/* * drivers/mtd/nand_bbt.c * * Overview: * Bad block table support for the NAND driver * * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Description: * * When nand_scan_bbt is called, then it tries to find the bad block table * depending on the options in the BBT descriptor(s). If no flash based BBT * (NAND_BBT_USE_FLASH) is specified then the device is scanned for factory * marked good / bad blocks. This information is used to create a memory BBT. * Once a new bad block is discovered then the "factory" information is updated * on the device. * If a flash based BBT is specified then the function first tries to find the * BBT on flash. If a BBT is found then the contents are read and the memory * based BBT is created. If a mirrored BBT is selected then the mirror is * searched too and the versions are compared. If the mirror has a greater * version number than the mirror BBT is used to build the memory based BBT. * If the tables are not versioned, then we "or" the bad block information. * If one of the BBTs is out of date or does not exist it is (re)created. * If no BBT exists at all then the device is scanned for factory marked * good / bad blocks and the bad block tables are created. * * For manufacturer created BBTs like the one found on M-SYS DOC devices * the BBT is searched and read but never created * * The auto generated bad block table is located in the last good blocks * of the device. The table is mirrored, so it can be updated eventually. * The table is marked in the OOB area with an ident pattern and a version * number which indicates which of both tables is more up to date. If the NAND * controller needs the complete OOB area for the ECC information then the * option NAND_BBT_NO_OOB should be used (along with NAND_BBT_USE_FLASH, of * course): it moves the ident pattern and the version byte into the data area * and the OOB area will remain untouched. * * The table uses 2 bits per block * 11b: block is good * 00b: block is factory marked bad * 01b, 10b: block is marked bad due to wear * * The memory bad block table uses the following scheme: * 00b: block is good * 01b: block is marked bad due to wear * 10b: block is reserved (to protect the bbt area) * 11b: block is factory marked bad * * Multichip devices like DOC store the bad block info per floor. * * Following assumptions are made: * - bbts start at a page boundary, if autolocated on a block boundary * - the space necessary for a bbt in FLASH does not exceed a block boundary * */ #include #include #include #include #include #include #include #include #include #include //#define RETRY_DEBUG static int check_pattern_no_oob(uint8_t *buf, struct nand_bbt_descr *td) { int ret; ret = memcmp(buf, td->pattern, td->len); if (!ret) return ret; return -1; } /** * check_pattern - [GENERIC] check if a pattern is in the buffer * @buf: the buffer to search * @len: the length of buffer to search * @paglen: the pagelength * @td: search pattern descriptor * * Check for a pattern at the given place. Used to search bad block tables and * good / bad block identifiers. If the SCAN_EMPTY option is set then check, if * all bytes except the pattern area contain 0xff. */ static int check_pattern(uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td) { int i, end = 0; uint8_t *p = buf; if (td->options & NAND_BBT_NO_OOB) return check_pattern_no_oob(buf, td); end = paglen + td->offs; if (td->options & NAND_BBT_SCANEMPTY) { for (i = 0; i < end; i++) { if (p[i] != 0xff) return -1; } } p += end; /* Compare the pattern */ if (memcmp(p, td->pattern, td->len)) return -1; if (td->options & NAND_BBT_SCANEMPTY) { p += td->len; end += td->len; for (i = end; i < len; i++) { if (*p++ != 0xff) return -1; } } return 0; } /** * check_short_pattern - [GENERIC] check if a pattern is in the buffer * @buf: the buffer to search * @td: search pattern descriptor * * Check for a pattern at the given place. Used to search bad block tables and * good / bad block identifiers. Same as check_pattern, but no optional empty * check. */ static int check_short_pattern(uint8_t *buf, struct nand_bbt_descr *td, int ano_bytes) { int i; uint8_t *p = buf; /* Compare the pattern */ for (i = 0; i < td->len; i++) { if (p[td->offs + i] != td->pattern[i]) return -1; } if (ano_bytes) { //printk("sandisk flash"); for (i = 0; i < ano_bytes; i++) { //printk("of=0x%x da=0x%x len=%x\n", td->offs + i, p[td->offs + i], td->len); if (p[i] != td->pattern[0]) { printk("p[%d]=0x%x of=0x%x da=0x%x len=%x\n", i, p[i], td->offs + i, p[td->offs + i], td->len); return -1; } } } return 0; } /** * add_marker_len - compute the length of the marker in data area * @td: BBT descriptor used for computation * * The length will be 0 if the marker is located in OOB area. */ static u32 add_marker_len(struct nand_bbt_descr *td) { u32 len; if (!(td->options & NAND_BBT_NO_OOB)) return 0; len = td->len; if (td->options & NAND_BBT_VERSION) len++; return len; } /** * read_bbt - [GENERIC] Read the bad block table starting from page * @mtd: MTD device structure * @buf: temporary buffer * @page: the starting page * @num: the number of bbt descriptors to read * @td: the bbt describtion table * @offs: offset in the memory table * * Read the bad block table starting from page. */ static int read_bbt(struct mtd_info *mtd, uint8_t *buf, int page, int num, struct nand_bbt_descr *td, int offs) { int res, ret = 0, i, j, act = 0; struct nand_chip *this = mtd->priv; size_t retlen, len, totlen; loff_t from; int bits = td->options & NAND_BBT_NRBITS_MSK; uint8_t msk = (uint8_t)((1 << bits) - 1); u32 marker_len; int reserved_block_code = td->reserved_block_code; totlen = (num * bits) >> 3; marker_len = add_marker_len(td); //from = ((loff_t)page) << this->page_shift; from = ((loff_t)page*mtd->pageSizek) << 10; while (totlen) { //len = min(totlen, (size_t)(1 << this->bbt_erase_shift)); len = min(totlen, (size_t)(mtd->erasesize)); if (marker_len) { /* * In case the BBT marker is not in the OOB area it * will be just in the first page. */ len -= marker_len; from += marker_len; marker_len = 0; } res = mtd_read(mtd, from, len, &retlen, buf); if (res < 0) { if (mtd_is_eccerr(res)) { pr_info("nand_bbt: ECC error in BBT at " "0x%012llx\n", from & ~mtd->writesize); return res; } else if (mtd_is_bitflip(res)) { pr_info("nand_bbt: corrected error in BBT at " "0x%012llx\n", from & ~mtd->writesize); ret = res; } else { pr_info("nand_bbt: error reading BBT\n"); return res; } } /* Analyse data */ for (i = 0; i < len; i++) { uint8_t dat = buf[i]; for (j = 0; j < 8; j += bits, act += 2) { uint8_t tmp = (dat >> j) & msk; if (tmp == msk) continue; if (reserved_block_code && (tmp == reserved_block_code)) { pr_info("nand_read_bbt: (read fail)reserved block at 0x%012llx\n", //(loff_t)((offs << 2) + (act >> 1)) << this->bbt_erase_shift); (loff_t)(((offs << 2) + (act >> 1))*mtd->pageSizek) << (10+this->pagecnt_shift)); this->bbt[offs + (act >> 3)] |= 0x2 << (act & 0x06); mtd->ecc_stats.bbtblocks++; continue; } /* * Leave it for now, if it's matured we can * move this message to pr_debug. */ pr_info("nand_read_bbt: bad block at 0x%012llx (block%d)\n", //(loff_t)((offs << 2) + (act >> 1)) << this->bbt_erase_shift, (loff_t)(((offs << 2) + (act >> 1))*mtd->pageSizek) << (10+this->pagecnt_shift), (offs << 2) + (act >> 1)); /* Factory marked bad or worn out? */ if (tmp == 0) this->bbt[offs + (act >> 3)] |= 0x3 << (act & 0x06); else this->bbt[offs + (act >> 3)] |= 0x1 << (act & 0x06); mtd->ecc_stats.badblocks++; } } totlen -= len; from += len; } return ret; } extern void print_nand_buffer(char *value, unsigned int length); /** * read_bbt_multi - [GENERIC] Read the bad block table starting from page * @mtd: MTD device structure * @buf: temporary buffer * @page: the starting page * @num: the number of bbt descriptors to read * @td: the bbt describtion table * @offs: offset in the memory table * * Read the bad block table starting from page. */ static int read_bbt_multi(struct mtd_info *mtd, uint8_t *buf, int page, int num, struct nand_bbt_descr *td, int offs) { int res, ret = 0, i, j, act = 0; struct nand_chip *this = mtd->priv; size_t retlen, len, totlen; loff_t from; int bits = (td->options & NAND_BBT_NRBITS_MSK)<<1; uint8_t msk = (uint8_t)((1 << bits) - 1); u32 marker_len; int reserved_block_code = td->reserved_block_code;//=0 //printk("--------bit=%d, msk=%d, code=%d\n",bits, msk, reserved_block_code); totlen = (num * bits) >> 3; marker_len = add_marker_len(td); //from = ((loff_t)page) << this->page_shift; from = ((loff_t)page*mtd->pageSizek) << 10; //printk("----totlen=%d, marker_len=%d, page=%d\n", totlen, marker_len, page); while (totlen) { //len = min(totlen, (size_t)(1 << this->bbt_erase_shift)); len = min(totlen, (size_t)(mtd->erasesize)); if (marker_len) { /* * In case the BBT marker is not in the OOB area it * will be just in the first page. */ len -= marker_len; from += marker_len; marker_len = 0; } res = mtd_read(mtd, from, len, &retlen, buf); if (res < 0) { if (mtd_is_eccerr(res)) { pr_info("nand_bbt: ECC error in BBT at " "0x%012llx\n", from & ~mtd->writesize); return res; } else if (mtd_is_bitflip(res)) { pr_info("nand_bbt: corrected error in BBT at " "0x%012llx\n", from & ~mtd->writesize); ret = res; } else { pr_info("nand_bbt: error reading BBT\n"); return res; } } //printk("+++++++++++++++++len=%d, offs=%d\n", len, offs); //print_nand_buffer(buf, 8192+64); //print_nand_buffer(buf+8192, 8192+64); /* Analyse data */ for (i = 0; i < len; i++) { uint8_t dat = buf[i]; if (this->bbt_plane[0] == page || this->bbt_plane[1] == page) dat = buf[i+mtd->realwritesize]; for (j = 0; j < 8; j += bits, act += 4) { uint8_t tmp = (dat >> j) & msk; if (tmp == msk) continue; if (reserved_block_code && (tmp == reserved_block_code)) { pr_info("nand_read_bbt: (read fail)reserved block at 0x%012llx\n", //(loff_t)((offs << 1) + (act >> 2)) << this->bbt_erase_shift); (loff_t)(((offs << 1) + (act >> 2))*mtd->pageSizek) << (10+this->pagecnt_shift)); this->bbt[offs + (act >> 3)] |= 0xa << (act & 0x04); mtd->ecc_stats.bbtblocks++; continue; } /* * Leave it for now, if it's matured we can * move this message to pr_debug. */ pr_info("nand_read_bbt: bad block at 0x%012llx (block%d)\n", //(loff_t)((offs << 1) + (act >> 2)) << this->bbt_erase_shift, ((loff_t)(((offs << 1) + (act >> 2))*mtd->pageSizek)) << (10+this->pagecnt_shift), (offs << 1) + (act >> 2)); /* Factory marked bad or worn out? */ if (tmp == 0) { this->bbt[offs + (act >> 3)] |= 0xf << (act & 0x04); //printk("bbt[%d]=0x%x", offs + (act >> 3), this->bbt[offs + (act >> 3)] |= 0xf << (act & 0x04)); } else if (tmp == 0x3) { this->bbt[offs + (act >> 3)] |= 0xc << (act & 0x04); //printk("bbt[%d]=0x%x", offs + (act >> 3), this->bbt[offs + (act >> 3)] |= 0xc << (act & 0x04)); } else if (tmp == 0xc) { this->bbt[offs + (act >> 3)] |= 0x3 << (act & 0x04); //printk("bbt[%d]=0x%x", offs + (act >> 3), this->bbt[offs + (act >> 3)] |= 0x3 << (act & 0x04)); } else this->bbt[offs + (act >> 3)] |= 0x5 << (act & 0x04); mtd->ecc_stats.badblocks++; } } totlen -= len; from += len; } return ret; } /** * read_abs_bbt - [GENERIC] Read the bad block table starting at a given page * @mtd: MTD device structure * @buf: temporary buffer * @td: descriptor for the bad block table * @chip: read the table for a specific chip, -1 read all chips; applies only if * NAND_BBT_PERCHIP option is set * * Read the bad block table for all chips starting at a given page. We assume * that the bbt bits are in consecutive order. */ static int read_abs_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, int chip) { struct nand_chip *this = mtd->priv; int res = 0, i; if (td->options & NAND_BBT_PERCHIP) { int offs = 0; for (i = 0; i < this->numchips; i++) { if (chip == -1 || chip == i) { if (this->realplanenum) { /* multi plane mode use 4-bit as an block instead of 2-bit */ res = read_bbt_multi(mtd, buf, td->pages[i], //this->chipsize >> this->bbt_erase_shift, (int)(this->chipsize >> (10+this->pagecnt_shift))/mtd->pageSizek, td, offs); } else { res = read_bbt(mtd, buf, td->pages[i], //this->chipsize >> this->bbt_erase_shift, (int)(this->chipsize >> (10+this->pagecnt_shift))/mtd->pageSizek, td, offs); } } if (res) return res; if (this->realplanenum) { //offs += this->chipsize >> (this->bbt_erase_shift + 1); offs += ((int)(this->chipsize >> (10+this->pagecnt_shift+1))/mtd->pageSizek); } else { //offs += this->chipsize >> (this->bbt_erase_shift + 2); offs += ((int)(this->chipsize >> (10+this->pagecnt_shift+2))/mtd->pageSizek); } } } else { if (this->realplanenum) { /* multi plane mode use 4-bit as an block instead of 2-bit */ res = read_bbt_multi(mtd, buf, td->pages[0], //mtd->size >> this->bbt_erase_shift, td, 0); (int)(mtd->size >> (10+this->pagecnt_shift))/mtd->pageSizek, td, 0); } else { res = read_bbt(mtd, buf, td->pages[0], //mtd->size >> this->bbt_erase_shift, td, 0); (int)(mtd->size >> (10+this->pagecnt_shift))/mtd->pageSizek, td, 0); if (res) return res; } } return 0; } /** * read_retry_table - [GENERIC] Read the retry table starting from page * @mtd: MTD device structure * @buf: temporary buffer * @page: the starting page * @num: the number of bbt descriptors to read * @td: the bbt describtion table * @offs: offset in the memory table * * Read the read retry table starting from page. * */ static int read_retry_table(struct mtd_info *mtd, uint8_t *buf, int page, int chip) { int res; struct nand_chip *this = mtd->priv; struct nand_read_retry_param *rdtry; size_t retlen; loff_t from; //from = ((loff_t) page) << this->page_shift; from = ((loff_t) (page*mtd->pageSizek)) << 10; res = mtd->_read(mtd, from, mtd->writesize, &retlen, buf); if (res < 0) { if (retlen != mtd->writesize) { printk(KERN_INFO "nand_bbt: Error reading retry table\n"); return res; } printk(KERN_WARNING "nand_bbt: ECC error while reading retry table\n"); } /* Analyse data */ rdtry = (struct nand_read_retry_param *)buf; #ifdef RETRY_DEBUG print_nand_buffer((uint8_t *)this->cur_chip, sizeof(chip_table[0])); #endif if (strcmp("readretry", rdtry->magic) /*|| info->data_ecc_uncor_err == 2*/) { printk(KERN_WARNING "nand_bbt: retry table magic number wrong%s\n", rdtry->magic); return -1; } #ifdef RETRY_DEBUG printk(KERN_WARNING "nand_bbt: copy from buf\n"); #endif memcpy(/*(uint8_t *)*/this->cur_chip, buf, sizeof(chip_table[0])-16); this->cur_chip->retry_def_value[this->cur_chip->retry_reg_num] = 0xff; this->cur_chip->retry_def_value[this->cur_chip->retry_reg_num+1] = 0xff; #ifdef RETRY_DEBUG print_nand_buffer((uint8_t *)this->cur_chip, sizeof(chip_table[0])); #endif /*if (rdtry->eslc_reg_num) { if (rdtry->eslc_reg_num > 5) printk(KERN_WARNING "nand_bbt: eslc reg size=%d is too big\n", rdtry->eslc_reg_num); this->eslc_reg_num = rdtry->eslc_reg_num; this->eslc_cmd = kzalloc(this->eslc_reg_num, GFP_KERNEL); if (!this->eslc_cmd) { printk(KERN_ERR "nand_scan_bbt: create eslc_cmd Out of memory\n"); return -ENOMEM; } } memcpy(this->eslc_cmd, ((uint8_t *)&rdtry->retry_reg_num)+4, this->eslc_reg_num); print_nand_buffer(this->eslc_cmd, this->eslc_reg_num); if (rdtry->total_retry_cnt && rdtry->retry_reg_num) { if ((rdtry->total_retry_cnt * rdtry->retry_reg_num) > 64) printk(KERN_WARNING "nand_bbt: eslc reg size=%d is too big\n", (rdtry->total_retry_cnt * rdtry->retry_reg_num)); this->total_retry_cnt = rdtry->total_retry_cnt; this->retry_reg_num = rdtry->retry_reg_num; this->retry_cmd = kzalloc((this->retry_reg_num*this->total_retry_cnt), GFP_KERNEL); if (!this->retry_cmd) { printk(KERN_ERR "nand_scan_bbt: create retry_cmd Out of memory\n"); return -ENOMEM; } } memcpy(this->retry_cmd, ((uint8_t *)&rdtry->retry_reg_num)+4+this->eslc_reg_num, (this->retry_reg_num*this->total_retry_cnt)); for (i = 0; i < this->total_retry_cnt; i++) { print_nand_buffer(&this->retry_cmd[i*this->retry_reg_num], this->retry_reg_num); }*/ return 0; } /** * read_abs_retry_table - [GENERIC] Read the retry table starting at a given page * @mtd: MTD device structure * @buf: temporary buffer * @td: descriptor for the bad block table * @chip: read the table for a specific chip, -1 read all chips. * * Read the retry table for all chips starting at a given page */ static int read_abs_retry_table(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, int chip) { //struct nand_chip *this = mtd->priv; int res = 0, i, chips; //chips = this->numchips chips = 1; for (i = 0; i < chips; i++) { if (chip == -1 || chip == i) res = read_retry_table(mtd, buf, td->pages[i], chip); if (res) return res; } return 0; } /* BBT marker is in the first page, no OOB */ static int scan_read_raw_data(struct mtd_info *mtd, uint8_t *buf, loff_t offs, struct nand_bbt_descr *td) { size_t retlen; size_t len; len = td->len; if (td->options & NAND_BBT_VERSION) len++; return mtd_read(mtd, offs, len, &retlen, buf); } /* Scan read raw data from flash */ static int scan_read_raw_oob(struct mtd_info *mtd, uint8_t *buf, loff_t offs, size_t len) { struct mtd_oob_ops ops; int res; ops.mode = MTD_OPS_RAW; ops.ooboffs = 0; ops.ooblen = mtd->oobsize; while (len > 0) { ops.datbuf = buf; ops.len = min(len, (size_t)mtd->writesize); ops.oobbuf = buf + ops.len; res = mtd_read_oob(mtd, offs, &ops); if (res) return res; buf += mtd->oobsize + mtd->writesize; len -= mtd->writesize; offs += mtd->writesize; } return 0; } static int scan_read_raw(struct mtd_info *mtd, uint8_t *buf, loff_t offs, size_t len, struct nand_bbt_descr *td) { if (td->options & NAND_BBT_NO_OOB) return scan_read_raw_data(mtd, buf, offs, td); else return scan_read_raw_oob(mtd, buf, offs, len); } /* Scan write data with oob to flash */ static int scan_write_bbt(struct mtd_info *mtd, loff_t offs, size_t len, uint8_t *buf, uint8_t *oob) { struct mtd_oob_ops ops; ops.mode = MTD_OPS_PLACE_OOB; ops.ooboffs = 0; ops.ooblen = mtd->oobsize; ops.datbuf = buf; ops.oobbuf = oob; ops.len = len; return mtd_write_oob(mtd, offs, &ops); /* call mtd->_write_oob*/ } static u32 bbt_get_ver_offs(struct mtd_info *mtd, struct nand_bbt_descr *td) { u32 ver_offs = td->veroffs; if (!(td->options & NAND_BBT_NO_OOB)) ver_offs += mtd->writesize; return ver_offs; } /** * read_abs_bbts - [GENERIC] Read the bad block table(s) for all chips starting at a given page * @mtd: MTD device structure * @buf: temporary buffer * @td: descriptor for the bad block table * @md: descriptor for the bad block table mirror * * Read the bad block table(s) for all chips starting at a given page. We * assume that the bbt bits are in consecutive order. */ static int read_abs_bbts(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, struct nand_bbt_descr *md) { //struct nand_chip *this = mtd->priv; /* Read the primary version, if available */ if (td->options & NAND_BBT_VERSION) { //scan_read_raw(mtd, buf, (loff_t)td->pages[0] << this->page_shift, scan_read_raw(mtd, buf, (loff_t)(td->pages[0]*mtd->pageSizek) << 10, mtd->writesize, td); td->version[0] = buf[bbt_get_ver_offs(mtd, td)]; pr_info("Bad block table at page %d, version 0x%02X\n", td->pages[0], td->version[0]); } /* Read the mirror version, if available */ if (md && (md->options & NAND_BBT_VERSION)) { //scan_read_raw(mtd, buf, (loff_t)md->pages[0] << this->page_shift, scan_read_raw(mtd, buf, (loff_t)(md->pages[0]*mtd->pageSizek) << 10, mtd->writesize, td); md->version[0] = buf[bbt_get_ver_offs(mtd, md)]; pr_info("Bad block table at page %d, version 0x%02X\n", md->pages[0], md->version[0]); } return 1; } /* Scan a given block full */ static int scan_block_full(struct mtd_info *mtd, struct nand_bbt_descr *bd, loff_t offs, uint8_t *buf, size_t readlen, int scanlen, int len) { int ret, j; ret = scan_read_raw_oob(mtd, buf, offs, readlen); /* Ignore ECC errors when checking for BBM */ if (ret && !mtd_is_bitflip_or_eccerr(ret)) return ret; for (j = 0; j < len; j++, buf += scanlen) { if (check_pattern(buf, scanlen, mtd->writesize, bd)) return 1; } return 0; } /* Scan a given block partially */ static int scan_block_fast(struct mtd_info *mtd, struct nand_bbt_descr *bd, loff_t offs, uint8_t *buf, int len) { struct mtd_oob_ops ops; int j, ret, more_bytes = 0, flag = 0; ops.ooblen = mtd->oobsize; ops.oobbuf = buf; ops.ooboffs = 0; ops.datbuf = NULL; ops.mode = MTD_OPS_PLACE_OOB; if ((mtd->id>>24) == 0x45) { more_bytes = 6; } for (j = 0; j < len; j++) { /* * Read the full oob until read_oob is fixed to handle single * byte reads for 16 bit buswidth. */ /* Dannier Chen patch 2010.04.20: start check invalid bad block on which page of blocks should be based on flash spec, for example flash type:HY27UT088G2M-T(P) bad block is marked at page 125 and 127 of each block. NOT always page 0 and 1. */ //printk("scan_block_fast: j=%d len=%d bd->page_offset[0]=%d offset[1]=%d\n ", j, len, bd->page_offset[0], bd->page_offset[1]); #ifdef CONFIG_MTD_NAND_WMT_HWECC ret = mtd->read_bbinfo_facmk(mtd, offs + bd->page_offset[j]*mtd->writesize, &ops); #else ret = mtd->read_oob(mtd, offs + bd->page_offset[j]*mtd->writesize, &ops); #endif /* Ignore ECC errors when checking for BBM */ if (ret && !mtd_is_bitflip_or_eccerr(ret)) return ret; if (check_short_pattern(buf, bd, more_bytes)) flag |= 1;//return 1; if ((flag&1) == 0) if (mtd->id == 0xECDED57E && mtd->id2 == 0x68440000) if (check_short_pattern(buf+1, bd, 0)) flag |= 1;//return 1; if (mtd->planenum > 1) { if (check_short_pattern(buf+more_bytes, bd, more_bytes)) flag |= 2;//return 1; if (check_short_pattern(buf+32, bd, 0)) flag |= 2;//return 1; if ((flag&2) == 0) if (mtd->id == 0xECDED57E && mtd->id2 == 0x68440000) if (check_short_pattern(buf+33, bd, 0)) flag |= 2;//return 1; } if (flag) return flag; /*offs += mtd->writesize;*/ /* Dannier Chen patch 2010.04.20: end */ } return 0; } /** * create_bbt - [GENERIC] Create a bad block table by scanning the device * @mtd: MTD device structure * @buf: temporary buffer * @bd: descriptor for the good/bad block search pattern * @chip: create the table for a specific chip, -1 read all chips; applies only * if NAND_BBT_PERCHIP option is set * * Create a bad block table by scanning the device for the given good/bad block * identify pattern. */ static int create_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip) { struct nand_chip *this = mtd->priv; int i, numblocks, len, scanlen; int startblock; loff_t from; size_t readlen; pr_info("Scanning device for bad blocks\n"); if (bd->options & NAND_BBT_SCANALLPAGES) //len = 1 << (this->bbt_erase_shift - this->page_shift); len = 1 << (this->pagecnt_shift); else if (bd->options & NAND_BBT_SCAN2NDPAGE) len = 2; else len = 1; if (!(bd->options & NAND_BBT_SCANEMPTY)) { /* We need only read few bytes from the OOB area */ scanlen = 0; readlen = bd->len; } else { /* Full page content should be read */ scanlen = mtd->writesize + mtd->oobsize; readlen = len * mtd->writesize; } if (chip == -1) { /* * Note that numblocks is 2 * (real numblocks) here, see i+=2 * below as it makes shifting and masking less painful */ //numblocks = mtd->size >> (this->bbt_erase_shift - 1); numblocks = ((int)(mtd->size >> (10+this->pagecnt_shift-1)))/mtd->pageSizek; startblock = 0; from = 0; } else { if (chip >= this->numchips) { pr_warn("create_bbt(): chipnr (%d) > available chips (%d)\n", chip + 1, this->numchips); return -EINVAL; } //numblocks = this->chipsize >> (this->bbt_erase_shift - 1); numblocks = ((int)(this->chipsize >> (10+this->pagecnt_shift-1)))/mtd->pageSizek; startblock = chip * numblocks; numblocks += startblock; //from = (loff_t)startblock << (this->bbt_erase_shift - 1); from = (loff_t)(startblock*mtd->pageSizek) << (10+this->pagecnt_shift-1); } if (this->bbt_options & NAND_BBT_SCANLASTPAGE) from += mtd->erasesize - (mtd->writesize * len); for (i = startblock; i < numblocks;) { int ret; if (((mtd->id>>24)&0xFF) == 0x45) { /* dannierchen add to erase sandisk all blocks before check bad block 20121217 */ /*printk(KERN_INFO "create_bbt: erase all blocks for sandisk\n");*/ struct erase_info einfo; memset(&einfo, 0, sizeof(einfo)); einfo.mtd = mtd; einfo.addr = from; //einfo.len = 1 << this->bbt_erase_shift; einfo.len = mtd->erasesize; /*printk("einfo.addr is %llx einfo.len is %llx\n", einfo.addr, einfo.len);*/ nand_erase_nand(mtd, &einfo, 0xFF); } /* end of dannierchen erase 20121217 */ BUG_ON(bd->options & NAND_BBT_NO_OOB); if (bd->options & NAND_BBT_SCANALLPAGES) ret = scan_block_full(mtd, bd, from, buf, readlen, scanlen, len); else ret = scan_block_fast(mtd, bd, from, buf, len); if (ret < 0) return ret; if (ret) { this->bbt[i >> 3] |= 0x03 << (i & 0x6); pr_warn("Bad eraseblock %d at 0x%012llx\n", i >> 1, (unsigned long long)from); mtd->ecc_stats.badblocks++; /* edwardwan add for debug 20071229 start */ #if 0 if(mtd->ecc_stats.badblocks > 10){ printk("\rnand flash bad block number is greater than 10\n"); return 0; } /* edwardwan add for debug 20071229 end */ #endif } else if (((mtd->id>>24)&0xFF) != 0x45) { /* dannierchen add to erase good block when first creat table 20091014 */ /*printk(KERN_INFO "create_bbt: erase good blocks\n");*/ struct erase_info einfo; int res = 0; memset(&einfo, 0, sizeof(einfo)); einfo.mtd = mtd; einfo.addr = from; //einfo.len = 1 << this->bbt_erase_shift; einfo.len = mtd->erasesize; /*printk("einfo.addr is %llx\n",einfo.addr); printk("einfo.len is %llx\n",einfo.len);*/ res = nand_erase_nand(mtd, &einfo, 0xFF); if (res < 0) printk("enand_erase_nand addr 0x%llx result is %x\n", einfo.addr, res); } /* end of dannierchen erase 20091014 */ i += 2; //from += (1 << this->bbt_erase_shift); from += (mtd->erasesize); } return 0; } /** * create_bbt_multi - [GENERIC] Create a bad block table by scanning the device * @mtd: MTD device structure * @buf: temporary buffer * @bd: descriptor for the good/bad block search pattern * @chip: create the table for a specific chip, -1 read all chips; applies only * if NAND_BBT_PERCHIP option is set * * Create a bad block table by scanning the device for the given good/bad block * identify pattern. */ static int create_bbt_multi(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip) { struct nand_chip *this = mtd->priv; int i, numblocks, len, scanlen; int startblock; loff_t from; size_t readlen; pr_info("Scanning device for bad blocks\n"); if (bd->options & NAND_BBT_SCANALLPAGES) //len = 1 << (this->bbt_erase_shift - this->page_shift); len = 1 << this->pagecnt_shift; else if (bd->options & NAND_BBT_SCAN2NDPAGE) len = 2; else len = 1; if (!(bd->options & NAND_BBT_SCANEMPTY)) { /* We need only read few bytes from the OOB area */ scanlen = 0; readlen = bd->len; } else { /* Full page content should be read */ scanlen = mtd->writesize + mtd->oobsize; readlen = len * mtd->writesize; } if (chip == -1) { /* * Note that numblocks is 2 * (real numblocks) here, see i+=2 * below as it makes shifting and masking less painful */ //numblocks = mtd->size >> (this->bbt_erase_shift - 2); numblocks = ((int)(mtd->size >> (10+this->pagecnt_shift-2)))/mtd->pageSizek; startblock = 0; from = 0; } else { if (chip >= this->numchips) { pr_warn("create_bbt_multi(): chipnr (%d) > available chips (%d)\n", chip + 1, this->numchips); return -EINVAL; } //numblocks = this->chipsize >> (this->bbt_erase_shift - 2); numblocks = ((int)(this->chipsize >> (10+this->pagecnt_shift-2)))/mtd->pageSizek; startblock = chip * numblocks; numblocks += startblock; //from = (loff_t)startblock << (this->bbt_erase_shift - 2); from = (loff_t)(startblock*mtd->pageSizek) << (10+this->pagecnt_shift-2); } if (this->bbt_options & NAND_BBT_SCANLASTPAGE) from += mtd->erasesize - (mtd->writesize * len); for (i = startblock; i < numblocks;) { int ret; if ((mtd->id>>24) == 0x45) { /* dannierchen add to erase sandisk all blocks before check bad block 20121217 */ /*printk(KERN_INFO "create_bbt_multi: erase all blocks for sandisk\n");*/ struct erase_info einfo; memset(&einfo, 0, sizeof(einfo)); einfo.mtd = mtd; einfo.addr = from; //einfo.len = 1 << this->bbt_erase_shift; einfo.len = mtd->erasesize; /*printk("einfo.addr is %llx einfo.len is %llx\n", einfo.addr, einfo.len);*/ nand_erase_nand(mtd, &einfo, 0xFF); } /* end of dannierchen erase 20121217 */ BUG_ON(bd->options & NAND_BBT_NO_OOB); if (bd->options & NAND_BBT_SCANALLPAGES) ret = scan_block_full(mtd, bd, from, buf, readlen, scanlen, len); else ret = scan_block_fast(mtd, bd, from, buf, len); if (ret < 0) return ret; if (ret) { this->bbt[i >> 3] |= 0x0F << (i & 0x4); pr_warn("Bad eraseblock %d at 0x%012llx\n", i >> 2, (unsigned long long)from); mtd->ecc_stats.badblocks++; /* edwardwan add for debug 20071229 start */ #if 0 if(mtd->ecc_stats.badblocks > 10){ printk("\rnand flash bad block number is greater than 10\n"); return 0; } /* edwardwan add for debug 20071229 end */ #endif } else if ((mtd->id>>24) != 0x45) { /* dannierchen add to erase good block when first creat table 20091014 */ /*printk(KERN_INFO "create_bbt_multi: erase good blocks\n");*/ struct erase_info einfo; int res = 0; memset(&einfo, 0, sizeof(einfo)); einfo.mtd = mtd; einfo.addr = from; //einfo.len = 1 << this->bbt_erase_shift; einfo.len = mtd->erasesize; /*printk("einfo.addr is %llx\n",einfo.addr); printk("einfo.len is %llx\n",einfo.len);*/ res = nand_erase_nand(mtd, &einfo, 0xFF); if (res < 0) printk("enand_erase_nand addr 0x%llx result is %x\n", einfo.addr, res); } /* end of dannierchen erase 20091014 */ i += 4; //from += (1 << this->bbt_erase_shift); from += (mtd->erasesize); } return 0; } int create_hynix_table(struct mtd_info *mtd, int chip) { int res; res = mtd->get_para(mtd, chip); return res; } static int check_retry_pattern(uint8_t *buf, int paglen, struct nand_bbt_descr *td) { int i; uint8_t *p = buf+paglen; for (i = 0; i < 10; i++) { if (p[i] != td->pattern[i]) return -1; } return 0; } /* * * read oob to search retry table * */ static int search_hynix_retry_table(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td) { struct nand_chip *this = mtd->priv; int i, chips; int startblock, block, dir; int bbtblocks; //int blocktopage = this->bbt_erase_shift - this->page_shift; int blocktopage = this->pagecnt_shift; /* Search direction top -> down ? */ //if (td->options & NAND_BBT_LASTBLOCK) { //startblock = (mtd->size >> this->bbt_erase_shift) - 1; startblock = ((int)(mtd->size >> (10+this->pagecnt_shift)))/mtd->pageSizek - 1; dir = -1; /*} else { startblock = 0; dir = 1; }*/ //so far use first chip parameter for read retry on 2-die chip //chips = this->numchips; chips = 1; //bbtblocks = this->chipsize >> this->bbt_erase_shift; bbtblocks = ((int)(this->chipsize >> (10+this->pagecnt_shift)))/mtd->pageSizek; startblock &= bbtblocks - 5; for (i = 0; i < chips; i++) { td->pages[i] = -1; /* Scan the maximum number of blocks */ for (block = 0; block < td->maxblocks; block++) { int actblock = startblock + dir * block; //loff_t offs = (loff_t)actblock << this->bbt_erase_shift; loff_t offs = (loff_t)(actblock*mtd->pageSizek) << (10+this->pagecnt_shift); /* Read first page */ scan_read_raw(mtd, buf, offs, mtd->writesize, td); if (!check_retry_pattern(buf, mtd->writesize, this->retry_pattern)) { td->pages[i] = actblock << blocktopage; break; } } //startblock += this->chipsize >> this->bbt_erase_shift; startblock += ((int)(this->chipsize >> (10+this->pagecnt_shift)))/mtd->pageSizek; } /* Check, if we found a bbt for each requested chip */ for (i = 0; i < chips; i++) { if (td->pages[i] == -1) printk(KERN_WARNING "Retry block table not found for chip %d\n", i); else printk(KERN_WARNING "Retry block table is found for chip %d\n", i); } return 0; } /** * search_bbt - [GENERIC] scan the device for a specific bad block table * @mtd: MTD device structure * @buf: temporary buffer * @td: descriptor for the bad block table * * Read the bad block table by searching for a given ident pattern. Search is * preformed either from the beginning up or from the end of the device * downwards. The search starts always at the start of a block. If the option * NAND_BBT_PERCHIP is given, each chip is searched for a bbt, which contains * the bad block information of this chip. This is necessary to provide support * for certain DOC devices. * * The bbt ident pattern resides in the oob area of the first page in a block. */ static int search_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td) { struct nand_chip *this = mtd->priv; int i, chips; int bits, startblock, block, dir; int scanlen = mtd->writesize + mtd->oobsize; int bbtblocks; //int blocktopage = this->bbt_erase_shift - this->page_shift; int blocktopage = this->pagecnt_shift; /* Search direction top -> down? */ if (td->options & NAND_BBT_LASTBLOCK) { //startblock = (mtd->size >> this->bbt_erase_shift) - 1; startblock = ((int)(mtd->size >> (10+this->pagecnt_shift)))/mtd->pageSizek - 1; dir = -1; } else { startblock = 0; dir = 1; } /* Do we have a bbt per chip? */ if (td->options & NAND_BBT_PERCHIP) { chips = this->numchips; //bbtblocks = this->chipsize >> this->bbt_erase_shift; bbtblocks = ((int)(this->chipsize >> (10+this->pagecnt_shift)))/mtd->pageSizek; startblock &= bbtblocks - 1; } else { chips = 1; //bbtblocks = mtd->size >> this->bbt_erase_shift; bbtblocks = ((int)(mtd->size >> (10+this->pagecnt_shift)))/mtd->pageSizek; } /* Number of bits for each erase block in the bbt */ bits = td->options & NAND_BBT_NRBITS_MSK; if (this->realplanenum) bits<<=1; for (i = 0; i < chips; i++) { /* Reset version information */ td->version[i] = 0; td->pages[i] = -1; /* Scan the maximum number of blocks */ for (block = 0; block < td->maxblocks; block++) { int actblock = startblock + dir * block; //loff_t offs = (loff_t)actblock << this->bbt_erase_shift; loff_t offs = (loff_t)(actblock*mtd->pageSizek) << (10+this->pagecnt_shift); /* Read first page */ scan_read_raw(mtd, buf, offs, mtd->writesize, td); //print_nand_buffer(buf+mtd->writesize, 64); if (!check_pattern(buf, scanlen, mtd->writesize, td)) { td->pages[i] = actblock << blocktopage; printk("get bbt0 from %x\n",td->pages[i]); this->bbt_plane[i] = 0; if (td->options & NAND_BBT_VERSION) { u32 offs_ver; offs_ver = bbt_get_ver_offs(mtd, td); td->version[i] = buf[offs_ver]; } break; } if (this->realplanenum) if (!check_pattern(buf, scanlen, mtd->writesize+20, td)) { td->pages[i] = actblock << blocktopage; //printk("get bbt1 from %x\n",td->pages[i]); this->bbt_plane[i] = td->pages[i]; //printk("get bbt plane[%d] from %x\n",i, this->bbt_plane[i]); if (td->options & NAND_BBT_VERSION) { u32 offs_ver; offs_ver = bbt_get_ver_offs(mtd, td); td->version[i] = buf[20+offs_ver]; } break; } } //startblock += this->chipsize >> this->bbt_erase_shift; startblock += ((int)(this->chipsize >> (10+this->pagecnt_shift)))/mtd->pageSizek; } /* Check, if we found a bbt for each requested chip */ for (i = 0; i < chips; i++) { if (td->pages[i] == -1) pr_warn("Bad block table not found for chip %d\n", i); else pr_info("Bad block table found at page %d, version " "0x%02X\n", td->pages[i], td->version[i]); } return 0; } extern int reset_nfc(struct mtd_info *mtd, unsigned int *buf, int step); extern void nfc_hw_rdmz(struct mtd_info *mtd, int on); extern void print_nand_register(struct mtd_info *mtd); /** * search_read_bbts - [GENERIC] scan the device for bad block table(s) * @mtd: MTD device structure * @buf: temporary buffer * @td: descriptor for the bad block table * @md: descriptor for the bad block table mirror * * Search and read the bad block table(s). */ static int search_read_bbts(struct mtd_info *mtd, uint8_t * buf, struct nand_bbt_descr *td, struct nand_bbt_descr *md) { /* Search the primary table */ search_bbt(mtd, buf, td); /* Search the mirror table */ if (md) search_bbt(mtd, buf, md); /* Force result check */ return 1; } /** * write_bbt - [GENERIC] (Re)write the bad block table * @mtd: MTD device structure * @buf: temporary buffer * @td: descriptor for the bad block table * @md: descriptor for the bad block table mirror * @chipsel: selector for a specific chip, -1 for all * * (Re)write the bad block table. */ static int write_bbt(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, struct nand_bbt_descr *md, int chipsel) { struct nand_chip *this = mtd->priv; struct erase_info einfo; int i, j, res, chip = 0; int bits, startblock, dir, page, offs, numblocks, sft, sftmsk; int nrchips, bbtoffs, pageoffs, ooboffs; uint8_t msk[4]; uint8_t rcode = td->reserved_block_code; size_t retlen, len = 0; loff_t to; struct mtd_oob_ops ops; ops.ooblen = mtd->oobsize; ops.ooboffs = 0; ops.datbuf = NULL; ops.mode = MTD_OPS_PLACE_OOB; if (!rcode) rcode = 0xff; /* Write bad block table per chip rather than per device? */ if (td->options & NAND_BBT_PERCHIP) { //numblocks = (int)(this->chipsize >> this->bbt_erase_shift); numblocks = ((int)(this->chipsize >> (10+this->pagecnt_shift)))/mtd->pageSizek; /* Full device write or specific chip? */ if (chipsel == -1) { nrchips = this->numchips; } else { nrchips = chipsel + 1; chip = chipsel; } } else { //numblocks = (int)(mtd->size >> this->bbt_erase_shift); numblocks = ((int)(mtd->size >> (10+this->pagecnt_shift)))/mtd->pageSizek; nrchips = 1; } /* Loop through the chips */ for (; chip < nrchips; chip++) { /* * There was already a version of the table, reuse the page * This applies for absolute placement too, as we have the * page nr. in td->pages. */ if (td->pages[chip] != -1) { page = td->pages[chip]; goto write; } /* * Automatic placement of the bad block table. Search direction * top -> down? */ if (td->options & NAND_BBT_LASTBLOCK) { startblock = numblocks * (chip + 1) - 1; dir = -1; } else { startblock = chip * numblocks; dir = 1; } for (i = 0; i < td->maxblocks; i++) { int block = startblock + dir * i; /* Check, if the block is bad */ switch ((this->bbt[block >> 2] >> (2 * (block & 0x03))) & 0x03) { case 0x01: case 0x03: continue; } page = block << //(this->bbt_erase_shift - this->page_shift); this->pagecnt_shift; /* Check, if the block is used by the mirror table */ if (!md || md->pages[chip] != page) goto write; } pr_err("No space left to write bad block table\n"); return -ENOSPC; write: /* Set up shift count and masks for the flash table */ bits = td->options & NAND_BBT_NRBITS_MSK; msk[2] = 2;//~rcode; switch (bits) { case 1: sft = 3; sftmsk = 0x07; msk[0] = 0x00; msk[1] = 0x01; msk[3] = 0x01; break; case 2: sft = 2; sftmsk = 0x06; msk[0] = 0x00; msk[1] = 0x01; msk[3] = 0x03; break; case 4: sft = 1; sftmsk = 0x04; msk[0] = 0x00; msk[1] = 0x0C; msk[3] = 0x0f; break; case 8: sft = 0; sftmsk = 0x00; msk[0] = 0x00; msk[1] = 0x0F; msk[3] = 0xff; break; default: return -EINVAL; } bbtoffs = chip * (numblocks >> 2); if (this->realplanenum) bbtoffs = chip * (numblocks >> 1); //to = ((loff_t)page) << this->page_shift; to = ((loff_t) (page*mtd->pageSizek)) << 10; /* Must we save the block contents? */ if (td->options & NAND_BBT_SAVECONTENT) { printk("inlegal------not go-----------\n"); /* Make it block aligned */ //to &= ~((loff_t)((1 << this->bbt_erase_shift) - 1)); to &= ~((loff_t)((mtd->erasesize) - 1));//danbbg //len = 1 << this->bbt_erase_shift; len = mtd->erasesize; res = mtd_read(mtd, to, len, &retlen, buf); if (res < 0) { if (retlen != len) { pr_info("nand_bbt: error reading block " "for writing the bad block table\n"); return res; } pr_warn("nand_bbt: ECC error while reading " "block for writing bad block table\n"); } /* Read oob data */ //ops.ooblen = (len >> this->page_shift) * mtd->oobsize; ops.ooblen = (mtd->pagecnt) * mtd->oobsize; ops.oobbuf = &buf[len]; res = mtd_read_oob(mtd, to + mtd->writesize, &ops); if (res < 0 || ops.oobretlen != ops.ooblen) goto outerr; /* Calc the byte offset in the buffer */ //pageoffs = page - (int)(to >> this->page_shift); pageoffs = page - ((int)(to >> 10))/mtd->pageSizek; //offs = pageoffs << this->page_shift; offs = (pageoffs*mtd->pageSizek) << 10; /* Preset the bbt area with 0xff */ memset(&buf[offs], 0xff, (size_t)(numblocks >> sft)); ooboffs = len + (pageoffs * mtd->oobsize); } else if (td->options & NAND_BBT_NO_OOB) { ooboffs = 0; offs = td->len; /* The version byte */ if (td->options & NAND_BBT_VERSION) offs++; /* Calc length */ len = (size_t)(numblocks >> sft); len += offs; /* Make it page aligned! */ len = ALIGN(len, mtd->writesize); /* Preset the buffer with 0xff */ memset(buf, 0xff, len); /* Pattern is located at the begin of first page */ memcpy(buf, td->pattern, td->len); } else { /* Calc length */ len = (size_t)(numblocks >> sft); /* Make it page aligned! */ len = ALIGN(len, mtd->writesize); if (len < mtd->writesize) len = mtd->writesize; /* Preset the buffer with 0xff */ memset(buf, 0xff, len + //(len >> this->page_shift)* mtd->oobsize); mtd->pagecnt* mtd->oobsize); offs = 0; ooboffs = len; /* Pattern is located in oob area of first page */ memcpy(&buf[ooboffs + td->offs], td->pattern, td->len); } if (td->options & NAND_BBT_VERSION) buf[ooboffs + td->veroffs] = td->version[chip]; /* Walk through the memory table */ for (i = 0; i < numblocks;) { uint8_t dat; dat = this->bbt[bbtoffs + (i >> 2)]; for (j = 0; j < 4; j++, i++) { int sftcnt = (i << (3 - sft)) & sftmsk; /* Do not store the reserved bbt blocks! */ /* dannier 2014/03/01 add a condition only retry and bbt blocks are not store read retry command fail blocks are marked as reserved blk and need to be stored to flash */ if (i >= (numblocks - td->maxblocks - 4) && (dat&0x3) == 0x2) { //buf[offs + (i >> sft)] &= ~(msk[dat & 0x03] << sftcnt); //printk("offs + (i >> sft)=%d data=0x%x, dat=0x%x sft=%d\n",offs + (i >> sft), ~(msk[dat & 0x03] << sftcnt), dat, sft); } else buf[offs + (i >> sft)] &= ~(msk[dat & 0x03] << sftcnt); dat >>= 2; } } memset(&einfo, 0, sizeof(einfo)); einfo.mtd = mtd; einfo.addr = to; //einfo.len = 1 << this->bbt_erase_shift; einfo.len = mtd->erasesize; res = nand_erase_nand(mtd, &einfo, 1); if (res < 0) goto outerr; res = scan_write_bbt(mtd, to, len, buf, td->options & NAND_BBT_NO_OOB ? NULL : &buf[len]); if (res < 0) goto outerr; pr_info("Bad block table written to 0x%012llx, version 0x%02X\n", (unsigned long long)to, td->version[chip]); //while(1); /* Mark it as used */ td->pages[chip] = page; } return 0; outerr: pr_warn("nand_bbt: error while writing bad block table %d\n", res); return res; } /** * write_bbt - [GENERIC] (Re)write the bad block table * @mtd: MTD device structure * @buf: temporary buffer * @td: descriptor for the bad block table * @md: descriptor for the bad block table mirror * @chipsel: selector for a specific chip, -1 for all * * (Re)write the bad block table. */ static int write_bbt_multi(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, struct nand_bbt_descr *md, int chipsel) { struct nand_chip *this = mtd->priv; struct erase_info einfo; int i, j, res, chip = 0; int bits, startblock, dir, page, offs, numblocks, sft, sftmsk; int nrchips, bbtoffs, pageoffs, ooboffs; uint8_t msk[16]; uint8_t rcode = td->reserved_block_code; size_t retlen, len = 0; loff_t to; struct mtd_oob_ops ops; ops.ooblen = mtd->oobsize; ops.ooboffs = 0; ops.datbuf = NULL; ops.mode = MTD_OPS_PLACE_OOB; if (!rcode) rcode = 0xff; /* Write bad block table per chip rather than per device? */ if (td->options & NAND_BBT_PERCHIP) { //numblocks = (int)(this->chipsize >> this->bbt_erase_shift); numblocks = ((int)(this->chipsize >> (10+this->pagecnt_shift)))/mtd->pageSizek; /* Full device write or specific chip? */ if (chipsel == -1) { nrchips = this->numchips; } else { nrchips = chipsel + 1; chip = chipsel; } } else { //numblocks = (int)(mtd->size >> this->bbt_erase_shift); numblocks = ((int)(mtd->size >> (10+this->pagecnt_shift)))/mtd->pageSizek; nrchips = 1; } /* Loop through the chips */ for (; chip < nrchips; chip++) { /* * There was already a version of the table, reuse the page * This applies for absolute placement too, as we have the * page nr. in td->pages. */ if (td->pages[chip] != -1) { page = td->pages[chip]; goto write; } /* * Automatic placement of the bad block table. Search direction * top -> down? */ if (td->options & NAND_BBT_LASTBLOCK) { startblock = numblocks * (chip + 1) - 1; dir = -1; } else { startblock = chip * numblocks; dir = 1; } for (i = 0; i < td->maxblocks; i++) { int block = startblock + dir * i; //printk("blockstatus=%x\n",((this->bbt[block >> 1] >> (2 * (block & 0x01))) & 0x0F)); //printk("block=%x, sht=%d\n",block,(4 * (block & 0x01)) & 0x0F); /* Check, if the block is bad */ switch ((this->bbt[block >> 1] >> (4 * (block & 0x01))) & 0x0F) { case 0x01: case 0x04: case 0x05://case 0x07: case 0x0D: not exist for bad_fact+bad_wort case 0x03://case 0x0B: case 0x0E: not exist for bad_fact+reserved case 0x0C://case 0x02: case 0x08: not exist for good + reserved case 0x0F://case 0x06: case 0x09: not exist for bad_wort+reserved continue; //case 0x00: case 0x0A: only good or reserved is used (so far no reserved) } page = block << //(this->bbt_erase_shift - this->page_shift); this->pagecnt_shift; /* Check, if the block is used by the mirror table */ if (!md || md->pages[chip] != page) goto write; } pr_err("No space left to write bad block table\n"); return -ENOSPC; write: /* Set up shift count and masks for the flash table */ bits = td->options & NAND_BBT_NRBITS_MSK; if (this->realplanenum) bits<<=1; msk[2] = ~rcode; switch (bits) { case 1: sft = 3; sftmsk = 0x07; msk[0] = 0x00; msk[1] = 0x01; msk[3] = 0x01; break; case 2: sft = 2; sftmsk = 0x06; msk[0] = 0x00; msk[1] = 0x01; msk[3] = 0x03; break; case 4: sft = 1; sftmsk = 0x04; msk[0] = 0x00; msk[1] = 0x01; msk[2] = 0x2; msk[3] = 0x03; msk[4] = 0x04; msk[5] = 0x05; msk[6] = 0x06; msk[7] = 0x07; msk[8] = 0x08; msk[9] = 0x09; msk[10] = /*~rcode*/0x0a; msk[11] = 0x0b; msk[12] = 0x0c; msk[13] = 0x0d; msk[14] = 0x0e; msk[15] = 0x0f; break; case 8: sft = 0; sftmsk = 0x00; msk[0] = 0x00; msk[1] = 0x0F; msk[3] = 0xff; break; default: return -EINVAL; } bbtoffs = chip * (numblocks >> 2); if (this->realplanenum) bbtoffs = chip * (numblocks >> 1); //to = ((loff_t)page) << this->page_shift; to = ((loff_t) (page*mtd->pageSizek)) << 10; /* Must we save the block contents? */ if (td->options & NAND_BBT_SAVECONTENT) { /* Make it block aligned */printk("write bbt multi inlegal-----------------\n"); //to &= ~((loff_t)((1 << this->bbt_erase_shift) - 1)); to &= ~((loff_t)((mtd->erasesize) - 1));//danbbg //len = 1 << this->bbt_erase_shift; len = mtd->erasesize; res = mtd_read(mtd, to, len, &retlen, buf); if (res < 0) { if (retlen != len) { pr_info("nand_bbt: error reading block " "for writing the bad block table\n"); return res; } pr_warn("nand_bbt: ECC error while reading " "block for writing bad block table\n"); } /* Read oob data */ //ops.ooblen = (len >> this->page_shift) * mtd->oobsize; ops.ooblen = (mtd->pagecnt) * mtd->oobsize; ops.oobbuf = &buf[len]; res = mtd_read_oob(mtd, to + mtd->writesize, &ops); if (res < 0 || ops.oobretlen != ops.ooblen) goto outerr; /* Calc the byte offset in the buffer */ //pageoffs = page - (int)(to >> this->page_shift); pageoffs = page - ((int)(to >> 10))/mtd->pageSizek; //offs = pageoffs << this->page_shift; offs = (pageoffs*mtd->pageSizek) << 10; /* Preset the bbt area with 0xff */ memset(&buf[offs], 0xff, (size_t)(numblocks >> sft)); ooboffs = len + (pageoffs * mtd->oobsize); } else if (td->options & NAND_BBT_NO_OOB) { ooboffs = 0; offs = td->len; /* The version byte */ if (td->options & NAND_BBT_VERSION) offs++; /* Calc length */ len = (size_t)(numblocks >> sft); len += offs; /* Make it page aligned! */ len = ALIGN(len, mtd->writesize); /* Preset the buffer with 0xff */ memset(buf, 0xff, len); /* Pattern is located at the begin of first page */ memcpy(buf, td->pattern, td->len); } else { /* Calc length */ len = (size_t)(numblocks >> sft); /* Make it page aligned! */ len = ALIGN(len, mtd->writesize); if (len < mtd->writesize) len = mtd->writesize; /* Preset the buffer with 0xff */ memset(buf, 0xff, len + //(len >> this->page_shift)* mtd->oobsize); mtd->pagecnt* mtd->oobsize); offs = 0; ooboffs = len; /* Pattern is located in oob area of first page */ memcpy(&buf[ooboffs + td->offs], td->pattern, td->len); //printk("td->len=%d ooboffs=%d td->offs=%d\n", td->len, ooboffs, td->offs); } if (td->options & NAND_BBT_VERSION) buf[ooboffs + td->veroffs] = td->version[chip]; /* Walk through the memory table */ for (i = 0; i < numblocks;) { uint8_t dat; dat = this->bbt[bbtoffs + (i >> 1)]; for (j = 0; j < 2; j++, i++) { int sftcnt = (i << (3 - sft)) & sftmsk; /* Do not store the reserved bbt blocks! */ /* dannier 2014/03/01 add a condition only retry and bbt blocks are not store read retry command fail blocks are marked as reserved blk and need to be stored to flash */ if (i >= (numblocks - td->maxblocks - 4) && (dat&0xF)==0xa) { //buf[offs + (i >> sft)] &= ~(msk[dat & 0x0F] << sftcnt); //printk("offs + (i >> sft)=%d data=0x%x, dat=0x%x sft=%d\n",offs + (i >> sft), ~(msk[dat & 0x0F] << sftcnt), dat, sft); } else buf[offs + (i >> sft)] &= ~(msk[dat & 0x0F] << sftcnt); dat >>= 4; } } memcpy(&buf[mtd->realwritesize], buf, (numblocks>>1)); //printk("print bbt write info ");print_nand_buffer(buf, 1536); /*printk("Bad block table written to 0x%012llx, version 0x%02X\n", (unsigned long long)to, td->version[chip]);dump_stack();while(1);*/ //printk("erase blk=%d, page=0x%x len=%d copy=%d\n", (unsigned int)(to>>this->bbt_erase_shift), page, len, (numblocks>>1)); memset(&einfo, 0, sizeof(einfo)); einfo.mtd = mtd; einfo.addr = to; //einfo.len = 1 << this->bbt_erase_shift; einfo.len = mtd->erasesize; res = nand_erase_nand(mtd, &einfo, 1); //printk("erase ret=%d\n",res); if (res < 0) goto outerr; res = scan_write_bbt(mtd, to, len, buf, td->options & NAND_BBT_NO_OOB ? NULL : &buf[len]); if (res < 0) goto outerr; pr_info("Bad block table written to 0x%012llx, version 0x%02X\n", (unsigned long long)to, td->version[chip]); /* Mark it as used */ td->pages[chip] = page; } return 0; outerr: pr_warn("nand_bbt: multi error while writing bad block table %d\n", res); return res; } void copy_retry_info_to_buf(struct mtd_info *mtd, uint8_t *buf) { /*uint8_t *bf; struct nand_read_retry_param *rdtry = (struct nand_read_retry_param *)buf;*/ struct nand_chip *this = mtd->priv; memcpy(buf, /*(uint8_t *)*/this->cur_chip, sizeof(chip_table[0])-16); #ifdef RETRY_DEBUG print_nand_buffer((uint8_t *)this->cur_chip, sizeof(chip_table[0])); #endif /* memcpy(buf, "ANDROID!", 8); rdtry->nand_id = FlashId;//this->nand_id; //rdtry->nand_id_5th = this->nand_id_5th; rdtry->eslc_reg_num = this->eslc_reg_num; rdtry->total_retry_cnt = this->total_retry_cnt; rdtry->retry_reg_num = this->retry_reg_num; bf = buf + 28; if (this->eslc_reg_num) memcpy(bf, this->eslc_cmd, this->eslc_reg_num); bf = buf + this->eslc_reg_num; if (this->retry_reg_num) memcpy(bf, this->retry_cmd, this->retry_reg_num * this->total_retry_cnt); else printk("no retry param is writen to retry table block\n"); printk("save rdtry to block\n"); print_nand_buffer(buf, 128); */ } /** * write_hynix_table - [GENERIC] (Re)write the hynix table * * @mtd: MTD device structure * @buf: temporary buffer * @td: descriptor for the retry table block * @md: descriptor for the bad block table mirror * @chipsel: selector for a specific chip, -1 for all * * (Re)write the bad block table * */ static int write_hynix_table(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, int chipsel) { struct nand_chip *this = mtd->priv; struct erase_info einfo; int i, res, chip = 0; int startblock, dir, page, numblocks, nrchips; uint8_t rcode = td->reserved_block_code; size_t len = 0; loff_t to; struct mtd_oob_ops ops; ops.ooblen = mtd->oobsize; ops.ooboffs = 0; ops.datbuf = NULL; ops.mode = MTD_OPS_PLACE_OOB; if (!rcode) rcode = 0xff; //numblocks = (int)(this->chipsize >> this->bbt_erase_shift); numblocks = ((int)(this->chipsize >> (10+this->pagecnt_shift)))/mtd->pageSizek; nrchips = chipsel + 1; chip = chipsel; /* Loop through the chips */ for (; chip < nrchips; chip++) { /* Search direction top -> down ? */ startblock = numblocks * (chip + 1) - 5; dir = -1; for (i = 0; i < td->maxblocks; i++) { int block = startblock + dir * i; /* Check, if the block is bad */ if (this->realplanenum) { switch ((this->bbt[block >> 1] >> (4 * (block & 0x01))) & 0x0F) { case 0x01: case 0x04: case 0x05://case 0x07: case 0x0D: not exist for bad_fact+bad_wort case 0x03://case 0x0B: case 0x0E: not exist for bad_fact+reserved case 0x0C://case 0x02: case 0x08: not exist for good + reserved case 0x0F://case 0x06: case 0x09: not exist for bad_wort+reserved continue; //case 0x00: case 0x0A: only good or reserved is used (so far no reserved) } } else { switch ((this->bbt[block >> 2] >> (2 * (block & 0x03))) & 0x03) { case 0x01: case 0x03: continue; } } //page = block << (this->bbt_erase_shift - this->page_shift); page = block << this->pagecnt_shift; goto write; } printk(KERN_ERR "No space left to write read retry table\n"); return -ENOSPC; write: //to = ((loff_t) page) << this->page_shift; to = ((loff_t) (page*mtd->pageSizek)) << 10; len = mtd->writesize; /* Preset the buffer with 0xff */ //memset(buf, 0xff, len + (len >> this->page_shift)* mtd->oobsize); memset(buf, 0xff, len + mtd->pagecnt* mtd->oobsize); /* Pattern is located in oob area of first page */ memcpy(&buf[len], td->pattern, 10); //------write signature into buf retry into--/ #ifdef RETRY_DEBUG printk("save rdtry to page=0x%x\n", page); #endif copy_retry_info_to_buf(mtd, buf); //------erase block-----------/ memset(&einfo, 0, sizeof(einfo)); einfo.mtd = mtd; einfo.addr = to; //einfo.len = 1 << this->bbt_erase_shift; einfo.len = mtd->erasesize; res = nand_erase_nand(mtd, &einfo, 1); if (res < 0) goto outerr; printk("writing rdtry to nand flash and page addr is 0x%x, len=0x%x\n", page, len); res = scan_write_bbt(mtd, to, len, buf, &buf[len]); if (res < 0) goto outerr; /* Mark it as used */ td->pages[chip] = page; } return 0; outerr: printk(KERN_WARNING "nand_bbt: Error while writing read retry table %d\n", res); return res; } /** * nand_memory_bbt - [GENERIC] create a memory based bad block table * @mtd: MTD device structure * @bd: descriptor for the good/bad block search pattern * * The function creates a memory based bbt by scanning the device for * manufacturer / software marked good / bad blocks. */ static inline int nand_memory_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd) { struct nand_chip *this = mtd->priv; bd->options &= ~NAND_BBT_SCANEMPTY; if (this->realplanenum) return create_bbt_multi(mtd, this->buffers->databuf, bd, -1); else return create_bbt(mtd, this->buffers->databuf, bd, -1); } /** * check_create - [GENERIC] create and write bbt(s) if necessary * @mtd: MTD device structure * @buf: temporary buffer * @bd: descriptor for the good/bad block search pattern * * The function checks the results of the previous call to read_bbt and creates * / updates the bbt(s) if necessary. Creation is necessary if no bbt was found * for the chip/device. Update is necessary if one of the tables is missing or * the version nr. of one table is less than the other. */ static int check_create(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd) { int i, chips, writeops, create, chipsel, res, res2; struct nand_chip *this = mtd->priv; struct nand_bbt_descr *td = this->bbt_td; struct nand_bbt_descr *md = this->bbt_md; struct nand_bbt_descr *rd, *rd2; /* Do we have a bbt per chip? */ if (td->options & NAND_BBT_PERCHIP) chips = this->numchips; else chips = 1; for (i = 0; i < chips; i++) { writeops = 0; create = 0; rd = NULL; rd2 = NULL; res = res2 = 0; /* Per chip or per device? */ chipsel = (td->options & NAND_BBT_PERCHIP) ? i : -1; /* Mirrored table available? */ if (md) { if (td->pages[i] == -1 && md->pages[i] == -1) { create = 1; writeops = 0x03; } else if (td->pages[i] == -1) { rd = md; writeops = 0x01; } else if (md->pages[i] == -1) { rd = td; writeops = 0x02; } else if (td->version[i] == md->version[i]) { rd = td; if (!(td->options & NAND_BBT_VERSION)) rd2 = md; } else if (((int8_t)(td->version[i] - md->version[i])) > 0) { rd = td; writeops = 0x02; } else { rd = md; writeops = 0x01; } } else { if (td->pages[i] == -1) { create = 1; writeops = 0x01; } else { rd = td; } } if (create) { /* Create the bad block table by scanning the device? */ if (!(td->options & NAND_BBT_CREATE)) continue; /* Create the table in memory by scanning the chip(s) */ if (!(this->bbt_options & NAND_BBT_CREATE_EMPTY)) { //print_nand_register(mtd); if (mtd->dwRdmz) reset_nfc(mtd, NULL, 3); //print_nand_register(mtd); if (this->realplanenum) create_bbt_multi(mtd, buf, bd, chipsel); else create_bbt(mtd, buf, bd, chipsel); } td->version[i] = 1; if (md) md->version[i] = 1; } /* Read back first? */ if (rd) { res = read_abs_bbt(mtd, buf, rd, chipsel); if (mtd_is_eccerr(res)) { /* Mark table as invalid */ rd->pages[i] = -1; rd->version[i] = 0; i--; continue; } } /* If they weren't versioned, read both */ if (rd2) { res2 = read_abs_bbt(mtd, buf, rd2, chipsel); if (mtd_is_eccerr(res2)) { /* Mark table as invalid */ rd2->pages[i] = -1; rd2->version[i] = 0; i--; continue; } } /* Scrub the flash table(s)? */ if (mtd_is_bitflip(res) || mtd_is_bitflip(res2)) writeops = 0x03; /* Update version numbers before writing */ if (md) { td->version[i] = max(td->version[i], md->version[i]); md->version[i] = td->version[i]; } /* Write the bad block table to the device? */ if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) { if (this->realplanenum) res = write_bbt_multi(mtd, buf, td, md, chipsel); else res = write_bbt(mtd, buf, td, md, chipsel); if (res < 0) return res; } /* Write the mirror bad block table to the device? */ if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) { if (this->realplanenum) res = write_bbt_multi(mtd, buf, md, td, chipsel); else res = write_bbt(mtd, buf, md, td, chipsel); if (res < 0) return res; } } return 0; } static int check_retry_table(struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *rd) { int i, chips, chipsel, res = 0, need_save = 0; struct nand_chip *this = mtd->priv; /* Do we have a retry table per chip ? */ /* so far, use chip 0 retry param on chip 0 and chip 1 */ //chips = this->numchips; chips = 1; for (i = 0; i < chips; i++) { /* Per chip */ chipsel = i; if (rd->pages[i] == -1) { goto create; } #ifdef RETRY_DEBUG printk("read_abs_retry_table\n"); #endif /* Read the retry table starting at a given page */ res = read_abs_retry_table(mtd, buf, rd, chipsel); if (res == 0) { if(this->cur_chip != NULL) { this->select_chip(mtd, 0); this->cur_chip->get_parameter(mtd, READ_RETRY_MODE); this->select_chip(mtd, -1); } break; } create: #ifdef RETRY_DEBUG printk("create_hynix_table\n"); #endif /* Create the table in memory by get feature or get otp cmd */ create_hynix_table(mtd, chipsel); need_save = 1; //printk("dannier write_hynix_table\n"); /* Write the retry block table to the device ? => leave it saved after bbt searched*/ /*res = write_hynix_table(mtd, buf, rd, chipsel); if (res < 0) return res;*/ } return need_save; } /** * mark_bbt_regions - [GENERIC] mark the bad block table regions * @mtd: MTD device structure * @td: bad block table descriptor * * The bad block table regions are marked as "bad" to prevent accidental * erasures / writes. The regions are identified by the mark 0x02. */ static void mark_bbt_region(struct mtd_info *mtd, struct nand_bbt_descr *td) { struct nand_chip *this = mtd->priv; int i, j, chips, block, nrblocks, update; uint8_t oldval, newval; /* Do we have a bbt per chip? */ if (td->options & NAND_BBT_PERCHIP) { chips = this->numchips; //nrblocks = (int)(this->chipsize >> this->bbt_erase_shift); nrblocks = ((int)(this->chipsize >> (10+this->pagecnt_shift)))/mtd->pageSizek; } else { chips = 1; //nrblocks = (int)(mtd->size >> this->bbt_erase_shift); nrblocks = ((int)(mtd->size >> (10+this->pagecnt_shift)))/mtd->pageSizek; } for (i = 0; i < chips; i++) { if ((td->options & NAND_BBT_ABSPAGE) || !(td->options & NAND_BBT_WRITE)) { if (td->pages[i] == -1) continue; //block = td->pages[i] >> (this->bbt_erase_shift - this->page_shift); block = td->pages[i] >> (this->pagecnt_shift); block <<= 1; oldval = this->bbt[(block >> 3)]; newval = oldval | (0x2 << (block & 0x06)); this->bbt[(block >> 3)] = newval; if ((oldval != newval) && 0/*td->reserved_block_code*/) //nand_update_bbt(mtd, (loff_t)block << (this->bbt_erase_shift - 1)); nand_update_bbt(mtd, (loff_t)(block*mtd->pageSizek) << (10+this->pagecnt_shift-1)); continue; } update = 0; if (td->options & NAND_BBT_LASTBLOCK) { block = ((i + 1) * nrblocks) - td->maxblocks; if (td->pattern[0] == 'r' && td->pattern[1] == 'e') { block = ((i + 1) * nrblocks) - td->maxblocks - 4; //printk("mark_bbt_region set blocks =%d ~ %d\n", block, block+3); } } else block = i * nrblocks; block <<= 1; for (j = 0; j < td->maxblocks; j++) { oldval = this->bbt[(block >> 3)]; newval = oldval | (0x2 << (block & 0x06)); this->bbt[(block >> 3)] = newval; if (oldval != newval) update = 1; block += 2; } /* * If we want reserved blocks to be recorded to flash, and some * new ones have been marked, then we need to update the stored * bbts. This should only happen once. */ if (update && 0/*td->reserved_block_code*/) //nand_update_bbt(mtd, (loff_t)(block - 2) << (this->bbt_erase_shift - 1)); nand_update_bbt(mtd, (loff_t)((block - 2)*mtd->pageSizek) << (10+this->pagecnt_shift-1)); } } /** * mark_bbt_regions_multi - [GENERIC] mark the bad block table regions * @mtd: MTD device structure * @td: bad block table descriptor * * The bad block table regions are marked as "bad" to prevent accidental * erasures / writes. The regions are identified by the mark 0x02. */ static void mark_bbt_region_multi(struct mtd_info *mtd, struct nand_bbt_descr *td) { struct nand_chip *this = mtd->priv; int i, j, chips, block, nrblocks, update; uint8_t oldval, newval; /* Do we have a bbt per chip? */ if (td->options & NAND_BBT_PERCHIP) { chips = this->numchips; //nrblocks = (int)(this->chipsize >> this->bbt_erase_shift); nrblocks = ((int)(this->chipsize >> (10+this->pagecnt_shift)))/mtd->pageSizek; } else { chips = 1; //nrblocks = (int)(mtd->size >> this->bbt_erase_shift); nrblocks = ((int)(mtd->size >> (10+this->pagecnt_shift)))/mtd->pageSizek; } for (i = 0; i < chips; i++) { if ((td->options & NAND_BBT_ABSPAGE) || !(td->options & NAND_BBT_WRITE)) { if (td->pages[i] == -1) continue; //block = td->pages[i] >> (this->bbt_erase_shift - this->page_shift); block = td->pages[i] >> (this->pagecnt_shift); block <<= 2; oldval = this->bbt[(block >> 3)]; newval = oldval | (0xA << (block & 0x04)); this->bbt[(block >> 3)] = newval; if ((oldval != newval) && 0/*td->reserved_block_code*/) //nand_update_bbt(mtd, (loff_t)block << (this->bbt_erase_shift - 2)); nand_update_bbt(mtd, (loff_t)(block*mtd->pageSizek) << (10+this->pagecnt_shift-2)); continue; } update = 0; if (td->options & NAND_BBT_LASTBLOCK) { block = ((i + 1) * nrblocks) - td->maxblocks; if (td->pattern[0] == 'r' && td->pattern[1] == 'e') { block = ((i + 1) * nrblocks) - td->maxblocks - 4; //printk("mark_bbt_region set blocks =%d ~ %d\n", block, block+3); } } else block = i * nrblocks; block <<= 2; for (j = 0; j < td->maxblocks; j++) { oldval = this->bbt[(block >> 3)]; newval = oldval | (0xA << (block & 0x04)); this->bbt[(block >> 3)] = newval; if (oldval != newval) update = 1; block += 4; } /* * If we want reserved blocks to be recorded to flash, and some * new ones have been marked, then we need to update the stored * bbts. This should only happen once. */ if (update && 0/*td->reserved_block_code*/) //nand_update_bbt(mtd, (loff_t)(block - 4) << (this->bbt_erase_shift - 2)); nand_update_bbt(mtd, (loff_t)((block - 4)*mtd->pageSizek) << (10+this->pagecnt_shift-2)); }//print_nand_buffer(this->bbt, 2048); } /** * verify_bbt_descr - verify the bad block description * @mtd: MTD device structure * @bd: the table to verify * * This functions performs a few sanity checks on the bad block description * table. */ static void verify_bbt_descr(struct mtd_info *mtd, struct nand_bbt_descr *bd) { struct nand_chip *this = mtd->priv; u32 pattern_len; u32 bits; u32 table_size; if (!bd) return; pattern_len = bd->len; bits = bd->options & NAND_BBT_NRBITS_MSK; if (this->realplanenum) bits<<=1; BUG_ON((this->bbt_options & NAND_BBT_NO_OOB) && !(this->bbt_options & NAND_BBT_USE_FLASH)); BUG_ON(!bits); if (bd->options & NAND_BBT_VERSION) pattern_len++; if (bd->options & NAND_BBT_NO_OOB) { BUG_ON(!(this->bbt_options & NAND_BBT_USE_FLASH)); BUG_ON(!(this->bbt_options & NAND_BBT_NO_OOB)); BUG_ON(bd->offs); if (bd->options & NAND_BBT_VERSION) BUG_ON(bd->veroffs != bd->len); BUG_ON(bd->options & NAND_BBT_SAVECONTENT); } if (bd->options & NAND_BBT_PERCHIP) //table_size = this->chipsize >> this->bbt_erase_shift; table_size = ((int)(this->chipsize >> (10+this->pagecnt_shift)))/mtd->pageSizek; else //table_size = mtd->size >> this->bbt_erase_shift; table_size = ((int)(mtd->size >> (10+this->pagecnt_shift)))/mtd->pageSizek; table_size >>= 3; table_size *= bits; if (bd->options & NAND_BBT_NO_OOB) table_size += pattern_len; //BUG_ON(table_size > (1 << this->bbt_erase_shift)); BUG_ON(table_size > mtd->erasesize); } /** * nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s) * @mtd: MTD device structure * @bd: descriptor for the good/bad block search pattern * * The function checks, if a bad block table(s) is/are already available. If * not it scans the device for manufacturer marked good / bad blocks and writes * the bad block table(s) to the selected place. * * The bad block table memory is allocated here. It must be freed by calling * the nand_free_bbt function. */ extern struct nand_read_retry_param chip_table[]; int nand_scan_bbt(struct mtd_info *mtd, struct nand_bbt_descr *bd) { struct nand_chip *this = mtd->priv; int len, res = 0, i, need_save = 0; uint8_t *buf; struct nand_bbt_descr *td = this->bbt_td; struct nand_bbt_descr *md = this->bbt_md; this->bbt_plane[1] = this->bbt_plane[0] = 0; //len = mtd->size >> (this->bbt_erase_shift + 2); len = ((int)(mtd->size >> (10+this->pagecnt_shift+2)))/mtd->pageSizek; if (this->realplanenum) len <<=1; /* * Allocate memory (2bit per block) and clear the memory bad block * table. */ this->bbt = kzalloc(len, GFP_KERNEL); if (!this->bbt) return -ENOMEM; /* Clear the memory bad block table */ memset (this->bbt, 0x00, len); /* * If no primary table decriptor is given, scan the device to build a * memory based bad block table. */ if (!td) { if ((res = nand_memory_bbt(mtd, bd))) { pr_err("nand_bbt: can't scan flash and build the RAM-based BBT\n"); kfree(this->bbt); this->bbt = NULL; } return res; } verify_bbt_descr(mtd, td); verify_bbt_descr(mtd, md); /* Allocate a temporary buffer for one eraseblock incl. oob */ //len = (1 << this->bbt_erase_shift); len = mtd->erasesize; //len += (len >> this->page_shift) * mtd->oobsize; len += (mtd->pagecnt) * mtd->oobsize; buf = vmalloc(len); if (!buf) { kfree(this->bbt); this->bbt = NULL; return -ENOMEM; } if (mtd->dwRetry /*&& (mtd->id>>24) == NAND_MFR_HYNIX*/) { for (i = 0; /*i < READ_RETRY_CHIP_NUM*/; i++) { if (chip_table[i].nand_id == 0 && chip_table[i].nand_id_5th == 0) break; if (mtd->id == chip_table[i].nand_id && mtd->id2 == chip_table[i].nand_id_5th) { #ifdef RETRY_DEBUG printk("get retry table id 0x%x, 0x%x\n", chip_table[i].nand_id, chip_table[i].nand_id_5th); #endif this->cur_chip = &chip_table[i]; break; } } if(this->cur_chip != NULL && chip_table[i].nand_id != 0) { #ifdef RETRY_DEBUG printk("search_hynix_retry_table\n"); #endif search_hynix_retry_table(mtd, buf, this->retry_pattern); #ifdef RETRY_DEBUG printk("check_retry_table\n"); #endif need_save = check_retry_table(mtd, buf, this->retry_pattern); } } /* Is the bbt at a given page? */ if (td->options & NAND_BBT_ABSPAGE) { res = read_abs_bbts(mtd, buf, td, md); } else { /* Search the bad block table using a pattern in oob */ res = search_read_bbts(mtd, buf, td, md); } if (res) res = check_create(mtd, buf, bd); if (mtd->dwRetry && this->cur_chip != NULL && need_save) { //printk("dannier write_hynix_table\n"); /* Write the retry block table to the device ? */ res = write_hynix_table(mtd, buf, this->retry_pattern, 0); //testing //this->cur_chip->cur_try_times = 5; } /* Prevent the rdtry block regions from erasing / writing */ if (this->realplanenum) mark_bbt_region_multi(mtd, this->retry_pattern); else mark_bbt_region(mtd, this->retry_pattern); /* Prevent the bbt regions from erasing / writing */ if (this->realplanenum) mark_bbt_region_multi(mtd, td); else mark_bbt_region(mtd, td); if (md) { if (this->realplanenum) mark_bbt_region_multi(mtd, md); else mark_bbt_region(mtd, md); } vfree(buf); return res; } /** * nand_update_bbt - [NAND Interface] update bad block table(s) * @mtd: MTD device structure * @offs: the offset of the newly marked block * * The function updates the bad block table(s). */ int nand_update_bbt(struct mtd_info *mtd, loff_t offs) { struct nand_chip *this = mtd->priv; int len, res = 0; int chip, chipsel; uint8_t *buf; struct nand_bbt_descr *td = this->bbt_td; struct nand_bbt_descr *md = this->bbt_md; if (!this->bbt || !td) return -EINVAL; /* Allocate a temporary buffer for one eraseblock incl. oob */ //len = (1 << this->bbt_erase_shift); len = mtd->erasesize; //len += (len >> this->page_shift) * mtd->oobsize; len += (mtd->pagecnt) * mtd->oobsize; //buf = kmalloc(len, GFP_KERNEL); buf = vmalloc(len); if (!buf) { printk(KERN_ERR "nand_update_bbt: Out of memory\n"); return -ENOMEM; } /* Do we have a bbt per chip? */ if (td->options & NAND_BBT_PERCHIP) { //chip = (int)(offs >> this->chip_shift); chip = ((int)(offs >> (10+this->pagecnt_shift)))/(mtd->pageSizek*mtd->blkcnt); chipsel = chip; } else { chip = 0; chipsel = -1; } td->version[chip]++; if (md) md->version[chip]++; /* Write the bad block table to the device? */ if (td->options & NAND_BBT_WRITE) { if (this->realplanenum) res = write_bbt_multi(mtd, buf, td, md, chipsel); else res = write_bbt(mtd, buf, td, md, chipsel); if (res < 0) goto out; } /* Write the mirror bad block table to the device? */ if (md && (md->options & NAND_BBT_WRITE)) { if (this->realplanenum) res = write_bbt_multi(mtd, buf, md, td, chipsel); else res = write_bbt(mtd, buf, md, td, chipsel); } out: vfree(buf); //printk("nand_update_bbt free mem res=%d\n", res); return res; } /* * Define some generic bad / good block scan pattern which are used * while scanning a device for factory marked good / bad blocks. */ static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; static uint8_t scan_agand_pattern[] = { 0x1C, 0x71, 0xC7, 0x1C, 0x71, 0xC7 }; static struct nand_bbt_descr agand_flashbased = { .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES, .offs = 0x20, .len = 6, .pattern = scan_agand_pattern }; /* Generic flash bbt descriptors */ static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' }; static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' }; static struct nand_bbt_descr bbt_main_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, .offs = 8, .len = 4, .veroffs = 12, .maxblocks = 4, .pattern = bbt_pattern }; static struct nand_bbt_descr bbt_mirror_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, .offs = 8, .len = 4, .veroffs = 12, .maxblocks = 4, .pattern = mirror_pattern }; static struct nand_bbt_descr bbt_main_no_bbt_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP | NAND_BBT_NO_OOB, .len = 4, .veroffs = 4, .maxblocks = 4, .pattern = bbt_pattern }; static struct nand_bbt_descr bbt_mirror_no_bbt_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP | NAND_BBT_NO_OOB, .len = 4, .veroffs = 4, .maxblocks = 4, .pattern = mirror_pattern }; #define BADBLOCK_SCAN_MASK (~NAND_BBT_NO_OOB) /** * nand_create_badblock_pattern - [INTERN] Creates a BBT descriptor structure * @this: NAND chip to create descriptor for * * This function allocates and initializes a nand_bbt_descr for BBM detection * based on the properties of @this. The new descriptor is stored in * this->badblock_pattern. Thus, this->badblock_pattern should be NULL when * passed to this function. */ static int nand_create_badblock_pattern(struct nand_chip *this) { struct nand_bbt_descr *bd; //struct mtd_info *mtd = this->priv; if (this->badblock_pattern) { pr_warn("Bad block pattern already allocated; not replacing\n"); return -EINVAL; } bd = kzalloc(sizeof(*bd), GFP_KERNEL); if (!bd) return -ENOMEM; bd->options = this->bbt_options & BADBLOCK_SCAN_MASK; bd->offs = this->badblockpos; bd->len = (this->options & NAND_BUSWIDTH_16) ? 2 : 1; bd->pattern = scan_ff_pattern; bd->options |= NAND_BBT_DYNAMICSTRUCT; //if ((0xFF&(mtd->id>>24)) == 0x45 || (0xFF&(mtd->id>>24)) == NAND_MFR_HYNIX) bd->options |= NAND_BBT_SCAN2NDPAGE;//All type of flash need to scan 2 page per block. bd->page_offset[0] = this->page_offset[0]; bd->page_offset[1] = this->page_offset[1]; this->badblock_pattern = bd; return 0; } /** * nand_default_bbt - [NAND Interface] Select a default bad block table for the device * @mtd: MTD device structure * * This function selects the default bad block table support for the device and * calls the nand_scan_bbt function. */ int nand_default_bbt(struct mtd_info *mtd) { struct nand_chip *this = mtd->priv; /* * Default for AG-AND. We must use a flash based bad block table as the * devices have factory marked _good_ blocks. Erasing those blocks * leads to loss of the good / bad information, so we _must_ store this * information in a good / bad table during startup. */ if (this->options & NAND_IS_AND) { /* Use the default pattern descriptors */ if (!this->bbt_td) { this->bbt_td = &bbt_main_descr; this->bbt_md = &bbt_mirror_descr; } this->bbt_options |= NAND_BBT_USE_FLASH; return nand_scan_bbt(mtd, &agand_flashbased); } /* Is a flash based bad block table requested? */ if (this->bbt_options & NAND_BBT_USE_FLASH) { /* Use the default pattern descriptors */ if (!this->bbt_td) { if (this->bbt_options & NAND_BBT_NO_OOB) { this->bbt_td = &bbt_main_no_bbt_descr; this->bbt_md = &bbt_mirror_no_bbt_descr; } else { this->bbt_td = &bbt_main_descr; this->bbt_md = &bbt_mirror_descr; } } } else { this->bbt_td = NULL; this->bbt_md = NULL; } if (this->bbt_td->reserved_block_code && this->realplanenum) { this->bbt_td->reserved_block_code = 0x5; this->bbt_md->reserved_block_code = 0x5; } if (!this->badblock_pattern) nand_create_badblock_pattern(this); return nand_scan_bbt(mtd, this->badblock_pattern); } /** * nand_isbad_bbt - [NAND Interface] Check if a block is bad * @mtd: MTD device structure * @offs: offset in the device * @allowbbt: allow access to bad block table region */ int nand_isbad_bbt(struct mtd_info *mtd, loff_t offs, int allowbbt, int allow_readfail) { struct nand_chip *this = mtd->priv; int block; uint8_t res; /* Get block number * 2 */ //block = (int)(offs >> (this->bbt_erase_shift - 1)); block = ((int)(offs >> (10+this->pagecnt_shift - 1)))/mtd->pageSizek; res = (this->bbt[block >> 3] >> (block & 0x06)) & 0x03; pr_debug("nand_isbad_bbt(): bbt info for offs 0x%08llx: " "(block %d) 0x%02x\n", offs, block >> 1, res); switch ((int)res) { case 0x00: return 0; case 0x01: #if 0 if (allowbbt != 0xFF && this->state == FL_READY) { struct erase_info einfo; int res1 = 0; memset(&einfo, 0, sizeof(einfo)); einfo.mtd = mtd; einfo.addr = offs; //einfo.len = (1 << this->bbt_erase_shift); einfo.len = mtd->erasesize; printk("einfo.addr is 0x%llx\n",einfo.addr); printk("einfo.len is 0x%llx\n", einfo.len); res1 = nand_erase_nand(mtd, &einfo, 0xFF); if (res1 < 0) printk("nand_erase_nand addr 0x%llx result is %d\n", einfo.addr, res1); } #endif return 1; case 0x02: if ((block>>1) < (mtd->blkcnt - 8)) { if (allow_readfail) return 0; else return 1; } else return allowbbt ? 0 : 1; } return 1; } /** * nand_isbad_bbt_multi - [NAND Interface] Check if a block is bad * @mtd: MTD device structure * @offs: offset in the device * @allowbbt: allow access to bad block table region */ int nand_isbad_bbt_multi(struct mtd_info *mtd, loff_t offs, int allowbbt, int allow_readfail) { struct nand_chip *this = mtd->priv; int block; uint8_t res; /* Get block number * 4 */ //block = (int)(offs >> (this->bbt_erase_shift - 2)); block = ((int)(offs >> (10+this->pagecnt_shift - 2)))/mtd->pageSizek; res = (this->bbt[block >> 3] >> (block & 0x4)) & 0x0F; pr_debug("nand_isbad_bbt(): bbt info for offs 0x%08llx: " "(block %d) 0x%02x\n", offs, block >> 2, res); /*printk("nand_isbad_bbt(): bbt info for offs 0x%08llx: " "(block %d) 0x%02x\n", offs, block >> 2, res);*/ switch ((int)res) { case 0x00: return 0; case 0x01: case 0x04: case 0x05://1 or both 2 blocks worn out! #if 0 if (allowbbt != 0xFF && this->state == FL_READY) { struct erase_info einfo; int res1 = 0; memset(&einfo, 0, sizeof(einfo)); einfo.mtd = mtd; einfo.addr = offs; //einfo.len = (1 << this->bbt_erase_shift); einfo.len = mtd->erasesize; printk("einfo.addr is 0x%llx\n",einfo.addr); printk("einfo.len is 0x%llx\n", einfo.len); res1 = nand_erase_nand(mtd, &einfo, 0xFF); if (res1 < 0) printk("nand_erase_nand addr 0x%llx result is %d\n", einfo.addr, res1); } #endif return 1; case 0x0A://usually two block are reserved if ((block>>2) < (mtd->blkcnt - 8)) { if (allow_readfail) return 0; else return 1; } else return allowbbt ? 0 : 1; } return 1; } EXPORT_SYMBOL(nand_scan_bbt); EXPORT_SYMBOL(nand_default_bbt);