;
}

/* Return the address of sbadmatch0/1/2/3 register */
static volatile uint32 *
sb_admatch(si_info_t *sii, uint asidx)
{
	sbconfig_t *sb;
	volatile uint32 *addrm;

	sb = REGS2SB(sii->curmap);

	switch (asidx) {
	case 0:
		addrm =  &sb->sbadmatch0;
		break;

	case 1:
		addrm =  &sb->sbadmatch1;
		break;

	case 2:
		addrm =  &sb->sbadmatch2;
		break;

	case 3:
		addrm =  &sb->sbadmatch3;
		break;

	default:
		SI_ERROR(("%s: Address space index (%d) out of range\n", __FUNCTION__, asidx));
		return 0;
	}

	return (addrm);
}

/* Return the number of address spaces in current core */
int
sb_numaddrspaces(si_t *sih)
{
	si_info_t *sii;
	sbconfig_t *sb;

	sii = SI_INFO(sih);
	sb = REGS2SB(sii->curmap);

	/* + 1 because of enumeration space */
	return ((R_SBREG(sii, &sb->sbidlow) & SBIDL_AR_MASK) >> SBIDL_AR_SHIFT) + 1;
}

/* Return the address of the nth address space in the current core */
uint32
sb_addrspace(si_t *sih, uint asidx)
{
	si_info_t *sii;

	sii = SI_INFO(sih);

	return (sb_base(R_SBREG(sii, sb_admatch(sii, asidx))));
}

/* Return the size of the nth address space in the current core */
uint32
sb_addrspacesize(si_t *sih, uint asidx)
{
	si_info_t *sii;

	sii = SI_INFO(sih);

	return (sb_size(R_SBREG(sii, sb_admatch(sii, asidx))));
}


/* do buffered registers update */
void
sb_commit(si_t *sih)
{
	si_info_t *sii;
	uint origidx;
	uint intr_val = 0;

	sii = SI_INFO(sih);

	origidx = sii->curidx;
	ASSERT(GOODIDX(origidx));

	INTR_OFF(sii, intr_val);

	/* switch over to chipcommon core if there is one, else use pci */
	if (sii->pub.ccrev != NOREV) {
		chipcregs_t *ccregs = (chipcregs_t *)si_setcore(sih, CC_CORE_ID, 0);
		ASSERT(ccregs != NULL);

		/* do the buffer registers update */
		W_REG(sii->osh, &ccregs->broadcastaddress, SB_COMMIT);
		W_REG(sii->osh, &ccregs->broadcastdata, 0x0);
	} else
		ASSERT(0);

	/* restore core index */
	sb_setcoreidx(sih, origidx);
	INTR_RESTORE(sii, intr_val);
}

void
sb_core_disable(si_t *sih, uint32 bits)
{
	si_info_t *sii;
	volatile uint32 dummy;
	sbconfig_t *sb;

	sii = SI_INFO(sih);

	ASSERT(GOODREGS(sii->curmap));
	sb = REGS2SB(sii->curmap);

	/* if core is already in reset, just return */
	if (R_SBREG(sii, &sb->sbtmstatelow) & SBTML_RESET)
		return;

	/* if clocks are not enabled, put into reset and return */
	if ((R_SBREG(sii, &sb->sbtmstatelow) & (SICF_CLOCK_EN << SBTML_SICF_SHIFT)) == 0)
		goto disable;

	/* set target reject and spin until busy is clear (preserve core-specific bits) */
	OR_SBREG(sii, &sb->sbtmstatelow, SBTML_REJ);
	dummy = R_SBREG(sii, &sb->sbtmstatelow);
	BCM_REFERENCE(dummy);
	OSL_DELAY(1);
	SPINWAIT((R_SBREG(sii, &sb->sbtmstatehigh) & SBTMH_BUSY), 100000);
	if (R_SBREG(sii, &sb->sbtmstatehigh) & SBTMH_BUSY)
		SI_ERROR(("%s: target state still busy\n", __FUNCTION__));

	if (R_SBREG(sii, &sb->sbidlow) & SBIDL_INIT) {
		OR_SBREG(sii, &sb->sbimstate, SBIM_RJ);
		dummy = R_SBREG(sii, &sb->sbimstate);
		BCM_REFERENCE(dummy);
		OSL_DELAY(1);
		SPINWAIT((R_SBREG(sii, &sb->sbimstate) & SBIM_BY), 100000);
	}

	/* set reset and reject while enabling the clocks */
	W_SBREG(sii, &sb->sbtmstatelow,
	        (((bits | SICF_FGC | SICF_CLOCK_EN) << SBTML_SICF_SHIFT) |
	         SBTML_REJ | SBTML_RESET));
	dummy = R_SBREG(sii, &sb->sbtmstatelow);
	BCM_REFERENCE(dummy);
	OSL_DELAY(10);

	/* don't forget to clear the initiator reject bit */
	if (R_SBREG(sii, &sb->sbidlow) & SBIDL_INIT)
		AND_SBREG(sii, &sb->sbimstate, ~SBIM_RJ);

disable:
	/* leave reset and reject asserted */
	W_SBREG(sii, &sb->sbtmstatelow, ((bits << SBTML_SICF_SHIFT) | SBTML_REJ | SBTML_RESET));
	OSL_DELAY(1);
}

/* reset and re-enable a core
 * inputs:
 * bits - core specific bits that are set during and after reset sequence
 * resetbits - core specific bits that are set only during reset sequence
 */
void
sb_core_reset(si_t *sih, uint32 bits, uint32 resetbits)
{
	si_info_t *sii;
	sbconfig_t *sb;
	volatile uint32 dummy;

	sii = SI_INFO(sih);
	ASSERT(GOODREGS(sii->curmap));
	sb = REGS2SB(sii->curmap);

	/*
	 * Must do the disable sequence first to work for arbitrary current core state.
	 */
	sb_core_disable(sih, (bits | resetbits));

	/*
	 * Now do the initialization sequence.
	 */

	/* set reset while enabling the clock and forcing them on throughout the core */
	W_SBREG(sii, &sb->sbtmstatelow,
	        (((bits | resetbits | SICF_FGC | SICF_CLOCK_EN) << SBTML_SICF_SHIFT) |
	         SBTML_RESET));
	dummy = R_SBREG(sii, &sb->sbtmstatelow);
	BCM_REFERENCE(dummy);
	OSL_DELAY(1);

	if (R_SBREG(sii, &sb->sbtmstatehigh) & SBTMH_SERR) {
		W_SBREG(sii, &sb->sbtmstatehigh, 0);
	}
	if ((dummy = R_SBREG(sii, &sb->sbimstate)) & (SBIM_IBE | SBIM_TO)) {
		AND_SBREG(sii, &sb->sbimstate, ~(SBIM_IBE | SBIM_TO));
	}

	/* clear reset and allow it to propagate throughout the core */
	W_SBREG(sii, &sb->sbtmstatelow,
	        ((bits | resetbits | SICF_FGC | SICF_CLOCK_EN) << SBTML_SICF_SHIFT));
	dummy = R_SBREG(sii, &sb->sbtmstatelow);
	BCM_REFERENCE(dummy);
	OSL_DELAY(1);

	/* leave clock enabled */
	W_SBREG(sii, &sb->sbtmstatelow, ((bits | SICF_CLOCK_EN) << SBTML_SICF_SHIFT));
	dummy = R_SBREG(sii, &sb->sbtmstatelow);
	BCM_REFERENCE(dummy);
	OSL_DELAY(1);
}

/*
 * Set the initiator timeout for the "master core".
 * The master core is defined to be the core in control
 * of the chip and so it issues accesses to non-memory
 * locations (Because of dma *any* core can access memeory).
 *
 * The routine uses the bus to decide who is the master:
 *	SI_BUS => mips
 *	JTAG_BUS => chipc
 *	PCI_BUS => pci or pcie
 *	PCMCIA_BUS => pcmcia
 *	SDIO_BUS => pcmcia
 *
 * This routine exists so callers can disable initiator
 * timeouts so accesses to very slow devices like otp
 * won't cause an abort. The routine allows arbitrary
 * settings of the service and request timeouts, though.
 *
 * Returns the timeout state before changing it or -1
 * on error.
 */

#define	TO_MASK	(SBIMCL_RTO_MASK | SBIMCL_STO_MASK)

uint32
sb_set_initiator_to(si_t *sih, uint32 to, uint idx)
{
	si_info_t *sii;
	uint origidx;
	uint intr_val = 0;
	uint32 tmp, ret = 0xffffffff;
	sbconfig_t *sb;

	sii = SI_INFO(sih);

	if ((to & ~TO_MASK) != 0)
		return ret;

	/* Figure out the master core */
	if (idx == BADIDX) {
		switch (BUSTYPE(sii->pub.bustype)) {
		case PCI_BUS:
			idx = sii->pub.buscoreidx;
			break;
		case JTAG_BUS:
			idx = SI_CC_IDX;
			break;
		case PCMCIA_BUS:
		case SDIO_BUS:
			idx = si_findcoreidx(sih, PCMCIA_CORE_ID, 0);
			break;
		case SI_BUS:
			idx = si_findcoreidx(sih, MIPS33_CORE_ID, 0);
			break;
		default:
			ASSERT(0);
		}
		if (idx == BADIDX)
			return ret;
	}

	INTR_OFF(sii, intr_val);
	origidx = si_coreidx(sih);

	sb = REGS2SB(sb_setcoreidx(sih, idx));

	tmp = R_SBREG(sii, &sb->sbimconfiglow);
	ret = tmp & TO_MASK;
	W_SBREG(sii, &sb->sbimconfiglow, (tmp & ~TO_MASK) | to);

	sb_commit(sih);
	sb_setcoreidx(sih, origidx);
	INTR_RESTORE(sii, intr_val);
	return ret;
}

uint32
sb_base(uint32 admatch)
{
	uint32 base;
	uint type;

	type = admatch & SBAM_TYPE_MASK;
	ASSERT(type < 3);

	base = 0;

	if (type == 0) {
		base = admatch & SBAM_BASE0_MASK;
	} else if (type == 1) {
		ASSERT(!(admatch & SBAM_ADNEG));	/* neg not supported */
		base = admatch & SBAM_BASE1_MASK;
	} else if (type == 2) {
		ASSERT(!(admatch & SBAM_ADNEG));	/* neg not supported */
		base = admatch & SBAM_BASE2_MASK;
	}

	return (base);
}

uint32
sb_size(uint32 admatch)
{
	uint32 size;
	uint type;

	type = admatch & SBAM_TYPE_MASK;
	ASSERT(type < 3);

	size = 0;

	if (type == 0) {
		size = 1 << (((admatch & SBAM_ADINT0_MASK) >> SBAM_ADINT0_SHIFT) + 1);
	} else if (type == 1) {
		ASSERT(!(admatch & SBAM_ADNEG));	/* neg not supported */
		size = 1 << (((admatch & SBAM_ADINT1_MASK) >> SBAM_ADINT1_SHIFT) + 1);
	} else if (type == 2) {
		ASSERT(!(admatch & SBAM_ADNEG));	/* neg not supported */
		size = 1 << (((admatch & SBAM_ADINT2_MASK) >> SBAM_ADINT2_SHIFT) + 1);
	}

	return (size);
}