/*
 * MMCIF eMMC driver.
 *
 * Copyright (C) 2010 Renesas Solutions Corp.
 * Yusuke Goda <yusuke.goda.sx@renesas.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License.
 *
 *
 * TODO
 *  1. DMA
 *  2. Power management
 *  3. Handle MMC errors better
 *
 */

/*
 * The MMCIF driver is now processing MMC requests asynchronously, according
 * to the Linux MMC API requirement.
 *
 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
 * data, and optional stop. To achieve asynchronous processing each of these
 * stages is split into two halves: a top and a bottom half. The top half
 * initialises the hardware, installs a timeout handler to handle completion
 * timeouts, and returns. In case of the command stage this immediately returns
 * control to the caller, leaving all further processing to run asynchronously.
 * All further request processing is performed by the bottom halves.
 *
 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
 * thread, a DMA completion callback, if DMA is used, a timeout work, and
 * request- and stage-specific handler methods.
 *
 * Each bottom half run begins with either a hardware interrupt, a DMA callback
 * invocation, or a timeout work run. In case of an error or a successful
 * processing completion, the MMC core is informed and the request processing is
 * finished. In case processing has to continue, i.e., if data has to be read
 * from or written to the card, or if a stop command has to be sent, the next
 * top half is called, which performs the necessary hardware handling and
 * reschedules the timeout work. This returns the driver state machine into the
 * bottom half waiting state.
 */

#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/mmc/card.h>
#include <linux/mmc/core.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/sh_mmcif.h>
#include <linux/pagemap.h>
#include <linux/platform_device.h>
#include <linux/pm_qos.h>
#include <linux/pm_runtime.h>
#include <linux/spinlock.h>
#include <linux/module.h>

#define DRIVER_NAME	"sh_mmcif"
#define DRIVER_VERSION	"2010-04-28"

/* CE_CMD_SET */
#define CMD_MASK		0x3f000000
#define CMD_SET_RTYP_NO		((0 << 23) | (0 << 22))
#define CMD_SET_RTYP_6B		((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
#define CMD_SET_RTYP_17B	((1 << 23) | (0 << 22)) /* R2 */
#define CMD_SET_RBSY		(1 << 21) /* R1b */
#define CMD_SET_CCSEN		(1 << 20)
#define CMD_SET_WDAT		(1 << 19) /* 1: on data, 0: no data */
#define CMD_SET_DWEN		(1 << 18) /* 1: write, 0: read */
#define CMD_SET_CMLTE		(1 << 17) /* 1: multi block trans, 0: single */
#define CMD_SET_CMD12EN		(1 << 16) /* 1: CMD12 auto issue */
#define CMD_SET_RIDXC_INDEX	((0 << 15) | (0 << 14)) /* index check */
#define CMD_SET_RIDXC_BITS	((0 << 15) | (1 << 14)) /* check bits check */
#define CMD_SET_RIDXC_NO	((1 << 15) | (0 << 14)) /* no check */
#define CMD_SET_CRC7C		((0 << 13) | (0 << 12)) /* CRC7 check*/
#define CMD_SET_CRC7C_BITS	((0 << 13) | (1 << 12)) /* check bits check*/
#define CMD_SET_CRC7C_INTERNAL	((1 << 13) | (0 << 12)) /* internal CRC7 check*/
#define CMD_SET_CRC16C		(1 << 10) /* 0: CRC16 check*/
#define CMD_SET_CRCSTE		(1 << 8) /* 1: not receive CRC status */
#define CMD_SET_TBIT		(1 << 7) /* 1: tran mission bit "Low" */
#define CMD_SET_OPDM		(1 << 6) /* 1: open/drain */
#define CMD_SET_CCSH		(1 << 5)
#define CMD_SET_DATW_1		((0 << 1) | (0 << 0)) /* 1bit */
#define CMD_SET_DATW_4		((0 << 1) | (1 << 0)) /* 4bit */
#define CMD_SET_DATW_8		((1 << 1) | (0 << 0)) /* 8bit */

/* CE_CMD_CTRL */
#define CMD_CTRL_BREAK		(1 << 0)

/* CE_BLOCK_SET */
#define BLOCK_SIZE_MASK		0x0000ffff

/* CE_INT */
#define INT_CCSDE		(1 << 29)
#define INT_CMD12DRE		(1 << 26)
#define INT_CMD12RBE		(1 << 25)
#define INT_CMD12CRE		(1 << 24)
#define INT_DTRANE		(1 << 23)
#define INT_BUFRE		(1 << 22)
#define INT_BUFWEN		(1 << 21)
#define INT_BUFREN		(1 << 20)
#define INT_CCSRCV		(1 << 19)
#define INT_RBSYE		(1 << 17)
#define INT_CRSPE		(1 << 16)
#define INT_CMDVIO		(1 << 15)
#define INT_BUFVIO		(1 << 14)
#define INT_WDATERR		(1 << 11)
#define INT_RDATERR		(1 << 10)
#define INT_RIDXERR		(1 << 9)
#define INT_RSPERR		(1 << 8)
#define INT_CCSTO		(1 << 5)
#define INT_CRCSTO		(1 << 4)
#define INT_WDATTO		(1 << 3)
#define INT_RDATTO		(1 << 2)
#define INT_RBSYTO		(1 << 1)
#define INT_RSPTO		(1 << 0)
#define INT_ERR_STS		(INT_CMDVIO | INT_BUFVIO | INT_WDATERR |  \
				 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
				 INT_CCSTO | INT_CRCSTO | INT_WDATTO |	  \
				 INT_RDATTO | INT_RBSYTO | INT_RSPTO)

/* CE_INT_MASK */
#define MASK_ALL		0x00000000
#define MASK_MCCSDE		(1 << 29)
#define MASK_MCMD12DRE		(1 << 26)
#define MASK_MCMD12RBE		(1 << 25)
#define MASK_MCMD12CRE		(1 << 24)
#define MASK_MDTRANE		(1 << 23)
#define MASK_MBUFRE		(1 << 22)
#define MASK_MBUFWEN		(1 << 21)
#define MASK_MBUFREN		(1 << 20)
#define MASK_MCCSRCV		(1 << 19)
#define MASK_MRBSYE		(1 << 17)
#define MASK_MCRSPE		(1 << 16)
#define MASK_MCMDVIO		(1 << 15)
#define MASK_MBUFVIO		(1 << 14)
#define MASK_MWDATERR		(1 << 11)
#define MASK_MRDATERR		(1 << 10)
#define MASK_MRIDXERR		(1 << 9)
#define MASK_MRSPERR		(1 << 8)
#define MASK_MCCSTO		(1 << 5)
#define MASK_MCRCSTO		(1 << 4)
#define MASK_MWDATTO		(1 << 3)
#define MASK_MRDATTO		(1 << 2)
#define MASK_MRBSYTO		(1 << 1)
#define MASK_MRSPTO		(1 << 0)

#define MASK_START_CMD		(MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
				 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
				 MASK_MCCSTO | MASK_MCRCSTO | MASK_MWDATTO | \
				 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)

/* CE_HOST_STS1 */
#define STS1_CMDSEQ		(1 << 31)

/* CE_HOST_STS2 */
#define STS2_CRCSTE		(1 << 31)
#define STS2_CRC16E		(1 << 30)
#define STS2_AC12CRCE		(1 << 29)
#define STS2_RSPCRC7E		(1 << 28)
#define STS2_CRCSTEBE		(1 << 27)
#define STS2_RDATEBE		(1 << 26)
#define STS2_AC12REBE		(1 << 25)
#define STS2_RSPEBE		(1 << 24)
#define STS2_AC12IDXE		(1 << 23)
#define STS2_RSPIDXE		(1 << 22)
#define STS2_CCSTO		(1 << 15)
#define STS2_RDATTO		(1 << 14)
#define STS2_DATBSYTO		(1 << 13)
#define STS2_CRCSTTO		(1 << 12)
#define STS2_AC12BSYTO		(1 << 11)
#define STS2_RSPBSYTO		(1 << 10)
#define STS2_AC12RSPTO		(1 << 9)
#define STS2_RSPTO		(1 << 8)
#define STS2_CRC_ERR		(STS2_CRCSTE | STS2_CRC16E |		\
				 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
#define STS2_TIMEOUT_ERR	(STS2_CCSTO | STS2_RDATTO |		\
				 STS2_DATBSYTO | STS2_CRCSTTO |		\
				 STS2_AC12BSYTO | STS2_RSPBSYTO |	\
				 STS2_AC12RSPTO | STS2_RSPTO)

#define CLKDEV_EMMC_DATA	52000000 /* 52MHz */
#define CLKDEV_MMC_DATA		20000000 /* 20MHz */
#define CLKDEV_INIT		400000   /* 400 KHz */

enum mmcif_state {
	STATE_IDLE,
	STATE_REQUEST,
	STATE_IOS,
};

enum mmcif_wait_for {
	MMCIF_WAIT_FOR_REQUEST,
	MMCIF_WAIT_FOR_CMD,
	MMCIF_WAIT_FOR_MREAD,
	MMCIF_WAIT_FOR_MWRITE,
	MMCIF_WAIT_FOR_READ,
	MMCIF_WAIT_FOR_WRITE,
	MMCIF_WAIT_FOR_READ_END,
	MMCIF_WAIT_FOR_WRITE_END,
	MMCIF_WAIT_FOR_STOP,
};

struct sh_mmcif_host {
	struct mmc_host *mmc;
	struct mmc_request *mrq;
	struct platform_device *pd;
	struct sh_dmae_slave dma_slave_tx;
	struct sh_dmae_slave dma_slave_rx;
	struct clk *hclk;
	unsigned int clk;
	int bus_width;
	bool sd_error;
	bool dying;
	long timeout;
	void __iomem *addr;
	u32 *pio_ptr;
	spinlock_t lock;		/* protect sh_mmcif_host::state */
	enum mmcif_state state;
	enum mmcif_wait_for wait_for;
	struct delayed_work timeout_work;
	size_t blocksize;
	int sg_idx;
	int sg_blkidx;
	bool power;
	bool card_present;

	/* DMA support */
	struct dma_chan		*chan_rx;
	struct dma_chan		*chan_tx;
	struct completion	dma_complete;
	bool			dma_active;
};

static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
					unsigned int reg, u32 val)
{
	writel(val | readl(host->addr + reg), host->addr + reg);
}

static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
					unsigned int reg, u32 val)
{
	writel(~val & readl(host->addr + reg), host->addr + reg);
}

static void mmcif_dma_complete(void *arg)
{
	struct sh_mmcif_host *host = arg;
	struct mmc_data *data = host->mrq->data;

	dev_dbg(&host->pd->dev, "Command completed\n");

	if (WARN(!data, "%s: NULL data in DMA completion!\n",
		 dev_name(&host->pd->dev)))
		return;

	if (data->flags & MMC_DATA_READ)
		dma_unmap_sg(host->chan_rx->device->dev,
			     data->sg, data->sg_len,
			     DMA_FROM_DEVICE);
	else
		dma_unmap_sg(host->chan_tx->device->dev,
			     data->sg, data->sg_len,
			     DMA_TO_DEVICE);

	complete(&host->dma_complete);
}

static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
{
	struct mmc_data *data = host->mrq->data;
	struct scatterlist *sg = data->sg;
	struct dma_async_tx_descriptor *desc = NULL;
	struct dma_chan *chan = host->chan_rx;
	dma_cookie_t cookie = -EINVAL;
	int ret;

	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
			 DMA_FROM_DEVICE);
	if (ret > 0) {
		host->dma_active = true;
		desc = dmaengine_prep_slave_sg(chan, sg, ret,
			DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	}

	if (desc) {
		desc->callback = mmcif_dma_complete;
		desc->callback_param = host;
		cookie = dmaengine_submit(desc);
		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
		dma_async_issue_pending(chan);
	}
	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
		__func__, data->sg_len, ret, cookie);

	if (!desc) {
		/* DMA failed, fall back to PIO */
		if (ret >= 0)
			ret = -EIO;
		host->chan_rx = NULL;
		host->dma_active = false;
		dma_release_channel(chan);
		/* Free the Tx channel too */
		chan = host->chan_tx;
		if (chan) {
			host->chan_tx = NULL;
			dma_release_channel(chan);
		}
		dev_warn(&host->pd->dev,
			 "DMA failed: %d, falling back to PIO\n", ret);
		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
	}

	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
		desc, cookie, data->sg_len);
}

static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
{
	struct mmc_data *data = host->mrq->data;
	struct scatterlist *sg = data->sg;
	struct dma_async_tx_descriptor *desc = NULL;
	struct dma_chan *chan = host->chan_tx;
	dma_cookie_t cookie = -EINVAL;
	int ret;

	ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
			 DMA_TO_DEVICE);
	if (ret > 0) {
		host->dma_active = true;
		desc = dmaengine_prep_slave_sg(chan, sg, ret,
			DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	}

	if (desc) {
		desc->callback = mmcif_dma_complete;
		desc->callback_param = host;
		cookie = dmaengine_submit(desc);
		sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
		dma_async_issue_pending(chan);
	}
	dev_dbg(&host->pd->dev, "%s(): mapped %d -> %d, cookie %d\n",
		__func__, data->sg_len, ret, cookie);

	if (!desc) {
		/* DMA failed, fall back to PIO */
		if (ret >= 0)
			ret = -EIO;
		host->chan_tx = NULL;
		host->dma_active = false;
		dma_release_channel(chan);
		/* Free the Rx channel too */
		chan = host->chan_rx;
		if (chan) {
			host->chan_rx = NULL;
			dma_release_channel(chan);
		}
		dev_warn(&host->pd->dev,
			 "DMA failed: %d, falling back to PIO\n", ret);
		sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
	}

	dev_dbg(&host->pd->dev, "%s(): desc %p, cookie %d\n", __func__,
		desc, cookie);
}

static bool sh_mmcif_filter(struct dma_chan *chan, void *arg)
{
	dev_dbg(chan->device->dev, "%s: slave data %p\n", __func__, arg);
	chan->private = arg;
	return true;
}

static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
				 struct sh_mmcif_plat_data *pdata)
{
	struct sh_dmae_slave *tx, *rx;
	host->dma_active = false;

	/* We can only either use DMA for both Tx and Rx or not use it at all */
	if (pdata->dma) {
		dev_warn(&host->pd->dev,
			 "Update your platform to use embedded DMA slave IDs\n");
		tx = &pdata->dma->chan_priv_tx;
		rx = &pdata->dma->chan_priv_rx;
	} else {
		tx = &host->dma_slave_tx;
		tx->slave_id = pdata->slave_id_tx;
		rx = &host->dma_slave_rx;
		rx->slave_id = pdata->slave_id_rx;
	}
	if (tx->slave_id > 0 && rx->slave_id > 0) {
		dma_cap_mask_t mask;

		dma_cap_zero(mask);
		dma_cap_set(DMA_SLAVE, mask);

		host->chan_tx = dma_request_channel(mask, sh_mmcif_filter, tx);
		dev_dbg(&host->pd->dev, "%s: TX: got channel %p\n", __func__,
			host->chan_tx);

		if (!host->chan_tx)
			return;

		host->chan_rx = dma_request_channel(mask, sh_mmcif_filter, rx);
		dev_dbg(&host->pd->dev, "%s: RX: got channel %p\n", __func__,
			host->chan_rx);

		if (!host->chan_rx) {
			dma_release_channel(host->chan_tx);
			host->chan_tx = NULL;
			return;
		}

		init_completion(&host->dma_complete);
	}
}

static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
{
	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
	/* Descriptors are freed automatically */
	if (host->chan_tx) {
		struct dma_chan *chan = host->chan_tx;
		host->chan_tx = NULL;
		dma_release_channel(chan);
	}
	if (host->chan_rx) {
		struct dma_chan *chan = host->chan_rx;
		host->chan_rx = NULL;
		dma_release_channel(chan);
	}

	host->dma_active = false;
}

static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
{
	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;

	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
	sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);

	if (!clk)
		return;
	if (p->sup_pclk && clk == host->clk)
		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_SUP_PCLK);
	else
		sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR &
				((fls(DIV_ROUND_UP(host->clk,
						   clk) - 1) - 1) << 16));

	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
}

static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
{
	u32 tmp;

	tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);

	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
	sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
	sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
		SRSPTO_256 | SRBSYTO_29 | SRWDTO_29 | SCCSTO_29);
	/* byte swap on */
	sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
}

static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
{
	u32 state1, state2;
	int ret, timeout;

	host->sd_error = false;

	state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
	state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
	dev_dbg(&host->pd->dev, "ERR HOST_STS1 = %08x\n", state1);
	dev_dbg(&host->pd->dev, "ERR HOST_STS2 = %08x\n", state2);

	if (state1 & STS1_CMDSEQ) {
		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
		sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
		for (timeout = 10000000; timeout; timeout--) {
			if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
			      & STS1_CMDSEQ))
				break;
			mdelay(1);
		}
		if (!timeout) {
			dev_err(&host->pd->dev,
				"Forced end of command sequence timeout err\n");
			return -EIO;
		}
		sh_mmcif_sync_reset(host);
		dev_dbg(&host->pd->dev, "Forced end of command sequence\n");
		return -EIO;
	}

	if (state2 & STS2_CRC_ERR) {
		dev_dbg(&host->pd->dev, ": CRC error\n");
		ret = -EIO;
	} else if (state2 & STS2_TIMEOUT_ERR) {
		dev_dbg(&host->pd->dev, ": Timeout\n");
		ret = -ETIMEDOUT;
	} else {
		dev_dbg(&host->pd->dev, ": End/Index error\n");
		ret = -EIO;
	}
	return ret;
}

static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
{
	struct mmc_data *data = host->mrq->data;

	host->sg_blkidx += host->blocksize;

	/* data->sg->length must be a multiple of host->blocksize? */
	BUG_ON(host->sg_blkidx > data->sg->length);

	if (host->sg_blkidx == data->sg->length) {
		host->sg_blkidx = 0;
		if (++host->sg_idx < data->sg_len)
			host->pio_ptr = sg_virt(++data->sg);
	} else {
		host->pio_ptr = p;
	}

	if (host->sg_idx == data->sg_len)
		return false;

	return true;
}

static void sh_mmcif_single_read(struct sh_mmcif_host *host,
				 struct mmc_request *mrq)
{
	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
			   BLOCK_SIZE_MASK) + 3;

	host->wait_for = MMCIF_WAIT_FOR_READ;
	schedule_delayed_work(&host->timeout_work, host->timeout);

	/* buf read enable */
	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
}

static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
{
	struct mmc_data *data = host->mrq->data;
	u32 *p = sg_virt(data->sg);
	int i;

	if (host->sd_error) {
		data->error = sh_mmcif_error_manage(host);
		return false;
	}

	for (i = 0; i < host->blocksize / 4; i++)
		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);

	/* buffer read end */
	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
	host->wait_for = MMCIF_WAIT_FOR_READ_END;

	return true;
}

static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
				struct mmc_request *mrq)
{
	struct mmc_data *data = mrq->data;

	if (!data->sg_len || !data->sg->length)
		return;

	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
		BLOCK_SIZE_MASK;

	host->wait_for = MMCIF_WAIT_FOR_MREAD;
	host->sg_idx = 0;
	host->sg_blkidx = 0;
	host->pio_ptr = sg_virt(data->sg);
	schedule_delayed_work(&host->timeout_work, host->timeout);
	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
}

static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
{
	struct mmc_data *data = host->mrq->data;
	u32 *p = host->pio_ptr;
	int i;

	if (host->sd_error) {
		data->error = sh_mmcif_error_manage(host);
		return false;
	}

	BUG_ON(!data->sg->length);

	for (i = 0; i < host->blocksize / 4; i++)
		*p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);

	if (!sh_mmcif_next_block(host, p))
		return false;

	schedule_delayed_work(&host->timeout_work, host->timeout);
	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);

	return true;
}

static void sh_mmcif_single_write(struct sh_mmcif_host *host,
					struct mmc_request *mrq)
{
	host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
			   BLOCK_SIZE_MASK) + 3;

	host->wait_for = MMCIF_WAIT_FOR_WRITE;
	schedule_delayed_work(&host->timeout_work, host->timeout);

	/* buf write enable */
	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
}

static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
{
	struct mmc_data *data = host->mrq->data;
	u32 *p = sg_virt(data->sg);
	int i;

	if (host->sd_error) {
		data->error = sh_mmcif_error_manage(host);
		return false;
	}

	for (i = 0; i < host->blocksize / 4; i++)
		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);

	/* buffer write end */
	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
	host->wait_for = MMCIF_WAIT_FOR_WRITE_END;

	return true;
}

static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
				struct mmc_request *mrq)
{
	struct mmc_data *data = mrq->data;

	if (!data->sg_len || !data->sg->length)
		return;

	host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
		BLOCK_SIZE_MASK;

	host->wait_for = MMCIF_WAIT_FOR_MWRITE;
	host->sg_idx = 0;
	host->sg_blkidx = 0;
	host->pio_ptr = sg_virt(data->sg);
	schedule_delayed_work(&host->timeout_work, host->timeout);
	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
}

static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
{
	struct mmc_data *data = host->mrq->data;
	u32 *p = host->pio_ptr;
	int i;

	if (host->sd_error) {
		data->error = sh_mmcif_error_manage(host);
		return false;
	}

	BUG_ON(!data->sg->length);

	for (i = 0; i < host->blocksize / 4; i++)
		sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);

	if (!sh_mmcif_next_block(host, p))
		return false;

	schedule_delayed_work(&host->timeout_work, host->timeout);
	sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);

	return true;
}

static void sh_mmcif_get_response(struct sh_mmcif_host *host,
						struct mmc_command *cmd)
{
	if (cmd->flags & MMC_RSP_136) {
		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
		cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
		cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
		cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
	} else
		cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
}

static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
						struct mmc_command *cmd)
{
	cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
}

static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
			    struct mmc_request *mrq)
{
	struct mmc_data *data = mrq->data;
	struct mmc_command *cmd = mrq->cmd;
	u32 opc = cmd->opcode;
	u32 tmp = 0;

	/* Response Type check */
	switch (mmc_resp_type(cmd)) {
	case MMC_RSP_NONE:
		tmp |= CMD_SET_RTYP_NO;
		break;
	case MMC_RSP_R1:
	case MMC_RSP_R1B:
	case MMC_RSP_R3:
		tmp |= CMD_SET_RTYP_6B;
		break;
	case MMC_RSP_R2:
		tmp |= CMD_SET_RTYP_17B;
		break;
	default:
		dev_err(&host->pd->dev, "Unsupported response type.\n");
		break;
	}
	switch (opc) {
	/* RBSY */
	case MMC_SWITCH:
	case MMC_STOP_TRANSMISSION:
	case MMC_SET_WRITE_PROT:
	case MMC_CLR_WRITE_PROT:
	case MMC_ERASE:
		tmp |= CMD_SET_RBSY;
		break;
	}
	/* WDAT / DATW */
	if (data) {
		tmp |= CMD_SET_WDAT;
		switch (host->bus_width) {
		case MMC_BUS_WIDTH_1:
			tmp |= CMD_SET_DATW_1;
			break;
		case MMC_BUS_WIDTH_4:
			tmp |= CMD_SET_DATW_4;
			break;
		case MMC_BUS_WIDTH_8:
			tmp |= CMD_SET_DATW_8;
			break;
		default:
			dev_err(&host->pd->dev, "Unsupported bus width.\n");
			break;
		}
	}
	/* DWEN */
	if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
		tmp |= CMD_SET_DWEN;
	/* CMLTE/CMD12EN */
	if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
		tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
		sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
				data->blocks << 16);
	}
	/* RIDXC[1:0] check bits */
	if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
	    opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
		tmp |= CMD_SET_RIDXC_BITS;
	/* RCRC7C[1:0] check bits */
	if (opc == MMC_SEND_OP_COND)
		tmp |= CMD_SET_CRC7C_BITS;
	/* RCRC7C[1:0] internal CRC7 */
	if (opc == MMC_ALL_SEND_CID ||
		opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
		tmp |= CMD_SET_CRC7C_INTERNAL;

	return (opc << 24) | tmp;
}

static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
			       struct mmc_request *mrq, u32 opc)
{
	switch (opc) {
	case MMC_READ_MULTIPLE_BLOCK:
		sh_mmcif_multi_read(host, mrq);
		return 0;
	case MMC_WRITE_MULTIPLE_BLOCK:
		sh_mmcif_multi_write(host, mrq);
		return 0;
	case MMC_WRITE_BLOCK:
		sh_mmcif_single_write(host, mrq);
		return 0;
	case MMC_READ_SINGLE_BLOCK:
	case MMC_SEND_EXT_CSD:
		sh_mmcif_single_read(host, mrq);
		return 0;
	default:
		dev_err(&host->pd->dev, "UNSUPPORTED CMD = d'%08d\n", opc);
		return -EINVAL;
	}
}

static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
			       struct mmc_request *mrq)
{
	struct mmc_command *cmd = mrq->cmd;
	u32 opc = cmd->opcode;
	u32 mask;

	switch (opc) {
	/* response busy check */
	case MMC_SWITCH:
	case MMC_STOP_TRANSMISSION:
	case MMC_SET_WRITE_PROT:
	case MMC_CLR_WRITE_PROT:
	case MMC_ERASE:
		mask = MASK_START_CMD | MASK_MRBSYE;
		break;
	default:
		mask = MASK_START_CMD | MASK_MCRSPE;
		break;
	}

	if (mrq->data) {
		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
		sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
				mrq->data->blksz);
	}
	opc = sh_mmcif_set_cmd(host, mrq);

	sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
	/* set arg */
	sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
	/* set cmd */
	sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);

	host->wait_for = MMCIF_WAIT_FOR_CMD;
	schedule_delayed_work(&host->timeout_work, host->timeout);
}

static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
			      struct mmc_request *mrq)
{
	switch (mrq->cmd->opcode) {
	case MMC_READ_MULTIPLE_BLOCK:
		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
		break;
	case MMC_WRITE_MULTIPLE_BLOCK:
		sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
		break;
	default:
		dev_err(&host->pd->dev, "unsupported stop cmd\n");
		mrq->stop->error = sh_mmcif_error_manage(host);
		return;
	}

	host->wait_for = MMCIF_WAIT_FOR_STOP;
	schedule_delayed_work(&host->timeout_work, host->timeout);
}

static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
	struct sh_mmcif_host *host = mmc_priv(mmc);
	unsigned long flags;

	spin_lock_irqsave(&host->lock, flags);
	if (host->state != STATE_IDLE) {
		spin_unlock_irqrestore(&host->lock, flags);
		mrq->cmd->error = -EAGAIN;
		mmc_request_done(mmc, mrq);
		return;
	}

	host->state = STATE_REQUEST;
	spin_unlock_irqrestore(&host->lock, flags);

	switch (mrq->cmd->opcode) {
	/* MMCIF does not support SD/SDIO command */
	case SD_IO_SEND_OP_COND:
	case MMC_APP_CMD:
		host->state = STATE_IDLE;
		mrq->cmd->error = -ETIMEDOUT;
		mmc_request_done(mmc, mrq);
		return;
	case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
		if (!mrq->data) {
			/* send_if_cond cmd (not support) */
			host->state = STATE_IDLE;
			mrq->cmd->error = -ETIMEDOUT;
			mmc_request_done(mmc, mrq);
			return;
		}
		break;
	default:
		break;
	}

	host->mrq = mrq;

	sh_mmcif_start_cmd(host, mrq);
}

static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
	struct sh_mmcif_host *host = mmc_priv(mmc);
	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;
	unsigned long flags;

	spin_lock_irqsave(&host->lock, flags);
	if (host->state != STATE_IDLE) {
		spin_unlock_irqrestore(&host->lock, flags);
		return;
	}

	host->state = STATE_IOS;
	spin_unlock_irqrestore(&host->lock, flags);

	if (ios->power_mode == MMC_POWER_UP) {
		if (!host->card_present) {
			/* See if we also get DMA */
			sh_mmcif_request_dma(host, host->pd->dev.platform_data);
			host->card_present = true;
		}
	} else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
		/* clock stop */
		sh_mmcif_clock_control(host, 0);
		if (ios->power_mode == MMC_POWER_OFF) {
			if (host->card_present) {
				sh_mmcif_release_dma(host);
				host->card_present = false;
			}
		}
		if (host->power) {
			pm_runtime_put(&host->pd->dev);
			host->power = false;
			if (p->down_pwr && ios->power_mode == MMC_POWER_OFF)
				p->down_pwr(host->pd);
		}
		host->state = STATE_IDLE;
		return;
	}

	if (ios->clock) {
		if (!host->power) {
			if (p->set_pwr)
				p->set_pwr(host->pd, ios->power_mode);
			pm_runtime_get_sync(&host->pd->dev);
			host->power = true;
			sh_mmcif_sync_reset(host);
		}
		sh_mmcif_clock_control(host, ios->clock);
	}

	host->bus_width = ios->bus_width;
	host->state = STATE_IDLE;
}

static int sh_mmcif_get_cd(struct mmc_host *mmc)
{
	struct sh_mmcif_host *host = mmc_priv(mmc);
	struct sh_mmcif_plat_data *p = host->pd->dev.platform_data;

	if (!p->get_cd)
		return -ENOSYS;
	else
		return p->get_cd(host->pd);
}

static struct mmc_host_ops sh_mmcif_ops = {
	.request	= sh_mmcif_request,
	.set_ios	= sh_mmcif_set_ios,
	.get_cd		= sh_mmcif_get_cd,
};

static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
{
	struct mmc_command *cmd = host->mrq->cmd;
	struct mmc_data *data = host->mrq->data;
	long time;

	if (host->sd_error) {
		switch (cmd->opcode) {
		case MMC_ALL_SEND_CID:
		case MMC_SELECT_CARD:
		case MMC_APP_CMD:
			cmd->error = -ETIMEDOUT;
			host->sd_error = false;
			break;
		default:
			cmd->error = sh_mmcif_error_manage(host);
			dev_dbg(&host->pd->dev, "Cmd(d'%d) error %d\n",
				cmd->opcode, cmd->error);
			break;
		}
		return false;
	}
	if (!(cmd->flags & MMC_RSP_PRESENT)) {
		cmd->error = 0;
		return false;
	}

	sh_mmcif_get_response(host, cmd);

	if (!data)
		return false;

	if (data->flags & MMC_DATA_READ) {
		if (host->chan_rx)
			sh_mmcif_start_dma_rx(host);
	} else {
		if (host->chan_tx)
			sh_mmcif_start_dma_tx(host);
	}

	if (!host->dma_active) {
		data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
		if (!data->error)
			return true;
		return false;
	}

	/* Running in the IRQ thread, can sleep */
	time = wait_for_completion_interruptible_timeout(&host->dma_complete,
							 host->timeout);
	if (host->sd_error) {
		dev_err(host->mmc->parent,
			"Error IRQ while waiting for DMA completion!\n");
		/* Woken up by an error IRQ: abort DMA */
		if (data->flags & MMC_DATA_READ)
			dmaengine_terminate_all(host->chan_rx);
		else
			dmaengine_terminate_all(host->chan_tx);
		data->error = sh_mmcif_error_manage(host);
	} else if (!time) {
		data->error = -ETIMEDOUT;
	} else if (time < 0) {
		data->error = time;
	}
	sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
			BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
	host->dma_active = false;

	if (data->error)
		data->bytes_xfered = 0;

	return false;
}

static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
{
	struct sh_mmcif_host *host = dev_id;
	struct mmc_request *mrq = host->mrq;
	struct mmc_data *data = mrq->data;

	cancel_delayed_work_sync(&host->timeout_work);

	/*
	 * All handlers return true, if processing continues, and false, if the
	 * request has to be completed - successfully or not
	 */
	switch (host->wait_for) {
	case MMCIF_WAIT_FOR_REQUEST:
		/* We're too late, the timeout has already kicked in */
		return IRQ_HANDLED;
	case MMCIF_WAIT_FOR_CMD:
		if (sh_mmcif_end_cmd(host))
			/* Wait for data */
			return IRQ_HANDLED;
		break;
	case MMCIF_WAIT_FOR_MREAD:
		if (sh_mmcif_mread_block(host))
			/* Wait for more data */
			return IRQ_HANDLED;
		break;
	case MMCIF_WAIT_FOR_READ:
		if (sh_mmcif_read_block(host))
			/* Wait for data end */
			return IRQ_HANDLED;
		break;
	case MMCIF_WAIT_FOR_MWRITE:
		if (sh_mmcif_mwrite_block(host))
			/* Wait data to write */
			return IRQ_HANDLED;
		break;
	case MMCIF_WAIT_FOR_WRITE:
		if (sh_mmcif_write_block(host))
			/* Wait for data end */
			return IRQ_HANDLED;
		break;
	case MMCIF_WAIT_FOR_STOP:
		if (host->sd_error) {
			mrq->stop->error = sh_mmcif_error_manage(host);
			break;
		}
		sh_mmcif_get_cmd12response(host, mrq->stop);
		mrq->stop->error = 0;
		break;
	case MMCIF_WAIT_FOR_READ_END:
	case MMCIF_WAIT_FOR_WRITE_END:
		if (host->sd_error)
			data->error = sh_mmcif_error_manage(host);
		break;
	default:
		BUG();
	}

	if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
		if (!mrq->cmd->error && data && !data->error)
			data->bytes_xfered =
				data->blocks * data->blksz;

		if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
			sh_mmcif_stop_cmd(host, mrq);
			if (!mrq->stop->error)
				return IRQ_HANDLED;
		}
	}

	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
	host->state = STATE_IDLE;
	host->mrq = NULL;
	mmc_request_done(host->mmc, mrq);

	return IRQ_HANDLED;
}

static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
{
	struct sh_mmcif_host *host = dev_id;
	u32 state;
	int err = 0;

	state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);

	if (state & INT_ERR_STS) {
		/* error interrupts - process first */
		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
		err = 1;
	} else if (state & INT_RBSYE) {
		sh_mmcif_writel(host->addr, MMCIF_CE_INT,
				~(INT_RBSYE | INT_CRSPE));
		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MRBSYE);
	} else if (state & INT_CRSPE) {
		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_CRSPE);
		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCRSPE);
	} else if (state & INT_BUFREN) {
		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFREN);
		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
	} else if (state & INT_BUFWEN) {
		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFWEN);
		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
	} else if (state & INT_CMD12DRE) {
		sh_mmcif_writel(host->addr, MMCIF_CE_INT,
			~(INT_CMD12DRE | INT_CMD12RBE |
			  INT_CMD12CRE | INT_BUFRE));
		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
	} else if (state & INT_BUFRE) {
		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_BUFRE);
		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
	} else if (state & INT_DTRANE) {
		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~INT_DTRANE);
		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
	} else if (state & INT_CMD12RBE) {
		sh_mmcif_writel(host->addr, MMCIF_CE_INT,
				~(INT_CMD12RBE | INT_CMD12CRE));
		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
	} else {
		dev_dbg(&host->pd->dev, "Unsupported interrupt: 0x%x\n", state);
		sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~state);
		sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state);
		err = 1;
	}
	if (err) {
		host->sd_error = true;
		dev_dbg(&host->pd->dev, "int err state = %08x\n", state);
	}
	if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
		if (!host->dma_active)
			return IRQ_WAKE_THREAD;
		else if (host->sd_error)
			mmcif_dma_complete(host);
	} else {
		dev_dbg(&host->pd->dev, "Unexpected IRQ 0x%x\n", state);
	}

	return IRQ_HANDLED;
}

static void mmcif_timeout_work(struct work_struct *work)
{
	struct delayed_work *d = container_of(work, struct delayed_work, work);
	struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
	struct mmc_request *mrq = host->mrq;

	if (host->dying)
		/* Don't run after mmc_remove_host() */
		return;

	/*
	 * Handle races with cancel_delayed_work(), unless
	 * cancel_delayed_work_sync() is used
	 */
	switch (host->wait_for) {
	case MMCIF_WAIT_FOR_CMD:
		mrq->cmd->error = sh_mmcif_error_manage(host);
		break;
	case MMCIF_WAIT_FOR_STOP:
		mrq->stop->error = sh_mmcif_error_manage(host);
		break;
	case MMCIF_WAIT_FOR_MREAD:
	case MMCIF_WAIT_FOR_MWRITE:
	case MMCIF_WAIT_FOR_READ:
	case MMCIF_WAIT_FOR_WRITE:
	case MMCIF_WAIT_FOR_READ_END:
	case MMCIF_WAIT_FOR_WRITE_END:
		mrq->data->error = sh_mmcif_error_manage(host);
		break;
	default:
		BUG();
	}

	host->state = STATE_IDLE;
	host->wait_for = MMCIF_WAIT_FOR_REQUEST;
	host->mrq = NULL;
	mmc_request_done(host->mmc, mrq);
}

static int __devinit sh_mmcif_probe(struct platform_device *pdev)
{
	int ret = 0, irq[2];
	struct mmc_host *mmc;
	struct sh_mmcif_host *host;
	struct sh_mmcif_plat_data *pd;
	struct resource *res;
	void __iomem *reg;
	char clk_name[8];

	irq[0] = platform_get_irq(pdev, 0);
	irq[1] = platform_get_irq(pdev, 1);
	if (irq[0] < 0 || irq[1] < 0) {
		dev_err(&pdev->dev, "Get irq error\n");
		return -ENXIO;
	}
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res) {
		dev_err(&pdev->dev, "platform_get_resource error.\n");
		return -ENXIO;
	}
	reg = ioremap(res->start, resource_size(res));
	if (!reg) {
		dev_err(&pdev->dev, "ioremap error.\n");
		return -ENOMEM;
	}
	pd = pdev->dev.platform_data;
	if (!pd) {
		dev_err(&pdev->dev, "sh_mmcif plat data error.\n");
		ret = -ENXIO;
		goto clean_up;
	}
	mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), &pdev->dev);
	if (!mmc) {
		ret = -ENOMEM;
		goto clean_up;
	}
	host		= mmc_priv(mmc);
	host->mmc	= mmc;
	host->addr	= reg;
	host->timeout	= 1000;

	snprintf(clk_name, sizeof(clk_name), "mmc%d", pdev->id);
	host->hclk = clk_get(&pdev->dev, clk_name);
	if (IS_ERR(host->hclk)) {
		dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
		ret = PTR_ERR(host->hclk);
		goto clean_up1;
	}
	clk_enable(host->hclk);
	host->clk = clk_get_rate(host->hclk);
	host->pd = pdev;

	spin_lock_init(&host->lock);

	mmc->ops = &sh_mmcif_ops;
	mmc->f_max = host->clk / 2;
	mmc->f_min = host->clk / 512;
	if (pd->ocr)
		mmc->ocr_avail = pd->ocr;
	mmc->caps = MMC_CAP_MMC_HIGHSPEED;
	if (pd->caps)
		mmc->caps |= pd->caps;
	mmc->max_segs = 32;
	mmc->max_blk_size = 512;
	mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
	mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
	mmc->max_seg_size = mmc->max_req_size;

	sh_mmcif_sync_reset(host);
	platform_set_drvdata(pdev, host);

	pm_runtime_enable(&pdev->dev);
	host->power = false;

	ret = pm_runtime_resume(&pdev->dev);
	if (ret < 0)
		goto clean_up2;

	INIT_DELAYED_WORK(&host->timeout_work, mmcif_timeout_work);

	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);

	ret = request_threaded_irq(irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:error", host);
	if (ret) {
		dev_err(&pdev->dev, "request_irq error (sh_mmc:error)\n");
		goto clean_up3;
	}
	ret = request_threaded_irq(irq[1], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:int", host);
	if (ret) {
		dev_err(&pdev->dev, "request_irq error (sh_mmc:int)\n");
		goto clean_up4;
	}

	ret = mmc_add_host(mmc);
	if (ret < 0)
		goto clean_up5;

	dev_pm_qos_expose_latency_limit(&pdev->dev, 100);

	dev_info(&pdev->dev, "driver version %s\n", DRIVER_VERSION);
	dev_dbg(&pdev->dev, "chip ver H'%04x\n",
		sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0x0000ffff);
	return ret;

clean_up5:
	free_irq(irq[1], host);
clean_up4:
	free_irq(irq[0], host);
clean_up3:
	pm_runtime_suspend(&pdev->dev);
clean_up2:
	pm_runtime_disable(&pdev->dev);
	clk_disable(host->hclk);
clean_up1:
	mmc_free_host(mmc);
clean_up:
	if (reg)
		iounmap(reg);
	return ret;
}

static int __devexit sh_mmcif_remove(struct platform_device *pdev)
{
	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
	int irq[2];

	host->dying = true;
	pm_runtime_get_sync(&pdev->dev);

	dev_pm_qos_hide_latency_limit(&pdev->dev);

	mmc_remove_host(host->mmc);
	sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);

	/*
	 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
	 * mmc_remove_host() call above. But swapping order doesn't help either
	 * (a query on the linux-mmc mailing list didn't bring any replies).
	 */
	cancel_delayed_work_sync(&host->timeout_work);

	if (host->addr)
		iounmap(host->addr);

	irq[0] = platform_get_irq(pdev, 0);
	irq[1] = platform_get_irq(pdev, 1);

	free_irq(irq[0], host);
	free_irq(irq[1], host);

	platform_set_drvdata(pdev, NULL);

	clk_disable(host->hclk);
	mmc_free_host(host->mmc);
	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);

	return 0;
}

#ifdef CONFIG_PM
static int sh_mmcif_suspend(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct sh_mmcif_host *host = platform_get_drvdata(pdev);
	int ret = mmc_suspend_host(host->mmc);

	if (!ret) {
		sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
		clk_disable(host->hclk);
	}

	return ret;
}

static int sh_mmcif_resume(struct device *dev)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct sh_mmcif_host *host = platform_get_drvdata(pdev);

	clk_enable(host->hclk);

	return mmc_resume_host(host->mmc);
}
#else
#define sh_mmcif_suspend	NULL
#define sh_mmcif_resume		NULL
#endif	/* CONFIG_PM */

static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
	.suspend = sh_mmcif_suspend,
	.resume = sh_mmcif_resume,
};

static struct platform_driver sh_mmcif_driver = {
	.probe		= sh_mmcif_probe,
	.remove		= sh_mmcif_remove,
	.driver		= {
		.name	= DRIVER_NAME,
		.pm	= &sh_mmcif_dev_pm_ops,
	},
};

module_platform_driver(sh_mmcif_driver);

MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRIVER_NAME);
MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");