/*++
linux/drivers/serial/serial_wmt.c
Copyright (c) 2008 WonderMedia Technologies, Inc.
This program is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software Foundation,
either version 2 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
this program. If not, see .
WonderMedia Technologies, Inc.
10F, 529, Chung-Cheng Road, Hsin-Tien, Taipei 231, R.O.C.
--*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#define PORT_WMT 54
#if defined(CONFIG_SERIAL_WMT_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
#define SUPPORT_SYSRQ
#endif
#ifdef CONFIG_SERIAL_WMT_DMA
/* * DMA processing */
#define DMA_RX_REQUEST(s, cb) wmt_request_dma(&s->rx_dmach, s->id, s->dma_rx_dev, cb, s)
#define DMA_RX_FREE(s) {wmt_free_dma(s->rx_dmach); s->rx_dmach = NULL_DMA; }
#define DMA_RX_START(s, d, l) wmt_start_dma(s->rx_dmach, d, 0, l)
#define DMA_RX_POS(s) wmt_get_dma_pos(s->rx_dmach)
#define DMA_RX_STOP(s) wmt_stop_dma(s->rx_dmach)
#define DMA_RX_CLEAR(s) wmt_clear_dma(s->rx_dmach)
#define DMA_RX_RESET(s) wmt_reset_dma(s->rx_dmach)
#define IS_NULLDMA(ch) ((ch) == NULL_DMA)
#define CHK_DMACH(ch) ((ch) != NULL_DMA)
#define DMA_TX_REQUEST(s, cb) wmt_request_dma(&s->tx_dmach, s->id, s->dma_tx_dev, cb, s)
#define DMA_TX_FREE(s) {wmt_free_dma(s->tx_dmach); s->tx_dmach = NULL_DMA; }
#define DMA_TX_START(s, d, l) wmt_start_dma(s->tx_dmach, d, 0, l)
#define DMA_TX_POS(s) wmt_get_dma_pos(s->tx_dmach)
#define DMA_TX_STOP(s) wmt_stop_dma(s->tx_dmach)
#define DMA_TX_CLEAR(s) wmt_clear_dma(s->tx_dmach)
#define DMA_TX_RESET(s) wmt_reset_dma(s->tx_dmach)
#define NULL_DMA ((dmach_t)(-1))
#endif
#ifdef DEBUG_SERIAL_WMT
#define DEBUG_INTR(fmt...) printk(fmt)
#else
#define DEBUG_INTR(fmt...) do { } while (0)
#endif
#define UART_BR_115K2 115200
/*
* This is for saving useful I/O registers
*/
/*
* RS232 on DB9
* Pin No. Name Notes/Description
* 1 DCD Data Carrier Detect
* 2 RD Receive Data (a.k.a RxD, Rx)
* 3 TD Transmit Data (a.k.a TxD, Tx)
* 4 DTR Data Terminal Ready
* 5 SGND Ground
* 6 DSR Data Set Ready
* 7 RTS Request To Send
* 8 CTS Clear To Send
* 9 RI Ring Indicator
*/
/*
* We've been assigned a range on the "Low-density serial ports" major
*
* dev Major Minor
* ttyVT0 204 90
* ttyS0 4 64
*/
#ifdef CONFIG_SERIAL_WMT_TTYVT
#define SERIAL_WMT_MAJOR 204
#define MINOR_START 90 /* Start from ttyVT0 */
#define CALLOUT_WMT_MAJOR 205 /* for callout device */
#else
#define SERIAL_WMT_MAJOR 4
#define MINOR_START 64 /* Start from ttyS0 */
#define CALLOUT_WMT_MAJOR 5 /* for callout device */
#endif
#ifdef CONFIG_UART_2_3_ENABLE
#define NR_PORTS 4
#else
#define NR_PORTS 2
#endif
#define WMT_ISR_PASS_LIMIT 256
struct wmt_port {
struct uart_port port;
struct timer_list timer;
struct timer_list rx_timer;
#ifdef CONFIG_SERIAL_WMT_DMA
/* RX Buffer0 physical address */
dma_addr_t uart_rx_dma_phy0_org;
/* RX Buffer1 physical address */
dma_addr_t uart_rx_dma_phy1_org;
/* RX Buffer2 physical address */
dma_addr_t uart_rx_dma_phy2_org;
/* RX Buffer0 virtual address */
char *uart_rx_dma_buf0_org;
/* RX Buffer1 virtual address */
char *uart_rx_dma_buf1_org;
/* RX Buffer2 virtual address */
char *uart_rx_dma_buf2_org;
/* RX Buffer0 virtual address, this address is the data should be read */
char *uart_dma_tmp_buf0;
/* RX Buffer1 virtual address, this address is the data should be read */
char *uart_dma_tmp_buf1;
/* RX Buffer2 virtual address, this address is the data should be read */
char *uart_dma_tmp_buf2;
/* RX Buffer0 physical address, this address is the data should be read */
dma_addr_t uart_dma_tmp_phy0;
/* RX Buffer1 physical address, this address is the data should be read */
dma_addr_t uart_dma_tmp_phy1;
/* RX Buffer2 physical address, this address is the data should be read */
dma_addr_t uart_dma_tmp_phy2;
/* RX device identifier for DMA */
enum dma_device_e dma_rx_dev;
/* TX device identifier for DMA */
enum dma_device_e dma_tx_dev;
/* RX DMA device config */
struct dma_device_cfg_s dma_rx_cfg;
/* TX DMA device config */
struct dma_device_cfg_s dma_tx_cfg;
/* RX DMA channel number */
dmach_t rx_dmach;
/* TX DMA channel number */
dmach_t tx_dmach;
/* RX dma callback function record which buffer the DMA used */
unsigned int buffer_used;
/* The buffer rx_char function should used (virtual address) */
unsigned int buffer_selected;
/* The buffer rx_count function should used (physical address) */
unsigned int buffer_rx_count_selected;
/* TX Buffer0 virtual address */
char *uart_tx_dma_buf0_org;
/* TX Buffer0 physical address */
dma_addr_t uart_tx_dma_phy0_org;
/* Record TX DMA running status : DMA_TX_END, DMA_TX_CHAR, DMA_TX_XMIT */
unsigned int uart_tx_dma_flag;
/* TX dma transmit counter*/
unsigned int uart_tx_count;
/* RX dma buffer last position*/
unsigned int last_pos;
/* Record the number of RX dma timeout function with no data transmit*/
unsigned int uart_rx_dma_flag;
unsigned int dma_tx_cnt;
#endif
unsigned int old_status;
/* identification string */
char *id;
unsigned int old_urdiv;
unsigned int old_urlcr;
unsigned int old_urier;
unsigned int old_urfcr;
unsigned int old_urtod;
};
#ifdef CONFIG_SERIAL_WMT_DMA
#define DMA_TX_END 0
#define DMA_TX_CHAR 1
#define DMA_TX_XMIT 2
#endif
/*
* WMT UART registers set structure.
*/
struct wmt_uart {
unsigned int volatile urtdr; /* 0x00*/
unsigned int volatile urrdr; /* 0x04*/
unsigned int volatile urdiv; /* 0x08*/
unsigned int volatile urlcr; /* 0x0C*/
unsigned int volatile uricr; /* 0x10*/
unsigned int volatile urier; /* 0x14*/
unsigned int volatile urisr; /* 0x18*/
unsigned int volatile urusr; /* 0x1C*/
unsigned int volatile urfcr; /* 0x20*/
unsigned int volatile urfidx; /* 0x24*/
unsigned int volatile urbkr; /* 0x28*/
unsigned int volatile urtod; /* 0x2C*/
unsigned int volatile resv30_FFF[0x3F4]; /* 0x0030 - 0x0FFF Reserved*/
unsigned char volatile urtxf[32]; /* 0x1000 - 0x101F*/
unsigned char volatile urrxf[32]; /* 0x1020 - 0x103F*/
};
struct baud_info_s {
unsigned int baud; /* baud rate */
unsigned int brd; /* baud rate divisor */
unsigned int bcv; /* break counter value at this baud rate
* simply be calculated by baud * 0.004096
*/
};
#ifdef UART_DEBUG
unsigned int *DMA_pbuf =NULL;
unsigned int *COUNT_pbuf =NULL;
unsigned int *CPU_pbuf =NULL;
unsigned int dma_write_index = 0x00;
#endif
int mtk6622_tty = -1;
extern int wmt_getsyspara(char *varname, char *varval, int *varlen);
static struct baud_info_s baud_table[] = {
{ 3600, 0x100FF, 15 },
{ 7600, 0x1007F, 30 },
{ 9600, 0x2003F, 39 },
{ 14400, 0x1003F, 59 },
{ 19200, 0x2001F, 79 },
{ 28800, 0x1001F, 118 },
{ 38400, 0x2000F, 157 },
{ 57600, 0x1000F, 236 },
{ 115200, 0x10007, 472 },
{ 230400, 0x10003, 944 },
{ 460800, 0x10001, 1920 },
{ 921600, 0x10000, 3775 },
};
#define BAUD_TABLE_SIZE ARRAY_SIZE(baud_table)
#ifdef CONFIG_SERIAL_WMT_DMA
#define UART_BUFFER_SIZE (1024*16)
#endif
/*
* Macros to put URISR and URUSR into a 32-bit status variable
* URISR in bit[ 0:15]
* URUSR in bit[16:31]
*/
#define URISR_TO_SM(x) ((x) & URISR_MASK)
#define URUSR_TO_SM(x) (((x) & URUSR_MASK) << 16)
#define SM_TO_URISR(x) ((x) & 0xffff)
#define SM_TO_URUSR(x) ((x) >> 16)
/*
* Following is a trick if we're interesting to listen break signal,
* but due to WMT UART doesn't suppout this interrupt status.
* So I make a fake interrupt status and use URISR_FER event to implement
* break signal detect.
*/
#ifdef CONFIG_SERIAL_WMT_BKSIG
#define SW_BKSIG (BIT31 | URISR_FER)
#endif
/*
* Macros to manipulate WMT UART module.
*
* s = sport, o = offset, v = value
*
* registers offset table as follows:
*
* URTDR 0x0000
* URRDR 0x0004
* URBRD 0x0008
* URLCR 0x000C
* URICR 0x0010
* URIER 0x0014
* URISR 0x0018
* URUSR 0x001C
* URFCR 0x0020
* URFIDX 0x0024
* URBKR 0x0028
*
* Offset 0x002C-0x002F reserved
*
* URTXF 0x0030
* URRXF 0x0040
*/
#define PORT_TO_BASE(s) ((s)->port.membase)
#define WMT_UART_GET(s, o) __raw_readl((s)->port.membase + o)
#define WMT_UART_PUT(s, o, v) __raw_writel(v, (s)->port.membase + o)
#define WMT_UART_TXFIFO(s) (volatile unsigned char *)((s)->port.membase + URTXF)
#define WMT_UART_RXFIFO(s) (volatile unsigned short *)((s)->port.membase + URRXF)
/*
* This is the size of our serial port register set.
*/
#define UART_PORT_SIZE 0x1040
/*
* This determines how often we check the modem status signals
* for any change. They generally aren't connected to an IRQ
* so we have to poll them. We also check immediately before
* filling the TX fifo incase CTS has been dropped.
*/
#define MCTRL_TIMEOUT (250*HZ/1000)
/*{2007/11/10 JHT Support the VT8500 Serial Port Driver Because the*/
/* definition of URSIRT Bit[0] & Bit[3] are different.*/
/* Before VT8500 these bit are defined as RO, in VT8500*/
/* they are changed into the W1C. Therefore the xmit function*/
/* for the FIFO mode should be modified as well.*/
static void wmt_tx_chars(struct wmt_port *sport);
static void wmt_rx_chars(struct wmt_port *sport, unsigned int status);
static struct wmt_port wmt_ports[NR_PORTS];
/*}2007/11/10-JHT*/
enum {
SHARE_PIN_UART = 0,
SHARE_PIN_SPI,
};
static int wmt_uart_spi_sel = SHARE_PIN_UART; /* 0:uart, 1:spi */
void uart_dump_reg(struct wmt_port *sport)
{
struct wmt_uart *uart = (struct wmt_uart *)PORT_TO_BASE(sport);
unsigned int urtdr = uart->urtdr; /* 0x00*/
unsigned int urrdr = uart->urrdr; /* 0x04*/
unsigned int urdiv = uart->urdiv; /* 0x08*/
unsigned int urlcr = uart->urlcr; /* 0x0C*/
unsigned int uricr = uart->uricr; /* 0x10*/
unsigned int urier = uart->urier; /* 0x14*/
unsigned int urisr = uart->urisr; /* 0x18*/
unsigned int urusr = uart->urusr; /* 0x1C*/
unsigned int urfcr = uart->urfcr; /* 0x20*/
unsigned int urfidx = uart->urfidx; /* 0x24*/
unsigned int urbkr = uart->urbkr; /* 0x28*/
unsigned int urtod = uart->urtod; /* 0x2C*/
#if 1
printk("urtdr=0x%.8x urrdr=0x%.8x urdiv=0x%.8x urlcr=0x%.8x\n" \
"uricr=0x%.8x urier=0x%.8x urisr=0x%.8x urusr=0x%.8x\n" \
"urfcr=0x%.8x uridx=0x%.8x urbkr=0x%.8x urtod=0x%.8x\n",
urtdr, urrdr, urdiv, urlcr,
uricr, urier, urisr, urusr,
urfcr, urfidx, urbkr, urtod);
#endif
}
static void wmt_mctrl_check(struct wmt_port *sport)
{
unsigned int status, changed;
status = sport->port.ops->get_mctrl(&sport->port);
changed = status ^ sport->old_status;
if (changed == 0)
return;
sport->old_status = status;
if (changed & TIOCM_RI)
sport->port.icount.rng++;
if (changed & TIOCM_DSR)
sport->port.icount.dsr++;
if (changed & TIOCM_CAR)
uart_handle_dcd_change(&sport->port, status & TIOCM_CAR);
if (changed & TIOCM_CTS)
uart_handle_cts_change(&sport->port, status & TIOCM_CTS);
wake_up_interruptible(&sport->port.state->port.delta_msr_wait);
}
/*
* This is our per-port timeout handler, for checking the
* modem status signals.
*/
static void wmt_timeout(unsigned long data)
{
struct wmt_port *sport = (struct wmt_port *)data;
unsigned long flags;
if (sport->port.state) {
spin_lock_irqsave(&sport->port.lock, flags);
wmt_mctrl_check(sport);
spin_unlock_irqrestore(&sport->port.lock, flags);
mod_timer(&sport->timer, jiffies + MCTRL_TIMEOUT);
}
}
unsigned int rx_timeout = 1;
static void wmt_rx_timeout(unsigned long data)
{
struct wmt_port *sport = (struct wmt_port *)data;
struct wmt_uart *uart = (struct wmt_uart *)PORT_TO_BASE(sport);
unsigned long flags;
unsigned int status;
unsigned int pos = 0;
spin_lock_irqsave(&sport->port.lock, flags);
pos = DMA_RX_POS(sport);
status = URISR_TO_SM(uart->urisr) | URUSR_TO_SM(uart->urusr);
uart->urisr |= SM_TO_URISR(status);
spin_unlock_irqrestore(&sport->port.lock, flags);
/* DMA didn't transmit any data */
if (sport->last_pos == pos) {
sport->uart_rx_dma_flag++;
/* RX DMA didn't trasmit any data in two times, */
/* enable interrupt and do the last time mod timer */
if (sport->uart_rx_dma_flag == 2) {
sport->uart_rx_dma_flag++;
uart->urier = URIER_ERXFAF |
URIER_ERXFF |
URIER_ERXTOUT |
URIER_EPER |
URIER_EFER |
URIER_ERXDOVR;
mod_timer(&sport->rx_timer, jiffies + rx_timeout);
return;
} else if (sport->uart_rx_dma_flag == 3) {
sport->uart_rx_dma_flag = 0;
return;
}
mod_timer(&sport->rx_timer, jiffies + rx_timeout);
return;
}
sport->uart_rx_dma_flag = 0;
wmt_rx_chars(sport, URISR_RXFAF | URISR_RXFF | status);
mod_timer(&sport->rx_timer, jiffies + rx_timeout);
}
/*
* Interrupts should be disabled on entry.
*/
static void wmt_stop_tx(struct uart_port *port)
{
struct wmt_port *sport = (struct wmt_port *)port;
struct wmt_uart *uart = (struct wmt_uart *)PORT_TO_BASE(sport);
#ifndef CONFIG_SERIAL_WMT_DMA
uart->urier &= ~(URIER_ETXFAE | URIER_ETXFE);
sport->port.read_status_mask &= ~URISR_TO_SM(URISR_TXFAE | URISR_TXFE);
#else
if ((unsigned int)(sport->port.membase) == UART0_BASE_ADDR) {
uart->urier &= ~(URIER_ETXFAE | URIER_ETXFE);
sport->port.read_status_mask &= ~URISR_TO_SM(URISR_TXFAE | URISR_TXFE);
}
#endif
}
/*
* Interrupts may not be disabled on entry.
*/
static void wmt_start_tx(struct uart_port *port)
{
struct wmt_port *sport = (struct wmt_port *)port;
struct wmt_uart *uart = (struct wmt_uart *)PORT_TO_BASE(sport);
/*{2007/11/10 JHT Support the VT8500 Serial Port Driver Because the
* definition of URSIRT Bit[0] & Bit[3] are different.
* Before VT8500 these bit are defined as RO, in VT8500
* they are changed into the W1C. Therefore the xmit function
* for the FIFO mode should be modified as well.
*/
#ifdef CONFIG_SERIAL_WMT_DMA
if ((unsigned int)(sport->port.membase) != UART0_BASE_ADDR) {
uart->urlcr |= URLCR_DMAEN;
uart->urier &= ~(URIER_ETXFAE | URIER_ETXFE);
} else
uart->urier &= ~(URIER_ETXFAE | URIER_ETXFE);
#else
uart->urier &= ~(URIER_ETXFAE | URIER_ETXFE);
#endif
wmt_tx_chars(sport);
/*}2007/11/10-JHT*/
#ifndef CONFIG_SERIAL_WMT_DMA
sport->port.read_status_mask |= URISR_TO_SM(URISR_TXFAE | URISR_TXFE);
uart->urier |= URIER_ETXFAE | URIER_ETXFE;
#else
if ((unsigned int)(sport->port.membase) == UART0_BASE_ADDR) {
sport->port.read_status_mask |= URISR_TO_SM(URISR_TXFAE | URISR_TXFE);
uart->urier |= URIER_ETXFAE | URIER_ETXFE;
}
#endif
}
/*
* Interrupts enabled
*/
static void wmt_stop_rx(struct uart_port *port)
{
/*
struct wmt_port *sport = (struct wmt_port *)port;
struct wmt_uart *uart = (struct wmt_uart *)PORT_TO_BASE(sport);
uart->urier &= ~URIER_ERXFAF;
*/
}
/*
* No modem control lines
*/
static void wmt_enable_ms(struct uart_port *port)
{
struct wmt_port *sport = (struct wmt_port *)port;
mod_timer(&sport->timer, jiffies);
}
#ifdef CONFIG_SERIAL_WMT_DMA
static unsigned int wmt_rx_count(struct wmt_port *sport)
{
unsigned int rx_count = 0;
unsigned int pos;
pos = DMA_RX_POS(sport);
if (pos == sport->last_pos) /*have no data to drain */
return 0;
if (sport->buffer_rx_count_selected == 0) {
sport->buffer_selected = 0; /*shoud read buffer 0*/
/*pos in the range of the buffer0*/
if ((pos >= sport->uart_dma_tmp_phy0) &&
(pos <= (sport->uart_rx_dma_phy0_org + UART_BUFFER_SIZE))) {
rx_count = (pos - (unsigned int)sport->uart_dma_tmp_phy0);
} else if (pos == 0) {
if (sport->uart_dma_tmp_phy0 == sport->uart_rx_dma_phy0_org)
rx_count = 0;
else {
rx_count = (sport->uart_rx_dma_phy0_org + UART_BUFFER_SIZE)
- (unsigned int)sport->uart_dma_tmp_phy0;
}
} else if (((pos >= sport->uart_rx_dma_phy1_org) &&
(pos <= (sport->uart_rx_dma_phy1_org + UART_BUFFER_SIZE)))
||
((pos >= sport->uart_rx_dma_phy2_org) &&
(pos <= (sport->uart_rx_dma_phy2_org + UART_BUFFER_SIZE)))) {
/* Buffer is full, dma pos in buffer 1 or 2, read all left data*/
rx_count = (sport->uart_rx_dma_phy0_org + UART_BUFFER_SIZE) -
(unsigned int)sport->uart_dma_tmp_phy0;
}
sport->uart_dma_tmp_phy0 += rx_count; /*update tmp physical address*/
sport->last_pos = sport->uart_dma_tmp_phy0;
/* Buffer0 has reach to end*/
if (sport->uart_dma_tmp_phy0 == (sport->uart_rx_dma_phy0_org + UART_BUFFER_SIZE)) {
sport->buffer_rx_count_selected = 1;
sport->uart_dma_tmp_phy0 = sport->uart_rx_dma_phy0_org;
}
} else if (sport->buffer_rx_count_selected == 1) {
sport->buffer_selected = 1; /*shoud read buffer 1*/
/*pos in the range of the buffer1*/
if ((pos >= sport->uart_dma_tmp_phy1) &&
(pos <= (sport->uart_rx_dma_phy1_org + UART_BUFFER_SIZE))) {
rx_count = (pos - (unsigned int)sport->uart_dma_tmp_phy1);
} else if (pos == 0) {
if (sport->uart_dma_tmp_phy1 == sport->uart_rx_dma_phy1_org)
rx_count = 0;
else {
rx_count = (sport->uart_rx_dma_phy1_org + UART_BUFFER_SIZE) -
(unsigned int)sport->uart_dma_tmp_phy1;
}
} else if (((pos >= sport->uart_rx_dma_phy0_org) &&
(pos <= (sport->uart_rx_dma_phy0_org + UART_BUFFER_SIZE)))
||
((pos >= sport->uart_rx_dma_phy2_org) &&
(pos <= (sport->uart_rx_dma_phy2_org + UART_BUFFER_SIZE)))) {
/* Buffer is full, dma pos in buffer 0 or 2, read all left data*/
rx_count = (sport->uart_rx_dma_phy1_org + UART_BUFFER_SIZE) -
(unsigned int)sport->uart_dma_tmp_phy1;
}
sport->uart_dma_tmp_phy1 += rx_count;
sport->last_pos = sport->uart_dma_tmp_phy1;
/* Buffer1 has reach to end*/
if (sport->uart_dma_tmp_phy1 == (sport->uart_rx_dma_phy1_org + UART_BUFFER_SIZE)) {
sport->buffer_rx_count_selected = 2;
sport->uart_dma_tmp_phy1 = sport->uart_rx_dma_phy1_org;
}
} else if (sport->buffer_rx_count_selected == 2) {
sport->buffer_selected = 2; /*shoud read buffer 2*/
/*pos in the range of the buffer1*/
if ((pos >= sport->uart_dma_tmp_phy2) &&
(pos <= (sport->uart_rx_dma_phy2_org + UART_BUFFER_SIZE))) {
rx_count = (pos - (unsigned int)sport->uart_dma_tmp_phy2);
} else if (pos == 0) {
if (sport->uart_dma_tmp_phy2 == sport->uart_rx_dma_phy2_org)
rx_count = 0;
else {
rx_count = (sport->uart_rx_dma_phy2_org + UART_BUFFER_SIZE) -
(unsigned int)sport->uart_dma_tmp_phy2;
}
} else if (((pos >= sport->uart_rx_dma_phy0_org) &&
(pos <= (sport->uart_rx_dma_phy0_org + UART_BUFFER_SIZE)))
||
((pos >= sport->uart_rx_dma_phy1_org) &&
(pos <= (sport->uart_rx_dma_phy1_org + UART_BUFFER_SIZE)))) {
/* Buffer is full, dma pos in buffer 0 or 1, read all left data*/
rx_count = (sport->uart_rx_dma_phy2_org + UART_BUFFER_SIZE) -
(unsigned int)sport->uart_dma_tmp_phy2;
}
sport->uart_dma_tmp_phy2 += rx_count;
sport->last_pos = sport->uart_dma_tmp_phy2;
/* Buffer2 has reach to end*/
if (sport->uart_dma_tmp_phy2 == (sport->uart_rx_dma_phy2_org + UART_BUFFER_SIZE)) {
sport->buffer_rx_count_selected = 0;
sport->uart_dma_tmp_phy2 = sport->uart_rx_dma_phy2_org;
}
}
return rx_count;
}
/*
* we can use mu command to check memory content
*/
int volatile last_submit = 0x0;
void dump_rx_dma_buf(struct wmt_port *sport)
{
unsigned int rx_count = 0;
unsigned int pos;
int i;
int size=0;
unsigned char *tmpbuf;
pos = DMA_RX_POS(sport);
printk("sport->last_pos:0x%x,pos:0x%x,sport->buffer_rx_count_selected:0x%x,last_submit:0x%x\n",sport->last_pos,pos,sport->buffer_rx_count_selected,last_submit);
if ((sport->uart_rx_dma_phy0_org) <= pos && pos <= (sport->uart_rx_dma_phy0_org + UART_BUFFER_SIZE)){
i = pos - sport->uart_rx_dma_phy0_org;
tmpbuf = sport->uart_rx_dma_buf0_org + i;
size = (unsigned int)(sport->uart_rx_dma_buf0_org) + UART_BUFFER_SIZE - (unsigned int)tmpbuf;
if(size > 16)
size = 16;
}else if ((sport->uart_rx_dma_phy1_org) <= pos && pos <= (sport->uart_rx_dma_phy1_org + UART_BUFFER_SIZE)){
i = pos - sport->uart_rx_dma_phy1_org;
tmpbuf = sport->uart_rx_dma_buf1_org + i;
size =(unsigned int)( sport->uart_rx_dma_buf1_org) + UART_BUFFER_SIZE - (unsigned int)tmpbuf;
if(size > 16)
size = 16;
}else if ((sport->uart_rx_dma_phy2_org) <= pos && pos <= (sport->uart_rx_dma_phy2_org + UART_BUFFER_SIZE)){
i = pos - sport->uart_rx_dma_phy2_org;
tmpbuf = sport->uart_rx_dma_buf2_org + i;
size = (unsigned int)(sport->uart_rx_dma_buf2_org) + UART_BUFFER_SIZE - (unsigned int)tmpbuf;
if(size > 16)
size = 16;
}
for(i=0;iuart_rx_dma_phy0_org:0x%x\n",sport->uart_rx_dma_phy0_org);
printk("sport->uart_rx_dma_phy1_org:0x%x\n",sport->uart_rx_dma_phy1_org);
printk("sport->uart_rx_dma_phy2_org:0x%x\n",sport->uart_rx_dma_phy2_org);
}
#endif
/*
* Inside the UART interrupt service routine dut to following
* reason:
*
* URISR_RXFAF: RX FIFO almost full (FIFO mode)
* URISR_RXDF: RX data register full (Register mode)
* URISR_RXTOUT: RX timeout
*/
#ifndef CONFIG_SERIAL_WMT_DMA
static void
wmt_rx_chars(struct wmt_port *sport, unsigned int status)
{
struct tty_struct *tty = sport->port.state->port.tty;
struct wmt_uart *uart = (struct wmt_uart *)PORT_TO_BASE(sport);
unsigned int flg, urfidx, ignored = 0;
char ch;
urfidx = URFIDX_RXFIDX(uart->urfidx);
/*
* Check if there is data ready to be read.
*
* Note: We only receive characters.
*/
while ((status & URUSR_TO_SM(URUSR_RXDRDY)) && (URFIDX_RXFIDX(uart->urfidx))) {
ch = (uart->urrxf[0] & 0xFF);
/*urfidx--;*/
sport->port.icount.rx++;
flg = TTY_NORMAL;
/*
* Check interrupt status information using status[URISR_bits].
*
* Notice that the error handling code is out of
* the main execution path and the URISR has already
* been read by ISR.
*/
if (status & URISR_TO_SM(URISR_PER | URISR_FER | URISR_RXDOVR)) {
if (urfidx > 1) {
if (uart_handle_sysrq_char(&sport->port, ch))
goto ignore_char;
/*
* Pop all TTY_NORMAL data.
*/
goto error_return;
} else {
/*
* Now we have poped up to the data with
* parity error or frame error.
*/
goto handle_error;
}
}
if (uart_handle_sysrq_char(&sport->port, ch))
goto ignore_char;
error_return:
uart_insert_char(&sport->port, (status & 0xFFFF), URISR_TO_SM(URISR_RXDOVR) , ch, flg);
ignore_char:
status &= 0xffff; /* Keep URISR field*/
status |= URUSR_TO_SM(uart->urusr);
}
out:
tty_flip_buffer_push(tty);
return;
handle_error:
/*
* Update error counters.
*/
if (status & URISR_TO_SM(URISR_PER))
sport->port.icount.parity++;
else
if (status & URISR_TO_SM(URISR_FER)) {
#ifdef CONFIG_SERIAL_WMT_BKSIG
/*
* Experimental software patch for break signal detection.
*
* When I got there is a frame error in next frame data,
* I check the next data to judge if it is a break signal.
*
* FIXME: Open these if Bluetooth or IrDA need this patch.
* Dec.29.2004 by Harry.
*/
if ((ch & RX_PERMASK) == 0) {
sport->port.icount.brk++;
uart_handle_break(&sport->port);
} else
sport->port.icount.frame++;
#else /* Don't support break sinal detection */
sport->port.icount.frame++;
#endif
}
/*
* RX Over Run event
*/
if (status & URISR_TO_SM(URISR_RXDOVR))
sport->port.icount.overrun++;
if (status & sport->port.ignore_status_mask) {
if (++ignored > 100)
goto out;
goto ignore_char;
}
/*
* Second, handle the events which we're interesting to listen.
*/
status &= sport->port.read_status_mask;
if (status & URISR_TO_SM(URISR_PER))
flg = TTY_PARITY;
else
if (status & URISR_TO_SM(URISR_FER)) {
#ifdef CONFIG_SERIAL_WMT_BKSIG
/* Software patch for break signal detection.
*
* When I got there is a frame error in next frame data,
* I check the next data to judge if it is a break signal.
*
* FIXME: Open these if Bluetooth or IrDA need this patch.
* Dec.29.2004 by Harry.
*/
if (sport->port.read_status_mask & SW_BKSIG) {
if ((ch & RX_PERMASK) == 0) {
DEBUG_INTR("handling break....");
flg = TTY_BREAK;
/*goto error_return;*/
} else {
flg = TTY_FRAME;
/*goto error_return;*/
}
} else {
flg = TTY_FRAME;
/*goto error_return;*/
}
#else /* Don't support break sinal detection */
flg = TTY_FRAME;
#endif
}
if (status & URISR_TO_SM(URISR_RXDOVR)) {
/*
* Overrun is special, since it's reported
* immediately, and doesn't affect the current
* character.
*/
ch = 0;
flg = TTY_OVERRUN;
}
#ifdef SUPPORT_SYSRQ
sport->port.sysrq = 0;
#endif
goto error_return;
}
#else
static inline int put_strings_tty_io(struct tty_struct *tty,
const unsigned char *chars, char flag, size_t size)
{
int i;
i = tty_insert_flip_string_fixed_flag(tty, chars, flag, size);
tty_flip_buffer_push(tty);
return i;
}
static void
wmt_rx_chars(struct wmt_port *sport, unsigned int status)
{
struct tty_struct *tty = sport->port.state->port.tty;
struct wmt_uart *uart = (struct wmt_uart *)PORT_TO_BASE(sport);
unsigned int receive_rx_count = 0;
unsigned long flags;
unsigned int flg, urfidx, ignored = 0;
char ch;
char *pchar = NULL;
char rx_flag;
urfidx = URFIDX_RXFIDX(uart->urfidx);
/*
* Check if there is data ready to be read.
*
* Note: We only receive characters.
*/
if ((unsigned int)(sport->port.membase) != UART0_BASE_ADDR) {
spin_lock_irqsave(&sport->port.lock, flags);
receive_rx_count = wmt_rx_count(sport);
spin_unlock_irqrestore(&sport->port.lock, flags);
rx_flag = TTY_NORMAL;
if (status & URISR_TO_SM(URISR_PER))
rx_flag = TTY_PARITY;
if (status & URISR_TO_SM(URISR_FER))
rx_flag = TTY_FRAME;
if (receive_rx_count > 0) {
if (sport->buffer_selected == 0) {
pchar = sport->uart_dma_tmp_buf0;
sport->uart_dma_tmp_buf0 += receive_rx_count;
put_strings_tty_io(tty, pchar, rx_flag, receive_rx_count);
if (sport->uart_dma_tmp_buf0 ==
(sport->uart_rx_dma_buf0_org + UART_BUFFER_SIZE)) {
sport->uart_dma_tmp_buf0 = sport->uart_rx_dma_buf0_org;
}
} else if (sport->buffer_selected == 1) {
pchar = sport->uart_dma_tmp_buf1;
sport->uart_dma_tmp_buf1 += receive_rx_count;
put_strings_tty_io(tty, pchar, rx_flag, receive_rx_count);
if (sport->uart_dma_tmp_buf1 ==
(sport->uart_rx_dma_buf1_org + UART_BUFFER_SIZE)) {
sport->uart_dma_tmp_buf1 = sport->uart_rx_dma_buf1_org;
}
} else if (sport->buffer_selected == 2) {
pchar = sport->uart_dma_tmp_buf2;
sport->uart_dma_tmp_buf2 += receive_rx_count ;
put_strings_tty_io(tty, pchar, rx_flag, receive_rx_count);
if (sport->uart_dma_tmp_buf2 ==
(sport->uart_rx_dma_buf2_org + UART_BUFFER_SIZE)) {
sport->uart_dma_tmp_buf2 = sport->uart_rx_dma_buf2_org;
}
}
sport->port.icount.rx += receive_rx_count;
if (rx_flag == TTY_PARITY)
sport->port.icount.parity += receive_rx_count;
if (rx_flag == TTY_FRAME)
sport->port.icount.frame += receive_rx_count;
receive_rx_count = 0;
}
tty_flip_buffer_push(tty);
return;
} else {
while ((status & URUSR_TO_SM(URUSR_RXDRDY)) && (URFIDX_RXFIDX(uart->urfidx))) {
ch = (unsigned int)(uart->urrxf[0] & 0xFF);
sport->port.icount.rx++;
flg = TTY_NORMAL;
/*
* Check interrupt status information using status[URISR_bits].
*
* Notice that the error handling code is out of
* the main execution path and the URISR has already
* been read by ISR.
*/
if (status & URISR_TO_SM(URISR_PER | URISR_FER | URISR_RXDOVR)) {
if (urfidx > 1) {
if (uart_handle_sysrq_char(&sport->port, ch))
goto ignore_char2;
/*
* Pop all TTY_NORMAL data.
*/
goto error_return2;
} else {
/*
* Now we have poped up to the data with
* parity error or frame error.
*/
goto handle_error2;
}
}
if (uart_handle_sysrq_char(&sport->port, ch))
goto ignore_char2;
error_return2:
uart_insert_char(&sport->port, (status & 0xFFFF),
URISR_TO_SM(URISR_RXDOVR) , ch, flg);
ignore_char2:
status &= 0xffff; /* Keep URISR field*/
status |= URUSR_TO_SM(uart->urusr);
}
out2:
tty_flip_buffer_push(tty);
return;
handle_error2:
/*
* Update error counters.
*/
if (status & URISR_TO_SM(URISR_PER))
sport->port.icount.parity++;
else {
if (status & URISR_TO_SM(URISR_FER)) {
#ifdef CONFIG_SERIAL_WMT_BKSIG
/*
* Experimental software patch for break signal detection.
*
* When I got there is a frame error in next frame data,
* I check the next data to judge if it is a break signal.
*
* FIXME: Open these if Bluetooth or IrDA need this patch.
* Dec.29.2004 by Harry.
*/
if ((ch & RX_PERMASK) == 0) {
sport->port.icount.brk++;
uart_handle_break(&sport->port);
} else
sport->port.icount.frame++;
#else /* Don't support break sinal detection */
sport->port.icount.frame++;
#endif
}
}
/*
* RX Over Run event
*/
if (status & URISR_TO_SM(URISR_RXDOVR))
sport->port.icount.overrun++;
if (status & sport->port.ignore_status_mask) {
if (++ignored > 100)
goto out2;
goto ignore_char2;
}
/*
* Second, handle the events which we're interesting to listen.
*/
status &= sport->port.read_status_mask;
if (status & URISR_TO_SM(URISR_PER))
flg = TTY_PARITY;
else
if (status & URISR_TO_SM(URISR_FER)) {
#ifdef CONFIG_SERIAL_WMT_BKSIG
/* Software patch for break signal detection.
*
* When I got there is a frame error in next frame data,
* I check the next data to judge if it is a break signal.
*
* FIXME: Open these if Bluetooth or IrDA need this patch.
* Dec.29.2004 by Harry.
*/
if (sport->port.read_status_mask & SW_BKSIG) {
if ((ch & RX_PERMASK) == 0) {
DEBUG_INTR("handling break....");
flg = TTY_BREAK;
/*goto error_return;*/
} else {
flg = TTY_FRAME;
/*goto error_return;*/
}
} else {
flg = TTY_FRAME;
/*goto error_return;*/
}
#else /* Don't support break sinal detection */
flg = TTY_FRAME;
#endif
}
if (status & URISR_TO_SM(URISR_RXDOVR)) {
/*
* Overrun is special, since it's reported
* immediately, and doesn't affect the current
* character.
*/
ch = 0;
flg = TTY_OVERRUN;
}
#ifdef SUPPORT_SYSRQ
sport->port.sysrq = 0;
#endif
goto error_return2;
}
}
#endif
/*
* Inside the UART interrupt service routine dut to following
* reason:
*
* URISR_TXFAE: TX FIFO almost empty (FIFO mode)
* URISR_TXFE: TX FIFO empty(FIFO mode)
*/
#ifndef CONFIG_SERIAL_WMT_DMA
static void wmt_tx_chars(struct wmt_port *sport)
{
struct circ_buf *xmit = &sport->port.state->xmit;
struct wmt_uart *uart = (struct wmt_uart *)PORT_TO_BASE(sport);
if (sport->port.x_char) {
/*
* Fill character to the TX FIFO entry.
*/
uart->urtxf[0] = sport->port.x_char;
sport->port.icount.tx++;
sport->port.x_char = 0;
return;
}
/*Check the modem control lines before transmitting anything.*/
wmt_mctrl_check(sport);
if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) {
wmt_stop_tx(&sport->port);
return;
}
/*{2007/11/10 JHT Support the WMT Serial Port Driver Because the
* definition of URSIRT Bit[0] & Bit[3] are different.
* Before WMT these bit are defined as RO, in WMT
* they are changed into the W1C. Therefore the xmit function
* for the FIFO mode should be modified as well.
*/
while ((uart->urfidx & 0x1F) < 16) {
if (uart_circ_empty(xmit))
break;
if (uart->urusr & URUSR_TXDBSY)
continue;
uart->urtxf[0] = xmit->buf[xmit->tail];
xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
sport->port.icount.tx++;
}
/*}2007/11/10-JHT*/
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(&sport->port);
if (uart_circ_empty(xmit))
wmt_stop_tx(&sport->port);
}
#else
static void wmt_tx_chars(struct wmt_port *sport)
{
struct circ_buf *xmit = &sport->port.state->xmit;
int head = xmit->head;
int tail = xmit->tail;
struct wmt_uart *uart = (struct wmt_uart *)PORT_TO_BASE(sport);
char *dma_buf = sport->uart_tx_dma_buf0_org;
unsigned int tx_count;
if (sport->port.x_char) {
/*
* Fill character to the TX FIFO entry.
*/
if ((unsigned int)(sport->port.membase) != UART0_BASE_ADDR) {
/*Dma is still running*/
if (sport->uart_tx_dma_flag != DMA_TX_END)
return;
*dma_buf = sport->port.x_char;
sport->uart_tx_dma_flag = DMA_TX_CHAR;
DMA_TX_START(sport, sport->uart_tx_dma_phy0_org, 1);
} else {
uart->urtxf[0] = sport->port.x_char;
sport->port.icount.tx++;
sport->port.x_char = 0;
}
return;
}
/*Check the modem control lines before transmitting anything.*/
wmt_mctrl_check(sport);
if (uart_circ_empty(xmit) || uart_tx_stopped(&sport->port)) {
wmt_stop_tx(&sport->port);
return;
}
/*{2007/11/10 JHT Support the WMT Serial Port Driver Because the
* definition of URSIRT Bit[0] & Bit[3] are different.
* Before WMT these bit are defined as RO, in WMT
* they are changed into the W1C. Therefore the xmit function
* for the FIFO mode should be modified as well.
*/
if ((unsigned int)(sport->port.membase) != UART0_BASE_ADDR) {
while((uart->urusr & URUSR_TXON));
if(sport->port.line == mtk6622_tty){
while ((uart->urusr & URUSR_TXDBSY));
}
if (sport->uart_tx_dma_flag == DMA_TX_END) {
sport->uart_tx_dma_flag = DMA_TX_XMIT;
tx_count = 0;
head = xmit->head;
tail = xmit->tail;
sport->uart_tx_count = 0;
while (head != tail) {
*dma_buf = xmit->buf[tail];
tail = (tail + 1) & (UART_XMIT_SIZE - 1);
dma_buf++;
tx_count++;
sport->uart_tx_count++;
if (tx_count == UART_BUFFER_SIZE)
break;
}
DMA_TX_START(sport, sport->uart_tx_dma_phy0_org, tx_count);
}
} else {
while ((uart->urfidx & 0x1F) < 16) {
if (uart_circ_empty(xmit))
break;
if (uart->urusr & URUSR_TXDBSY)
continue;
uart->urtxf[0] = xmit->buf[xmit->tail];
xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
sport->port.icount.tx++;
}
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
uart_write_wakeup(&sport->port);
if (uart_circ_empty(xmit))
wmt_stop_tx(&sport->port);
}
}
#endif
static irqreturn_t wmt_int(int irq, void *dev_id)
{
struct wmt_port *sport = dev_id;
struct wmt_uart *uart = (struct wmt_uart *)PORT_TO_BASE(sport);
unsigned int status, pass_counter = 0;
unsigned long flags;
spin_lock_irqsave(&sport->port.lock, flags);
/*
* Put interrupts status information to status bit[0:15]
* Put UART status register to status bit[16:31].
*/
status = URISR_TO_SM(uart->urisr) | URUSR_TO_SM(uart->urusr);
uart->urisr |= SM_TO_URISR(status);
do {
/*
* First, we handle RX events.
*
* RX FIFO Almost Full. (URUSR_RXFAF)
* RX Timeout. (URISR_RXTOUT)
* Frame error (URISR_FER)
*
* Note that also allow URISR_FER and URISR_PER event to do rx.
*/
if (status & URISR_TO_SM(URISR_RXFAF | URISR_RXFF | URISR_RXTOUT |\
URISR_PER | URISR_FER)) {
if ((unsigned int)(sport->port.membase) == UART0_BASE_ADDR)
wmt_rx_chars(sport, status);
if ((unsigned int)(sport->port.membase) != UART0_BASE_ADDR) {
uart->urier = 0; /*close uart rx interruption */
uart->urisr |= SM_TO_URISR(status); /* clear uart rx int status */
sport->uart_rx_dma_flag = 0;
mod_timer(&sport->rx_timer, jiffies + rx_timeout);
break;
}
}
/*
* Second, we handle TX events.
*
* If there comes a TX FIFO Almost event, try to fill TX FIFO.
*/
#ifndef CONFIG_SERIAL_WMT_DMA
wmt_tx_chars(sport);
#else
if ((unsigned int)(sport->port.membase) == UART0_BASE_ADDR)
wmt_tx_chars(sport);
#endif
if (pass_counter++ > WMT_ISR_PASS_LIMIT)
break;
/*
* Update UART interrupt status and general status information.
*/
status = (URISR_TO_SM(uart->urisr) | URUSR_TO_SM(uart->urusr));
uart->urisr |= SM_TO_URISR(status);
/*
* Inside the loop, we handle events that we're interesting.
*/
status &= sport->port.read_status_mask;
/*
* Continue loop while following condition:
*
* TX FIFO Almost Empty. (URISR_TXFAE)
* RX FIFO Almost Full. (URISR_RXFAF)
* RX Receive Time Out. (URISR_RXTOUT)
*/
} while (status & (URISR_TXFE |
URISR_TXFAE |
URISR_RXFAF |
URISR_RXFF |
URISR_RXTOUT |
URISR_RXDOVR));
spin_unlock_irqrestore(&sport->port.lock, flags);
return IRQ_HANDLED;
}
/* wmt_tx_empty()
*
* Return TIOCSER_TEMT when transmitter is not busy.
*/
static unsigned int wmt_tx_empty(struct uart_port *port)
{
struct wmt_port *sport = (struct wmt_port *)port;
struct wmt_uart *uart = (struct wmt_uart *)PORT_TO_BASE(sport);
return (uart->urusr & URUSR_TXDBSY) ? 0 : TIOCSER_TEMT;
}
/* wmt_get_mctrl()
*
* Returns the current state of modem control inputs.
*
* Note: Only support CTS now.
*/
static u_int wmt_get_mctrl(struct uart_port *port)
{
u_int ret = TIOCM_DSR | TIOCM_CAR;
struct wmt_port *sport = (struct wmt_port *)port;
struct wmt_uart *uart = (struct wmt_uart *)PORT_TO_BASE(sport);
ret |= (uart->urusr & URUSR_CTS) ? TIOCM_CTS : 0;
return ret;
}
/* wmt_set_mctrl()
*
* This function sets the modem control lines for port described
* by 'port' to the state described by mctrl. More detail please
* refer to Documentation/serial/driver.
*
* Note: Only support RTS now.
*/
static void wmt_set_mctrl(struct uart_port *port, u_int mctrl)
{
struct wmt_port *sport = (struct wmt_port *)port;
struct wmt_uart *uart = (struct wmt_uart *)PORT_TO_BASE(sport);
if (mctrl & TIOCM_RTS)
uart->urlcr |= URLCR_RTS;
else
uart->urlcr &= ~URLCR_RTS;
}
/*
* Interrupts always disabled.
*/
static void wmt_break_ctl(struct uart_port *port, int break_state)
{
struct wmt_port *sport = (struct wmt_port *)port;
struct wmt_uart *uart = (struct wmt_uart *)PORT_TO_BASE(sport);
unsigned long flags;
spin_lock_irqsave(&sport->port.lock, flags);
if (break_state == -1) {
int i;
unsigned int urbrd = URBRD_BRD(uart->urdiv);
/*
* This looks something tricky.
* Anyway, we need to get current baud rate divisor,
* search bcv in baud_table[], program it into
* URBKR, then generate break signal.
*/
for (i = 0; i < BAUD_TABLE_SIZE; i++) {
if ((baud_table[i].brd & URBRD_BRDMASK) == urbrd)
break;
}
if (i < BAUD_TABLE_SIZE) {
uart->urbkr = URBKR_BCV(baud_table[i].bcv);
uart->urlcr |= URLCR_BKINIT;
}
}
spin_unlock_irqrestore(&sport->port.lock, flags);
}
static char *wmt_uartname[] = {
"uart0",
"uart1",
#ifdef CONFIG_UART_2_3_ENABLE
"uart2",
"uart3",
#endif
};
#ifdef CONFIG_SERIAL_WMT_DMA
static void uart_dma_callback_rx(void *data)
{
struct wmt_port *sport = data;
#ifdef UART_DEBUG
static int out_range =0x00;
if(dma_write_index >=4096){
printk("out of 4096\n");
dma_write_index = 0x00;
out_range++;
}
#endif
if (sport->buffer_used == 0) {
sport->buffer_used = 1;
DMA_RX_START(sport, sport->uart_rx_dma_phy0_org, UART_BUFFER_SIZE);
} else if (sport->buffer_used == 1) {
sport->buffer_used = 2;
DMA_RX_START(sport, sport->uart_rx_dma_phy1_org, UART_BUFFER_SIZE);
} else if (sport->buffer_used == 2) {
sport->buffer_used = 0;
DMA_RX_START(sport, sport->uart_rx_dma_phy2_org, UART_BUFFER_SIZE);
}
#ifdef UART_DEBUG
DMA_pbuf[dma_write_index] = sport->buffer_used + (out_range<<24);
//printk("0x%x dma rx DMA_pbuf[%d]:0x%x\n",(unsigned int)DMA_pbuf,dma_write_index,DMA_pbuf[dma_write_index]);
if(sport->buffer_rx_count_selected == 0){
COUNT_pbuf[dma_write_index] = sport->uart_dma_tmp_phy0;
}else if(sport->buffer_rx_count_selected == 1) {
COUNT_pbuf[dma_write_index] = sport->uart_dma_tmp_phy1;
}else if(sport->buffer_rx_count_selected == 2) {
COUNT_pbuf[dma_write_index] = sport->uart_dma_tmp_phy2;
}
if(sport->buffer_selected == 0){
CPU_pbuf[dma_write_index] = sport->uart_dma_tmp_buf0;
}else if(sport->buffer_selected == 1){
CPU_pbuf[dma_write_index] = sport->uart_dma_tmp_buf1;
}else if(sport->buffer_selected == 2){
CPU_pbuf[dma_write_index] = sport->uart_dma_tmp_buf2;
}
dma_write_index++;
#endif
}
#ifdef UART_DEBUG
void print_dma_count_cpu_buf_pos(struct wmt_port *sport)
{
int i;
for(i=0;iuart_rx_dma_phy0_org <= COUNT_pbuf[i]) && (COUNT_pbuf[i] <= (sport->uart_rx_dma_phy0_org+UART_BUFFER_SIZE))){
printk("count buf index:0x00 offset:0x%x ",COUNT_pbuf[i]-sport->uart_rx_dma_phy0_org);
}else if((sport->uart_rx_dma_phy1_org <= COUNT_pbuf[i]) && (COUNT_pbuf[i] <= (sport->uart_rx_dma_phy1_org+UART_BUFFER_SIZE))){
printk("count buf index:0x01 offset:0x%x ",COUNT_pbuf[i]-sport->uart_rx_dma_phy1_org);
}if((sport->uart_rx_dma_phy2_org <= COUNT_pbuf[i]) && (COUNT_pbuf[i] <= (sport->uart_rx_dma_phy2_org+UART_BUFFER_SIZE))){
printk("count buf index:0x02 offset:0x%x ",COUNT_pbuf[i]-sport->uart_rx_dma_phy2_org);
}
if((sport->uart_rx_dma_buf0_org <= CPU_pbuf[i]) && (CPU_pbuf[i] <= (sport->uart_rx_dma_buf0_org+UART_BUFFER_SIZE))){
printk("cpu buf index:0x00 offset:0x%x\n",CPU_pbuf[i]-(unsigned int)sport->uart_rx_dma_buf0_org);
}else if((sport->uart_rx_dma_buf1_org <= CPU_pbuf[i]) && (CPU_pbuf[i] <= (sport->uart_rx_dma_buf1_org+UART_BUFFER_SIZE))){
printk("cpu buf index:0x01 offset:0x%x\n",CPU_pbuf[i]-(unsigned int)sport->uart_rx_dma_buf1_org);
}if((sport->uart_rx_dma_buf2_org <= CPU_pbuf[i]) && (CPU_pbuf[i] <= (sport->uart_rx_dma_buf2_org+UART_BUFFER_SIZE))){
printk("cpu buf index:0x02 offset:0x%x\n",CPU_pbuf[i]-(unsigned int)sport->uart_rx_dma_buf2_org);
}
printk("\n");
}
}
#endif
static void uart_dma_callback_tx(void *data)
{
struct wmt_port *sport = data;
unsigned long flags;
sport->dma_tx_cnt++;
spin_lock_irqsave(&sport->port.lock, flags);
if (sport->uart_tx_dma_flag == DMA_TX_CHAR) {
sport->port.icount.tx++;
sport->port.x_char = 0;
} else {
sport->port.state->xmit.tail =
(sport->port.state->xmit.tail + sport->uart_tx_count) & (UART_XMIT_SIZE - 1);
sport->port.icount.tx += sport->uart_tx_count;
}
sport->uart_tx_dma_flag = DMA_TX_END;
wmt_tx_chars(sport);
if (uart_circ_chars_pending(&sport->port.state->xmit) < WAKEUP_CHARS)
uart_write_wakeup(&sport->port);
if (uart_circ_empty(&sport->port.state->xmit))
wmt_stop_tx(&sport->port);
spin_unlock_irqrestore(&sport->port.lock, flags);
}
#endif
wmt_uart1_pre_init(void)
{
GPIO_CTRL_GP18_UART_BYTE_VAL &= ~(BIT4 | BIT5);
auto_pll_divisor(DEV_UART1, CLK_ENABLE, 0, 0);
printk("wmt_uart1_pre_init\n");
}
wmt_uart1_post_deinit(void)
{
GPIO_CTRL_GP18_UART_BYTE_VAL |= (BIT4 | BIT5);
auto_pll_divisor(DEV_UART1, CLK_DISABLE, 0, 0);
printk("wmt_uart1_post_deinit\n");
}
static int wmt_startup(struct uart_port *port)
{
struct wmt_port *sport = (struct wmt_port *)port;
struct wmt_uart *uart = (struct wmt_uart *)PORT_TO_BASE(sport);
char *uartname = NULL;
int retval;
int i;
unsigned long flags;
switch (sport->port.irq) {
case IRQ_UART0:
uartname = wmt_uartname[0];
/*#ifdef CONFIG_SERIAL_WMT_DMA
sport->port.dma_rx_dev = UART_0_RX_DMA_REQ;
sport->port.dma_tx_dev = UART_0_TX_DMA_REQ;
sport->id = "uart0";
sport->port.dma_rx_cfg = dma_device_cfg_table[UART_0_RX_DMA_REQ];
sport->port.dma_tx_cfg = dma_device_cfg_table[UART_0_TX_DMA_REQ];
#endif*/
break;
case IRQ_UART1:
wmt_uart1_pre_init();//added by rubbitxiao
uartname = wmt_uartname[1];
#ifdef CONFIG_SERIAL_WMT_DMA
sport->dma_rx_dev = UART_1_RX_DMA_REQ;
sport->dma_tx_dev = UART_1_TX_DMA_REQ;
sport->id = "uart1";
sport->dma_rx_cfg = dma_device_cfg_table[UART_1_RX_DMA_REQ];
sport->dma_tx_cfg = dma_device_cfg_table[UART_1_TX_DMA_REQ];
#endif
break;
#ifdef CONFIG_UART_2_3_ENABLE
case IRQ_UART2:
uartname = wmt_uartname[2];
#ifdef CONFIG_SERIAL_WMT_DMA
sport->dma_rx_dev = UART_2_RX_DMA_REQ;
sport->dma_tx_dev = UART_2_TX_DMA_REQ;
sport->id = "uart2";
sport->dma_rx_cfg = dma_device_cfg_table[UART_2_RX_DMA_REQ];
sport->dma_tx_cfg = dma_device_cfg_table[UART_2_TX_DMA_REQ];
#endif
break;
case IRQ_UART3:
uartname = wmt_uartname[3];
#ifdef CONFIG_SERIAL_WMT_DMA
sport->dma_rx_dev = UART_3_RX_DMA_REQ;
sport->dma_tx_dev = UART_3_TX_DMA_REQ;
sport->id = "uart3";
sport->dma_rx_cfg = dma_device_cfg_table[UART_3_RX_DMA_REQ];
sport->dma_tx_cfg = dma_device_cfg_table[UART_3_TX_DMA_REQ];
#endif
break;
#endif
}
#ifdef CONFIG_SERIAL_WMT_DMA
if ((unsigned int)(sport->port.membase) != UART0_BASE_ADDR) {
memset(sport->uart_rx_dma_buf0_org, 0x0, UART_BUFFER_SIZE);
memset(sport->uart_rx_dma_buf1_org, 0x0, UART_BUFFER_SIZE);
memset(sport->uart_rx_dma_buf2_org, 0x0, UART_BUFFER_SIZE);
memset(sport->uart_tx_dma_buf0_org, 0x0, UART_BUFFER_SIZE);
sport->uart_dma_tmp_buf0 = sport->uart_rx_dma_buf0_org;
sport->uart_dma_tmp_phy0 = sport->uart_rx_dma_phy0_org;
sport->uart_dma_tmp_buf1 = sport->uart_rx_dma_buf1_org;
sport->uart_dma_tmp_buf2 = sport->uart_rx_dma_buf2_org;
sport->uart_dma_tmp_phy1 = sport->uart_rx_dma_phy1_org;
sport->uart_dma_tmp_phy2 = sport->uart_rx_dma_phy2_org;
sport->buffer_used = 0; /*to record which buf DMA hardware used*/
sport->buffer_selected = 0; /* to record which buf software is used to put data to kernel*/
sport->buffer_rx_count_selected = 0; /* to record which buf rx_count is used*/
sport->rx_dmach = NULL_DMA;
sport->tx_dmach = NULL_DMA;
sport->last_pos = 0;
sport->uart_tx_dma_flag = DMA_TX_END;
sport->uart_tx_count = 0;
sport->dma_tx_cnt = 0x00;
init_timer(&sport->rx_timer);
sport->rx_timer.function = wmt_rx_timeout;
sport->rx_timer.data = (unsigned long)sport;
DMA_RX_REQUEST(sport, uart_dma_callback_rx);
DMA_TX_REQUEST(sport, uart_dma_callback_tx);
wmt_setup_dma(sport->rx_dmach, sport->dma_rx_cfg);
wmt_setup_dma(sport->tx_dmach, sport->dma_tx_cfg);
DMA_RX_START(sport, sport->uart_rx_dma_phy0_org, UART_BUFFER_SIZE);
DMA_RX_START(sport, sport->uart_rx_dma_phy1_org, UART_BUFFER_SIZE);
DMA_RX_START(sport, sport->uart_rx_dma_phy2_org, UART_BUFFER_SIZE);
#ifdef UART_DEBUG
DMA_pbuf = kmalloc(UART_BUFFER_SIZE*sizeof(unsigned int*), GFP_KERNEL);
COUNT_pbuf = kmalloc(UART_BUFFER_SIZE*sizeof(unsigned int*), GFP_KERNEL);
CPU_pbuf = kmalloc(UART_BUFFER_SIZE*sizeof(unsigned int*), GFP_KERNEL);
if(!DMA_pbuf || !COUNT_pbuf || !CPU_pbuf){
printk("kmalloc buf for debug buf failed\n");
return;
}else{
memset(DMA_pbuf,0x5a,UART_BUFFER_SIZE*sizeof(unsigned int*));
memset(COUNT_pbuf,0x00,UART_BUFFER_SIZE*sizeof(unsigned int*));
memset(CPU_pbuf,0x00,UART_BUFFER_SIZE*sizeof(unsigned int*));
}
dma_write_index =0x00;
#endif
{
char uboot_buf[256];
int varlen = sizeof(uboot_buf);
if(wmt_getsyspara("wmt.bt.tty",uboot_buf,&varlen) == 0)
{
sscanf(uboot_buf,"%d",&mtk6622_tty);
printk("mtk6622_tty:%d\n",mtk6622_tty);
if(1<=mtk6622_tty && mtk6622_tty <=3){
printk("wmt.bt.tty is correct\n");
}else{
printk("wmt.bt.tty is illegal\n");
mtk6622_tty = -1;
}
}else{
printk("have not set uboot variant:wmt.bt.tty\n");
}
}
}
#endif
/*
* Allocate the IRQ
*/
retval = request_irq(sport->port.irq, wmt_int, 0, uartname, sport);
if (retval)
return retval;
/*
* Setup the UART clock divisor
*/
for (i = 0; i < BAUD_TABLE_SIZE; i++) {
if (baud_table[i].baud == 115200)
break;
}
spin_lock_irqsave(&sport->port.lock, flags);
uart->urdiv = baud_table[i].brd;
/* Disable TX,RX*/
uart->urlcr = 0;
/* Disable all interrupt*/
uart->urier = 0;
/*Reset TX,RX Fifo*/
uart->urfcr = URFCR_TXFRST | URFCR_RXFRST;
while (uart->urfcr)
;
/* Disable Fifo*/
uart->urfcr &= ~(URFCR_FIFOEN);
uart->urlcr |= (URLCR_DLEN & ~URLCR_STBLEN & ~URLCR_PTYEN);
#ifdef CONFIG_SERIAL_WMT_DMA
if ((unsigned int)(sport->port.membase) != UART0_BASE_ADDR) {
uart->urfcr = URFCR_FIFOEN | URFCR_TXFLV(8) | URFCR_RXFLV(1) | URFCR_TRAIL;
uart->urtod = 0x0a;
} else
uart->urfcr = URFCR_FIFOEN | URFCR_TXFLV(8) | URFCR_RXFLV(4);
#else
/* Enable Fifo, Tx 16 , Rx 16*/
uart->urfcr = URFCR_FIFOEN | URFCR_TXFLV(8) | URFCR_RXFLV(4);
#endif
/* Enable Fifo, Tx 8 , Rx 8*/
#ifdef CONFIG_SERIAL_WMT_DMA
if ((unsigned int)(sport->port.membase) != UART0_BASE_ADDR) {
uart->urlcr |= URLCR_RXEN | URLCR_TXEN | URLCR_DMAEN | URLCR_RCTSSW;
uart->urier = URIER_ERXFAF | URIER_ERXFF | URIER_ERXTOUT |
URIER_EPER | URIER_EFER | URIER_ERXDOVR;
} else {
uart->urlcr |= URLCR_RXEN | URLCR_TXEN | URLCR_RCTSSW;
uart->urier = URIER_ERXFAF | URIER_ERXFF | URIER_ERXTOUT |
URIER_EPER | URIER_EFER | URIER_ERXDOVR;
}
#else
uart->urlcr |= URLCR_RXEN | URLCR_TXEN | URLCR_RCTSSW;
uart->urier = URIER_ERXFAF | URIER_ERXFF | URIER_ERXTOUT | URIER_EPER |
URIER_EFER | URIER_ERXDOVR;
#endif
/*
* Enable RX FIFO almost full, timeout, and overrun interrupts.
*/
/*
* Enable modem status interrupts
*/
wmt_enable_ms(&sport->port);
spin_unlock_irqrestore(&sport->port.lock, flags);
return 0;
}
static void wmt_shutdown(struct uart_port *port)
{
struct wmt_port *sport = (struct wmt_port *)port;
struct wmt_uart *uart = (struct wmt_uart *)PORT_TO_BASE(sport);
unsigned long flags;
//added begin by rubbitxiao
spin_lock_irqsave(&sport->port.lock, flags);
/* Disable TX,RX*/
uart->urlcr = 0;
/* Disable all interrupt*/
uart->urier = 0;
/*Reset TX,RX Fifo*/
uart->urfcr = URFCR_TXFRST | URFCR_RXFRST;
while (uart->urfcr)
;
/* Disable Fifo*/
uart->urfcr &= ~(URFCR_FIFOEN);
uart->urlcr |= (URLCR_DLEN & ~URLCR_STBLEN & ~URLCR_PTYEN);
spin_unlock_irqrestore(&sport->port.lock, flags);
//added end by rubbitxiao
/*
* Stop our timer.
*/
del_timer_sync(&sport->timer);
/*
* Free the allocated interrupt
*/
free_irq(sport->port.irq, sport);
/*
* Disable all interrupts, port and break condition.
*/
//spin_lock_irqsave(&sport->port.lock, flags);
//uart->urier &= ~(URIER_ETXFE | URIER_ETXFAE | URIER_ERXFF | URIER_ERXFAF);
//spin_unlock_irqrestore(&sport->port.lock, flags);
#ifdef CONFIG_SERIAL_WMT_DMA
if ((unsigned int)(sport->port.membase) != UART0_BASE_ADDR) {
del_timer_sync(&sport->rx_timer);
DMA_RX_STOP(sport);
DMA_RX_CLEAR(sport);
DMA_RX_FREE(sport);
while (sport->uart_tx_dma_flag != DMA_TX_END)
msleep(1);
DMA_TX_STOP(sport);
DMA_TX_CLEAR(sport);
DMA_TX_FREE(sport);
}
#endif
if ((unsigned int)(sport->port.membase) == UART1_BASE_ADDR)
wmt_uart1_post_deinit();
}
/* wmt_uart_pm()
*
* Switch on/off uart in powersave mode.
*
* Hint: Identify port by irq number.
*/
static void wmt_uart_pm(struct uart_port *port, u_int state, u_int oldstate)
{
return;
}
static void
wmt_set_termios(struct uart_port *port, struct ktermios *termios, struct ktermios *old)
{
struct wmt_port *sport = (struct wmt_port *)port;
struct wmt_uart *uart = (struct wmt_uart *)PORT_TO_BASE(sport);
unsigned long flags;
unsigned int new_urlcr, old_urlcr, old_urier, tmp_urisr, baud;
unsigned int old_csize = old ? old->c_cflag & CSIZE : CS8;
int i;
/*
* If we don't support modem control lines, don't allow
* these to be set.
*/
if (0) {
termios->c_cflag &= ~(HUPCL | CRTSCTS | CMSPAR);
termios->c_cflag |= CLOCAL;
}
/*
* Only support CS7 and CS8.
*/
while ((termios->c_cflag & CSIZE) != CS7 && (termios->c_cflag & CSIZE) != CS8) {
termios->c_cflag &= ~CSIZE;
termios->c_cflag |= old_csize;
old_csize = CS8;
}
if ((termios->c_cflag & CSIZE) == CS8)
new_urlcr = URLCR_DLEN;
else
new_urlcr = 0;
if (termios->c_cflag & CRTSCTS)
new_urlcr &= ~URLCR_RCTSSW;
else
new_urlcr |= URLCR_RCTSSW;
if (termios->c_cflag & CSTOPB)
new_urlcr |= URLCR_STBLEN;
if (termios->c_cflag & PARENB) {
/*
* Enable parity.
*/
new_urlcr |= URLCR_PTYEN;
/*
* Parity mode select.
*/
if (termios->c_cflag & PARODD)
new_urlcr |= URLCR_PTYMODE;
}
/*
* Ask the core to get baud rate, but we need to
* calculate quot by ourself.
*/
baud = uart_get_baud_rate(port, termios, old, 9600, 921600);
/*
* We need to calculate quot by ourself.
*
* FIXME: Be careful, following result is not an
* interger quotient, fix it if need.
*/
/*quot = port->uartclk / (13 * baud);*/
spin_lock_irqsave(&sport->port.lock, flags);
/*
* Mask out other interesting to listen expect TX FIFO almost empty event.
*/
sport->port.read_status_mask &= URISR_TO_SM(URISR_TXFAE | URISR_TXFE);
/*
* We're also interested in receiving RX FIFO events.
*/
sport->port.read_status_mask |= URISR_TO_SM(URISR_RXDOVR | URISR_RXFAF | URISR_RXFF);
/*
* Check if we need to enable frame and parity error events
* to be passed to the TTY layer.
*/
if (termios->c_iflag & INPCK)
sport->port.read_status_mask |= URISR_TO_SM(URISR_FER | URISR_PER);
#ifdef CONFIG_SERIAL_WMT_BKSIG
/*
* check if we need to enable break events to be passed to the TTY layer.
*/
if (termios->c_iflag & (BRKINT | PARMRK))
/*
* WMT UART doesn't support break signal detection interrupt.
*
* I try to implement this using URISR_FER.
*/
sport->port.read_status_mask |= SW_BKSIG;
#endif
/*
* Characters to ignore
*/
sport->port.ignore_status_mask = 0;
if (termios->c_iflag & IGNPAR)
sport->port.ignore_status_mask |= URISR_TO_SM(URISR_FER | URISR_PER);
if (termios->c_iflag & IGNBRK) {
#ifdef CONFIG_SERIAL_WMT_BKSIG
/*
* WMT UART doesn't support break signal detection interrupt.
*
* I try to implement this using URISR_FER.
*/
sport->port.ignore_status_mask |= BIT31;/*FIXME*/
#endif
/*
* If we're ignoring parity and break indicators,
* ignore overruns too (for real raw support).
*/
if (termios->c_iflag & IGNPAR)
sport->port.ignore_status_mask |= URISR_TO_SM(URISR_RXDOVR);
}
del_timer_sync(&sport->timer);
/*
* Update the per-port timeout.
*/
uart_update_timeout(port, termios->c_cflag, baud);
/*
* Disable FIFO request interrupts and drain transmitter
*/
old_urlcr = uart->urlcr;
old_urier = uart->urier;
uart->urier = old_urier & ~(URIER_ETXFAE | URIER_ERXFAF);
/*
* Two step polling, first step polling the remaining
* entries in TX FIFO. This step make it safe to drain
* out all of remaining data in FIFO.
*/
while (URFIDX_TXFIDX(uart->urfidx))
barrier();
/*
* Second step to make sure the last one data has been sent.
*/
while (uart->urusr & URUSR_TXDBSY)
barrier();
/*
* Disable this UART port.
*/
uart->urier = 0;
/*
* Set the parity, stop bits and data size
*/
uart->urlcr = new_urlcr;
/*
* Set baud rate
*/
for (i = 0; i < BAUD_TABLE_SIZE; i++) {
if (baud_table[i].baud == baud)
break;
}
uart->urdiv = baud_table[i].brd;
/*
* Read to clean any pending pulse interrupts.
*/
tmp_urisr = uart->urisr;
/*
* Restore FIFO interrupt, TXEN bit, RXEN bit settings.
*/
uart->urier = old_urier;
#ifdef CONFIG_SERIAL_WMT_DMA
uart->urlcr |= old_urlcr & (URLCR_TXEN | URLCR_RXEN | URLCR_DMAEN);
#else
uart->urlcr |= old_urlcr & (URLCR_TXEN | URLCR_RXEN);
#endif
if (UART_ENABLE_MS(&sport->port, termios->c_cflag))
wmt_enable_ms(&sport->port);
spin_unlock_irqrestore(&sport->port.lock, flags);
}
static const char *wmt_type(struct uart_port *port)
{
struct wmt_port *sport = (struct wmt_port *)port;
return (sport->port.type == PORT_WMT) ? "wmt serial" : NULL;
}
/*
* Release the memory region(s) being used by 'port'.
*/
static void wmt_release_port(struct uart_port *port)
{
struct wmt_port *sport = (struct wmt_port *)port;
release_mem_region(sport->port.mapbase, UART_PORT_SIZE);
}
/*
* Request the memory region(s) being used by 'port'.
*/
static int wmt_request_port(struct uart_port *port)
{
struct wmt_port *sport = (struct wmt_port *)port;
return request_mem_region(sport->port.mapbase,
UART_PORT_SIZE,
"uart") != NULL ? 0 : -EBUSY;
}
/*
* Configure/autoconfigure the port.
*/
static void wmt_config_port(struct uart_port *port, int flags)
{
struct wmt_port *sport = (struct wmt_port *)port;
if (flags & UART_CONFIG_TYPE && wmt_request_port(&sport->port) == 0)
sport->port.type = PORT_WMT;
}
/*
* Verify the new serial_struct (for TIOCSSERIAL).
* The only change we allow are to the flags and type, and
* even then only between PORT_WMT and PORT_UNKNOWN
*/
static int wmt_verify_port(struct uart_port *port, struct serial_struct *ser)
{
struct wmt_port *sport = (struct wmt_port *)port;
int ret = 0;
if (ser->type != PORT_UNKNOWN && ser->type != PORT_WMT)
ret = -EINVAL;
if (sport->port.irq != ser->irq)
ret = -EINVAL;
if (ser->io_type != SERIAL_IO_MEM)
ret = -EINVAL;
if (sport->port.uartclk / 16 != ser->baud_base)
ret = -EINVAL;
if ((void *)sport->port.mapbase != ser->iomem_base)
ret = -EINVAL;
if (sport->port.iobase != ser->port)
ret = -EINVAL;
if (ser->hub6 != 0)
ret = -EINVAL;
return ret;
}
static struct uart_ops wmt_pops = {
.tx_empty = wmt_tx_empty,
.set_mctrl = wmt_set_mctrl,
.get_mctrl = wmt_get_mctrl,
.stop_tx = wmt_stop_tx,
.start_tx = wmt_start_tx,
.stop_rx = wmt_stop_rx,
.enable_ms = wmt_enable_ms,
.break_ctl = wmt_break_ctl,
.startup = wmt_startup,
.shutdown = wmt_shutdown,
.pm = wmt_uart_pm,
.set_termios = wmt_set_termios,
.type = wmt_type,
.release_port = wmt_release_port,
.request_port = wmt_request_port,
.config_port = wmt_config_port,
.verify_port = wmt_verify_port,
};
static int parse_spi1_param(void)
{
char buf[64];
size_t l = sizeof(buf);
int uart_spi_sel = 0;
if (wmt_getsyspara("wmt.spi1.param", buf, &l) == 0) {
sscanf(buf, "%d", &uart_spi_sel);
}
return uart_spi_sel;
}
/* Setup the WMT serial ports. Note that we don't include the IrDA
* port here since we have our own SIR/FIR driver (see drivers/net/irda)
*
* Note also that we support "console=ttyVTx" where "x" is either 0 to 2.
* Which serial port this ends up being depends on the machine you're
* running this kernel on.
*/
static void wmt_init_ports(void)
{
static int first = 1;
int i;
if (!first)
return;
first = 0;
wmt_uart_spi_sel = parse_spi1_param();
for (i = 0; i < NR_PORTS; i++) {
wmt_ports[i].port.uartclk = 24000000;
wmt_ports[i].port.ops = &wmt_pops;
wmt_ports[i].port.fifosize = 16;
wmt_ports[i].port.line = i;
wmt_ports[i].port.iotype = SERIAL_IO_MEM;
init_timer(&wmt_ports[i].timer);
wmt_ports[i].timer.function = wmt_timeout;
wmt_ports[i].timer.data = (unsigned long)&wmt_ports[i];
}
/*
* Make sure all UARTs are not configured as GPIO function.
*
* This step may be redundant due to bootloader has already
* done this for us.
*/
/* Switch the Uart's pin from default GPIO into uart function pins for UART0 ~ UART3 */
GPIO_CTRL_GP18_UART_BYTE_VAL &= ~(BIT0 | BIT1 | BIT2 | BIT3 |
BIT4 | BIT5 | BIT6 | BIT7); /*UART0 UART1*/
#ifdef CONFIG_UART_2_3_ENABLE
GPIO_CTRL_GP18_UART_BYTE_VAL &= ~(BIT2 | BIT3 | BIT6 | BIT7); /*UART2 UART3*/
#endif
/*Set Uart0 and Uart1, Uart2 and Uart3 pin share*/
PIN_SHARING_SEL_4BYTE_VAL &= ~(BIT9 | BIT8);
if (wmt_uart_spi_sel == SHARE_PIN_UART)
PIN_SHARING_SEL_4BYTE_VAL &= ~(BIT10);
#ifdef CONFIG_UART_2_3_ENABLE
//kevin modify uart0,uart1(hw flow control),uart2
PIN_SHARING_SEL_4BYTE_VAL |= (BIT8);
#endif
auto_pll_divisor(DEV_UART0, CLK_ENABLE, 0, 0);
auto_pll_divisor(DEV_UART1, CLK_ENABLE, 0, 0);
#ifdef CONFIG_UART_2_3_ENABLE
auto_pll_divisor(DEV_UART2, CLK_ENABLE, 0, 0);
auto_pll_divisor(DEV_UART3, CLK_ENABLE, 0, 0);
#endif
}
void __init wmt_register_uart_fns(struct wmt_port_fns *fns)
{
if (fns->get_mctrl)
wmt_pops.get_mctrl = fns->get_mctrl;
if (fns->set_mctrl)
wmt_pops.set_mctrl = fns->set_mctrl;
wmt_pops.pm = fns->pm;
wmt_pops.set_wake = fns->set_wake;
}
void __init wmt_register_uart(int idx, int port)
{
if (idx >= NR_PORTS) {
printk(KERN_ERR "%s: bad index number %d\n", __func__, idx);
return;
}
switch (port) {
case 0:
wmt_ports[idx].port.membase = (void *)(REG32_PTR(UART0_BASE_ADDR));
wmt_ports[idx].port.mapbase = UART0_BASE_ADDR;
wmt_ports[idx].port.irq = IRQ_UART0;
wmt_ports[idx].port.flags = ASYNC_BOOT_AUTOCONF;
break;
case 1:
wmt_ports[idx].port.membase = (void *)(REG32_PTR(UART1_BASE_ADDR));
wmt_ports[idx].port.mapbase = UART1_BASE_ADDR;
wmt_ports[idx].port.irq = IRQ_UART1;
wmt_ports[idx].port.flags = ASYNC_BOOT_AUTOCONF;
break;
#ifdef CONFIG_UART_2_3_ENABLE
case 2:
wmt_ports[idx].port.membase = (void *)(REG32_PTR(UART2_BASE_ADDR));
wmt_ports[idx].port.mapbase = UART2_BASE_ADDR;
wmt_ports[idx].port.irq = IRQ_UART2;
wmt_ports[idx].port.flags = ASYNC_BOOT_AUTOCONF;
break;
case 3:
wmt_ports[idx].port.membase = (void *)(REG32_PTR(UART3_BASE_ADDR));
wmt_ports[idx].port.mapbase = UART3_BASE_ADDR;
wmt_ports[idx].port.irq = IRQ_UART3;
wmt_ports[idx].port.flags = ASYNC_BOOT_AUTOCONF;
break;
#endif
default:
printk(KERN_ERR "%s: bad port number %d\n", __func__, port);
}
}
#ifdef CONFIG_SERIAL_WMT_CONSOLE
/*
* Interrupts are disabled on entering
*
* Note: We do console writing with UART register mode.
*/
static void wmt_console_write(struct console *co, const char *s, u_int count)
{
struct wmt_port *sport = &wmt_ports[co->index];
struct wmt_uart *uart = (struct wmt_uart *)PORT_TO_BASE(sport);
unsigned int i, old_urlcr, old_urier;
/*{JHT*/
unsigned int old_urfcr;
unsigned long flags;
spin_lock_irqsave(&sport->port.lock, flags);
/*}JHT*/
/*
* First, save URLCR and URIER.
*/
old_urlcr = uart->urlcr;
old_urier = uart->urier;
/*{JHT*/
old_urfcr = uart->urfcr;
/*}JHT*/
/*
* Second, switch to register mode with follows method:
*
* Disable FIFO threshold interrupts, and enable transmitter.
*/
uart->urier &= ~(URIER_ETXFAE | URIER_ERXFAF);
uart->urlcr |= URLCR_TXEN;
/*{JHT*/
uart->urfcr &= ~URFCR_FIFOEN;
/*}JHT*/
/*
* Now, do each character
*/
for (i = 0; i < count; i++) {
/*
* Polling until free for transmitting.
*/
while (uart->urusr & URUSR_TXDBSY)
;
uart->urtdr = (unsigned int)s[i];
/*
* Do CR if there comes a LF.
*/
if (s[i] == '\n') {
/*
* Polling until free for transmitting.
*/
while (uart->urusr & URUSR_TXDBSY)
;
uart->urtdr = (unsigned int)'\r';
}
}
/*
* Finally, wait for transmitting done and restore URLCR and URIER.
*/
while (uart->urusr & URUSR_TXDBSY)
;
uart->urlcr = old_urlcr;
uart->urier = old_urier;
/*{JHT*/
uart->urfcr = old_urfcr;
/*}JHT*/
spin_unlock_irqrestore(&sport->port.lock, flags);
}
/*
* If the port was already initialised (eg, by a boot loader), try to determine
* the current setup.
*/
static void __init wmt_console_get_options(struct wmt_port *sport, int *baud, int *parity, int *bits)
{
int i;
struct wmt_uart *uart = (struct wmt_uart *)PORT_TO_BASE(sport);
if ((uart->urlcr & (URLCR_RXEN | URLCR_TXEN)) == (URLCR_RXEN | URLCR_TXEN)) {
/*
* Port was enabled.
*/
unsigned quot;
*parity = 'n';
/*
* Check parity mode, 0:evev 1:odd
*/
if (uart->urlcr & URLCR_PTYEN) {
if (uart->urlcr & URLCR_PTYMODE)
*parity = 'o';
else
*parity = 'e';
}
/*
* Check data length, 0:7-bit 1:8-bit
*/
if (uart->urlcr & URLCR_DLEN)
*bits = 8;
else
*bits = 7;
/*
* Get baud rate divisor.
*/
quot = (uart->urdiv & URBRD_BRDMASK);
/*
* FIXME: I didn't trace the console driver want me
* report baud rate whether actual baud rate or ideal
* target baud rate, current I report baud as actual
* one, if it need value as target baud rate, just
* creat an array to fix it, Dec.23 by Harry.
*/
for (i = 0; i < BAUD_TABLE_SIZE; i++) {
if ((baud_table[i].brd & URBRD_BRDMASK) == quot) {
*baud = baud_table[i].baud;
break;
}
}
/*
* If this condition is true, something might be wrong.
* I reprot the actual baud rate temporary.
* Check the printk information then fix it.
*/
if (i >= BAUD_TABLE_SIZE)
*baud = sport->port.uartclk / (13 * (quot + 1));
}
}
#ifndef CONFIG_WMT_DEFAULT_BAUDRATE
#define CONFIG_WMT_DEFAULT_BAUDRATE 115200
#endif
static int __init
wmt_console_setup(struct console *co, char *options)
{
struct wmt_port *sport;
int bits = 8;
int parity = 'n';
int flow = 'n';
int baud = CONFIG_WMT_DEFAULT_BAUDRATE;
/*
* Check whether an invalid uart number has been specified, and
* if so, search for the first available port that does have
* console support.
*/
if (co->index == -1 || co->index >= NR_PORTS)
co->index = 0;
sport = &wmt_ports[co->index];
if (options)
uart_parse_options(options, &baud, &parity, &bits, &flow);
else
wmt_console_get_options(sport, &baud, &parity, &bits);
return uart_set_options(&sport->port, co, baud, parity, bits, flow);
}
static struct uart_driver wmt_reg;
static struct console wmt_console = {
#ifdef CONFIG_SERIAL_WMT_TTYVT
.name = "ttyVT",
#else
.name = "ttyS",
#endif
.write = wmt_console_write,
.device = uart_console_device,
.setup = wmt_console_setup,
.flags = CON_PRINTBUFFER,
.index = -1,
.data = &wmt_reg,
};
static int __init wmt_rs_console_init(void)
{
wmt_init_ports();
register_console(&wmt_console);
return 0;
}
console_initcall(wmt_rs_console_init);
#define WMT_CONSOLE (&wmt_console)
#else /* CONFIG_SERIAL_WMT_CONSOLE */
#define WMT_CONSOLE NULL
#endif
static struct uart_driver wmt_reg = {
.owner = THIS_MODULE,
#ifdef CONFIG_SERIAL_WMT_TTYVT
.driver_name = "ttyVT",
.dev_name = "ttyVT",
#else
.driver_name = "ttyS",
.dev_name = "ttyS",
#endif
.major = SERIAL_WMT_MAJOR,
.minor = MINOR_START,
.nr = NR_PORTS,
.cons = WMT_CONSOLE,
};
void wmt_serial_set_reg(void)
{
*(volatile unsigned int *) (UART0_BASE_ADDR + 0x00000008) = BRD_115200BPS;
*(volatile unsigned int *) (UART0_BASE_ADDR + 0x0000000c) = URLCR_TXEN |
URLCR_RXEN |
URLCR_DLEN |
URLCR_RCTSSW;
*(volatile unsigned int *) (UART0_BASE_ADDR + 0x00000014) = URIER_ERXFAF |
URIER_ERXFF |
URIER_ERXTOUT |
URIER_EPER |
URIER_EFER |
URIER_ERXDOVR;
*(volatile unsigned int *) (UART0_BASE_ADDR + 0x00000020) = URFCR_FIFOEN |
URFCR_TXFLV(8) |
URFCR_RXFLV(8);
}
static int wmt_serial_suspend(struct platform_device *pdev, pm_message_t state)
{
struct device *dev = &pdev->dev;
struct wmt_port *sport = dev_get_drvdata(dev);
struct wmt_uart *uart = (struct wmt_uart *)PORT_TO_BASE(sport);
unsigned long flags;
if (sport) {
if (sport->port.irq != IRQ_UART0)
uart_suspend_port(&wmt_reg, &sport->port);
}
if (!sport)
return 0;
spin_lock_irqsave(&sport->port.lock, flags);
/* save host register */
sport->old_urdiv = uart->urdiv;
sport->old_urlcr = uart->urlcr;
sport->old_urier = uart->urier;
sport->old_urfcr = uart->urfcr;
sport->old_urtod = uart->urtod;
uart->urier = 0;
spin_unlock_irqrestore(&sport->port.lock, flags);
switch (sport->port.irq) {
case IRQ_UART0:
/*auto_pll_divisor(DEV_UART0, CLK_DISABLE, 0, 0);*/
break;
case IRQ_UART1:
auto_pll_divisor(DEV_UART1, CLK_DISABLE, 0, 0);
break;
#ifdef CONFIG_UART_2_3_ENABLE
case IRQ_UART2:
auto_pll_divisor(DEV_UART2, CLK_DISABLE, 0, 0);
break;
case IRQ_UART3:
auto_pll_divisor(DEV_UART3, CLK_DISABLE, 0, 0);
break;
#endif
default:
break;
}
return 0;
}
static int wmt_serial_resume(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct wmt_port *sport = dev_get_drvdata(dev);
struct wmt_uart *uart = (struct wmt_uart *)PORT_TO_BASE(sport);
unsigned long flags;
if (!sport)
return 0;
GPIO_CTRL_GP18_UART_BYTE_VAL &= ~(BIT0 | BIT1 | BIT2 | BIT3 |
BIT4 | BIT5 | BIT6 | BIT7); /*UART0 UART1*/
#ifdef CONFIG_UART_2_3_ENABLE
GPIO_CTRL_GP18_UART_BYTE_VAL &= ~(BIT2 | BIT3 | BIT6 | BIT7); /*UART2 UART3*/
#endif
/*Set Uart0 and Uart1, Uart2 and Uart3 pin share*/
PIN_SHARING_SEL_4BYTE_VAL &= ~(BIT9 | BIT8);
if (wmt_uart_spi_sel == SHARE_PIN_UART)
PIN_SHARING_SEL_4BYTE_VAL &= ~(BIT10);
#ifdef CONFIG_UART_2_3_ENABLE
//kevin modify, uart0,uart1(hw flow control),uart2
PIN_SHARING_SEL_4BYTE_VAL |= (BIT8);
#endif
switch (sport->port.irq) {
case IRQ_UART0:
auto_pll_divisor(DEV_UART0, CLK_ENABLE, 0, 0);
break;
case IRQ_UART1:
auto_pll_divisor(DEV_UART1, CLK_ENABLE, 0, 0);
break;
#ifdef CONFIG_UART_2_3_ENABLE
case IRQ_UART2:
auto_pll_divisor(DEV_UART2, CLK_ENABLE, 0, 0);
break;
case IRQ_UART3:
auto_pll_divisor(DEV_UART3, CLK_ENABLE, 0, 0);
break;
#endif
default:
break;
}
if (sport->port.irq != IRQ_UART0) {
/* Disable TX,RX */
uart->urlcr = 0;
/* Disable all interrupt */
uart->urier = 0;
/* Clear all interrupt */
uart->urisr = 0xffffffff;
/* Disable Fifo */
uart->urfcr &= ~(URFCR_FIFOEN);
/* Reset TX,RX Fifo */
uart->urfcr = URFCR_TXFRST | URFCR_RXFRST;
while (uart->urfcr)
;
}
spin_lock_irqsave(&sport->port.lock, flags);
/*store back the interrupt enable status*/
uart->urdiv = sport->old_urdiv;
uart->urfcr = sport->old_urfcr;
uart->urtod = sport->old_urtod;
uart->urier = sport->old_urier;
uart->urlcr = sport->old_urlcr;
spin_unlock_irqrestore(&sport->port.lock, flags);
if (sport) {
if (sport->port.irq != IRQ_UART0)
uart_resume_port(&wmt_reg, &sport->port);
}
return 0;
}
#if 1
void print_dma_position(struct wmt_port *sport)
{
unsigned int *rx_dma = (unsigned int *)(0xfe001904 + (0x20*sport->rx_dmach));
printk("address 0x%p = 0x%x(value)\n",rx_dma,*rx_dma);
}
void print_dma_buf_pointer(struct wmt_port *sport)
{
printk("buf0:0x%p; buf1:0x%p; buf2:0x%p\n",sport->uart_dma_tmp_buf0,sport->uart_dma_tmp_buf1,sport->uart_dma_tmp_buf2);
printk("phy0:0x%x; phy1:0x%x; phy2:0x%x\n",sport->uart_dma_tmp_phy0,sport->uart_dma_tmp_phy1,sport->uart_dma_tmp_phy2);
}
void dump_uart_info(void)
{
unsigned long flags;
struct wmt_port * p_wmt_port = &wmt_ports[1];
uart_dump_reg(p_wmt_port);
printk("sport1->port.icount.rx0:0x%x,uart_tx_dma_phy0_org:0x%x\n",p_wmt_port->port.icount.rx,p_wmt_port->uart_tx_dma_phy0_org);
print_dma_position(p_wmt_port);
//spin_lock_irqsave(&(p_wmt_port->port.lock), flags);
wmt_rx_chars(p_wmt_port,URISR_RXFAF | URISR_RXFF);
//spin_unlock_irqrestore(&(p_wmt_port->port.lock), flags);
print_dma_position(p_wmt_port);
printk("sport1->port.icount.rx1:0x%x,uart_tx_dma_phy0_org:0x%x\n",p_wmt_port->port.icount.rx,p_wmt_port->uart_tx_dma_phy0_org);
printk("uart rxxx dma channel register:\n");
wmt_dump_dma_regs(p_wmt_port->rx_dmach);
printk("uart tttx dma channel register:\n");
wmt_dump_dma_regs(p_wmt_port->tx_dmach);
printk("buf pointer position\n");
print_dma_buf_pointer(p_wmt_port);
printk("#######################################\n");
dump_rx_dma_buf(p_wmt_port);
#ifdef UART_DEBUG
printk("##########################################\n");
print_dma_count_cpu_buf_pos(p_wmt_port);
#endif
printk("#############debug dma tx failed begin#############\n");
printk("sport->port.icount.tx:0x%x,sport->uart_tx_count:0x%x\n",p_wmt_port->port.icount.tx,
p_wmt_port->uart_tx_count);
printk("dma_tx_cnt:0x%x\n",p_wmt_port->dma_tx_cnt);
printk("uart_tx_dma_flag:0x%x\n",p_wmt_port->uart_tx_dma_flag);
printk("uart_tx_stopped:%d\n",uart_tx_stopped(&p_wmt_port->port));
if(uart_tx_stopped(&p_wmt_port->port))
{
printk("stopped:%d\n",(&p_wmt_port->port)->state->port.tty->stopped);
printk("hw_stopped:%d\n",(&p_wmt_port->port)->state->port.tty->hw_stopped);
}
printk("#############debug dma tx failed end#############\n");
}
EXPORT_SYMBOL(dump_uart_info);
#endif
static int wmt_serial_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct resource *res = pdev->resource;
int i;
for (i = 0; i < pdev->num_resources; i++, res++)
if (res->flags & IORESOURCE_MEM)
break;
if (i < pdev->num_resources) {
for (i = 0; i < NR_PORTS; i++) {
if (wmt_ports[i].port.mapbase != res->start)
continue;
wmt_ports[i].port.dev = dev;
uart_add_one_port(&wmt_reg, &wmt_ports[i].port);
dev_set_drvdata(dev, &wmt_ports[i]);
if (i >= 1) {
wmt_ports[i].uart_rx_dma_buf0_org =
dma_alloc_coherent(NULL,
UART_BUFFER_SIZE,
&wmt_ports[i].uart_rx_dma_phy0_org,
GFP_KERNEL);
wmt_ports[i].uart_rx_dma_buf1_org =
dma_alloc_coherent(NULL,
UART_BUFFER_SIZE,
&wmt_ports[i].uart_rx_dma_phy1_org,
GFP_KERNEL);
wmt_ports[i].uart_rx_dma_buf2_org =
dma_alloc_coherent(NULL,
UART_BUFFER_SIZE,
&wmt_ports[i].uart_rx_dma_phy2_org,
GFP_KERNEL);
wmt_ports[i].uart_tx_dma_buf0_org =
dma_alloc_coherent(NULL,
UART_BUFFER_SIZE,
&wmt_ports[i].uart_tx_dma_phy0_org,
GFP_KERNEL);
}
break;
}
}
return 0;
}
static int wmt_serial_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct wmt_port *sport = dev_get_drvdata(dev);
dev_set_drvdata(dev, NULL);
if (sport)
uart_remove_one_port(&wmt_reg, &sport->port);
return 0;
}
static struct platform_driver wmt_serial_driver = {
.driver.name = "uart",
.probe = wmt_serial_probe,
.remove = wmt_serial_remove,
.suspend = wmt_serial_suspend,
.resume = wmt_serial_resume,
};
static int __init wmt_serial_init(void)
{
int ret;
wmt_init_ports();
ret = uart_register_driver(&wmt_reg);
if (ret == 0) {
ret = platform_driver_register(&wmt_serial_driver);
if (ret)
uart_unregister_driver(&wmt_reg);
}
#ifndef CONFIG_SKIP_DRIVER_MSG
printk(KERN_INFO "WMT Serial driver initialized: %s\n",
(ret == 0) ? "ok" : "failed");
#endif
return ret;
}
static void __exit wmt_serial_exit(void)
{
platform_driver_unregister(&wmt_serial_driver);
uart_unregister_driver(&wmt_reg);
}
module_init(wmt_serial_init);
module_exit(wmt_serial_exit);
MODULE_AUTHOR("WonderMedia Technologies, Inc.");
MODULE_DESCRIPTION("WMT [generic serial port] driver");
MODULE_LICENSE("GPL");