/* * linux/drivers/mmc/core/core.c * * Copyright (C) 2003-2004 Russell King, All Rights Reserved. * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved. * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved. * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "core.h" #include "bus.h" #include "host.h" #include "sdio_bus.h" #include "mmc_ops.h" #include "sd_ops.h" #include "sdio_ops.h" #include "../host/mmc_atsmb.h" #include static struct workqueue_struct *workqueue; #if 0 #define DBG(x...) printk(KERN_ALERT x) #else #define DBG(x...) do { } while (0) #endif /* * Enabling software CRCs on the data blocks can be a significant (30%) * performance cost, and for other reasons may not always be desired. * So we allow it it to be disabled. */ bool use_spi_crc = 1; module_param(use_spi_crc, bool, 0); /* * We normally treat cards as removed during suspend if they are not * known to be on a non-removable bus, to avoid the risk of writing * back data to a different card after resume. Allow this to be * overridden if necessary. */ #ifdef CONFIG_MMC_UNSAFE_RESUME bool mmc_assume_removable; #else bool mmc_assume_removable = 1; #endif EXPORT_SYMBOL(mmc_assume_removable); module_param_named(removable, mmc_assume_removable, bool, 0644); MODULE_PARM_DESC( removable, "MMC/SD cards are removable and may be removed during suspend"); /* * Internal function. Schedule delayed work in the MMC work queue. */ static int mmc_schedule_delayed_work(struct delayed_work *work, unsigned long delay) { int ret; DBG("[%s] s\n",__func__); ret = queue_delayed_work(workqueue, work, delay); DBG("[%s] e\n",__func__); return ret; /*return queue_delayed_work(workqueue, work, delay);*/ } /* * Internal function. Flush all scheduled work from the MMC work queue. */ static void mmc_flush_scheduled_work(void) { DBG("[%s] s\n",__func__); flush_workqueue(workqueue); DBG("[%s] e\n",__func__); } #ifdef CONFIG_FAIL_MMC_REQUEST /* * Internal function. Inject random data errors. * If mmc_data is NULL no errors are injected. */ static void mmc_should_fail_request(struct mmc_host *host, struct mmc_request *mrq) { struct mmc_command *cmd = mrq->cmd; struct mmc_data *data = mrq->data; static const int data_errors[] = { -ETIMEDOUT, -EILSEQ, -EIO, }; if (!data) return; if (cmd->error || data->error || !should_fail(&host->fail_mmc_request, data->blksz * data->blocks)) return; data->error = data_errors[random32() % ARRAY_SIZE(data_errors)]; data->bytes_xfered = (random32() % (data->bytes_xfered >> 9)) << 9; } #else /* CONFIG_FAIL_MMC_REQUEST */ static inline void mmc_should_fail_request(struct mmc_host *host, struct mmc_request *mrq) { } #endif /* CONFIG_FAIL_MMC_REQUEST */ /** * mmc_request_done - finish processing an MMC request * @host: MMC host which completed request * @mrq: MMC request which request * * MMC drivers should call this function when they have completed * their processing of a request. */ void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq) { struct mmc_command *cmd = mrq->cmd; int err = cmd->error; DBG("[%s] s\n",__func__); if (err && cmd->retries && mmc_host_is_spi(host)) { if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND) cmd->retries = 0; } if (err && cmd->retries && !mmc_card_removed(host->card)) { /* * Request starter must handle retries - see * mmc_wait_for_req_done(). */ if (mrq->done) mrq->done(mrq); } else { mmc_should_fail_request(host, mrq); led_trigger_event(host->led, LED_OFF); pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n", mmc_hostname(host), cmd->opcode, err, cmd->resp[0], cmd->resp[1], cmd->resp[2], cmd->resp[3]); if (mrq->data) { pr_debug("%s: %d bytes transferred: %d\n", mmc_hostname(host), mrq->data->bytes_xfered, mrq->data->error); } if (mrq->stop) { pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n", mmc_hostname(host), mrq->stop->opcode, mrq->stop->error, mrq->stop->resp[0], mrq->stop->resp[1], mrq->stop->resp[2], mrq->stop->resp[3]); } if (mrq->done) mrq->done(mrq); mmc_host_clk_release(host); } DBG("[%s] e\n",__func__); } EXPORT_SYMBOL(mmc_request_done); static void mmc_start_request(struct mmc_host *host, struct mmc_request *mrq) { #ifdef CONFIG_MMC_DEBUG unsigned int i, sz; struct scatterlist *sg; #endif DBG("[%s] s\n",__func__); if (mrq->sbc) { pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n", mmc_hostname(host), mrq->sbc->opcode, mrq->sbc->arg, mrq->sbc->flags); } pr_debug("%s: starting CMD%u arg %08x flags %08x\n", mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags); if (mrq->data) { pr_debug("%s: blksz %d blocks %d flags %08x " "tsac %d ms nsac %d\n", mmc_hostname(host), mrq->data->blksz, mrq->data->blocks, mrq->data->flags, mrq->data->timeout_ns / 1000000, mrq->data->timeout_clks); } if (mrq->stop) { pr_debug("%s: CMD%u arg %08x flags %08x\n", mmc_hostname(host), mrq->stop->opcode, mrq->stop->arg, mrq->stop->flags); } WARN_ON(!host->claimed); mrq->cmd->error = 0; mrq->cmd->mrq = mrq; if (mrq->data) { BUG_ON(mrq->data->blksz > host->max_blk_size); BUG_ON(mrq->data->blocks > host->max_blk_count); BUG_ON(mrq->data->blocks * mrq->data->blksz > host->max_req_size); #ifdef CONFIG_MMC_DEBUG sz = 0; for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i) sz += sg->length; BUG_ON(sz != mrq->data->blocks * mrq->data->blksz); #endif mrq->cmd->data = mrq->data; mrq->data->error = 0; mrq->data->mrq = mrq; if (mrq->stop) { mrq->data->stop = mrq->stop; mrq->stop->error = 0; mrq->stop->mrq = mrq; } } mmc_host_clk_hold(host); led_trigger_event(host->led, LED_FULL); host->ops->request(host, mrq); DBG("[%s] e\n",__func__); } static void mmc_wait_done(struct mmc_request *mrq) { DBG("[%s] s\n",__func__); complete(&mrq->completion); DBG("[%s] e\n",__func__); } static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq) { DBG("[%s] s\n",__func__); init_completion(&mrq->completion); mrq->done = mmc_wait_done; if (mmc_card_removed(host->card)) { mrq->cmd->error = -ENOMEDIUM; complete(&mrq->completion); DBG("[%s] e1\n",__func__); return -ENOMEDIUM; } mmc_start_request(host, mrq); DBG("[%s] e2\n",__func__); return 0; } static void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq) { struct mmc_command *cmd; DBG("[%s] s\n",__func__); while (1) { wait_for_completion(&mrq->completion); cmd = mrq->cmd; if (!cmd->error || !cmd->retries || mmc_card_removed(host->card)) break; pr_debug("%s: req failed (CMD%u): %d, retrying...\n", mmc_hostname(host), cmd->opcode, cmd->error); cmd->retries--; cmd->error = 0; host->ops->request(host, mrq); } DBG("[%s] e\n",__func__); } /** * mmc_pre_req - Prepare for a new request * @host: MMC host to prepare command * @mrq: MMC request to prepare for * @is_first_req: true if there is no previous started request * that may run in parellel to this call, otherwise false * * mmc_pre_req() is called in prior to mmc_start_req() to let * host prepare for the new request. Preparation of a request may be * performed while another request is running on the host. */ static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq, bool is_first_req) { DBG("[%s] s\n",__func__); if (host->ops->pre_req) { mmc_host_clk_hold(host); host->ops->pre_req(host, mrq, is_first_req); mmc_host_clk_release(host); } DBG("[%s] e\n",__func__); } /** * mmc_post_req - Post process a completed request * @host: MMC host to post process command * @mrq: MMC request to post process for * @err: Error, if non zero, clean up any resources made in pre_req * * Let the host post process a completed request. Post processing of * a request may be performed while another reuqest is running. */ static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq, int err) { DBG("[%s] s\n",__func__); if (host->ops->post_req) { mmc_host_clk_hold(host); host->ops->post_req(host, mrq, err); mmc_host_clk_release(host); } DBG("[%s] e\n",__func__); } /** * mmc_start_req - start a non-blocking request * @host: MMC host to start command * @areq: async request to start * @error: out parameter returns 0 for success, otherwise non zero * * Start a new MMC custom command request for a host. * If there is on ongoing async request wait for completion * of that request and start the new one and return. * Does not wait for the new request to complete. * * Returns the completed request, NULL in case of none completed. * Wait for the an ongoing request (previoulsy started) to complete and * return the completed request. If there is no ongoing request, NULL * is returned without waiting. NULL is not an error condition. */ struct mmc_async_req *mmc_start_req(struct mmc_host *host, struct mmc_async_req *areq, int *error) { int err = 0; int start_err = 0; struct mmc_async_req *data = host->areq; DBG("[%s] s\n",__func__); /* Prepare a new request */ if (areq) mmc_pre_req(host, areq->mrq, !host->areq); if (host->areq) { mmc_wait_for_req_done(host, host->areq->mrq); err = host->areq->err_check(host->card, host->areq); } if (!err && areq) start_err = __mmc_start_req(host, areq->mrq); if (host->areq) mmc_post_req(host, host->areq->mrq, 0); /* Cancel a prepared request if it was not started. */ if ((err || start_err) && areq) mmc_post_req(host, areq->mrq, -EINVAL); if (err) host->areq = NULL; else host->areq = areq; if (error) *error = err; DBG("[%s] e\n",__func__); return data; } EXPORT_SYMBOL(mmc_start_req); /** * mmc_wait_for_req - start a request and wait for completion * @host: MMC host to start command * @mrq: MMC request to start * * Start a new MMC custom command request for a host, and wait * for the command to complete. Does not attempt to parse the * response. */ void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq) { DBG("[%s] s\n",__func__); __mmc_start_req(host, mrq); mmc_wait_for_req_done(host, mrq); DBG("[%s] e\n",__func__); } EXPORT_SYMBOL(mmc_wait_for_req); /** * mmc_interrupt_hpi - Issue for High priority Interrupt * @card: the MMC card associated with the HPI transfer * * Issued High Priority Interrupt, and check for card status * util out-of prg-state. */ int mmc_interrupt_hpi(struct mmc_card *card) { int err; u32 status; DBG("[%s] s\n",__func__); BUG_ON(!card); if (!card->ext_csd.hpi_en) { pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host)); return 1; } mmc_claim_host(card->host); err = mmc_send_status(card, &status); if (err) { pr_err("%s: Get card status fail\n", mmc_hostname(card->host)); goto out; } /* * If the card status is in PRG-state, we can send the HPI command. */ if (R1_CURRENT_STATE(status) == R1_STATE_PRG) { do { /* * We don't know when the HPI command will finish * processing, so we need to resend HPI until out * of prg-state, and keep checking the card status * with SEND_STATUS. If a timeout error occurs when * sending the HPI command, we are already out of * prg-state. */ err = mmc_send_hpi_cmd(card, &status); if (err) pr_debug("%s: abort HPI (%d error)\n", mmc_hostname(card->host), err); err = mmc_send_status(card, &status); if (err) break; } while (R1_CURRENT_STATE(status) == R1_STATE_PRG); } else pr_debug("%s: Left prg-state\n", mmc_hostname(card->host)); out: mmc_release_host(card->host); DBG("[%s] e\n",__func__); return err; } EXPORT_SYMBOL(mmc_interrupt_hpi); /** * mmc_wait_for_cmd - start a command and wait for completion * @host: MMC host to start command * @cmd: MMC command to start * @retries: maximum number of retries * * Start a new MMC command for a host, and wait for the command * to complete. Return any error that occurred while the command * was executing. Do not attempt to parse the response. */ int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries) { struct mmc_request mrq = {NULL}; DBG("[%s] s\n",__func__); WARN_ON(!host->claimed); memset(cmd->resp, 0, sizeof(cmd->resp)); cmd->retries = retries; mrq.cmd = cmd; cmd->data = NULL; mmc_wait_for_req(host, &mrq); DBG("[%s] e\n",__func__); return cmd->error; } EXPORT_SYMBOL(mmc_wait_for_cmd); /** * mmc_set_data_timeout - set the timeout for a data command * @data: data phase for command * @card: the MMC card associated with the data transfer * * Computes the data timeout parameters according to the * correct algorithm given the card type. */ void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card) { unsigned int mult; DBG("[%s] s\n",__func__); /* * SDIO cards only define an upper 1 s limit on access. */ if (mmc_card_sdio(card)) { data->timeout_ns = 1000000000; data->timeout_clks = 0; DBG("[%s] e1\n",__func__); return; } /* * SD cards use a 100 multiplier rather than 10 */ mult = mmc_card_sd(card) ? 100 : 10; /* * Scale up the multiplier (and therefore the timeout) by * the r2w factor for writes. */ if (data->flags & MMC_DATA_WRITE) mult <<= card->csd.r2w_factor; data->timeout_ns = card->csd.tacc_ns * mult; data->timeout_clks = card->csd.tacc_clks * mult; /* * SD cards also have an upper limit on the timeout. */ if (mmc_card_sd(card)) { unsigned int timeout_us, limit_us; timeout_us = data->timeout_ns / 1000; if (mmc_host_clk_rate(card->host)) timeout_us += data->timeout_clks * 1000 / (mmc_host_clk_rate(card->host) / 1000); if (data->flags & MMC_DATA_WRITE) /* * The MMC spec "It is strongly recommended * for hosts to implement more than 500ms * timeout value even if the card indicates * the 250ms maximum busy length." Even the * previous value of 300ms is known to be * insufficient for some cards. */ limit_us = 3000000; else limit_us = 100000; /* * SDHC cards always use these fixed values. */ if (timeout_us > limit_us || mmc_card_blockaddr(card)) { data->timeout_ns = limit_us * 1000; data->timeout_clks = 0; } } /* * Some cards require longer data read timeout than indicated in CSD. * Address this by setting the read timeout to a "reasonably high" * value. For the cards tested, 300ms has proven enough. If necessary, * this value can be increased if other problematic cards require this. */ if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) { data->timeout_ns = 300000000; data->timeout_clks = 0; } /* * Some cards need very high timeouts if driven in SPI mode. * The worst observed timeout was 900ms after writing a * continuous stream of data until the internal logic * overflowed. */ if (mmc_host_is_spi(card->host)) { if (data->flags & MMC_DATA_WRITE) { if (data->timeout_ns < 1000000000) data->timeout_ns = 1000000000; /* 1s */ } else { if (data->timeout_ns < 100000000) data->timeout_ns = 100000000; /* 100ms */ } } DBG("[%s] e2\n",__func__); } EXPORT_SYMBOL(mmc_set_data_timeout); /** * mmc_align_data_size - pads a transfer size to a more optimal value * @card: the MMC card associated with the data transfer * @sz: original transfer size * * Pads the original data size with a number of extra bytes in * order to avoid controller bugs and/or performance hits * (e.g. some controllers revert to PIO for certain sizes). * * Returns the improved size, which might be unmodified. * * Note that this function is only relevant when issuing a * single scatter gather entry. */ unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz) { /* * FIXME: We don't have a system for the controller to tell * the core about its problems yet, so for now we just 32-bit * align the size. */ sz = ((sz + 3) / 4) * 4; return sz; } EXPORT_SYMBOL(mmc_align_data_size); /** * __mmc_claim_host - exclusively claim a host * @host: mmc host to claim * @abort: whether or not the operation should be aborted * * Claim a host for a set of operations. If @abort is non null and * dereference a non-zero value then this will return prematurely with * that non-zero value without acquiring the lock. Returns zero * with the lock held otherwise. */ int __mmc_claim_host(struct mmc_host *host, atomic_t *abort) { DECLARE_WAITQUEUE(wait, current); unsigned long flags; int stop; DBG("[%s] s\n",__func__); might_sleep(); add_wait_queue(&host->wq, &wait); spin_lock_irqsave(&host->lock, flags); while (1) { set_current_state(TASK_UNINTERRUPTIBLE); stop = abort ? atomic_read(abort) : 0; if (stop || !host->claimed || host->claimer == current) break; spin_unlock_irqrestore(&host->lock, flags); schedule(); spin_lock_irqsave(&host->lock, flags); } set_current_state(TASK_RUNNING); if (!stop) { host->claimed = 1; host->claimer = current; host->claim_cnt += 1; } else wake_up(&host->wq); spin_unlock_irqrestore(&host->lock, flags); remove_wait_queue(&host->wq, &wait); if (host->ops->enable && !stop && host->claim_cnt == 1) host->ops->enable(host); DBG("[%s] e\n",__func__); return stop; } EXPORT_SYMBOL(__mmc_claim_host); /** * mmc_try_claim_host - try exclusively to claim a host * @host: mmc host to claim * * Returns %1 if the host is claimed, %0 otherwise. */ int mmc_try_claim_host(struct mmc_host *host) { int claimed_host = 0; unsigned long flags; DBG("[%s] s\n",__func__); spin_lock_irqsave(&host->lock, flags); if (!host->claimed || host->claimer == current) { host->claimed = 1; host->claimer = current; host->claim_cnt += 1; claimed_host = 1; } spin_unlock_irqrestore(&host->lock, flags); if (host->ops->enable && claimed_host && host->claim_cnt == 1) host->ops->enable(host); DBG("[%s] e\n",__func__); return claimed_host; } EXPORT_SYMBOL(mmc_try_claim_host); /** * mmc_release_host - release a host * @host: mmc host to release * * Release a MMC host, allowing others to claim the host * for their operations. */ void mmc_release_host(struct mmc_host *host) { unsigned long flags; DBG("[%s] s\n",__func__); WARN_ON(!host->claimed); if (host->ops->disable && host->claim_cnt == 1) host->ops->disable(host); spin_lock_irqsave(&host->lock, flags); if (--host->claim_cnt) { /* Release for nested claim */ spin_unlock_irqrestore(&host->lock, flags); } else { host->claimed = 0; host->claimer = NULL; spin_unlock_irqrestore(&host->lock, flags); wake_up(&host->wq); } DBG("[%s] e\n",__func__); } EXPORT_SYMBOL(mmc_release_host); /* * Internal function that does the actual ios call to the host driver, * optionally printing some debug output. */ static inline void mmc_set_ios(struct mmc_host *host) { struct mmc_ios *ios = &host->ios; DBG("[%s] s\n",__func__); pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u " "width %u timing %u\n", mmc_hostname(host), ios->clock, ios->bus_mode, ios->power_mode, ios->chip_select, ios->vdd, ios->bus_width, ios->timing); if (ios->clock > 0) mmc_set_ungated(host); host->ops->set_ios(host, ios); DBG("[%s] e\n",__func__); } /* * Control chip select pin on a host. */ void mmc_set_chip_select(struct mmc_host *host, int mode) { DBG("[%s] s\n",__func__); mmc_host_clk_hold(host); host->ios.chip_select = mode; mmc_set_ios(host); mmc_host_clk_release(host); DBG("[%s] e\n",__func__); } /* * Sets the host clock to the highest possible frequency that * is below "hz". */ static void __mmc_set_clock(struct mmc_host *host, unsigned int hz) { DBG("[%s] s\n",__func__); WARN_ON(hz < host->f_min); if (hz > host->f_max) hz = host->f_max; host->ios.clock = hz; mmc_set_ios(host); DBG("[%s] e\n",__func__); } void mmc_set_clock(struct mmc_host *host, unsigned int hz) { DBG("[%s] s\n",__func__); mmc_host_clk_hold(host); __mmc_set_clock(host, hz); mmc_host_clk_release(host); DBG("[%s] e\n",__func__); } #ifdef CONFIG_MMC_CLKGATE /* * This gates the clock by setting it to 0 Hz. */ void mmc_gate_clock(struct mmc_host *host) { unsigned long flags; DBG("[%s] s\n",__func__); spin_lock_irqsave(&host->clk_lock, flags); host->clk_old = host->ios.clock; host->ios.clock = 0; host->clk_gated = true; spin_unlock_irqrestore(&host->clk_lock, flags); mmc_set_ios(host); DBG("[%s] e\n",__func__); } /* * This restores the clock from gating by using the cached * clock value. */ void mmc_ungate_clock(struct mmc_host *host) { DBG("[%s] s\n",__func__); /* * We should previously have gated the clock, so the clock shall * be 0 here! The clock may however be 0 during initialization, * when some request operations are performed before setting * the frequency. When ungate is requested in that situation * we just ignore the call. */ if (host->clk_old) { BUG_ON(host->ios.clock); /* This call will also set host->clk_gated to false */ __mmc_set_clock(host, host->clk_old); } DBG("[%s] e\n",__func__); } void mmc_set_ungated(struct mmc_host *host) { unsigned long flags; DBG("[%s] s\n",__func__); /* * We've been given a new frequency while the clock is gated, * so make sure we regard this as ungating it. */ spin_lock_irqsave(&host->clk_lock, flags); host->clk_gated = false; spin_unlock_irqrestore(&host->clk_lock, flags); DBG("[%s] e\n",__func__); } #else void mmc_set_ungated(struct mmc_host *host) { } #endif /* * Change the bus mode (open drain/push-pull) of a host. */ void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode) { DBG("[%s] s\n",__func__); mmc_host_clk_hold(host); host->ios.bus_mode = mode; mmc_set_ios(host); mmc_host_clk_release(host); DBG("[%s] e\n",__func__); } /* * Change data bus width of a host. */ void mmc_set_bus_width(struct mmc_host *host, unsigned int width) { DBG("[%s] s\n",__func__); mmc_host_clk_hold(host); host->ios.bus_width = width; mmc_set_ios(host); mmc_host_clk_release(host); DBG("[%s] e\n",__func__); } /** * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number * @vdd: voltage (mV) * @low_bits: prefer low bits in boundary cases * * This function returns the OCR bit number according to the provided @vdd * value. If conversion is not possible a negative errno value returned. * * Depending on the @low_bits flag the function prefers low or high OCR bits * on boundary voltages. For example, * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33); * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34); * * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21). */ static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits) { const int max_bit = ilog2(MMC_VDD_35_36); int bit; DBG("[%s] s\n",__func__); if (vdd < 1650 || vdd > 3600) { DBG("[%s] e1\n",__func__); return -EINVAL; } if (vdd >= 1650 && vdd <= 1950) { DBG("[%s] e2\n",__func__); return ilog2(MMC_VDD_165_195); } if (low_bits) vdd -= 1; /* Base 2000 mV, step 100 mV, bit's base 8. */ bit = (vdd - 2000) / 100 + 8; if (bit > max_bit) { DBG("[%s] e3\n",__func__); return max_bit; } DBG("[%s] e4\n",__func__); return bit; } /** * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask * @vdd_min: minimum voltage value (mV) * @vdd_max: maximum voltage value (mV) * * This function returns the OCR mask bits according to the provided @vdd_min * and @vdd_max values. If conversion is not possible the function returns 0. * * Notes wrt boundary cases: * This function sets the OCR bits for all boundary voltages, for example * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 | * MMC_VDD_34_35 mask. */ u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max) { u32 mask = 0; DBG("[%s] s\n",__func__); if (vdd_max < vdd_min) { DBG("[%s] e1\n",__func__); return 0; } /* Prefer high bits for the boundary vdd_max values. */ vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false); if (vdd_max < 0) { DBG("[%s] e2\n",__func__); return 0; } /* Prefer low bits for the boundary vdd_min values. */ vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true); if (vdd_min < 0) { DBG("[%s] e3\n",__func__); return 0; } /* Fill the mask, from max bit to min bit. */ while (vdd_max >= vdd_min) mask |= 1 << vdd_max--; DBG("[%s] e4\n",__func__); return mask; } EXPORT_SYMBOL(mmc_vddrange_to_ocrmask); #ifdef CONFIG_REGULATOR /** * mmc_regulator_get_ocrmask - return mask of supported voltages * @supply: regulator to use * * This returns either a negative errno, or a mask of voltages that * can be provided to MMC/SD/SDIO devices using the specified voltage * regulator. This would normally be called before registering the * MMC host adapter. */ int mmc_regulator_get_ocrmask(struct regulator *supply) { int result = 0; int count; int i; DBG("[%s] s\n",__func__); count = regulator_count_voltages(supply); if (count < 0) { DBG("[%s] e1\n",__func__); return count; } for (i = 0; i < count; i++) { int vdd_uV; int vdd_mV; vdd_uV = regulator_list_voltage(supply, i); if (vdd_uV <= 0) continue; vdd_mV = vdd_uV / 1000; result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV); } DBG("[%s] e2\n",__func__); return result; } EXPORT_SYMBOL(mmc_regulator_get_ocrmask); /** * mmc_regulator_set_ocr - set regulator to match host->ios voltage * @mmc: the host to regulate * @supply: regulator to use * @vdd_bit: zero for power off, else a bit number (host->ios.vdd) * * Returns zero on success, else negative errno. * * MMC host drivers may use this to enable or disable a regulator using * a particular supply voltage. This would normally be called from the * set_ios() method. */ int mmc_regulator_set_ocr(struct mmc_host *mmc, struct regulator *supply, unsigned short vdd_bit) { int result = 0; int min_uV, max_uV; DBG("[%s] s\n",__func__); if (vdd_bit) { int tmp; int voltage; /* REVISIT mmc_vddrange_to_ocrmask() may have set some * bits this regulator doesn't quite support ... don't * be too picky, most cards and regulators are OK with * a 0.1V range goof (it's a small error percentage). */ tmp = vdd_bit - ilog2(MMC_VDD_165_195); if (tmp == 0) { min_uV = 1650 * 1000; max_uV = 1950 * 1000; } else { min_uV = 1900 * 1000 + tmp * 100 * 1000; max_uV = min_uV + 100 * 1000; } /* avoid needless changes to this voltage; the regulator * might not allow this operation */ voltage = regulator_get_voltage(supply); if (mmc->caps2 & MMC_CAP2_BROKEN_VOLTAGE) min_uV = max_uV = voltage; if (voltage < 0) result = voltage; else if (voltage < min_uV || voltage > max_uV) result = regulator_set_voltage(supply, min_uV, max_uV); else result = 0; if (result == 0 && !mmc->regulator_enabled) { result = regulator_enable(supply); if (!result) mmc->regulator_enabled = true; } } else if (mmc->regulator_enabled) { result = regulator_disable(supply); if (result == 0) mmc->regulator_enabled = false; } if (result) dev_err(mmc_dev(mmc), "could not set regulator OCR (%d)\n", result); DBG("[%s] e\n",__func__); return result; } EXPORT_SYMBOL(mmc_regulator_set_ocr); #endif /* CONFIG_REGULATOR */ /* * Mask off any voltages we don't support and select * the lowest voltage */ u32 mmc_select_voltage(struct mmc_host *host, u32 ocr) { int bit; DBG("[%s] s\n",__func__); ocr &= host->ocr_avail; bit = ffs(ocr); if (bit) { bit -= 1; ocr &= 3 << bit; mmc_host_clk_hold(host); host->ios.vdd = bit; mmc_set_ios(host); mmc_host_clk_release(host); } else { pr_warning("%s: host doesn't support card's voltages\n", mmc_hostname(host)); ocr = 0; } DBG("[%s] e\n",__func__); return ocr; } int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11) { struct mmc_command cmd = {0}; int err = 0; DBG("[%s] s\n",__func__); BUG_ON(!host); /* * Send CMD11 only if the request is to switch the card to * 1.8V signalling. */ if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) { cmd.opcode = SD_SWITCH_VOLTAGE; cmd.arg = 0; cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; err = mmc_wait_for_cmd(host, &cmd, 0); if (err) { DBG("[%s] e1\n",__func__); return err; } if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR)) { DBG("[%s] e2\n",__func__); return -EIO; } } host->ios.signal_voltage = signal_voltage; if (host->ops->start_signal_voltage_switch) { mmc_host_clk_hold(host); err = host->ops->start_signal_voltage_switch(host, &host->ios); mmc_host_clk_release(host); } DBG("[%s] e3\n",__func__); return err; } /* * Select timing parameters for host. */ void mmc_set_timing(struct mmc_host *host, unsigned int timing) { DBG("[%s] s\n",__func__); mmc_host_clk_hold(host); host->ios.timing = timing; mmc_set_ios(host); mmc_host_clk_release(host); DBG("[%s] e\n",__func__); } /* * Select appropriate driver type for host. */ void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type) { DBG("[%s] s\n",__func__); mmc_host_clk_hold(host); host->ios.drv_type = drv_type; mmc_set_ios(host); mmc_host_clk_release(host); DBG("[%s] e\n",__func__); } static void mmc_poweroff_notify(struct mmc_host *host) { struct mmc_card *card; unsigned int timeout; unsigned int notify_type = EXT_CSD_NO_POWER_NOTIFICATION; int err = 0; DBG("[%s] s\n",__func__); card = host->card; mmc_claim_host(host); /* * Send power notify command only if card * is mmc and notify state is powered ON */ if (card && mmc_card_mmc(card) && (card->poweroff_notify_state == MMC_POWERED_ON)) { if (host->power_notify_type == MMC_HOST_PW_NOTIFY_SHORT) { notify_type = EXT_CSD_POWER_OFF_SHORT; timeout = card->ext_csd.generic_cmd6_time; card->poweroff_notify_state = MMC_POWEROFF_SHORT; } else { notify_type = EXT_CSD_POWER_OFF_LONG; timeout = card->ext_csd.power_off_longtime; card->poweroff_notify_state = MMC_POWEROFF_LONG; } err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_POWER_OFF_NOTIFICATION, notify_type, timeout); if (err && err != -EBADMSG) pr_err("Device failed to respond within %d poweroff " "time. Forcefully powering down the device\n", timeout); /* Set the card state to no notification after the poweroff */ card->poweroff_notify_state = MMC_NO_POWER_NOTIFICATION; } mmc_release_host(host); DBG("[%s] e\n",__func__); } /* * Apply power to the MMC stack. This is a two-stage process. * First, we enable power to the card without the clock running. * We then wait a bit for the power to stabilise. Finally, * enable the bus drivers and clock to the card. * * We must _NOT_ enable the clock prior to power stablising. * * If a host does all the power sequencing itself, ignore the * initial MMC_POWER_UP stage. */ static void mmc_power_up(struct mmc_host *host) { int bit; DBG("[%s] s\n",__func__); mmc_host_clk_hold(host); /* If ocr is set, we use it */ if (host->ocr) bit = ffs(host->ocr) - 1; else bit = fls(host->ocr_avail) - 1; host->ios.vdd = bit; if (mmc_host_is_spi(host)) host->ios.chip_select = MMC_CS_HIGH; else host->ios.chip_select = MMC_CS_DONTCARE; host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; host->ios.power_mode = MMC_POWER_UP; host->ios.bus_width = MMC_BUS_WIDTH_1; host->ios.timing = MMC_TIMING_LEGACY; mmc_set_ios(host); /* * This delay should be sufficient to allow the power supply * to reach the minimum voltage. */ mmc_delay(10); host->ios.clock = host->f_init; host->ios.power_mode = MMC_POWER_ON; mmc_set_ios(host); /* * This delay must be at least 74 clock sizes, or 1 ms, or the * time required to reach a stable voltage. */ mmc_delay(10); mmc_host_clk_release(host); DBG("[%s] e\n",__func__); } void mmc_power_off(struct mmc_host *host) { int err = 0; DBG("[%s] s\n",__func__); mmc_host_clk_hold(host); host->ios.clock = 0; host->ios.vdd = 0; /* * For eMMC 4.5 device send AWAKE command before * POWER_OFF_NOTIFY command, because in sleep state * eMMC 4.5 devices respond to only RESET and AWAKE cmd */ if (host->card && mmc_card_is_sleep(host->card) && host->bus_ops->resume) { err = host->bus_ops->resume(host); if (!err) mmc_poweroff_notify(host); else pr_warning("%s: error %d during resume " "(continue with poweroff sequence)\n", mmc_hostname(host), err); } /* * Reset ocr mask to be the highest possible voltage supported for * this mmc host. This value will be used at next power up. */ host->ocr = 1 << (fls(host->ocr_avail) - 1); if (!mmc_host_is_spi(host)) { host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; host->ios.chip_select = MMC_CS_DONTCARE; } host->ios.power_mode = MMC_POWER_OFF; host->ios.bus_width = MMC_BUS_WIDTH_1; host->ios.timing = MMC_TIMING_LEGACY; mmc_set_ios(host); /* * Some configurations, such as the 802.11 SDIO card in the OLPC * XO-1.5, require a short delay after poweroff before the card * can be successfully turned on again. */ mmc_delay(1); mmc_host_clk_release(host); DBG("[%s] e\n",__func__); } /* * Cleanup when the last reference to the bus operator is dropped. */ static void __mmc_release_bus(struct mmc_host *host) { DBG("[%s] s\n",__func__); BUG_ON(!host); BUG_ON(host->bus_refs); BUG_ON(!host->bus_dead); host->bus_ops = NULL; DBG("[%s] e\n",__func__); } /* * Increase reference count of bus operator */ static inline void mmc_bus_get(struct mmc_host *host) { unsigned long flags; DBG("[%s] s\n",__func__); spin_lock_irqsave(&host->lock, flags); host->bus_refs++; spin_unlock_irqrestore(&host->lock, flags); DBG("[%s] e\n",__func__); } /* * Decrease reference count of bus operator and free it if * it is the last reference. */ static inline void mmc_bus_put(struct mmc_host *host) { unsigned long flags; DBG("[%s] s\n",__func__); spin_lock_irqsave(&host->lock, flags); host->bus_refs--; if ((host->bus_refs == 0) && host->bus_ops) __mmc_release_bus(host); spin_unlock_irqrestore(&host->lock, flags); DBG("[%s] e\n",__func__); } int mmc_resume_bus(struct mmc_host *host) { unsigned long flags; DBG("[%s] s\n",__func__); if (!mmc_bus_needs_resume(host)) { DBG("[%s] e1\n",__func__); return -EINVAL; } printk("%s: Starting deferred resume\n", mmc_hostname(host)); spin_lock_irqsave(&host->lock, flags); host->bus_resume_flags &= ~MMC_BUSRESUME_NEEDS_RESUME; host->rescan_disable = 0; spin_unlock_irqrestore(&host->lock, flags); mmc_bus_get(host); if (host->bus_ops && !host->bus_dead) { mmc_power_up(host); BUG_ON(!host->bus_ops->resume); host->bus_ops->resume(host); } if (host->bus_ops->detect && !host->bus_dead) host->bus_ops->detect(host); mmc_bus_put(host); printk("%s: Deferred resume completed\n", mmc_hostname(host)); DBG("[%s] e2\n",__func__); return 0; } EXPORT_SYMBOL(mmc_resume_bus); /* * Assign a mmc bus handler to a host. Only one bus handler may control a * host at any given time. */ void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops) { unsigned long flags; DBG("[%s] s\n",__func__); BUG_ON(!host); BUG_ON(!ops); WARN_ON(!host->claimed); spin_lock_irqsave(&host->lock, flags); BUG_ON(host->bus_ops); BUG_ON(host->bus_refs); host->bus_ops = ops; host->bus_refs = 1; host->bus_dead = 0; spin_unlock_irqrestore(&host->lock, flags); DBG("[%s] e\n",__func__); } /* * Remove the current bus handler from a host. */ void mmc_detach_bus(struct mmc_host *host) { unsigned long flags; DBG("[%s] s\n",__func__); BUG_ON(!host); WARN_ON(!host->claimed); WARN_ON(!host->bus_ops); spin_lock_irqsave(&host->lock, flags); host->bus_dead = 1; spin_unlock_irqrestore(&host->lock, flags); mmc_bus_put(host); DBG("[%s] e\n",__func__); } /** * mmc_detect_change - process change of state on a MMC socket * @host: host which changed state. * @delay: optional delay to wait before detection (jiffies) * * MMC drivers should call this when they detect a card has been * inserted or removed. The MMC layer will confirm that any * present card is still functional, and initialize any newly * inserted. */ void mmc_detect_change(struct mmc_host *host, unsigned long delay) { DBG("[%s] s\n",__func__); #ifdef CONFIG_MMC_DEBUG unsigned long flags; spin_lock_irqsave(&host->lock, flags); WARN_ON(host->removed); spin_unlock_irqrestore(&host->lock, flags); #endif host->detect_change = 1; wake_lock(&host->detect_wake_lock); mmc_schedule_delayed_work(&host->detect, delay); DBG("[%s] e\n",__func__); } EXPORT_SYMBOL(mmc_detect_change); void mmc_init_erase(struct mmc_card *card) { unsigned int sz; DBG("[%s] s\n",__func__); if (is_power_of_2(card->erase_size)) card->erase_shift = ffs(card->erase_size) - 1; else card->erase_shift = 0; /* * It is possible to erase an arbitrarily large area of an SD or MMC * card. That is not desirable because it can take a long time * (minutes) potentially delaying more important I/O, and also the * timeout calculations become increasingly hugely over-estimated. * Consequently, 'pref_erase' is defined as a guide to limit erases * to that size and alignment. * * For SD cards that define Allocation Unit size, limit erases to one * Allocation Unit at a time. For MMC cards that define High Capacity * Erase Size, whether it is switched on or not, limit to that size. * Otherwise just have a stab at a good value. For modern cards it * will end up being 4MiB. Note that if the value is too small, it * can end up taking longer to erase. */ if (mmc_card_sd(card) && card->ssr.au) { card->pref_erase = card->ssr.au; card->erase_shift = ffs(card->ssr.au) - 1; } else if (card->ext_csd.hc_erase_size) { card->pref_erase = card->ext_csd.hc_erase_size; } else { sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11; if (sz < 128) card->pref_erase = 512 * 1024 / 512; else if (sz < 512) card->pref_erase = 1024 * 1024 / 512; else if (sz < 1024) card->pref_erase = 2 * 1024 * 1024 / 512; else card->pref_erase = 4 * 1024 * 1024 / 512; if (card->pref_erase < card->erase_size) card->pref_erase = card->erase_size; else { sz = card->pref_erase % card->erase_size; if (sz) card->pref_erase += card->erase_size - sz; } } DBG("[%s] e\n",__func__); } static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card, unsigned int arg, unsigned int qty) { unsigned int erase_timeout; DBG("[%s] s\n",__func__); if (arg == MMC_DISCARD_ARG || (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) { erase_timeout = card->ext_csd.trim_timeout; } else if (card->ext_csd.erase_group_def & 1) { /* High Capacity Erase Group Size uses HC timeouts */ if (arg == MMC_TRIM_ARG) erase_timeout = card->ext_csd.trim_timeout; else erase_timeout = card->ext_csd.hc_erase_timeout; } else { /* CSD Erase Group Size uses write timeout */ unsigned int mult = (10 << card->csd.r2w_factor); unsigned int timeout_clks = card->csd.tacc_clks * mult; unsigned int timeout_us; /* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */ if (card->csd.tacc_ns < 1000000) timeout_us = (card->csd.tacc_ns * mult) / 1000; else timeout_us = (card->csd.tacc_ns / 1000) * mult; /* * ios.clock is only a target. The real clock rate might be * less but not that much less, so fudge it by multiplying by 2. */ timeout_clks <<= 1; timeout_us += (timeout_clks * 1000) / (mmc_host_clk_rate(card->host) / 1000); erase_timeout = timeout_us / 1000; /* * Theoretically, the calculation could underflow so round up * to 1ms in that case. */ if (!erase_timeout) erase_timeout = 1; } /* Multiplier for secure operations */ if (arg & MMC_SECURE_ARGS) { if (arg == MMC_SECURE_ERASE_ARG) erase_timeout *= card->ext_csd.sec_erase_mult; else erase_timeout *= card->ext_csd.sec_trim_mult; } erase_timeout *= qty; /* * Ensure at least a 1 second timeout for SPI as per * 'mmc_set_data_timeout()' */ if (mmc_host_is_spi(card->host) && erase_timeout < 1000) erase_timeout = 1000; DBG("[%s] e\n",__func__); return erase_timeout; } static unsigned int mmc_sd_erase_timeout(struct mmc_card *card, unsigned int arg, unsigned int qty) { unsigned int erase_timeout; DBG("[%s] s\n",__func__); if (card->ssr.erase_timeout) { /* Erase timeout specified in SD Status Register (SSR) */ erase_timeout = card->ssr.erase_timeout * qty + card->ssr.erase_offset; } else { /* * Erase timeout not specified in SD Status Register (SSR) so * use 250ms per write block. */ erase_timeout = 250 * qty; } /* Must not be less than 1 second */ if (erase_timeout < 1000) erase_timeout = 1000; DBG("[%s] e\n",__func__); return erase_timeout; } static unsigned int mmc_erase_timeout(struct mmc_card *card, unsigned int arg, unsigned int qty) { unsigned int ret; DBG("[%s] s\n",__func__); if (mmc_card_sd(card)) { ret = mmc_sd_erase_timeout(card, arg, qty); /*return mmc_sd_erase_timeout(card, arg, qty);*/ DBG("[%s] e1\n",__func__); return ret; } else { ret = mmc_mmc_erase_timeout(card, arg, qty); /*return mmc_mmc_erase_timeout(card, arg, qty);*/ DBG("[%s] e2\n",__func__); return ret; } } static int mmc_do_erase(struct mmc_card *card, unsigned int from, unsigned int to, unsigned int arg) { struct mmc_command cmd = {0}; unsigned int qty = 0; int err; DBG("[%s] s\n",__func__); /* * qty is used to calculate the erase timeout which depends on how many * erase groups (or allocation units in SD terminology) are affected. * We count erasing part of an erase group as one erase group. * For SD, the allocation units are always a power of 2. For MMC, the * erase group size is almost certainly also power of 2, but it does not * seem to insist on that in the JEDEC standard, so we fall back to * division in that case. SD may not specify an allocation unit size, * in which case the timeout is based on the number of write blocks. * * Note that the timeout for secure trim 2 will only be correct if the * number of erase groups specified is the same as the total of all * preceding secure trim 1 commands. Since the power may have been * lost since the secure trim 1 commands occurred, it is generally * impossible to calculate the secure trim 2 timeout correctly. */ if (card->erase_shift) qty += ((to >> card->erase_shift) - (from >> card->erase_shift)) + 1; else if (mmc_card_sd(card)) qty += to - from + 1; else qty += ((to / card->erase_size) - (from / card->erase_size)) + 1; if (!mmc_card_blockaddr(card)) { from <<= 9; to <<= 9; } if (mmc_card_sd(card)) cmd.opcode = SD_ERASE_WR_BLK_START; else cmd.opcode = MMC_ERASE_GROUP_START; cmd.arg = from; //cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; err = mmc_wait_for_cmd(card->host, &cmd, 0); if (err) { pr_err("mmc_erase: group start error %d, " "status %#x\n", err, cmd.resp[0]); err = -EIO; goto out; } memset(&cmd, 0, sizeof(struct mmc_command)); if (mmc_card_sd(card)) cmd.opcode = SD_ERASE_WR_BLK_END; else cmd.opcode = MMC_ERASE_GROUP_END; cmd.arg = to; //cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; err = mmc_wait_for_cmd(card->host, &cmd, 0); if (err) { pr_err("mmc_erase: group end error %d, status %#x\n", err, cmd.resp[0]); err = -EIO; goto out; } memset(&cmd, 0, sizeof(struct mmc_command)); cmd.opcode = MMC_ERASE; cmd.arg = arg; //cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; cmd.flags = MMC_RSP_R1B | MMC_CMD_AC; cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty); err = mmc_wait_for_cmd(card->host, &cmd, 0); if (err) { pr_err("mmc_erase: erase error %d, status %#x\n", err, cmd.resp[0]); err = -EIO; goto out; } if (mmc_host_is_spi(card->host)) goto out; do { memset(&cmd, 0, sizeof(struct mmc_command)); cmd.opcode = MMC_SEND_STATUS; cmd.arg = card->rca << 16; cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; /* Do not retry else we can't see errors */ err = mmc_wait_for_cmd(card->host, &cmd, 0); if (err || (cmd.resp[0] & 0xFDF92000)) { pr_err("error %d requesting status %#x\n", err, cmd.resp[0]); err = -EIO; goto out; } } while (!(cmd.resp[0] & R1_READY_FOR_DATA) || R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG); out: return err; } /** * mmc_erase - erase sectors. * @card: card to erase * @from: first sector to erase * @nr: number of sectors to erase * @arg: erase command argument (SD supports only %MMC_ERASE_ARG) * * Caller must claim host before calling this function. */ int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr, unsigned int arg) { unsigned int rem, to = from + nr; int ret; DBG("[%s] s\n",__func__); if (!(card->host->caps & MMC_CAP_ERASE) || !(card->csd.cmdclass & CCC_ERASE)) { DBG("[%s] e1\n",__func__); return -EOPNOTSUPP; } if (!card->erase_size) { DBG("[%s] e2\n",__func__); return -EOPNOTSUPP; } if (mmc_card_sd(card) && arg != MMC_ERASE_ARG) { DBG("[%s] e3\n",__func__); return -EOPNOTSUPP; } if ((arg & MMC_SECURE_ARGS) && !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)) { DBG("[%s] e4\n",__func__); return -EOPNOTSUPP; } if ((arg & MMC_TRIM_ARGS) && !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)) { DBG("[%s] e5\n",__func__); return -EOPNOTSUPP; } if (arg == MMC_SECURE_ERASE_ARG) { if (from % card->erase_size || nr % card->erase_size) { DBG("[%s] e6\n",__func__); return -EINVAL; } } if (arg == MMC_ERASE_ARG) { rem = from % card->erase_size; if (rem) { rem = card->erase_size - rem; from += rem; if (nr > rem) nr -= rem; else { DBG("[%s] e7\n",__func__); return 0; } } rem = nr % card->erase_size; if (rem) nr -= rem; } if (nr == 0) { DBG("[%s] e8\n",__func__); return 0; } to = from + nr; if (to <= from) { DBG("[%s] e9\n",__func__); return -EINVAL; } /* 'from' and 'to' are inclusive */ to -= 1; ret = mmc_do_erase(card, from, to, arg); DBG("[%s] e10\n",__func__); /*return mmc_do_erase(card, from, to, arg);*/ return ret; } EXPORT_SYMBOL(mmc_erase); int mmc_can_erase(struct mmc_card *card) { DBG("[%s] s\n",__func__); if ((card->host->caps & MMC_CAP_ERASE) && (card->csd.cmdclass & CCC_ERASE) && card->erase_size) { DBG("[%s] e1\n",__func__); return 1; } DBG("[%s] e2\n",__func__); return 0; } EXPORT_SYMBOL(mmc_can_erase); int mmc_can_trim(struct mmc_card *card) { DBG("[%s] s\n",__func__); if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) { DBG("[%s] e1\n",__func__); return 1; } DBG("[%s] e2\n",__func__); return 0; } EXPORT_SYMBOL(mmc_can_trim); int mmc_can_discard(struct mmc_card *card) { DBG("[%s] s\n",__func__); /* * As there's no way to detect the discard support bit at v4.5 * use the s/w feature support filed. */ if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE) { DBG("[%s] e1\n",__func__); return 1; } DBG("[%s] e2\n",__func__); return 0; } EXPORT_SYMBOL(mmc_can_discard); int mmc_can_sanitize(struct mmc_card *card) { DBG("[%s] s\n",__func__); if (!mmc_can_trim(card) && !mmc_can_erase(card)) { DBG("[%s] e1\n",__func__); return 0; } if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE) { DBG("[%s] e2\n",__func__); return 1; } DBG("[%s] e3\n",__func__); return 0; } EXPORT_SYMBOL(mmc_can_sanitize); int mmc_can_secure_erase_trim(struct mmc_card *card) { DBG("[%s] s\n",__func__); if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) { DBG("[%s] e1\n",__func__); return 1; } DBG("[%s] e2\n",__func__); return 0; } EXPORT_SYMBOL(mmc_can_secure_erase_trim); int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from, unsigned int nr) { DBG("[%s] s\n",__func__); if (!card->erase_size) { DBG("[%s] e1\n",__func__); return 0; } if (from % card->erase_size || nr % card->erase_size) { DBG("[%s] e2\n",__func__); return 0; } DBG("[%s] e3\n",__func__); return 1; } EXPORT_SYMBOL(mmc_erase_group_aligned); static unsigned int mmc_do_calc_max_discard(struct mmc_card *card, unsigned int arg) { struct mmc_host *host = card->host; unsigned int max_discard, x, y, qty = 0, max_qty, timeout; unsigned int last_timeout = 0; DBG("[%s] s\n",__func__); if (card->erase_shift) max_qty = UINT_MAX >> card->erase_shift; else if (mmc_card_sd(card)) max_qty = UINT_MAX; else max_qty = UINT_MAX / card->erase_size; /* Find the largest qty with an OK timeout */ do { y = 0; for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) { timeout = mmc_erase_timeout(card, arg, qty + x); if (timeout > host->max_discard_to) break; if (timeout < last_timeout) break; last_timeout = timeout; y = x; } qty += y; } while (y); if (!qty) { DBG("[%s] e1\n",__func__); return 0; } if (qty == 1) { DBG("[%s] e2\n",__func__); return 1; } /* Convert qty to sectors */ if (card->erase_shift) max_discard = --qty << card->erase_shift; else if (mmc_card_sd(card)) max_discard = qty; else max_discard = --qty * card->erase_size; DBG("[%s] e3\n",__func__); return max_discard; } unsigned int mmc_calc_max_discard(struct mmc_card *card) { struct mmc_host *host = card->host; unsigned int max_discard, max_trim; DBG("[%s] s\n",__func__); if (!host->max_discard_to) { DBG("[%s] e1\n",__func__); return UINT_MAX; } /* * Without erase_group_def set, MMC erase timeout depends on clock * frequence which can change. In that case, the best choice is * just the preferred erase size. */ if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1)) { DBG("[%s] e2\n",__func__); return card->pref_erase; } max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG); if (mmc_can_trim(card)) { max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG); if (max_trim < max_discard) max_discard = max_trim; } else if (max_discard < card->erase_size) { max_discard = 0; } pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n", mmc_hostname(host), max_discard, host->max_discard_to); DBG("[%s] e3\n",__func__); return max_discard; } EXPORT_SYMBOL(mmc_calc_max_discard); int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen) { struct mmc_command cmd = {0}; int ret; DBG("[%s] s\n",__func__); if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card)) { DBG("[%s] e1\n",__func__); return 0; } cmd.opcode = MMC_SET_BLOCKLEN; cmd.arg = blocklen; //cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; ret = mmc_wait_for_cmd(card->host, &cmd, 5); /*return mmc_wait_for_cmd(card->host, &cmd, 5);*/ DBG("[%s] e1\n",__func__); return ret; } EXPORT_SYMBOL(mmc_set_blocklen); static void mmc_hw_reset_for_init(struct mmc_host *host) { DBG("[%s] s\n",__func__); if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) { DBG("[%s] e1\n",__func__); return; } mmc_host_clk_hold(host); host->ops->hw_reset(host); mmc_host_clk_release(host); DBG("[%s] e2\n",__func__); } int mmc_can_reset(struct mmc_card *card) { u8 rst_n_function; DBG("[%s] s\n",__func__); if (!mmc_card_mmc(card)) { DBG("[%s] e1\n",__func__); return 0; } rst_n_function = card->ext_csd.rst_n_function; if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED) { DBG("[%s] e2\n",__func__); return 0; } DBG("[%s] e3\n",__func__); return 1; } EXPORT_SYMBOL(mmc_can_reset); static int mmc_do_hw_reset(struct mmc_host *host, int check) { struct mmc_card *card = host->card; DBG("[%s] s\n",__func__); if (!host->bus_ops->power_restore) { DBG("[%s] e1\n",__func__); return -EOPNOTSUPP; } if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset) { DBG("[%s] e2\n",__func__); return -EOPNOTSUPP; } if (!card) { DBG("[%s] e3\n",__func__); return -EINVAL; } if (!mmc_can_reset(card)) { DBG("[%s] e4\n",__func__); return -EOPNOTSUPP; } mmc_host_clk_hold(host); mmc_set_clock(host, host->f_init); host->ops->hw_reset(host); /* If the reset has happened, then a status command will fail */ if (check) { struct mmc_command cmd = {0}; int err; cmd.opcode = MMC_SEND_STATUS; if (!mmc_host_is_spi(card->host)) cmd.arg = card->rca << 16; //cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC; cmd.flags = MMC_RSP_R1 | MMC_CMD_AC; err = mmc_wait_for_cmd(card->host, &cmd, 0); if (!err) { mmc_host_clk_release(host); DBG("[%s] e5\n",__func__); return -ENOSYS; } } host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR); if (mmc_host_is_spi(host)) { host->ios.chip_select = MMC_CS_HIGH; host->ios.bus_mode = MMC_BUSMODE_PUSHPULL; } else { host->ios.chip_select = MMC_CS_DONTCARE; host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN; } host->ios.bus_width = MMC_BUS_WIDTH_1; host->ios.timing = MMC_TIMING_LEGACY; mmc_set_ios(host); mmc_host_clk_release(host); DBG("[%s] e6\n",__func__); return host->bus_ops->power_restore(host); } int mmc_hw_reset(struct mmc_host *host) { DBG("[%s] s\n",__func__); return mmc_do_hw_reset(host, 0); } EXPORT_SYMBOL(mmc_hw_reset); int mmc_hw_reset_check(struct mmc_host *host) { DBG("[%s] s\n",__func__); return mmc_do_hw_reset(host, 1); } EXPORT_SYMBOL(mmc_hw_reset_check); static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq) { DBG("[%s] s\n",__func__); host->f_init = freq; #ifdef CONFIG_MMC_DEBUG pr_info("%s: %s: trying to init card at %u Hz\n", mmc_hostname(host), __func__, host->f_init); #endif mmc_power_up(host); /* * Some eMMCs (with VCCQ always on) may not be reset after power up, so * do a hardware reset if possible. */ mmc_hw_reset_for_init(host); /* Initialization should be done at 3.3 V I/O voltage. */ mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330, 0); /* * sdio_reset sends CMD52 to reset card. Since we do not know * if the card is being re-initialized, just send it. CMD52 * should be ignored by SD/eMMC cards. */ sdio_reset(host); mmc_go_idle(host); mmc_send_if_cond(host, host->ocr_avail); /* Order's important: probe SDIO, then SD, then MMC */ if (!mmc_attach_sdio(host)) { DBG("[%s] e1\n",__func__); return 0; } if (!mmc_attach_sd(host)) { DBG("[%s] e2\n",__func__); return 0; } if (!mmc_attach_mmc(host)) { DBG("[%s] e3\n",__func__); return 0; } mmc_power_off(host); DBG("[%s] e4\n",__func__); return -EIO; } int _mmc_detect_card_removed(struct mmc_host *host) { int ret; DBG("[%s] s\n",__func__); if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive) { DBG("[%s] e1\n",__func__); return 0; } if (!host->card || mmc_card_removed(host->card)) { DBG("[%s] e2\n",__func__); return 1; } ret = host->bus_ops->alive(host); if (ret) { mmc_card_set_removed(host->card); pr_debug("%s: card remove detected\n", mmc_hostname(host)); } DBG("[%s] e3\n",__func__); return ret; } int mmc_detect_card_removed(struct mmc_host *host) { struct mmc_card *card = host->card; int ret; DBG("[%s] s\n",__func__); WARN_ON(!host->claimed); if (!card) { DBG("[%s] e1\n",__func__); return 1; } ret = mmc_card_removed(card); /* * The card will be considered unchanged unless we have been asked to * detect a change or host requires polling to provide card detection. */ if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL) && !(host->caps2 & MMC_CAP2_DETECT_ON_ERR)) { DBG("[%s] e2\n",__func__); return ret; } host->detect_change = 0; if (!ret) { ret = _mmc_detect_card_removed(host); if (ret && (host->caps2 & MMC_CAP2_DETECT_ON_ERR)) { /* * Schedule a detect work as soon as possible to let a * rescan handle the card removal. */ cancel_delayed_work(&host->detect); mmc_detect_change(host, 0); } } DBG("[%s] e3\n",__func__); return ret; } EXPORT_SYMBOL(mmc_detect_card_removed); void mmc_rescan(struct work_struct *work) { static const unsigned freqs[] = { 400000, 300000, 200000, 100000 }; struct mmc_host *host = container_of(work, struct mmc_host, detect.work); int i; bool extend_wakelock = false; struct atsmb_host *atsmb_host = mmc_priv(host); int retry = 5; DBG("[%s] s\n",__func__); host->card_scan_status = false; if (host->rescan_disable) return; while(retry > 0) { retry--; mmc_bus_get(host); /* * if there is a _removable_ card registered, check whether it is * still present */ if (host->bus_ops && host->bus_ops->detect && !host->bus_dead && !(host->caps & MMC_CAP_NONREMOVABLE)) host->bus_ops->detect(host); host->detect_change = 0; /* If the card was removed the bus will be marked * as dead - extend the wakelock so userspace * can respond */ if (host->bus_dead) extend_wakelock = 1; /* * Let mmc_bus_put() free the bus/bus_ops if we've found that * the card is no longer present. */ mmc_bus_put(host); mmc_bus_get(host); /* if there still is a card present, stop here */ if (host->bus_ops != NULL) { mmc_bus_put(host); goto out; } /* * Only we can add a new handler, so it's safe to * release the lock here. */ mmc_bus_put(host); if (host->ops->get_cd && host->ops->get_cd(host) == 0) goto out; mmc_claim_host(host); for (i = 0; i < ARRAY_SIZE(freqs); i++) { if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min))) { extend_wakelock = true; break; } if (freqs[i] <= host->f_min) break; } mmc_release_host(host); out: if (extend_wakelock) wake_lock_timeout(&host->detect_wake_lock, HZ / 2); else wake_unlock(&host->detect_wake_lock); if (host->caps & MMC_CAP_NEEDS_POLL) { wake_lock(&host->detect_wake_lock); mmc_schedule_delayed_work(&host->detect, HZ); } DBG("[%s]retry = %d slot = %x power = %x\n", __func__,retry,host->ops->get_slot_status(host), host->ios.power_mode); if((host->ops->get_slot_status(host) == 0) || (host->ios.power_mode != MMC_POWER_OFF)) break; msleep(1000); } if (host->ios.power_mode != MMC_POWER_OFF) host->card_scan_status = true; printk("SD%d Host Clock %dHz\n",host->wmt_host_index, atsmb_host->current_clock); DBG("[%s] e\n",__func__); } void mmc_start_host(struct mmc_host *host,bool detect) { DBG("[%s] s\n",__func__); mmc_power_off(host); if (detect == true) mmc_detect_change(host, 0); DBG("[%s] e\n",__func__); } void mmc_stop_host(struct mmc_host *host) { DBG("[%s] s\n",__func__); #ifdef CONFIG_MMC_DEBUG unsigned long flags; spin_lock_irqsave(&host->lock, flags); host->removed = 1; spin_unlock_irqrestore(&host->lock, flags); #endif if (cancel_delayed_work_sync(&host->detect)) wake_unlock(&host->detect_wake_lock); mmc_flush_scheduled_work(); /* clear pm flags now and let card drivers set them as needed */ host->pm_flags = 0; mmc_bus_get(host); if (host->bus_ops && !host->bus_dead) { /* Calling bus_ops->remove() with a claimed host can deadlock */ if (host->bus_ops->remove) host->bus_ops->remove(host); mmc_claim_host(host); mmc_detach_bus(host); mmc_power_off(host); mmc_release_host(host); mmc_bus_put(host); DBG("[%s] e1\n",__func__); return; } mmc_bus_put(host); BUG_ON(host->card); mmc_power_off(host); DBG("[%s] e2\n",__func__); } int mmc_power_save_host(struct mmc_host *host) { int ret = 0; DBG("[%s] s\n",__func__); #ifdef CONFIG_MMC_DEBUG pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__); #endif mmc_bus_get(host); if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) { mmc_bus_put(host); DBG("[%s] e1\n",__func__); return -EINVAL; } if (host->bus_ops->power_save) ret = host->bus_ops->power_save(host); mmc_bus_put(host); mmc_power_off(host); DBG("[%s] e2\n",__func__); return ret; } EXPORT_SYMBOL(mmc_power_save_host); int mmc_power_restore_host(struct mmc_host *host) { int ret; DBG("[%s] s\n",__func__); #ifdef CONFIG_MMC_DEBUG pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__); #endif mmc_bus_get(host); if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) { mmc_bus_put(host); DBG("[%s] e1\n",__func__); return -EINVAL; } mmc_power_up(host); ret = host->bus_ops->power_restore(host); mmc_bus_put(host); DBG("[%s] e2\n",__func__); return ret; } EXPORT_SYMBOL(mmc_power_restore_host); int mmc_card_awake(struct mmc_host *host) { int err = -ENOSYS; DBG("[%s] s\n",__func__); if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD) { DBG("[%s] e1\n",__func__); return 0; } mmc_bus_get(host); if (host->bus_ops && !host->bus_dead && host->bus_ops->awake) err = host->bus_ops->awake(host); mmc_bus_put(host); DBG("[%s] e2\n",__func__); return err; } EXPORT_SYMBOL(mmc_card_awake); int mmc_card_sleep(struct mmc_host *host) { int err = -ENOSYS; DBG("[%s] s\n",__func__); if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD) { DBG("[%s] e1\n",__func__); return 0; } mmc_bus_get(host); if (host->bus_ops && !host->bus_dead && host->bus_ops->sleep) err = host->bus_ops->sleep(host); mmc_bus_put(host); DBG("[%s] e2\n",__func__); return err; } EXPORT_SYMBOL(mmc_card_sleep); int mmc_card_can_sleep(struct mmc_host *host) { struct mmc_card *card = host->card; DBG("[%s] s\n",__func__); if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3) { DBG("[%s] e1\n",__func__); return 1; } DBG("[%s] e2\n",__func__); return 0; } EXPORT_SYMBOL(mmc_card_can_sleep); /* * Flush the cache to the non-volatile storage. */ int mmc_flush_cache(struct mmc_card *card) { struct mmc_host *host = card->host; int err = 0; DBG("[%s] s\n",__func__); if (!(host->caps2 & MMC_CAP2_CACHE_CTRL)) { DBG("[%s] e1\n",__func__); return err; } if (mmc_card_mmc(card) && (card->ext_csd.cache_size > 0) && (card->ext_csd.cache_ctrl & 1)) { err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_FLUSH_CACHE, 1, 0); if (err) pr_err("%s: cache flush error %d\n", mmc_hostname(card->host), err); } DBG("[%s] e2\n",__func__); return err; } EXPORT_SYMBOL(mmc_flush_cache); /* * Turn the cache ON/OFF. * Turning the cache OFF shall trigger flushing of the data * to the non-volatile storage. */ int mmc_cache_ctrl(struct mmc_host *host, u8 enable) { struct mmc_card *card = host->card; unsigned int timeout; int err = 0; DBG("[%s] s\n",__func__); if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) || mmc_card_is_removable(host)) { DBG("[%s] e1\n",__func__); return err; } mmc_claim_host(host); if (card && mmc_card_mmc(card) && (card->ext_csd.cache_size > 0)) { enable = !!enable; if (card->ext_csd.cache_ctrl ^ enable) { timeout = enable ? card->ext_csd.generic_cmd6_time : 0; err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_CACHE_CTRL, enable, timeout); if (err) pr_err("%s: cache %s error %d\n", mmc_hostname(card->host), enable ? "on" : "off", err); else card->ext_csd.cache_ctrl = enable; } } mmc_release_host(host); DBG("[%s] e2\n",__func__); return err; } EXPORT_SYMBOL(mmc_cache_ctrl); #ifdef CONFIG_PM /** * mmc_suspend_host - suspend a host * @host: mmc host */ int mmc_suspend_host(struct mmc_host *host) { int err = 0; DBG("[%s] s\n",__func__); if (mmc_bus_needs_resume(host)) { DBG("[%s] e1\n",__func__); return 0; } if (cancel_delayed_work(&host->detect)) wake_unlock(&host->detect_wake_lock); mmc_flush_scheduled_work(); err = mmc_cache_ctrl(host, 0); if (err) goto out; mmc_bus_get(host); if (host->bus_ops && !host->bus_dead) { if (host->bus_ops->suspend) err = host->bus_ops->suspend(host); if (err == -ENOSYS || !host->bus_ops->resume) { /* * We simply "remove" the card in this case. * It will be redetected on resume. (Calling * bus_ops->remove() with a claimed host can * deadlock.) */ if (host->bus_ops->remove) host->bus_ops->remove(host); mmc_claim_host(host); mmc_detach_bus(host); mmc_power_off(host); mmc_release_host(host); host->pm_flags = 0; err = 0; } } mmc_bus_put(host); if (!err && !mmc_card_keep_power(host)) mmc_power_off(host); out: DBG("[%s] e2\n",__func__); return err; } EXPORT_SYMBOL(mmc_suspend_host); /** * mmc_resume_host - resume a previously suspended host * @host: mmc host */ int mmc_resume_host(struct mmc_host *host) { int err = 0; DBG("[%s] s\n",__func__); mmc_bus_get(host); if (mmc_bus_manual_resume(host)) { host->bus_resume_flags |= MMC_BUSRESUME_NEEDS_RESUME; mmc_bus_put(host); DBG("[%s] e1\n",__func__); return 0; } if (host->bus_ops && !host->bus_dead) { if (!mmc_card_keep_power(host)) { mmc_power_up(host); mmc_select_voltage(host, host->ocr); /* * Tell runtime PM core we just powered up the card, * since it still believes the card is powered off. * Note that currently runtime PM is only enabled * for SDIO cards that are MMC_CAP_POWER_OFF_CARD */ if (mmc_card_sdio(host->card) && (host->caps & MMC_CAP_POWER_OFF_CARD)) { pm_runtime_disable(&host->card->dev); pm_runtime_set_active(&host->card->dev); pm_runtime_enable(&host->card->dev); } } //kevin add for suspend&resume mmc_set_ios(host); BUG_ON(!host->bus_ops->resume); err = host->bus_ops->resume(host); if (err) { pr_warning("%s: error %d during resume " "(card was removed?)\n", mmc_hostname(host), err); err = 0; } } host->pm_flags &= ~MMC_PM_KEEP_POWER; mmc_bus_put(host); DBG("[%s] e2\n",__func__); return err; } EXPORT_SYMBOL(mmc_resume_host); /* Do the card removal on suspend if card is assumed removeable * Do that in pm notifier while userspace isn't yet frozen, so we will be able to sync the card. */ int mmc_pm_notify(struct notifier_block *notify_block, unsigned long mode, void *unused) { struct mmc_host *host = container_of( notify_block, struct mmc_host, pm_notify); unsigned long flags; DBG("[%s] s\n",__func__); switch (mode) { case PM_HIBERNATION_PREPARE: case PM_SUSPEND_PREPARE: spin_lock_irqsave(&host->lock, flags); if (mmc_bus_needs_resume(host)) { spin_unlock_irqrestore(&host->lock, flags); break; } host->rescan_disable = 1; host->power_notify_type = MMC_HOST_PW_NOTIFY_SHORT; spin_unlock_irqrestore(&host->lock, flags); if (cancel_delayed_work_sync(&host->detect)) wake_unlock(&host->detect_wake_lock); if (!host->bus_ops || host->bus_ops->suspend) break; /* Calling bus_ops->remove() with a claimed host can deadlock */ if (host->bus_ops->remove) host->bus_ops->remove(host); mmc_claim_host(host); mmc_detach_bus(host); mmc_power_off(host); mmc_release_host(host); host->pm_flags = 0; break; case PM_POST_SUSPEND: case PM_POST_HIBERNATION: case PM_POST_RESTORE: spin_lock_irqsave(&host->lock, flags); if (mmc_bus_manual_resume(host)) { spin_unlock_irqrestore(&host->lock, flags); break; } host->rescan_disable = 0; host->power_notify_type = MMC_HOST_PW_NOTIFY_LONG; spin_unlock_irqrestore(&host->lock, flags); if(!(host->bus_dead)) mmc_detect_change(host, 0); } DBG("[%s] e\n",__func__); return 0; } #endif void mmc_force_remove_card(struct mmc_host *host) { DBG("[%s] s\n",__func__); mmc_bus_get(host); if (host->bus_ops && !host->bus_dead) { if (host->bus_ops->remove) host->bus_ops->remove(host); mmc_claim_host(host); mmc_detach_bus(host); mmc_release_host(host); } mmc_bus_put(host); mmc_power_off(host); DBG("[%s] e\n",__func__); return ; } EXPORT_SYMBOL(mmc_force_remove_card); #ifdef CONFIG_MMC_EMBEDDED_SDIO void mmc_set_embedded_sdio_data(struct mmc_host *host, struct sdio_cis *cis, struct sdio_cccr *cccr, struct sdio_embedded_func *funcs, int num_funcs) { DBG("[%s] s\n",__func__); host->embedded_sdio_data.cis = cis; host->embedded_sdio_data.cccr = cccr; host->embedded_sdio_data.funcs = funcs; host->embedded_sdio_data.num_funcs = num_funcs; DBG("[%s] e\n",__func__); } EXPORT_SYMBOL(mmc_set_embedded_sdio_data); #endif static int __init mmc_init(void) { int ret; DBG("[%s] s\n",__func__); workqueue = alloc_ordered_workqueue("kmmcd", 0); if (!workqueue) { DBG("[%s] e1\n",__func__); return -ENOMEM; } ret = mmc_register_bus(); if (ret) goto destroy_workqueue; ret = mmc_register_host_class(); if (ret) goto unregister_bus; ret = sdio_register_bus(); if (ret) goto unregister_host_class; DBG("[%s] e2\n",__func__); return 0; unregister_host_class: mmc_unregister_host_class(); unregister_bus: mmc_unregister_bus(); destroy_workqueue: destroy_workqueue(workqueue); DBG("[%s] e3\n",__func__); return ret; } static void __exit mmc_exit(void) { DBG("[%s] s\n",__func__); sdio_unregister_bus(); mmc_unregister_host_class(); mmc_unregister_bus(); destroy_workqueue(workqueue); DBG("[%s] e\n",__func__); } subsys_initcall(mmc_init); module_exit(mmc_exit); MODULE_LICENSE("GPL");