/*++ linux/drivers/mtd/nand/wmt_nand.c Copyright (c) 2008 WonderMedia Technologies, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . WonderMedia Technologies, Inc. 10F, 529, Chung-Cheng Road, Hsin-Tien, Taipei 231, R.O.C. --*/ //#include #include /*#include */ #include #include #include #include #include /*#include */ #include #include #include #include /*#include */ #include #include #include /*#include */ #include #include #include //Lch #include #include #include #include #include #include #include #include #include "wmt_nand.h" #ifndef memzero #define memzero(s, n) memset ((s), 0, (n)) #endif //#define RETRY_DEBUG #define WMT_HW_RDMZ //#ifdef WMT_SW_RDMZ unsigned int rdmz[BYTE_SEED]= { 0xC5F7B49E, 0x85AD42B6, 0x1888A48B, 0xFBA90A42, 0xE20E7129, 0x37E8086E, 0x6F1C1918, 0x31510E20, 0x382771CB, 0x6107F49D, 0x901B6D0B, 0x3CD489E1, 0xA9B9CE07, 0x6B41AC61, 0x749F181D, 0xA7DDA658, 0x405276C0, 0xB67EFB43, 0xC5EE35A6, 0xF8406534, 0x73D8093A, 0xD98028A3, 0x084CE1AF, 0xB4744210, 0x951E02A0, 0xF657482D, 0x6C64F9D0, 0x68DB8651, 0xD1E64A45, 0x3A0FCB39, 0x9C9BB663, 0x05322DAE, 0xA4F40077, 0x801BA102, 0xB73BE0DD, 0xA2E34B6A, 0x5A50E576, 0x83CD0C99, 0x63C1440B, 0x2F82661D, 0x6846C973, 0xA74C29E6, 0x880E86A2, 0xB1D7E000, 0xF9B6F2B5, 0x71E5F26C, 0xE707DE1E, 0x439D5A63, 0x1F697817, 0x23DFB560, 0xE87F6BD0, 0xBD1BBCC3, 0xB1D3A074, 0x6C1B7C0A, 0xE2823FDB, 0x17F45131, 0x9082625D, 0xDFD364FD, 0x88DF4E2B, 0xB6FE752D, 0x5B04FF38, 0xB27648A9, 0x8C4EF297, 0x1C595F00, 0x9E7B4520, 0x826ADDFF, 0xF83FE0EE, 0xF981B0B0, 0x1F9233D7, 0xA2C148CB, 0xF73C908E, 0x18F36125, 0xE45D3D77, 0xB77BA7EA, 0x6D962E25, 0xFF4BF3B8, 0x7C06714F, 0x812DFFDA, 0xE499B45A, 0x73498684, 0x11DCD8C1, 0x0FE5FAEC, 0x882C8503, 0x1CBB95F8, 0x62889F09, 0xF6798B10, 0x7FFE1FE9, 0x464DBD35, 0x476EA249, 0xD7D7428D, 0xD885740A, 0xA034FA2C, 0xB37FD49C, 0x9AC07AD5, 0xAEFA9F54, 0x80B1AC25, 0xAFE642C5, 0x55249024, 0xC3BD79F8, 0x78D3CAB0, 0x71523E07, 0x179AD53B, 0x4C6DE12B, 0x545E4957, 0xE19CDBF1, 0xB9CA4748, 0xD401EF16, 0x0C7FD0DC, 0x2D55D75B, 0x8169F899, 0xBE415FAA, 0x45355DFD, 0x1EE42A38, 0x3E167903, 0x838D4BAE, 0xACB42144, 0x8A9970D3, 0x978DB4A5, 0x45A09237, 0x431554E5, 0xAAD8AFF7, 0x4F260392, 0xF60E8E22, 0xDEFCBB1D, 0xA6903D2E, 0x0C041572, 0x32A1E06E, 0xD41C2E5A, 0xE43F79E1, 0xD562B75D, 0x53B35557, 0x871CF712, 0x06130B69, 0x4FE6CACB, 0xA79121F3, 0x31D1804E, 0xA6CDBB55, 0x2B31D900, 0x6F8D96A6, 0xF90DFE42, 0x3F8E6A88, 0x5D5F338E, 0x19BEFA53, 0xA80B5EC5, 0x33A4BCC7, 0x7C6435D9, 0xE334EF6D, 0xDABCCF28, 0x0B1E822E, 0x6BC9A2E7, 0xC12ECFFD, 0xCB2410AA, 0x5E239332, 0xD599FC9D, 0xD2ADA8FC, 0x985F0C4C, 0xA3FBD68F, 0x1A6857C8, 0x7CF1FA13, 0xBEC591B0, 0x4E7219DC, 0xC7B5CA12, 0x31730D81, 0x954B0433, 0xFA399921, 0x17871477, 0xA42D4816, 0xAC692951, 0x3346763F, 0x8097EFF0, 0x9727B982, 0x5D7D302F, 0xB4D28FAB, 0x33353379, 0xB438C5BB, 0xE49DF42E, 0xE6E4083B, 0x82BB1576, 0xFF1675C3, 0x5B33BD3D, 0xDC018912, 0xC9886442, 0xA8F895ED, 0x99E15C12, 0x45E855E8, 0xA73B2CD4, 0x290C2256, 0x510A601B, 0xB2DC458E, 0x9493508F, 0xEB9E844E, 0x0796D9AE, 0x79741BD6, 0xEAAC9AE2, 0xC1990396, 0x3BB91B8F, 0x51D3287A, 0x9EAECDDD, 0x10EEC66D, 0xC9EA20D4, 0xCAE1855A, 0xA7C42760, 0x3DBF5142, 0xDD2E56F2, 0xE7C71747, 0x1202F5B2, 0xF0444344, 0x2382331B, 0xCF4AA7A2, 0xE037CA0B, 0x9CC2706C, 0xB7AA6F63, 0x6ABFBB08, 0x5DF9FE35, 0xBF95CB8A, 0xEA64D353, 0xBB5DB139, 0xF25BBBB3, 0xB069B05E, 0x1FA571D2, 0xCCB68970, 0xB2FA065B, 0xAC52ABC8, 0xE3C72445, 0x70F92FFD, 0x3292E21F, 0x2FC6615E, 0x329E2283, 0x9130F29F, 0x8736745B, 0x802463EF, 0xF2173C18, 0xC1EA46D0, 0x0F1631C4, 0x226965D6, 0x2537F5C9, 0x26875CB0, 0x05C9666E, 0x25EAFDDC, 0x9F585A5C, 0x12D33D3B, 0xF76DD669, 0x81303E96, 0x0CD91D67, 0x8B7EE682, 0xC306750F, 0x36B85254, 0xCB0AD397, 0x4DB9750B, 0xFB0FC7F9, 0x442540F0, 0x758785F8, 0xE7E514E6, 0xBF6E804A, 0x6B7A2EF8, 0xA41E4A67, 0x57B36655, 0xE5E72D5D, 0xC4C5AA32, 0x43A2988E, 0x5A45A4D2, 0x40D6B8DA, 0xBD39BF62, 0x1CBFD58C, 0xF72511B6, 0x651E46A7, 0x8F0D90C6, 0x9552850B, 0x87D4BEA3, 0x7CD7B9C6, 0x86046AF7, 0x462BB9D7, 0xB0DA3C41, 0x7A95F448, 0x5021FF8F, 0x093EB834, 0xBD0EFD67, 0x72C81437, 0xB2E38763, 0xD1BF8C4A, 0x889789F4, 0x52D00D1C, 0xD8D07299, 0xAC5A2B20, 0xC89C393B, 0x5636B492, 0xD375FC40, 0x89F81123, 0xB3EA1B56, 0xC7310408, 0x3A3449A0, 0x4C1AE419, 0xF55CEDA3, 0x01415BEA, 0xF2A0F073, 0x31774DF5, 0x00E68A8C, 0x695E5496, 0xE7749B58, 0x77327028, 0x6CD335BB, 0x98468D74, 0xDE16F10D, 0x7138FA79, 0x5ED8D8F2, 0x54870136, 0xCDEE53A2, 0x3DB7D1AA, 0xF6754B8C, 0xC1088C28, 0xF3E5EBED, 0x567A3339, 0xA2F60ACE, 0x994B5135, 0x5D35F7F0, 0x50FCF79A, 0xB0E1BED8, 0xAA14A632, 0xA04F3F82, 0xAC8BE3A9, 0xCFB5AC16, 0xF484B91F, 0x10E64685, 0xE2B13DAA, 0xEC2E1E35, 0x4623393F, 0x9B81213F, 0x5C5A6F27, 0xB1C6E1D0, 0xAF00C849, 0x3C7AC4B2, 0x24C9E2A0, 0x0FE1BA98, 0x1D810BBC, 0x8FDC584F, 0x927B1026, 0x2566B32E, 0xBF440303, 0xED4D467E, 0x19EFBCB4, 0x31C80176, 0xDB209CD7, 0x406174B1, 0x4DA4B447, 0x134F6EC4, 0xBC1220F6, 0xA75D2836, 0xDEB8BC5E, 0xFC48D6DE, 0x3A78CE0B, 0x3D991297, 0xE5EFADB5, 0xEF9EB74C, 0x656D03E1, 0xBBA2BA8D, 0xE6E8C8A7, 0x3C4D86B7, 0x4ABE231B, 0x4A272C4D, 0xA920C151, 0x8846417D, 0x55F99831, 0x7A627F14, 0x6FC991E5, 0xA3D515B2, 0x09F2B1F1, 0x5267C177, 0x284D79BC, 0xA3AA9068, 0x83AB087B, 0x9475DA03, 0x82C0D0D8, 0xE0E242F6, 0x0E466BFE, 0x867FAF59, 0x59DF8EE2, 0xE5AFEA82, 0x20EBD203, 0xC076152F, 0x4469C75B, 0x04047376, 0xF75654F0, 0x51B16CEC, 0xFCB7DD6A, 0x2ECBBD1F, 0xB1BD247E, 0xB0F4FF7C, 0x690F1271, 0x7EB7C4EB, 0x9FB65038, 0x50D674D3, 0x36D6D65E, 0x17E550E1, 0xC63458A1, 0x924C5223, 0x4B117295, 0xFA8295D6, 0x59EC8C93, 0x1E75A586, 0xF64A8961, 0x842450ED, 0x90ECE657, 0x033CE78B, 0x03526381, 0xDFBDE0F7, 0x5430CD5D, 0x3D735887, 0x32476AE2, 0xBD427ACC, 0x034BE2B9, 0xA250C775, 0x3F6060EC, 0x1F5A7A66, 0xD805FA64, 0x3EDE30B2, 0xF949F901, 0x65568178, 0x6B23E8F7, 0x168608AA, 0x99F8DD2A, 0x3805726A, 0xCC6B8165, 0x0B2500B7, 0xBB48F09D, 0x31400FF0, 0x6E914B37, 0x2C98C243, 0x53D551B5, 0x70A8691A, 0xAB51BDAC, 0xC742414E, 0x0E9B63EB, 0x3FA0A9B5, 0x4EC5D5B7, 0x3728C137, 0x3E83B6C9, 0xDE7C3573, 0x387AF7B0, 0x463238EF, 0xCD371BC3, 0x11C559F9, 0x7208DD6E, 0xE37C28B2, 0x3E92B719, 0x88CA0F8F, 0x75E5C16E, 0x85FC0451, 0x814BFB38, 0x132D2A52, 0xDE0B3041, 0x99785344, 0xA6EFB8F4, 0x865DACF8, 0xF4B3FB1A, 0x7E91873E, 0xA777AB7F, 0x588FD4D8, 0x41B9200D, 0x5C03A928, 0x035EA31D, 0x614B7336, 0xE1989B85, 0x2C67C9F7, 0x476622A1, 0xFC8C5FF3, 0xFE4AEF65, 0x41D3E473, 0x1541A4E1, 0x1BB44300, 0xF8FB69C3, 0x3DB391DE, 0x63D8C533, 0x526F419F, 0x031664C2, 0x85650B07, 0x624C1624, 0x324BAA7E, 0x03B4E90D, 0xB6E3B461, 0xB3445605, 0x4A4128AF, 0x5E945F59, 0x2504F7B8, 0xDD5D13B4, 0xD3683D0C, 0x61B8B81E, 0x4BDD7B50, 0x15EBA9C6, 0x0369E118, 0x0F3CB28D, 0xA45E0D50, 0x98C6031A, 0x40FC3B93, 0x3B0ED7E4, 0xA14E235F, 0x915E7695, 0x5BD9F72D, 0x0BA94E45, 0x9B54A9C2, 0xCEDE74B5, 0x801321EA, 0x9C60FDA3, 0x842CD005, 0xBBB7FB29, 0x25F37CE4, 0xE2B57DDE, 0x7983908A, 0xD544F488, 0x6B72AE10, 0x8F455719, 0x717CFD3A, 0x04003302, 0x62FBDA4F, 0xC2D6A15B, 0x0C445245, 0xFDD48521, 0x71073894, 0x1BF40437, 0x378E0C8C, 0x98A88710, 0x9C13B8E5, 0xB083FA4E, 0xC80DB685, 0x9E6A44F0, 0xD4DCE703, 0xB5A0D630, 0x3A4F8C0E, 0x53EED32C, 0xA0293B60, 0x5B3F7DA1, 0x62F71AD3, 0x7C20329A, 0xB9EC049D, 0xECC01451, 0x042670D7, 0x5A3A2108, 0xCA8F0150, 0x7B2BA416, 0xB6327CE8, 0xB46DC328, 0xE8F32522, 0x9D07E59C, 0x4E4DDB31, 0x829916D7, 0x527A003B, 0xC00DD081, 0x5B9DF06E, 0x5171A5B5, 0xAD2872BB, 0xC1E6864C, 0xB1E0A205, 0x97C1330E, 0x342364B9, 0x53A614F3, 0x44074351, 0xD8EBF000, 0x7CDB795A, 0x38F2F936, 0xF383EF0F, 0xA1CEAD31, 0x0FB4BC0B, 0x11EFDAB0, 0xF43FB5E8, 0x5E8DDE61, 0x58E9D03A, 0xB60DBE05, 0xF1411FED, 0x8BFA2898, 0xC841312E, 0xEFE9B27E, 0xC46FA715, 0x5B7F3A96, 0xAD827F9C, 0xD93B2454, 0x4627794B, 0x0E2CAF80, 0xCF3DA290, 0x41356EFF, 0x7C1FF077, 0xFCC0D858, 0x8FC919EB, 0x5160A465, 0xFB9E4847, 0x8C79B092, 0x722E9EBB, 0xDBBDD3F5, 0x36CB1712, 0xFFA5F9DC, 0x3E0338A7, 0x4096FFED, 0x724CDA2D, 0xB9A4C342, 0x08EE6C60, 0x87F2FD76, 0x44164281, 0x8E5DCAFC, 0x31444F84, 0xFB3CC588, 0xBFFF0FF4, 0xA326DE9A, 0xA3B75124, 0x6BEBA146, 0x6C42BA05, 0x501A7D16, 0xD9BFEA4E, 0x4D603D6A, 0xD77D4FAA, 0xC058D612, 0x57F32162, 0x2A924812, 0x61DEBCFC, 0xBC69E558, 0xB8A91F03, 0x8BCD6A9D, 0xA636F095, 0xAA2F24AB, 0x70CE6DF8, 0x5CE523A4, 0x6A00F78B, 0x863FE86E, 0x96AAEBAD, 0x40B4FC4C, 0xDF20AFD5, 0x229AAEFE, 0x8F72151C, 0x1F0B3C81, 0x41C6A5D7, 0xD65A10A2, 0xC54CB869, 0xCBC6DA52, 0xA2D0491B, 0xA18AAA72, 0x556C57FB, 0x279301C9, 0xFB074711, 0x6F7E5D8E, 0x53481E97, 0x06020AB9, 0x1950F037, 0xEA0E172D, 0xF21FBCF0, 0xEAB15BAE, 0x29D9AAAB, 0xC38E7B89, 0x830985B4, 0xA7F36565, 0x53C890F9, 0x98E8C027, 0x5366DDAA, 0x1598EC80, 0x37C6CB53, 0x7C86FF21, 0x1FC73544, 0xAEAF99C7, 0x8CDF7D29, 0xD405AF62, 0x99D25E63, 0xBE321AEC, 0x719A77B6, 0x6D5E6794, 0x858F4117, 0xB5E4D173, 0x609767FE, 0x65920855, 0xAF11C999, 0x6ACCFE4E, 0x6956D47E, 0xCC2F8626, 0x51FDEB47, 0x8D342BE4, 0x3E78FD09, 0x5F62C8D8, 0x27390CEE, 0xE3DAE509, 0x98B986C0, 0xCAA58219, 0xFD1CCC90, 0x0BC38A3B, 0xD216A40B, 0xD63494A8, 0x19A33B1F, 0x404BF7F8, 0xCB93DCC1, 0xAEBE9817, 0xDA6947D5, 0x999A99BC, 0x5A1C62DD, 0xF24EFA17, 0x7372041D, 0xC15D8ABB, 0xFF8B3AE1, 0x2D99DE9E, 0x6E00C489, 0xE4C43221, 0x547C4AF6, 0x4CF0AE09, 0x22F42AF4, 0x539D966A, 0x9486112B, 0x2885300D, 0xD96E22C7, 0x4A49A847, 0x75CF4227, 0x03CB6CD7, 0x3CBA0DEB, 0x75564D71, 0xE0CC81CB, 0x1DDC8DC7, 0xA8E9943D, 0xCF5766EE, 0x08776336, 0x64F5106A, 0x6570C2AD, 0x53E213B0, 0x1EDFA8A1, 0xEE972B79, 0x73E38BA3, 0x09017AD9, 0xF82221A2, 0x11C1198D, 0xE7A553D1, 0x701BE505, 0xCE613836, 0x5BD537B1, 0xB55FDD84, 0x2EFCFF1A, 0xDFCAE5C5, 0xF53269A9, 0xDDAED89C, 0x792DDDD9, 0x5834D82F, 0x0FD2B8E9, 0xE65B44B8, 0x597D032D, 0xD62955E4, 0xF1E39222, 0xB87C97FE, 0x1949710F, 0x97E330AF, 0x994F1141, 0xC898794F, 0xC39B3A2D, 0x401231F7, 0x790B9E0C, 0x60F52368, 0x078B18E2, 0x9134B2EB, 0x129BFAE4, 0x1343AE58, 0x02E4B337, 0x12F57EEE, 0xCFAC2D2E, 0x89699E9D, 0x7BB6EB34, 0xC0981F4B, 0x066C8EB3, 0xC5BF7341, 0x61833A87, 0x9B5C292A, 0xE58569CB, 0xA6DCBA85, 0x7D87E3FC, 0x2212A078, 0x3AC3C2FC, 0x73F28A73, 0x5FB74025, 0xB5BD177C, 0xD20F2533, 0xABD9B32A, 0x72F396AE, 0x6262D519, 0x21D14C47, 0x2D22D269, 0x206B5C6D, 0x5E9CDFB1, 0x0E5FEAC6, 0xFB9288DB, 0x328F2353, 0xC786C863, 0xCAA94285, 0x43EA5F51, 0xBE6BDCE3, 0xC302357B, 0xA315DCEB, 0x586D1E20, 0xBD4AFA24, 0x2810FFC7, 0x849F5C1A, 0xDE877EB3, 0xB9640A1B, 0x5971C3B1, 0x68DFC625, 0x444BC4FA, 0xA968068E, 0x6C68394C, 0xD62D1590, 0x644E1C9D, 0x2B1B5A49, 0xE9BAFE20, 0x44FC0891, 0x59F50DAB, 0x63988204, 0x9D1A24D0, 0xA60D720C, 0x7AAE76D1, 0x80A0ADF5, 0xF9507839, 0x18BBA6FA, 0x00734546, 0x34AF2A4B, 0x73BA4DAC, 0xBB993814, 0x36699ADD, 0xCC2346BA, 0xEF0B7886, 0x389C7D3C, 0x2F6C6C79, 0x2A43809B, 0x66F729D1, 0x1EDBE8D5, 0x7B3AA5C6, 0xE0844614, 0xF9F2F5F6, 0x2B3D199C, 0xD17B0567, 0x4CA5A89A, 0x2E9AFBF8, 0x287E7BCD, 0x5870DF6C, 0x550A5319, 0xD0279FC1, 0x5645F1D4, 0xE7DAD60B, 0xFA425C8F, 0x08732342, 0xF1589ED5, 0xF6170F1A, 0xA3119C9F, 0xCDC0909F, 0x2E2D3793, 0xD8E370E8, 0x57806424, 0x1E3D6259, 0x1264F150, 0x07F0DD4C, 0x8EC085DE, 0x47EE2C27, 0x493D8813, 0x92B35997, 0x5FA20181, 0x76A6A33F, 0x0CF7DE5A, 0x98E400BB, 0xED904E6B, 0xA030BA58, 0x26D25A23, 0x09A7B762, 0x5E09107B, 0x53AE941B, 0x6F5C5E2F, 0xFE246B6F, 0x9D3C6705, 0x9ECC894B, 0x72F7D6DA, 0xF7CF5BA6, 0xB2B681F0, 0xDDD15D46, 0xF3746453, 0x9E26C35B, 0xA55F118D, 0xA5139626, 0xD49060A8, 0xC42320BE, 0x2AFCCC18, 0xBD313F8A, 0x37E4C8F2, 0xD1EA8AD9, 0x84F958F8, 0x2933E0BB, 0x1426BCDE, 0xD1D54834, 0xC1D5843D, 0x4A3AED01, 0x4160686C, 0x7071217B, 0x872335FF, 0x433FD7AC, 0x2CEFC771, 0xF2D7F541, 0x9075E901, 0xE03B0A97, 0x2234E3AD, 0x020239BB, 0x7BAB2A78, 0x28D8B676, 0xFE5BEEB5, 0x1765DE8F, 0x58DE923F, 0xD87A7FBE, 0xB4878938, 0x3F5BE275, 0xCFDB281C, 0x286B3A69, 0x9B6B6B2F, 0x8BF2A870, 0xE31A2C50, 0xC9262911, 0x2588B94A, 0xFD414AEB, 0x2CF64649, 0x8F3AD2C3, 0xFB2544B0, 0xC2122876, 0xC876732B, 0x819E73C5, 0x81A931C0, 0xEFDEF07B, 0xAA1866AE, 0x1EB9AC43, 0x1923B571, 0xDEA13D66, 0x81A5F15C, 0x512863BA, 0x1FB03076, 0x0FAD3D33, 0x6C02FD32, 0x9F6F1859, 0x7CA4FC80, 0xB2AB40BC, 0x3591F47B, 0x0B430455, 0x4CFC6E95, 0x9C02B935, 0xE635C0B2, 0x8592805B, 0x5DA4784E, 0x98A007F8, 0xB748A59B, 0x964C6121, 0x29EAA8DA, 0x3854348D, 0x55A8DED6, 0xE3A120A7, 0x874DB1F5, 0x9FD054DA, 0xA762EADB, 0x9B94609B, 0x9F41DB64, 0x6F3E1AB9, 0x9C3D7BD8, 0xA3191C77, 0xE69B8DE1, 0x08E2ACFC, 0x39046EB7, 0xF1BE1459, 0x9F495B8C, 0x446507C7, 0xBAF2E0B7, 0x42FE0228, 0x40A5FD9C, 0x89969529, 0x6F059820, 0x4CBC29A2, 0x5377DC7A, 0x432ED67C, 0x7A59FD8D, 0xBF48C39F, 0x53BBD5BF, 0xAC47EA6C, 0x20DC9006, 0xAE01D494, 0x01AF518E, 0xB0A5B99B, 0xF0CC4DC2, 0x9633E4FB, 0xA3B31150, 0xFE462FF9, 0xFF2577B2, 0xA0E9F239, 0x0AA0D270, 0x8DDA2180, 0x7C7DB4E1, 0x9ED9C8EF, 0xB1EC6299, 0x2937A0CF, 0x818B3261, 0x42B28583, 0x31260B12, 0x9925D53F, 0x81DA7486, 0xDB71DA30, 0xD9A22B02, 0xA5209457, 0x2F4A2FAC, 0x12827BDC, 0x6EAE89DA, 0x69B41E86, 0x30DC5C0F, 0x25EEBDA8, 0x0AF5D4E3, 0x81B4F08C, 0x079E5946, 0x522F06A8, 0xCC63018D, 0x207E1DC9, 0x9D876BF2, 0xD0A711AF, 0xC8AF3B4A, 0xADECFB96, 0x05D4A722, 0xCDAA54E1, 0x676F3A5A, 0xC00990F5, 0xCE307ED1, 0xC2166802, 0x5DDBFD94, 0x12F9BE72, 0x715ABEEF, 0x3CC1C845, 0x6AA27A44, 0xB5B95708, 0x47A2AB8C, 0x38BE7E9D, 0x82001981, 0xB17DED27, 0xE16B50AD, 0x86222922, 0x7EEA4290, 0xB8839C4A, 0x0DFA021B, 0x1BC70646, 0xCC544388, 0x4E09DC72, 0xD841FD27, 0x6406DB42, 0xCF352278, 0x6A6E7381, 0x5AD06B18, 0x1D27C607, 0x29F76996, 0xD0149DB0, 0xAD9FBED0, 0x317B8D69, 0xBE10194D, 0xDCF6024E, 0xF6600A28, 0x0213386B, 0x2D1D1084, 0x654780A8, 0x3D95D20B, 0x5B193E74, 0x5A36E194, 0x74799291, 0xCE83F2CE, 0xA726ED98, 0xC14C8B6B, 0xA93D001D, 0x6006E840, 0xADCEF837, 0xA8B8D2DA, 0x5694395D, 0xE0F34326, 0x58F05102, 0xCBE09987, 0x9A11B25C, 0xA9D30A79, 0x2203A1A8, 0x6C75F800, 0x3E6DBCAD, 0x9C797C9B, 0xF9C1F787, 0xD0E75698, 0x07DA5E05, 0x08F7ED58, 0xFA1FDAF4, 0x2F46EF30, 0xAC74E81D, 0xDB06DF02, 0x78A08FF6, 0x45FD144C, 0x64209897, 0xF7F4D93F, 0x6237D38A, 0x2DBF9D4B, 0x56C13FCE, 0xEC9D922A, 0x2313BCA5, 0x071657C0, 0xE79ED148, 0xA09AB77F, 0x3E0FF83B, 0xFE606C2C, 0xC7E48CF5, 0xA8B05232, 0x7DCF2423, 0xC63CD849, 0xB9174F5D, 0x6DDEE9FA, 0x1B658B89, 0xFFD2FCEE, 0x9F019C53, 0xA04B7FF6, 0x39266D16, 0x5CD261A1, 0x04773630, 0xC3F97EBB, 0x220B2140, 0x472EE57E, 0x18A227C2, 0x7D9E62C4, 0x5FFF87FA, 0x51936F4D, 0x51DBA892, 0xB5F5D0A3, 0x36215D02, 0x280D3E8B, 0x6CDFF527, 0x26B01EB5, 0x6BBEA7D5, 0x602C6B09, 0x2BF990B1, 0x15492409, 0x30EF5E7E, 0xDE34F2AC, 0xDC548F81, 0xC5E6B54E, 0xD31B784A, 0x55179255, 0x386736FC, 0xAE7291D2, 0x35007BC5, 0xC31FF437, 0x4B5575D6, 0xA05A7E26, 0x6F9057EA, 0x114D577F, 0xC7B90A8E, 0x8F859E40, 0x20E352EB, 0xEB2D0851, 0x62A65C34, 0xE5E36D29, 0x5168248D, 0xD0C55539, 0xAAB62BFD, 0x93C980E4, 0x7D83A388, 0xB7BF2EC7, 0xA9A40F4B, 0x8301055C, 0x8CA8781B, 0x75070B96, 0x790FDE78, 0xF558ADD7, 0x94ECD555, 0x61C73DC4, 0xC184C2DA, 0xD3F9B2B2, 0xA9E4487C, 0x4C746013, 0x29B36ED5, 0x8ACC7640, 0x9BE365A9, 0x3E437F90, 0x8FE39AA2, 0xD757CCE3, 0x466FBE94, 0xEA02D7B1, 0x4CE92F31, 0x5F190D76, 0x38CD3BDB, 0xB6AF33CA, 0xC2C7A08B, 0x5AF268B9, 0xB04BB3FF, 0xB2C9042A, 0x5788E4CC, 0x35667F27, 0x34AB6A3F, 0xE617C313, 0x28FEF5A3, 0xC69A15F2, 0x1F3C7E84, 0x2FB1646C, 0x939C8677, 0x71ED7284, 0xCC5CC360, 0x6552C10C, 0xFE8E6648, 0x85E1C51D, 0x690B5205, 0xEB1A4A54, 0x0CD19D8F, 0xA025FBFC, 0xE5C9EE60, 0xD75F4C0B, 0x6D34A3EA, 0xCCCD4CDE, 0xAD0E316E, 0xF9277D0B, 0xB9B9020E, 0xE0AEC55D, 0x7FC59D70, 0x96CCEF4F, 0xB7006244, 0x72621910, 0xAA3E257B, 0x26785704, 0x117A157A, 0xA9CECB35, 0xCA430895, 0x94429806, 0xECB71163, 0xA524D423, 0xBAE7A113, 0x81E5B66B, 0x9E5D06F5, 0xBAAB26B8, 0xF06640E5, 0x8EEE46E3, 0x5474CA1E, 0x67ABB377, 0x043BB19B, 0xB27A8835, 0x32B86156, 0xA9F109D8, 0x8F6FD450, 0xF74B95BC, 0xB9F1C5D1, 0x0480BD6C, 0xFC1110D1, 0x88E08CC6, 0xF3D2A9E8, 0x380DF282, 0xE7309C1B, 0x2DEA9BD8, 0x5AAFEEC2, 0x977E7F8D, 0xEFE572E2, 0x7A9934D4, 0xEED76C4E, 0xBC96EEEC, 0xAC1A6C17, 0x07E95C74, 0xF32DA25C, 0x2CBE8196, 0x6B14AAF2, 0x78F1C911, 0xDC3E4BFF, 0x8CA4B887, 0xCBF19857, 0xCCA788A0, 0xE44C3CA7, 0xE1CD9D16, 0x200918FB, 0x3C85CF06, 0x307A91B4, 0x83C58C71, 0x489A5975, 0x094DFD72, 0x89A1D72C, 0x0172599B, 0x097ABF77, 0xE7D61697, 0x44B4CF4E, 0xBDDB759A, 0xE04C0FA5, 0x83364759, 0xE2DFB9A0, 0x30C19D43, 0xCDAE1495, 0xF2C2B4E5, 0x536E5D42, 0x3EC3F1FE, 0x1109503C, 0x9D61E17E, 0xB9F94539, 0x2FDBA012, 0xDADE8BBE, 0x69079299, 0x55ECD995, 0xB979CB57, 0xB1316A8C, 0x90E8A623, 0x96916934, 0x9035AE36, 0x2F4E6FD8, 0x872FF563, 0xFDC9446D, 0x994791A9, 0xE3C36431, 0xE554A142, 0xA1F52FA8, 0xDF35EE71, 0xE1811ABD, 0x518AEE75, 0x2C368F10, 0xDEA57D12, 0x14087FE3, 0xC24FAE0D, 0xEF43BF59, 0xDCB2050D, 0xACB8E1D8, 0x346FE312, 0x2225E27D, 0x54B40347, 0x36341CA6, 0xEB168AC8, 0xB2270E4E, 0x158DAD24, 0xF4DD7F10, 0xA27E0448, 0x2CFA86D5, 0x31CC4102, 0x4E8D1268, 0xD306B906, 0xBD573B68, 0xC05056FA, 0x7CA83C1C, 0x0C5DD37D, 0x8039A2A3, 0x1A579525, 0x39DD26D6, 0xDDCC9C0A, 0x1B34CD6E, 0x6611A35D, 0x7785BC43, 0x9C4E3E9E, 0x97B6363C, 0x9521C04D, 0xB37B94E8, 0x0F6DF46A, 0x3D9D52E3, 0x7042230A, 0x7CF97AFB, 0x959E8CCE, 0x68BD82B3, 0x2652D44D, 0x974D7DFC, 0x143F3DE6, 0xAC386FB6, 0xAA85298C, 0x6813CFE0, 0xAB22F8EA, 0xF3ED6B05, 0x7D212E47, 0x843991A1, 0x78AC4F6A, 0xFB0B878D, 0xD188CE4F, 0xE6E0484F, 0x17169BC9, 0x6C71B874, 0xABC03212, 0x0F1EB12C, 0x093278A8, 0x03F86EA6, 0xC76042EF, 0xA3F71613, 0xA49EC409, 0xC959ACCB, 0xAFD100C0, 0x3B53519F, 0x867BEF2D, 0xCC72005D, 0x76C82735, 0xD0185D2C, 0x13692D11, 0x84D3DBB1, 0xAF04883D, 0xA9D74A0D, 0xB7AE2F17, 0xFF1235B7, 0xCE9E3382, 0x4F6644A5, 0x397BEB6D, 0x7BE7ADD3, 0x595B40F8, 0xEEE8AEA3, 0xF9BA3229, 0xCF1361AD, 0x52AF88C6, 0x5289CB13, 0x6A483054, 0x6211905F, 0x157E660C, 0x5E989FC5, 0x9BF26479, 0x68F5456C, 0xC27CAC7C, 0x1499F05D, 0x0A135E6F, 0xE8EAA41A, 0xE0EAC21E, 0x251D7680, 0xA0B03436, 0xB83890BD, 0x43919AFF, 0xA19FEBD6, 0x9677E3B8, 0xF96BFAA0, 0xC83AF480, 0xF01D854B, 0x911A71D6, 0x01011CDD, 0x3DD5953C, 0x946C5B3B, 0xFF2DF75A, 0x8BB2EF47, 0x2C6F491F, 0x6C3D3FDF, 0xDA43C49C, 0x1FADF13A, 0xE7ED940E, 0x94359D34, 0x4DB5B597, 0x45F95438, 0xF18D1628, 0x64931488, 0x92C45CA5, 0xFEA0A575, 0x967B2324, 0x479D6961, 0x7D92A258, 0xE109143B, 0xE43B3995, 0x40CF39E2, 0xC0D498E0, 0x77EF783D, 0xD50C3357, 0x8F5CD621, 0x0C91DAB8, 0x6F509EB3, 0x40D2F8AE, 0x289431DD, 0x8FD8183B, 0x07D69E99, 0xB6017E99, 0x4FB78C2C, 0x3E527E40, 0xD955A05E, 0x9AC8FA3D, 0x85A1822A, 0xA67E374A, 0x4E015C9A, 0xF31AE059, 0x42C9402D, 0x2ED23C27, 0xCC5003FC, 0xDBA452CD, 0x4B263090, 0x94F5546D, 0x1C2A1A46, 0xAAD46F6B, 0xF1D09053, 0x43A6D8FA, 0xCFE82A6D, 0xD3B1756D, 0x4DCA304D, 0xCFA0EDB2, 0x379F0D5C, 0xCE1EBDEC, 0xD18C8E3B, 0x734DC6F0, 0x8471567E, 0x9C82375B, 0x78DF0A2C, 0xCFA4ADC6, 0xA23283E3, 0x5D79705B, 0x217F0114, 0xA052FECE, 0x44CB4A94, 0x3782CC10, 0x265E14D1, 0x29BBEE3D, 0xA1976B3E, 0xBD2CFEC6, 0xDFA461CF, 0x29DDEADF, 0x5623F536, 0x106E4803, 0x5700EA4A, 0x80D7A8C7, 0x5852DCCD, 0xF86626E1, 0x4B19F27D, 0xD1D988A8, 0x7F2317FC, 0xFF92BBD9, 0x5074F91C, 0x05506938, 0xC6ED10C0, 0xBE3EDA70, 0xCF6CE477, 0xD8F6314C, 0x949BD067, 0xC0C59930, 0x215942C1, 0x98930589, 0x4C92EA9F, 0x40ED3A43, 0x6DB8ED18, 0xECD11581, 0x52904A2B, 0x17A517D6, 0x09413DEE, 0x375744ED, 0xB4DA0F43, 0x186E2E07, 0x92F75ED4, 0x057AEA71, 0x40DA7846, 0x03CF2CA3, 0xA9178354, 0xE63180C6, 0x103F0EE4, 0xCEC3B5F9, 0x685388D7, 0x64579DA5, 0x56F67DCB, 0x82EA5391, 0x66D52A70, 0xB3B79D2D, 0xE004C87A, 0x67183F68, 0x610B3401, 0x2EEDFECA, 0x897CDF39, 0xB8AD5F77, 0x1E60E422, 0x35513D22, 0x5ADCAB84, 0xA3D155C6, 0x9C5F3F4E, 0xC1000CC0, 0xD8BEF693, 0x70B5A856, 0x43111491, 0x3F752148, 0xDC41CE25, 0x06FD010D, 0x0DE38323, 0x662A21C4, 0xA704EE39, 0x6C20FE93, 0x32036DA1, 0xE79A913C, 0x353739C0, 0xAD68358C, 0x0E93E303, 0x14FBB4CB, 0x680A4ED8, 0xD6CFDF68, 0x98BDC6B4, 0x5F080CA6, 0x6E7B0127, 0xFB300514, 0x01099C35, 0x168E8842, 0xB2A3C054, 0x1ECAE905, 0x2D8C9F3A, 0xAD1B70CA, 0x3A3CC948, 0x6741F967, 0xD39376CC, 0xE0A645B5, 0x549E800E, 0xB0037420, 0x56E77C1B, 0xD45C696D, 0x2B4A1CAE, 0x7079A193, 0xAC782881, 0x65F04CC3, 0xCD08D92E, 0x54E9853C, 0x1101D0D4, 0xB63AFC00, 0x9F36DE56, 0xCE3CBE4D, 0x7CE0FBC3, 0xE873AB4C, 0x03ED2F02, 0x047BF6AC, 0x7D0FED7A, 0x97A37798, 0x563A740E, 0x6D836F81, 0x3C5047FB, 0xA2FE8A26, 0xB2104C4B, 0x7BFA6C9F, 0xB11BE9C5, 0x16DFCEA5, 0x2B609FE7, 0xF64EC915, 0x1189DE52, 0x038B2BE0, 0xF3CF68A4, 0xD04D5BBF, 0x1F07FC1D, 0xFF303616, 0x63F2467A, 0xD4582919, 0xBEE79211, 0xE31E6C24, 0x5C8BA7AE, 0xB6EF74FD, 0x0DB2C5C4, 0xFFE97E77, 0x4F80CE29, 0x5025BFFB, 0x9C93368B, 0x2E6930D0, 0x823B9B18, 0x61FCBF5D, 0x110590A0, 0x239772BF, 0x0C5113E1, 0x3ECF3162, 0xAFFFC3FD, 0x28C9B7A6, 0xA8EDD449, 0x5AFAE851, 0x9B10AE81, 0x94069F45, 0xB66FFA93, 0x93580F5A, 0xB5DF53EA, 0xB0163584, 0x95FCC858, 0x0AA49204, 0x1877AF3F, 0xEF1A7956, 0x6E2A47C0, 0x62F35AA7, 0xE98DBC25, 0x2A8BC92A, 0x1C339B7E, 0xD73948E9, 0x9A803DE2, 0x618FFA1B, 0x25AABAEB, 0x502D3F13, 0xB7C82BF5, 0x08A6ABBF, 0x63DC8547, 0xC7C2CF20, 0x9071A975, 0x75968428, 0xB1532E1A, 0xF2F1B694, 0xA8B41246, 0xE862AA9C, 0x555B15FE, 0x49E4C072, 0xBEC1D1C4, 0xDBDF9763, 0x54D207A5, 0xC18082AE, 0x46543C0D, 0x3A8385CB, 0xBC87EF3C, 0xFAAC56EB, 0x4A766AAA, 0x30E39EE2, 0x60C2616D, 0x69FCD959, 0xD4F2243E, 0xA63A3009, 0x14D9B76A, 0xC5663B20, 0x4DF1B2D4, 0x1F21BFC8, 0xC7F1CD51, 0x6BABE671, 0xA337DF4A, 0xF5016BD8, 0x26749798, 0xAF8C86BB, 0x1C669DED, 0xDB5799E5, 0xE163D045, 0xAD79345C, 0x5825D9FF, 0x59648215, 0xABC47266, 0x9AB33F93, 0x9A55B51F, 0xF30BE189, 0x147F7AD1, 0x634D0AF9, 0x0F9E3F42, 0x97D8B236, 0x49CE433B, 0x38F6B942, 0x662E61B0, 0x32A96086, 0xFF473324, 0xC2F0E28E, 0x3485A902, 0xF58D252A, 0x0668CEC7, 0x5012FDFE, 0xF2E4F730, 0x6BAFA605, 0x369A51F5, 0x6666A66F, 0xD68718B7, 0x7C93BE85, 0xDCDC8107, 0x705762AE, 0xBFE2CEB8, 0x4B6677A7, 0x5B803122, 0xB9310C88, 0x551F12BD, 0x133C2B82, 0x88BD0ABD, 0xD4E7659A, 0x6521844A, 0xCA214C03, 0xF65B88B1, 0xD2926A11, 0xDD73D089, 0xC0F2DB35, 0x4F2E837A, 0xDD55935C, 0xF8332072, 0x47772371, 0xAA3A650F, 0xB3D5D9BB, 0x821DD8CD, 0x593D441A, 0x195C30AB, 0x54F884EC, 0x47B7EA28, 0xFBA5CADE, 0x5CF8E2E8, 0x82405EB6, 0x7E088868, 0x44704663, 0x79E954F4, 0x9C06F941, 0x73984E0D, 0x16F54DEC, 0xAD57F761, 0x4BBF3FC6, 0x77F2B971, 0x3D4C9A6A, 0x776BB627, 0xDE4B7776, 0x560D360B, 0x03F4AE3A, 0x7996D12E, 0x165F40CB, 0xB58A5579, 0xBC78E488, 0xEE1F25FF, 0xC6525C43, 0x65F8CC2B, 0xE653C450, 0x72261E53, 0xF0E6CE8B, 0x10048C7D, 0x1E42E783, 0x983D48DA, 0xC1E2C638, 0x244D2CBA, 0x04A6FEB9, 0xC4D0EB96, 0x80B92CCD, 0x84BD5FBB, 0x73EB0B4B, 0x225A67A7, 0xDEEDBACD, 0xF02607D2, 0x419B23AC, 0xF16FDCD0, 0x9860CEA1, 0xE6D70A4A, 0x79615A72, 0x29B72EA1, 0x1F61F8FF, 0x0884A81E, 0xCEB0F0BF, 0x5CFCA29C, 0x17EDD009, 0xED6F45DF, 0xB483C94C, 0xAAF66CCA, 0x5CBCE5AB, 0xD898B546, 0x48745311, 0x4B48B49A, 0x481AD71B, 0x97A737EC, 0xC397FAB1, 0xFEE4A236, 0xCCA3C8D4, 0x71E1B218, 0x72AA50A1, 0xD0FA97D4, 0xEF9AF738, 0xF0C08D5E, 0x28C5773A, 0x161B4788, 0xEF52BE89, 0x8A043FF1, 0xE127D706, 0xF7A1DFAC, 0x6E590286, 0x565C70EC, 0x9A37F189, 0x9112F13E, 0x2A5A01A3, 0x1B1A0E53, 0x758B4564, 0x59138727, 0x0AC6D692, 0x7A6EBF88, 0xD13F0224, 0x167D436A, 0x18E62081, 0x27468934, 0x69835C83, 0x5EAB9DB4, 0x60282B7D, 0xBE541E0E, 0x862EE9BE, 0xC01CD151, 0x0D2BCA92, 0x1CEE936B, 0x6EE64E05, 0x8D9A66B7, 0xB308D1AE, 0x3BC2DE21, 0x4E271F4F, 0xCBDB1B1E, 0x4A90E026, 0x59BDCA74, 0x87B6FA35, 0x1ECEA971, 0xB8211185, 0x3E7CBD7D, 0xCACF4667, 0xB45EC159, 0x13296A26, 0x4BA6BEFE, 0x0A1F9EF3, 0x561C37DB, 0x554294C6, 0x3409E7F0, 0xD5917C75, 0xF9F6B582, 0xBE909723, 0x421CC8D0, 0xBC5627B5, 0xFD85C3C6, 0xE8C46727, 0xF3702427, 0x0B8B4DE4, 0x3638DC3A, 0x55E01909, 0x078F5896, 0x04993C54, 0x81FC3753, 0xE3B02177, 0xD1FB8B09, 0xD24F6204, 0x64ACD665, 0xD7E88060, 0x9DA9A8CF, 0xC33DF796, 0xE639002E, 0x3B64139A, 0xE80C2E96, 0x89B49688, 0xC269EDD8, 0xD782441E, 0xD4EBA506, 0xDBD7178B, 0x7F891ADB, 0xE74F19C1, 0xA7B32252, 0x9CBDF5B6, 0x3DF3D6E9, 0xACADA07C, 0xF7745751, 0xFCDD1914, 0x6789B0D6, 0xA957C463, 0x2944E589, 0xB524182A, 0x3108C82F, 0x8ABF3306, 0xAF4C4FE2, 0x4DF9323C, 0x347AA2B6, 0xE13E563E, 0x8A4CF82E, 0x0509AF37, 0x7475520D, 0x7075610F, 0x128EBB40, 0xD0581A1B, 0xDC1C485E, 0x21C8CD7F, 0x50CFF5EB, 0x4B3BF1DC, 0x7CB5FD50, 0xE41D7A40, 0x780EC2A5, 0xC88D38EB, 0x00808E6E, 0x9EEACA9E, 0x4A362D9D, 0xFF96FBAD, 0xC5D977A3, 0x9637A48F, 0x361E9FEF, 0x6D21E24E, 0x0FD6F89D, 0x73F6CA07, 0xCA1ACE9A, 0x26DADACB, 0x22FCAA1C, 0x78C68B14, 0xB2498A44, 0xC9622E52, 0x7F5052BA, 0xCB3D9192, 0x23CEB4B0, 0xBEC9512C, 0xF0848A1D, 0x721D9CCA, 0x20679CF1, 0xE06A4C70, 0xBBF7BC1E, 0xEA8619AB, 0x47AE6B10, 0x8648ED5C, 0x37A84F59, 0xA0697C57, 0x944A18EE, 0xC7EC0C1D, 0x83EB4F4C, 0x5B00BF4C, 0x27DBC616, 0x1F293F20, 0xECAAD02F, 0x4D647D1E, 0x42D0C115, 0x533F1BA5, 0xA700AE4D, 0xF98D702C, 0xA164A016, 0x17691E13, 0xE62801FE, 0x6DD22966, 0xA5931848, 0x4A7AAA36, 0x8E150D23, 0xD56A37B5, 0x78E84829, 0xA1D36C7D, 0xE7F41536, 0xE9D8BAB6, 0x26E51826, 0x67D076D9, 0x1BCF86AE, 0xE70F5EF6, 0x68C6471D, 0x39A6E378, 0xC238AB3F, 0x4E411BAD, 0x3C6F8516, 0xE7D256E3, 0xD11941F1, 0x2EBCB82D, 0x10BF808A, 0x50297F67, 0x2265A54A, 0x9BC16608, 0x932F0A68, 0x14DDF71E, 0x50CBB59F, 0xDE967F63, 0xEFD230E7, 0x14EEF56F, 0xAB11FA9B, 0x08372401, 0xAB807525, 0xC06BD463, 0xAC296E66, 0xFC331370, 0x258CF93E, 0x68ECC454, 0xBF918BFE, 0x7FC95DEC, 0x283A7C8E, 0x02A8349C, 0x63768860, 0xDF1F6D38, 0x67B6723B, 0xEC7B18A6, 0x4A4DE833, 0xE062CC98, 0x90ACA160, 0xCC4982C4, 0xA649754F, 0x20769D21, 0xB6DC768C, 0xF6688AC0, 0x29482515, 0x0BD28BEB, 0x84A09EF7, 0x9BABA276, 0xDA6D07A1, 0x0C371703, 0xC97BAF6A, 0x02BD7538, 0xA06D3C23, 0x01E79651, 0x548BC1AA, 0x7318C063, 0x881F8772, 0xE761DAFC, 0xB429C46B, 0xB22BCED2, 0xAB7B3EE5, 0x417529C8, 0xB36A9538, 0x59DBCE96, 0x7002643D, 0xB38C1FB4, 0x30859A00, 0x9776FF65, 0xC4BE6F9C, 0x5C56AFBB, 0x0F307211, 0x1AA89E91, 0x2D6E55C2, 0x51E8AAE3, 0x4E2F9FA7, 0xE0800660, 0x6C5F7B49, 0xB85AD42B, 0x21888A48, 0x9FBA90A4, 0xEE20E712, 0x837E8086, 0x06F1C191, 0xB31510E2, 0xD382771C, 0xB6107F49, 0x1901B6D0, 0x73CD489E, 0x1A9B9CE0, 0xD6B41AC6, 0x8749F181, 0x0A7DDA65, 0x3405276C, 0x6B67EFB4, 0x4C5EE35A, 0xAF840653, 0x373D8093, 0xFD98028A, 0x0084CE1A, 0x0B474421, 0xD951E02A, 0x0F657482, 0x16C64F9D, 0x568DB865, 0x9D1E64A4, 0x33A0FCB3, 0xE9C9BB66, 0x705322DA, 0x2A4F4007, 0xD801BA10, 0xAB73BE0D, 0x6A2E34B6, 0x95A50E57, 0xB83CD0C9, 0xD63C1440, 0x32F82661, 0x66846C97, 0x2A74C29E, 0x0880E86A, 0x5B1D7E00, 0xCF9B6F2B, 0xE71E5F26, 0x3E707DE1, 0x7439D5A6, 0x01F69781, 0x023DFB56, 0x3E87F6BD, 0x4BD1BBCC, 0xAB1D3A07, 0xB6C1B7C0, 0x1E2823FD, 0xD17F4513, 0xD9082625, 0xBDFD364F, 0xD88DF4E2, 0x8B6FE752, 0x95B04FF3, 0x7B27648A, 0x08C4EF29, 0x01C595F0, }; //#endif #define WR_BUF_CNT 16 #define NANDINFO "nandinfo" static struct proc_dir_entry *nandinfo_proc = NULL; static struct mtd_info *mtd_nandinfo = NULL; uint8_t *buf_rdmz, *wr_cache; /*#define NAND_DEBUG*/ unsigned int wmt_version; uint32_t par1_ofs, par2_ofs, par3_ofs, par4_ofs, eslc_write, prob_end; #include #define NUM_NAND_PARTITIONS ARRAY_SIZE(nand_partitions) #ifndef CONFIG_MTD_NAND_WMT_UBUNTU struct mtd_partition nand_partitions[] = { { .name = "logo", .offset = MTDPART_OFS_APPEND, .size = 0x1000000, }, { .name = "boot", .offset = MTDPART_OFS_APPEND, .size = 0x1000000, }, { .name = "recovery", .offset = MTDPART_OFS_APPEND, .size = 0x1000000, }, { .name = "misc", .offset = MTDPART_OFS_APPEND, .size = 0x1000000, }, { .name = "keydata", .offset = MTDPART_OFS_APPEND, .size = 0x4000000, }, { .name = "system", .offset = MTDPART_OFS_APPEND, .size = 0x40000000, }, { .name = "cache", .offset = MTDPART_OFS_APPEND, .size = 0x20000000, }, { .name = "swap", .offset = MTDPART_OFS_APPEND, .size = 0x10000000, }, #ifndef CONFIG_MTD_NAND_WMT_ANDROID_UBUNTU_DUALOS { .name = "data", .offset = MTDPART_OFS_APPEND, .size = MTDPART_SIZ_FULL, } #else // #ifdef CONFIG_MTD_NAND_WMT_ANDROID_UBUNTU_DUALOS { .name = "data", .offset = MTDPART_OFS_APPEND, .size = 0x88000000, }, { .name = "ubuntu-boot", .offset = MTDPART_OFS_APPEND, .size = 0x1000000, }, { .name = "ubuntu-rootfs", .offset = MTDPART_OFS_APPEND, .size = MTDPART_SIZ_FULL, } #endif }; #else // #ifdef CONFIG_MTD_NAND_WMT_UBUNTU struct mtd_partition nand_partitions[] = { { .name = "ubuntu-logo", .offset = MTDPART_OFS_APPEND, .size = 0x1000000, }, { .name = "ubuntu-boot", .offset = MTDPART_OFS_APPEND, .size = 0x1000000, }, { .name = "ubuntu-rootfs", .offset = MTDPART_OFS_APPEND, .size = MTDPART_SIZ_FULL, } }; #endif EXPORT_SYMBOL(nand_partitions); int second_chip = 0; EXPORT_SYMBOL(second_chip); #ifdef CONFIG_MTD_NAND_WMT_HWECC static int MAX_CHIP = CONFIG_MTD_NAND_CHIP_NUM; static int hardware_ecc = 1; #else #define MAX_CHIP 1 static int hardware_ecc = 0; #endif #define HW_ENCODE_OOB //#define SW_ENCODE_OOB #ifdef SW_ENCODE_OOB static unsigned char parity[MAX_PARITY_SIZE]; #endif static unsigned int bch_err_pos[MAX_ECC_BIT_ERROR]; static unsigned int bch_err_pos[MAX_ECC_BIT_ERROR]; /* used for software de-randomizer of read id and read status command */ unsigned char rdmz_tb[128] = { 0x84, 0x4a, 0x37, 0xbe, 0xd7, 0xd2, 0x39, 0x03, 0x8e, 0x77, 0xb9, 0x41, 0x99, 0xa7, 0x78, 0x62, 0x53, 0x88, 0x12, 0xf4, 0x75, 0x21, 0xf0, 0x27, 0xc2, 0x0f, 0x04, 0x80, 0xd7, 0x5a, 0xce, 0x37, 0x56, 0xb1, 0x1c, 0xdc, 0x61, 0x9a, 0x86, 0x10, 0xae, 0xec, 0x73, 0x54, 0xa1, 0x5a, 0x56, 0xdc, 0x2b, 0x45, 0x5e, 0x09, 0x99, 0xb7, 0x64, 0x2b, 0x7f, 0x0c, 0x62, 0x91, 0xa0, 0xfe, 0x35, 0x84, 0xdf, 0x7a, 0xa0, 0x21, 0xa7, 0x42, 0x30, 0x38, 0x80, 0x05, 0x6e, 0x6b, 0xda, 0x23, 0x3f, 0xf3, 0x8e, 0x5d, 0xf7, 0x63, 0xbd, 0x34, 0x92, 0x19, 0x7d, 0x84, 0xcf, 0x66, 0xe9, 0x0d, 0x23, 0x32, 0x55, 0xed, 0x5f, 0xc0, 0xcd, 0x76, 0xaf, 0x87, 0x9e, 0x83, 0x96, 0xa3, 0xf8, 0xb5, 0x09, 0x46, 0x25, 0xa2, 0xc4, 0x3d, 0x2c, 0x46, 0x58, 0x89, 0x14, 0x2e, 0x3b, 0x29, 0x9a, 0x96, 0x0c, 0xe7 }; /* * check the page is erased or not * each row is oob byte 16~23 of randomizer seed(page) 0 ~ 15 * */ unsigned char rdmz_FF[18][24] = { /*{0xac,0x77,0xed,0x0b,0x8a,0xde,0x0f,0xd8}, {0xd6,0xbb,0xf6,0x85,0x45,0xef,0x07,0x6c}, {0xeb,0xdd,0xfb,0x42,0x22,0x77,0x03,0xb6}, {0x75,0xee,0xfd,0xa1,0x11,0xbb,0x81,0x5b}, {0x3a,0x77,0x7e,0xd0,0x88,0x5d,0x40,0xad}, {0x1d,0xbb,0xbf,0x68,0x44,0xae,0x20,0x56}, {0x8e,0xdd,0x5f,0xb4,0xa2,0xd7,0x90,0x2b}, {0x47,0xee,0xaf,0x5a,0xd1,0x6b,0xc8,0x95}, {0xa3,0x77,0x57,0xad,0x68,0xb5,0xe4,0x4a}, {0x51,0xbb,0xab,0xd6,0x34,0x5a,0xf2,0x25}, {0x28,0xdd,0x55,0xeb,0x9a,0xad,0xf9,0x12}, {0x94,0xee,0xaa,0x75,0x4d,0xd6,0xfc,0x09}, {0xca,0x77,0xd5,0xba,0xa6,0xeb,0xfe,0x84}, {0x65,0xbb,0x6a,0x5d,0x53,0xf5,0x7f,0xc2}, {0xb2,0xdd,0xb5,0x2e,0x29,0x7a,0x3f,0x61}, {0x59,0xee,0xda,0x17,0x14,0xbd,0x1f,0xb0}*//* byte 24 ~ byte 48 */ {0x3d,0xf0,0xfb,0x7f,0x28,0xa5,0x31,0xc8,0xa9,0x4e,0xe3,0x23,0x9e,0x65,0x79,0xef,0x51,0x13,0x8c,0xab,0x5e,0xa5,0xa9,0x23}, {0x1e,0xf8,0xfd,0xbf,0x94,0x52,0x18,0x64,0x54,0x27,0xf1,0x91,0xcf,0x32,0x3c,0xf7,0xa8,0x09,0xc6,0x55,0xaf,0xd2,0xd4,0x91}, {0x8f,0xfc,0xfe,0xdf,0xca,0xa9,0x8c,0x32,0x2a,0x93,0xf8,0x48,0xe7,0x99,0x9e,0xfb,0x54,0x84,0x63,0x2a,0x57,0xe9,0xea,0x48}, {0xc7,0x7e,0x7f,0xef,0x65,0xd4,0x46,0x99,0x95,0xc9,0x7c,0x24,0xf3,0xcc,0x4f,0xfd,0xaa,0x42,0x31,0x95,0xab,0x74,0x75,0x24}, {0xe3,0x3f,0x3f,0xf7,0xb2,0xea,0x23,0x4c,0x4a,0x64,0x3e,0x12,0x79,0x66,0xa7,0xfe,0xd5,0xa1,0x18,0xca,0xd5,0xba,0xba,0x12}, {0x71,0x9f,0x1f,0xfb,0xd9,0x75,0x11,0xa6,0xa5,0x32,0x9f,0x09,0x3c,0x33,0xd3,0x7f,0x6a,0x50,0x0c,0xe5,0x6a,0x5d,0x5d,0x89}, {0xb8,0x4f,0x8f,0xfd,0x6c,0xba,0x08,0x53,0x52,0x19,0x4f,0x84,0x1e,0x99,0xe9,0x3f,0x35,0x28,0x06,0xf2,0x35,0x2e,0x2e,0x44}, {0xdc,0xa7,0x47,0xfe,0x36,0xdd,0x04,0xa9,0x29,0x0c,0x27,0x42,0x0f,0x4c,0xf4,0x9f,0x9a,0x94,0x03,0x79,0x1a,0x97,0x97,0x22}, {0x6e,0x53,0x23,0x7f,0x1b,0xee,0x02,0x54,0x94,0x06,0x93,0x21,0x87,0xa6,0x7a,0x4f,0xcd,0xca,0x81,0x3c,0x8d,0xcb,0x4b,0x91}, {0xb7,0x29,0x91,0xbf,0x0d,0xf7,0x81,0x2a,0xca,0x03,0xc9,0x90,0x43,0xd3,0xbd,0xa7,0xe6,0xe5,0x40,0x9e,0x46,0xe5,0xa5,0xc8}, {0x5b,0x14,0xc8,0xdf,0x06,0x7b,0x40,0x15,0x65,0x81,0xe4,0xc8,0xa1,0x69,0x5e,0xd3,0x73,0xf2,0x20,0xcf,0xa3,0x72,0x52,0xe4}, {0xad,0x0a,0x64,0xef,0x03,0xbd,0x20,0x0a,0x32,0xc0,0x72,0x64,0xd0,0xb4,0x2f,0xe9,0x39,0x79,0x90,0x67,0xd1,0xb9,0x29,0x72}, {0xd6,0x05,0xb2,0xf7,0x81,0x5e,0x10,0x85,0x99,0xe0,0x39,0x32,0xe8,0x5a,0x97,0xf4,0x1c,0x3c,0xc8,0xb3,0xe8,0x5c,0x94,0x39}, {0xeb,0x82,0xd9,0xfb,0x40,0x2f,0x88,0x42,0x4c,0x70,0x1c,0x19,0xf4,0x2d,0xcb,0x7a,0x8e,0x9e,0x64,0x59,0xf4,0x2e,0x4a,0x1c}, {0xf5,0xc1,0xec,0xfd,0xa0,0x97,0xc4,0x21,0xa6,0x38,0x8e,0x8c,0x7a,0x96,0xe5,0xbd,0x47,0x4f,0x32,0xac,0x7a,0x97,0xa5,0x8e}, {0x7a,0xe0,0xf6,0xfe,0x50,0x4b,0x62,0x90,0x53,0x9c,0xc7,0x46,0x3d,0xcb,0xf2,0xde,0xa3,0x27,0x19,0x56,0xbd,0x4b,0x52,0x47} }; unsigned int rdmz_badblk[2][6] = { {0x80040fc2,0x37ce5ad7,0xdc1cb156,0x10869a61,0x5473ecae,0xdc565aa1}, {0x400207e1,0x9be7ad6b,0x6e0ed8ab,0x8c3cd30,0xaa39f657,0x6e2b2d50} }; unsigned char eslc_map_table[128] = { 0x0, 0x1, 0x2, 0x3, 0x6, 0x7, 0xa, 0xb, 0xe, 0xf, 0x12, 0x13, 0x16, 0x17, 0x1a, 0x1b, 0x1e, 0x1f, 0x22, 0x23, 0x26, 0x27, 0x2a, 0x2b, 0x2e, 0x2f, 0x32, 0x33, 0x36, 0x37, 0x3a, 0x3b, 0x3e, 0x3f, 0x42, 0x43, 0x46, 0x47, 0x4a, 0x4b, 0x4e, 0x4f, 0x52, 0x53, 0x56, 0x57, 0x5a, 0x5b, 0x5e, 0x5f, 0x62, 0x63, 0x66, 0x67, 0x6a, 0x6b, 0x6e, 0x6f, 0x72, 0x73, 0x76, 0x77, 0x7a, 0x7b, 0x7e, 0x7f, 0x82, 0x83, 0x86, 0x87, 0x8a, 0x8b, 0x8e, 0x8f, 0x92, 0x93, 0x96, 0x97, 0x9a, 0x9b, 0x9e, 0x9f, 0xa2, 0xa3, 0xa6, 0xa7, 0xaa, 0xab, 0xae, 0xaf, 0xb2, 0xb3, 0xb6, 0xb7, 0xba, 0xbb, 0xbe, 0xbf, 0xc2, 0xc3, 0xc6, 0xc7, 0xca, 0xcb, 0xce, 0xcf, 0xd2, 0xd3, 0xd6, 0xd7, 0xda, 0xdb, 0xde, 0xdf, 0xe2, 0xe3, 0xe6, 0xe7, 0xea, 0xeb, 0xee, 0xef, 0xf2, 0xf3, 0xf6, 0xf7, 0xfa, 0xfb }; /* * hardware specific Out Of Band information */ /* * new oob placement block for use with hardware ecc generation */ /* static struct nand_ecclayout wmt_oobinfo_2048 = { .eccbytes = 7, .eccpos = { 24, 25, 26, 27, 28, 29, 30}, .oobavail = 24, .oobfree = {{0, 24} } }; static struct nand_ecclayout wmt_12bit_oobinfo_4096 = { .eccbytes = 20, .eccpos = { 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43}, .oobavail = 24, .oobfree = {{0, 24} } }; static struct nand_ecclayout wmt_oobinfo_8192 = { .eccbytes = 42, .eccpos = { 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65}, .oobavail = 24, .oobfree = {{0, 24} } }; */ static struct nand_ecclayout wmt_oobinfo_16k = { .eccbytes = 70, .eccpos = { 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93}, .oobavail = 24, .oobfree = {{0, 24} } }; /* Ick. The BBT code really ought to be able to work this bit out for itself from the above, at least for the 2KiB case */ static uint8_t wmt_bbt_pattern_2048[] = { 'B', 'b', 't', '0' }; static uint8_t wmt_mirror_pattern_2048[] = { '1', 't', 'b', 'B' }; static uint8_t wmt_rdmz[] = { 'z', 'm', 'd', 'r' }; static uint8_t retry_table[] = {'r','e','t','r','y','t','a','b','l','e'}; static struct nand_bbt_descr wmt_rdtry_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, .offs = 0, .len = 10, .veroffs = 0, .maxblocks = 4, .pattern = retry_table, .reserved_block_code = 1 }; static struct nand_bbt_descr wmt_bbt_main_descr_2048 = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, .offs = 4, .len = 4, .veroffs = 0, .maxblocks = 4, .pattern = wmt_bbt_pattern_2048, .reserved_block_code = 1 }; static struct nand_bbt_descr wmt_bbt_mirror_descr_2048 = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, .offs = 4, .len = 4, .veroffs = 0, .maxblocks = 4, .pattern = wmt_mirror_pattern_2048, }; /* controller and mtd information */ extern unsigned int wmt_read_oscr(void); /*static*/ void print_nand_register(struct mtd_info *mtd); void print_nand_buffer(char *value, unsigned int length); #ifdef NAND_DEBUG static void print_nand_buffer_int(unsigned int *value, unsigned int length); #endif struct wmt_nand_set { int nr_chips; int nr_partitions; char *name; int *nr_map; struct mtd_partition *partitions; }; struct wmt_nand_platform_data { const char * name; int id; struct device dev; u32 num_resources; struct resource * resource; const struct platform_device_id *id_entry; /* MFD cell pointer */ struct mfd_cell *mfd_cell; /* arch specific additions */ struct pdev_archdata archdata; struct mtd_partition *partitions; }; #if 0 struct wmt_platform_nand { /* timing information for controller, all times in nanoseconds */ int tacls; /* time for active CLE/ALE to nWE/nOE */ int twrph0; /* active time for nWE/nOE */ int twrph1; /* time for release CLE/ALE from nWE/nOE inactive */ int nr_sets; struct wmt_nand_set *sets; void (*select_chip)(struct s3c2410_nand_set *, int chip); } #endif struct wmt_nand_info; struct wmt_nand_mtd { struct mtd_info mtd; struct nand_chip chip; /*struct wmt_nand_set* set;*/ struct wmt_nand_info *info; int scan_res; }; /* overview of the wmt nand state */ struct wmt_nand_info { /* mtd info */ struct nand_hw_control controller; struct wmt_nand_mtd *mtds; struct wmt_platform_nand *platform; int oper_step; /* device info */ struct device *device; struct resource *area; void __iomem *reg; int cpu_type; int datalen; int nr_data; int data_pos; int page_addr; dma_addr_t dmaaddr; dma_addr_t last_bank_dmaaddr; int dma_finish; int phase; void *done_data; /* completion data */ unsigned int isr_state; unsigned int isr_cmd; unsigned int cur_lpage; unsigned int cur_page; unsigned int last_bank_col; unsigned int oob_col; //void (*done)(void *data);/* completion function */ unsigned char *dmabuf; #ifdef CONFIG_MTD_NAND_DIRECT_WRITE int vmalloc_flag; int sglen; struct scatterlist *sglist; dma_addr_t data_address0; dma_addr_t data_address1; dma_addr_t tempaddr; unsigned char *tempbuf; #endif int ECC_bytes; int oob_ECC_bytes; int oob_ecc_error; int data_ecc_uncor_err; /* use read retry for data area has uncorrectable error*/ int unc_bank; int unc_allFF; int bank_size; int ECC_mode; int oob_ECC_mode; unsigned int lst_wpage; int wr_page[WR_BUF_CNT]; char banks; char oob_max_bit_error; }; /* conversion functions */ static struct wmt_nand_mtd *wmt_nand_mtd_toours(struct mtd_info *mtd) { return container_of(mtd, struct wmt_nand_mtd, mtd); } static struct wmt_nand_info *wmt_nand_mtd_toinfo(struct mtd_info *mtd) { return wmt_nand_mtd_toours(mtd)->info; } /* static struct wmt_nand_info *to_nand_info(struct platform_device *dev) { return platform_get_drvdata(dev); } */ /* static struct platform_device *to_platform(struct device *dev) { return container_of(dev, struct platform_device, dev); } */ #if 0 static struct wmt_platform_nand *to_nand_plat(struct platform_device *dev) { return dev->dev.platform_data; } #endif void copy_filename (char *dst, char *src, int size) { if (*src && (*src == '"')) { ++src; --size; } while ((--size > 0) && *src && (*src != '"')) { *dst++ = *src++; } *dst = '\0'; } int set_ECC_mode(struct mtd_info *mtd) { unsigned int ECCbit = mtd->dwECCBitNum; unsigned int ECC_mode; switch (ECCbit) { case 1: ECC_mode = ECC1bit; break; case 4: ECC_mode = ECC4bit; break; case 8: ECC_mode = ECC8bit; break; case 12: ECC_mode = ECC12bit; break; case 16: ECC_mode = ECC16bit; break; case 24: ECC_mode = ECC24bitPer1K; break; case 40: ECC_mode = ECC40bitPer1K; break; case 60: ECC_mode = ECC60bitPer1K; break; default: printk("ecc mode input not support ECCbit=%d\n", ECCbit); return -1; } return ECC_mode; } void calculate_ECC_info(struct mtd_info *mtd, struct ECC_size_info *ECC_size) { switch (ECC_size->ecc_engine) { case ECC4bit: ECC_size->oob_ecc_bits_count = ECC_size->ecc_bits_count = ECC4bit_bit_count; ECC_size->oob_max_bit_error = ECC_size->max_bit_error = 4; ECC_size->banks = mtd->realwritesize/512; ECC_size->bank_size = 512; ECC_size->bank_offset = mtd->realwritesize/ECC_size->banks + ECC4bit_byte_count; ECC_size->oob_ECC_bytes = ECC_size->ECC_bytes = ECC4bit_byte_count; ECC_size->oob_ECC_mode = ECC4bit; ECC_size->unprotect = mtd->realoobsize - ECC4bit_byte_count*(ECC_size->banks+1) - 24; break; case ECC8bit: ECC_size->oob_ecc_bits_count = ECC_size->ecc_bits_count = ECC8bit_bit_count; ECC_size->oob_max_bit_error = ECC_size->max_bit_error = 8; ECC_size->banks = mtd->realwritesize/512; ECC_size->bank_size = 512; ECC_size->bank_offset = mtd->realwritesize/ECC_size->banks + ECC8bit_byte_count; ECC_size->oob_ECC_bytes = ECC_size->ECC_bytes = ECC8bit_byte_count; ECC_size->oob_ECC_mode = ECC8bit; ECC_size->unprotect = mtd->realoobsize - ECC8bit_byte_count*(ECC_size->banks+1) - 24; break; case ECC12bit: ECC_size->oob_ecc_bits_count = ECC_size->ecc_bits_count = ECC12bit_bit_count; ECC_size->oob_max_bit_error = ECC_size->max_bit_error = 12; ECC_size->banks = mtd->realwritesize/512; ECC_size->bank_size = 512; ECC_size->bank_offset = mtd->realwritesize/ECC_size->banks + ECC12bit_byte_count; ECC_size->oob_ECC_bytes = ECC_size->ECC_bytes = ECC12bit_byte_count; ECC_size->oob_ECC_mode = ECC12bit; ECC_size->unprotect = mtd->realoobsize - ECC12bit_byte_count*(ECC_size->banks+1) - 24; break; case ECC16bit: ECC_size->oob_ecc_bits_count = ECC_size->ecc_bits_count = ECC16bit_bit_count; ECC_size->oob_max_bit_error = ECC_size->max_bit_error = 16; ECC_size->banks = mtd->realwritesize/512; ECC_size->bank_size = 512; ECC_size->bank_offset = mtd->realwritesize/ECC_size->banks + ECC16bit_byte_count; ECC_size->oob_ECC_bytes = ECC_size->ECC_bytes = ECC16bit_byte_count; ECC_size->oob_ECC_mode = ECC16bit; ECC_size->unprotect = mtd->realoobsize - ECC16bit_byte_count*(ECC_size->banks+1) - 24; break; case ECC24bitPer1K: ECC_size->oob_ecc_bits_count = ECC_size->ecc_bits_count = ECC24bitPer1K_bit_count; ECC_size->oob_max_bit_error = ECC_size->max_bit_error = 24; ECC_size->banks = mtd->realwritesize/1024; ECC_size->bank_size = 1024; ECC_size->bank_offset = mtd->realwritesize/ECC_size->banks + ECC24bitPer1K_byte_count; ECC_size->oob_ECC_bytes = ECC_size->ECC_bytes = ECC24bitPer1K_byte_count; ECC_size->oob_ECC_mode = ECC24bitPer1K; ECC_size->unprotect = mtd->realoobsize - ECC24bitPer1K_byte_count*(ECC_size->banks+1) - 24; break; case ECC40bitPer1K: ECC_size->ecc_bits_count = ECC40bitPer1K_bit_count; ECC_size->oob_ecc_bits_count = ECC24bitPer1K_bit_count; ECC_size->max_bit_error = 40; ECC_size->oob_max_bit_error = 24; ECC_size->banks = mtd->realwritesize/1024; ECC_size->bank_size = 1024; ECC_size->bank_offset = mtd->realwritesize/ECC_size->banks + ECC40bitPer1K_byte_count; ECC_size->ECC_bytes = ECC40bitPer1K_byte_count; ECC_size->oob_ECC_bytes = ECC24bitPer1K_byte_count; ECC_size->oob_ECC_mode = ECC24bitPer1K; ECC_size->unprotect = mtd->realoobsize - ECC40bitPer1K_byte_count*ECC_size->banks - ECC24bitPer1K_byte_count - 24; break; case ECC60bitPer1K: ECC_size->ecc_bits_count = ECC60bitPer1K_bit_count; ECC_size->oob_ecc_bits_count = ECC24bitPer1K_bit_count; ECC_size->max_bit_error = 60; ECC_size->oob_max_bit_error = 24; ECC_size->banks = mtd->realwritesize/1024; ECC_size->bank_size = 1024; ECC_size->bank_offset = mtd->realwritesize/ECC_size->banks + ECC60bitPer1K_byte_count; ECC_size->ECC_bytes = ECC60bitPer1K_byte_count; ECC_size->oob_ECC_bytes = ECC24bitPer1K_byte_count; ECC_size->oob_ECC_mode = ECC24bitPer1K; ECC_size->unprotect = mtd->realoobsize - ECC60bitPer1K_byte_count*ECC_size->banks - ECC24bitPer1K_byte_count - 24; break; default: printk("%d-bit ECC engine is not support:\r\n", ECC_size->ecc_engine); break;; } return; } int get_partition_name(const char *src, char** endpp, char* buffer) { int i = 0; if(NULL == src || NULL == buffer) { return -1; } while(*src != ':') { *buffer++ = *src++; i++; } *endpp = (char *)src; buffer[i] = '\0'; return i; } int search_mtd_table(char *string, int *ret) { int i, err = 0; for (i = 0; i < NUM_NAND_PARTITIONS; i++) { // printk(KERN_DEBUG "MTD dev%d size: %8.8llx \"%s\"\n", //i, nand_partitions[i].size, nand_partitions[i].name); if (strcmp(string, nand_partitions[i].name) == 0) { *ret = i; break; } } return err; } /* * Get the flash and manufacturer id and lookup if the type is supported */ int get_flash_info_from_env(unsigned int id, unsigned int id2, struct WMT_nand_flash_dev *type) { int ret, sf_boot_nand_en = 0x4000; char varval[200], *s = NULL, *tmp, varname[] = "wmt.io.nand"; unsigned int varlen = 200, value; value = STRAP_STATUS_VAL; if ((value&0x4008) != sf_boot_nand_en) return 1; ret = wmt_getsyspara(varname, varval, &varlen); if (!ret) { s = varval; value = simple_strtoul(s, &tmp, 16); type->dwFlashID = value; s = tmp+1; value = simple_strtoul(s, &tmp, 16); type->dwBlockCount = value; s = tmp+1; value = simple_strtoul(s, &tmp, 16); type->dwPageSize = value; s = tmp+1; value = simple_strtoul(s, &tmp, 16); type->dwSpareSize = value; s = tmp+1; value = simple_strtoul(s, &tmp, 16); type->dwBlockSize = value; s = tmp+1; value = simple_strtoul(s, &tmp, 16); type->dwAddressCycle = value; s = tmp+1; value = simple_strtoul(s, &tmp, 16); type->dwBI0Position = value; s = tmp+1; value = simple_strtoul(s, &tmp, 16); type->dwBI1Position = value; s = tmp+1; value = simple_strtoul(s, &tmp, 16); type->dwBIOffset = value; s = tmp+1; value = simple_strtoul(s, &tmp, 16); type->dwDataWidth = value; s = tmp+1; value = simple_strtoul(s, &tmp, 16); type->dwPageProgramLimit = value; s = tmp+1; value = simple_strtoul(s, &tmp, 16); type->dwSeqRowReadSupport = value; s = tmp+1; value = simple_strtoul(s, &tmp, 16); type->dwSeqPageProgram = value; s = tmp+1; value = simple_strtoul(s, &tmp, 16); type->dwNandType = value; s = tmp+1; value = simple_strtoul(s, &tmp, 16); type->dwECCBitNum = value; s = tmp+1; value = simple_strtoul(s, &tmp, 16); type->dwRWTimming = value; s = tmp+1; value = simple_strtoul(s, &tmp, 16); type->dwTadl = value; s = tmp+1; value = simple_strtoul(s, &tmp, 16); type->dwDDR = value; s = tmp+1; value = simple_strtoul(s, &tmp, 16); type->dwRetry = value; s = tmp+1; value = simple_strtoul(s, &tmp, 16); type->dwRdmz = value; s = tmp+1; value = simple_strtoul(s, &tmp, 16); type->dwFlashID2 = value; s = tmp+1; copy_filename(type->ProductName, s, MAX_PRODUCT_NAME_LENGTH); if (type->dwBlockCount < 1024 || type->dwBlockCount > 16384) { printk(KERN_INFO "dwBlockCount = 0x%x is abnormal\n", type->dwBlockCount); return 2; } if (type->dwPageSize < 512 || type->dwPageSize > 16384) { printk(KERN_INFO "dwPageSize = 0x%x is abnormal\n", type->dwPageSize); return 2; } if (type->dwPageSize > 512) type->options = NAND_SAMSUNG_LP_OPTIONS | NAND_NO_READRDY | NAND_NO_AUTOINCR; if (type->dwBlockSize < (1024*64) || type->dwBlockSize > (16384*256)) { printk(KERN_INFO "dwBlockSize = 0x%x is abnormal\n", type->dwBlockSize); return 2; } if (type->dwAddressCycle < 3 || type->dwAddressCycle > 5) { printk(KERN_INFO "dwAddressCycle = 0x%x is abnoraml\n", type->dwAddressCycle); return 2; } if (type->dwBI0Position != 0 && type->dwBI0Position > ((type->dwBlockSize/type->dwPageSize)-1)) { printk(KERN_INFO "dwBI0Position = 0x%x is abnoraml\n", type->dwBI0Position); return 2; } if (type->dwBI1Position != 0 && type->dwBI1Position > ((type->dwBlockSize/type->dwPageSize)-1)) { printk(KERN_INFO "dwBI1Position = 0x%x is abnoraml\n", type->dwBI1Position); return 2; } if (type->dwBIOffset != 0 && type->dwBIOffset != 5) { printk(KERN_INFO "dwBIOffset = 0x%x is abnoraml\n", type->dwBIOffset); return 2; } if (type->dwDataWidth != 0/* && type->dwDataWidth != 1*/) { printk(KERN_INFO "dwDataWidth = 0x%x is abnoraml\n", type->dwDataWidth); return 2; } printk(KERN_DEBUG "dwFlashID = 0x%x\n", type->dwFlashID); printk(KERN_DEBUG "dwBlockCount = 0x%x\n", type->dwBlockCount); printk(KERN_DEBUG "dwPageSize = 0x%x\n", type->dwPageSize); printk(KERN_DEBUG "dwSpareSize = 0x%x\n", type->dwSpareSize); printk(KERN_DEBUG "dwBlockSize = 0x%x\n", type->dwBlockSize); printk(KERN_DEBUG "dwAddressCycle = 0x%x\n", type->dwAddressCycle); printk(KERN_DEBUG "dwBI0Position = 0x%x\n", type->dwBI0Position); printk(KERN_DEBUG "dwBI1Position = 0x%x\n", type->dwBI1Position); printk(KERN_DEBUG "dwBIOffset = 0x%x\n", type->dwBIOffset); printk(KERN_DEBUG "dwDataWidth = 0x%x\n", type->dwDataWidth); printk(KERN_DEBUG "dwPageProgramLimit = 0x%x\n", type->dwPageProgramLimit); printk(KERN_DEBUG "dwSeqRowReadSupport = 0x%x\n", type->dwSeqRowReadSupport); printk(KERN_DEBUG "dwSeqPageProgram = 0x%x\n", type->dwSeqPageProgram); printk(KERN_DEBUG "dwNandType = 0x%x\n", type->dwNandType); printk(KERN_DEBUG "dwECCBitNum = 0x%x\n", type->dwECCBitNum); printk(KERN_DEBUG "dwRWTimming = 0x%x\n", type->dwRWTimming); printk(KERN_DEBUG "dwTadl = 0x%x\n", type->dwTadl); printk(KERN_DEBUG "dwDDR = 0x%x\n", type->dwDDR); printk(KERN_DEBUG "dwRetry = 0x%x\n", type->dwRetry); printk(KERN_DEBUG "dwRdmz = 0x%x\n", type->dwRdmz); printk(KERN_DEBUG "dwFlashID2 = 0x%x\n", type->dwFlashID2); printk(KERN_DEBUG "cProductName = %s\n", type->ProductName); if (id != type->dwFlashID || id2 != type->dwFlashID2) { printk(KERN_ERR "env flash id is different from real id = 0x%x 0x%x\n", type->dwFlashID, type->dwFlashID2); return 3; } } return ret; } static int wmt_calc_clock(struct mtd_info *mtd, unsigned int spec_clk, unsigned int spec_tadl, struct NFC_RW_T *nfc_rw) { unsigned int i, div1=0, clk1, clk = 0, PLLB; unsigned int tREA, tREH, tADL, tWP, divisor = 11, tWH, tWB, tWHR, margin; /*print_nand_register(mtd);*/ PLLB = *(volatile unsigned int *)PMPMB_ADDR; PLLB = (2*(((PLLB>>16)&0x7F)+1))/((((PLLB>>8)&0x1F)+1)*(1<<(PLLB&3))); printk(KERN_DEBUG "PLLB=0x%x, spec_clk=0x%x\n", PLLB, spec_clk); tREA = (spec_clk>>24)&0xFF; tREH = (spec_clk>>16)&0xFF; tWP = (spec_clk>>8)&0xFF; tWH = spec_clk&0xFF; tWB = (spec_tadl>>24)&0xFF; tWHR = (spec_tadl>>16)&0xFF; tADL = spec_tadl&0xFFFF; for (i = 1; i < 16; i++) { if (MAX_SPEED_MHZ >= (PLLB*SOURCE_CLOCK)/i) { div1 = i; break; } } margin = (tREA+10)*10+15; if (mtd->id == 0x98D78493 && mtd->id2 == 0x72570000) margin = (tREA+6)*10; else if (mtd->id == 0x45D78493 && mtd->id2 == 0x72570000) margin = (tREA+6)*10; for (i = div1; i < 32; i++) { clk1 = (10000 * i)/(PLLB*SOURCE_CLOCK); if ((2*clk1) >= margin) { divisor = i; clk = clk1/10; //printk("div=%d tREA=%d 2*clk=%d\n", i, (tREA+10)*10+15, clk*2); break; } } nfc_rw->T_R_hold = 1; nfc_rw->T_R_setup = 1; nfc_rw->divisor = divisor; nfc_rw->T_W_hold = 1; nfc_rw->T_W_setup = 1; i = 0; while ((i*clk) < tADL && i < 50) i++; nfc_rw->T_TADL = i; i = 0; while ((i*clk) < tWHR && i < 50) i++; nfc_rw->T_TWHR = i; i = 0; while ((i*clk) < tWB && i < 50) i++; nfc_rw->T_TWB = i; nfc_rw->T_RHC_THC = ((nfc_rw->T_R_hold&0xFF) << 12) + (((nfc_rw->T_R_setup&0xFF) + (nfc_rw->T_R_hold&0xFF)) << 8) + ((nfc_rw->T_W_setup&0xF) << 4) + ((nfc_rw->T_W_setup + nfc_rw->T_W_hold)&0xF); if ((MAX_SPEED_MHZ < (PLLB*SOURCE_CLOCK)/(divisor)) || clk == 0 || clk > 45) return 1; return 0; } #if 0 static int old_wmt_calc_clock(struct mtd_info *mtd, unsigned int spec_clk, unsigned int spec_tadl, struct NFC_RW_T *nfc_rw) { unsigned int i, div1=0, div2, clk1, clk2=0, comp, T_setup, T1=0, T2=0, clk, PLLB; unsigned int tREA, tREH, Thold, Thold2, Ttmp, tADL, tWP, divisor, tWH, tWB, tWHR; /*print_nand_register(mtd);*/ PLLB = *(volatile unsigned int *)PMPMB_ADDR; PLLB = (2*(((PLLB>>16)&0x7F)+1))/((((PLLB>>8)&0x1F)+1)*(1<<(PLLB&3))); printk(KERN_DEBUG "PLLB=0x%x, spec_clk=0x%x\n", PLLB, spec_clk); tREA = (spec_clk>>24)&0xFF; tREH = (spec_clk>>16)&0xFF; tWP = (spec_clk>>8)&0xFF; tWH = spec_clk&0xFF; tWB = (spec_tadl>>24)&0xFF; tWHR = (spec_tadl>>16)&0xFF; tADL = spec_tadl&0xFFFF; for (i = 1; i < 16; i++) { if (MAX_SPEED_MHZ >= (PLLB*SOURCE_CLOCK)/i) { div1 = i; break; } } clk1 = (1000 * div1)/(PLLB*SOURCE_CLOCK); //printk("clk1=%d, div1=%d, spec_clk=%d\n", clk1, div1, spec_clk); for (T1 = 1; T1 < 10; T1++) { if ((T1*clk1) >= (tREA + MAX_READ_DELAY)) break; } i = 1; while (i*clk1 <= tREH) { i++; } Thold = i; printk(KERN_DEBUG "T1=%d, clk1=%d, div1=%d, Thold=%d, tREA=%d+delay(%d)\n", T1, clk1, div1, Thold, tREA, MAX_READ_DELAY); Ttmp = T_setup = T1; clk = clk1; divisor = div1; div2 = div1; while (Ttmp > 1 && clk != 0) { div2++; clk2 = (1000 * div2)/(PLLB*SOURCE_CLOCK); comp = 0; for (T2 = 1; T2 < Ttmp; T2++) { if ((T2*clk2) >= (tREA + MAX_READ_DELAY)) { Ttmp = T2; comp = 1; i = 1; while (i*clk2 <= tREH) { i++; } Thold2 = i; printk(KERN_DEBUG "T2=%d, clk2=%d, div2=%d, Thold2=%d, comp=1\n", T2, clk2, div2, Thold2); break; } } if (comp == 1) { clk1 = clk * (T_setup+Thold) * mtd->realwritesize; div1 = clk2 * (T2+Thold2) * mtd->realwritesize; printk(KERN_DEBUG "Tim1=%d , Tim2=%d\n", clk1, div1); if ((clk * (T_setup+Thold) * mtd->realwritesize) > (clk2 * (T2+Thold2) * mtd->realwritesize)) { T_setup = T2; clk = clk2; divisor = div2; Thold = Thold2; } else { printk(KERN_DEBUG "T2 is greater and not use\n"); } } } /* end of while */ nfc_rw->T_R_hold = Thold; nfc_rw->T_R_setup = T_setup; nfc_rw->divisor = divisor; i = 1; nfc_rw->T_W_setup = 0x1; /* set write setup/hold time */ while ((i*clk) <= (tWP+MAX_WRITE_DELAY)) { nfc_rw->T_W_setup += 1; i++; } nfc_rw->T_W_hold = 1; if ((nfc_rw->T_W_hold * 2) == 2) Thold = 4; else if ((nfc_rw->T_W_hold * 2) == 4) Thold = 6; i = 0; while (((i/*+Thold*/)*clk) < tADL && i < 50) i++; nfc_rw->T_TADL = i; //printk("Tad i=%d\n", i); i = 0; while ((i*clk) < tWHR && i < 50) i++; nfc_rw->T_TWHR = i; i = 0; while ((i*clk) < tWB && i < 50) i++; nfc_rw->T_TWB = i; nfc_rw->T_RHC_THC = ((nfc_rw->T_R_hold&0xFF) << 12) + (((nfc_rw->T_R_setup&0xFF) + (nfc_rw->T_R_hold&0xFF)) << 8) + ((nfc_rw->T_W_setup&0xF) << 4) + //((nfc_rw->T_W_hold&0xF) << 4) + ((nfc_rw->T_W_setup + nfc_rw->T_W_hold)&0xF); if ((MAX_SPEED_MHZ < (PLLB*SOURCE_CLOCK)/(divisor)) || clk == 0 || T_setup == 0 || clk > 45) return 1; return 0; } #endif static void wmt_nfc_init(struct wmt_nand_info *info, struct mtd_info *mtd) { writeb((PAGE_2K|WP_DISABLE|DIRECT_MAP), info->reg + NFCR12_NAND_TYPE_SEL); writel(0x2424, info->reg + NFCR14_READ_CYCLE_PULE_CTRL); writeb(B2R, info->reg + NFCRb_NFC_INT_STAT); writeb(0x0, info->reg + NFCRd_OOB_CTRL); } void wmt_init_nfc(struct mtd_info *mtd, unsigned int spec_clk, unsigned int spec_tadl, int busw) { unsigned int status = 0, page_size, divisor, NFC_RWTimming; struct nand_chip *chip = mtd->priv; struct NFC_RW_T nfc_rw; struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); unsigned short cfg = 0; writeb(B2R, info->reg + NFCRb_NFC_INT_STAT); writel(0x0, info->reg + NFCRd_OOB_CTRL); if (mtd->realwritesize == 2048) { page_size = PAGE_2K; } else if (mtd->realwritesize == 4096) { page_size = PAGE_4K; } else if (mtd->realwritesize == 6144) { page_size = PAGE_8K; } else if (mtd->realwritesize == 8192) { page_size = PAGE_8K; } else if (mtd->realwritesize == 16384 || mtd->realwritesize == 15360) { page_size = PAGE_16K; } else page_size = PAGE_32K; cfg = WP_DISABLE|DIRECT_MAP|page_size; if (prob_end == 1 && !mtd->dwDDR) cfg |= RD_DLY; if (busw) { cfg |= WIDTH_16; printk(KERN_WARNING "nand flash use 16-bit witdth mode\n"); } writeb(cfg, info->reg + NFCR12_NAND_TYPE_SEL); status = wmt_calc_clock(mtd, spec_clk, spec_tadl, &nfc_rw); if (status) { printk(KERN_ERR "timming calculate fail\n"); nfc_rw.T_RHC_THC = 0x2424; nfc_rw.T_TADL = 0x3c; nfc_rw.T_TWHR = 0x12; nfc_rw.T_TWB = 0xa; nfc_rw.divisor = 10; } NFC_RWTimming = nfc_rw.T_RHC_THC; divisor = nfc_rw.divisor; if (prob_end == 0 && mtd->dwDDR) divisor = divisor + 5; switch(mtd->id) { case 0x2C88044B: case 0x2C68044A: case 0x2C64444B: case 0x2C44444B: case 0x2C48044A: case 0x8968044A: //NFC_RWTimming = 0x2424; //divisor = 9; //nand_get_feature(mtd, 1); nand_set_feature(mtd, NAND_SET_FEATURE, 01, 05); nand_get_feature(mtd, 1); break; } //chip->select_chip(mtd, -1); if (!status) { while ((*(volatile unsigned long *)(PMCS_ADDR+0x18))&0x7F0038) ; *(volatile unsigned long *)PMNAND_ADDR = divisor; while ((*(volatile unsigned long *)(PMCS_ADDR+0x18))&0x7F0038) ; } divisor = *(volatile unsigned long *)PMNAND_ADDR; if (((mtd->id>>24)&0xFF) == NAND_MFR_HYNIX) { if (prob_end == 1) NFC_RWTimming = 0x1312;//0x2424; else NFC_RWTimming = 0x2424; } if (prob_end == 1) NFC_RWTimming = 0x1212; else NFC_RWTimming = 0x2424; printk(KERN_NOTICE "TWB=%dT, tWHR=%dT, tadl=%dT, div=0x%x, (RH/RC/WH/WC)=0x%x\n", nfc_rw.T_TWB, nfc_rw.T_TWHR, nfc_rw.T_TADL, divisor, NFC_RWTimming); writel((nfc_rw.T_TWB<<16) + (nfc_rw.T_TWHR<<8) + nfc_rw.T_TADL, info->reg + NFCRe_CALC_TADL); writel(NFC_RWTimming, info->reg + NFCR14_READ_CYCLE_PULE_CTRL); if (mtd->dwDDR) { if (mtd->dwDDR == 1) { if (mtd->dwRdmz) reset_nfc(mtd, NULL, 3); nand_get_feature(mtd, 0x80); nand_set_feature(mtd, NAND_SET_FEATURE, 0x80, 0); nand_get_feature(mtd, 0x80); } writel(0x0101, info->reg + NFCR14_READ_CYCLE_PULE_CTRL); writeb(0x7F, info->reg + NFCR7_DLYCOMP); writeb(readb(info->reg + NFCR12_NAND_TYPE_SEL)|0x80, info->reg + NFCR12_NAND_TYPE_SEL); } printk("DDR=%d\n", mtd->dwDDR); /*print_nand_register(mtd);*/ chip->select_chip(mtd, -1); } #if 0 static void disable_redunt_out_bch_ctrl(struct wmt_nand_info *info, int flag) { if (flag == 1) writeb(readb(info->reg + NFCRd_OOB_CTRL)|RED_DIS, info->reg + NFCRd_OOB_CTRL); else writeb(readb(info->reg + NFCRd_OOB_CTRL)&(~RED_DIS), info->reg + NFCRd_OOB_CTRL); } static void redunt_read_hm_ecc_ctrl(struct wmt_nand_info *info, int flag) { if (flag == 1) writeb(readb(info->reg + NFCRd_OOB_CTRL) | OOB_READ, info->reg + NFCRd_OOB_CTRL); else writeb(readb(info->reg + NFCRd_OOB_CTRL) & (~OOB_READ), info->reg + NFCRd_OOB_CTRL); } #endif static void set_ecc_engine(struct wmt_nand_info *info, int type) { /*struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd);*/ writel((readl(info->reg + NFCR9_ECC_BCH_CTRL) & (~ECC_MODE)) | type, info->reg + NFCR9_ECC_BCH_CTRL); if (type > ECC1bit) { /* enable BCH ecc interrupt */ writel(readl(info->reg + NFCR9_ECC_BCH_CTRL) | BCH_INT_EN, info->reg + NFCR9_ECC_BCH_CTRL); } else writel(readl(info->reg + NFCR9_ECC_BCH_CTRL) & (~BCH_INT_EN), info->reg + NFCR9_ECC_BCH_CTRL); writeb(READ_RESUME, info->reg + NFCR9_ECC_BCH_CTRL + 1); } static int wmt_nand_ready(struct mtd_info *mtd) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); //unsigned int b2r_stat; int i = 0; while (1) { if (readb(info->reg + NFCRb_NFC_INT_STAT) & B2R) break; if ((++i>>20)) { printk(KERN_ERR "nand flash is not ready\n"); /*print_nand_register(mtd);*/ /* while (1);*/ return -1; } } //b2r_stat = readb(info->reg + NFCRb_NFC_INT_STAT); writeb(B2R, info->reg + NFCRb_NFC_INT_STAT); wmb(); if (readb(info->reg + NFCRb_NFC_INT_STAT) & B2R) { printk(KERN_ERR "NFC err : B2R status not clean\n"); return -2; } return 0; } static int wmt_nfc_transfer_ready(struct mtd_info *mtd) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); int i = 0; while (1) { if (!(readb(info->reg + NFCRa_NFC_STAT) & NFC_BUSY)) break; if (++i>>20) return -3; } return 0; } /* Vincent 2008.11.3*/ static int wmt_wait_chip_ready(struct mtd_info *mtd) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); int i = 0; while (1) { if ((readb(info->reg + NFCRa_NFC_STAT) & FLASH_RDY)) break; if (++i>>20) return -3; } return 0; } static int wmt_wait_cmd_ready(struct mtd_info *mtd) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); int i = 0; while (1) { if (!(readb(info->reg + NFCRa_NFC_STAT) & NFC_CMD_RDY)) break; if (++i>>20) return -3; } return 0; } /* #if (NAND_PAGE_SIZE == 512) Vincent 2008.11.4 static int wmt_wait_dma_ready(struct mtd_info *mtd) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); int i = 0; while (1) { if (!(readb(info->reg + NFC_IDLE) & 0x02)) break; if (++i>>20) { printk(KERN_ERR"\r DMA NOT Ready!\n"); print_nand_register(mtd); return -3; } } return 0; } #endif Vincent 2008.11.4*/ static void wmt_wait_nfc_ready(struct wmt_nand_info *info) { unsigned int bank_stat1, i = 0; while (1) { bank_stat1 = readw(info->reg + NFCRb_NFC_INT_STAT); if (!(readb(info->reg + NFCRa_NFC_STAT) & NFC_BUSY)) break; else if ((bank_stat1 & (ERR_CORRECT | BCH_ERR)) == (ERR_CORRECT | BCH_ERR)) break; if (i>>20) return; i++; } } static void bit_correct(uint8_t *c, uint8_t pos) { c[0] = (((c[0] ^ (0x01<dmabuf[bch_err_idx[0] >> 3]; temp >>= ((bch_err_idx[0] & 0x07) - 1); #endif } /* * flag = 0, need check BCH ECC * flag = 1, don't check ECC * flag = 2, need check Harming ECC * */ static int NFC_WAIT_IDLE(struct mtd_info *mtd) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); int i = 0; while (1) { if (readb(info->reg + NFCR15_IDLE_STAT) & NFC_IDLE) break; if (i>>20) { printk(KERN_NOTICE "nfc_wait_idle() time out\n"); print_nand_register(mtd); //while(i); return -1; } i++; } return 0; } static int wmt_nfc_wait_idle(struct mtd_info *mtd, unsigned int flag, int command, int column, unsigned int page_addr) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); int i = 0; while (1) { if (readb(info->reg + NFCR15_IDLE_STAT) & NFC_IDLE) break; if (i>>20) { writeb(READ_RESUME, info->reg + NFCR9_ECC_BCH_CTRL + 1); printk(KERN_NOTICE "nfc_wait_idle time out\n"); print_nand_register(mtd); //while(i); return -1; } i++; } /* continue read next bank and calc BCH ECC */ writeb(READ_RESUME, info->reg + NFCR9_ECC_BCH_CTRL + 1); return 0; } int check_rdmz_mark(unsigned int *buf, int size, int oob, struct mtd_info *mtd) { /*struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd);*/ int i = 0, k = 0; uint8_t *bm = (uint8_t *) &buf[1]; for (i = 0; i < 4; i++) { if (bm[i] == wmt_rdmz[i]) k++; } if (k > 0 && k < 4) { printk("buf=0x%x 0x%x mark=0x%x\n", buf[0], *(unsigned int *)(buf-1), *(unsigned int *)wmt_rdmz); //printk("nfcrf=%x oob=%d page=0x%x\n", readl(info->reg + NFCRf_CALC_RDMZ), oob, info->cur_page); } if (k >= 2) return 0; else return 1; } void set_FIFO_FF(unsigned int *buf, int size) { int i; for (i = 0; i < size; i++) buf[i] = 0xFFFFFFFF; } int check_all_FF(unsigned int *buf, int size, struct mtd_info *mtd) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); int i = 0, j = 0, k = 0; unsigned int *bf = (unsigned int *)&rdmz_FF[info->cur_page%16][0]; //unsigned int *bf = (unsigned int *)&info->dmabuf[24]; unsigned int *bf1 = &rdmz_badblk[info->cur_page%2][0]; if (mtd->dwRdmz && mtd->bbt_sw_rdmz == 0) { for (i = 0; i < size; i++) { if (buf[i] != bf[i] && buf[i] != bf1[i]) { k++; /*if (info->cur_page < ((mtd->blkcnt - 4) * mtd->pagecnt)) printk("need retry %d=[%x][%x] \n",i, buf[i],bf[i]);*/ } else j++; } if (j > (size/2)) return 1; } else { if (info->ECC_mode <= 3) size--; for (i = 0; i < size; i++) { if (buf[i] != 0xFFFFFFFF && buf[i] != 0) { k++; /*printk("unc %d=[%x]\n",i, buf[i]);*/ } else j++; } if (j > (size/2)) return 1; } /*if (info->cur_lpage < ((mtd->blkcnt - 4) * mtd->pagecnt)) { print_nand_register(mtd); printk("cur page 0x%x\n",info->cur_page); }*/ return 0; } #if 1 int check_all_FF_sw(unsigned int *buf, int size, struct mtd_info *mtd) { /*struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd);*/ int i = 0, j = 0, k = 0; for (i = 0; i < size; i++) { if (buf[i] != 0xFFFFFFFF) { k++;//return -i; /*if (oob) printk("%d=[%x] \n",i, buf[i]);*/ } else j++; } //if (k && oob) { //printk("k=%d total%d, oob=%d\n", k, size, oob); /*print_nand_register(mtd); rdmzier_oob((uint8_t *)(info->reg+ECC_FIFO_0), (uint8_t *)(info->reg+ECC_FIFO_0), 6, info->cur_page, mtd->realwritesize/4); print_nand_register(mtd); rdmzier_oob((uint8_t *)(info->reg+ECC_FIFO_0), (uint8_t *)(info->reg+ECC_FIFO_0), 6, info->cur_page, mtd->realwritesize/4); while(k);*/ //} /*if (k && !oob) printk("k=%d j%d, total=%d\n", k, j, size);*/ if (j > (size/2)) return 1; else return 0; } #endif void clear_ecc_resume_dma(struct wmt_nand_info *info) { writeb((ERR_CORRECT | BCH_ERR), info->reg + NFCRb_NFC_INT_STAT); wmb(); writeb(READ_RESUME, info->reg + NFCR9_ECC_BCH_CTRL + 1); wmb(); } void bch_data_ecc_correct(struct mtd_info *mtd) { int i, all_FF = 0; struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); struct nand_chip *this = mtd->priv; unsigned int bank_stat2, bch_ecc_idx, bank; unsigned int bank_size; /* BCH ECC err process */ bank_stat2 = readw(info->reg + NFCR17_ECC_BCH_ERR_STAT); bch_ecc_idx = bank_stat2 & BCH_ERR_CNT; bank = (bank_stat2 & BANK_NUM) >> 8; /* for data area */ /*if (bch_ecc_idx > 15) printk(KERN_NOTICE "pg=0x%x bk%d=%d\n",info->cur_page, bank, bch_ecc_idx);*/ #ifdef NAND_DEBUG printk(KERN_NOTICE "Read data \n"); #endif bank_size = info->bank_size; /*if (this->cur_chip && (info->cur_page%4) == 0) if ((info->cur_lpage < 0x7FB00) && this->cur_chip->cur_try_times < 5 && this->cur_chip != 0 && info->isr_cmd == 0x0) { printk("----------------------------------set unc error by dannier info->cur_page0x%x\n", info->cur_page); bch_ecc_idx = BCH_ERR_CNT; }*/ if (bch_ecc_idx >= BCH_ERR_CNT) { //unsigned int oob_parity_size = readb(info->reg + NFCR10_OOB_ECC_SIZE+1); if (bank == 0) info->unc_bank = 1; else info->unc_bank |= (1<= 40) oob_parity_size = 40;*/ clear_ecc_resume_dma(info); if (bank >= (info->banks-1)) { //all_FF = check_rdmz_mark((uint32_t *)(info->reg+ECC_FIFO_4), 1, 0, mtd); all_FF = check_all_FF((uint32_t *)(info->reg+ECC_FIFO_6), 6, mtd); if (all_FF) { info->data_ecc_uncor_err = 0; info->unc_allFF = 1; /*set_FIFO_FF((uint32_t *)(info->reg+ECC_FIFO_0), 5); set_FIFO_FF((uint32_t *)info->dmabuf, mtd->realwritesize/4);*/ return; } /*else printk("**********lost check all FF case *********af%x, bk%x\n", info->unc_bank,((1<banks)-1));*/ } if (info->isr_cmd == 0x0 && mtd->dwRetry && this->cur_chip) { info->data_ecc_uncor_err = 1; if ((info->cur_lpage >= ((mtd->blkcnt-8)*mtd->pagecnt) && info->cur_lpage < ((mtd->blkcnt-4)*mtd->pagecnt)) && ((this->cur_chip->nand_id>>24)&0xFF) == NAND_MFR_HYNIX) { /* read retry table not allowed to use read retry */ info->data_ecc_uncor_err = 2; if (bank >= (info->banks-1)) printk(KERN_ERR "data area bank %d uncor err page=0x%x no retry\n", bank, info->cur_page); } #ifdef RETRY_DEBUG else { if (bank >= (info->banks-1)) printk(KERN_ERR "data area bank %d uncor err page=0x%x use retry\n", bank, info->cur_page); } #endif return; } else { if (bank >= (info->banks-1)) { printk("reda lpage=%x bbt_sw_rdmz=%d hold=%x blkcnt=%d\n", info->cur_lpage, mtd->bbt_sw_rdmz, ((mtd->blkcnt - 8)*mtd->pagecnt), mtd->blkcnt); printk(KERN_ERR "data area uncor err page=0x%x,blk=%d no retry\n", info->cur_page, info->cur_page/mtd->pagecnt); /*print_nand_buffer(info->dmabuf, 32);printk("isrcmd 0x=%x\n", info->isr_cmd); print_nand_buffer((uint8_t *)(info->reg+ECC_FIFO_0), 48); print_nand_register(mtd); while(1);*/ } else return; } printk(KERN_ERR "data area unc++ page=0x%x no retry\n", info->cur_page); mtd->ecc_stats.failed++; return; /* uncorrected err */ } if (mtd->ecc_err_cnt < bch_ecc_idx) mtd->ecc_err_cnt = bch_ecc_idx; /* mtd->ecc_stats.corrected += (bank_stat2 & BCH_ERR_CNT);*/ /* BCH ECC correct */ #ifdef NAND_DEBUG printk(KERN_NOTICE "data area %d bit corrected err on bank %d \n", bch_ecc_idx, bank); #endif /*if (bank >= (info->banks-1)) { print_nand_register(mtd); }*/ for (i = 0; i < bch_ecc_idx; i++) bch_err_pos[i] = (readw(info->reg + NFCR18_ECC_BCH_ERR_POS + 2*i) & BCH_ERRPOS0); /* continue read next bank and calc BCH ECC */ clear_ecc_resume_dma(info); for (i = 0; i < bch_ecc_idx; i++) { //bch_err_pos[i] = (readw(info->reg + NFCR18_ECC_BCH_ERR_POS + 2*i) & BCH_ERRPOS0); //if (bank >= (info->banks-1)) //printk(KERN_NOTICE "data area byte=%d corrected err on bank %d bs=%d, banks=%d\n", bch_err_pos[i]>>3, bank, bank_size,info->banks); //printk(KERN_NOTICE "data page=0x%x byte=%d corrected err on bank %d bs=%d, banks=%d\n", //info->cur_page, bch_err_pos[i]>>3, bank, bank_size,info->banks); if((bch_err_pos[i] >> 3) < bank_size) { //if (bank >= (info->banks-1)) //printk(KERN_NOTICE "bank%d area value=%x ", bank, info->dmabuf[bank_size* bank + (bch_err_pos[i] >> 3)]); bit_correct(&info->dmabuf[bank_size* bank + (bch_err_pos[i] >> 3)], bch_err_pos[i] & 0x07); //if (bank >= (info->banks-1)) //printk(KERN_NOTICE "bank%d area c-value=%x \n", bank, info->dmabuf[bank_size* bank + (bch_err_pos[i] >> 3)]); } else if ((bch_err_pos[i] >> 3) < (bank_size + 24) && bank >= (info->banks-1)) {//oob area //if (bank >= (info->banks-1)) //printk(KERN_NOTICE "red area value=%x ", *((uint8_t *)(info->reg+ECC_FIFO_0)+(bch_err_pos[i] >> 3) - bank_size)); bit_correct((uint8_t *)(info->reg+ECC_FIFO_0)+(bch_err_pos[i] >> 3) - bank_size, (bch_err_pos[i] & 0x07)); //if (bank >= (info->banks-1)) //printk(KERN_NOTICE "red area c-value=%x \n", *((uint8_t *)(info->reg+ECC_FIFO_0)+(bch_err_pos[i] >> 3) - bank_size)); } #ifdef NAND_DEBUG printk(KERN_NOTICE "data area %xth ecc error position is byte%d bit%d\n", i, bank_size * bank + (bch_err_pos[i] >> 3), (bch_err_pos[i] & 0x07)); #endif } } void bch_redunt_ecc_correct(struct mtd_info *mtd) { int i, all_FF = 1; struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); struct nand_chip *this = mtd->priv; unsigned int bank_stat2, bch_ecc_idx, bank; unsigned int bank_size; /* BCH ECC err process */ bank_stat2 = readw(info->reg + NFCR17_ECC_BCH_ERR_STAT); bch_ecc_idx = bank_stat2 & BCH_ERR_CNT; bank = (bank_stat2 & BANK_NUM) >> 8; /* for data area */ #ifdef NAND_DEBUG printk(KERN_NOTICE "Read oob \n"); #endif if (info->isr_cmd != 0x50) { printk("bch_redunt_ecc_correct cmd not read oob \n"); print_nand_register(mtd); while(1) ; } /*oob_parity_size = readb(info->reg + NFCR10_OOB_ECC_SIZE+1); if (oob_parity_size >= 40) oob_parity_size = 40;*/ if (bch_ecc_idx >= BCH_ERR_CNT) { info->unc_bank = 1; all_FF = check_all_FF((uint32_t *)(info->reg+ECC_FIFO_6), 6, mtd); clear_ecc_resume_dma(info); if (all_FF > 0) { info->unc_allFF = 1; return; } /*printk("red unc err\n"); print_nand_register(mtd); rdmzier_oob((uint8_t *)(info->reg+ECC_FIFO_0), (uint8_t *)(info->reg+ECC_FIFO_0), 6, info->cur_page, mtd->realwritesize/4); print_nand_register(mtd); rdmzier_oob((uint8_t *)(info->reg+ECC_FIFO_0), (uint8_t *)(info->reg+ECC_FIFO_0), 6, info->cur_page, mtd->realwritesize/4); while(1);*/ if (mtd->dwRetry && this->cur_chip) { info->data_ecc_uncor_err = 1; info->oob_ecc_error = 0x50; if ((info->cur_lpage >= ((mtd->blkcnt-8)*mtd->pagecnt) && info->cur_lpage < ((mtd->blkcnt-4)*mtd->pagecnt)) && ((this->cur_chip->nand_id>>24)&0xFF) == NAND_MFR_HYNIX) { /* read retry table not allowed to use read retry */ info->data_ecc_uncor_err = 2; printk(KERN_ERR "red area bank %d uncor err page=0x%x no retry\n", bank, info->cur_page); } #ifdef RETRY_DEBUG else printk(KERN_ERR "red area bank %d uncor err page=0x%x use retry\n", bank, info->cur_page); #endif return; } else { printk(KERN_ERR "red area uncor err page=0x%x no retry\n", info->cur_page); } mtd->ecc_stats.failed++; printk(KERN_ERR "red area unc++ page=0x%x no retry\n", info->cur_page); return; /* uncorrected err */ } bank_size = info->bank_size; /* mtd->ecc_stats.corrected += (bank_stat2 & BCH_ERR_CNT);*/ /* BCH ECC correct */ #ifdef NAND_DEBUG printk(KERN_NOTICE "redunt area %d bit corrected err on bank %d \n", bch_ecc_idx, bank); #endif for (i = 0; i < bch_ecc_idx; i++) { bch_err_pos[i] = (readw(info->reg + NFCR18_ECC_BCH_ERR_POS + 2*i) & BCH_ERRPOS0); //printk(KERN_NOTICE "data area byte=%d corrected err on bank %d bs=%d, banks=%d\n", bch_err_pos[i]>>3, bank, bank_size,info->banks); if((bch_err_pos[i] >> 3) < 24) { //printk(KERN_NOTICE "area value=%d ", *((uint8_t *)(info->reg+ECC_FIFO_0)+(bch_err_pos[i] >> 3))); bit_correct((uint8_t *)(info->reg+ECC_FIFO_0)+(bch_err_pos[i] >> 3), (bch_err_pos[i] & 0x07)); } #ifdef NAND_DEBUG printk(KERN_NOTICE "redunt area %xth ecc error position is byte%d bit%d\n", i, bank_size * bank + (bch_err_pos[i] >> 3), (bch_err_pos[i] & 0x07)); #endif } /* continue read next bank and calc BCH ECC */ clear_ecc_resume_dma(info); } void bch_data_last_bk_ecc_correct(struct mtd_info *mtd) { int i, all_FF; struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); struct nand_chip *this = mtd->priv; unsigned int bank_stat2, bch_ecc_idx, bank, bank_size; /* BCH ECC err process */ bank_stat2 = readw(info->reg + NFCR17_ECC_BCH_ERR_STAT); bch_ecc_idx = bank_stat2 & BCH_ERR_CNT; bank = (bank_stat2 & BANK_NUM) >> 8; /* mtd->ecc_stats.corrected += (bank_stat2 & BCH_ERR_CNT);*/ /* BCH ECC correct */ bank_size = info->bank_size; if (bch_ecc_idx >= BCH_ERR_CNT) { info->unc_bank = 1; //unsigned int oob_parity_size = readb(info->reg + NFCR10_OOB_ECC_SIZE+1); all_FF = check_all_FF((uint32_t *)(info->reg+ECC_FIFO_6), 6/*oob_parity_size/4*/, mtd); clear_ecc_resume_dma(info); if (all_FF > 0) { info->unc_allFF = 1; return; } if (mtd->dwRetry && this->cur_chip) { info->data_ecc_uncor_err = 1; printk(KERN_ERR "last bank data area uncorrected err cur_page=%d use retry\n",info->cur_page); return; } else printk(KERN_ERR "last bank data area uncorrected err cur_page=%d no retry\n",info->cur_page); mtd->ecc_stats.failed++; printk(KERN_ERR "lst area unc++ page=0x%x no retry\n", info->cur_page); //while(bank_stat1); return; } if (mtd->ecc_err_cnt < bch_ecc_idx) mtd->ecc_err_cnt = bch_ecc_idx; /* mtd->ecc_stats.corrected += (bank_stat2 & BCH_ERR_CNT);*/ /* BCH ECC correct */ #ifdef NAND_DEBUG printk(KERN_NOTICE "last bank %d bit corrected error\n", bch_ecc_idx); #endif for (i = 0; i < bch_ecc_idx; i++) { bch_err_pos[i] = (readw(info->reg + NFCR18_ECC_BCH_ERR_POS + 2*i) & BCH_ERRPOS0); //printk(KERN_NOTICE "data area byte=%d corrected err on bank %d bs=%d, banks=%d\n", bch_err_pos[i]>>3, bank, bank_size,info->banks); if((bch_err_pos[i] >> 3) < bank_size) { bit_correct(&info->dmabuf[bank_size * (info->banks-1) + (bch_err_pos[i] >> 3)], bch_err_pos[i] & 0x07); } else if ((bch_err_pos[i] >> 3) < (bank_size + 24)) {//oob area of last bank //printk(KERN_NOTICE "redundant area value=%d ", *((uint8_t *)(info->reg+ECC_FIFO_0)+(bch_err_pos[i] >> 3) - bank_size)); bit_correct((uint8_t *)(info->reg+ECC_FIFO_0)+(bch_err_pos[i] >> 3) - bank_size, (bch_err_pos[i] & 0x07)); //printk(KERN_NOTICE "redundant area value=%d \n", *((uint8_t *)(info->reg+ECC_FIFO_0)+(bch_err_pos[i] >> 3) - bank_size)); } #ifdef NAND_DEBUG printk(KERN_NOTICE "data area last bank %xth ecc error position is byte%d bit%d\n", i, bank_size * bank + (bch_err_pos[i] >> 3), (bch_err_pos[i] & 0x07)); #endif } /* continue read next bank and calc BCH ECC */ clear_ecc_resume_dma(info); } void bch_data_ecc_correct_noalign(struct mtd_info *mtd) { int i, all_FF = 0; struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); struct nand_chip *this = mtd->priv; unsigned int bank_stat2, bch_ecc_idx, bank, dmabank = info->banks; unsigned int bank_size; dmabank = info->banks + 1; /* BCH ECC err process */ bank_stat2 = readw(info->reg + NFCR17_ECC_BCH_ERR_STAT); bch_ecc_idx = bank_stat2 & BCH_ERR_CNT; bank = (bank_stat2 & BANK_NUM) >> 8; bank_size = info->bank_size; /* for data area */ /*if (bch_ecc_idx >= 50) printk(KERN_NOTICE "pg=0x%x=blk%d bk%d=%d\n",info->cur_page, info->cur_page/mtd->pagecnt, bank, bch_ecc_idx);*/ #ifdef NAND_DEBUG printk(KERN_NOTICE "Read data \n");//print_nand_register(mtd); #endif if (bch_ecc_idx >= BCH_ERR_CNT) { /*if (bank >= (dmabank-1)) print_nand_buffer((uint8_t *)info->dmabuf+bank_size * (dmabank-1), 32);*/ //unsigned int oob_parity_size = readb(info->reg + NFCR10_OOB_ECC_SIZE+1); if (bank == 0) info->unc_bank = 1; else info->unc_bank |= (1<= (dmabank-1)) { if (dmabank == (info->banks + 1)) all_FF = check_all_FF((uint32_t *)(info->dmabuf+mtd->realwritesize+24), 6, mtd); else all_FF = check_all_FF((uint32_t *)(info->reg+ECC_FIFO_6), 6, mtd); if (all_FF) { info->data_ecc_uncor_err = 0; info->unc_allFF = 1; return; } /*else printk("**********lost check all FF case *********af%x, bk%x\n", info->unc_bank,((1<isr_cmd == 0x0 && mtd->dwRetry && this->cur_chip) { info->data_ecc_uncor_err = 1; if ((info->cur_lpage >= ((mtd->blkcnt-8)*mtd->pagecnt) && info->cur_lpage < ((mtd->blkcnt-4)*mtd->pagecnt)) && ((this->cur_chip->nand_id>>24)&0xFF) == NAND_MFR_HYNIX) { /* read retry table not allowed to use read retry */ info->data_ecc_uncor_err = 2; if (bank >= (dmabank-1)) printk(KERN_ERR "data area bank %d uncor err at eslc page=0x%x no retry\n", bank, info->cur_page); } #ifdef RETRY_DEBUG else { if (bank >= (dmabank-1)) printk(KERN_ERR "data area bank %d uncor err page=0x%x use retry\n", bank, info->cur_page); } #endif return; } else { if (bank >= (dmabank-1)) { printk("reda lpage=%x bbt_sw_rdmz=%d hold=%x blkcnt=%d\n", info->cur_lpage, mtd->bbt_sw_rdmz, ((mtd->blkcnt - 8)*mtd->pagecnt), mtd->blkcnt); printk(KERN_ERR "data area uncor err page=0x%x,blk=%d no retry\n", info->cur_page, info->cur_page/mtd->pagecnt); /*print_nand_buffer(info->dmabuf, 32);printk("isrcmd 0x=%x\n", info->isr_cmd); print_nand_buffer((uint8_t *)(info->reg+ECC_FIFO_0), 48); print_nand_register(mtd); while(1);*/ } else return; } printk(KERN_ERR "data area unc++ page=0x%x no retry\n", info->cur_page); mtd->ecc_stats.failed++; return; /* uncorrected err */ } if (mtd->ecc_err_cnt < bch_ecc_idx) mtd->ecc_err_cnt = bch_ecc_idx; /* mtd->ecc_stats.corrected += (bank_stat2 & BCH_ERR_CNT);*/ /* BCH ECC correct */ #ifdef NAND_DEBUG printk(KERN_NOTICE "data area %d bit corrected err on bank %d \n", bch_ecc_idx, bank); #endif /*if (bank >= (dmabank-1)) { print_nand_register(mtd); }*/ for (i = 0; i < bch_ecc_idx; i++) bch_err_pos[i] = (readw(info->reg + NFCR18_ECC_BCH_ERR_POS + 2*i) & BCH_ERRPOS0); /* continue read next bank and calc BCH ECC */ clear_ecc_resume_dma(info); for (i = 0; i < bch_ecc_idx; i++) { //if (bank >= (dmabank-1)) //printk(KERN_NOTICE "data area byte=%d corrected err on bank %d bs=%d, banks=%d\n", bch_err_pos[i]>>3, bank, bank_size,dmabank); //printk(KERN_NOTICE "data page=0x%x byte=%d corrected err on bank %d bs=%d, banks=%d\n", //info->cur_page, bch_err_pos[i]>>3, bank, bank_size,dmabank); if((bch_err_pos[i] >> 3) < bank_size) { //printk(KERN_NOTICE "bank%d area value=%x ", bank, info->dmabuf[bank_size* bank + (bch_err_pos[i] >> 3)]); bit_correct(&info->dmabuf[bank_size* bank + (bch_err_pos[i] >> 3)], bch_err_pos[i] & 0x07); //printk(KERN_NOTICE "bank%d area c-value=%x \n", bank, info->dmabuf[bank_size* bank + (bch_err_pos[i] >> 3)]); } else if ((bch_err_pos[i] >> 3) < (bank_size + 24) && bank >= (dmabank-1)) {//oob area //printk(KERN_NOTICE "red area value=%x ", *((uint8_t *)(info->reg+ECC_FIFO_0)+(bch_err_pos[i] >> 3) - bank_size)); bit_correct((uint8_t *)(info->reg+ECC_FIFO_0)+(bch_err_pos[i] >> 3) - bank_size, (bch_err_pos[i] & 0x07)); //printk(KERN_NOTICE "red area c-value=%x \n", *((uint8_t *)(info->reg+ECC_FIFO_0)+(bch_err_pos[i] >> 3) - bank_size)); } #ifdef NAND_DEBUG printk(KERN_NOTICE "data area %xth ecc error position is byte%d bit%d\n", i, bank_size * bank + (bch_err_pos[i] >> 3), (bch_err_pos[i] & 0x07)); #endif } } void bch_data_last_bk_ecc_correct_noalign(struct mtd_info *mtd) { int i, all_FF; struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); struct nand_chip *this = mtd->priv; unsigned int bank_stat2, bch_ecc_idx, bank, bank_size, bank_oob = info->banks; bank_stat2 = readw(info->reg + NFCR17_ECC_BCH_ERR_STAT); bch_ecc_idx = bank_stat2 & BCH_ERR_CNT; bank = (bank_stat2 & BANK_NUM) >> 8; /* mtd->ecc_stats.corrected += (bank_stat2 & BCH_ERR_CNT);*/ /* BCH ECC correct */ #ifdef NAND_DEBUG printk(KERN_NOTICE "Read lst bk data \n"); #endif bank_size = info->bank_size; if (bch_ecc_idx >= BCH_ERR_CNT) { //print_nand_buffer((uint8_t *)info->dmabuf+bank_size * bank_oob, 32); //unsigned int oob_parity_size = readb(info->reg + NFCR10_OOB_ECC_SIZE+1); all_FF = check_all_FF((uint32_t *)(info->dmabuf+bank_size * bank_oob + 24), 6, mtd);//print_nand_buffer(info->dmabuf+bank_size * bank_oob + 24, 24); clear_ecc_resume_dma(info); //printk(KERN_ERR "lstbk err cur_page=0x%x %d all_FF=%d\n",info->cur_page, info->cur_page, all_FF); if (all_FF > 0) { info->unc_allFF = 1; return; } if (mtd->dwRetry && this->cur_chip) { info->data_ecc_uncor_err = 1; printk(KERN_ERR "last bank data area uncorrected err cur_page=%d use retry\n",info->cur_page); //print_nand_buffer(info->dmabuf+bank_size * bank_oob/* + 24*/, 48); return; } else printk(KERN_ERR "last bank data area uncorrected err cur_page=%d no retry\n",info->cur_page); mtd->ecc_stats.failed++; //while(bank_stat1); return; } if (mtd->ecc_err_cnt < bch_ecc_idx) mtd->ecc_err_cnt = bch_ecc_idx; /* mtd->ecc_stats.corrected += (bank_stat2 & BCH_ERR_CNT);*/ /* BCH ECC correct */ #ifdef NAND_DEBUG printk(KERN_NOTICE "last bank %d bit corrected error\n", bch_ecc_idx); #endif for (i = 0; i < bch_ecc_idx; i++) { bch_err_pos[i] = (readw(info->reg + NFCR18_ECC_BCH_ERR_POS + 2*i) & BCH_ERRPOS0); //printk(KERN_NOTICE "data area byte=%d corrected err on bank %d bs=%d, banks=%d\n", bch_err_pos[i]>>3, bank, bank_size,bank_oob+1); if((bch_err_pos[i] >> 3) < bank_size) { bit_correct(&info->dmabuf[bank_size * bank_oob + (bch_err_pos[i] >> 3)], bch_err_pos[i] & 0x07); } /*else if ((bch_err_pos[i] >> 3) < (bank_size + 24)) {//oob area of last bank //printk(KERN_NOTICE "redundant area value=%d ", *((uint8_t *)(info->reg+ECC_FIFO_0)+(bch_err_pos[i] >> 3) - bank_size)); bit_correct((uint8_t *)(info->reg+ECC_FIFO_0)+(bch_err_pos[i] >> 3) - bank_size, (bch_err_pos[i] & 0x07)); //printk(KERN_NOTICE "redundant area value=%d \n", *((uint8_t *)(info->reg+ECC_FIFO_0)+(bch_err_pos[i] >> 3) - bank_size)); }*/ #ifdef NAND_DEBUG printk(KERN_NOTICE "data area last bank %xth ecc error position is byte%d bit%d\n", i, bank_size * bank + (bch_err_pos[i] >> 3), (bch_err_pos[i] & 0x07)); #endif } /* continue read next bank and calc BCH ECC */ clear_ecc_resume_dma(info); } /* * [Routine Description] * read status * [Arguments] * cmd : nand read status command * [Return] * the result of command */ static int wmt_read_nand_status(struct mtd_info *mtd, unsigned char cmd) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); int cfg = 0, status = -1; unsigned int b2r_stat; #ifdef WMT_HW_RDMZ unsigned int rdmz; rdmz = readb(info->reg + NFCRf_CALC_RDMZ+2); if (mtd->dwRdmz && rdmz) { //dump_stack(); nfc_hw_rdmz(mtd, 1); writeb(0, info->reg + NFCR4_COMPORT3_4); } #endif writeb(cmd, info->reg + NFCR2_COMPORT0); cfg = TWHR|DPAHSE_DISABLE|(1<<1); b2r_stat = readb(info->reg + NFCRb_NFC_INT_STAT); writeb(B2R|b2r_stat, info->reg + NFCRb_NFC_INT_STAT); //print_nand_register(mtd); writew(cfg|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL); status = wmt_wait_cmd_ready(mtd); if (status) { printk(KERN_ERR "NFC command transfer1 is not ready\n"); writeb(READ_RESUME, info->reg + NFCR9_ECC_BCH_CTRL + 1); return status; } b2r_stat = readb(info->reg + NFCRb_NFC_INT_STAT); writeb(B2R|b2r_stat, info->reg + NFCRb_NFC_INT_STAT); cfg = SING_RW|NAND2NFC; writew(cfg|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL); //print_nand_register(mtd); status = wmt_wait_cmd_ready(mtd); if (status) { printk(KERN_ERR "NFC command transfer2 is not ready\n"); writeb(READ_RESUME, info->reg + NFCR9_ECC_BCH_CTRL + 1); return status; } status = wmt_nfc_transfer_ready(mtd); /* status = wmt_nand_wait_idle(mtd);*/ if (status) { printk(KERN_ERR "NFC IO transfer is not ready\n"); writeb(READ_RESUME, info->reg + NFCR9_ECC_BCH_CTRL + 1); /*print_nand_register(mtd);*/ return status; } info->datalen = 0; info->dmabuf[0] = readb(info->reg + NFCR0_DATAPORT) & 0xff; #ifdef WMT_HW_RDMZ if (mtd->dwRdmz && rdmz) { //printk(KERN_ERR "sts=%x\n", info->dmabuf[0]); info->dmabuf[0] = info->dmabuf[0]^rdmz_tb[0]; if ((info->dmabuf[0]&0xFF) != 0xe0) { printk(KERN_ERR "de-rdmz sts=%x page=%x\n", info->dmabuf[0],info->cur_page); //if (info->cur_page != 0x7ff00) { print_nand_register(mtd); dump_stack(); //while(1); //} } } #endif status = info->dmabuf[0]; //printk( "read status=0x%x\n", status); return status; } void fill_desc(unsigned int *Desc, unsigned int len, unsigned char *buf, unsigned int bank_size) { unsigned int CurDes_off = 0, i; unsigned char *desc = (unsigned char *)Desc; for (i = 0; i < (len/bank_size); i++) { nand_init_short_desc((unsigned int *)(desc+CurDes_off), bank_size, (unsigned int *)(buf+i*bank_size), ((i == ((len/bank_size)-1)) && (!(len%bank_size))) ? 1 : 0); CurDes_off += sizeof(struct _NAND_PDMA_DESC_S); } if (len%bank_size) nand_init_short_desc((unsigned int *)(desc+CurDes_off), (len%bank_size), (unsigned int *)(buf+i*bank_size), 1); } /* data_flag = 0: set data ecc fifo */ static int wmt_nfc_dma_cfg(struct mtd_info *mtd, unsigned int len, unsigned int wr, int data_flag, int Nbank) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); int status; unsigned int *ReadDesc, *WriteDesc, ofs; ofs = mtd->writesize + mtd->oobsize + 0x1000 - (mtd->oobsize%0x1000); ReadDesc = (unsigned int *)(info->dmabuf + ofs + 0x100); WriteDesc = (unsigned int *)(info->dmabuf + ofs + 0x200); /* printk(KERN_ERR "info->dmabuf = 0x%x\r\n", (unsigned int) info->dmabuf); printk(KERN_ERR "info->dmaaddr = 0x%x\r\n", (unsigned int) info->dmaaddr); printk(KERN_ERR "ReadDesc addr = 0x%x\r\n", (unsigned int) ReadDesc); printk(KERN_ERR "WriteDesc addr = 0x%x\r\n", (unsigned int) WriteDesc); */ if (len == 0) { printk(KERN_ERR "DMA transfer length = 0\r\n"); return 1; } if (len > 1024 && readb(info->reg + NFCR9_ECC_BCH_CTRL)&DIS_BCH_ECC) { len = 512; if (mtd->realwritesize > 8192) len = 1024; } if (data_flag == 0) { writeb(readb(info->reg + NFCRd_OOB_CTRL) & 0xF7, info->reg + NFCRd_OOB_CTRL); } writew(len - 1, info->reg + NFCR8_DMA_CNT); status = nand_init_pdma(mtd); if (status) printk(KERN_ERR "nand_init_pdma fail status = 0x%x", status); if (readl(info->reg + NFC_DMA_ISR) & NAND_PDMA_IER_INT_STS) writel(NAND_PDMA_IER_INT_STS, info->reg + NFC_DMA_ISR); if (readl(info->reg + NFC_DMA_ISR) & NAND_PDMA_IER_INT_STS) { printk(KERN_ERR "PDMA interrupt status can't be clear "); printk(KERN_ERR "NFC_DMA_ISR = 0x%8.8x \n", (unsigned int)readl(info->reg + NFC_DMA_ISR)); } nand_alloc_desc_pool((wr) ? WriteDesc : ReadDesc); /*nand_init_short_desc((wr)?WriteDesc : ReadDesc, len, (unsigned long *)buf);*/ if (info->oob_ecc_error == 0x50 && len != 1 && len != 3) { fill_desc((wr)?WriteDesc : ReadDesc, len, (unsigned char *)info->last_bank_dmaaddr, 1024); if (len != 1024 && len != 512) printk("oob_ecc_error len!=1024, len=%d \n", len); } else if (Nbank == 2) {//for multi-plane 2nd plane wr dma cfg if ((mtd->pageSizek >> (ffs(mtd->pageSizek)-1)) != 1) fill_desc((wr)?WriteDesc : ReadDesc, len, (unsigned char *)info->dmaaddr, 1024); else fill_desc((wr)?WriteDesc : ReadDesc, len, (unsigned char *)info->dmaaddr + mtd->realwritesize, 1024); } else fill_desc((wr)?WriteDesc : ReadDesc, len, (unsigned char *)info->dmaaddr, 1024); /*printk(KERN_ERR "dma wr=%d, len=0x%x\n", wr, len);*/ nand_config_pdma(mtd, (wr) ? (unsigned long *)(info->dmaaddr + ofs + 0x200) : (unsigned long *)(info->dmaaddr + ofs + 0x100), wr); return 0; } int nand_init_pdma(struct mtd_info *mtd) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); writel(NAND_PDMA_GCR_SOFTRESET, info->reg + NFC_DMA_GCR); writel(NAND_PDMA_GCR_DMA_EN, info->reg + NFC_DMA_GCR); if (readl(info->reg + NFC_DMA_GCR) & NAND_PDMA_GCR_DMA_EN) return 0; else return 1; } int nand_free_pdma(struct mtd_info *mtd) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); writel(0, info->reg + NFC_DMA_DESPR); writel(0, info->reg + NFC_DMA_GCR); return 0; } int nand_alloc_desc_pool(unsigned int *DescAddr) { memset(DescAddr, 0x00, 0x80); return 0; } int nand_init_short_desc(unsigned int *DescAddr, unsigned int ReqCount, unsigned int *BufferAddr, int End) { struct _NAND_PDMA_DESC_S *CurDes_S; CurDes_S = (struct _NAND_PDMA_DESC_S *) DescAddr; CurDes_S->ReqCount = ReqCount; CurDes_S->i = End; CurDes_S->end = End; CurDes_S->format = 0; CurDes_S->DataBufferAddr = (unsigned long)BufferAddr; return 0; } int nand_init_long_desc(unsigned long *DescAddr, unsigned int ReqCount, unsigned long *BufferAddr, unsigned long *BranchAddr, int End) { struct _NAND_PDMA_DESC_L *CurDes_L; CurDes_L = (struct _NAND_PDMA_DESC_L *) DescAddr; CurDes_L->ReqCount = ReqCount; CurDes_L->i = 0; CurDes_L->format = 1; CurDes_L->DataBufferAddr = (unsigned long)BufferAddr; CurDes_L->BranchAddr = (unsigned long)BranchAddr; if (End) { CurDes_L->end = 1; CurDes_L->i = 1; } return 0; } /* int nand_config_desc(unsigned long *DescAddr, unsigned long *BufferAddr, int Blk_Cnt) { int i = 0 ; unsigned long *CurDes = DescAddr; nand_alloc_desc_pool(CurDes); for (i = 0 ; i < 3 ; i++) { nand_init_short_desc(CurDes, 0x80, BufferAddr); BufferAddr += (i * 0x80); CurDes += (i * sizeof(NAND_PDMA_DESC_S)); } if (Blk_Cnt > 1) { nand_init_long_desc(CurDes, 0x80, BufferAddr, CurDes + sizeof(NAND_PDMA_DESC_L), 0); BufferAddr += (i * 0x80); CurDes += (i * sizeof(NAND_PDMA_DESC_L)); nand_init_long_desc(CurDes, (Blk_Cnt - 1) * 512, BufferAddr, CurDes + sizeof(NAND_PDMA_DESC_L), 1); } else { nand_init_long_desc(CurDes, 0x80, BufferAddr, CurDes + sizeof(NAND_PDMA_DESC_L), 1); } return 0; } */ int nand_config_pdma(struct mtd_info *mtd, unsigned long *DescAddr, unsigned int dir) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); if (info->isr_cmd != NAND_SET_FEATURE && info->isr_cmd != 0x37 && info->isr_cmd != 0x36) writel(NAND_PDMA_IER_INT_EN, info->reg + NFC_DMA_IER); writel((unsigned long)DescAddr, info->reg + NFC_DMA_DESPR); if (dir == NAND_PDMA_READ) writel(readl(info->reg + NFC_DMA_CCR)|NAND_PDMA_CCR_peripheral_to_IF, info->reg + NFC_DMA_CCR); else writel(readl(info->reg + NFC_DMA_CCR)&(~NAND_PDMA_CCR_peripheral_to_IF), info->reg + NFC_DMA_CCR); wmb(); /*mask_interrupt(IRQ_NFC_DMA);*/ writel(readl(info->reg + NFC_DMA_CCR)|NAND_PDMA_CCR_RUN, info->reg + NFC_DMA_CCR); /*printk(KERN_ERR "NFC_DMA_CCR = 0x%8.8x\r\n", readl(info->reg + NFC_DMA_CCR));*/ /*print_nand_register(mtd);*/ wmb(); return 0; } int nand_pdma_handler(struct mtd_info *mtd) { unsigned long status = 0; unsigned long count = 0; struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); count = 0x100000; #if 0 /* polling CSR TC status */ if (!(readl(info->reg + NFC_DMA_CCR)|NAND_PDMA_CCR_peripheral_to_IF)) { do { count--; if (readl(info->reg + NFC_DMA_ISR) & NAND_PDMA_IER_INT_STS) { status = readl(info->reg + NFC_DMA_CCR) & NAND_PDMA_CCR_EvtCode; writel(readl(info->reg + NFC_DMA_ISR)&NAND_PDMA_IER_INT_STS, info->reg + NFC_DMA_ISR); printk(KERN_ERR "NFC_DMA_ISR = 0x%8.8x\r\n", (unsigned int)readl(info->reg + NFC_DMA_ISR)); break; } if (count == 0) { printk(KERN_ERR "PDMA Time Out!\n"); printk(KERN_ERR "NFC_DMA_CCR = 0x%8.8x\r\n", (unsigned int)readl(info->reg + NFC_DMA_CCR)); /*print_nand_register(mtd);*/ count = 0x100000; /*break;*/ } } while (1); } else #endif status = readl(info->reg + NFC_DMA_CCR) & NAND_PDMA_CCR_EvtCode; writel(readl(info->reg + NFC_DMA_ISR)&NAND_PDMA_IER_INT_STS, info->reg + NFC_DMA_ISR); if (status == NAND_PDMA_CCR_Evt_ff_underrun) printk(KERN_ERR "PDMA Buffer under run!\n"); if (status == NAND_PDMA_CCR_Evt_ff_overrun) printk(KERN_ERR "PDMA Buffer over run!\n"); if (status == NAND_PDMA_CCR_Evt_desp_read) printk(KERN_ERR "PDMA read Descriptor error!\n"); if (status == NAND_PDMA_CCR_Evt_data_rw) printk(KERN_ERR "PDMA read/write memory descriptor error!\n"); if (status == NAND_PDMA_CCR_Evt_early_end) printk(KERN_ERR "PDMA read early end!\n"); if (count == 0) { printk(KERN_ERR "PDMA TimeOut!\n"); while (1) ; } return 0; } int nand_get_feature(struct mtd_info *mtd, int addr) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); unsigned int cfg = 0, i = 0; int status = -1; writeb(0xEE, info->reg + NFCR2_COMPORT0); writeb(addr, info->reg + NFCR3_COMPORT1_2); cfg = DPAHSE_DISABLE|(0x02<<1); writew(cfg|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL); status = wmt_wait_cmd_ready(mtd); if (status) { printk(KERN_ERR "nand_get_feature(): wait cmd is not ready\n"); writeb(READ_RESUME, info->reg + NFCR9_ECC_BCH_CTRL + 1); return status; } status = wmt_wait_chip_ready(mtd); if (status) printk(KERN_ERR "flash is not ready\n"); status = wmt_nand_ready(mtd); if (status) printk(KERN_ERR "get feature wait B2R fail\n"); cfg = NAND2NFC|SING_RW; for (i = 0; i < 4; i++) { writew(cfg|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL); status = wmt_wait_cmd_ready(mtd); if (status) return status; status = wmt_nfc_transfer_ready(mtd); if (status) { printk(KERN_ERR "in nand_get_feature(): wait transfer cmd is not ready\n"); return status; } info->dmabuf[i] = readb(info->reg + NFCR0_DATAPORT) & 0xff; } //#ifdef NAND_DEBUG printk(KERN_NOTICE "nand get feature %x %x %x %x\n", info->dmabuf[0], info->dmabuf[1], info->dmabuf[2], info->dmabuf[3]); //#endif info->datalen = 0; return 0; } int nand_set_feature(struct mtd_info *mtd, int cmd, int addrss, int value) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); unsigned int cfg = 0, len = 4; int status = -1; DECLARE_COMPLETION(complete); //unsigned char id[4] = {value, 0, 0, 0}; info->dmabuf[0] = value; info->dmabuf[1] = 0; info->dmabuf[2] = 0; info->dmabuf[3] = 0; info->isr_cmd = cmd; info->done_data = &complete; writel(readl(info->reg + NFCR9_ECC_BCH_CTRL) | DIS_BCH_ECC, info->reg + NFCR9_ECC_BCH_CTRL); //printk("set feature cycle1\n"); writeb(0x1F, info->reg + NFCR13_INT_MASK); writel(B2R, info->reg + NFCRb_NFC_INT_STAT); if (readb(info->reg + NFCRb_NFC_INT_STAT) & B2R) printk("nand get feature B2R can't clear\n"); writeb(0x1B, info->reg + NFCR13_INT_MASK); //printk("set feature cycle2\n"); wmt_nfc_dma_cfg(mtd, len, 1, 0, -1); //print_nand_register(nfc); writeb(cmd, info->reg + NFCR2_COMPORT0); writeb(addrss, info->reg + NFCR3_COMPORT1_2); cfg = (0x02<<1); //print_nand_register(mtd); //printk("set feature cycle trigg = 0x%x\n", cfg|NFC_TRIGGER|OLD_CMD); writew(cfg|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL); //print_nand_register(mtd); //printk("set feature cycle3\n"); wait_for_completion_timeout(&complete, NFC_TIMEOUT_TIME); status = NFC_WAIT_IDLE(mtd); if (status) { printk("get feature nand flash idle time out\n"); return status; } writeb(0x80, info->reg + NFCR13_INT_MASK); //printk("set feature cycle5\n"); status = wmt_nfc_transfer_ready(mtd); /* status = wmt_nand_wait_idle(mtd);*/ if (status) { printk(KERN_ERR "NFC IO transfer is not ready\n"); /*print_nand_register(mtd);*/ return status; } status = NFC_WAIT_IDLE(mtd); if (status) { printk("set feature nand flash idle time out\n"); return status; } status = nand_pdma_handler(mtd); nand_free_pdma(mtd); if (status) printk(KERN_ERR "check write pdma handler status= %x \n", status); writel(readl(info->reg + NFCR9_ECC_BCH_CTRL) & ~DIS_BCH_ECC, info->reg + NFCR9_ECC_BCH_CTRL); printk(KERN_DEBUG " MICRON flash set feature timing mode %d\n", value); return status; } int get_parameter(struct mtd_info *mtd, uint8_t *buf, uint8_t *addr, int size) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); unsigned int cfg = 0, len = 1; int i, status = -1, regc = size; unsigned char *FIFO = (unsigned char *) (info->reg+ECC_FIFO_c); //print_nand_register(mtd); for (i = 0; i < regc;i++) { //DECLARE_COMPLETION(complete); info->isr_cmd = 0x37; //info->done_data = &complete; //printk("hynix retry get c1\n"); //nfc->reg->NFCR13 = 0x0F; writeb(0x1F, info->reg + NFCR13_INT_MASK); //nfc->reg->NFCRb |= B2R; /* write to clear */ writel(B2R, info->reg + NFCRb_NFC_INT_STAT); if (readb(info->reg + NFCRb_NFC_INT_STAT) & B2R) printk("B2R can't clear\n"); //printk("hynix retry get c2\n"); wmt_nfc_dma_cfg(mtd, len, 0, 0, -1); //print_nand_register(nfc); writeb(readb(info->reg + NFCRd_OOB_CTRL) | HIGH64FIFO, info->reg + NFCRd_OOB_CTRL); if (i == 0) { FIFO[0] = 0x37; FIFO[1] = addr[0]; //nfc->reg->NFCRc = 0x00020001; writel(0x00020001, info->reg + NFCRc_CMD_ADDR); cfg = (0x02<<1); } else { FIFO[0] = addr[i]; // set address latch ALE(high) and CLE(lower) //nfc->reg->NFCRc = 0x00010000; writel(0x00010000, info->reg + NFCRc_CMD_ADDR); cfg = (0x01<<1); } //print_nand_register(mtd); //printk("hynix get retry param trigg = 0x%x\n", NAND2NFC|cfg|NFC_TRIGGER); //nfc->reg->NFCR1 = NAND2NFC|cfg|NFC_TRIGGER; /* cfg & start*/ writew(NAND2NFC|cfg|NFC_TRIGGER, info->reg + NFCR1_COMCTRL); //print_nand_register(mtd); //wait_for_completion_timeout(&complete, NFC_TIMEOUT_TIME); //j = 0; while (!readl(info->reg + NFC_DMA_ISR)&NAND_PDMA_IER_INT_STS); status = NFC_WAIT_IDLE(mtd); if (status) { printk("get feature nand flash idle time out\n"); return status; } writeb(0x80, info->reg + NFCR13_INT_MASK); //printk("set feature cycle5\n"); status = wmt_nfc_transfer_ready(mtd); /* status = wmt_nand_wait_idle(mtd);*/ if (status) { printk(KERN_ERR "NFC IO transfer is not ready\n"); /*print_nand_register(mtd);*/ return status; } status = NFC_WAIT_IDLE(mtd); if (status) { printk("set feature nand flash idle time out\n"); return status; } status = nand_pdma_handler(mtd); nand_free_pdma(mtd); if (status) printk(KERN_ERR "check write pdma handler status= %x \n", status); buf[i] = info->dmabuf[0]; } #ifdef RETRY_DEBUG printk("retry param buf ="); for (i = 0; i < regc;i++) printk(" 0x%x", buf[i]); printk("\n"); #endif //writel(readl(info->reg + NFCR9_ECC_BCH_CTRL) & ~DIS_BCH_ECC, info->reg + NFCR9_ECC_BCH_CTRL); writeb(readb(info->reg + NFCRd_OOB_CTRL) & ~HIGH64FIFO, info->reg + NFCRd_OOB_CTRL); return status; } int hynix_get_parameter(struct mtd_info *mtd, int mode) { struct nand_chip *this = mtd->priv; struct nand_read_retry_param *cur_chip = this->cur_chip; unsigned char buf[16] = {0}; unsigned char *offset = NULL; unsigned char *set_value = NULL; unsigned char *def_value = NULL; unsigned int reg_num; int i = 0, j = 0; int rc = -1; if (mode == ESLC_MODE) { reg_num = cur_chip->eslc_reg_num; offset = cur_chip->eslc_offset; def_value = cur_chip->eslc_def_value; set_value = cur_chip->eslc_set_value; } else if (mode == READ_RETRY_MODE) { reg_num = cur_chip->retry_reg_num; offset = cur_chip->retry_offset; def_value = cur_chip->retry_def_value; } else { printk("Not support this mode %d\n", mode); return rc; } if (mtd->dwRdmz) reset_nfc(mtd, NULL, 3); rc = get_parameter(mtd, buf, offset, reg_num); if (mtd->dwRdmz && mtd->bbt_sw_rdmz == 0) nfc_hw_rdmz(mtd, 1);//enable rdmz if (rc != 0) return rc; if (mode == ESLC_MODE) { if((def_value[reg_num] != 0xff) && (def_value[reg_num + 1] != 0xff)) { for(i = 0; i < reg_num; i++) { def_value[i] = buf[i]; set_value[i] += buf[i]; } def_value[reg_num] = 0xff; def_value[reg_num + 1] = 0xff; //printk("ESLC: "); print_nand_buffer(buf, reg_num); } else { //printk("ESLC Current: "); //print_nand_buffer(buf, reg_num); } } else if (mode == READ_RETRY_MODE) { if ((def_value[reg_num] != 0xff) && (def_value[reg_num + 1] != 0xff)) { for (i = 0; i < reg_num; i++) def_value[i] = buf[i]; def_value[reg_num] = 0xff; def_value[reg_num + 1] = 0xff; //printk("Retry : "); //print_nand_buffer(buf, reg_num); } else { //printk("Retry Current: "); //print_nand_buffer(buf, reg_num); //printk("\n"); for(j = 0; j < cur_chip->total_try_times; j++) { for(i = 0; i < reg_num; i++) { if(buf[i] != cur_chip->retry_value[j*reg_num+i]) break; } if(i == reg_num) { cur_chip->cur_try_times = j; printk("Get current try times %d from current register.\n", j); break; } } } } return rc; } int write_bytes_cmd(struct mtd_info *mtd, int cmd_cnt, int addr_cnt, int data_cnt, uint8_t *cmd, uint8_t *addr, uint8_t *data) { int i, status = 0; unsigned int cmd_addr_cycle = 0, cfg = 0, cfg_bit8 = 0, counter = 10000; struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); unsigned char *FIFO = (unsigned char *) (info->reg+ECC_FIFO_c); writeb(0x1F, info->reg + NFCR13_INT_MASK); status = NFC_WAIT_IDLE(mtd); if (status) { printk("nand flash idle time out\n"); return status; } if (data_cnt > 0) { info->isr_cmd = 0x36; memcpy(info->dmabuf, data, data_cnt); wmt_nfc_dma_cfg(mtd, data_cnt, 1, 0, -1); } writeb(readb(info->reg + NFCRd_OOB_CTRL) | HIGH64FIFO, info->reg + NFCRd_OOB_CTRL); for (i = 0; i < cmd_cnt; i++) { FIFO[i] = cmd[i]; cmd_addr_cycle |= (1<reg + NFCRc_CMD_ADDR); #ifdef RETRY_DEBUG //printk("NFCRc=0x%x ", cmd_addr_cycle); printk("FIFO = "); for (i = 0; i < (addr_cnt+cmd_cnt); i++) printk("0x%x ", FIFO[i]); if (data_cnt > 0) { printk("data = "); for (i = 0; i < data_cnt; i++) { printk("0x%x ", data[i]); } printk("\n"); } else printk("\n"); #endif cfg = ((cmd_cnt + addr_cnt)&0x7)<<1; cfg_bit8 = (((cmd_cnt + addr_cnt)&0x18)>>3)<<8; if (data_cnt == 0) cfg |= DPAHSE_DISABLE; writew(cfg_bit8|cfg|NFC_TRIGGER, info->reg + NFCR1_COMCTRL); //print_nand_register(mtd); status = wmt_nfc_transfer_ready(mtd); if (status) { writeb(readb(info->reg + NFCRd_OOB_CTRL) & ~HIGH64FIFO, info->reg + NFCRd_OOB_CTRL); printk(KERN_ERR "NFC IO transfer is not ready\n"); /*print_nand_register(mtd);*/ goto go_fail; } status = NFC_WAIT_IDLE(mtd); if (status) { printk("retry c1 wait idle time out\n"); goto go_fail; } if (cmd_cnt > 0 && cmd) if (cmd[0] == NAND_CMD_RESET) { status = wmt_nand_ready(mtd); if (status) { printk(KERN_ERR "Reset err, nand device is not ready\n"); writeb(READ_RESUME, info->reg + NFCR9_ECC_BCH_CTRL + 1); } } if (data_cnt > 0) while (!readl(info->reg + NFC_DMA_ISR)&NAND_PDMA_IER_INT_STS) { if (counter <= 0) { break; } counter--; } if (data_cnt > 0) { status = nand_pdma_handler(mtd); nand_free_pdma(mtd); if (status) { printk(KERN_ERR "check write pdma handler status= %x \n", status); goto go_fail; } } go_fail: writeb(0x80, info->reg + NFCR13_INT_MASK); writeb(readb(info->reg + NFCRd_OOB_CTRL) & ~HIGH64FIFO, info->reg + NFCRd_OOB_CTRL); return status; } int set_parameter(struct mtd_info *mtd, unsigned char *buf, unsigned char *offset, int regn) { int i, status = -1, regc = regn; unsigned char cmd[2] = {0x36, 0x16}; //print_nand_register(mtd); status = write_bytes_cmd(mtd, 1, 1, 1, (uint8_t *)&cmd[0], offset, buf); if (status) printk("hynix_set read retry reg: phase 0 fail"); for (i = 1; i < regc; i++) { status = write_bytes_cmd(mtd, 0, 1, 1, NULL, &offset[i], &buf[i]); if (status) printk("hynix_set read retry reg: phase %d fail", i); } status = write_bytes_cmd(mtd, 1, 0, 0, (uint8_t *)&cmd[1], NULL, NULL); if (status) printk("load_hynix_opt_reg: phase 3 fail"); return status; } void dummy_read(struct mtd_info *mtd) { int status = -1; uint8_t cmd[2] = {0x00, 0x30}, addr[5] = {0, 0, 0, 0, 0}; status = write_bytes_cmd(mtd, 1, 5, 0, &cmd[0], addr, NULL); if (status) printk("dummy read cmd(00) + addr fail\n"); status = write_bytes_cmd(mtd, 1, 0, 0, &cmd[1], NULL, NULL); if (status) printk("dummy read cmd(0x30) fail\n"); /*print_nand_register(mtd); dump_stack();*/ /* check busy to ready status*/ status = wmt_nand_ready(mtd); if (status) { printk(KERN_ERR "NFC check B2R time out\n"); } } int hynix_set_parameter(struct mtd_info *mtd, int mode, int def_value) {struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); struct nand_chip *this = mtd->priv; struct nand_read_retry_param *cur_chip = this->cur_chip; unsigned char *offset = NULL; unsigned char *set_value = NULL; unsigned int reg_num; int rc = -1; if (mode == ESLC_MODE) { reg_num = cur_chip->eslc_reg_num; offset = cur_chip->eslc_offset; if (def_value == ECC_ERROR_VALUE) { set_value = cur_chip->eslc_set_value; } else { set_value = cur_chip->eslc_def_value; } } else { reg_num = cur_chip->retry_reg_num; offset = cur_chip->retry_offset; if (def_value == ECC_ERROR_VALUE) { cur_chip->cur_try_times++; if (cur_chip->cur_try_times >= cur_chip->total_try_times) cur_chip->cur_try_times = -1; if ((cur_chip->cur_try_times >= 0) && (cur_chip->cur_try_times < cur_chip->total_try_times)) set_value = cur_chip->retry_value + cur_chip->cur_try_times* cur_chip->retry_reg_num; else set_value = cur_chip->retry_def_value; } else { set_value = cur_chip->retry_def_value; cur_chip->cur_try_times = -1; } } #ifdef RETRY_DEBUG printk("hynix set value: cur_try_times=%d\n", cur_chip->cur_try_times); for(rc = 0; rc < reg_num; rc++) printk(" 0x%x:0x%x ", offset[rc], set_value[rc]); printk("reg_num = %d\n", reg_num); #endif if (mtd->dwRdmz) reset_nfc(mtd, NULL, 3); rc = set_parameter(mtd, set_value, offset, reg_num); if (mtd->dwRdmz && mtd->bbt_sw_rdmz == 0) nfc_hw_rdmz(mtd, 1);//enable rdmz if(rc) { printk("set_parameter fail.\n"); return rc; } if (def_value == DEFAULT_VALUE && mode == ESLC_MODE) { printk("dummy read: rpage=%x wpage%x\n", info->cur_page, info->lst_wpage); dummy_read(mtd); } return rc; } int toshiba_pre_condition(struct mtd_info *mtd) { int status = 0; unsigned char cmd1[2] = {0x5c, 0xc5}; status = write_bytes_cmd(mtd, 2, 0, 0, cmd1, NULL, NULL); if(status) printk("toshiba pre condition cmd1 time out.\n"); else printk("toshiba pre condition OK.\n"); return status; } int toshiba_get_parameter(struct mtd_info *mtd, int mode) { return 0; } int toshiba_set_parameter(struct mtd_info *mtd, int mode, int def_mode) { int i, status = -1; struct nand_chip *this = mtd->priv; struct nand_read_retry_param *cur_chip = this->cur_chip; unsigned char cmd2[1] = {0x55}; unsigned char cmd3[2] = {0x26, 0x5d}; unsigned char *set_value = NULL; unsigned char *offset = NULL; if (mtd->dwRdmz) reset_nfc(mtd, NULL, 3); if (cur_chip->cur_try_times >= cur_chip->total_try_times) cur_chip->cur_try_times = 0; set_value = cur_chip->retry_value + cur_chip->cur_try_times*cur_chip->retry_reg_num; offset = cur_chip->retry_offset; cur_chip->cur_try_times++; #ifdef RETRY_DEBUG printk("toshiba set cur_try_times=%d\n", cur_chip->cur_try_times); #endif for (i = 0; i < 4; i++) { status = write_bytes_cmd(mtd, 1, 1, 1, cmd2, &offset[i], &set_value[i]); if (status) printk("toshiba set read retry reg: phase %d fail", i); } status = write_bytes_cmd(mtd, 2, 0, 0, cmd3, NULL, NULL); if (status) { printk("pre condition cmd2 time out\n"); } if (mtd->dwRdmz && mtd->bbt_sw_rdmz == 0) nfc_hw_rdmz(mtd, 1);//enable rdmz return status; } int samsung_get_parameter(struct mtd_info *mtd, int mode) { return 0; } int samsung_set_parameter(struct mtd_info *mtd, int mode, int def_mode) { struct nand_chip *this = mtd->priv; struct nand_read_retry_param *cur_chip = this->cur_chip; unsigned char *offset = NULL; unsigned char *set_value = NULL; unsigned int reg_num; int rc = -1, i; uint8_t cmd[1] = {0xA1}; uint8_t data[3] = {0, 0, 0}; if (mtd->dwRdmz) reset_nfc(mtd, NULL, 3); reg_num = cur_chip->retry_reg_num; offset = cur_chip->retry_offset; if (def_mode == ECC_ERROR_VALUE) { set_value = cur_chip->retry_value + cur_chip->cur_try_times * reg_num; cur_chip->cur_try_times++; } else { set_value = cur_chip->retry_def_value; cur_chip->cur_try_times = 0; } #ifdef RETRY_DEBUG printk("samsung set value: cur_try_times=%d\n", cur_chip->cur_try_times); for(i = 0; i < reg_num; i++) printk(" 0x%x:0x%x ", offset[i], set_value[i]); printk("reg_num = %d\n", reg_num); #endif for (i = 0; i < reg_num; i++) { data[1] = offset[i]; data[2] = set_value[i]; rc = write_bytes_cmd(mtd, 1, 0, 3, cmd, NULL, data); if (rc) printk("samsung read retry reg: phase %d fail\n", i); } if (mtd->dwRdmz && mtd->bbt_sw_rdmz == 0) nfc_hw_rdmz(mtd, 1);//enable rdmz return rc; } int sandisk_get_parameter(struct mtd_info *mtd, int mode) { return 0; } int sandisk_set_parameter(struct mtd_info *mtd, int total_try_times, int def_value) { struct nand_chip *this = mtd->priv; struct nand_read_retry_param *cur_chip = this->cur_chip; unsigned char *offset = NULL; unsigned char *set_value = NULL; unsigned int reg_num, upper_page = 0; int i, rc = -1; uint8_t cmd[4] = {0x3B, 0xB9, 0x53, 0x54}; if (total_try_times != (cur_chip->total_try_times&0xFF)) upper_page = 1; if (mtd->dwRdmz) reset_nfc(mtd, NULL, 3); reg_num = cur_chip->retry_reg_num; offset = cur_chip->retry_offset; if (def_value == ECC_ERROR_VALUE) { cur_chip->cur_try_times++; if (cur_chip->cur_try_times >= total_try_times) cur_chip->cur_try_times = -1; if ((cur_chip->cur_try_times >= 0) && (cur_chip->cur_try_times < total_try_times)) { if (upper_page) set_value = cur_chip->retry_value + (cur_chip->cur_try_times + (cur_chip->total_try_times&0xFF))* reg_num; else set_value = cur_chip->retry_value + cur_chip->cur_try_times * reg_num; } else set_value = cur_chip->retry_def_value; } else { set_value = cur_chip->retry_def_value; cur_chip->cur_try_times = -1; } #ifdef RETRY_DEBUG printk("sandisk set value: upper_page=%d, cur_try_times=%d\n", upper_page, cur_chip->cur_try_times); for(i = 0; i < reg_num; i++) printk(" 0x%x:0x%x ", offset[i], set_value[i]); printk("reg_num = %d\n", reg_num); #endif rc = write_bytes_cmd(mtd, 2, 0, 0, cmd, NULL, NULL); if (rc) printk("sandisk read retry reg: set cmd fail\n"); for (i = 0; i < reg_num; i++) { rc = write_bytes_cmd(mtd, 1, 1, 1, &cmd[2], &offset[i], &set_value[i]); if (rc) printk("sandisk set retry reg: phase %d fail\n", i); } if (mtd->dwRdmz && mtd->bbt_sw_rdmz == 0) nfc_hw_rdmz(mtd, 1);//enable rdmz return rc; } int sandisk_init_retry_register(struct mtd_info *mtd, struct nand_read_retry_param *cur_chip) { int i,status = -1; unsigned char cmd[4] = {0x3B, 0xB9, 0x53, 0x54}; unsigned char *offset = cur_chip->otp_offset; unsigned char *data = cur_chip->otp_data; unsigned int regc = cur_chip->otp_len; if (mtd->dwRdmz) reset_nfc(mtd, NULL, 3); #ifdef RETRY_DEBUG printk("set sandisk init retry register offset addr: 0x%x, 0x%x\n", offset[0], offset[1]); #endif status = write_bytes_cmd(mtd, 2, 0, 0, cmd, NULL, NULL); if (status) { printk("send sandisk_init_retry_register cmd fail\n"); } for (i = 0; i < regc; i++) { status = write_bytes_cmd(mtd, 1, 1, 1, &cmd[2], &offset[i], &data[i]); if (status) printk("sandisk_init_retry_register : phase %d fail", i); } if (mtd->dwRdmz && mtd->bbt_sw_rdmz == 0) nfc_hw_rdmz(mtd, 1);//enable rdmz return status; } int micron_get_parameter(struct mtd_info *mtd, int mode) { return 0; } int micron_set_parameter(struct mtd_info *mtd, int mode, int def_mode) { struct nand_chip *this = mtd->priv; struct nand_read_retry_param *cur_chip = this->cur_chip; unsigned char *offset = NULL; unsigned char *set_value = NULL; unsigned int reg_num; int rc = -1, i; uint8_t cmd[1] = {NAND_SET_FEATURE}; if (mtd->dwRdmz) reset_nfc(mtd, NULL, 3); reg_num = cur_chip->retry_reg_num; offset = cur_chip->retry_offset; if (def_mode == ECC_ERROR_VALUE) { set_value = cur_chip->retry_value + cur_chip->cur_try_times * reg_num; cur_chip->cur_try_times++; } else { set_value = cur_chip->retry_def_value; cur_chip->cur_try_times = 0; } #ifdef RETRY_DEBUG printk("micron set value: cur_try_times=%d\n", cur_chip->cur_try_times); for(i = 0; i < reg_num; i++) printk(" 0x%x:0x%x ", offset[i], set_value[i]); printk("reg_num = %d\n", reg_num); #endif for (i = 0; i < reg_num; i++) { rc = write_bytes_cmd(mtd, 1, 1, 1, cmd, offset, set_value); if (rc) printk("micron read retry reg: phase %d fail\n", i); } if (mtd->dwRdmz && mtd->bbt_sw_rdmz == 0) nfc_hw_rdmz(mtd, 1);//enable rdmz return rc; } static int wmt_nand_read_raw_page(struct mtd_info *mtd, struct nand_chip *chip, int page); int hynix_get_otp(struct mtd_info *mtd, struct nand_chip *chip) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); struct nand_read_retry_param *cur_chip = chip->cur_chip; int i, j, status = -1; //unsigned char data[2] = {0x00, 0x4D}; unsigned char cmd[5] = {0x36, 0x16, 0x17, 0x04, 0x19}; //unsigned char addr[2] = {0xAE , 0xB0}; unsigned int page = 0x200; unsigned char *buff, reset = NAND_CMD_RESET, retry_end = NAND_CMD_HYNIX_RETRY_END; unsigned char *offset = cur_chip->otp_offset; unsigned char *data = cur_chip->otp_data; unsigned int retry_times, retry_regs, chk = 0; unsigned char *bf, *bf2; if (mtd->dwRdmz) reset_nfc(mtd, NULL, 3); printk("get otp offset addr: 0x%x, 0x%x\n", offset[0], offset[1]); //chip->cmdfunc(mtd, NAND_CMD_RESET_NO_STATUS_READ, -1, -1); status = write_bytes_cmd(mtd, 1, 0, 0, (uint8_t *)&reset, NULL, NULL); if (status) { printk("load_hynix_opt_reg: reset fail"); } status = write_bytes_cmd(mtd, 1, 1, 1, (uint8_t *)&cmd[0], (uint8_t *)&offset[0], (uint8_t *)&data[0]); if (status) printk("load_hynix_opt_reg: phase 1 fail"); status = write_bytes_cmd(mtd, 0, 1, 1, NULL, (uint8_t *)&offset[1], (uint8_t *)&data[1]); if (status) printk("load_hynix_opt_reg: phase 2 fail"); status = write_bytes_cmd(mtd, 4, 0, 0, (uint8_t *)&cmd[1], NULL, NULL); if (status) printk("load_hynix_opt_reg: phase 3 fail"); //status = HY_nand_read(0, page, buf, 1026, ecc_code, nfc, 0); wmt_nand_read_raw_page(mtd, chip, page); /*if (status != 0) { printk("load_hynix_opt_reg: phase 3 fail status = %d\n", status); //return -1; }*/ status = write_bytes_cmd(mtd, 1, 0, 0, (uint8_t *)&reset, NULL, NULL); if (status) { printk("load_hynix_opt_reg: reset fail"); } status = write_bytes_cmd(mtd, 1, 0, 0, (uint8_t *)&retry_end, NULL, NULL); if (status) { printk("load_hynix_opt_reg: OTP end 0x38 fail"); } if (mtd->dwRdmz && mtd->bbt_sw_rdmz == 0) nfc_hw_rdmz(mtd, 1);//enable rdmz print_nand_buffer((uint8_t *)info->dmabuf, 1040); buff = info->dmabuf; if (buff[0] > 8 || buff[1] > 8) { printk("retry_cmd buff is not big enough for size %d\n", buff[0]*buff[1]); return -1; } retry_times = buff[0]; retry_regs = buff[1]; cur_chip->total_try_times = buff[0] - 1; cur_chip->retry_reg_num = buff[1]; for (i = 0; i < 16; i+=2) { bf = &buff[i * retry_times * retry_regs + 2]; bf2 = &buff[(i+1) * retry_times * retry_regs + 2]; for (j = 0; j < (retry_times*retry_regs); j++) { if ((bf[j] ^ bf2[j]) != 0xFF) { printk("inverse check fail %x %x\n", bf[j], bf2[j]); break; } } if (j >= (retry_times*retry_regs)) { chk = 1; break; } } if (chk == 0) { printk("hynix : no valid otp data checked\n"); } for (j = 0; j < retry_regs; j++) cur_chip->retry_def_value[j] = bf[j]; print_nand_buffer(cur_chip->retry_def_value, retry_regs); for (i = 0; i < (retry_times-1); i++) { for (j = 0; j < retry_regs; j++) { cur_chip->retry_value[i*retry_regs + j] = bf[(i+1)*retry_regs + j]; } print_nand_buffer(&cur_chip->retry_value[i*retry_regs], retry_regs); } cur_chip->retry_def_value[buff[1]] = 0xff; cur_chip->retry_def_value[buff[1]+1] = 0xff; return 0; } int nand_get_para(struct mtd_info *mtd, struct nand_chip *chip) { int ret = 0; struct nand_read_retry_param *cur_chip = chip->cur_chip; if (cur_chip->get_otp_table) { ret = cur_chip->get_otp_table(mtd, chip); if (ret) { printk("get otp para error\n"); chip->cur_chip = NULL; return ret; } else printk("get otp retry para end\n"); } else if (cur_chip->get_parameter) { ret = cur_chip->get_parameter(mtd, READ_RETRY_MODE); if (ret) { printk("get default retry para error\n"); chip->cur_chip = NULL; return ret; } else printk("get default retry para end\n"); } if (cur_chip->eslc_reg_num) { ret = cur_chip->get_parameter(mtd, ESLC_MODE); if (ret) { printk("get default eslc error\n"); chip->cur_chip = NULL; } else printk("get eslc param end\n"); } print_nand_buffer((uint8_t *)cur_chip, sizeof(chip_table[0])); return ret; } static int wmt_nand_readID(struct mtd_info *mtd) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); unsigned int cfg = 0, i = 0; int status = -1; writeb(NAND_CMD_READID, info->reg + NFCR2_COMPORT0); writeb(0x00, info->reg + NFCR3_COMPORT1_2); cfg = DPAHSE_DISABLE|(0x02<<1); writew(cfg|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL); status = wmt_wait_cmd_ready(mtd); /* status = wmt_nfc_ready(mtd);*/ if (status) { printk(KERN_ERR "in wmt_nand_readID(): wait cmd is not ready\n"); writeb(READ_RESUME, info->reg + NFCR9_ECC_BCH_CTRL + 1); return status; } cfg = NAND2NFC|SING_RW; for (i = 0; i < 6; i++) { writew(cfg|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL); status = wmt_wait_cmd_ready(mtd); /* status = wmt_nfc_ready(mtd);*/ if (status) return status; status = wmt_nfc_transfer_ready(mtd); /* status = wmt_nand_wait_idle(mtd);*/ if (status) { printk(KERN_ERR "in wmt_nand_readID(): wait transfer cmd is not ready\n"); return status; } info->dmabuf[i] = readb(info->reg + NFCR0_DATAPORT) & 0xff; #ifdef NAND_DEBUG printk(KERN_NOTICE "readID is %x\n", readb(info->reg + NFCR0_DATAPORT)); #endif } info->datalen = 0; return 0; } /* check flash busy pin is ready => return 1 else return 0 */ static int wmt_device_ready(struct mtd_info *mtd) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); return readb(info->reg + NFCRa_NFC_STAT) & 0x01; } static void wmt_nand_enable_hwecc(struct mtd_info *mtd, int mode) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); if (mode == hardware_ecc) writeb(readb(info->reg + NFCR9_ECC_BCH_CTRL) & (~DIS_BCH_ECC), info->reg + NFCR9_ECC_BCH_CTRL); else writeb(readb(info->reg + NFCR9_ECC_BCH_CTRL) | DIS_BCH_ECC, info->reg + NFCR9_ECC_BCH_CTRL); } /*static*/ void print_nand_register(struct mtd_info *mtd) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); int j; for (j = 0; j < 0x200; j += 16) printk(KERN_NOTICE "NFCR%x ~ NFCR%x = 0x%8.8x 0x%8.8x 0x%8.8x 0x%8.8x\r\n", j/4, (j+12)/4, readl(info->reg + j + 0), readl(info->reg + j + 4), readl(info->reg + j + 8), readl(info->reg + j + 12)); } void print_nand_buffer(char *value, unsigned int length) { int j; for (j = 0; j < length; j += 16) printk(KERN_NOTICE "Row%3.3x:%2.2x-%2.2x-%2.2x-%2.2x-%2.2x-%2.2x-%2.2x-%2.2x-%2.2x" "-%2.2x-%2.2x-%2.2x-%2.2x-%2.2x-%2.2x-%2.2x\n", j, value[j+0], value[j+1], value[j+2], value[j+3], value[j+4], value[j+5], value[j+6], value[j+7], value[j+8], value[j+9], value[j+10], value[j+11], value[j+12], value[j+13], value[j+14], value[j+15]); } void print_nand_buffer_int(unsigned int *value, unsigned int length) { int j; for (j = 0; j < length; j += 8) printk(KERN_NOTICE"Row%3.3x:%8.2x-%8.2x-%8.2x-%8.2x-%8.2x-%8.2x-%8.2x-%8.2x\n", j, value[j+0], value[j+1], value[j+2], value[j+3], value[j+4], value[j+5], value[j+6], value[j+7]); } static void set_read_addr(struct mtd_info *mtd, unsigned int *address_cycle, int column, int page_addr) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); struct nand_chip *chip = mtd->priv; unsigned int addr_cycle = 0; if (column != -1) { writeb(column, info->reg + NFCR3_COMPORT1_2); addr_cycle++; if (mtd->realwritesize != 512) { writeb(column >> 8, (unsigned char *)(info->reg + NFCR3_COMPORT1_2) + 1); addr_cycle++; } if (page_addr != -1) { if (mtd->realwritesize != 512) { writeb(page_addr, info->reg + NFCR4_COMPORT3_4); page_addr >>= 8; writeb(page_addr, (unsigned char *)(info->reg + NFCR4_COMPORT3_4) + 1); addr_cycle += 2; } else { writeb(page_addr, (unsigned char *)(info->reg + NFCR3_COMPORT1_2) + 1); page_addr >>= 8; writeb(page_addr, info->reg + NFCR4_COMPORT3_4); addr_cycle += 2; } if (mtd->realwritesize == 2048) { /* One more address cycle for devices > 128MiB */ if (chip->chipsize > (128 << 20)) { page_addr >>= 8; if (mtd->realwritesize != 512) writeb(page_addr, info->reg + NFCR5_COMPORT5_6); else writeb(page_addr, (unsigned char *)(info->reg + NFCR4_COMPORT3_4) + 1); addr_cycle++; } } else if (mtd->realwritesize == 4096) { /* One more address cycle for devices > 256MiB */ if (chip->chipsize > (256 << 20)) { page_addr >>= 8; if (mtd->realwritesize != 512) writeb(page_addr, info->reg + NFCR5_COMPORT5_6); else writeb(page_addr, (unsigned char *)(info->reg + NFCR4_COMPORT3_4) + 1); addr_cycle++; } } else if (mtd->realwritesize == 8192) { /* One more address cycle for devices > 512MiB */ if (chip->chipsize > (512 << 20)) { page_addr >>= 8; if (mtd->realwritesize != 512) writeb(page_addr, info->reg + NFCR5_COMPORT5_6); else writeb(page_addr, (unsigned char *)(info->reg + NFCR4_COMPORT3_4) + 1); addr_cycle++; } } else if (mtd->realwritesize == 16384) { /* One more address cycle for devices > 1024MiB */ if (chip->chipsize > (1024 << 20)) { page_addr >>= 8; writeb(page_addr, info->reg + NFCR5_COMPORT5_6); addr_cycle++; } } else {/*page size 512*/ /* One more address cycle for devices > 32MiB */ if (chip->chipsize > (32 << 20)) { page_addr >>= 8; if (mtd->realwritesize != 512) writeb(page_addr, info->reg + NFCR5_COMPORT5_6); else writeb(page_addr, (unsigned char *)(info->reg + NFCR4_COMPORT3_4) + 1); addr_cycle++; } } } /* } else if (page_addr != -1) {*/ } else if ((page_addr != -1) && (column == -1)) { writeb(page_addr & 0xff, info->reg + NFCR3_COMPORT1_2); page_addr >>= 8; writeb(page_addr & 0xff, (unsigned char *)(info->reg + NFCR3_COMPORT1_2) + 1); addr_cycle += 2; if (mtd->realwritesize == 2048) { /* One more address cycle for devices > 128MiB */ if (chip->chipsize > (128 << 20)) { page_addr >>= 8; writeb(page_addr & 0xff, info->reg + NFCR4_COMPORT3_4); addr_cycle++; } } else if (mtd->realwritesize == 4096) { /* One more address cycle for devices > 256MiB */ if (chip->chipsize > (256 << 20)) { page_addr >>= 8; writeb(page_addr & 0xff, info->reg + NFCR4_COMPORT3_4); addr_cycle++; } } else if (mtd->realwritesize == 8192) { /* One more address cycle for devices > 512MiB */ if (chip->chipsize > (512 << 20)) { page_addr >>= 8; writeb(page_addr & 0xff, info->reg + NFCR4_COMPORT3_4); addr_cycle++; } } else if (mtd->realwritesize == 16384) { /* One more address cycle for devices > 1024MiB */ if (chip->chipsize > (1024 << 20)) { page_addr >>= 8; writeb(page_addr & 0xff, info->reg + NFCR4_COMPORT3_4); addr_cycle++; } } else {/*page size = 512 bytes */ /* One more address cycle for devices > 32MiB */ if (chip->chipsize > (32 << 20)) { /* One more address cycle for devices > 128MiB */ /* if (chip->chipsize > (128 << 20)) {*/ page_addr >>= 8; /* writeb(page_addr, info->reg + NFCR4_COMPORT3_4 + 1); */ /* before, may be a little error */ writeb(page_addr & 0xff, info->reg + NFCR4_COMPORT3_4); addr_cycle++; } } } *address_cycle = addr_cycle; } static int wmt_multi_page_start_micron(struct mtd_info *mtd, unsigned command, int colum, int page) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); //struct nand_chip *chip = mtd->priv; unsigned int pagecnt = mtd->pagecnt; unsigned int b2r_stat; int status = 0, i; DECLARE_COMPLETION(complete); uint8_t cmd[2] = {0x00, 0x32}, addr[5] = {0, 0, 0, 0, 0}; for (i = 0; i < 3; i++) { addr[2+i] = 0xFF&(page>>(8*i)); } status = write_bytes_cmd(mtd, 1, 5, 0, &cmd[0], addr, NULL); if (status) printk("micron multi read cmd(00) + addr fail\n"); status = write_bytes_cmd(mtd, 1, 0, 0, &cmd[1], NULL, NULL); if (status) printk("micron multi read cmd(32) + addr fail\n"); /* check busy to ready status*/ status = wmt_nand_ready(mtd); for (i = 0; i < 3; i++) { addr[2+i] = 0xFF&((page + pagecnt)>>(8*i)); } status = write_bytes_cmd(mtd, 1, 5, 0, &cmd[0], addr, NULL); if (status) printk("micron multi read cmd(00) + addr fail\n"); writeb(0x30, info->reg + NFCR2_COMPORT0); b2r_stat = readb(info->reg + NFCRb_NFC_INT_STAT); if (B2R&b2r_stat) { writeb(B2R|b2r_stat, info->reg + NFCRb_NFC_INT_STAT); status = wmt_wait_chip_ready(mtd); if (status) printk(KERN_NOTICE"The chip is not ready\n"); } b2r_stat = readb(info->reg + NFCRb_NFC_INT_STAT); writeb(B2R|b2r_stat, info->reg + NFCRb_NFC_INT_STAT); writeb(0x1B, info->reg + NFCR13_INT_MASK); info->done_data = &complete; info->isr_cmd = 0x60; writew(DPAHSE_DISABLE|(1<<1)|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL); info->datalen = 0; wait_for_completion_timeout(&complete, NFC_TIMEOUT_TIME); //writeb(0x80, info->reg + NFCR13_INT_MASK); status = wmt_nfc_wait_idle(mtd, 1, 1, -1, -1); /* write page, don't check ecc */ //b2r_stat = readb(info->reg + NFCRb_NFC_INT_STAT); //writeb(B2R|b2r_stat, info->reg + NFCRb_NFC_INT_STAT); status = wmt_wait_cmd_ready(mtd); if (status) { printk(KERN_ERR "Multi_read_start err: nfc command is not ready\n"); } writeb(0x80, info->reg + NFCR13_INT_MASK); return 0; } static int wmt_multi_page_start(struct mtd_info *mtd, unsigned command, int colum, int page) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); struct nand_chip *chip = mtd->priv; unsigned int pagecnt = mtd->pagecnt; unsigned int b2r_stat; int status = 0; DECLARE_COMPLETION(complete); chip->cmdfunc(mtd, 0x60, -1, page); chip->cmdfunc(mtd, 0x60, -1, page + pagecnt); writeb(0x30, info->reg + NFCR2_COMPORT0); b2r_stat = readb(info->reg + NFCRb_NFC_INT_STAT); if (B2R&b2r_stat) { writeb(B2R|b2r_stat, info->reg + NFCRb_NFC_INT_STAT); status = wmt_wait_chip_ready(mtd); if (status) printk(KERN_NOTICE"The chip is not ready\n"); } b2r_stat = readb(info->reg + NFCRb_NFC_INT_STAT); writeb(B2R|b2r_stat, info->reg + NFCRb_NFC_INT_STAT); writeb(0x1B, info->reg + NFCR13_INT_MASK); info->done_data = &complete; info->isr_cmd = 0x60; writew(DPAHSE_DISABLE|(1<<1)|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL); info->datalen = 0; wait_for_completion_timeout(&complete, NFC_TIMEOUT_TIME); //writeb(0x80, info->reg + NFCR13_INT_MASK); status = wmt_nfc_wait_idle(mtd, 1, 1, -1, -1); /* write page, don't check ecc */ //b2r_stat = readb(info->reg + NFCRb_NFC_INT_STAT); //writeb(B2R|b2r_stat, info->reg + NFCRb_NFC_INT_STAT); status = wmt_wait_cmd_ready(mtd); if (status) { printk(KERN_ERR "Multi_read_start err: nfc command is not ready\n"); } writeb(0x80, info->reg + NFCR13_INT_MASK); return 0; } //unsigned int r1,r2,r3,r4,r5,r6,r7,r8,r9,r10; static int wmt_multi_page_read(struct mtd_info *mtd, unsigned command, int column, int page_addr) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); //struct nand_chip *chip = mtd->priv; DECLARE_COMPLETION(complete); unsigned int addr_cycle = 0 /*b2r_stat, bank_stat1, bank_stat2=0*/; int status = -1; unsigned char *FIFO = (unsigned char *) (info->reg+ECC_FIFO_c); info->isr_cmd = command; info->data_ecc_uncor_err = 0; info->dma_finish = 0; info->done_data = &complete; set_read_addr(mtd, &addr_cycle, column, page_addr); writeb(NAND_CMD_READ0, info->reg + NFCR2_COMPORT0); //printk("multi read page=%x blk=%d, addr_cycle=%d trig=%x\n",page_addr, page_addr/128, addr_cycle, DPAHSE_DISABLE|((addr_cycle + 1)<<1)|NFC_TRIGGER|OLD_CMD); //print_nand_register(mtd); writew(DPAHSE_DISABLE|((addr_cycle + 1)<<1)|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL); wmb(); status = wmt_wait_cmd_ready(mtd); if (status) { printk(KERN_ERR "Multi_read_s2 err: nfc command is not ready\n"); } addr_cycle = 0; if (column != -1) { writeb(column, info->reg + NFCR3_COMPORT1_2); writeb(column, info->reg + NFCR3_COMPORT1_2 + 1); addr_cycle += 2; } writeb(NAND_CMD_RNDOUT, info->reg + NFCR2_COMPORT0); writew(DPAHSE_DISABLE|((addr_cycle + 1)<<1)|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL); wmb(); status = wmt_wait_cmd_ready(mtd); if (status) { printk(KERN_ERR "Multi_read_s2 err: nfc command is not ready\n"); } writeb(0x1C, info->reg + NFCR13_INT_MASK); writeb(readb(info->reg + NFCRd_OOB_CTRL) | HIGH64FIFO, info->reg + NFCRd_OOB_CTRL); FIFO[0] = NAND_CMD_RNDOUTSTART; FIFO[3] = 0xFF&page_addr; writeb(readb(info->reg + NFCRd_OOB_CTRL) & ~HIGH64FIFO, info->reg + NFCRd_OOB_CTRL); writel(0x80001, info->reg + NFCRc_CMD_ADDR); if ((mtd->pageSizek >> (ffs(mtd->pageSizek)-1)) != 1) wmt_nfc_dma_cfg(mtd, mtd->realwritesize + 1024, 0, -1, -1); else wmt_nfc_dma_cfg(mtd, mtd->realwritesize, 0, -1, -1);//r3 = wmt_read_oscr(); info->datalen = 0; //printk("2page=%x blk=%d, addr_cycle=%d trig=%x\n",page_addr, page_addr/256, addr_cycle, NAND2NFC|MUL_CMDS|((addr_cycle + 2)<<1)|NFC_TRIGGER|OLD_CMD); //print_nand_register(mtd); //writew(NAND2NFC|MUL_CMDS|((addr_cycle + 2)<<1)|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL); //writew(NAND2NFC|(1<<1)|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL); writew(NAND2NFC|(1<<1)|NFC_TRIGGER, info->reg + NFCR1_COMCTRL); wmb(); wait_for_completion_timeout(&complete, NFC_TIMEOUT_TIME); if (info->dma_finish != 1) { printk("read page wait dma time out info->dma_finish=%d\n",info->dma_finish); print_nand_register(mtd); dump_stack(); while(info->dma_finish == 0) { if (readl(info->reg + NFC_DMA_ISR)&1) { writel(0, info->reg + NFC_DMA_IER); info->dma_finish++; if (info->done_data != NULL) { //complete(info->done_data); info->done_data = NULL; } } } } status = nand_pdma_handler(mtd); nand_free_pdma(mtd); if (status) printk(KERN_ERR "dma transfer data time out: %x\n", readb(info->reg + NFCRa_NFC_STAT)); wmt_nfc_transfer_ready(mtd); writeb(0x80, info->reg + NFCR13_INT_MASK); status = wmt_nfc_wait_idle(mtd, 0, command, column, page_addr); if (status) { printk(KERN_NOTICE"multi-read page wait idle status =%d\n", status); } return 0; } static int wmt_dma_ready(struct mtd_info *mtd) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); int i = 0; while (1) { if ((readb(info->reg + NFC_DMA_ISR) & NAND_PDMA_IER_INT_STS)) break; if (++i>>20) return -3; } return 0; } //#define RE_PORFO static int wmt_nand_page_read(struct mtd_info *mtd, unsigned command, int column, int page_addr) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); struct nand_chip *chip = mtd->priv; struct nand_read_retry_param *cur_chip = chip->cur_chip; unsigned int addr_cycle = 0, b2r_stat; int status = -1; unsigned int bank_stat, id = 0, pageInBlk = 0; int i, total_times = 1, total_try_times = 0, tmp = 0; unsigned char reset = NAND_CMD_RESET, retry_enable =0xB6, retry_disable = 0xD6; DECLARE_COMPLETION(complete); #ifdef NAND_DEBUG printk(KERN_NOTICE "read data cmd: 0x%x col:0x%x, page:0x%x\n", command, column, page_addr); #endif /*info->phase = 0; if (readl(info->reg + NFCR9_ECC_BCH_CTRL) & DIS_BCH_ECC) info->phase = 2;*/ if (cur_chip != NULL) { total_times = cur_chip->total_try_times + 1; id = (cur_chip->nand_id>>24)&0xFF; if (id == NAND_MFR_SANDISK) { pageInBlk = page_addr%mtd->pagecnt; if (((pageInBlk%2) == 1 || pageInBlk == 0) && pageInBlk != (mtd->pagecnt - 1)) total_try_times = cur_chip->total_try_times&0xFF;//Lower page else total_try_times = (cur_chip->total_try_times>>8)&0xFF;//Upper page } else total_try_times = cur_chip->total_try_times&0xFF; //printk("read page--cur_times = %d, totoal_times = %d \n", cur_chip->cur_try_times, total_times); } //cur_chip->cur_try_times = 4; for (i = 0; i < total_times; i++) { info->unc_bank = 0; info->unc_allFF = 0; if (i > 0) info->isr_cmd = command; info->data_ecc_uncor_err = 0; info->dma_finish = 0; writeb(0x1C, info->reg + NFCR13_INT_MASK); info->done_data = &complete; /* 1: read, 0:data, -1: */ if (info->phase == 2) {//disable bch read tmp = (mtd->realoobsize > 512) ? mtd->realoobsize : 512; wmt_nfc_dma_cfg(mtd, tmp, 0, -1, -1); } else { if (info->oob_ecc_error == 0x50) {//read last bank for oob in DDR mode wmt_nfc_dma_cfg(mtd, chip->ecc.size, 0, -1, -1); } else {//read whole page if ((mtd->pageSizek >> (ffs(mtd->pageSizek)-1)) != 1) wmt_nfc_dma_cfg(mtd, mtd->realwritesize + 1024, 0, -1, -1); else wmt_nfc_dma_cfg(mtd, mtd->realwritesize, 0, -1, -1); } } /*print_nand_register(mtd);*/ wmb(); info->datalen = 0; /* write to clear B2R */ b2r_stat = readb(info->reg + NFCRb_NFC_INT_STAT); writeb(B2R|b2r_stat, info->reg + NFCRb_NFC_INT_STAT); /* printk(KERN_NOTICE "RB is %d\n", b2r_stat & 0x02);*/ set_read_addr(mtd, &addr_cycle, column, page_addr); bank_stat = readw(info->reg + NFCRb_NFC_INT_STAT); writew(bank_stat|0x101, info->reg + NFCRb_NFC_INT_STAT); status = wmt_wait_chip_ready(mtd); /*Vincent 2008.11.3*/ if (status) printk(KERN_ERR "The chip is not ready\n"); writeb(NAND_CMD_READ0, info->reg + NFCR2_COMPORT0); if (addr_cycle == 4) writeb(NAND_CMD_READSTART, info->reg + NFCR5_COMPORT5_6); else if (addr_cycle == 5) writeb(NAND_CMD_READSTART, (unsigned char *)(info->reg + NFCR5_COMPORT5_6) + 1); wmb(); writew(NAND2NFC|MUL_CMDS|((addr_cycle + 2)<<1)|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL); wmb(); //printk("read page wait for completion\n"); wait_for_completion_timeout(&complete, NFC_TIMEOUT_TIME); if (info->dma_finish != 1) { printk("read page wait dma time out info->dma_finish=%d\n",info->dma_finish); print_nand_register(mtd); dump_stack(); while(info->dma_finish == 0) { if (readl(info->reg + NFC_DMA_ISR)&1) { writel(0, info->reg + NFC_DMA_IER); info->dma_finish++; if (info->done_data != NULL) { //complete(info->done_data); info->done_data = NULL; } } } } status = nand_pdma_handler(mtd); //printk(KERN_ERR "check status pdma handler status= %x \n", status); nand_free_pdma(mtd); if (status) printk(KERN_ERR "dma transfer data time out: %x\n", readb(info->reg + NFCRa_NFC_STAT)); //printk("read page 3\n"); wmt_nfc_transfer_ready(mtd); /*status = wmt_nand_ready(mtd); if (status) printk(KERN_NOTICE"B2R not clear status=0x%x\n", status);*/ writeb(0x80, info->reg + NFCR13_INT_MASK); //printk("read page 4\n"); status = wmt_nfc_wait_idle(mtd, 0, command, column, page_addr); //printk("read page 5\n"); if (status) { printk(KERN_NOTICE"read page wait idle status =%d\n", status); /*print_nand_register(mtd);*/ /*while(1);*/ } if (info->unc_allFF == 0 && info->unc_bank && mtd->dwRetry == 0) { mtd->ecc_stats.failed++; printk("no retry flash occur uncoverable ecc error uncor_err=%d\n", info->data_ecc_uncor_err); } if(info->data_ecc_uncor_err == 1) { if((cur_chip != NULL)) { mtd->ecc_err_cnt = 0; if (prob_end == 1 && page_addr < ((mtd->blkcnt - 8) * mtd->pagecnt)){ if((id != NAND_MFR_HYNIX) ||((id == NAND_MFR_HYNIX) && (cur_chip->cur_try_times >=5))) printk("Unc_Err %d_th pg=0x%x cur_retry=%d\n", i, page_addr, cur_chip->cur_try_times); } if (id == NAND_MFR_HYNIX) { //printk("set retry mode cur_try_times=%d\n", cur_chip->cur_try_times); cur_chip->set_parameter(mtd, READ_RETRY_MODE, ECC_ERROR_VALUE); cur_chip->retry = 1; if (i == total_try_times) { cur_chip->retry = 0; /* read retry many times still ecc uncorrectable error */ cur_chip->set_parameter(mtd, READ_RETRY_MODE, DEFAULT_VALUE); if (prob_end == 1 && page_addr < ((mtd->blkcnt - 8) * mtd->pagecnt)) printk("read page after retry still uncor err\n"); mtd->ecc_stats.failed++; //dump_stack(); //while(cur_chip); return status; } } else if (id == NAND_MFR_TOSHIBA) { if (cur_chip->cur_try_times >= total_try_times) { /* send reset cmd after read retry finish(fail) for toshiba */ write_bytes_cmd(mtd, 1, 0, 0, (uint8_t *)&reset, NULL, NULL); cur_chip->cur_try_times = 0; cur_chip->retry = 0; if (prob_end == 1 && page_addr < ((mtd->blkcnt - 8) * mtd->pagecnt)) printk("read page after retry still uncor err\n"); mtd->ecc_stats.failed++; //while(cur_chip); return status; } if (cur_chip->cur_try_times == 0 && cur_chip->retry != 1) toshiba_pre_condition(mtd); cur_chip->set_parameter(mtd, 0, 0); cur_chip->retry = 1; } else if (id == NAND_MFR_SAMSUNG || id == NAND_MFR_MICRON) { if (cur_chip->cur_try_times >= total_try_times) { /* send default cmd after read retry finish(fail) for samsung */ cur_chip->set_parameter(mtd, READ_RETRY_MODE, DEFAULT_VALUE); cur_chip->cur_try_times = 0; cur_chip->retry = 0; if (prob_end == 1 && page_addr < ((mtd->blkcnt - 8) * mtd->pagecnt)) printk("read page after retry still uncor err\n"); mtd->ecc_stats.failed++; //while(cur_chip); return status; } cur_chip->set_parameter(mtd, READ_RETRY_MODE, ECC_ERROR_VALUE); cur_chip->retry = 1; } else if (id == NAND_MFR_SANDISK) { //printk("set retry mode cur_try_times=%d\n", cur_chip->cur_try_times); cur_chip->set_parameter(mtd, total_try_times, ECC_ERROR_VALUE); if (i == 0 && cur_chip->retry != 1) write_bytes_cmd(mtd, 1, 0, 0, &retry_enable, NULL, NULL); cur_chip->retry = 1; if (i == total_try_times) { write_bytes_cmd(mtd, 1, 0, 0, &retry_disable, NULL, NULL); cur_chip->retry = 0; /* read retry many times still ecc uncorrectable error */ if (prob_end == 1 && page_addr < ((mtd->blkcnt - 8) * mtd->pagecnt)) printk("read page after retry still uncor err\n"); mtd->ecc_stats.failed++; //while(cur_chip); return status; } } } else { printk("read page uncor err but cur_chip = NULL!\n"); break; } } else { if (cur_chip) { unsigned int bakeup; if (cur_chip->retry == 1) { if((id != NAND_MFR_HYNIX) || ((id == NAND_MFR_HYNIX)&&(cur_chip->cur_try_times >= 5))) printk("read retry PASS cur_try_times=%d\n", cur_chip->cur_try_times); bakeup = *(uint32_t *)info->dmabuf; } else break; /* send reset cmd after read retry finish(pass) for toshiba */ if (id == NAND_MFR_TOSHIBA) { write_bytes_cmd(mtd, 1, 0, 0, (uint8_t *)&reset, NULL, NULL); printk("reset cmd to finish retry\n"); cur_chip->cur_try_times = 0; } else if (id == NAND_MFR_SAMSUNG || id == NAND_MFR_MICRON) { cur_chip->set_parameter(mtd, READ_RETRY_MODE, DEFAULT_VALUE); cur_chip->cur_try_times = 0; } else if (id == NAND_MFR_SANDISK) { write_bytes_cmd(mtd, 1, 0, 0, &retry_disable, NULL, NULL); //set retry default value need before page program cur_chip->set_parameter(mtd, total_try_times, DEFAULT_VALUE); //should we reset cur_try_times to zero? cur_chip->cur_try_times = -1; } if (id == NAND_MFR_HYNIX) { cur_chip->set_parameter(mtd, READ_RETRY_MODE, DEFAULT_VALUE); cur_chip->cur_try_times = -1; } cur_chip->retry = 0; *(uint32_t *)info->dmabuf = bakeup; } break; } } //end of retry for loop return 0; } #if 0 static int wmt_multi_copy_start(struct mtd_info *mtd, unsigned command, int column, int page) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); struct nand_chip *chip = mtd->priv; unsigned int div = mtd->erasesize / mtd->writesize; unsigned int b2r_stat; int status = 0; chip->cmdfunc(mtd, 0x60, -1, page); chip->cmdfunc(mtd, 0x60, -1, page + div); b2r_stat = readb(info->reg + NFCRb_NFC_INT_STAT); writeb(B2R|b2r_stat, info->reg + NFCRb_NFC_INT_STAT); writeb(0x35, info->reg + NFCR2_COMPORT0); writew(NAND2NFC|DPAHSE_DISABLE|1<<1|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL);// cost lots of time status = wmt_wait_cmd_ready(mtd); if (status) { printk(KERN_ERR "Multi_read err: nfc command is not ready\n"); } return 0; } static int wmt_multi_copy_read(struct mtd_info *mtd, unsigned command, int column, int page_addr) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); //struct nand_chip *chip = mtd->priv; unsigned int addr_cycle = 0;//, b2r_stat, bank_stat1, bank_stat2=0; int status = -1; //unsigned int bank_stat, id = 0, pageInBlk = 0; set_read_addr(mtd, &addr_cycle, column, page_addr); // bank_stat = readw(info->reg + NFCRb_NFC_INT_STAT); // writew(bank_stat|0x101, info->reg + NFCRb_NFC_INT_STAT); //status = wmt_wait_chip_ready(mtd); /*Vincent 2008.11.3*/ //problem // if (status) // printk(KERN_ERR "The chip is not ready\n"); writeb(NAND_CMD_READ0, info->reg + NFCR2_COMPORT0); writew(DPAHSE_DISABLE|((addr_cycle + 1)<<1)|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL); status = wmt_wait_cmd_ready(mtd); if (status) { printk(KERN_ERR "Multi_read err: nfc command is not ready\n"); } addr_cycle = 0; if (column != -1) { writeb(column, info->reg + NFCR3_COMPORT1_2); writeb(column, info->reg + NFCR3_COMPORT1_2 + 1); addr_cycle += 2; } // writeb(0x07, info->reg + WMT_NFC_REDUNT_ECC_STAT); // writel(0xffffffff, info->reg + WMT_NFC_BANK18_ECC_STAT); // b2r_stat = readb(info->reg + NFCRb_NFC_INT_STAT); // writeb(B2R|b2r_stat, info->reg + NFCRb_NFC_INT_STAT); writeb(NAND_CMD_RNDOUT, info->reg + NFCR2_COMPORT0); writeb(NAND_CMD_RNDOUTSTART, info->reg + NFCR4_COMPORT3_4); writew(DPAHSE_DISABLE|MUL_CMDS|((addr_cycle + 2)<<1)|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL); status = wmt_nfc_wait_idle(mtd, 0, command, column, page_addr); if(status) { printk(KERN_NOTICE"WaitIdle is not ready=%d\n", status); } return status; } static int wmt_multi_copy_write(struct mtd_info *mtd, unsigned command, int column, int page_addr) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); unsigned int div = mtd->erasesize / mtd->writesize; unsigned int addr_cycle = 0; int status = -1; int b2r_stat = 0; set_read_addr(mtd, &addr_cycle, column, page_addr); writeb(0x85, info->reg + NFCR2_COMPORT0); writew(DPAHSE_DISABLE|((addr_cycle + 1)<<1)|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL); status = wmt_wait_cmd_ready(mtd); if (status) printk(KERN_ERR "erase command is not ready\n"); /* write to clear B2R */ b2r_stat = readb(info->reg + NFCRb_NFC_INT_STAT); writeb(B2R|b2r_stat, info->reg + NFCRb_NFC_INT_STAT); writeb(0x11, info->reg + NFCR2_COMPORT0); writew(DPAHSE_DISABLE|(1<<1)|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL); status = wmt_nand_ready(mtd); if (status) printk(KERN_NOTICE"B2R not clear status=0x%x\n", status); status = wmt_nfc_wait_idle(mtd, 0, command, column, page_addr); if (status) { printk(KERN_NOTICE"read page wait idle status =%d\n", status); } set_read_addr(mtd, &addr_cycle, column, page_addr+div); writeb(0x81, info->reg + NFCR2_COMPORT0); writew(DPAHSE_DISABLE|((addr_cycle + 1)<<1)|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL); status = wmt_wait_cmd_ready(mtd); if (status) printk(KERN_ERR "command is not ready\n"); /* write to clear B2R */ b2r_stat = readb(info->reg + NFCRb_NFC_INT_STAT); writeb(B2R|b2r_stat, info->reg + NFCRb_NFC_INT_STAT); writeb(0x10, info->reg + NFCR2_COMPORT0); writew(DPAHSE_DISABLE|(1<<1)|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL); status = wmt_nand_ready(mtd); if (status) printk(KERN_NOTICE"B2R not clear status=0x%x\n", status); status = wmt_nfc_wait_idle(mtd, 0, command, column, page_addr); if (status) { printk(KERN_NOTICE"read page wait idle status =%d\n", status); } //printk("\n wmt_copy_back_write is OK!"); return status; } static int wmt_copy_back_read(struct mtd_info *mtd, unsigned command, int column, int page_addr) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); unsigned int addr_cycle = 0, b2r_stat; int status = -1; set_read_addr(mtd, &addr_cycle, column, page_addr); writeb(NAND_CMD_READ0, info->reg + NFCR2_COMPORT0); writew(NAND2NFC|DPAHSE_DISABLE|((addr_cycle + 1)<<1)|NFC_TRIGGER|OLD_CMD,info->reg + NFCR1_COMCTRL); status = wmt_wait_cmd_ready(mtd); if (status) printk(KERN_ERR "Read 0x00 cmd is not ready\n"); /* write to clear B2R */ b2r_stat = readb(info->reg + NFCRb_NFC_INT_STAT); writeb(B2R|b2r_stat, info->reg + NFCRb_NFC_INT_STAT); writeb(0x35, info->reg + NFCR2_COMPORT0); writew(DPAHSE_DISABLE|1<<1|NFC_TRIGGER|OLD_CMD,info->reg + NFCR1_COMCTRL); status = wmt_nand_ready(mtd); if (status) printk(KERN_NOTICE"B2R not clear status=0x%x\n", status); status = wmt_nfc_wait_idle(mtd, 0, command, column, page_addr); if (status) { printk(KERN_NOTICE"read page wait idle status =%d\n", status); } //printk("\n wmt_copy_back_read is OK! "); return status; } static int wmt_copy_back_write(struct mtd_info *mtd, unsigned command, int column, int page_addr) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); unsigned int addr_cycle = 0; int status = -1; int b2r_stat = 0; set_read_addr(mtd, &addr_cycle, column, page_addr); writeb(0x85, info->reg + NFCR2_COMPORT0); writew(DPAHSE_DISABLE|((addr_cycle + 1)<<1)|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL); status = wmt_wait_cmd_ready(mtd); if (status) printk(KERN_ERR "erase command is not ready\n"); /* write to clear B2R */ b2r_stat = readb(info->reg + NFCRb_NFC_INT_STAT); writeb(B2R|b2r_stat, info->reg + NFCRb_NFC_INT_STAT); writeb(0x10, info->reg + NFCR2_COMPORT0); writew(DPAHSE_DISABLE|(1<<1)|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL); status = wmt_nand_ready(mtd); if (status) printk(KERN_NOTICE"B2R not clear status=0x%x\n", status); status = wmt_nfc_wait_idle(mtd, 0, command, column, page_addr); if (status) { printk(KERN_NOTICE"read page wait idle status =%d\n", status); } //printk("\n wmt_copy_back_write is OK!"); return status; } #endif static void wmt_nand_oob_read(struct mtd_info *mtd, unsigned command, int column, int page_addr) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); //struct nand_chip *chip = mtd->priv; unsigned int addr_cycle = 0, b2r_stat; int status = -1; unsigned int bank_stat; int mycolumn = column, mypage_addr = page_addr; DECLARE_COMPLETION(complete); info->data_ecc_uncor_err = 0; #ifdef NAND_DEBUG printk(KERN_NOTICE "wmt_nand_oob_read: readoob col=0x%x, page=0x%x\n", column, page_addr); #endif b2r_stat = readb(info->reg + NFCRb_NFC_INT_STAT); writeb(B2R|b2r_stat, info->reg + NFCRb_NFC_INT_STAT); writeb(0x18, info->reg + NFCR13_INT_MASK); info->done_data = &complete; info->datalen = 0; /* write to clear B2R */ b2r_stat = readb(info->reg + NFCRb_NFC_INT_STAT); writeb(B2R|b2r_stat, info->reg + NFCRb_NFC_INT_STAT); /* printk(KERN_NOTICE "RB is %d\n", b2r_stat & 0x02);*/ set_read_addr(mtd, &addr_cycle, column, page_addr); bank_stat = readw(info->reg + NFCRb_NFC_INT_STAT); if (bank_stat) writew(B2R|(ERR_CORRECT | BCH_ERR), info->reg + NFCRb_NFC_INT_STAT); status = wmt_wait_chip_ready(mtd); /*Vincent 2008.11.3*/ if (status) printk(KERN_ERR "The chip is not ready\n"); writeb(NAND_CMD_READ0, info->reg + NFCR2_COMPORT0); if (addr_cycle == 4) writeb(NAND_CMD_READSTART, info->reg + NFCR5_COMPORT5_6); else if (addr_cycle == 5) writeb(NAND_CMD_READSTART, (unsigned char *)(info->reg + NFCR5_COMPORT5_6) + 1); writew(NAND2NFC|MUL_CMDS|((addr_cycle + 2)<<1)|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL); /* read oob has no dma but assert B2R status */ //printk("read oob wait for completion"); wait_for_completion_timeout(&complete, NFC_TIMEOUT_TIME); status = wmt_nfc_transfer_ready(mtd); if (status) printk(KERN_NOTICE"oob read wait NFC_BUSY time out\n"); //wmt_nand_ready(mtd); writeb(0x80, info->reg + NFCR13_INT_MASK); status = wmt_nfc_wait_idle(mtd, 0, command, mycolumn, mypage_addr); if (status) { if (status == -4) return; printk(KERN_ERR "wmt_nfc_wait_idle status =%d\n", status); printk(KERN_ERR "command =0x%x\n", command); printk(KERN_ERR "Read ERR ,NFC is not idle\n"); /*print_nand_register(mtd);*/ writeb(READ_RESUME, info->reg + NFCR9_ECC_BCH_CTRL + 1); /*while(1);*/ } //printk(KERN_NOTICE "rbe|"); return; } /** * wmt_isbad_bbt - [NAND Interface] Check if a block is bad * @mtd: MTD device structure * @offs: offset in the device * @allowbbt: allow access to bad block table region * */ int wmt_isbad_bbt(struct mtd_info *mtd, struct nand_chip *chip, int block) { uint8_t res; if (!mtd || !chip) { printk(KERN_ERR "nand not init, check bad block fail.\n"); return 1; } if (!chip->bbt) { printk(KERN_ERR "nand bbt not init, check bad block fail.\n"); return 1; } /* dannier test nandwrite tool */ #if 0 if (block == 339 || block == 342 || block == 344) { //if (block == 338 || block == 340 || block == 341 || block == 343) { printk("blk%d --->bad\n", block); return 1; } #endif /* Get block number * 2 */ block <<= 1; res = (chip->bbt[block >> 3] >> (block & 0x06)) & 0x03; switch ((int)res) { case 0x00: return 0; case 0x01: return 1; case 0x02: return 1; } return 1; } /** * wmt_isbad_bbt_multi - [NAND Interface] Check if a block is bad * @mtd: MTD device structure * @offs: offset in the device * @allowbbt: allow access to bad block table region * */ int wmt_isbad_bbt_multi(struct mtd_info *mtd, struct nand_chip *chip, int block) { uint8_t res; if (!mtd || !chip) { printk(KERN_ERR "nand not init, check bad block fail.\n"); return 1; } if (!chip->bbt) { printk(KERN_ERR "nand bbt not init, check bad block fail.\n"); return 1; } /* dannier test nandwrite tool */ #if 0 if (block == 339 || block == 342 || block == 344) { //if (block == 338 || block == 340 || block == 341 || block == 343) { printk("blk%d --->bad\n", block); return 1; } #endif /* Get block number * 4 */ block <<= 2; res = (chip->bbt[block >> 3] >> (block & 0x4)) & 0x0F; switch ((int)res) { case 0x00: return 0; case 0x01: case 0x04: case 0x05: return 1; } return 1; } //#define ESLC_DEBUG #define ESLC_READ_WRITE #ifdef ESLC_READ_WRITE static int hynix_eslc_page_address_calculate(struct mtd_info *mtd, struct nand_chip *chip, int page) { int status = -1, page_in_blk, par_page_start = 0, par_page_end, block; int good_blk = 0, bad_blk = 0, par_blk_start, par_blk_end, i, j, blk_page_shift; unsigned int par_blk_ofs = 0, real_need_blk, real_page; blk_page_shift = chip->phys_erase_shift - chip->page_shift; block = page >> blk_page_shift; page_in_blk = page%mtd->pagecnt; if (page < par1_ofs/4) { par_page_start = 0; par_page_end = par1_ofs/4; } else if (page < par1_ofs) { par_page_start = par1_ofs/4; par_page_end = par1_ofs; } else if (page < par2_ofs) { par_page_start = par1_ofs; par_page_end = par2_ofs; } else if (page < par3_ofs) { par_page_start = par2_ofs; par_page_end = par3_ofs; } else { par_page_start = par3_ofs; par_page_end = par4_ofs; } par_blk_start = par_page_start >> blk_page_shift; par_blk_end = par_page_end >> blk_page_shift; par_blk_ofs = block - par_blk_start; for (j = par_blk_start; j < block; j++) { if (chip->realplanenum) status = wmt_isbad_bbt_multi(mtd, chip, j); else status = wmt_isbad_bbt(mtd, chip, j); if (status) { #ifdef ESLC_DEBUG if (page_in_blk == 0 || page_in_blk == (mtd->pagecnt/2)) printk("skip blk%d bad\n", j); #endif bad_blk++; } } par_blk_ofs = par_blk_ofs - bad_blk; real_need_blk = par_blk_ofs*2 + ((page_in_blk >= (mtd->pagecnt/2)) ? 1 : 0); for (i = par_blk_start; i < par_blk_end; i++) { //printk("i=%d, par_blk_start=0x%x, par_blk_end=0x%x real_need_blk=0x%x\n", i, par_blk_start, par_blk_end, real_need_blk); if (chip->realplanenum) status = wmt_isbad_bbt_multi(mtd, chip, i); else status = wmt_isbad_bbt(mtd, chip, i); if (status == 0) { #ifdef ESLC_DEBUG if (page_in_blk == 0 || page_in_blk == (mtd->pagecnt/2)) printk("blk%d good\n",i); #endif good_blk++; } if (good_blk >= (real_need_blk + 1)) { #ifdef ESLC_DEBUG if (page_in_blk == 0 || page_in_blk == (mtd->pagecnt/2)) printk("wr blk%d \n",i); #endif break; } } if (i >= par_blk_end) { if (page_in_blk == 0 || page_in_blk == (mtd->pagecnt/2)) printk(KERN_ERR "eslc addr is out of partition size, skip page=0x%x" ", par_page_end=0x%x, end_blk=%d\n", page, par_page_end, i); return -1; } real_page = (i << blk_page_shift) + eslc_map_table[(page_in_blk%(mtd->pagecnt/2))]; if (page_in_blk == 0 || page_in_blk == (mtd->pagecnt/2)) printk(KERN_NOTICE "page = 0x%x ======> eslc page = 0x%x\n", page, real_page); return real_page; } #endif /* * wmt_nand_cmdfunc - Send command to NAND large page device * @mtd: MTD device structure * @command: the command to be sent * @column: the column address for this command, -1 if none * @page_addr: the page address for this command, -1 if none * * Send command to NAND device. This is the version for the new large page * devices We dont have the separate regions as we have in the small page * devices. We must emulate NAND_CMD_READOOB to keep the code compatible. */ static void wmt_nand_cmdfunc(struct mtd_info *mtd, unsigned command, int column, int page_addr) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); struct nand_chip *chip = mtd->priv; unsigned int addr_cycle = 0, b2r_stat, pmc_nand, chip_en, tmp; int status = -1, i; int mycolumn, mypage_addr; DECLARE_COMPLETION(complete); if (!chip->realplanenum && (command == NAND_CMD_READ0)) { info->cur_lpage = page_addr; if (page_addr >= ((mtd->blkcnt - 8)*mtd->pagecnt)) mtd->bbt_sw_rdmz = 1; else mtd->bbt_sw_rdmz = 0; } //printk(KERN_DEBUG "cmd %x col:%x, page:0x%x hold=0x%x \n", command, column, page_addr, ((mtd->blkcnt - 8)*mtd->pagecnt)); if (mtd->id == 0xECDED57A) { if (page_addr >= (4096*128)) { page_addr = page_addr + 0x80000; //printk(KERN_NOTICE "cmd %x col:%x, page:0x%x\n", command, column, page_addr); } } else if (command == NAND_CMD_READ0 && chip->cur_chip && prob_end == 1 && (chip->cur_chip->nand_id>>24) == NAND_MFR_HYNIX) { #ifdef ESLC_READ_WRITE if (!chip->realplanenum) if (command == NAND_CMD_READ0) { if ((page_addr < par4_ofs && second_chip == 0)) { #ifdef ESLC_DEBUG if (page_addr%mtd->pagecnt == 0 || page_addr%mtd->pagecnt == (mtd->pagecnt/2)) printk("\ncmdfunc: \n"); #endif page_addr = hynix_eslc_page_address_calculate(mtd, chip, page_addr); if (page_addr < 0) return; } #endif } } mycolumn = column; mypage_addr = page_addr; #ifdef NAND_DEBUG printk(KERN_NOTICE "enter in wmt_nand_cmdfunc() command: %x column:%x, page_addr:%x\n", command, column, page_addr); //if (command == 0x70) //dump_stack(); #endif info->isr_cmd = command; if (page_addr != 0xFFFFFFFF && page_addr != -1) info->cur_page = page_addr; info->phase = 0; if (readl(info->reg + NFCR9_ECC_BCH_CTRL) & DIS_BCH_ECC) info->phase = 2; pmc_nand = *(volatile unsigned long *)PMCEU_ADDR;// |= (0x0010000);//add by vincent if (!(pmc_nand&0x0010000)) printk(KERN_NOTICE "pmc_nand=0x%x\n", pmc_nand); chip_en = readb(info->reg + NFCR12_NAND_TYPE_SEL+1); if ((chip_en&7) == 7) { printk(KERN_NOTICE "chip 0, or 1, is not select chip_sel=%x\n", chip_en); writeb(0xfe, info->reg + NFCR12_NAND_TYPE_SEL+1); } switch (command) { case NAND_CMD_READ0: #ifdef WMT_HW_RDMZ tmp = DIS_BCH_ECC & readb(info->reg + NFCR9_ECC_BCH_CTRL); if (mtd->dwRdmz) { if (mtd->bbt_sw_rdmz || tmp) { if ((RDMZ & readl(info->reg + NFCRf_CALC_RDMZ)) == RDMZ) reset_nfc(mtd, NULL, 3); } else nfc_hw_rdmz(mtd, 1); } #endif wmt_nand_page_read(mtd, command, column, page_addr); /*#ifdef WMT_HW_RDMZ if (mtd->dwRdmz) nfc_hw_rdmz(mtd, 1); #endif*/ return; case NAND_CMD_READOOB: #ifdef WMT_HW_RDMZ if (mtd->dwRdmz) { if (mtd->bbt_sw_rdmz) { if ((RDMZ & readl(info->reg + NFCRf_CALC_RDMZ)) == RDMZ) reset_nfc(mtd, NULL, 3); } else nfc_hw_rdmz(mtd, 1); } #endif //printk("oobRe=%x mtd->bbt_sw_rdmz=%d dwRdmz=%d\n", page_addr, mtd->bbt_sw_rdmz, mtd->dwRdmz); wmt_nand_oob_read(mtd, command, column, page_addr); /*#ifdef WMT_HW_RDMZ if (mtd->dwRdmz) nfc_hw_rdmz(mtd, 1); #endif*/ return; case MULTI_READ_1CYCLE: if ((0xFF&(mtd->id>>24)) == NAND_MFR_MICRON || (0xFF&(mtd->id>>24)) == NAND_MFR_INTEL) wmt_multi_page_start_micron(mtd, command, column, page_addr); else wmt_multi_page_start(mtd, command, column, page_addr); return; case MULTI_READ_2CYCLE: info->isr_cmd = 0x00; command = 0x00; wmt_multi_page_read(mtd, command, column, page_addr); return; /*case MULTI_COPY_1CYCLE: info->isr_cmd = 0x60; command = 0x60; wmt_multi_copy_start(mtd, command, column, page_addr); return; case MULTI_COPY_2CYCLE: info->isr_cmd = 0x00; command = 0x00; wmt_multi_copy_read(mtd, command, column, page_addr); return; case MULTI_COPY_3CYCLE: info->isr_cmd = 0x85; command = 0x85; wmt_multi_copy_write(mtd, command, column, page_addr); return; case COPY_BACK_1CYCLE: info->isr_cmd = 0x00; command = 0x00; wmt_copy_back_read(mtd, command, column, page_addr); return; case COPY_BACK_2CYCLE: info->isr_cmd = 0x85; command = 0x85; wmt_copy_back_write(mtd, command, column, page_addr); return;*/ case 0x81: case NAND_CMD_SEQIN: case NAND_CMD_ERASE1: /* printk(KERN_NOTICE "command is %x\n", command);*/ if (column != -1) { writeb(column, info->reg + NFCR3_COMPORT1_2); addr_cycle++; /*#ifndef PAGE_ADDR*/ if (mtd->realwritesize != 512) { writeb(column >> 8, (unsigned char *)(info->reg + NFCR3_COMPORT1_2) + 1); addr_cycle++; }/*#endif*/ if (page_addr != -1) { /*#ifndef PAGE_ADDR*/ if (mtd->realwritesize != 512) { writeb(page_addr, info->reg + NFCR4_COMPORT3_4); page_addr >>= 8; writeb(page_addr, (unsigned char *)(info->reg + NFCR4_COMPORT3_4) + 1); addr_cycle += 2; /*#else*/ } else { writeb(page_addr, (unsigned char *)(info->reg + NFCR3_COMPORT1_2) + 1); page_addr >>= 8; writeb(page_addr, info->reg + NFCR4_COMPORT3_4); addr_cycle += 2; } /*#endif*/ if (mtd->realwritesize == 2048) { /* One more address cycle for devices > 128MiB */ if (chip->chipsize > (128 << 20)) { page_addr >>= 8; /*#ifndef PAGE_ADDR*/ if (mtd->realwritesize != 512) writeb(page_addr, info->reg + NFCR5_COMPORT5_6); else /*#else*/ writeb(page_addr, (unsigned char *)(info->reg + NFCR4_COMPORT3_4) + 1); /*#endif*/ addr_cycle++; } } else if (mtd->realwritesize == 4096) { /* One more address cycle for devices > 256MiB */ if (chip->chipsize > (256 << 20)) { page_addr >>= 8; /*#ifndef PAGE_ADDR*/ if (mtd->realwritesize != 512) writeb(page_addr, info->reg + NFCR5_COMPORT5_6); else /*#else*/ writeb(page_addr, (unsigned char *)(info->reg + NFCR4_COMPORT3_4) + 1); /*#endif*/ addr_cycle++; } } else if (mtd->realwritesize == 8192) { /* One more address cycle for devices > 512MiB */ if (chip->chipsize > (512 << 20)) { page_addr >>= 8; if (mtd->realwritesize != 512) writeb(page_addr, info->reg + NFCR5_COMPORT5_6); addr_cycle++; } } else if (mtd->realwritesize == 16384) { /* One more address cycle for devices > 1024MiB */ if (chip->chipsize > (1024 << 20)) { page_addr >>= 8; writeb(page_addr, info->reg + NFCR5_COMPORT5_6); addr_cycle++; } } else { /* One more address cycle for devices > 32MiB */ if (chip->chipsize > (32 << 20)) { page_addr >>= 8; /*#ifndef PAGE_ADDR*/ if (mtd->realwritesize != 512) writeb(page_addr, info->reg + NFCR5_COMPORT5_6); else /*#else*/ writeb(page_addr, (unsigned char *)(info->reg + NFCR4_COMPORT3_4) + 1); /*#endif*/ addr_cycle++; } } } /*} else if (page_addr != -1) {*/ } else if ((page_addr != -1) && (column == -1)) { writeb(page_addr & 0xff, info->reg + NFCR3_COMPORT1_2); page_addr >>= 8; writeb(page_addr & 0xff, (unsigned char *)(info->reg + NFCR3_COMPORT1_2) + 1); addr_cycle += 2; if (mtd->realwritesize == 2048) { /* One more address cycle for devices > 128MiB */ if (chip->chipsize > (128 << 20)) { page_addr >>= 8; writeb(page_addr, info->reg + NFCR4_COMPORT3_4); addr_cycle++; } } else if (mtd->realwritesize == 4096) { /* One more address cycle for devices > 256MiB */ if (chip->chipsize > (256 << 20)) { page_addr >>= 8; writeb(page_addr, info->reg + NFCR4_COMPORT3_4); addr_cycle++; } } else if (mtd->realwritesize == 8192) { /* One more address cycle for devices > 512MiB */ if (chip->chipsize > (512 << 20)) { page_addr >>= 8; writeb(page_addr, info->reg + NFCR4_COMPORT3_4); addr_cycle++; } } else if (mtd->realwritesize == 16384) { /* One more address cycle for devices > 1024MiB */ if (chip->chipsize > (1024 << 20)) { page_addr >>= 8; writeb(page_addr, info->reg + NFCR4_COMPORT3_4); addr_cycle++; } } else { /* One more address cycle for devices > 32MiB */ if (chip->chipsize > (32 << 20)) { page_addr >>= 8; writeb(page_addr, info->reg + NFCR4_COMPORT3_4); addr_cycle++; } } } /* set command 1 cycle */ writeb(command, info->reg + NFCR2_COMPORT0); if (command == NAND_CMD_SEQIN || command == 0x81) { wmb(); info->done_data = &complete; writew(((addr_cycle + 1)<<1)|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL); } else { /* writeb(read(info->reg + NFCR12_NAND_TYPE_SEL) | WP_DISABLE , info->reg + NFCR12_NAND_TYPE_SEL);*/ writew(DPAHSE_DISABLE|((addr_cycle + 1)<<1)|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL); } wmb(); if (command == NAND_CMD_ERASE1) {//printk("erpg=0x%x\n", page_addr); status = wmt_wait_cmd_ready(mtd); /* status = wmt_nfc_ready(mtd); */ if (status) printk(KERN_ERR "command is not ready\n"); writeb(READ_RESUME, info->reg + NFCR9_ECC_BCH_CTRL + 1); } else { wait_for_completion_timeout(&complete, NFC_TIMEOUT_TIME); status = wmt_nfc_transfer_ready(mtd); /*status = wmt_wait_dma_ready(mtd);*/ /*dannier mask*/ wmt_wait_nfc_ready(info); if (status) { printk(KERN_ERR "dma transfer data is not ready: %x\n", readb(info->reg + NFCRa_NFC_STAT)); writeb(READ_RESUME, info->reg + NFCR9_ECC_BCH_CTRL + 1); /*printk(KERN_NOTICE "\rwait transfer data is not ready: %x\n", readb(info->reg + NFCRa_NFC_STAT));*/ /*print_nand_register(mtd);*/ /* while (1);*/ /* return;*/ } } return; case 0x11: //printk("\n0x11 is here \n"); writeb(command, info->reg + NFCR2_COMPORT0); /* write to clear B2R */ b2r_stat = readb(info->reg + NFCRb_NFC_INT_STAT); writeb(B2R|b2r_stat, info->reg + NFCRb_NFC_INT_STAT); //writeb(0x1B, info->reg + NFCR13_INT_MASK); info->done_data = &complete; writew(DPAHSE_DISABLE|(1<<1)|NFC_TRIGGER|0x400, info->reg + NFCR1_COMCTRL); wait_for_completion_timeout(&complete, NFC_TIMEOUT_TIME); //print_nand_register(mtd); writeb(0x80, info->reg + NFCR13_INT_MASK); status = wmt_wait_chip_ready(mtd); if (status) printk(KERN_NOTICE"The chip is not ready\n"); status = wmt_nfc_wait_idle(mtd, 1, 1, -1, -1); /* write page, don't check ecc */ if (status < 0) printk(KERN_ERR "page multi plane err, nand controller is not idle\n"); return; case NAND_CMD_PAGEPROG: /* case NAND_CMD_READSTART:*/ case NAND_CMD_ERASE2: case NAND_CMD_ERASE3: /*printk(KERN_NOTICE "command is %x\n", command);*/ writeb(command, info->reg + NFCR2_COMPORT0); b2r_stat = readb(info->reg + NFCRb_NFC_INT_STAT); if (B2R&b2r_stat) { printk(KERN_NOTICE"flash B2R status assert command=0x%x statu%x\n",command, b2r_stat); writeb(B2R|b2r_stat, info->reg + NFCRb_NFC_INT_STAT); status = wmt_wait_chip_ready(mtd); /*Vincent 2008.11.3*/ if (status) printk(KERN_NOTICE"The chip is not ready\n"); } if (NAND_CMD_ERASE2 == command || NAND_CMD_ERASE3 == command) { b2r_stat = readb(info->reg + NFCRb_NFC_INT_STAT); writeb(B2R|b2r_stat, info->reg + NFCRb_NFC_INT_STAT); writeb(0x1B, info->reg + NFCR13_INT_MASK); } info->done_data = &complete; writew(DPAHSE_DISABLE|(1<<1)|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL); info->datalen = 0; wait_for_completion_timeout(&complete, NFC_TIMEOUT_TIME); writeb(0x80, info->reg + NFCR13_INT_MASK); #if 0 /* for debug */ if (command == NAND_CMD_ERASE2 || NAND_CMD_ERASE3 == command) { wmt_read_nand_status(mtd, NAND_CMD_STATUS); if ((readb(info->reg + NFCR0_DATAPORT) & 0xff) == 0xc0) { printk(KERN_NOTICE "wmt_func: erase block OK\n"); printk(KERN_NOTICE "read nand status is %x\n", readb(info->reg + NFCR0_DATAPORT) & 0xff); } else printk(KERN_NOTICE "wmt_func: erase block failed\n"); } #endif status = wmt_nfc_wait_idle(mtd, 1, 1, -1, -1); /* write page, don't check ecc */ if (status < 0) { printk(KERN_ERR "page program or erase err, nand controller is not idle\n"); /*print_nand_register(mtd);*/ /* while (1);*/ #if 0 status = wmt_read_nand_status(mtd, NAND_CMD_STATUS); if (status < 0) printk(KERN_NOTICE "\rNFC or NAND is not ready\n"); else if (status & NAND_STATUS_FAIL) printk(KERN_NOTICE "\r status : fail\n"); else if (!(status & NAND_STATUS_READY)) printk(KERN_NOTICE "\r status : busy\n"); else if (!(status & NAND_STATUS_WP)) printk(KERN_NOTICE "\r status : protect\n"); #endif return; } return; case NAND_CMD_RESET_NO_STATUS_READ: case NAND_CMD_HYNIX_RETRY_END: if (!chip->dev_ready) break; udelay(chip->chip_delay); writeb(command, info->reg + NFCR2_COMPORT0); /* write to clear B2R */ b2r_stat = readb(info->reg + NFCRb_NFC_INT_STAT); writeb(B2R|b2r_stat, info->reg + NFCRb_NFC_INT_STAT); writew(DPAHSE_DISABLE|(0x01<<1)|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL); status = wmt_nand_ready(mtd); if (status) { printk(KERN_ERR "Reset err, nand device is not ready\n"); writeb(READ_RESUME, info->reg + NFCR9_ECC_BCH_CTRL + 1); } return; case NAND_CMD_RESET: if (!chip->dev_ready) break; udelay(chip->chip_delay); writeb(command, info->reg + NFCR2_COMPORT0); /* write to clear B2R */ b2r_stat = readb(info->reg + NFCRb_NFC_INT_STAT); writeb(B2R|b2r_stat, info->reg + NFCRb_NFC_INT_STAT); writew(DPAHSE_DISABLE|(0x01<<1)|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL); status = wmt_nand_ready(mtd); if (status) { b2r_stat = readb(info->reg + NFCR12_NAND_TYPE_SEL+1); printk(KERN_ERR "Reset err, nand device chip %d is not ready\n", ((~b2r_stat)&0xFF)>>1); writeb(READ_RESUME, info->reg + NFCR9_ECC_BCH_CTRL + 1); } wmt_read_nand_status(mtd, NAND_CMD_STATUS); /* while (!(chip->read_byte(mtd) & NAND_STATUS_READY));*/ i = 0; while (!((readb(info->reg + NFCR0_DATAPORT) & 0xff) & NAND_STATUS_READY)) { if (i>>12) { printk("reset flash chip%d time out\n", ~readb(info->reg + NFCR12_NAND_TYPE_SEL+1)); break; } i++; } #ifdef NAND_DEBUG printk(KERN_NOTICE "Reset status is ok\n"); #endif return; case NAND_CMD_READID: status = wmt_nand_readID(mtd); #ifdef NAND_DEBUG printk(KERN_NOTICE "readID status is %d\n", status); #endif return; case NAND_GET_FEATURE: if (mtd->dwRdmz) reset_nfc(mtd, NULL, 3); status = nand_get_feature(mtd, 0x1); if (mtd->dwRdmz && mtd->bbt_sw_rdmz == 0) nfc_hw_rdmz(mtd, 1);//enable rdmz return; case NAND_CMD_STATUS: wmt_read_nand_status(mtd, command); return; case NAND_CMD_STATUS_MULTI: wmt_read_nand_status(mtd, command); return; case NAND_CMD_RNDIN: if (column != -1) { writeb(column, info->reg + NFCR3_COMPORT1_2); addr_cycle++; if (mtd->realwritesize != 512) { writeb(column >> 8, (unsigned char *)(info->reg + NFCR3_COMPORT1_2) + 1); addr_cycle++; } } info->done_data = &complete; /* set command 1 cycle */ writeb(command, info->reg + NFCR2_COMPORT0); writew(((addr_cycle + 1)<<1)|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL); wait_for_completion_timeout(&complete, NFC_TIMEOUT_TIME); status = wmt_nfc_wait_idle(mtd, 1, -1, -1, -1); /* don't check ecc, wait nfc idle */ /* status = wmt_wait_cmd_ready(mtd);*/ /* status = wmt_nfc_ready(mtd);*/ if (status) printk(KERN_ERR "Ramdom input err: nfc is not idle\n"); return; case NAND_CMD_RNDOUT: if (column != -1) { writeb(column, info->reg + NFCR3_COMPORT1_2); writeb(column, info->reg + NFCR3_COMPORT1_2 + 1); addr_cycle += 2; } /* CLEAR ECC BIT */ //writeb(0x1B, info->reg + NFCR13_INT_MASK); /* write to clear B2R */ b2r_stat = readb(info->reg + NFCRb_NFC_INT_STAT); writeb(B2R|b2r_stat, info->reg + NFCRb_NFC_INT_STAT); /* set command 1 cycle */ writeb(command, info->reg + NFCR2_COMPORT0); writew(DPAHSE_DISABLE|((addr_cycle + 1)<<1)|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL); status = wmt_wait_cmd_ready(mtd); /* status = wmt_nfc_ready(mtd);*/ if (status) { printk(KERN_ERR "Ramdom output err: nfc command is not ready\n"); /* return;*/ } writeb(NAND_CMD_RNDOUTSTART, info->reg + NFCR2_COMPORT0); /* write to clear B2R */ b2r_stat = readb(info->reg + NFCRb_NFC_INT_STAT); writeb(B2R|b2r_stat, info->reg + NFCRb_NFC_INT_STAT); writew(NAND2NFC|(1<<1)|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL); status = wmt_wait_cmd_ready(mtd); /* status = wmt_nand_ready(mtd);*/ if (status) { printk(KERN_ERR "Ramdom output err: nfc io transfer is not finished\n"); /* return;*/ } /* reduntant aera check ecc, wait nfc idle */ status = wmt_nfc_wait_idle(mtd, 0, -1, -1, -1); /* status = wmt_nand_wait_idle(mtd);*/ if (status) printk(KERN_ERR "Ramdom output err: nfc is not idle\n"); return; case NAND_CMD_STATUS_ERROR: case NAND_CMD_STATUS_ERROR0: udelay(chip->chip_delay); return; default: /* * If we don't have access to the busy pin, we apply the given * command delay */ /* trigger command and addrress cycle */ if (!chip->dev_ready) { udelay(chip->chip_delay); return; } } /* Apply this short delay always to ensure that we do wait tWB in */ /* any case on any machine.*/ /* ndelay(100);*/ wmt_device_ready(mtd); } static void wmt_nand_select_chip(struct mtd_info *mtd, int chipnr) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); unsigned int b2r_stat; #ifdef NAND_DEBUG printk(KERN_NOTICE "\r enter in wmt_nand_select_chip()\n"); #endif if (!((*(volatile unsigned long *)PMCEU_ADDR)&0x0010000)) auto_pll_divisor(DEV_NAND, CLK_ENABLE, 0, 0); if (chipnr > 1) printk(KERN_WARNING "There are only support two chip sets\n"); b2r_stat = readb(info->reg + NFCRb_NFC_INT_STAT); writeb(B2R|b2r_stat, info->reg + NFCRb_NFC_INT_STAT); if (chipnr == 1) chipnr++; else if (chipnr == 2) chipnr--; if (chipnr >= 0 && chipnr < 4) writeb(~(1<reg + NFCR12_NAND_TYPE_SEL+1); else if (chipnr < 0) writeb(~0, info->reg + NFCR12_NAND_TYPE_SEL+1); else printk(KERN_WARNING "There are only support two chip sets. chipnr = %d\n", chipnr); } void rdmzier(uint8_t *buf, int size, int page) { int i, j; unsigned int *bi = (unsigned int *)buf; j = page%256; for (i = 0; i < size; i++) { bi[i] = rdmz[j] ^ bi[i]; j++; if (j >= BYTE_SEED) j = 0; } } void rdmzier_oob(uint8_t *buf, uint8_t *src, int size, int page, int ofs) { int i, j; unsigned int *bi = (unsigned int *)buf; unsigned int *bs = (unsigned int *)src; j = page%256; j = (j+ofs)%BYTE_SEED; for (i = 0; i < size; i++) { bi[i] = rdmz[j] ^ bs[i]; j++; if (j >= BYTE_SEED) j = 0; } } static void wmt_nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); #ifdef NAND_DEBUG printk(KERN_NOTICE "enter in wmt_nand_write_buf()\n"); #endif //printk("info->dmabuf=%x datalen=%x \n", (unsigned int)info->dmabuf, info->datalen); memcpy(info->dmabuf + info->datalen, buf, len); //print_nand_buffer((uint8_t *)info->dmabuf, mtd->writesize); info->datalen += len; } static void wmt_nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); #ifdef NAND_DEBUG printk(KERN_NOTICE "enter in wmt_nand_read_buf() len: %x infoDatalen :%x\n", len, info->datalen); #endif memcpy(buf, info->dmabuf + info->datalen, len); info->datalen += len; } static uint8_t wmt_read_byte(struct mtd_info *mtd) { /* struct wmt_nand_mtd *nmtd = mtd->priv;*/ /* struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd);*/ uint8_t d; #ifdef NAND_DEBUG printk(KERN_NOTICE "enter in wmt_nand_read_byte()\n"); #endif /* d = readb(info->reg + NFCR0_DATAPORT) & 0xff;*/ wmt_nand_read_buf(mtd, &d, 1); /* via_dev_dbg(&nmtd->info->platform->dev, "Read %02x\n", d);*/ /* via_dev_dbg(info->platform->dev, "Read %02x\n", d);*/ return d; } static int wmt_nand_read_oob_noalign(struct mtd_info *mtd, struct nand_chip *chip, int page, int sndcmd) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); uint8_t *buf = chip->oob_poi; uint8_t *bufpoi = buf; info->unc_bank = 0; info->unc_allFF = 0; // read redundant area cmd //printk(KERN_NOTICE "scan oob page=0x%x\n", page);dannier info->oob_ecc_error = 0x0; #if 0 if (!mtd->dwDDR) { writeb(readb(info->reg + NFCRd_OOB_CTRL) | OOB_READ, info->reg + NFCRd_OOB_CTRL); //writeb((info->oob_ECC_bytes+1), info->reg + NFCR10_OOB_ECC_SIZE+1); if (info->ECC_mode != info->oob_ECC_mode) set_ecc_engine(info, info->oob_ECC_mode); //pos = info->oob_col/*+ i * (eccsize + chunk);*/ //print_nand_register(mtd); chip->cmdfunc(mtd, NAND_CMD_READOOB, info->oob_col, page); if (info->ECC_mode != info->oob_ECC_mode) set_ecc_engine(info, info->ECC_mode); //writeb(info->oob_ECC_bytes, info->reg + NFCR10_OOB_ECC_SIZE+1); writeb(readb(info->reg + NFCRd_OOB_CTRL) & (~OOB_READ), info->reg + NFCRd_OOB_CTRL); } else #endif { info->data_ecc_uncor_err = 0; info->oob_ecc_error = 0x50; } if (mtd->dwRdmz) { if (mtd->bbt_sw_rdmz) { if ((RDMZ & readl(info->reg + NFCRf_CALC_RDMZ)) == RDMZ) reset_nfc(mtd, NULL, 3); } else nfc_hw_rdmz(mtd, 1); } if (info->data_ecc_uncor_err == 1 || info->oob_ecc_error == 0x50) { if (info->data_ecc_uncor_err == 1) printk(KERN_WARNING "**************page0x%x, read oob unc err goto read page\n", page); info->isr_cmd = 0; wmt_nand_page_read(mtd, 0, info->last_bank_col, page); info->oob_ecc_error = 0; } if (info->unc_allFF) { set_FIFO_FF((uint32_t *)(chip->oob_poi), 6);//set_FIFO_FF((uint32_t *)(info->reg+ECC_FIFO_0), 4); /*printk("oobRe=%x \n", page); print_nand_buffer((char *)(info->reg+ECC_FIFO_0), 32); print_nand_buffer((char *)(chip->oob_poi), 32); printk("\n");*/ } else { memcpy(bufpoi, info->dmabuf + mtd->realwritesize, 24); //print_nand_buffer((char *)(chip->oob_poi), 32); //print_nand_buffer((char *)(info->dmabuf + mtd->realwritesize), 32); /*if (!(*(uint32_t *)(info->reg+ECC_FIFO_0) == 0xFFFFFFFF && *(uint32_t *)(info->reg+ECC_FIFO_1) == 0xFFFFFFFF && *(uint32_t *)(info->reg+ECC_FIFO_2) == 0xFFFFFFFF && *(uint32_t *)(info->reg+ECC_FIFO_3) == 0xFFFFFFFF && *(uint32_t *)(info->reg+ECC_FIFO_4) == 0xFFFFFFFF && *(uint32_t *)(info->reg+ECC_FIFO_5) == 0xFFFFFFFF)) { printk("fail to derdmz oob roob page= 0x%x e\n", page); print_nand_buffer((char *)(info->reg+ECC_FIFO_0), 32); //rdmzier_oob((uint8_t *)(info->reg+ECC_FIFO_0), (uint8_t *)(info->reg+ECC_FIFO_0), 5, page, mtd->realwritesize/4); //print_nand_buffer((char *)(info->reg+ECC_FIFO_0), 32); //while(1); }*/ } return 1; } static int wmt_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip, int page, int sndcmd) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); uint8_t *buf = chip->oob_poi; /* int length = mtd->realoobsize; */ /* prepad = chip->ecc.prepad, bytes = chip->ecc.bytes;*/ /* int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;*/ /* int eccsize = chip->ecc.size;*/ uint8_t *bufpoi = buf; /* struct nand_oobfree *free = chip->ecc.layout->oobfree;*/ /* uint32_t boffs;*/ /* int pos; */ /* toread, sndrnd = 1;*/ #ifdef WMT_SW_RDMZ unsigned int rdmz_mark = 0; #endif #ifdef NAND_DEBUG printk(KERN_NOTICE "\r enter in wmt_nand_read_oob() page =0x%x cur_page=0x%x\n", page, info->cur_page); #endif info->unc_bank = 0; info->unc_allFF = 0; // read redundant area cmd //printk(KERN_NOTICE "scan oob page=%d\n", page); info->oob_ecc_error = 0x0; #if 1 if (!mtd->dwDDR) { writeb(readb(info->reg + NFCRd_OOB_CTRL) | OOB_READ, info->reg + NFCRd_OOB_CTRL); //writeb((info->oob_ECC_bytes+1), info->reg + NFCR10_OOB_ECC_SIZE+1); if (info->ECC_mode != info->oob_ECC_mode) set_ecc_engine(info, info->oob_ECC_mode); //pos = info->oob_col/*+ i * (eccsize + chunk);*/ //print_nand_register(mtd); chip->cmdfunc(mtd, NAND_CMD_READOOB, info->oob_col, page); if (info->ECC_mode != info->oob_ECC_mode) set_ecc_engine(info, info->ECC_mode); //writeb(info->oob_ECC_bytes, info->reg + NFCR10_OOB_ECC_SIZE+1); writeb(readb(info->reg + NFCRd_OOB_CTRL) & (~OOB_READ), info->reg + NFCRd_OOB_CTRL); } else #endif { info->data_ecc_uncor_err = 0; info->oob_ecc_error = 0x50; } if (mtd->dwRdmz) { if (mtd->bbt_sw_rdmz) { if ((RDMZ & readl(info->reg + NFCRf_CALC_RDMZ)) == RDMZ) reset_nfc(mtd, NULL, 3); } else nfc_hw_rdmz(mtd, 1); } if (info->data_ecc_uncor_err == 1 || info->oob_ecc_error == 0x50) { if (info->data_ecc_uncor_err == 1) printk(KERN_WARNING "**************page0x%x, read oob unc err goto read page\n", page); info->isr_cmd = 0; writeb(readb(info->reg + NFCR9_ECC_BCH_CTRL) | 0x10, info->reg + NFCR9_ECC_BCH_CTRL); wmt_nand_page_read(mtd, 0, info->last_bank_col, page); writeb(readb(info->reg + NFCR9_ECC_BCH_CTRL) & 0xEF, info->reg + NFCR9_ECC_BCH_CTRL); info->oob_ecc_error = 0; } //print_nand_buffer((char *)(info->reg+ECC_FIFO_0), 16); #ifdef WMT_SW_RDMZ rdmzier_oob((uint8_t *)&rdmz_mark, (uint8_t *)(info->reg+ECC_FIFO_5), 1, page, (mtd->realwritesize+20)/4); //printk("re oob page=0x%x rdmz_mark=0x%x wmt_rdmz=0x%x fifo5=0x%x\n",page , rdmz_mark, *(unsigned int *)wmt_rdmz, *(unsigned int *)(info->reg+ECC_FIFO_5)); if (mtd->dwRdmz == 1 && rdmz_mark == *(unsigned int *)wmt_rdmz) { rdmzier_oob(bufpoi, (uint8_t *)(info->reg+ECC_FIFO_0), 5, page, mtd->realwritesize/4); //print_nand_buffer(info->reg+ECC_FIFO_0, 24); } else #endif if (info->unc_allFF) { set_FIFO_FF((uint32_t *)(chip->oob_poi), 5);//set_FIFO_FF((uint32_t *)(info->reg+ECC_FIFO_0), 4); /*printk("oobRe=%x \n", page); print_nand_buffer((char *)(info->reg+ECC_FIFO_0), 32); print_nand_buffer((char *)(chip->oob_poi), 32); printk("\n");*/ } else { memcpy(bufpoi, info->reg+ECC_FIFO_0, 20); /*if (!(*(uint32_t *)(info->reg+ECC_FIFO_0) == 0xFFFFFFFF && *(uint32_t *)(info->reg+ECC_FIFO_1) == 0xFFFFFFFF && *(uint32_t *)(info->reg+ECC_FIFO_2) == 0xFFFFFFFF && *(uint32_t *)(info->reg+ECC_FIFO_3) == 0xFFFFFFFF && *(uint32_t *)(info->reg+ECC_FIFO_4) == 0xFFFFFFFF && *(uint32_t *)(info->reg+ECC_FIFO_5) == 0xFFFFFFFF)) { printk("fail to derdmz oob roob page= 0x%x e\n", page); print_nand_buffer((char *)(info->reg+ECC_FIFO_0), 32); //rdmzier_oob((uint8_t *)(info->reg+ECC_FIFO_0), (uint8_t *)(info->reg+ECC_FIFO_0), 5, page, mtd->realwritesize/4); //print_nand_buffer((char *)(info->reg+ECC_FIFO_0), 32); //while(1); }*/ } /*chip->read_buf(mtd, bufpoi, 32);*/ /*chip->read_buf(mtd, bufpoi + i * 16, 16);*/ return 1; } static int wmt_nand_read_oob_single(struct mtd_info *mtd, struct nand_chip *chip, int page, int sndcmd) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); int ret = 0; info->cur_lpage = page; info->cur_page = page; ret = cache_read_data(mtd, chip, page, NULL); if (!ret) { //printk("re oob lpg=0x%x from cache\n", page); return 0; } ret = 0; if (page >= ((mtd->blkcnt - 8)*mtd->pagecnt)) mtd->bbt_sw_rdmz = 1; else mtd->bbt_sw_rdmz = 0; //printk("11oobRe=0x%x mtd->bbt_sw_rdmz=%d cur_page=0x%x\n", page, mtd->bbt_sw_rdmz, info->cur_page); if ((mtd->pageSizek >> (ffs(mtd->pageSizek)-1)) != 1) { if (wmt_nand_read_oob_noalign(mtd, chip, page, sndcmd)) ret = 1; } else { if (wmt_nand_read_oob(mtd, chip, page, sndcmd)) ret = 1; } return ret; } static int wmt_nand_read_oob_plane(struct mtd_info *mtd, struct nand_chip *chip, int page, int sndcmd) { //printk("\n wmt_nand_read_oob_plane \n"); struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); int pagecnt = mtd->pagecnt; int ret = 0; //printk("\n wmt_nand_read_oob_plane page=%x =>page=%x\n",page,(page / pagecnt) * pagecnt + page); info->cur_lpage = page; ret = cache_read_data(mtd, chip, page, NULL); if (!ret) { //printk("re oob lpg=0x%x from cache\n", page); return 0; } ret = 0; if (page >= ((mtd->blkcnt - 8)*mtd->pagecnt)) mtd->bbt_sw_rdmz = 1; else mtd->bbt_sw_rdmz = 0; page = (page / pagecnt) * pagecnt + page; info->cur_page = page; //printk("22oobRe=0x%x mtd->bbt_sw_rdmz=%d hold=%x blkcnt=%d\n", page, mtd->bbt_sw_rdmz, ((mtd->blkcnt - 8)*mtd->pagecnt), mtd->blkcnt); if ((mtd->pageSizek >> (ffs(mtd->pageSizek)-1)) != 1) { if (wmt_nand_read_oob_noalign(mtd, chip, page, 1)) ret = 1; } else { if (wmt_nand_read_oob(mtd, chip, page, 1)) ret = 1; } /* info->oper_step = 1; if(wmt_nand_read_oob(mtd, chip, page+div, 1))ret = 1; //if(ret)printk("ret is 1! \n"); */ return ret; } /* * wmt_nand_read_raw_page * @mtd: mtd info structure * @chip: nand chip info structure * @page: page number to read * @sndcmd: flag whether to issue read command or not */ static int wmt_nand_read_raw_page(struct mtd_info *mtd, struct nand_chip *chip, int page) { unsigned int bch; struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); /*print_nand_register(mtd); dump_stack();*/ bch = readb(info->reg + NFCR9_ECC_BCH_CTRL); writeb((bch & (~BCH_INT_EN))| DIS_BCH_ECC, info->reg + NFCR9_ECC_BCH_CTRL); writeb(READ_RESUME, info->reg + NFCR9_ECC_BCH_CTRL + 1); chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); writeb(bch, info->reg + NFCR9_ECC_BCH_CTRL); writeb(READ_RESUME, info->reg + NFCR9_ECC_BCH_CTRL + 1); set_ecc_engine(info, info->ECC_mode); return 0; } /* - SCAN DEFAULT INVALID BAD BLOCK - * wmt_nand_read_bb_oob - OOB data read function * @mtd: mtd info structure * @chip: nand chip info structure * @page: page number to read * @sndcmd: flag whether to issue read command or not */ static int wmt_nand_read_bb_oob(struct mtd_info *mtd, struct nand_chip *chip, int page, int sndcmd) { unsigned int bch, bak_time; int i, size = 1024, ofs = mtd->realwritesize; struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); #ifdef NAND_DEBUG printk(KERN_NOTICE "enter in wmt_nand_read_bb_oob() page=0x%x\n", page); #endif bch = readb(info->reg + NFCR9_ECC_BCH_CTRL); writeb((bch & (~BCH_INT_EN))| DIS_BCH_ECC, info->reg + NFCR9_ECC_BCH_CTRL); writeb(READ_RESUME, info->reg + NFCR9_ECC_BCH_CTRL + 1); bak_time = readl(info->reg + NFCR14_READ_CYCLE_PULE_CTRL); if (!mtd->dwDDR) writel(0x2424, info->reg + NFCR14_READ_CYCLE_PULE_CTRL); if ((mtd->pageSizek >> (ffs(mtd->pageSizek)-1)) != 1) { ofs = ofs + 2048; } if (sndcmd) { if ((0xFF&(mtd->id>>24)) == 0x45) { for (i = 0; i < ((ofs/1024)+1); i++) { chip->cmdfunc(mtd, NAND_CMD_READ0, i*1024, page); info->datalen = 0; if (i == (ofs/1024)) size = (mtd->realoobsize >= 1024) ? 1024 : mtd->realoobsize; chip->read_buf(mtd, chip->oob_poi - ofs + (i*1024), size); } } else if (mtd->id == 0xECDED57E && mtd->id2 == 0x68440000) { chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); info->datalen = 0; chip->read_buf(mtd, chip->oob_poi, 1); chip->cmdfunc(mtd, NAND_CMD_READ0, ofs, page); info->datalen = 0; chip->read_buf(mtd, chip->oob_poi+1, 63); } else { chip->cmdfunc(mtd, NAND_CMD_READ0, ofs, page); info->datalen = 0; chip->read_buf(mtd, chip->oob_poi, 64); } sndcmd = 0; } if (!mtd->dwDDR) writel(bak_time, info->reg + NFCR14_READ_CYCLE_PULE_CTRL); writeb(bch, info->reg + NFCR9_ECC_BCH_CTRL); writeb(READ_RESUME, info->reg + NFCR9_ECC_BCH_CTRL + 1); set_ecc_engine(info, info->ECC_mode); return sndcmd; } /* - SCAN DEFAULT INVALID BAD BLOCK - * wmt_nand_read_bb_oob_multi - OOB data read function * @mtd: mtd info structure * @chip: nand chip info structure * @page: page number to read * @sndcmd: flag whether to issue read command or not */ static int wmt_nand_read_bb_oob_multi(struct mtd_info *mtd, struct nand_chip *chip, int page, int sndcmd) { unsigned int bch, bak_time; int i, size = 1024, plane, ofs = mtd->realwritesize; struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); #ifdef NAND_DEBUG printk(KERN_NOTICE "enter in wmt_nand_read_bb_oob() page=0x%x\n", page); #endif bch = readb(info->reg + NFCR9_ECC_BCH_CTRL); writeb((bch & (~BCH_INT_EN))| DIS_BCH_ECC, info->reg + NFCR9_ECC_BCH_CTRL); writeb(READ_RESUME, info->reg + NFCR9_ECC_BCH_CTRL + 1); bak_time = readl(info->reg + NFCR14_READ_CYCLE_PULE_CTRL); if (!mtd->dwDDR) writel(0x2424, info->reg + NFCR14_READ_CYCLE_PULE_CTRL); if ((mtd->pageSizek >> (ffs(mtd->pageSizek)-1)) != 1) { ofs = ofs + 2048; } if (sndcmd) { if ((0xFF&(mtd->id>>24)) == 0x45) { plane = (info->oper_step ? (ofs-1024) : mtd->writesize); for (i = 0; i < ((ofs/1024)+1); i++) { chip->cmdfunc(mtd, NAND_CMD_READ0, i*1024, page); info->datalen = 0; if (i == (ofs/1024)) size = (mtd->realoobsize >= 1024) ? 1024 : mtd->realoobsize; chip->read_buf(mtd, chip->oob_poi - plane + (i*1024), size); } } else if (mtd->id == 0xECDED57E && mtd->id2 == 0x68440000) { plane = (info->oper_step ? 32 : 0); chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); info->datalen = 0; chip->read_buf(mtd, chip->oob_poi+plane, 1); chip->cmdfunc(mtd, NAND_CMD_READ0, ofs, page); info->datalen = 0; chip->read_buf(mtd, chip->oob_poi+1+plane, 31); } else { chip->cmdfunc(mtd, NAND_CMD_READ0, ofs, page); info->datalen = 0; plane = (info->oper_step ? 32 : 0); chip->read_buf(mtd, chip->oob_poi+plane, 32); } sndcmd = 0; } if (!mtd->dwDDR) writel(bak_time, info->reg + NFCR14_READ_CYCLE_PULE_CTRL); writeb(bch, info->reg + NFCR9_ECC_BCH_CTRL); writeb(READ_RESUME, info->reg + NFCR9_ECC_BCH_CTRL + 1); set_ecc_engine(info, info->ECC_mode); return sndcmd; } static int wmt_nand_read_bb_oob_plane(struct mtd_info *mtd, struct nand_chip *chip, int page, int sndcmd) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); int div = mtd->erasesize / mtd->writesize; int ret = 0; page = (page / div) * div + page; info->oper_step = 0; if (wmt_nand_read_bb_oob_multi(mtd, chip, page,sndcmd)) ret = 1; info->oper_step = 1; if(wmt_nand_read_bb_oob_multi(mtd, chip, page+div,sndcmd)) ret = 1; info->oper_step = 0; return ret; } /* write oob is no longer support */ static int wmt_nand_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); /*int i;*/ unsigned int b2r_stat; /*int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;*/ int eccsize = chip->ecc.size; /* length = mtd->realoobsize; */ /* prepad = chip->ecc.prepad, bytes = chip->ecc.bytes;*/ int pos, status = 0; /*int steps = chip->ecc.steps;*/ /* Vincent 2008.11.4*/ const uint8_t *bufpoi = chip->oob_poi; /* struct nand_oobfree *free = chip->ecc.layout->oobfree;*/ /* uint32_t boffs;*/ #ifdef NAND_DEBUG printk(KERN_NOTICE "\r enter in wmt_nand_write_oob()\n"); #endif b2r_stat = readb(info->reg + NFCRb_NFC_INT_STAT); writeb(B2R|b2r_stat, info->reg + NFCRb_NFC_INT_STAT); info->datalen = 0; /*chip->write_buf(mtd, bufpoi, 32);*/ memcpy(info->reg+ECC_FIFO_0, bufpoi, 32); pos = eccsize * chip->ecc.steps + 8*4; /*pos = eccsize + i * (eccsize + chunk);*/ /*wmt_nfc_dma_cfg(mtd, 32, 1, 1, i);*/ chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page); chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); /* printk(KERN_NOTICE "\r in wmt_nand_write_oob_new(): waitfunc_1\n");*/ status = chip->waitfunc(mtd, chip); /* printk(KERN_NOTICE "\r in wmt_nand_write_oob_new(): waitfunc_2\n");*/ if (status & NAND_STATUS_FAIL) return -EIO; /* } */ return 0; } static int wmt_nand_write_oob_plane(struct mtd_info *mtd, struct nand_chip *chip, int page) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); uint8_t *bufpoi = chip->oob_poi; /*int i;*/ unsigned int b2r_stat; /*int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;*/ int eccsize = chip->ecc.size; /* length = mtd->realoobsize; */ /* prepad = chip->ecc.prepad, bytes = chip->ecc.bytes;*/ int pos, status = 0; /*int steps = chip->ecc.steps;*/ /* Vincent 2008.11.4*/ int div = mtd->erasesize / mtd->writesize; page = (page / div) *div + page; // if(info->oper_step) bufpoi = chip->oob_poi + mtd->realoobsize; /* struct nand_oobfree *free = chip->ecc.layout->oobfree;*/ /* uint32_t boffs;*/ #ifdef NAND_DEBUG printk(KERN_NOTICE "\r enter in wmt_nand_write_oob()\n"); #endif /* * data-ecc-data-ecc ... ecc-oob * or * 512 7 1 5 0 3 * data-ecc-prepad-data-pad-oobecc .... */ /* for (i = 0; i < steps; i++) {*/ /*for (i = 0; i < 4; i++) {*/ b2r_stat = readb(info->reg + NFCRb_NFC_INT_STAT); writeb(B2R|b2r_stat, info->reg + NFCRb_NFC_INT_STAT); info->datalen = 0; memcpy(info->reg+ECC_FIFO_0, bufpoi, 32); pos = eccsize * chip->ecc.steps + 8*4; /*pos = eccsize + i * (eccsize + chunk);*/ /*wmt_nfc_dma_cfg(mtd, 32, 1, 1, i);*/ chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page); chip->cmdfunc(mtd, 0x11, -1, -1); memcpy(info->reg+ECC_FIFO_0, bufpoi + mtd->realoobsize, 32); chip->cmdfunc(mtd, 0x81, pos, page + div); chip->cmdfunc(mtd, 0x10, -1, -1); /* printk(KERN_NOTICE "\r in wmt_nand_write_oob_new(): waitfunc_1\n");*/ status = chip->waitfunc(mtd, chip); /* printk(KERN_NOTICE "\r in wmt_nand_write_oob_new(): waitfunc_2\n");*/ if (status & NAND_STATUS_FAIL) return -EIO; /* } */ return 0; } static void wmt_single_plane_erase(struct mtd_info *mtd, int page) { struct nand_chip *chip = mtd->priv; struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); int i; #if 0 /* Send commands to erase a block */ if (chip->cur_chip && (chip->cur_chip->nand_id>>24) == NAND_MFR_HYNIX && prob_end == 1) { if (page < par3_ofs || (page >= par6_ofs && page < par7_ofs)) { //printk("SKIP erase page 0x%x, par4_ofs 0x%x\n", page, par4_ofs); return; } } // nand_base.c nand_erase_nand #endif for (i = 0; i < WR_BUF_CNT; i++) if (page <= info->wr_page[i] && (page+mtd->pagecnt) > info->wr_page[i]) info->wr_page[i] = -1; info->cur_page = page; chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); } static void wmt_multi_plane_erase(struct mtd_info *mtd, int page) { struct nand_chip *chip = mtd->priv; struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); int i, pagecnt = mtd->pagecnt, page_plane1; //if (((page/pagecnt) * pagecnt + page) != (page<<1) - (page%pagecnt)) //printk("erase page %d => page1=%d page2=%d\n", page, (page/pagecnt) * pagecnt + page, (page<<1) - (page%pagecnt)); for (i = 0; i < WR_BUF_CNT; i++) if (page <= info->wr_page[i] && (page+mtd->pagecnt) > info->wr_page[i]) info->wr_page[i] = -1; /*if (chip->cur_chip && (chip->cur_chip->nand_id>>24) == NAND_MFR_HYNIX && prob_end == 1) { if (page < par3_ofs || (page >= par5_ofs && page < par7_ofs)) { printk("SKIP erase page 0x%x, par4_ofs 0x%x\n", page, par3_ofs); //while(1); return; } }*/ page = (page / pagecnt) * pagecnt + page; page_plane1 = page + pagecnt; //printk("multi erase page %x => page1=%x page2=%x, pagepl1=%x\n", page, (page/pagecnt) * pagecnt + page, (page<<1) - (page%pagecnt), page_plane1); //printk("blk=%d, blk1=%d\n", page/mtd->pagecnt, page_plane1/mtd->pagecnt); info->cur_page = page; // chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);//simulate // chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); //simulate // chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page+div); //simulate // chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); //simulate /*******************************************************************************/ if ((0xFF&(mtd->id>>24)) == NAND_MFR_MICRON || (0xFF&(mtd->id>>24)) == NAND_MFR_INTEL) { //printk(KERN_NOTICE"multi erase0 command=0x%x \n",NAND_CMD_ERASE1); chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); //printk(KERN_NOTICE"multi erase1 command=0x%x \n",NAND_CMD_ERASE3); chip->cmdfunc(mtd, NAND_CMD_ERASE3, -1, -1); /* send cmd 0xd0 */ //printk(KERN_NOTICE"multi erase1 command=0x%x \n",NAND_CMD_ERASE1); chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page_plane1); //printk(KERN_NOTICE"multi erase2 command=0x%x \n",NAND_CMD_ERASE2); chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); /* send cmd 0xd0 */ } else { //printk(KERN_NOTICE"multi erase0 command=0x%x \n",NAND_CMD_ERASE1); chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); //printk(KERN_NOTICE"multi erase1 command=0x%x \n",NAND_CMD_ERASE1); chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page_plane1); //printk(KERN_NOTICE"multi erase2 command=0x%x \n",NAND_CMD_ERASE2); chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); /* send cmd 0xd0 */ } /*******************************************************************************/ } #if 1 //faster encode function u32 reverse32 (u32 n) { int i; u32 tmp, y; y=0; tmp = n; for(i=0;i<31;i++) { y = y + (tmp & 0x01); //printf("y=%08x\n",y); tmp >>= 1; y <<= 1; } y = y + (tmp & 0x01); return y; } int gen_gf2(u8 ecc_mod_bits, u32 *p_bch_gf2) { // assign bch_GF_60becc = 840'h9A_5FB0C03C_2D3F4F2F_F106E7D9_ED397A28_479724D7_F259A1CD_DB6C78DA_62668B7F_D9D13742_80F0C37C_06664C92_86CCB2D9_DD1A2B4B_3BC4895C_F7212F8C_D75FB017_7FBFE2B9_66646AAA_CEB7855F_6996F036_3D096201_F62357BD_EB9AD670_03F47DD9_73D6AE65_E5A30A27; // assign bch_GF_40becc = 560'hC07F_89B1_A0DC_5D96_619F_32D0_4967_54F6_DE9D_4F93_F527_EF14_EFB0_FD53_9915_A82C_CD92_5528_8030_477D_EE3F_338A_59EC_5FA2_10AF_E2EF_DFAE_D244_DF31_4DA5_0762_B724_A002_9CEF_2DC1; // assign bch_GF_24becc = 560'h8E94_E024_8D90_9D2B_4525_72D1_EDD9_D098_FE73_0E8E_8D26_C2D2_2893_A3A0_485B_D0AB_6E0B_4992_9A35_6BD4_30EF; // assign bch_GF_12becc = 560'hE48_7325_6115_A567_84A6_940A_4C6E_6D7E_1205_E051; // assign bch_GF_8becc = 560'h15_F914_E07B_0C13_8741_C5C4_FB23; // assign bch_GF_4becc = 560'h4_5230_43AB_86AB; u32 bch_GF_60becc[] = { 0x9A, 0x5FB0C03C, 0x2D3F4F2F, 0xF106E7D9, 0xED397A28, 0x479724D7, 0xF259A1CD, 0xDB6C78DA, 0x62668B7F, 0xD9D13742, 0x80F0C37C, 0x06664C92, 0x86CCB2D9, 0xDD1A2B4B, 0x3BC4895C, 0xF7212F8C, 0xD75FB017, 0x7FBFE2B9, 0x66646AAA, 0xCEB7855F, 0x6996F036, 0x3D096201, 0xF62357BD, 0xEB9AD670, 0x03F47DD9, 0x73D6AE65, 0xE5A30A27}; u32 bch_GF_40becc[] = { 0xC07F, 0x89B1A0DC, 0x5D96619F, 0x32D04967, 0x54F6DE9D, 0x4F93F527, 0xEF14EFB0, 0xFD539915, 0xA82CCD92, 0x55288030, 0x477DEE3F, 0x338A59EC, 0x5FA210AF, 0xE2EFDFAE, 0xD244DF31, 0x4DA50762, 0xB724A002, 0x9CEF2DC1}; u32 bch_GF_24becc[] = { 0x8E94, 0xE0248D90, 0x9D2B4525, 0x72D1EDD9, 0xD098FE73, 0x0E8E8D26, 0xC2D22893, 0xA3A0485B, 0xD0AB6E0B, 0x49929A35, 0x6BD430EF}; u32 bch_GF_12becc[] = { 0xE487325, 0x6115A567, 0x84A6940A, 0x4C6E6D7E, 0x1205E051}; u32 bch_GF_8becc[] = { 0x15, 0xF914E07B, 0x0C138741, 0xC5C4FB23}; u32 bch_GF_4becc[] = { 0x45230, 0x43AB86AB}; u32 *p_tmp; int i,len,width; switch (ecc_mod_bits) { case 4 : width = 52; p_tmp = bch_GF_4becc; break; case 8 : width = 104; p_tmp = bch_GF_8becc; break; case 12 : width = 156; p_tmp = bch_GF_12becc; break; case 24 : width = 336; p_tmp = bch_GF_24becc; break; case 40 : width = 560; p_tmp = bch_GF_40becc; break; case 60 : width = 840; p_tmp = bch_GF_60becc; break; default : width = 52; p_tmp = bch_GF_4becc; break; } len = width/32 +1; for(i=0;i> (parity_msb_pos-1) ; for(i=parity_len-1;i>0;i--) { parity_buf[i]= (parity_buf[i]<<1) +(parity_buf[i-1]>>31); if(din ^ parity_msb) parity_buf[i]= parity_buf[i]^ bch_GF2[i]; } parity_buf[0]= (parity_buf[0]<<1); if(din ^ parity_msb) parity_buf[i]= parity_buf[i]^ bch_GF2[i]; return (parity_msb ); } int bch_encoder(u32 *p_parity, u32 *p_data, u8 ecc_mod_bits, u32 datacnt) { //p_parity: pointer to parity buffer //p_data: pointer to input data //ecc_mod_bits: ecc mode select, options are 4,8,12,24,40,60 //datacnt: data length in DW int i,j; int bchGF_width; u8 parity_len,parity_msb_pos; u32 bch_GF2[27]; //support 60becc, 105bytes 27DW u32 tmp; u32 *p; u8 align_offset; bchGF_width = gen_gf2( ecc_mod_bits, bch_GF2); parity_len = (u8)(bchGF_width /32 + 1); parity_msb_pos = (u8)(bchGF_width %32); align_offset = 32 - parity_msb_pos; //p = (u32 *)malloc((parity_len) * sizeof(u32)); p = (unsigned int *)kmalloc((parity_len) * sizeof(unsigned int), GFP_KERNEL); if (p == NULL) { printk("malloc Error!"); return -1; } else { //initialize parity buffer for(i=parity_len-1;i>=0;i--) *(p+i) = 0; //Caculate bit by bit for (i=0;i>= 1; } } //adjust parity align offset for (i=parity_len -1 ; i >0; i--) p[i] = (p[i] << align_offset) + (p[i-1] >> (32-align_offset)); p[0] = p[0] << align_offset; //reverse parity order for(i=0;i>= 1; y <<= 1; } y += tmp&0x00000001; return y; } int Gen_GF2(u8 bits, unsigned int *buf) { // assign bch_GF_40becc = 560'hC07F_89B1_A0DC_5D96_619F_32D0_4967_54F6_DE9D_4F93_F527_EF14_EFB0_FD53_9915_A82C_CD92_5528_8030_477D_EE3F_338A_59EC_5FA2_10AF_E2EF_DFAE_D244_DF31_4DA5_0762_B724_A002_9CEF_2DC1; // assign bch_GF_24becc = 560'h8E94_E024_8D90_9D2B_4525_72D1_EDD9_D098_FE73_0E8E_8D26_C2D2_2893_A3A0_485B_D0AB_6E0B_4992_9A35_6BD4_30EF; // assign bch_GF_12becc = 560'hE48_7325_6115_A567_84A6_940A_4C6E_6D7E_1205_E051; // assign bch_GF_8becc = 560'h15_F914_E07B_0C13_8741_C5C4_FB23; // assign bch_GF_4becc = 560'h4_5230_43AB_86AB; unsigned int bch_GF_40becc[] = { 0xC07F, 0x89B1A0DC, 0x5D96619F, 0x32D04967, 0x54F6DE9D, 0x4F93F527, 0xEF14EFB0, 0xFD539915, 0xA82CCD92, 0x55288030, 0x477DEE3F, 0x338A59EC, 0x5FA210AF, 0xE2EFDFAE, 0xD244DF31, 0x4DA50762, 0xB724A002, 0x9CEF2DC1}; unsigned int bch_GF_24becc[] = { 0x8E94, 0xE0248D90, 0x9D2B4525, 0x72D1EDD9, 0xD098FE73, 0x0E8E8D26, 0xC2D22893, 0xA3A0485B, 0xD0AB6E0B, 0x49929A35, 0x6BD430EF}; unsigned int bch_GF_12becc[] = { 0xE487325, 0x6115A567, 0x84A6940A, 0x4C6E6D7E, 0x1205E051}; unsigned int bch_GF_8becc[] = { 0x15, 0xF914E07B, 0x0C138741, 0xC5C4FB23}; unsigned int bch_GF_4becc[] = { 0x45230, 0x43AB86AB}; unsigned int *p; int i,len,width; switch (bits) { case 4 : width = 51; p = bch_GF_4becc; break; case 8 : width = 103; p = bch_GF_8becc; break; case 12 : width = 155; p = bch_GF_12becc; break; case 24 : width = 335; p = bch_GF_24becc; break; case 40 : width = 559; p = bch_GF_40becc; break; default : width = 51; p = bch_GF_4becc; break; } len = width/32 +1; for(i=0;i> pari_lb ; // for(i=pari_len;i>=0;i--) printk("%8x",pariA[i]);printk("\n---before\n"); for(i=pari_len;i>0;i--) { pariA[i]= (pariA[i]<<1) +(pariA[i-1]>>31); if(din ^ ldwMSB) pariA[i] = pariA[i] ^ bch_GF2[i]; } pariA[0]= (pariA[0]<<1); if(din ^ ldwMSB) pariA[i] = pariA[i]^ bch_GF2[i]; // for(i=pari_len;i>=0;i--) printk("%8x",pariA[i]);printk("\n---after\n"); return (ldwMSB ); } int bch_encoder(unsigned int *p_parity, unsigned int *p_data, u8 bits, unsigned int datacnt) { int i,j; int bchGF_msb; u8 pari_len,pari_lb; unsigned int bch_GF2[18]; unsigned int tmp; unsigned int *p, *p1; u8 *p2;//, p3[50]; bchGF_msb = Gen_GF2( bits, bch_GF2); pari_len = (u8)(bchGF_msb /32); pari_lb = (u8)(bchGF_msb %32); //p = (unsigned int *)malloc((pari_len+2) * sizeof(unsigned int)); p = (unsigned int *)kmalloc((pari_len+2) * sizeof(unsigned int), GFP_KERNEL); if (p == NULL) { printk("malloc Error!"); return -1; } else { /*gen parity[ bchGF_msb:0] begin*/ //Init for(i=pari_len+1;i>=0;i--) *(p+i) = 0; //Caculate p1 = &p[1]; for (i=0;i>= 1; } } //printk("encode finiah!pari_len=%d p_parity=0x%x\n",pari_len, (unsigned int)p_parity); /*gen parity[ bchGF_msb:0] end*/ /*reverse oder of parity begin*/ p2 = (u8 *)p; //printk("pari_lb=%d p2=0x%x\n", pari_lb, (unsigned int)p2); p1 = (unsigned int *)(p2+3-(pari_lb/8)); /*p2 = (p2+3-(pari_lb/8)); for(i=0;i<((pari_len+1)*4);i++) p3[i] = p2[i]; p1 = p3; */ //printk("p2=0x%x p3=0x%x\n", (unsigned int)p2, (unsigned int)p3); for(i=0;i<=pari_len;i++) { p_parity[pari_len-i] = reverse32(p1[i]); } /*reverse oder of parity end*/ //printk("reverse finiah!\n"); kfree(p); //release malloc } //printk("leave encode\n"); return 0; } #endif //old fast encode function #if 0 //slow encode function int encode_ecc(unsigned char *src_data, unsigned char *parity, unsigned int ecc_bit, unsigned char *c_len, unsigned int encode_len) { //unsigned char src_data[512];//24 //unsigned char parity[26];//42 //unsigned char ecc_bit; unsigned char c_len1 = *c_len; unsigned int fail; //char in_char; int i; //int j,in_v; //for (i=0; i>8); // src_data[i+1] = 0xFF&jj; // jj++; // jj %= 0x10000; // src_data[i] = 0x12; // src_data[i+1] = 0x12; // } /* i = 0; j = 0; in_char = getchar(); while (in_char != EOF) { in_v = hextoint(in_char); if (in_v != -1) { if (j==0) { src_data[i] = 0; src_data[i] += in_v * 16; j++; } else { src_data[i] += in_v; i++; j = 0; } } in_char = getchar(); }*/ //printk("start encode\n"); fail = wmt_bchencoder(src_data,parity,ecc_bit,&c_len1, encode_len); if (fail) printk("----------------Encode Error Detected! code=%d-----------------\n",fail); else *c_len = c_len1; /*printk("\nCodeLengh=%d %d Parity=",*c_len, c_len1); for (i=(c_len1-1); i>=0; i--) printk("%02x ",parity[i]); printk("\n");*/ return 0; } int hextoint(char hex) // Convert HEX number to Integer { int r, h; r = -1; h = (int)hex; if ((h >= 97) && (h <= 102)) r = h - 87; else if ((h >= 65) && (h <= 70)) r = h - 55; else if ((h >= 48) && (h <= 57)) r = h - 48; else if ((h != 10) && (h != 13)) printk("Error detected!!! hex=%c",hex); return r; } // This function is used to encode the BCH code for the input data // data : [IN] The information data to be encoded by BCH. The lendth of this buffer is fixed at 512Bytes. // bch_code : [OUT] Buffer pointer to keep the BCH code. // bits : [IN] The number of bits for the BCH error correcting capability. // bch_codelen : [IN/OUT] This parameter is used to specify the length of the buffer bch_code in unit of byte for input for the // encoder. And will specify the length of encoded bch for the data with error correcting capability bits as output. // RETURN : 0 indicates success. Nonzero indicates failure. unsigned int wmt_bchencoder (unsigned char *data, unsigned char *bch_code, unsigned char bits, unsigned char *bch_codelen, unsigned int encode_len) { unsigned char bch_codelen_in; unsigned char bch_i; /*unsigned char b_data[MAX_BANK_SIZE*8]; unsigned char bch_sera[MAX_PARITY_SIZE*8]; unsigned char bch_sera_tmp[MAX_PARITY_SIZE*8];*/ unsigned char bch_sera_back; unsigned int width; unsigned int i,j,k; unsigned long retval; unsigned char offset; unsigned char *bch_GF2; /*unsigned char bch_GF_4becc[MAX_PARITY_SIZE*8] = {0,1,0,0,0,1,0,1,0,0,1,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,1,1,1,0,1,0,1,0,1,1,1,0,0,0,0,1,1,0,1,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; unsigned char bch_GF_8becc[MAX_PARITY_SIZE*8] = {0,0,0,1,0,1,0,1,1,1,1,1,1,0,0,1,0,0,0,1,0,1,0,0,1,1,1,0,0,0,0,0,0,1,1,1,1,0,1,1,0,0,0,0,1,1,0,0,0,0,0,1,0,0,1,1,1,0,0,0,0,1,1,1,0,1,0,0,0,0,0,1,1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,0,1,1,1,1,1,0,1,1,0,0,1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; unsigned char bch_GF_12becc[MAX_PARITY_SIZE*8] = {1,1,1,0,0,1,0,0,1,0,0,0,0,1,1,1,0,0,1,1,0,0,1,0,0,1,0,1,0,1,1,0,0,0,0,1,0,0,0,1,0,1,0,1,1,0,1,0,0,1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0,0,1,0,1,0,0,1,1,0,1,0,0,1,0,1,0,0,0,0,0,0,1,0,1,0,0,1,0,0,1,1,0,0,0,1,1,0,1,1,1,0,0,1,1,0,1,1,0,1,0,1,1,1,1,1,1,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,1,1,1,1,0,0,0,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; unsigned char bch_GF_16becc[MAX_PARITY_SIZE*8] = {1,1,0,0,1,0,1,1,1,0,1,1,1,1,1,0,0,0,1,1,1,1,1,1,0,0,0,0,1,1,0,1,1,0,1,1,1,1,1,0,1,1,0,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,1,0,1,0,1,1,1,1,1,1,0,1,1,0,0,1,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,1,1,0,1,1,1,1,0,1,0,1,0,1,0,0,1,0,0,0,1,0,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,1,0,0,1,1,0,1,1,1,1,1,0,1,1,0,0,1,1,0,1,1,1,1,0,0,0,1,0,1,0,0,1,1,0,0,0,0,0,0,0,0,1,1,1,0,0,1,1,0,1,1,1,0,1,0,0,0,0,1,1,1,1,1,1,0,1,1,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; unsigned char bch_GF_24becc[MAX_PARITY_SIZE*8] = {1,0,0,0,1,1,1,0,1,0,0,1,0,1,0,0,1,1,1,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,1,1,0,1,1,0,0,1,0,0,0,0,1,0,0,1,1,1,0,1,0,0,1,0,1,0,1,1,0,1,0,0,0,1,0,1,0,0,1,0,0,1,0,1,0,1,1,1,0,0,1,0,1,1,0,1,0,0,0,1,1,1,1,0,1,1,0,1,1,1,0,1,1,0,0,1,1,1,0,1,0,0,0,0,1,0,0,1,1,0,0,0,1,1,1,1,1,1,1,0,0,1,1,1,0,0,1,1,0,0,0,0,1,1,1,0,1,0,0,0,1,1,1,0,1,0,0,0,1,1,0,1,0,0,1,0,0,1,1,0,1,1,0,0,0,0,1,0,1,1,0,1,0,0,1,0,0,0,1,0,1,0,0,0,1,0,0,1,0,0,1,1,1,0,1,0,0,0,1,1,1,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,1,0,1,1,0,1,1,1,1,0,1,0,0,0,0,1,0,1,0,1,0,1,1,0,1,1,0,1,1,1,0,0,0,0,0,1,0,1,1,0,1,0,0,1,0,0,1,1,0,0,1,0,0,1,0,1,0,0,1,1,0,1,0,0,0,1,1,0,1,0,1,0,1,1,0,1,0,1,1,1,1,0,1,0,1,0,0,0,0,1,1,0,0,0,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; unsigned char bch_GF_40becc[MAX_PARITY_SIZE*8] = {1,1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,1,0,0,1,1,0,1,1,0,0,0,1,1,0,1,0,0,0,0,0,1,1,0,1,1,1,0,0,0,1,0,1,1,1,0,1,1,0,0,1,0,1,1,0,0,1,1,0,0,0,0,1,1,0,0,1,1,1,1,1,0,0,1,1,0,0,1,0,1,1,0,1,0,0,0,0,0,1,0,0,1,0,0,1,0,1,1,0,0,1,1,1,0,1,0,1,0,1,0,0,1,1,1,1,0,1,1,0,1,1,0,1,1,1,1,0,1,0,0,1,1,1,0,1,0,1,0,0,1,1,1,1,1,0,0,1,0,0,1,1,1,1,1,1,0,1,0,1,0,0,1,0,0,1,1,1,1,1,1,0,1,1,1,1,0,0,0,1,0,1,0,0,1,1,1,0,1,1,1,1,1,0,1,1,0,0,0,0,1,1,1,1,1,1,0,1,0,1,0,1,0,0,1,1,1,0,0,1,1,0,0,1,0,0,0,1,0,1,0,1,1,0,1,0,1,0,0,0,0,0,1,0,1,1,0,0,1,1,0,0,1,1,0,1,1,0,0,1,0,0,1,0,0,1,0,1,0,1,0,1,0,0,1,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,1,1,1,0,1,1,1,1,1,0,1,1,1,1,0,1,1,1,0,0,0,1,1,1,1,1,1,0,0,1,1,0,0,1,1,1,0,0,0,1,0,1,0,0,1,0,1,1,0,0,1,1,1,1,0,1,1,0,0,0,1,0,1,1,1,1,1,1,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,1,0,1,1,1,1,1,1,1,0,0,0,1,0,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,0,1,1,1,0,1,1,0,1,0,0,1,0,0,1,0,0,0,1,0,0,1,1,0,1,1,1,1,1,0,0,1,1,0,0,0,1,0,1,0,0,1,1,0,1,1,0,1,0,0,1,0,1,0,0,0,0,0,1,1,1,0,1,1,0,0,0,1,0,1,0,1,1,0,1,1,1,0,0,1,0,0,1,0,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,1,1,1,0,0,1,1,1,0,1,1,1,1,0,0,1,0,1,1,0,1,1,1,0,0,0,0,0,1};*/ // initialization retval = 0; for(i=0; i=bch_codelen_in) { retval += 2; break; } if((j+offset)%8==7) { i++; bch_code[i] = 0; } } return(retval); } #endif //end of #if 0 : slow encode function /** * wmt_nand_read_page - hardware ecc syndrom based page read * @mtd: mtd info structure * @chip: nand chip info structure * @buf: buffer to store read data * * The hw generator calculates the error syndrome automatically. Therefor * we need a special oob layout and handling. */ static int wmt_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int page) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); uint8_t *bufpoi = chip->oob_poi; //#ifdef WMT_SW_RDMZ unsigned int rdmz_mark = 0;//,g1=0,g2=0,g3=0; //#endif #ifdef NAND_DEBUG printk(KERN_NOTICE "\r enter in wmt_nand_read_page()page=0x%x\n", page); #endif if (info->oper_step) bufpoi = chip->oob_poi+20;//bufpoi = chip->oob_poi+mtd->realoobsize; //g1 = wmt_read_oscr(); info->datalen = 0; if (info->unc_allFF && !mtd->bbt_sw_rdmz) { set_FIFO_FF((uint32_t *)buf, mtd->realwritesize/4); } else chip->read_buf(mtd, buf, mtd->realwritesize); //g2 = wmt_read_oscr(); if (chip->cur_chip && prob_end == 1 && (chip->cur_chip->nand_id>>24) == NAND_MFR_HYNIX) { if (!chip->realplanenum) if (page < par4_ofs && second_chip == 0) { #ifdef ESLC_DEBUG if (page%mtd->pagecnt == 0 || page%mtd->pagecnt == (mtd->pagecnt/2)) printk("\nread: \n"); #endif page = hynix_eslc_page_address_calculate(mtd, chip, page); if (page < 0) return 0; } } /*if (page == 0xaa00) { print_nand_buffer((uint8_t *)(info->reg+ECC_FIFO_0), 24); rdmzier_oob((uint8_t *)bufpoi, (uint8_t *)(info->reg+ECC_FIFO_0), 6, info->cur_page, mtd->realwritesize/4); print_nand_buffer((uint8_t *)bufpoi, 24); }*/ /*if (info->cur_page != page) { printk("cur_page=%x, page=%x\n", info->cur_page, page); while(1); }*/ //#ifdef WMT_SW_RDMZ if (mtd->dwRdmz == 1 && mtd->bbt_sw_rdmz) { //printk("check read page derdmz page= 0x%x\n", page); rdmzier_oob((uint8_t *)&rdmz_mark, (uint8_t *)(info->reg+ECC_FIFO_5), 1, page, (mtd->realwritesize+20)/4); if ((*(unsigned int *)(info->reg+ECC_FIFO_5)) == (*(unsigned int *)wmt_rdmz) || rdmz_mark == (*(unsigned int *)wmt_rdmz)) { //printk("read page derdmz page= 0x%x\n", page); rdmzier(buf, mtd->realwritesize/4, page); } } //#endif writeb(readb(info->reg + NFCRd_OOB_CTRL) & 0xF7, info->reg + NFCRd_OOB_CTRL); //printk("re page=0x%x rdmz_mark=0x%x wmt_rdmz=0x%x fifo5=0x%x\n",page , rdmz_mark, *(unsigned int *)wmt_rdmz, *(unsigned int *)(info->reg+ECC_FIFO_5)); if (mtd->dwRdmz == 1 && rdmz_mark == *(unsigned int *)wmt_rdmz && mtd->bbt_sw_rdmz) { //print_nand_buffer((uint8_t *)(info->reg+ECC_FIFO_0), 24); rdmzier_oob((uint8_t *)bufpoi, (uint8_t *)(info->reg+ECC_FIFO_0), 5/*20/4*/, page, mtd->realwritesize/4); //print_nand_buffer((uint8_t *)bufpoi, 24); } else if (info->unc_allFF) { set_FIFO_FF((uint32_t *)(bufpoi), 4); } else memcpy(bufpoi, info->reg+ECC_FIFO_0, 20); /*print_nand_buffer((char *)(chip->oob_poi), 32); print_nand_buffer((char *)(buf), 16); printk("info->unc_bank=%x golden=%x\n", info->unc_bank, ((1<banks)-1));*/ /*if (*(uint32_t *)(info->reg+ECC_FIFO_0) != 0xFFFFFFFF) { printk(KERN_NOTICE "rd PID:%d Comm:%s sqNum=0x%x, objId=0x%x, lgcAdr=0x%x Byte=0x%x page=0x%x\n", current->pid, current->comm, *(uint32_t *)(info->reg+ECC_FIFO_0), *(uint32_t *)(info->reg+ECC_FIFO_1), *(uint32_t *)(info->reg+ECC_FIFO_2), *(uint32_t *)(info->reg+ECC_FIFO_3), info->cur_page); printk("info->unc_bank=%x golden=%x\n", info->unc_bank, ((1<banks)-1)); }*/ //g3 = wmt_read_oscr(); //printk(KERN_DEBUG"g12=%d,g23=%d\n",(g2-g1)/3,(g3-g1)/3); return 0; } /** * wmt_nand_read_page - hardware ecc syndrom based page read * @mtd: mtd info structure * @chip: nand chip info structure * @buf: buffer to store read data * * The hw generator calculates the error syndrome automatically. Therefor * we need a special oob layout and handling. */ static int wmt_nand_read_page_noalign(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int page) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); uint8_t *bufpoi = chip->oob_poi; unsigned int rdmz_mark = 0; if (info->oper_step) bufpoi = chip->oob_poi+20; info->datalen = 0; if (info->unc_allFF && !mtd->bbt_sw_rdmz) { set_FIFO_FF((uint32_t *)buf, mtd->realwritesize/4); } else chip->read_buf(mtd, buf, mtd->realwritesize); if (chip->cur_chip && prob_end == 1 && (chip->cur_chip->nand_id>>24) == NAND_MFR_HYNIX) { if (!chip->realplanenum) if (page < par4_ofs && second_chip == 0) { #ifdef ESLC_DEBUG if (page%mtd->pagecnt == 0 || page%mtd->pagecnt == (mtd->pagecnt/2)) printk("\nread: \n"); #endif page = hynix_eslc_page_address_calculate(mtd, chip, page); if (page < 0) return 0; } } if (mtd->dwRdmz == 1 && mtd->bbt_sw_rdmz) { //printk("check read page derdmz page= 0x%x\n", page); rdmzier_oob((uint8_t *)&rdmz_mark, (uint8_t *)(info->dmabuf + mtd->realwritesize + 20), 1, page, (mtd->realwritesize+20)/4); if ((*(unsigned int *)(info->dmabuf + mtd->realwritesize + 20)) == (*(unsigned int *)wmt_rdmz) || rdmz_mark == (*(unsigned int *)wmt_rdmz)) { //printk("read page derdmz page= 0x%x\n", page); rdmzier(buf, mtd->realwritesize/4, page); } } writeb(readb(info->reg + NFCRd_OOB_CTRL) & 0xF7, info->reg + NFCRd_OOB_CTRL); if (mtd->dwRdmz == 1 && rdmz_mark == *(unsigned int *)wmt_rdmz && mtd->bbt_sw_rdmz) { //print_nand_buffer((uint8_t *)(info->dmabuf + mtd->realwritesize), 24); rdmzier_oob((uint8_t *)bufpoi, (uint8_t *)(info->dmabuf + mtd->realwritesize /*+ 20*/), 5, page, mtd->realwritesize/4); //print_nand_buffer((uint8_t *)bufpoi, 24); } else if (info->unc_allFF) { set_FIFO_FF((uint32_t *)(bufpoi), 6); } else memcpy(bufpoi, info->dmabuf + mtd->realwritesize, 20); //print_nand_buffer((char *)(chip->oob_poi), 32); /*print_nand_buffer((char *)(buf), 16); printk("info->unc_bank=%x golden=%x\n", info->unc_bank, ((1<banks)-1));*/ /*if (*(uint32_t *)(info->reg+ECC_FIFO_0) != 0xFFFFFFFF) { printk(KERN_NOTICE "rd PID:%d Comm:%s sqNum=0x%x, objId=0x%x, lgcAdr=0x%x Byte=0x%x page=0x%x\n", current->pid, current->comm, *(uint32_t *)(info->reg+ECC_FIFO_0), *(uint32_t *)(info->reg+ECC_FIFO_1), *(uint32_t *)(info->reg+ECC_FIFO_2), *(uint32_t *)(info->reg+ECC_FIFO_3), info->cur_page); printk("info->unc_bank=%x golden=%x\n", info->unc_bank, ((1<banks)-1)); }*/ /*if (info->dmabuf[0] == 1) printk( "R%x:%x ", page, *(uint32_t *)info->dmabuf);*/ /*printk(KERN_DEBUG "RPG=0x%x : 0x%x 0x%x 0x%x 0x%x\n", page, *(uint32_t *)info->dmabuf, *((uint32_t *)info->dmabuf+1), *((uint32_t *)info->dmabuf+2), *((uint32_t *)info->dmabuf+3));*/ return 0; } #if 0 static int wmt_nand_cp_data(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int page) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); unsigned int rdmz_mark = 0; info->datalen = 0; if (info->unc_allFF && !mtd->bbt_sw_rdmz) { set_FIFO_FF((uint32_t *)buf, mtd->realwritesize/4); } else chip->read_buf(mtd, buf, mtd->realwritesize); if (mtd->dwRdmz == 1 && mtd->bbt_sw_rdmz) { rdmzier_oob((uint8_t *)&rdmz_mark, (uint8_t *)(info->reg+ECC_FIFO_5), 1, page, (mtd->realwritesize+20)/4); if ((*(unsigned int *)(info->reg+ECC_FIFO_5)) == (*(unsigned int *)wmt_rdmz) || rdmz_mark == (*(unsigned int *)wmt_rdmz)) { rdmzier(buf, mtd->realwritesize/4, page); } } return 0; } static int wmt_nand_cp_oob(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int page) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); uint8_t *bufpoi = chip->oob_poi; unsigned int rdmz_mark = 0; if (mtd->dwRdmz == 1 && mtd->bbt_sw_rdmz) rdmzier_oob((uint8_t *)&rdmz_mark, (uint8_t *)(info->reg+ECC_FIFO_5), 1, page, (mtd->realwritesize+20)/4); if (mtd->dwRdmz == 1 && rdmz_mark == *(unsigned int *)wmt_rdmz && mtd->bbt_sw_rdmz) { rdmzier_oob((uint8_t *)bufpoi, (uint8_t *)(info->reg+ECC_FIFO_0), 5, page, mtd->realwritesize/4); } else if (info->unc_allFF) { set_FIFO_FF((uint32_t *)(bufpoi), 4); } else memcpy(bufpoi, info->reg+ECC_FIFO_0, 20); return 0; } #endif int reset_nfc(struct mtd_info *mtd, unsigned int *buf, int step) { int ret = 0; unsigned int backup1[7], *backup; //unsigned int t1, t2; struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); backup = backup1; if (step != 3 && buf != NULL) backup = buf; if (step&1) { backup[0] = readl(info->reg + NFCR9_ECC_BCH_CTRL); backup[1] = readl(info->reg + NFCRe_CALC_TADL); backup[2] = readl(info->reg + NFCR10_OOB_ECC_SIZE); backup[3] = readl(info->reg + NFCR12_NAND_TYPE_SEL); backup[4] = readl(info->reg + NFCR13_INT_MASK); backup[5] = readl(info->reg + NFCR14_READ_CYCLE_PULE_CTRL); backup[6] = readl(info->reg + NFCR7_DLYCOMP); writeb(0x80, info->reg + NFCR13_INT_MASK); writew(1, info->reg + NFCR12_NAND_TYPE_SEL); writeb(0x2, info->reg + NFCR11_SOFT_RST); } if (step&2) { ret = NFC_WAIT_IDLE(mtd); if (ret) printk("reset nfc, wait idle time out\n"); writeb(0x0, info->reg + NFCR11_SOFT_RST); ret = wmt_wait_chip_ready(mtd); if (ret) { printk(KERN_ERR "reset nfc, The chip is not ready\n"); print_nand_register(mtd); while(1); } writeb(B2R, info->reg + NFCRb_NFC_INT_STAT); writeb(0, info->reg + NFCRd_OOB_CTRL); writel(backup[0], info->reg + NFCR9_ECC_BCH_CTRL); writel(backup[1], info->reg + NFCRe_CALC_TADL); writel(backup[2], info->reg + NFCR10_OOB_ECC_SIZE); writel(backup[3], info->reg + NFCR12_NAND_TYPE_SEL); writel(backup[4], info->reg + NFCR13_INT_MASK); writel(backup[5], info->reg + NFCR14_READ_CYCLE_PULE_CTRL); writel(backup[6], info->reg + NFCR7_DLYCOMP); } return ret; } void nfc_hw_rdmz(struct mtd_info *mtd, int on) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); if (on) writel(RDMZ/*|(page%RDMZ)*/, info->reg + NFCRf_CALC_RDMZ); else writel(0, info->reg + NFCRf_CALC_RDMZ); } int hw_encode_oob(struct mtd_info *mtd) { int ret = 0; unsigned int ecc_mode, oob_ecc_mode, tmp; struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); tmp = readb(info->reg + NFCR9_ECC_BCH_CTRL); ecc_mode = tmp & ECC_MODE; oob_ecc_mode = ecc_mode; if (ecc_mode > 5) oob_ecc_mode = 5; if (oob_ecc_mode != ecc_mode) writeb((tmp & (~ECC_MODE)) | oob_ecc_mode, info->reg + NFCR9_ECC_BCH_CTRL); writeb(readb(info->reg + NFCRd_OOB_CTRL) | OOB_READ, info->reg + NFCRd_OOB_CTRL); writew(DPAHSE_DISABLE|NFC_TRIGGER|OLD_CMD, info->reg + NFCR1_COMCTRL); ret = NFC_WAIT_IDLE(mtd); if (ret) printk("hw encode oob idle time out\n"); writeb(readb(info->reg + NFCRd_OOB_CTRL) & (~OOB_READ), info->reg + NFCRd_OOB_CTRL); if (oob_ecc_mode != ecc_mode) writeb(tmp, info->reg + NFCR9_ECC_BCH_CTRL); return ret; } /************************Johnny Liu****************************************************/ static int wmt_multi_plane_read(struct mtd_info *mtd, struct nand_chip *chip, uint8_t *buf, int page) { /* struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); int div = mtd->erasesize / mtd->writesize; chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page); wmt_nand_read_page(mtd, chip, buf, page); info->oper_step = 1; chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page+div); wmt_nand_read_page(mtd, chip, buf+mtd->realwritesize, page+div); info->oper_step = 0; return 0; */ struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); int tmp, ret = 0, plane_0_uncor_err = 0, plane_1_uncor_err = 0; info->cur_lpage = page; tmp = cache_read_data(mtd, chip, page, buf); if (!tmp) { //printk("re lpg=0x%x from cache\n", page); return 0; } if (page >= ((mtd->blkcnt - 8)*mtd->pagecnt)) mtd->bbt_sw_rdmz = 1; else mtd->bbt_sw_rdmz = 0; //printk("re pg=%x bbt_sw_rdmz=%d hold=%x blkcnt=%d\n", page, mtd->bbt_sw_rdmz, ((mtd->blkcnt - 8)*mtd->pagecnt), mtd->blkcnt); if (chip->cur_chip && prob_end == 1 && (chip->cur_chip->nand_id>>24) == NAND_MFR_HYNIX) { #ifdef ESLC_READ_WRITE if (page < par4_ofs && second_chip == 0) { //printk("multi read page=%x ",page); page = hynix_eslc_page_address_calculate(mtd, chip, page); //printk("eslc cal page0=%x page1=0x%x \n", (page / mtd->pagecnt) * mtd->pagecnt + page, //(page / mtd->pagecnt) * mtd->pagecnt + page + mtd->pagecnt); if (page < 0) return 0; } #endif } page = (page / mtd->pagecnt) * mtd->pagecnt + page;//dan_multi 65->129, 129->257 info->unc_bank = 0; info->unc_allFF = 0; if (/*(0xFF&(mtd->id>>24)) != NAND_MFR_MICRON && (0xFF&(mtd->id>>24)) != NAND_MFR_INTEL &&*/ (0xFF&(mtd->id>>24)) != NAND_MFR_TOSHIBA) { #ifdef WMT_HW_RDMZ tmp = DIS_BCH_ECC & readb(info->reg + NFCR9_ECC_BCH_CTRL); if (mtd->dwRdmz) { if (mtd->bbt_sw_rdmz || tmp) { if ((RDMZ & readl(info->reg + NFCRf_CALC_RDMZ)) == RDMZ) reset_nfc(mtd, NULL, 3); } else nfc_hw_rdmz(mtd, 1); } #endif chip->cmdfunc(mtd, MULTI_READ_1CYCLE, -1, page); chip->cmdfunc(mtd, MULTI_READ_2CYCLE, 0x00, page); if (info->data_ecc_uncor_err == 0) { //printk("multi read plane0page=%x\n",page); if ((mtd->pageSizek >> (ffs(mtd->pageSizek)-1)) != 1) ret = wmt_nand_read_page_noalign(mtd, chip, buf, page); else ret = wmt_nand_read_page(mtd, chip, buf, page); if (ret) { printk("multi read plane0 data fail\n"); ret = 1; } else ret = 0; } else plane_0_uncor_err = 1; info->oper_step = 1; info->unc_bank = 0; info->unc_allFF = 0; chip->cmdfunc(mtd, MULTI_READ_2CYCLE, 0x00, page + mtd->pagecnt); if (info->data_ecc_uncor_err == 0) { //printk("multi read plane1 page=%x\n", page+mtd->pagecnt); if ((mtd->pageSizek >> (ffs(mtd->pageSizek)-1)) != 1) ret = wmt_nand_read_page_noalign(mtd, chip, buf+mtd->realwritesize, page + mtd->pagecnt); else ret = wmt_nand_read_page(mtd, chip, buf+mtd->realwritesize, page + mtd->pagecnt); if (ret) { printk("multi read plane1 data fail\n"); ret = 1; } else ret = 0; } else plane_1_uncor_err = 1; } else { plane_0_uncor_err = 1; plane_1_uncor_err = 1; } //print_nand_buffer((uint8_t *)buf, mtd->writesize); info->oper_step = 0; if (plane_0_uncor_err == 1) { //printk("multi read plane_0_uncor_err\n"); chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page); if ((mtd->pageSizek >> (ffs(mtd->pageSizek)-1)) != 1) ret = wmt_nand_read_page_noalign(mtd, chip, buf, page); else ret = wmt_nand_read_page(mtd, chip, buf, page); if (ret) ret = 1; else ret = 0; } info->oper_step = 1; if (plane_1_uncor_err == 1) { //printk("multi read plane_1_uncor_err\n"); chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page + mtd->pagecnt); if ((mtd->pageSizek >> (ffs(mtd->pageSizek)-1)) != 1) ret = wmt_nand_read_page_noalign(mtd, chip, buf+mtd->realwritesize, page + mtd->pagecnt); else ret = wmt_nand_read_page(mtd, chip, buf+mtd->realwritesize, page + mtd->pagecnt); if (ret) ret = 1; else ret = 0; } info->oper_step = 0; //printk("mrp=%d=0x%x\n", page, page); //print_nand_buffer((uint8_t *)chip->oob_poi, 48); /*printk(KERN_NOTICE "re sqNum=0x%x, objId=0x%x, lgcAdr=0x%x Byte=0x%x page=0x%x PID:%d Comm:%s\n", *(uint32_t *)(chip->oob_poi+ECC_FIFO_0), *(uint32_t *)(chip->oob_poi+4), *(uint32_t *)(chip->oob_poi+8), *(uint32_t *)(chip->oob_poi+12), page,current->pid, current->comm);*/ if (ret) printk("----------multi read ret=%d\n", ret); return ret; } static void wmt_nand_write_page_lowlevel_noalign(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); unsigned int b2r_stat, backup[6];//, w1, w2, w3; uint8_t *bufpoi = chip->oob_poi; #ifdef NAND_DEBUG printk(KERN_NOTICE "enter in wmt_nand_page_write_lowlevel() writesize %x\n", mtd->realwritesize); #endif info->dma_finish = 0; b2r_stat = readb(info->reg + NFCRb_NFC_INT_STAT); writeb(B2R|b2r_stat, info->reg + NFCRb_NFC_INT_STAT); writeb(0x1B, info->reg + NFCR13_INT_MASK); if (mtd->dwRdmz == 1) { *(unsigned int *)(bufpoi+20) = *(unsigned int *)wmt_rdmz; } writeb(readb(info->reg + NFCRd_OOB_CTRL) & 0xF7, info->reg + NFCRd_OOB_CTRL); //memcpy(info->reg+ECC_FIFO_0, bufpoi, 24); //print_nand_buffer((uint8_t *)(info->reg+ECC_FIFO_0), 32); if(!chip->realplanenum) { info->datalen = 0; reset_nfc(mtd, backup, 1); chip->write_buf(mtd, buf, mtd->writesize); memcpy(info->dmabuf + mtd->realwritesize, bufpoi, 24); memset(info->dmabuf + mtd->realwritesize+24, 0x55, 24); reset_nfc(mtd, backup, 2); //hw_encode_oob(mtd); if (mtd->dwRdmz && mtd->bbt_sw_rdmz == 0) nfc_hw_rdmz(mtd, 1); wmt_nfc_dma_cfg(mtd, mtd->realwritesize+1024, 1, 0, -1); //print_nand_buffer((uint8_t *)(info->dmabuf+6144), 32);print_nand_register(mtd); } else if (chip->realplanenum && info->datalen == 0) { //printk("copybuf 1\n"); //w1 = wmt_read_oscr(); reset_nfc(mtd, backup, 1); chip->write_buf(mtd, buf, mtd->realwritesize); memcpy(info->dmabuf + mtd->realwritesize, bufpoi, 24); memset(info->dmabuf + mtd->realwritesize+24, 0x55, 24); if (mtd->dwRdmz && mtd->bbt_sw_rdmz == 1) rdmzier_oob((info->dmabuf + mtd->realwritesize), (info->dmabuf + mtd->realwritesize), 1024/4, info->cur_page, mtd->realwritesize/4); //w2 = wmt_read_oscr(); reset_nfc(mtd, backup, 2); //hw_encode_oob(mtd); if (mtd->dwRdmz && mtd->bbt_sw_rdmz == 0) nfc_hw_rdmz(mtd, 1); //w3 = wmt_read_oscr(); //printk(KERN_DEBUG "w2-w1=%d w3-w1=%d---------------\n",w2-w1, w3-w1); wmt_nfc_dma_cfg(mtd, mtd->realwritesize+1024, 1, 0, -1); //print_nand_register(mtd); } else if (info->datalen == mtd->writesize) { //printk("copybuf 2\n"); //info->datalen = mtd->realwritesize; //chip->write_buf(mtd, buf, mtd->writesize); memcpy(info->dmabuf, buf+mtd->realwritesize, mtd->realwritesize); wmt_nfc_dma_cfg(mtd, mtd->realwritesize+1024, 1, 0, 2); //print_nand_register(mtd); } /*printk(KERN_DEBUG "WPG=0x%x : 0x%x 0x%x 0x%x 0x%x\n", info->cur_page, *(uint32_t *)info->dmabuf, *((uint32_t *)info->dmabuf+1), *((uint32_t *)info->dmabuf+2), *((uint32_t *)info->dmabuf+3));*/ /*if ((info->cur_page%256) == 0)dannier printk(KERN_NOTICE "wr PID:%d Comm:%s sqNum=0x%x, objId=0x%x, lgcAdr=0x%x Byte=0x%x page=0x%x\n", current->pid, current->comm, *(uint32_t *)(info->reg+ECC_FIFO_0), *(uint32_t *)(info->reg+ECC_FIFO_1), *(uint32_t *)(info->reg+ECC_FIFO_2), *(uint32_t *)(info->reg+ECC_FIFO_3), info->cur_page);*/ } //extern unsigned int wmt_read_oscr(void); /** * wmt_nand_write_page_lowlevel - hardware ecc syndrom based page write * @mtd: mtd info structure * @chip: nand chip info structure * @buf: data buffer * * The hw generator calculates the error syndrome automatically. Therefor * we need a special oob layout and handling. * */ static void wmt_nand_write_page_lowlevel(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); unsigned int b2r_stat, backup[6];//, w1, w2, w3; uint8_t *bufpoi = chip->oob_poi; #ifdef NAND_DEBUG printk(KERN_NOTICE "enter in wmt_nand_page_write_lowlevel() writesize %x\n", mtd->realwritesize); #endif info->dma_finish = 0; b2r_stat = readb(info->reg + NFCRb_NFC_INT_STAT); writeb(B2R|b2r_stat, info->reg + NFCRb_NFC_INT_STAT); writeb(0x1B, info->reg + NFCR13_INT_MASK); if (mtd->dwRdmz == 1) { *(unsigned int *)(bufpoi+20) = *(unsigned int *)wmt_rdmz; } writeb(readb(info->reg + NFCRd_OOB_CTRL) & 0xF7, info->reg + NFCRd_OOB_CTRL); if (mtd->dwRdmz == 1 && mtd->bbt_sw_rdmz) { //print_nand_buffer((uint8_t *)bufpoi, 24); printk(KERN_NOTICE "wr sqNum=0x%x, objId=0x%x, lgcAdr=0x%x Byte=0x%x page=0x%x PID:%d Comm:%s\n", *(uint32_t *)(chip->oob_poi+0), *(uint32_t *)(chip->oob_poi+4), *(uint32_t *)(chip->oob_poi+8), *(uint32_t *)(chip->oob_poi+12), info->cur_page, current->pid, current->comm); rdmzier_oob((uint8_t *)(info->reg+ECC_FIFO_0), (uint8_t *)bufpoi, 6, info->cur_page, mtd->realwritesize/4); //print_nand_buffer((uint8_t *)(info->reg+ECC_FIFO_0), 64); } else memcpy(info->reg+ECC_FIFO_0, bufpoi, 24); //print_nand_buffer((uint8_t *)(info->reg+ECC_FIFO_0), 32); if(!chip->realplanenum) { info->datalen = 0; reset_nfc(mtd, backup, 1); chip->write_buf(mtd, buf, mtd->writesize); reset_nfc(mtd, backup, 2); hw_encode_oob(mtd); if (mtd->dwRdmz && mtd->bbt_sw_rdmz == 0) nfc_hw_rdmz(mtd, 1); wmt_nfc_dma_cfg(mtd, mtd->realwritesize, 1, 0, -1); } else if (chip->realplanenum && info->datalen == 0) { //printk("copybuf 1\n"); //w1 = wmt_read_oscr(); reset_nfc(mtd, backup, 1); chip->write_buf(mtd, buf, mtd->writesize); //w2 = wmt_read_oscr(); reset_nfc(mtd, backup, 2); hw_encode_oob(mtd); if (mtd->dwRdmz && mtd->bbt_sw_rdmz == 0) nfc_hw_rdmz(mtd, 1); //w3 = wmt_read_oscr(); //printk(KERN_DEBUG "w2-w1=%d w3-w1=%d---------------\n",w2-w1, w3-w1); wmt_nfc_dma_cfg(mtd, mtd->realwritesize, 1, 0, -1); //print_nand_register(mtd); } else if (info->datalen == mtd->writesize) { //printk("copybuf 2\n"); //info->datalen = mtd->realwritesize; //chip->write_buf(mtd, buf, mtd->writesize); wmt_nfc_dma_cfg(mtd, mtd->realwritesize, 1, 0, 2); //print_nand_register(mtd); } //while(info->datalen); #if 0 if (info->cur_lpage >= 19456/*992768*/) { if (strcmp(current->comm, "yaffs-bg-1") == 0) { printk(KERN_NOTICE "wr PID:%d Comm:%s sqNum=0x%x, objId=0x%x, lgcAdr=0x%x Byte=0x%x page=0x%x\n", current->pid, current->comm, *(uint32_t *)(info->reg+ECC_FIFO_0), *(uint32_t *)(info->reg+ECC_FIFO_1), *(uint32_t *)(info->reg+ECC_FIFO_2), *(uint32_t *)(info->reg+ECC_FIFO_3), info->cur_page); #if 0 } else if (strcmp(current->comm, "cp") == 0 /*&& *(uint32_t *)(info->reg+ECC_FIFO_2) > 0x1f90*/ && lst_chunkid == 0 /*&& *(uint32_t *)(info->reg+ECC_FIFO_2) != (lst_chunkid+1)*/) { printk(KERN_NOTICE "wr PID:%d Comm:%s sqNum=0x%x, objId=0x%x, lgcAdr=0x%x Byte=0x%x page=0x%x\n", current->pid, current->comm, *(uint32_t *)(info->reg+ECC_FIFO_0), *(uint32_t *)(info->reg+ECC_FIFO_1), *(uint32_t *)(info->reg+ECC_FIFO_2), *(uint32_t *)(info->reg+ECC_FIFO_3), info->cur_page); lst_chunkid = 11; //#endif } else if (strcmp(current->comm, "cp") == 0 && *(uint32_t *)(info->reg+ECC_FIFO_2) > 0x1f60) { chunk[idx] = *(uint32_t *)(info->reg+ECC_FIFO_2); cpg[idx] = info->cur_page; idx++; } else if (strcmp(current->comm, "sync") == 0) { printk(KERN_NOTICE "wr PID:%d Comm:%s sqNum=0x%x, objId=0x%x, lgcAdr=0x%x Byte=0x%x page=0x%x\n", current->pid, current->comm, *(uint32_t *)(info->reg+ECC_FIFO_0), *(uint32_t *)(info->reg+ECC_FIFO_1), *(uint32_t *)(info->reg+ECC_FIFO_2), *(uint32_t *)(info->reg+ECC_FIFO_3), info->cur_page); if (*(uint32_t *)(info->reg+ECC_FIFO_0) == 0x21 && *(uint32_t *)(info->reg+ECC_FIFO_2) == 0x4) print_nand_buffer((char *)info->dmabuf, mtd->realwritesize); #endif } } #endif } static int hynix_eslc_mode_change(struct mtd_info *mtd, struct nand_chip *chip, int page) { if (chip->cur_chip && (chip->cur_chip->nand_id>>24) == NAND_MFR_HYNIX /*&& mtd->dwRetry*/) { #ifdef ESLC_READ_WRITE #ifdef ESLC_DEBUG int ori_page = page; #endif if ((page < par4_ofs && second_chip == 0) || (page >= (mtd->blkcnt-8)*mtd->pagecnt)) { //printk("page=0x%x\n", page); //dump_stack(); //while(1); if (page < (mtd->blkcnt-8)*mtd->pagecnt) { page = hynix_eslc_page_address_calculate(mtd, chip, page); if (page < 0) return -1; if (page%(mtd->pagecnt/2) == 0) { if(chip->realplanenum == 0) { chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); } else if(chip->realplanenum == 1) { wmt_multi_plane_erase(mtd, page); } #ifdef ESLC_DEBUG printk("eslc erase page=0x%x => eslc page = 0x%x when write.\n", ori_page, page); #endif } } if (eslc_write != 2) { eslc_write = 2; chip->cur_chip->set_parameter(mtd, ESLC_MODE, ECC_ERROR_VALUE); #ifdef ESLC_DEBUG printk(KERN_WARNING "page=0x%x----ENABLE ESLC", ori_page); if (page >= (mtd->blkcnt-8)*mtd->pagecnt) { printk(KERN_WARNING "(BBT) page%x,bbtpage=%x pagecnt=%d, blkcnt=%d\n", page, (mtd->blkcnt-8)*mtd->pagecnt,mtd->pagecnt, mtd->blkcnt); dump_stack(); } else printk(KERN_WARNING "\n"); #endif } } else if (eslc_write == 2) { chip->cur_chip->set_parameter(mtd, ESLC_MODE, DEFAULT_VALUE); eslc_write = 0; #ifdef ESLC_DEBUG printk(KERN_NOTICE "page=0x%x****DIS ESLC\n", page); #endif } #endif } return page; } int cache_read_data(struct mtd_info *mtd, struct nand_chip *chip, int page, const uint8_t *buf) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); int cache_index; if (prob_end == 0) return 1; if (wr_cache == NULL) return 1; cache_index = page%mtd->pagecnt; cache_index %= WR_BUF_CNT; if (info->wr_page[cache_index] == page && page >= 0) { if (buf) memcpy((char *)buf, wr_cache+(cache_index*(mtd->writesize+32)), mtd->writesize); memcpy(chip->oob_poi, wr_cache+(cache_index*(mtd->writesize+32)) + mtd->writesize, 32); return 0; } return 1; } void cache_write_data(struct mtd_info *mtd, struct nand_chip *chip, int page, const uint8_t *buf) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); int cache_index; cache_index = page%mtd->pagecnt; cache_index %= WR_BUF_CNT; if (wr_cache == NULL) return; if ((page%mtd->pagecnt) == 0 && prob_end == 1) init_wr_cache(mtd); if (prob_end == 1) { info->wr_page[cache_index] = page;//printk("wr-cache lpage[%d]=0x%x\n", cache_index, page); memcpy(wr_cache+(cache_index*(mtd->writesize+32)), buf, mtd->writesize); memcpy(wr_cache+(cache_index*(mtd->writesize+32)) + mtd->writesize, chip->oob_poi, 32); } } static int wmt_nand_write_page(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int page, int cached, int raw) { int status; uint8_t *tmp_buf = (uint8_t *)buf; struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); #ifdef NAND_DEBUG printk(KERN_NOTICE "enter in wmt_nand_write_page() raw = %d\n", raw); #endif cache_write_data(mtd, chip, page, buf); info->cur_lpage = page; if (page > ((mtd->blkcnt - 8)*mtd->pagecnt)) mtd->bbt_sw_rdmz = 1; else mtd->bbt_sw_rdmz = 0; page = hynix_eslc_mode_change(mtd, chip, page); if (page < 0) return 0; info->cur_page = page; wmb(); if (mtd->dwRdmz) { if (mtd->bbt_sw_rdmz) { if ((RDMZ & readl(info->reg + NFCRf_CALC_RDMZ)) == RDMZ) reset_nfc(mtd, NULL, 3); tmp_buf = buf_rdmz; memcpy(tmp_buf, buf, mtd->realwritesize);//print_nand_buffer(tmp_buf, 64); rdmzier(tmp_buf, mtd->realwritesize/4, page);//print_nand_buffer(tmp_buf, 64); } else nfc_hw_rdmz(mtd, 1); } info->datalen = 0; if ((mtd->pageSizek >> (ffs(mtd->pageSizek)-1)) != 1) wmt_nand_write_page_lowlevel_noalign(mtd, chip, tmp_buf); else chip->ecc.write_page(mtd, chip, tmp_buf); chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page); status = nand_pdma_handler(mtd); nand_free_pdma(mtd); if (status) printk(KERN_ERR "check write pdma handler status= %x \n", status); /* * * * Cached progamming disabled for now, Not sure if its worth the * * * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s) * * */ cached = 0; if (!cached || !(chip->options & NAND_CACHEPRG)) { chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); #ifdef WMT_HW_RDMZ if (mtd->dwRdmz) { //nfc_hw_rdmz(mtd, 1); writeb(0, info->reg + NFCR4_COMPORT3_4); } #endif status = chip->waitfunc(mtd, chip); writeb(0x80, info->reg + NFCR13_INT_MASK); /* * * See if operation failed and additional status checks are * * available * * */ if ((status & NAND_STATUS_FAIL) && (chip->errstat)) status = chip->errstat(mtd, chip, FL_WRITING, status, page); if (status & NAND_STATUS_FAIL) goto GO_EIO;//return -EIO; } else { chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1); #ifdef WMT_HW_RDMZ if (mtd->dwRdmz) { if (mtd->bbt_sw_rdmz) { if ((RDMZ & readl(info->reg + NFCRf_CALC_RDMZ)) == RDMZ) reset_nfc(mtd, NULL, 3); tmp_buf = buf_rdmz; memcpy(tmp_buf, buf, mtd->realwritesize); rdmzier(tmp_buf, mtd->realwritesize/4, page); } else nfc_hw_rdmz(mtd, 1); writeb(0, info->reg + NFCR4_COMPORT3_4); } #endif status = chip->waitfunc(mtd, chip); } #ifdef CONFIG_MTD_NAND_VERIFY_WRITE /* Send command to read back the data */ chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page); if (chip->verify_buf(mtd, buf, mtd->realwritesize)) goto GO_EIO;//return -EIO; #endif return 0; GO_EIO: return -EIO; } int abcc; static int wmt_multi_plane_program(struct mtd_info *mtd, struct nand_chip *chip, const uint8_t *buf, int page, int cached, int raw) { int status, page_plane1; uint8_t *tmp_buf = (uint8_t *)buf; int pagecnt = mtd->pagecnt, p1; struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); #ifdef ESLC_DEBUG int p0 = page; #endif cache_write_data(mtd, chip, page, buf);//logical address info->cur_lpage = page; if (page > ((mtd->blkcnt-8)*mtd->pagecnt)) mtd->bbt_sw_rdmz = 1; else mtd->bbt_sw_rdmz = 0; //printk("multi program page %d => page1=%d page2=%d\n", page, (page/pagecnt) * pagecnt + page, (page<<1) - (page%pagecnt)); p1 = page = hynix_eslc_mode_change(mtd, chip, page); if (page < 0) return 0; page = (page /pagecnt) * pagecnt + page;//1->1, 128 -> 256, 256->512 page_plane1 = page + pagecnt; #ifdef ESLC_DEBUG if (p0 != p1) printk("multi program page 0x%x eslc 0x%x => page1=0x%x page2=0x%x \n", p0, p1, page, page_plane1); #endif info->lst_wpage = page; //page_plane1 = hynix_eslc_mode_change(mtd, chip, page_plane1); //printk("mw p1=%x page %x => page plane1=%x\n", p1, page, page_plane1); info->cur_page = page; wmb(); if (mtd->dwRdmz) { if (mtd->bbt_sw_rdmz) { if ((RDMZ & readl(info->reg + NFCRf_CALC_RDMZ)) == RDMZ) reset_nfc(mtd, NULL, 3); tmp_buf = buf_rdmz; memcpy(tmp_buf, buf, mtd->writesize); rdmzier(tmp_buf, mtd->realwritesize/4, page); //memcpy(tmp_buf, buf+mtd->realwritesize, mtd->realwritesize); rdmzier(tmp_buf+mtd->realwritesize, mtd->realwritesize/4, page_plane1); } else nfc_hw_rdmz(mtd, 1); } info->datalen = 0; if ((mtd->pageSizek >> (ffs(mtd->pageSizek)-1)) != 1) wmt_nand_write_page_lowlevel_noalign(mtd, chip, tmp_buf); else chip->ecc.write_page(mtd, chip, tmp_buf); chip->cmdfunc(mtd, 0x80, 0x00, page); status = nand_pdma_handler(mtd); nand_free_pdma(mtd); if (status) printk(KERN_ERR "check write pdma handler status= %x \n", status); /***********************Johnny Liu start**************************************/ chip->cmdfunc(mtd, 0x11,-1,-1); info->datalen = mtd->writesize;//need info->cur_page = page_plane1; /*#ifdef WMT_SW_RDMZ if (mtd->dwRdmz == 1) { tmp_buf = buf_rdmz; //memcpy(tmp_buf, buf+mtd->realwritesize, mtd->realwritesize); //rdmzier(tmp_buf, mtd->realwritesize/4, page_plane1); } #endif #ifdef WMT_HW_RDMZ if (mtd->dwRdmz) nfc_hw_rdmz(mtd, 1); #endif*/ if ((mtd->pageSizek >> (ffs(mtd->pageSizek)-1)) != 1) wmt_nand_write_page_lowlevel_noalign(mtd, chip, tmp_buf); else chip->ecc.write_page(mtd, chip, tmp_buf); if ((0xFF&(mtd->id>>24)) == NAND_MFR_MICRON) chip->cmdfunc(mtd, 0x80, 0x00, page_plane1); else chip->cmdfunc(mtd, 0x81, 0x00, page_plane1); status = nand_pdma_handler(mtd); nand_free_pdma(mtd); if (status) printk(KERN_ERR "check write pdma handler status= %x \n", status); /************************Johnny Liu end*************************************/ chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); #ifdef WMT_HW_RDMZ if (mtd->dwRdmz) { //nfc_hw_rdmz(mtd, 1); writeb(0, info->reg + NFCR4_COMPORT3_4); } #endif status = chip->waitfunc(mtd, chip); writeb(0x80, info->reg + NFCR13_INT_MASK); if (chip->realplanenum && (status & NAND_STATUS_FAIL)) { printk(KERN_ERR "multi write page=0x%x fail status= %x\n", page, status); //dump_stack(); /*if (abcc != 13479) { status = 0xe3;//0xe5; abcc = 13479; printk("write page=%x error abv=%d\n", page, abcc); dump_stack(); }*/ chip->status_plane[0] = page; chip->status_plane[1] = status; } if ((status & NAND_STATUS_FAIL) && (chip->errstat)) { printk(KERN_ERR "write fail status= %x\n", status); status = chip->errstat(mtd, chip, FL_WRITING, status, page); } if (status & NAND_STATUS_FAIL) return -EIO; return 0; } #if 0 static int wmt_multi_plane_copy(struct mtd_info *mtd, struct nand_chip *chip, int source, int des) { // printk("\n copy data from %d to %d",source, des); unsigned int page = 0; int div = mtd->erasesize / mtd->writesize; page = (source / div) * div + source; chip->cmdfunc(mtd, MULTI_COPY_1CYCLE, 0x00, page); chip->cmdfunc(mtd, MULTI_COPY_2CYCLE, 0x00, page); chip->cmdfunc(mtd, MULTI_COPY_2CYCLE, 0x00, page + div); page = (des / div) * div + des; chip->cmdfunc(mtd, MULTI_COPY_3CYCLE, 0x00, page); return 0; } static int wmt_nand_copy_page(struct mtd_info *mtd, struct nand_chip *chip, int source, int des) { unsigned int page = 0; //int status = -1; //printk("\n copy data from %d to %d", source, des); //First, we calculate the source page page = source; //Copy back read cycle chip->cmdfunc(mtd, COPY_BACK_1CYCLE, 0x00, page); //Second, we calculate the des page page = des; //Copy back program cycle chip->cmdfunc(mtd, COPY_BACK_2CYCLE, 0x00, page); return 0; } #endif #if 0 /** * wmt_errstat - perform additional error status checks * @mtd: MTD device structure * @this: NAND chip structure * @state: state or the operation * @status: status code returned from read status * @page: startpage inside the chip, must be called with (page & this->pagemask) * * Perform additional error status checks on erase and write failures * to determine if errors are correctable. For this device, correctable * 1-bit errors on erase and write are considered acceptable. * * */ static int wmt_errstat(struct mtd_info *mtd, struct nand_chip *this, int state, int status, int page) { int er_stat = 0; int rtn, retlen; size_t len; uint8_t *buf; int i; this->cmdfunc(mtd, NAND_CMD_STATUS_CLEAR, -1, -1); if (state == FL_ERASING) { for (i = 0; i < 4; i++) { if (!(status & 1 << (i + 1))) continue; this->cmdfunc(mtd, (NAND_CMD_STATUS_ERROR + i + 1), -1, -1); rtn = this->read_byte(mtd); this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1); /* err_ecc_not_avail */ //if (!(rtn & ERR_STAT_ECC_AVAILABLE)) //er_stat |= 1 << (i + 1); } } else if (state == FL_WRITING) { unsigned long corrected = mtd->ecc_stats.corrected; /* single bank write logic */ this->cmdfunc(mtd, NAND_CMD_STATUS_ERROR, -1, -1); rtn = this->read_byte(mtd); this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1); if (!(rtn & ERR_STAT_ECC_AVAILABLE)) { /* err_ecc_not_avail */ er_stat |= 1 << 1; goto out; } len = mtd->writesize; buf = kmalloc(len, GFP_KERNEL); if (!buf) { er_stat = 1; goto out; } /* recovery read */ rtn = nand_do_read(mtd, page, len, &retlen, buf); /* if read failed or > 1-bit error corrected */ if (rtn || (mtd->ecc_stats.corrected - corrected) > 1) er_stat |= 1 << 1; kfree(buf); } out: rtn = status; if (er_stat == 0) { /* if ECC is available */ rtn = (status & ~NAND_STATUS_FAIL); /* clear the error bit */ } return rtn; } #endif /* wmt_nand_init_chip * * init a single instance of an chip */ static void wmt_nand_init_chip(struct mtd_info *mtd, struct ECC_size_info *ECC_size) { //struct nand_chip *chip = &nmtd->chip; //struct mtd_info *mtd = &nmtd->mtd; struct nand_chip *chip = mtd->priv; /* chip->cmd_ctrl = wmt_nand_hwcontrol;*/ #if 0 switch (info->cpu_type) { case TYPE_wmt: break; case TYPE_vt8620: break; case TYPE_vt8610: break; } #endif /* nmtd->set = set;*/ if (hardware_ecc) { /* chip->ecc.calculate = wmt_nand_calculate_ecc;*/ /* chip->ecc.correct = wmt_nand_correct_data;*/ /*if (mtd->realwritesize == 2048) { chip->ecc.size = 512; chip->ecc.bytes = 8; chip->ecc.steps = 4; chip->ecc.layout = &wmt_oobinfo_2048; chip->ecc.prepad = 1; chip->ecc.postpad = 8; } else if (mtd->realwritesize == 4096) { chip->ecc.size = 512; chip->ecc.bytes = 20; chip->ecc.steps = 8; chip->ecc.layout = &wmt_oobinfo_4096; chip->ecc.prepad = 1; chip->ecc.postpad = 8; } else if (mtd->realwritesize == 8192) { chip->ecc.size = 1024; chip->ecc.bytes = 42; chip->ecc.steps = 8; chip->ecc.layout = &wmt_oobinfo_8192; chip->ecc.prepad = 1; chip->ecc.postpad = 8; } else if (mtd->realwritesize == 16384) { chip->ecc.size = 1024; chip->ecc.bytes = 70; chip->ecc.steps = 16; chip->ecc.layout = &wmt_oobinfo_16k; chip->ecc.prepad = 1; chip->ecc.postpad = 8; } else { // 512 page chip->ecc.size = 512; chip->ecc.bytes = 3; chip->ecc.steps = 1; chip->ecc.layout = &wmt_oobinfo_512; chip->ecc.prepad = 4; chip->ecc.postpad = 9; }*/ chip->ecc.size = (mtd->realwritesize/ECC_size->banks); chip->ecc.bytes = ECC_size->ECC_bytes; chip->ecc.steps = ECC_size->banks; chip->write_page = wmt_nand_write_page; //chip->copy_page = wmt_nand_copy_page; chip->ecc.write_page = wmt_nand_write_page_lowlevel; chip->ecc.write_oob = wmt_nand_write_oob; chip->ecc.read_page = wmt_nand_read_page; chip->ecc.read_oob = wmt_nand_read_oob_single; if ((mtd->pageSizek >> (ffs(mtd->pageSizek)-1)) != 1) chip->ecc.read_page = wmt_nand_read_page_noalign; chip->ecc.read_bb_oob = wmt_nand_read_bb_oob; chip->erase_cmd = wmt_single_plane_erase; if (chip->realplanenum) { chip->write_page = wmt_multi_plane_program; //chip->copy_page = wmt_multi_plane_copy; chip->ecc.read_page = wmt_multi_plane_read; chip->erase_cmd = wmt_multi_plane_erase; chip->ecc.write_oob = wmt_nand_write_oob_plane; chip->ecc.read_oob = wmt_nand_read_oob_plane; chip->ecc.read_bb_oob = wmt_nand_read_bb_oob_plane; } /* switch (info->cpu_type) {*/ /* case TYPE_wmt:*/ chip->ecc.hwctl = wmt_nand_enable_hwecc; /* chip->ecc.calculate = wmt_nand_calculate_ecc;*/ /* break;*/ #if 0 case TYPE_vt8620: chip->ecc.hwctl = vt8620_nand_enable_hwecc; chip->ecc.calculate = vt86203_nand_calculate_ecc; break; case TYPE_vt8610: chip->ecc.hwctl = vt8610_nand_enable_hwecc; chip->ecc.calculate = vt8610_nand_calculate_ecc; break; #endif } else chip->ecc.mode = NAND_ECC_SOFT; } static int wmt_nand_remove(struct platform_device *pdev) { struct wmt_nand_info *info = dev_get_drvdata(&pdev->dev); /* struct mtd_info *mtd = dev_get_drvdata(pdev);*/ dev_set_drvdata(&pdev->dev, NULL); /* platform_set_drvdata(pdev, NULL);*/ /* dev_set_drvdata(pdev, NULL);*/ if (info == NULL) return 0; /* first thing we need to do is release all our mtds * and their partitions, then go through freeing the * resources used */ if (info->mtds != NULL) { struct wmt_nand_mtd *ptr = info->mtds; /* int mtdno;*/ /* for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {*/ /* pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);*/ nand_release(&ptr->mtd); /* }*/ kfree(info->mtds); } /* free the common resources */ if (info->reg != NULL) { //iounmap(info->reg); info->reg = NULL; } if (info->area != NULL) { release_resource(info->area); kfree(info->area); info->area = NULL; } kfree(info); if (buf_rdmz) vfree(buf_rdmz); remove_proc_entry(NANDINFO, NULL); return 0; } #if 0 /*Lch */ static int wmt_recovery_call(struct notifier_block *nb, unsigned long code, void *_cmd) { struct mtd_info *mtd; struct nand_chip *chip; mtd = container_of(nb, struct mtd_info, reboot_notifier); chip = (struct nand_chip *)mtd->priv; if(chip->cur_chip && (((mtd->id >>24)&0xff) == NAND_MFR_HYNIX)) { auto_pll_divisor(DEV_NAND, CLK_ENABLE, 0, 0); #ifdef RETRY_DEBUG printk("current try times: %d\n", chip->cur_chip->cur_try_times); #endif chip->select_chip(mtd, 0); chip->cur_chip->set_parameter(mtd, READ_RETRY_MODE, DEFAULT_VALUE); //chip->cur_chip->get_parameter(mtd,READ_RETRY_MODE); chip->select_chip(mtd, -1); } return NOTIFY_DONE; mtd = container_of(nb, struct mtd_info, reboot_notifier); if((code == SYS_RESTART) && _cmd) { char *cmd = _cmd; if (!strcmp(cmd, "recovery")) { err = search_mtd_table("android-data", &ret1); ret = (int)ret1; if (!err) { // printk(KERN_EMERG "Lch jump2 android-data wmt_recovery_call.ret =%d\n",ret); struct erase_info einfo; loff_t to; memset(&einfo, 0, sizeof(einfo)); to = nand_partitions[ret].offset; einfo.mtd = mtd; einfo.addr = (unsigned long)to; einfo.len = nand_partitions[ret].size; // printk("android-data einfo.addr is %8.8x\n",einfo.addr); // printk("android-data einfo.len is %8.8x\n",einfo.len); // printk("android-data nand_partitions[%d].offset is %8.8x\n",ret,nand_partitions[ret].offset); // printk("android-data nand_partitions[%d].size is %8.8x\n",ret,nand_partitions[ret].size); ret = nand_erase_nand(mtd, &einfo, 0xFF); if (ret < 0) printk("enand_erase_nand result is %x\n",ret); } err = search_mtd_table("android-cache", &ret1); ret = (int)ret1; if (!err) { // printk(KERN_EMERG "Lch jump3 wmt_recovery_call.android-cache ret=%d\n",ret); struct erase_info einfo; loff_t to; memset(&einfo, 0, sizeof(einfo)); to = nand_partitions[ret].offset; einfo.mtd = mtd; einfo.addr = (unsigned long)to; einfo.len = nand_partitions[ret].size; // printk("android-cache einfo.addr is %8.8x\n",einfo.addr); // printk("android-cache einfo.len is %8.8x\n",einfo.len); // printk("android-data nand_partitions[%d].offset is %8.8x\n",ret,nand_partitions[ret].offset); // printk("android-data nand_partitions[%d].size is %8.8x\n",ret,nand_partitions[ret].size); ret = nand_erase_nand(mtd, &einfo, 0xFF); if (ret < 0) printk("enand_erase_nand result is %x\n",ret); } } } return NOTIFY_DONE; } #endif /********************************************************************** Name : nfc_pdma_isr Function :. Calls : Called by : Parameter : Author : Dannier Chen History : ***********************************************************************/ static irqreturn_t nfc_pdma_isr(int irq, void *dev_id) { struct wmt_nand_info *info = (struct wmt_nand_info *)dev_id; struct mtd_info *mtd = &info->mtds->mtd; disable_irq_nosync(irq); //spin_lock(&host->lock); writel(0, info->reg + NFC_DMA_IER); wmb(); //writel(/*readl(info->reg + NFC_DMA_ISR)&*/NAND_PDMA_IER_INT_STS, info->reg + NFC_DMA_ISR); //printk(" pdmaisr finish NFC_DMA_ISR=0x%x\n", readl(info->reg + NFC_DMA_ISR)); //print_nand_register(mtd); info->dma_finish++; WARN_ON(info->done_data == NULL); if (info->done_data == NULL) { printk(" pdmaisr finish pointer is null info->dma_finish=%d\n", info->dma_finish); print_nand_register(mtd); dump_stack(); //while(1); } if (info->done_data != NULL) { complete(info->done_data); info->done_data = NULL; } //info->done = NULL; //spin_unlock(&host->lock); enable_irq(irq); return IRQ_HANDLED; } /********************************************************************** Name : nfc_regular_isr Function :. Calls : Called by : Parameter : Author : Dannier Chen History : ***********************************************************************/ //static irqreturn_t nfc_regular_isr(int irq, void *dev_id, struct pt_regs *regs) irqreturn_t nfc_regular_isr(int irq, void *dev_id) { struct wmt_nand_info *info = dev_id; struct mtd_info *mtd = &info->mtds->mtd; unsigned int bank_stat1, bank_stat2=0,status = 0, intsts; disable_irq_nosync(irq); //spin_lock(&host->lock); //printk("isrCMD=0x%x\n", info->isr_cmd); if (info->isr_cmd == 0) { //print_nand_register(mtd); bank_stat1 = readb(info->reg + NFCRb_NFC_INT_STAT); if (bank_stat1&(ERR_CORRECT | BCH_ERR)) { while ((bank_stat1&(ERR_CORRECT|BCH_ERR)) != (ERR_CORRECT|BCH_ERR)) { bank_stat1 = readb(info->reg + NFCRb_NFC_INT_STAT); bank_stat2++; if (bank_stat2 >= 0x10000) { printk("ecc error, but ecc correct not assert ecc status=0x%x\n",bank_stat1); print_nand_register(mtd); //while(1); break; } } writeb((B2R | ERR_CORRECT | BCH_ERR), info->reg + NFCRb_NFC_INT_STAT); bank_stat2 = readw(info->reg + NFCR9_ECC_BCH_CTRL); #ifdef NAND_DEBUG printk(KERN_NOTICE" BCH Read data ecc eror page_addr:%x cmd=%d\n", info->cur_page, info->isr_cmd); #endif if ((bank_stat2 & BANK_DR) || info->oob_ecc_error == 0x50) { if ((mtd->pageSizek >> (ffs(mtd->pageSizek)-1)) != 1) bch_data_last_bk_ecc_correct_noalign(mtd); else bch_data_last_bk_ecc_correct(mtd); } else { if ((mtd->pageSizek >> (ffs(mtd->pageSizek)-1)) != 1) bch_data_ecc_correct_noalign(mtd); else bch_data_ecc_correct(mtd); } } else { printk("read page error but not ecc error sts=0x%x\n",bank_stat1); print_nand_register(mtd); //while(1); } } else if (info->isr_cmd == 0x50) { //print_nand_register(mtd); wmt_wait_nfc_ready(info); bank_stat1 = readb(info->reg + NFCRb_NFC_INT_STAT); if (bank_stat1&(ERR_CORRECT | BCH_ERR)) { while ((bank_stat1&(ERR_CORRECT|BCH_ERR)) != (ERR_CORRECT|BCH_ERR)) { bank_stat2++; bank_stat1 = readb(info->reg + NFCRb_NFC_INT_STAT); if (bank_stat2 >= 0x10000) { printk("oob ecc error, but ecc correct not assert ecc status=0x%x\n",bank_stat1); print_nand_register(mtd); //while(1); break; } } bank_stat2 = readb(info->reg + NFCRd_OOB_CTRL)&OOB_READ; if (!bank_stat2) printk("oob cmd error, but oob flag is not set\n"); bch_redunt_ecc_correct(mtd); } writeb((B2R | ERR_CORRECT | BCH_ERR), info->reg + NFCRb_NFC_INT_STAT); status = NFC_WAIT_IDLE(mtd); if (status) printk("B2R isr not ecc error occurs, but idle fail\n"); WARN_ON(info->done_data == NULL); complete(info->done_data); info->done_data = NULL; } else /*if (info->isr_cmd != 0 && info->isr_cmd != 0x50) */{ /* only erase/write operation enter for B2R interrupt */ intsts = readb(info->reg + NFCRb_NFC_INT_STAT); if (intsts&B2R) { writeb(B2R, info->reg + NFCRb_NFC_INT_STAT); if (readb(info->reg + NFCRb_NFC_INT_STAT) & B2R) printk("[nfc_isr] erase/write cmd B2R staus can't clear\n"); } else printk("[nfc_isr] erase/write cmd B2R staus not assert\n"); status = (readb(info->reg + NFCR13_INT_MASK)&0xFF); if ((status&0x1C) != 0x18) { printk("[nfc_isr] isr is not check busy interrup =0x%x\n", status); dump_stack(); print_nand_register(mtd); //while(info->isr_cmd); } WARN_ON(info->done_data == NULL); complete(info->done_data); info->done_data = NULL; } //spin_unlock(&host->lock); enable_irq(irq); return IRQ_HANDLED; } static void wmt_set_logo_offset(void) { int ret1; int err = 0, ret = 0, status = 0, i; unsigned char varval[100], tmp[100]; unsigned int varlen; unsigned long long offs_data = 0; err = search_mtd_table("u-boot-logo", &ret1); ret = (int) ret1; varlen = 100; status = wmt_getsyspara("wmt.nfc.mtd.u-boot-logo", tmp, &varlen); for (i = 0; i < ret; i++) offs_data += nand_partitions[i].size; sprintf(varval, "0x%llx", offs_data); if (!status && (strcmp(varval, tmp) == 0)) status = 0; else status = 1; if (!err && status) { ret = wmt_setsyspara("wmt.nfc.mtd.u-boot-logo", varval); if (ret) printk(KERN_NOTICE "write u-boot-logo offset to env fail\n"); } else if (err) printk(KERN_NOTICE "search u-boot-logo partition fail\n"); err = search_mtd_table("kernel-logo", &ret1); ret = (int) ret1; varlen = 100; status = wmt_getsyspara("wmt.nfc.mtd.kernel-logo", tmp, &varlen); offs_data = 0; for (i = 0; i < ret; i++) offs_data += nand_partitions[i].size; sprintf(varval, "0x%llx", offs_data); if (!status && (strcmp(varval, tmp) == 0)) status = 0; else status = 1; if (!err && status) { ret = wmt_setsyspara("wmt.nfc.mtd.kernel-logo", varval); if (ret) printk(KERN_NOTICE "write kernel-logo offset to env fail\n"); } else if (err) printk(KERN_NOTICE "search kernel-logo partition fail\n"); } #if 0 static void wmt_set_partition_info(struct nand_chip *chip) { int ret = 0, status = 0, i, j; unsigned char varval[256], tmp[256]; unsigned int varlen = 256; unsigned int offs_data, size; varval[0] = '\0'; for (i = 0; i < NUM_NAND_PARTITIONS; i++) { if (&nand_partitions[i]) { offs_data = 0; for (j = 0; j < i; j++) offs_data += (unsigned int)(nand_partitions[j].size>>20); if (i < (NUM_NAND_PARTITIONS - 1)) size = (unsigned int)(nand_partitions[i].size>>20); else size = (unsigned int)(chip->chipsize>>20) - offs_data; if (i == 0) sprintf(tmp, "%dm@%dm(%s)", size, offs_data, nand_partitions[i].name); else sprintf(tmp, ",%dm@%dm(%s)", size, offs_data, nand_partitions[i].name); strcat(varval, tmp); } else break; } printk(KERN_DEBUG "fbparts=%s\n", varval); status = wmt_getsyspara("fbparts", tmp, &varlen); if (status) { printk(KERN_DEBUG "fbparts not found varlen=256=>%d\n", varlen); ret = wmt_setsyspara("fbparts", varval); } else { if (strcmp(tmp, varval) != 0) { printk(KERN_DEBUG "tmp=%s\n", tmp); printk(KERN_WARNING "fbparts not sync => update\n"); ret = wmt_setsyspara("fbparts", varval); } else printk(KERN_DEBUG "fbparts env compare pass\n"); } if (ret) printk(KERN_ERR "set fbparts env fail\n"); } #endif void set_ecc_info(struct mtd_info *mtd) { unsigned int ecc_bit_mode; struct ECC_size_info ECC_size, *ECC_size_pt; struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); ecc_bit_mode = mtd->dwECCBitNum; if (ecc_bit_mode > 40) ecc_bit_mode = (ecc_bit_mode == 60) ? 7 : (-1); else if (ecc_bit_mode > 24) ecc_bit_mode = (ecc_bit_mode == 40) ? 6 : (-1); else ecc_bit_mode = (ecc_bit_mode > 16) ? ((ecc_bit_mode/4) - 1) : (ecc_bit_mode/4); info->ECC_mode = ECC_size.ecc_engine = ecc_bit_mode; calculate_ECC_info(mtd, &ECC_size); writew((ECC_size.oob_ECC_bytes<<8) /*+ (ECC_size.unprotect&0xFF)*/, info->reg + NFCR10_OOB_ECC_SIZE); info->oob_ECC_bytes = ECC_size.oob_ECC_bytes; if ((mtd->pageSizek >> (ffs(mtd->pageSizek)-1)) != 1) { info->last_bank_dmaaddr = info->dmaaddr + mtd->realwritesize; info->oob_col = mtd->realwritesize + (ECC_size.ECC_bytes * ECC_size.banks); info->last_bank_col = info->oob_col; } else { info->last_bank_dmaaddr = info->dmaaddr + mtd->realwritesize - ECC_size.bank_size; info->oob_col = mtd->realwritesize + (ECC_size.ECC_bytes * (ECC_size.banks-1)); info->last_bank_col = info->oob_col - ECC_size.bank_size; } info->oob_ECC_mode = ECC_size.oob_ECC_mode; info->oob_ecc_error = 0; info->banks = ECC_size.banks; info->bank_size = ECC_size.bank_size; info->oob_max_bit_error = ECC_size.oob_max_bit_error; ECC_size_pt = &ECC_size; wmt_nand_init_chip(mtd, ECC_size_pt); printk(KERN_DEBUG "last_bank_dmaaddr=0x%x banks=%d\n", info->last_bank_dmaaddr, info->banks); printk(KERN_DEBUG "oob_col=%d\n", info->oob_col); printk(KERN_DEBUG "last_bank_col=%d\n", info->last_bank_col); printk(KERN_NOTICE "BCH ECC %d BIT mode\n", mtd->dwECCBitNum); set_ecc_engine(info, ecc_bit_mode); /* BCH ECC new structure */ } void set_partition_size(struct mtd_info *mtd) { int ret, index; char varval[256], partition_name[32]; int varlen = 256; char *s = NULL, *tmp = NULL; uint64_t part_size = 0; struct nand_chip *chip = mtd->priv; if(((mtd->id>>24)&0xff) == NAND_MFR_HYNIX) { if(chip->realplanenum == 1) { nand_partitions[0].size = 0x4000000; nand_partitions[1].size = 0x4000000; nand_partitions[2].size = 0x4000000; } else { nand_partitions[0].size = 0x2000000; nand_partitions[1].size = 0x2000000; nand_partitions[2].size = 0x2000000; } } if ((mtd->pageSizek >> (ffs(mtd->pageSizek) - 1)) != 1) { if (mtd->pageSizek == 12) { nand_partitions[0].size = 0x1080000; nand_partitions[1].size = 0x1080000; nand_partitions[2].size = 0x1080000; nand_partitions[3].size = 0x1080000; nand_partitions[4].size = 0x4200000; nand_partitions[5].size = 0x30000000; nand_partitions[6].size = 0x20100000; nand_partitions[7].size = MTDPART_SIZ_FULL; } else if (mtd->pageSizek == 28) { nand_partitions[0].size = 0x3800000; nand_partitions[1].size = 0x3800000; nand_partitions[2].size = 0x3800000; nand_partitions[3].size = 0x1c00000; nand_partitions[4].size = 0x7000000; nand_partitions[5].size = 0x31000000; nand_partitions[6].size = 0x21400000; nand_partitions[7].size = 0x1c000000; nand_partitions[8].size = MTDPART_SIZ_FULL; } //printk("(pageSizek>>(ffs(pageSizek)-1)=%d\n", mtd->pageSizek >> (ffs(mtd->pageSizek)-1)); } ret = wmt_getsyspara("wmt.nand.partition", varval, &varlen); if(ret == 0) { printk("wmt.nand.partition: %s\n", varval); s = varval; while(*s != '\0') { index = NUM_NAND_PARTITIONS; memset(partition_name, 0, 32); get_partition_name(s, &tmp, partition_name); search_mtd_table(partition_name, &index); s = tmp + 1; part_size = simple_strtoul(s, &tmp, 16); s = tmp; if(*s == ':') s++; //data can't be resized by uboot env, its size is left whole nand. if((index >= 0) && (index < (NUM_NAND_PARTITIONS-1)) && (part_size < chip->chipsize)) { nand_partitions[index].size = part_size; } else { printk("Invalid parameter \"wmt.nand.partition\". Use default partition size for \"%s\" partition.\n", partition_name); } } } if(((mtd->id>>24)&0xff) == NAND_MFR_HYNIX) { par1_ofs = nand_partitions[0].size; par2_ofs = par1_ofs + nand_partitions[1].size; par3_ofs = par2_ofs + nand_partitions[2].size; par4_ofs = par3_ofs + nand_partitions[3].size; par1_ofs = ((unsigned int )(par1_ofs >> 10))/mtd->pageSizek; par2_ofs = ((unsigned int )(par2_ofs >> 10))/mtd->pageSizek; par3_ofs = ((unsigned int )(par3_ofs >> 10))/mtd->pageSizek; par4_ofs = ((unsigned int )(par4_ofs >> 10))/mtd->pageSizek; } /*min_partition_size = 0; for (i = 0; i < 11; i++) min_partition_size += nand_partitions[i].size; nand_partitions[11].size = chip->chipsize - min_partition_size - (mtd->erasesize * 8);*/ } void init_wr_cache(struct mtd_info *mtd) { struct wmt_nand_info *info = wmt_nand_mtd_toinfo(mtd); int i; for (i = 0; i < WR_BUF_CNT; i++) info->wr_page[i] = -1; } int alloc_write_cache(struct mtd_info *mtd) { wr_cache = vmalloc((mtd->writesize+32)*WR_BUF_CNT); if (!wr_cache) { printk(KERN_ERR"wr_cache=0x%x alloc fail\n", (mtd->writesize+32)*WR_BUF_CNT); return 1; } return 0; } int alloc_rdmz_buffer(struct mtd_info *mtd) { if (mtd->dwRdmz == 1) { buf_rdmz = vmalloc(mtd->writesize); if (!buf_rdmz) { printk(KERN_ERR"buf_rdmz alloc fail\n"); return 1; } } return 0; } static int nandinfo_proc_read(char *page, char **start, off_t off, int count, int *eof, void *data) { char mfr_name[32]; int len = 0; int mfr =(mtd_nandinfo->id>>24)&0xff; switch(mfr) { case NAND_MFR_SANDISK: strcpy(mfr_name, "Sandisk"); break; case NAND_MFR_HYNIX: strcpy(mfr_name, "Hynix"); break; case NAND_MFR_TOSHIBA: strcpy(mfr_name, "Toshiba"); break; case NAND_MFR_SAMSUNG: strcpy(mfr_name, "Samsung"); break; case NAND_MFR_MICRON: strcpy(mfr_name, "Micron"); break; case NAND_MFR_INTEL: strcpy(mfr_name, "Intel"); break; default: strcpy(mfr_name, "Unknown"); break; } len = sprintf(page, "Manufacturer : %s\n" "nand id1 : %lu\n" "nand id2 : %lu\n" , mfr_name, mtd_nandinfo->id, mtd_nandinfo->id2); return len; } extern int wmt_recovery_call(struct notifier_block *nb, unsigned long code, void *_cmd); static int wmt_nand_probe(struct platform_device *pdev) { /* struct wmt_platform_nand *plat = to_nand_plat(pdev);*/ /*struct device *dev = &pdev->dev;*/ struct wmt_nand_platform_data *pdata = pdev->dev.platform_data; struct wmt_nand_info *info; struct wmt_nand_mtd *nmtd; struct mtd_info *mtd; static const char *part_parsers[] = {"cmdlinepart", NULL}; /*struct mtd_part_parser_data ppdata;*/ /* struct wmt_nand_set *sets; */ /* extend more chips and partitions structure*/ struct resource *res; int err = 0, ret = 0; int size; /* ------------------------*/ unsigned char sd_buf[80]; int sd_varlen = 80; char *varname = "wmt.sd1.param"; int sd_enable = 0, SD1_function = 0; /*0 :disable 1:enable*/ /* ------------------------*/ buf_rdmz = NULL; wr_cache = NULL; prob_end = 0; eslc_write = 0; /* int nr_sets;*/ /* int setno;*/ pr_debug("wmt_nand_probe(%p)\n", pdev); ret = wmt_getsyspara("wmt.boot.dev", sd_buf, &sd_varlen); printk("wmt.boot.dev ret = %d\n", ret); if(!ret && (!strncmp(sd_buf, "TF", 2) || (!strncmp(sd_buf, "UDISK", 5)))) { printk("Boot from SD card or udisk card.\n"); return -1; } /*Read system param to identify host function 0: SD/MMC 1:SDIO wifi*/ ret = wmt_getsyspara(varname, sd_buf, &sd_varlen); if (ret == 0) { sscanf(sd_buf,"%d:%d", &sd_enable,&SD1_function); if (sd_enable == 1) { printk(KERN_NOTICE "SD1 enabled => NAND probe disabled\n"); return -EINVAL; } } /*err = -EINVAL; return err;*/ *(volatile unsigned int *)(GPIO_BASE_ADDR + 0x200) &= ~(1<<11); /*PIN_SHARE_SDMMC1_NAND*/ info = kmalloc(sizeof(*info), GFP_KERNEL); if (info == NULL) { dev_err(&pdev->dev, "no memory for flash info\n"); err = -ENOMEM; goto exit_error; } memzero(info, sizeof(*info)); dev_set_drvdata(&pdev->dev, info); platform_get_resource(pdev, IORESOURCE_MEM, 0); ret = request_irq(IRQ_NFC, nfc_regular_isr, IRQF_SHARED, //SA_SHIRQ, /*SA_INTERRUPT, * that is okay?*/ //zhf: modified by James Tian, should be IRQF_SHARED? "NFC", (void *)info); if (ret) { printk(KERN_ALERT "[NFC driver] Failed to register regular ISR!\n"); goto unmap; } ret = request_irq(IRQ_NFC_DMA, nfc_pdma_isr, IRQF_DISABLED, // SA_INTERRUPT, //zhf: modified by James Tian "NFC", (void *)info); if (ret) { printk(KERN_ALERT "[NFC driver] Failed to register DMA ISR!\n"); goto fr_regular_isr; } spin_lock_init(&info->controller.lock); init_waitqueue_head(&info->controller.wq); /* allocate and map the resource */ /* currently we assume we have the one resource */ res = pdev->resource; size = res->end - res->start + 1; info->area = request_mem_region(res->start, size, pdev->name); info->oper_step = 0; if (info->area == NULL) { dev_err(&pdev->dev, "cannot reserve register region\n"); err = -ENOENT; goto exit_error; } info->device = &pdev->dev; /* info->platform = plat;*/ info->reg = (void __iomem *)NF_CTRL_CFG_BASE_ADDR;/*ioremap(res->start, size);*/ /* info->cpu_type = cpu_type;*/ if (info->reg == NULL) { dev_err(&pdev->dev, "cannot reserve register region\n"); err = -EIO; goto exit_error; } /* * * extend more partitions * err = wmt_nand_inithw(info, pdev); if (err != 0) goto exit_error; sets = (plat != NULL) ? plat->sets : NULL; nr_sets = (plat != NULL) ? plat->nr_sets : 1; info->mtd_count = nr_sets; */ /* allocate our information */ /* size = nr_sets * sizeof(*info->mtds);*/ size = sizeof(*info->mtds); info->mtds = kmalloc(size, GFP_KERNEL); if (info->mtds == NULL) { dev_err(&pdev->dev, "failed to allocate mtd storage\n"); err = -ENOMEM; goto exit_error; } memzero(info->mtds, size); /* initialise all possible chips */ nmtd = info->mtds; mtd = &nmtd->mtd; info->dmabuf = dma_alloc_coherent(&pdev->dev, 40960, &info->dmaaddr, GFP_KERNEL); if (!info->dmabuf && (info->dmaaddr & 0x0f)) { err = -ENOMEM; goto out_free_dma; } /* nmtd->chip.buffers = (void *)info->dmabuf + 2112;*/ nmtd->chip.cmdfunc = wmt_nand_cmdfunc; nmtd->chip.dev_ready = wmt_device_ready; nmtd->chip.read_byte = wmt_read_byte; nmtd->chip.write_buf = wmt_nand_write_buf; nmtd->chip.read_buf = wmt_nand_read_buf; nmtd->chip.select_chip = wmt_nand_select_chip; nmtd->chip.get_para = nand_get_para; nmtd->chip.chip_delay = 20; nmtd->chip.priv = nmtd; nmtd->chip.bbt_options = NAND_BBT_LASTBLOCK | NAND_BBT_USE_FLASH | NAND_BBT_PERCHIP | NAND_BBT_NO_OOB_BBM; /* nmtd->chip.controller = &info->controller;*/ /*nmtd->chip.ecc.steps = 1; nmtd->chip.ecc.prepad = 1; nmtd->chip.ecc.postpad = 8;*/ nmtd->chip.ecc.mode = NAND_ECC_HW; /*nmtd->chip.ecc.mode = 0;*/ /* for (setno = 0; setno < nr_sets; setno++, nmtd++)*/ #ifdef NAND_DEBUG printk(KERN_NOTICE "initialising (%p, info %p)\n", nmtd, info); #endif /* Set up DMA address */ /*writel(info->dmaaddr & 0xffffffff, info->reg + NFC_DMA_DAR);*/ /*info->dmabuf = readl(info->reg + WMT_NFC_DMA_TRANS_CONFIG);*/ /* nmtd->nand.chip_delay = 0;*/ /* Enable the following for a flash based bad block table */ /* nmtd->nand.options = NAND_USE_FLASH_BBT | NAND_NO_AUTOINCR | NAND_OWN_BUFFERS;*/ nmtd->chip.bbt_td = &wmt_bbt_main_descr_2048; nmtd->chip.bbt_md = &wmt_bbt_mirror_descr_2048; nmtd->chip.retry_pattern = &wmt_rdtry_descr; nmtd->chip.cur_chip = NULL; nmtd->info = info; nmtd->mtd.priv = &nmtd->chip; nmtd->mtd.owner = THIS_MODULE; nmtd->mtd.reboot_notifier.notifier_call = wmt_recovery_call;//Lch {/*unsigned int s1, s2; s1 = wmt_read_oscr();*/ ret = reset_nfc(mtd, NULL, 3); //s2 = wmt_read_oscr();printk("s2-s1=%d------------\n", (s2-s1)/3); } set_ecc_engine(info, 1); info->datalen = 0; /* initialise the hardware */ wmt_nfc_init(info, &nmtd->mtd); writeb(0xff, info->reg + NFCR12_NAND_TYPE_SEL+1); //chip disable /*rc = set_ECC_mode(mtd); if (rc) goto out_free_dma;*/ nmtd->chip.ecc.layout = &wmt_oobinfo_16k; writeb(0x0, info->reg + NFCR11_SOFT_RST); nmtd->scan_res = nand_scan(&nmtd->mtd, MAX_CHIP); /*nmtd->scan_res = nand_scan(&nmtd->mtd, (sets) ? sets->nr_chips : 1);*/ if (nmtd->chip.cur_chip && mtd->dwRetry && ((mtd->id>>24)&0xFF) == NAND_MFR_SANDISK) { /* Activating and initializing Dynamic Read Register */ auto_pll_divisor(DEV_NAND, CLK_ENABLE, 0, 0); sandisk_init_retry_register(mtd, nmtd->chip.cur_chip); auto_pll_divisor(DEV_NAND, CLK_DISABLE, 0, 0); } if (nmtd->scan_res == 0) { if (pdata) pdata->partitions = nand_partitions; ret = mtd_device_parse_register(mtd, part_parsers, NULL/*&ppdata*/, pdata ? pdata->partitions : nand_partitions, pdata ? NUM_NAND_PARTITIONS : NUM_NAND_PARTITIONS); if (ret) { dev_err(&pdev->dev, "Failed to add mtd device\n"); goto out_free_dma; } } //wmt_set_logo_offset(); /* write back mtd partition to env */ /* wmt_set_partition_info(&nmtd->chip); */ nandinfo_proc = create_proc_entry(NANDINFO, 0666, NULL); if(nandinfo_proc == NULL) { printk("Failed to create nandinfo proccess device\n"); goto out_free_dma; } else { mtd_nandinfo = mtd; } nandinfo_proc->read_proc = nandinfo_proc_read; register_reboot_notifier(&mtd->reboot_notifier);//Lch /*if (((mtd->id>>24)&0xFF) == NAND_MFR_HYNIX) { auto_pll_divisor(DEV_NAND, CLK_ENABLE, 0, 0); writel(0x1312, info->reg + NFCR14_READ_CYCLE_PULE_CTRL); printk("prob_end timing=%x\n",readl(info->reg + NFCR14_READ_CYCLE_PULE_CTRL)); auto_pll_divisor(DEV_NAND, CLK_DISABLE, 0, 0); }*/ auto_pll_divisor(DEV_NAND, CLK_ENABLE, 0, 0); if (!mtd->dwDDR) { writeb(RD_DLY|readb(info->reg + NFCR12_NAND_TYPE_SEL), info->reg + NFCR12_NAND_TYPE_SEL); writel(0x1212, info->reg + NFCR14_READ_CYCLE_PULE_CTRL); } else { //writel(0x0101, info->reg + NFCR14_READ_CYCLE_PULE_CTRL); while ((*(volatile unsigned long *)(PMCS_ADDR+0x18))&0x7F0038) ; *(volatile unsigned long *)PMNAND_ADDR = (*(volatile unsigned long *)PMNAND_ADDR) - 5; } printk("prob_end timing=%x nfcr12%x divisor=0x%x\n",readl(info->reg + NFCR14_READ_CYCLE_PULE_CTRL), readb(info->reg + NFCR12_NAND_TYPE_SEL), *(volatile unsigned long *)PMNAND_ADDR); auto_pll_divisor(DEV_NAND, CLK_DISABLE, 0, 0); init_wr_cache(mtd); printk(KERN_NOTICE "nand initialised ok\n"); prob_end = 1; second_chip = 0; return 0; out_free_dma: dma_free_coherent(&pdev->dev, 32000/*17664 + 0x300*/, info->dmabuf, info->dmaaddr); fr_regular_isr: unmap: exit_error: wmt_nand_remove(pdev); if (err == 0) err = -EINVAL; return err; } /* PM Support */ #ifdef CONFIG_PM int wmt_nand_suspend(struct platform_device *pdev, pm_message_t state) { struct wmt_nand_info *info = dev_get_drvdata(&pdev->dev); struct mtd_info *mtd = &info->mtds->mtd; /*nand_suspend->nand_get_device*/ mtd_suspend(mtd); if ((STRAP_STATUS_VAL&0x400E) == 0x4008) { auto_pll_divisor(DEV_NAND, CLK_ENABLE, 0, 0); *(volatile unsigned long *)(NF_CTRL_CFG_BASE_ADDR + 0x44) |= (1<<1); printk(KERN_NOTICE "reset nand boot register NF_CTRL_CFG_BASE_ADDR + 0x44\n"); *(volatile unsigned long *)(NF_CTRL_CFG_BASE_ADDR + 0x44) &= ~(1<<1); } printk(KERN_NOTICE "wmt_nand_suspend\n"); return 0; } int wmt_nand_resume(struct platform_device *pdev) { struct wmt_nand_info *info = dev_get_drvdata(&pdev->dev); struct mtd_info *mtd = &info->mtds->mtd; struct wmt_nand_mtd *nmtd; struct nand_chip *chip; unsigned char reset = NAND_CMD_RESET; int i; auto_pll_divisor(DEV_NAND, CLK_ENABLE, 0, 0); if (info) { nmtd = info->mtds; chip = nmtd->mtd.priv; //if ((STRAP_STATUS_VAL&0x400E) == 0x4008) writeb(0x0, info->reg + NFCR11_SOFT_RST); /* initialise the hardware */ wmt_nfc_init(info, &nmtd->mtd); set_ecc_engine(info, info->ECC_mode); /* BCH ECC */ writew((info->oob_ECC_bytes<<8) /*+ (ECC_size.unprotect&0xFF)*/, info->reg + NFCR10_OOB_ECC_SIZE); if ((&nmtd->mtd)->dwDDR) writeb(0x7F, info->reg + NFCR7_DLYCOMP); wmt_nand_select_chip(&nmtd->mtd, 0); write_bytes_cmd(&nmtd->mtd, 1, 0, 0, (uint8_t *)&reset, NULL, NULL); for (i = 1; i < chip->numchips; i++) { wmt_nand_select_chip(&nmtd->mtd, i); write_bytes_cmd(&nmtd->mtd, 1, 0, 0, (uint8_t *)&reset, NULL, NULL); } wmt_init_nfc(&nmtd->mtd, nmtd->mtd.spec_clk, nmtd->mtd.spec_tadl, 0); wmt_nand_select_chip(&nmtd->mtd, -1); if ((&nmtd->mtd)->dwRdmz) { nfc_hw_rdmz(&nmtd->mtd, 1); writeb(0, info->reg + NFCR4_COMPORT3_4); } printk(KERN_NOTICE "wmt_nand_resume OK\n"); } else printk(KERN_NOTICE "wmt_nand_resume error\n"); auto_pll_divisor(DEV_NAND, CLK_DISABLE, 0, 0); /*nand_resume->nand_release_device*/ mtd_resume(mtd); return 0; } #else /* else of #define PM */ #define wmt_nand_suspend NULL #define wmt_nand_resume NULL #endif /*struct platform_driver wmt_nand_driver = {*/ struct platform_driver wmt_nand_driver = { .driver.name = "nand", .probe = wmt_nand_probe, .remove = wmt_nand_remove, .suspend = wmt_nand_suspend, .resume = wmt_nand_resume /* .driiver = { .name = "wmt-nand", .owner = THIS_MODULE, }, */ }; static int __init wmt_nand_init(void) { //printk(KERN_NOTICE "NAND Driver, WonderMedia Technologies, Inc\n"); return platform_driver_register(&wmt_nand_driver); } static void __exit wmt_nand_exit(void) { platform_driver_unregister(&wmt_nand_driver); } module_init(wmt_nand_init); module_exit(wmt_nand_exit); MODULE_AUTHOR("WonderMedia Technologies, Inc."); MODULE_DESCRIPTION("WMT [Nand Flash Interface] driver"); MODULE_LICENSE("GPL");