/* * linux/drivers/mmc/core/mmc_ops.h * * Copyright 2006-2007 Pierre Ossman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. */ #include #include #include #include #include #include #include #include "core.h" #include "mmc_ops.h" static int _mmc_select_card(struct mmc_host *host, struct mmc_card *card) { int err; struct mmc_command cmd = {0}; BUG_ON(!host); cmd.opcode = MMC_SELECT_CARD; if (card) { cmd.arg = card->rca << 16; cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; } else { cmd.arg = 0; cmd.flags = MMC_RSP_NONE | MMC_CMD_AC; } err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); if (err) return err; return 0; } int mmc_select_card(struct mmc_card *card) { BUG_ON(!card); return _mmc_select_card(card->host, card); } int mmc_deselect_cards(struct mmc_host *host) { return _mmc_select_card(host, NULL); } int mmc_card_sleepawake(struct mmc_host *host, int sleep) { struct mmc_command cmd = {0}; struct mmc_card *card = host->card; int err; if (sleep) mmc_deselect_cards(host); cmd.opcode = MMC_SLEEP_AWAKE; cmd.arg = card->rca << 16; if (sleep) cmd.arg |= 1 << 15; cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; err = mmc_wait_for_cmd(host, &cmd, 0); if (err) return err; /* * If the host does not wait while the card signals busy, then we will * will have to wait the sleep/awake timeout. Note, we cannot use the * SEND_STATUS command to poll the status because that command (and most * others) is invalid while the card sleeps. */ if (!(host->caps & MMC_CAP_WAIT_WHILE_BUSY)) mmc_delay(DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000)); if (!sleep) err = mmc_select_card(card); return err; } int mmc_go_idle(struct mmc_host *host) { int err; struct mmc_command cmd = {0}; /* * Non-SPI hosts need to prevent chipselect going active during * GO_IDLE; that would put chips into SPI mode. Remind them of * that in case of hardware that won't pull up DAT3/nCS otherwise. * * SPI hosts ignore ios.chip_select; it's managed according to * rules that must accommodate non-MMC slaves which this layer * won't even know about. */ if (!mmc_host_is_spi(host)) { mmc_set_chip_select(host, MMC_CS_HIGH); mmc_delay(1); } cmd.opcode = MMC_GO_IDLE_STATE; cmd.arg = 0; //cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_NONE | MMC_CMD_BC; cmd.flags = MMC_RSP_NONE | MMC_CMD_BC; err = mmc_wait_for_cmd(host, &cmd, 0); mmc_delay(1); if (!mmc_host_is_spi(host)) { mmc_set_chip_select(host, MMC_CS_DONTCARE); mmc_delay(1); } host->use_spi_crc = 0; return err; } int mmc_send_op_cond(struct mmc_host *host, u32 ocr, u32 *rocr) { struct mmc_command cmd = {0}; int i, err = 0; BUG_ON(!host); cmd.opcode = MMC_SEND_OP_COND; cmd.arg = mmc_host_is_spi(host) ? 0 : ocr; //cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R3 | MMC_CMD_BCR; cmd.flags = MMC_RSP_R3 | MMC_CMD_BCR; for (i = 100; i; i--) { err = mmc_wait_for_cmd(host, &cmd, 0); if (err) break; /* if we're just probing, do a single pass */ if (ocr == 0) break; /* otherwise wait until reset completes */ if (mmc_host_is_spi(host)) { if (!(cmd.resp[0] & R1_SPI_IDLE)) break; } else { if (cmd.resp[0] & MMC_CARD_BUSY) break; } err = -ETIMEDOUT; mmc_delay(10); } if (rocr && !mmc_host_is_spi(host)) *rocr = cmd.resp[0]; return err; } int mmc_all_send_cid(struct mmc_host *host, u32 *cid) { int err; struct mmc_command cmd = {0}; BUG_ON(!host); BUG_ON(!cid); cmd.opcode = MMC_ALL_SEND_CID; cmd.arg = 0; cmd.flags = MMC_RSP_R2 | MMC_CMD_BCR; err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); if (err) return err; memcpy(cid, cmd.resp, sizeof(u32) * 4); return 0; } int mmc_set_relative_addr(struct mmc_card *card) { int err; struct mmc_command cmd = {0}; BUG_ON(!card); BUG_ON(!card->host); cmd.opcode = MMC_SET_RELATIVE_ADDR; cmd.arg = card->rca << 16; cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; err = mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES); if (err) return err; return 0; } static int mmc_send_cxd_native(struct mmc_host *host, u32 arg, u32 *cxd, int opcode) { int err; struct mmc_command cmd = {0}; BUG_ON(!host); BUG_ON(!cxd); cmd.opcode = opcode; cmd.arg = arg; cmd.flags = MMC_RSP_R2 | MMC_CMD_AC; err = mmc_wait_for_cmd(host, &cmd, MMC_CMD_RETRIES); if (err) return err; memcpy(cxd, cmd.resp, sizeof(u32) * 4); return 0; } static int mmc_send_cxd_data(struct mmc_card *card, struct mmc_host *host, u32 opcode, void *buf, unsigned len) { struct mmc_request mrq = {NULL}; struct mmc_command cmd = {0}; struct mmc_data data = {0}; struct scatterlist sg; void *data_buf; /* dma onto stack is unsafe/nonportable, but callers to this * routine normally provide temporary on-stack buffers ... */ data_buf = kmalloc(len, GFP_KERNEL); if (data_buf == NULL) return -ENOMEM; mrq.cmd = &cmd; mrq.data = &data; cmd.opcode = opcode; cmd.arg = 0; /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we * rely on callers to never use this with "native" calls for reading * CSD or CID. Native versions of those commands use the R2 type, * not R1 plus a data block. */ //cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; data.blksz = len; data.blocks = 1; data.flags = MMC_DATA_READ; data.sg = &sg; data.sg_len = 1; sg_init_one(&sg, data_buf, len); if (opcode == MMC_SEND_CSD || opcode == MMC_SEND_CID) { /* * The spec states that CSR and CID accesses have a timeout * of 64 clock cycles. */ data.timeout_ns = 0; data.timeout_clks = 64; } else mmc_set_data_timeout(&data, card); mmc_wait_for_req(host, &mrq); memcpy(buf, data_buf, len); kfree(data_buf); if (cmd.error) return cmd.error; if (data.error) return data.error; return 0; } int mmc_send_csd(struct mmc_card *card, u32 *csd) { int ret, i; if (!mmc_host_is_spi(card->host)) return mmc_send_cxd_native(card->host, card->rca << 16, csd, MMC_SEND_CSD); ret = mmc_send_cxd_data(card, card->host, MMC_SEND_CSD, csd, 16); if (ret) return ret; for (i = 0;i < 4;i++) csd[i] = be32_to_cpu(csd[i]); return 0; } int mmc_send_cid(struct mmc_host *host, u32 *cid) { int ret, i; if (!mmc_host_is_spi(host)) { if (!host->card) return -EINVAL; return mmc_send_cxd_native(host, host->card->rca << 16, cid, MMC_SEND_CID); } ret = mmc_send_cxd_data(NULL, host, MMC_SEND_CID, cid, 16); if (ret) return ret; for (i = 0;i < 4;i++) cid[i] = be32_to_cpu(cid[i]); return 0; } int mmc_send_ext_csd(struct mmc_card *card, u8 *ext_csd) { return mmc_send_cxd_data(card, card->host, MMC_SEND_EXT_CSD, ext_csd, 512); } int mmc_spi_read_ocr(struct mmc_host *host, int highcap, u32 *ocrp) { struct mmc_command cmd = {0}; int err; cmd.opcode = MMC_SPI_READ_OCR; cmd.arg = highcap ? (1 << 30) : 0; cmd.flags = MMC_RSP_SPI_R3; err = mmc_wait_for_cmd(host, &cmd, 0); *ocrp = cmd.resp[1]; return err; } int mmc_spi_set_crc(struct mmc_host *host, int use_crc) { struct mmc_command cmd = {0}; int err; cmd.opcode = MMC_SPI_CRC_ON_OFF; cmd.flags = MMC_RSP_SPI_R1; cmd.arg = use_crc; err = mmc_wait_for_cmd(host, &cmd, 0); if (!err) host->use_spi_crc = use_crc; return err; } /** * mmc_switch - modify EXT_CSD register * @card: the MMC card associated with the data transfer * @set: cmd set values * @index: EXT_CSD register index * @value: value to program into EXT_CSD register * @timeout_ms: timeout (ms) for operation performed by register write, * timeout of zero implies maximum possible timeout * * Modifies the EXT_CSD register for selected card. */ int mmc_switch(struct mmc_card *card, u8 set, u8 index, u8 value, unsigned int timeout_ms) { int err; struct mmc_command cmd = {0}; u32 status; BUG_ON(!card); BUG_ON(!card->host); cmd.opcode = MMC_SWITCH; cmd.arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | (index << 16) | (value << 8) | set; //cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; cmd.cmd_timeout_ms = timeout_ms; err = mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES); if (err) return err; /* Must check status to be sure of no errors */ do { err = mmc_send_status(card, &status); if (err) return err; if (card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) break; if (mmc_host_is_spi(card->host)) break; } while (R1_CURRENT_STATE(status) == R1_STATE_PRG); if (mmc_host_is_spi(card->host)) { if (status & R1_SPI_ILLEGAL_COMMAND) return -EBADMSG; } else { if (status & 0xFDFFA000) pr_warning("%s: unexpected status %#x after " "switch", mmc_hostname(card->host), status); if (status & R1_SWITCH_ERROR) return -EBADMSG; } return 0; } EXPORT_SYMBOL_GPL(mmc_switch); int mmc_send_status(struct mmc_card *card, u32 *status) { int err; struct mmc_command cmd = {0}; BUG_ON(!card); BUG_ON(!card->host); cmd.opcode = MMC_SEND_STATUS; if (!mmc_host_is_spi(card->host)) cmd.arg = card->rca << 16; //cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC; cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; err = mmc_wait_for_cmd(card->host, &cmd, MMC_CMD_RETRIES); if (err) return err; /* NOTE: callers are required to understand the difference * between "native" and SPI format status words! */ if (status) *status = cmd.resp[0]; return 0; } static int mmc_send_bus_test(struct mmc_card *card, struct mmc_host *host, u8 opcode, u8 len) { struct mmc_request mrq = {NULL}; struct mmc_command cmd = {0}; struct mmc_data data = {0}; struct scatterlist sg; u8 *data_buf; u8 *test_buf; int i, err; static u8 testdata_8bit[8] = { 0x55, 0xaa, 0, 0, 0, 0, 0, 0 }; static u8 testdata_4bit[4] = { 0x5a, 0, 0, 0 }; /* dma onto stack is unsafe/nonportable, but callers to this * routine normally provide temporary on-stack buffers ... */ data_buf = kmalloc(len, GFP_KERNEL); if (!data_buf) return -ENOMEM; if (len == 8) test_buf = testdata_8bit; else if (len == 4) test_buf = testdata_4bit; else { pr_err("%s: Invalid bus_width %d\n", mmc_hostname(host), len); kfree(data_buf); return -EINVAL; } if (opcode == MMC_BUS_TEST_W) memcpy(data_buf, test_buf, len); mrq.cmd = &cmd; mrq.data = &data; cmd.opcode = opcode; cmd.arg = 0; /* NOTE HACK: the MMC_RSP_SPI_R1 is always correct here, but we * rely on callers to never use this with "native" calls for reading * CSD or CID. Native versions of those commands use the R2 type, * not R1 plus a data block. */ //cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC; data.blksz = len; data.blocks = 1; if (opcode == MMC_BUS_TEST_R) data.flags = MMC_DATA_READ; else data.flags = MMC_DATA_WRITE; data.sg = &sg; data.sg_len = 1; sg_init_one(&sg, data_buf, len); mmc_wait_for_req(host, &mrq); err = 0; if (opcode == MMC_BUS_TEST_R) { for (i = 0; i < len / 4; i++) if ((test_buf[i] ^ data_buf[i]) != 0xff) { err = -EIO; break; } } kfree(data_buf); if (cmd.error) return cmd.error; if (data.error) return data.error; return err; } int mmc_bus_test(struct mmc_card *card, u8 bus_width) { int err, width; if (bus_width == MMC_BUS_WIDTH_8) width = 8; else if (bus_width == MMC_BUS_WIDTH_4) width = 4; else if (bus_width == MMC_BUS_WIDTH_1) return 0; /* no need for test */ else return -EINVAL; /* * Ignore errors from BUS_TEST_W. BUS_TEST_R will fail if there * is a problem. This improves chances that the test will work. */ mmc_send_bus_test(card, card->host, MMC_BUS_TEST_W, width); err = mmc_send_bus_test(card, card->host, MMC_BUS_TEST_R, width); return err; } int mmc_send_hpi_cmd(struct mmc_card *card, u32 *status) { struct mmc_command cmd = {0}; unsigned int opcode; int err; if (!card->ext_csd.hpi) { pr_warning("%s: Card didn't support HPI command\n", mmc_hostname(card->host)); return -EINVAL; } opcode = card->ext_csd.hpi_cmd; if (opcode == MMC_STOP_TRANSMISSION) cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; else if (opcode == MMC_SEND_STATUS) cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; cmd.opcode = opcode; cmd.arg = card->rca << 16 | 1; cmd.cmd_timeout_ms = card->ext_csd.out_of_int_time; err = mmc_wait_for_cmd(card->host, &cmd, 0); if (err) { pr_warn("%s: error %d interrupting operation. " "HPI command response %#x\n", mmc_hostname(card->host), err, cmd.resp[0]); return err; } if (status) *status = cmd.resp[0]; return 0; }