/* * drivers/gpu/ion/ion.c * * Copyright (C) 2011 Google, Inc. * * This software is licensed under the terms of the GNU General Public * License version 2, as published by the Free Software Foundation, and * may be copied, distributed, and modified under those terms. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ion_priv.h" /** * struct ion_device - the metadata of the ion device node * @dev: the actual misc device * @buffers: an rb tree of all the existing buffers * @buffer_lock: lock protecting the tree of buffers * @lock: rwsem protecting the tree of heaps and clients * @heaps: list of all the heaps in the system * @user_clients: list of all the clients created from userspace */ struct ion_device { struct miscdevice dev; struct rb_root buffers; struct mutex buffer_lock; struct rw_semaphore lock; struct rb_root heaps; long (*custom_ioctl) (struct ion_client *client, unsigned int cmd, unsigned long arg); struct rb_root clients; struct dentry *debug_root; }; /** * struct ion_client - a process/hw block local address space * @node: node in the tree of all clients * @dev: backpointer to ion device * @handles: an rb tree of all the handles in this client * @lock: lock protecting the tree of handles * @heap_mask: mask of all supported heaps * @name: used for debugging * @task: used for debugging * * A client represents a list of buffers this client may access. * The mutex stored here is used to protect both handles tree * as well as the handles themselves, and should be held while modifying either. */ struct ion_client { struct rb_node node; struct ion_device *dev; struct rb_root handles; struct mutex lock; unsigned int heap_mask; const char *name; struct task_struct *task; pid_t pid; struct dentry *debug_root; }; /** * ion_handle - a client local reference to a buffer * @ref: reference count * @client: back pointer to the client the buffer resides in * @buffer: pointer to the buffer * @node: node in the client's handle rbtree * @kmap_cnt: count of times this client has mapped to kernel * @dmap_cnt: count of times this client has mapped for dma * * Modifications to node, map_cnt or mapping should be protected by the * lock in the client. Other fields are never changed after initialization. */ struct ion_handle { struct kref ref; struct ion_client *client; struct ion_buffer *buffer; struct rb_node node; unsigned int kmap_cnt; }; bool ion_buffer_fault_user_mappings(struct ion_buffer *buffer) { return ((buffer->flags & ION_FLAG_CACHED) && !(buffer->flags & ION_FLAG_CACHED_NEEDS_SYNC)); } bool ion_buffer_cached(struct ion_buffer *buffer) { return !!(buffer->flags & ION_FLAG_CACHED); } /* this function should only be called while dev->lock is held */ static void ion_buffer_add(struct ion_device *dev, struct ion_buffer *buffer) { struct rb_node **p = &dev->buffers.rb_node; struct rb_node *parent = NULL; struct ion_buffer *entry; while (*p) { parent = *p; entry = rb_entry(parent, struct ion_buffer, node); if (buffer < entry) { p = &(*p)->rb_left; } else if (buffer > entry) { p = &(*p)->rb_right; } else { pr_err("%s: buffer already found.", __func__); BUG(); } } rb_link_node(&buffer->node, parent, p); rb_insert_color(&buffer->node, &dev->buffers); } static int ion_buffer_alloc_dirty(struct ion_buffer *buffer); /* this function should only be called while dev->lock is held */ static struct ion_buffer *ion_buffer_create(struct ion_heap *heap, struct ion_device *dev, unsigned long len, unsigned long align, unsigned long flags) { struct ion_buffer *buffer; struct sg_table *table; struct scatterlist *sg; int i, ret; buffer = kzalloc(sizeof(struct ion_buffer), GFP_KERNEL); if (!buffer) return ERR_PTR(-ENOMEM); buffer->heap = heap; buffer->flags = flags; kref_init(&buffer->ref); ret = heap->ops->allocate(heap, buffer, len, align, flags); if (ret) { kfree(buffer); return ERR_PTR(ret); } buffer->dev = dev; buffer->size = len; table = heap->ops->map_dma(heap, buffer); if (IS_ERR_OR_NULL(table)) { heap->ops->free(buffer); kfree(buffer); return ERR_PTR(PTR_ERR(table)); } buffer->sg_table = table; if (ion_buffer_fault_user_mappings(buffer)) { for_each_sg(buffer->sg_table->sgl, sg, buffer->sg_table->nents, i) { if (sg_dma_len(sg) == PAGE_SIZE) continue; pr_err("%s: cached mappings that will be faulted in " "must have pagewise sg_lists\n", __func__); ret = -EINVAL; goto err; } ret = ion_buffer_alloc_dirty(buffer); if (ret) goto err; } buffer->dev = dev; buffer->size = len; INIT_LIST_HEAD(&buffer->vmas); mutex_init(&buffer->lock); /* this will set up dma addresses for the sglist -- it is not technically correct as per the dma api -- a specific device isn't really taking ownership here. However, in practice on our systems the only dma_address space is physical addresses. Additionally, we can't afford the overhead of invalidating every allocation via dma_map_sg. The implicit contract here is that memory comming from the heaps is ready for dma, ie if it has a cached mapping that mapping has been invalidated */ for_each_sg(buffer->sg_table->sgl, sg, buffer->sg_table->nents, i) sg_dma_address(sg) = sg_phys(sg); mutex_lock(&dev->buffer_lock); ion_buffer_add(dev, buffer); mutex_unlock(&dev->buffer_lock); return buffer; err: heap->ops->unmap_dma(heap, buffer); heap->ops->free(buffer); kfree(buffer); return ERR_PTR(ret); } static void ion_buffer_destroy(struct kref *kref) { struct ion_buffer *buffer = container_of(kref, struct ion_buffer, ref); struct ion_device *dev = buffer->dev; if (WARN_ON(buffer->kmap_cnt > 0)) buffer->heap->ops->unmap_kernel(buffer->heap, buffer); buffer->heap->ops->unmap_dma(buffer->heap, buffer); buffer->heap->ops->free(buffer); mutex_lock(&dev->buffer_lock); rb_erase(&buffer->node, &dev->buffers); mutex_unlock(&dev->buffer_lock); if (buffer->flags & ION_FLAG_CACHED) kfree(buffer->dirty); kfree(buffer); } static void ion_buffer_get(struct ion_buffer *buffer) { kref_get(&buffer->ref); } static int ion_buffer_put(struct ion_buffer *buffer) { return kref_put(&buffer->ref, ion_buffer_destroy); } static void ion_buffer_add_to_handle(struct ion_buffer *buffer) { mutex_lock(&buffer->lock); buffer->handle_count++; mutex_unlock(&buffer->lock); } static void ion_buffer_remove_from_handle(struct ion_buffer *buffer) { /* * when a buffer is removed from a handle, if it is not in * any other handles, copy the taskcomm and the pid of the * process it's being removed from into the buffer. At this * point there will be no way to track what processes this buffer is * being used by, it only exists as a dma_buf file descriptor. * The taskcomm and pid can provide a debug hint as to where this fd * is in the system */ mutex_lock(&buffer->lock); buffer->handle_count--; BUG_ON(buffer->handle_count < 0); if (!buffer->handle_count) { struct task_struct *task; task = current->group_leader; get_task_comm(buffer->task_comm, task); buffer->pid = task_pid_nr(task); } mutex_unlock(&buffer->lock); } static struct ion_handle *ion_handle_create(struct ion_client *client, struct ion_buffer *buffer) { struct ion_handle *handle; handle = kzalloc(sizeof(struct ion_handle), GFP_KERNEL); if (!handle) return ERR_PTR(-ENOMEM); kref_init(&handle->ref); rb_init_node(&handle->node); handle->client = client; ion_buffer_get(buffer); ion_buffer_add_to_handle(buffer); handle->buffer = buffer; return handle; } static void ion_handle_kmap_put(struct ion_handle *); static void ion_handle_destroy(struct kref *kref) { struct ion_handle *handle = container_of(kref, struct ion_handle, ref); struct ion_client *client = handle->client; struct ion_buffer *buffer = handle->buffer; mutex_lock(&buffer->lock); while (handle->kmap_cnt) ion_handle_kmap_put(handle); mutex_unlock(&buffer->lock); if (!RB_EMPTY_NODE(&handle->node)) rb_erase(&handle->node, &client->handles); ion_buffer_remove_from_handle(buffer); ion_buffer_put(buffer); kfree(handle); } struct ion_buffer *ion_handle_buffer(struct ion_handle *handle) { return handle->buffer; } static void ion_handle_get(struct ion_handle *handle) { kref_get(&handle->ref); } static int ion_handle_put(struct ion_handle *handle) { return kref_put(&handle->ref, ion_handle_destroy); } static struct ion_handle *ion_handle_lookup(struct ion_client *client, struct ion_buffer *buffer) { struct rb_node *n; for (n = rb_first(&client->handles); n; n = rb_next(n)) { struct ion_handle *handle = rb_entry(n, struct ion_handle, node); if (handle->buffer == buffer) return handle; } return NULL; } static bool ion_handle_validate(struct ion_client *client, struct ion_handle *handle) { struct rb_node *n = client->handles.rb_node; while (n) { struct ion_handle *handle_node = rb_entry(n, struct ion_handle, node); if (handle < handle_node) n = n->rb_left; else if (handle > handle_node) n = n->rb_right; else return true; } return false; } static void ion_handle_add(struct ion_client *client, struct ion_handle *handle) { struct rb_node **p = &client->handles.rb_node; struct rb_node *parent = NULL; struct ion_handle *entry; while (*p) { parent = *p; entry = rb_entry(parent, struct ion_handle, node); if (handle < entry) p = &(*p)->rb_left; else if (handle > entry) p = &(*p)->rb_right; else WARN(1, "%s: buffer already found.", __func__); } rb_link_node(&handle->node, parent, p); rb_insert_color(&handle->node, &client->handles); } struct ion_handle *ion_alloc(struct ion_client *client, size_t len, size_t align, unsigned int heap_mask, unsigned int flags) { struct rb_node *n; struct ion_handle *handle; struct ion_device *dev = client->dev; struct ion_buffer *buffer = NULL; pr_debug("%s: len %d align %d heap_mask %u flags %x\n", __func__, len, align, heap_mask, flags); /* * traverse the list of heaps available in this system in priority * order. If the heap type is supported by the client, and matches the * request of the caller allocate from it. Repeat until allocate has * succeeded or all heaps have been tried */ if (WARN_ON(!len)) return ERR_PTR(-EINVAL); len = PAGE_ALIGN(len); down_read(&dev->lock); for (n = rb_first(&dev->heaps); n != NULL; n = rb_next(n)) { struct ion_heap *heap = rb_entry(n, struct ion_heap, node); /* if the client doesn't support this heap type */ if (!((1 << heap->type) & client->heap_mask)) continue; /* if the caller didn't specify this heap type */ if (!((1 << heap->id) & heap_mask)) continue; buffer = ion_buffer_create(heap, dev, len, align, flags); if (!IS_ERR_OR_NULL(buffer)) break; } up_read(&dev->lock); if (buffer == NULL) return ERR_PTR(-ENODEV); if (IS_ERR(buffer)) return ERR_PTR(PTR_ERR(buffer)); handle = ion_handle_create(client, buffer); /* * ion_buffer_create will create a buffer with a ref_cnt of 1, * and ion_handle_create will take a second reference, drop one here */ ion_buffer_put(buffer); if (!IS_ERR(handle)) { mutex_lock(&client->lock); ion_handle_add(client, handle); mutex_unlock(&client->lock); } return handle; } EXPORT_SYMBOL(ion_alloc); void ion_free(struct ion_client *client, struct ion_handle *handle) { bool valid_handle; BUG_ON(client != handle->client); mutex_lock(&client->lock); valid_handle = ion_handle_validate(client, handle); if (!valid_handle) { WARN(1, "%s: invalid handle passed to free.\n", __func__); mutex_unlock(&client->lock); return; } ion_handle_put(handle); mutex_unlock(&client->lock); } EXPORT_SYMBOL(ion_free); int ion_phys(struct ion_client *client, struct ion_handle *handle, ion_phys_addr_t *addr, size_t *len) { struct ion_buffer *buffer; int ret; mutex_lock(&client->lock); if (!ion_handle_validate(client, handle)) { mutex_unlock(&client->lock); return -EINVAL; } buffer = handle->buffer; if (!buffer->heap->ops->phys) { pr_err("%s: ion_phys is not implemented by this heap.\n", __func__); mutex_unlock(&client->lock); return -ENODEV; } mutex_unlock(&client->lock); ret = buffer->heap->ops->phys(buffer->heap, buffer, addr, len); return ret; } EXPORT_SYMBOL(ion_phys); static void *ion_buffer_kmap_get(struct ion_buffer *buffer) { void *vaddr; if (buffer->kmap_cnt) { buffer->kmap_cnt++; return buffer->vaddr; } vaddr = buffer->heap->ops->map_kernel(buffer->heap, buffer); if (IS_ERR_OR_NULL(vaddr)) return vaddr; buffer->vaddr = vaddr; buffer->kmap_cnt++; return vaddr; } static void *ion_handle_kmap_get(struct ion_handle *handle) { struct ion_buffer *buffer = handle->buffer; void *vaddr; if (handle->kmap_cnt) { handle->kmap_cnt++; return buffer->vaddr; } vaddr = ion_buffer_kmap_get(buffer); if (IS_ERR_OR_NULL(vaddr)) return vaddr; handle->kmap_cnt++; return vaddr; } static void ion_buffer_kmap_put(struct ion_buffer *buffer) { buffer->kmap_cnt--; if (!buffer->kmap_cnt) { buffer->heap->ops->unmap_kernel(buffer->heap, buffer); buffer->vaddr = NULL; } } static void ion_handle_kmap_put(struct ion_handle *handle) { struct ion_buffer *buffer = handle->buffer; handle->kmap_cnt--; if (!handle->kmap_cnt) ion_buffer_kmap_put(buffer); } void *ion_map_kernel(struct ion_client *client, struct ion_handle *handle) { struct ion_buffer *buffer; void *vaddr; mutex_lock(&client->lock); if (!ion_handle_validate(client, handle)) { pr_err("%s: invalid handle passed to map_kernel.\n", __func__); mutex_unlock(&client->lock); return ERR_PTR(-EINVAL); } buffer = handle->buffer; if (!handle->buffer->heap->ops->map_kernel) { pr_err("%s: map_kernel is not implemented by this heap.\n", __func__); mutex_unlock(&client->lock); return ERR_PTR(-ENODEV); } mutex_lock(&buffer->lock); vaddr = ion_handle_kmap_get(handle); mutex_unlock(&buffer->lock); mutex_unlock(&client->lock); return vaddr; } EXPORT_SYMBOL(ion_map_kernel); void ion_unmap_kernel(struct ion_client *client, struct ion_handle *handle) { struct ion_buffer *buffer; mutex_lock(&client->lock); buffer = handle->buffer; mutex_lock(&buffer->lock); ion_handle_kmap_put(handle); mutex_unlock(&buffer->lock); mutex_unlock(&client->lock); } EXPORT_SYMBOL(ion_unmap_kernel); static int ion_debug_client_show(struct seq_file *s, void *unused) { struct ion_client *client = s->private; struct rb_node *n; size_t sizes[ION_NUM_HEAPS] = {0}; const char *names[ION_NUM_HEAPS] = {0}; int i; mutex_lock(&client->lock); for (n = rb_first(&client->handles); n; n = rb_next(n)) { struct ion_handle *handle = rb_entry(n, struct ion_handle, node); enum ion_heap_type type = handle->buffer->heap->type; if (!names[type]) names[type] = handle->buffer->heap->name; sizes[type] += handle->buffer->size; } mutex_unlock(&client->lock); seq_printf(s, "%16.16s: %16.16s\n", "heap_name", "size_in_bytes"); for (i = 0; i < ION_NUM_HEAPS; i++) { if (!names[i]) continue; seq_printf(s, "%16.16s: %16u\n", names[i], sizes[i]); } return 0; } static int ion_debug_client_open(struct inode *inode, struct file *file) { return single_open(file, ion_debug_client_show, inode->i_private); } static const struct file_operations debug_client_fops = { .open = ion_debug_client_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; struct ion_client *ion_client_create(struct ion_device *dev, unsigned int heap_mask, const char *name) { struct ion_client *client; struct task_struct *task; struct rb_node **p; struct rb_node *parent = NULL; struct ion_client *entry; char debug_name[64]; pid_t pid; get_task_struct(current->group_leader); task_lock(current->group_leader); pid = task_pid_nr(current->group_leader); /* don't bother to store task struct for kernel threads, they can't be killed anyway */ if (current->group_leader->flags & PF_KTHREAD) { put_task_struct(current->group_leader); task = NULL; } else { task = current->group_leader; } task_unlock(current->group_leader); client = kzalloc(sizeof(struct ion_client), GFP_KERNEL); if (!client) { if (task) put_task_struct(current->group_leader); return ERR_PTR(-ENOMEM); } client->dev = dev; client->handles = RB_ROOT; mutex_init(&client->lock); client->name = name; client->heap_mask = heap_mask; client->task = task; client->pid = pid; down_write(&dev->lock); p = &dev->clients.rb_node; while (*p) { parent = *p; entry = rb_entry(parent, struct ion_client, node); if (client < entry) p = &(*p)->rb_left; else if (client > entry) p = &(*p)->rb_right; } rb_link_node(&client->node, parent, p); rb_insert_color(&client->node, &dev->clients); snprintf(debug_name, 64, "%u", client->pid); client->debug_root = debugfs_create_file(debug_name, 0664, dev->debug_root, client, &debug_client_fops); up_write(&dev->lock); return client; } void ion_client_destroy(struct ion_client *client) { struct ion_device *dev = client->dev; struct rb_node *n; pr_debug("%s: %d\n", __func__, __LINE__); while ((n = rb_first(&client->handles))) { struct ion_handle *handle = rb_entry(n, struct ion_handle, node); ion_handle_destroy(&handle->ref); } down_write(&dev->lock); if (client->task) put_task_struct(client->task); rb_erase(&client->node, &dev->clients); debugfs_remove_recursive(client->debug_root); up_write(&dev->lock); kfree(client); } EXPORT_SYMBOL(ion_client_destroy); struct sg_table *ion_sg_table(struct ion_client *client, struct ion_handle *handle) { struct ion_buffer *buffer; struct sg_table *table; mutex_lock(&client->lock); if (!ion_handle_validate(client, handle)) { pr_err("%s: invalid handle passed to map_dma.\n", __func__); mutex_unlock(&client->lock); return ERR_PTR(-EINVAL); } buffer = handle->buffer; table = buffer->sg_table; mutex_unlock(&client->lock); return table; } EXPORT_SYMBOL(ion_sg_table); static void ion_buffer_sync_for_device(struct ion_buffer *buffer, struct device *dev, enum dma_data_direction direction); static struct sg_table *ion_map_dma_buf(struct dma_buf_attachment *attachment, enum dma_data_direction direction) { struct dma_buf *dmabuf = attachment->dmabuf; struct ion_buffer *buffer = dmabuf->priv; ion_buffer_sync_for_device(buffer, attachment->dev, direction); return buffer->sg_table; } static void ion_unmap_dma_buf(struct dma_buf_attachment *attachment, struct sg_table *table, enum dma_data_direction direction) { } static int ion_buffer_alloc_dirty(struct ion_buffer *buffer) { unsigned long pages = buffer->sg_table->nents; unsigned long length = (pages + BITS_PER_LONG - 1)/BITS_PER_LONG; buffer->dirty = kzalloc(length * sizeof(unsigned long), GFP_KERNEL); if (!buffer->dirty) return -ENOMEM; return 0; } struct ion_vma_list { struct list_head list; struct vm_area_struct *vma; }; static void ion_buffer_sync_for_device(struct ion_buffer *buffer, struct device *dev, enum dma_data_direction dir) { struct scatterlist *sg; int i; struct ion_vma_list *vma_list; pr_debug("%s: syncing for device %s\n", __func__, dev ? dev_name(dev) : "null"); if (!ion_buffer_fault_user_mappings(buffer)) return; mutex_lock(&buffer->lock); for_each_sg(buffer->sg_table->sgl, sg, buffer->sg_table->nents, i) { if (!test_bit(i, buffer->dirty)) continue; dma_sync_sg_for_device(dev, sg, 1, dir); clear_bit(i, buffer->dirty); } list_for_each_entry(vma_list, &buffer->vmas, list) { struct vm_area_struct *vma = vma_list->vma; zap_page_range(vma, vma->vm_start, vma->vm_end - vma->vm_start, NULL); } mutex_unlock(&buffer->lock); } int ion_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf) { struct ion_buffer *buffer = vma->vm_private_data; struct scatterlist *sg; int i; mutex_lock(&buffer->lock); set_bit(vmf->pgoff, buffer->dirty); for_each_sg(buffer->sg_table->sgl, sg, buffer->sg_table->nents, i) { if (i != vmf->pgoff) continue; dma_sync_sg_for_cpu(NULL, sg, 1, DMA_BIDIRECTIONAL); vm_insert_page(vma, (unsigned long)vmf->virtual_address, sg_page(sg)); break; } mutex_unlock(&buffer->lock); return VM_FAULT_NOPAGE; } static void ion_vm_open(struct vm_area_struct *vma) { struct ion_buffer *buffer = vma->vm_private_data; struct ion_vma_list *vma_list; vma_list = kmalloc(sizeof(struct ion_vma_list), GFP_KERNEL); if (!vma_list) return; vma_list->vma = vma; mutex_lock(&buffer->lock); list_add(&vma_list->list, &buffer->vmas); mutex_unlock(&buffer->lock); pr_debug("%s: adding %p\n", __func__, vma); } static void ion_vm_close(struct vm_area_struct *vma) { struct ion_buffer *buffer = vma->vm_private_data; struct ion_vma_list *vma_list, *tmp; pr_debug("%s\n", __func__); mutex_lock(&buffer->lock); list_for_each_entry_safe(vma_list, tmp, &buffer->vmas, list) { if (vma_list->vma != vma) continue; list_del(&vma_list->list); kfree(vma_list); pr_debug("%s: deleting %p\n", __func__, vma); break; } mutex_unlock(&buffer->lock); } struct vm_operations_struct ion_vma_ops = { .open = ion_vm_open, .close = ion_vm_close, .fault = ion_vm_fault, }; static int ion_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma) { struct ion_buffer *buffer = dmabuf->priv; int ret = 0; if (!buffer->heap->ops->map_user) { pr_err("%s: this heap does not define a method for mapping " "to userspace\n", __func__); return -EINVAL; } if (ion_buffer_fault_user_mappings(buffer)) { vma->vm_private_data = buffer; vma->vm_ops = &ion_vma_ops; ion_vm_open(vma); return 0; } if (!(buffer->flags & ION_FLAG_CACHED)) vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); mutex_lock(&buffer->lock); /* now map it to userspace */ ret = buffer->heap->ops->map_user(buffer->heap, buffer, vma); mutex_unlock(&buffer->lock); if (ret) pr_err("%s: failure mapping buffer to userspace\n", __func__); return ret; } static void ion_dma_buf_release(struct dma_buf *dmabuf) { struct ion_buffer *buffer = dmabuf->priv; ion_buffer_put(buffer); } static void *ion_dma_buf_kmap(struct dma_buf *dmabuf, unsigned long offset) { struct ion_buffer *buffer = dmabuf->priv; return buffer->vaddr + offset * PAGE_SIZE; } static void ion_dma_buf_kunmap(struct dma_buf *dmabuf, unsigned long offset, void *ptr) { return; } static int ion_dma_buf_begin_cpu_access(struct dma_buf *dmabuf, size_t start, size_t len, enum dma_data_direction direction) { struct ion_buffer *buffer = dmabuf->priv; void *vaddr; if (!buffer->heap->ops->map_kernel) { pr_err("%s: map kernel is not implemented by this heap.\n", __func__); return -ENODEV; } mutex_lock(&buffer->lock); vaddr = ion_buffer_kmap_get(buffer); mutex_unlock(&buffer->lock); if (IS_ERR(vaddr)) return PTR_ERR(vaddr); if (!vaddr) return -ENOMEM; return 0; } static void ion_dma_buf_end_cpu_access(struct dma_buf *dmabuf, size_t start, size_t len, enum dma_data_direction direction) { struct ion_buffer *buffer = dmabuf->priv; mutex_lock(&buffer->lock); ion_buffer_kmap_put(buffer); mutex_unlock(&buffer->lock); } struct dma_buf_ops dma_buf_ops = { .map_dma_buf = ion_map_dma_buf, .unmap_dma_buf = ion_unmap_dma_buf, .mmap = ion_mmap, .release = ion_dma_buf_release, .begin_cpu_access = ion_dma_buf_begin_cpu_access, .end_cpu_access = ion_dma_buf_end_cpu_access, .kmap_atomic = ion_dma_buf_kmap, .kunmap_atomic = ion_dma_buf_kunmap, .kmap = ion_dma_buf_kmap, .kunmap = ion_dma_buf_kunmap, }; int ion_share_dma_buf(struct ion_client *client, struct ion_handle *handle) { struct ion_buffer *buffer; struct dma_buf *dmabuf; bool valid_handle; int fd; mutex_lock(&client->lock); valid_handle = ion_handle_validate(client, handle); mutex_unlock(&client->lock); if (!valid_handle) { WARN(1, "%s: invalid handle passed to share.\n", __func__); return -EINVAL; } buffer = handle->buffer; ion_buffer_get(buffer); dmabuf = dma_buf_export(buffer, &dma_buf_ops, buffer->size, O_RDWR); if (IS_ERR(dmabuf)) { ion_buffer_put(buffer); return PTR_ERR(dmabuf); } fd = dma_buf_fd(dmabuf, O_CLOEXEC); if (fd < 0) dma_buf_put(dmabuf); return fd; } EXPORT_SYMBOL(ion_share_dma_buf); struct ion_handle *ion_import_dma_buf(struct ion_client *client, int fd) { struct dma_buf *dmabuf; struct ion_buffer *buffer; struct ion_handle *handle; dmabuf = dma_buf_get(fd); if (IS_ERR_OR_NULL(dmabuf)) return ERR_PTR(PTR_ERR(dmabuf)); /* if this memory came from ion */ if (dmabuf->ops != &dma_buf_ops) { pr_err("%s: can not import dmabuf from another exporter\n", __func__); dma_buf_put(dmabuf); return ERR_PTR(-EINVAL); } buffer = dmabuf->priv; mutex_lock(&client->lock); /* if a handle exists for this buffer just take a reference to it */ handle = ion_handle_lookup(client, buffer); if (!IS_ERR_OR_NULL(handle)) { ion_handle_get(handle); goto end; } handle = ion_handle_create(client, buffer); if (IS_ERR_OR_NULL(handle)) goto end; ion_handle_add(client, handle); end: mutex_unlock(&client->lock); dma_buf_put(dmabuf); return handle; } EXPORT_SYMBOL(ion_import_dma_buf); static int ion_sync_for_device(struct ion_client *client, int fd) { struct dma_buf *dmabuf; struct ion_buffer *buffer; dmabuf = dma_buf_get(fd); if (IS_ERR_OR_NULL(dmabuf)) return PTR_ERR(dmabuf); /* if this memory came from ion */ if (dmabuf->ops != &dma_buf_ops) { pr_err("%s: can not sync dmabuf from another exporter\n", __func__); dma_buf_put(dmabuf); return -EINVAL; } buffer = dmabuf->priv; dma_sync_sg_for_device(NULL, buffer->sg_table->sgl, buffer->sg_table->nents, DMA_BIDIRECTIONAL); dma_buf_put(dmabuf); return 0; } static long ion_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { struct ion_client *client = filp->private_data; switch (cmd) { case ION_IOC_ALLOC: { struct ion_allocation_data data; if (copy_from_user(&data, (void __user *)arg, sizeof(data))) return -EFAULT; data.handle = ion_alloc(client, data.len, data.align, data.heap_mask, data.flags); if (IS_ERR(data.handle)) return PTR_ERR(data.handle); if (copy_to_user((void __user *)arg, &data, sizeof(data))) { ion_free(client, data.handle); return -EFAULT; } break; } case ION_IOC_FREE: { struct ion_handle_data data; bool valid; if (copy_from_user(&data, (void __user *)arg, sizeof(struct ion_handle_data))) return -EFAULT; mutex_lock(&client->lock); valid = ion_handle_validate(client, data.handle); mutex_unlock(&client->lock); if (!valid) return -EINVAL; ion_free(client, data.handle); break; } case ION_IOC_SHARE: { struct ion_fd_data data; if (copy_from_user(&data, (void __user *)arg, sizeof(data))) return -EFAULT; data.fd = ion_share_dma_buf(client, data.handle); if (copy_to_user((void __user *)arg, &data, sizeof(data))) return -EFAULT; if (data.fd < 0) return data.fd; break; } case ION_IOC_IMPORT: { struct ion_fd_data data; int ret = 0; if (copy_from_user(&data, (void __user *)arg, sizeof(struct ion_fd_data))) return -EFAULT; data.handle = ion_import_dma_buf(client, data.fd); if (IS_ERR(data.handle)) { ret = PTR_ERR(data.handle); data.handle = NULL; } if (copy_to_user((void __user *)arg, &data, sizeof(struct ion_fd_data))) return -EFAULT; if (ret < 0) return ret; break; } case ION_IOC_SYNC: { struct ion_fd_data data; if (copy_from_user(&data, (void __user *)arg, sizeof(struct ion_fd_data))) return -EFAULT; ion_sync_for_device(client, data.fd); break; } case ION_IOC_CUSTOM: { struct ion_device *dev = client->dev; struct ion_custom_data data; if (!dev->custom_ioctl) return -ENOTTY; if (copy_from_user(&data, (void __user *)arg, sizeof(struct ion_custom_data))) return -EFAULT; return dev->custom_ioctl(client, data.cmd, data.arg); } default: return -ENOTTY; } return 0; } static int ion_release(struct inode *inode, struct file *file) { struct ion_client *client = file->private_data; pr_debug("%s: %d\n", __func__, __LINE__); ion_client_destroy(client); return 0; } static int ion_open(struct inode *inode, struct file *file) { struct miscdevice *miscdev = file->private_data; struct ion_device *dev = container_of(miscdev, struct ion_device, dev); struct ion_client *client; pr_debug("%s: %d\n", __func__, __LINE__); client = ion_client_create(dev, -1, "user"); if (IS_ERR_OR_NULL(client)) return PTR_ERR(client); file->private_data = client; return 0; } static const struct file_operations ion_fops = { .owner = THIS_MODULE, .open = ion_open, .release = ion_release, .unlocked_ioctl = ion_ioctl, }; static size_t ion_debug_heap_total(struct ion_client *client, enum ion_heap_type type) { size_t size = 0; struct rb_node *n; mutex_lock(&client->lock); for (n = rb_first(&client->handles); n; n = rb_next(n)) { struct ion_handle *handle = rb_entry(n, struct ion_handle, node); if (handle->buffer->heap->type == type) size += handle->buffer->size; } mutex_unlock(&client->lock); return size; } static int ion_debug_heap_show(struct seq_file *s, void *unused) { struct ion_heap *heap = s->private; struct ion_device *dev = heap->dev; struct rb_node *n; size_t total_size = 0; size_t total_orphaned_size = 0; seq_printf(s, "%16.s %16.s %16.s\n", "client", "pid", "size"); seq_printf(s, "----------------------------------------------------\n"); for (n = rb_first(&dev->clients); n; n = rb_next(n)) { struct ion_client *client = rb_entry(n, struct ion_client, node); size_t size = ion_debug_heap_total(client, heap->type); if (!size) continue; if (client->task) { char task_comm[TASK_COMM_LEN]; get_task_comm(task_comm, client->task); seq_printf(s, "%16.s %16u %16u\n", task_comm, client->pid, size); } else { seq_printf(s, "%16.s %16u %16u\n", client->name, client->pid, size); } } seq_printf(s, "----------------------------------------------------\n"); seq_printf(s, "orphaned allocations (info is from last known client):" "\n"); mutex_lock(&dev->buffer_lock); for (n = rb_first(&dev->buffers); n; n = rb_next(n)) { struct ion_buffer *buffer = rb_entry(n, struct ion_buffer, node); if (buffer->heap->type != heap->type) continue; total_size += buffer->size; if (!buffer->handle_count) { seq_printf(s, "%16.s %16u %16u %d %d\n", buffer->task_comm, buffer->pid, buffer->size, buffer->kmap_cnt, atomic_read(&buffer->ref.refcount)); total_orphaned_size += buffer->size; } } mutex_unlock(&dev->buffer_lock); seq_printf(s, "----------------------------------------------------\n"); seq_printf(s, "%16.s %16u\n", "total orphaned", total_orphaned_size); seq_printf(s, "%16.s %16u\n", "total ", total_size); seq_printf(s, "----------------------------------------------------\n"); if (heap->debug_show) heap->debug_show(heap, s, unused); return 0; } static int ion_debug_heap_open(struct inode *inode, struct file *file) { return single_open(file, ion_debug_heap_show, inode->i_private); } static const struct file_operations debug_heap_fops = { .open = ion_debug_heap_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; void ion_device_add_heap(struct ion_device *dev, struct ion_heap *heap) { struct rb_node **p = &dev->heaps.rb_node; struct rb_node *parent = NULL; struct ion_heap *entry; if (!heap->ops->allocate || !heap->ops->free || !heap->ops->map_dma || !heap->ops->unmap_dma) pr_err("%s: can not add heap with invalid ops struct.\n", __func__); heap->dev = dev; down_write(&dev->lock); while (*p) { parent = *p; entry = rb_entry(parent, struct ion_heap, node); if (heap->id < entry->id) { p = &(*p)->rb_left; } else if (heap->id > entry->id ) { p = &(*p)->rb_right; } else { pr_err("%s: can not insert multiple heaps with " "id %d\n", __func__, heap->id); goto end; } } rb_link_node(&heap->node, parent, p); rb_insert_color(&heap->node, &dev->heaps); debugfs_create_file(heap->name, 0664, dev->debug_root, heap, &debug_heap_fops); end: up_write(&dev->lock); } struct ion_device *ion_device_create(long (*custom_ioctl) (struct ion_client *client, unsigned int cmd, unsigned long arg)) { struct ion_device *idev; int ret; idev = kzalloc(sizeof(struct ion_device), GFP_KERNEL); if (!idev) return ERR_PTR(-ENOMEM); idev->dev.minor = MISC_DYNAMIC_MINOR; idev->dev.name = "ion"; idev->dev.fops = &ion_fops; idev->dev.parent = NULL; ret = misc_register(&idev->dev); if (ret) { pr_err("ion: failed to register misc device.\n"); return ERR_PTR(ret); } idev->debug_root = debugfs_create_dir("ion", NULL); if (IS_ERR_OR_NULL(idev->debug_root)) pr_err("ion: failed to create debug files.\n"); idev->custom_ioctl = custom_ioctl; idev->buffers = RB_ROOT; mutex_init(&idev->buffer_lock); init_rwsem(&idev->lock); idev->heaps = RB_ROOT; idev->clients = RB_ROOT; return idev; } void ion_device_destroy(struct ion_device *dev) { misc_deregister(&dev->dev); /* XXX need to free the heaps and clients ? */ kfree(dev); } void __init ion_reserve(struct ion_platform_data *data) { int i, ret; for (i = 0; i < data->nr; i++) { if (data->heaps[i].size == 0) continue; ret = memblock_reserve(data->heaps[i].base, data->heaps[i].size); if (ret) pr_err("memblock reserve of %x@%lx failed\n", data->heaps[i].size, data->heaps[i].base); } }