/************************************************************************** * * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA * All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #define pr_fmt(fmt) "[TTM] " fmt #include "ttm/ttm_memory.h" #include "ttm/ttm_module.h" #include "ttm/ttm_page_alloc.h" #include <linux/spinlock.h> #include <linux/sched.h> #include <linux/wait.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/slab.h> #define TTM_MEMORY_ALLOC_RETRIES 4 struct ttm_mem_zone { struct kobject kobj; struct ttm_mem_global *glob; const char *name; uint64_t zone_mem; uint64_t emer_mem; uint64_t max_mem; uint64_t swap_limit; uint64_t used_mem; }; static struct attribute ttm_mem_sys = { .name = "zone_memory", .mode = S_IRUGO }; static struct attribute ttm_mem_emer = { .name = "emergency_memory", .mode = S_IRUGO | S_IWUSR }; static struct attribute ttm_mem_max = { .name = "available_memory", .mode = S_IRUGO | S_IWUSR }; static struct attribute ttm_mem_swap = { .name = "swap_limit", .mode = S_IRUGO | S_IWUSR }; static struct attribute ttm_mem_used = { .name = "used_memory", .mode = S_IRUGO }; static void ttm_mem_zone_kobj_release(struct kobject *kobj) { struct ttm_mem_zone *zone = container_of(kobj, struct ttm_mem_zone, kobj); pr_info("Zone %7s: Used memory at exit: %llu kiB\n", zone->name, (unsigned long long)zone->used_mem >> 10); kfree(zone); } static ssize_t ttm_mem_zone_show(struct kobject *kobj, struct attribute *attr, char *buffer) { struct ttm_mem_zone *zone = container_of(kobj, struct ttm_mem_zone, kobj); uint64_t val = 0; spin_lock(&zone->glob->lock); if (attr == &ttm_mem_sys) val = zone->zone_mem; else if (attr == &ttm_mem_emer) val = zone->emer_mem; else if (attr == &ttm_mem_max) val = zone->max_mem; else if (attr == &ttm_mem_swap) val = zone->swap_limit; else if (attr == &ttm_mem_used) val = zone->used_mem; spin_unlock(&zone->glob->lock); return snprintf(buffer, PAGE_SIZE, "%llu\n", (unsigned long long) val >> 10); } static void ttm_check_swapping(struct ttm_mem_global *glob); static ssize_t ttm_mem_zone_store(struct kobject *kobj, struct attribute *attr, const char *buffer, size_t size) { struct ttm_mem_zone *zone = container_of(kobj, struct ttm_mem_zone, kobj); int chars; unsigned long val; uint64_t val64; chars = sscanf(buffer, "%lu", &val); if (chars == 0) return size; val64 = val; val64 <<= 10; spin_lock(&zone->glob->lock); if (val64 > zone->zone_mem) val64 = zone->zone_mem; if (attr == &ttm_mem_emer) { zone->emer_mem = val64; if (zone->max_mem > val64) zone->max_mem = val64; } else if (attr == &ttm_mem_max) { zone->max_mem = val64; if (zone->emer_mem < val64) zone->emer_mem = val64; } else if (attr == &ttm_mem_swap) zone->swap_limit = val64; spin_unlock(&zone->glob->lock); ttm_check_swapping(zone->glob); return size; } static struct attribute *ttm_mem_zone_attrs[] = { &ttm_mem_sys, &ttm_mem_emer, &ttm_mem_max, &ttm_mem_swap, &ttm_mem_used, NULL }; static const struct sysfs_ops ttm_mem_zone_ops = { .show = &ttm_mem_zone_show, .store = &ttm_mem_zone_store }; static struct kobj_type ttm_mem_zone_kobj_type = { .release = &ttm_mem_zone_kobj_release, .sysfs_ops = &ttm_mem_zone_ops, .default_attrs = ttm_mem_zone_attrs, }; static void ttm_mem_global_kobj_release(struct kobject *kobj) { struct ttm_mem_global *glob = container_of(kobj, struct ttm_mem_global, kobj); kfree(glob); } static struct kobj_type ttm_mem_glob_kobj_type = { .release = &ttm_mem_global_kobj_release, }; static bool ttm_zones_above_swap_target(struct ttm_mem_global *glob, bool from_wq, uint64_t extra) { unsigned int i; struct ttm_mem_zone *zone; uint64_t target; for (i = 0; i < glob->num_zones; ++i) { zone = glob->zones[i]; if (from_wq) target = zone->swap_limit; else if (capable(CAP_SYS_ADMIN)) target = zone->emer_mem; else target = zone->max_mem; target = (extra > target) ? 0ULL : target; if (zone->used_mem > target) return true; } return false; } /** * At this point we only support a single shrink callback. * Extend this if needed, perhaps using a linked list of callbacks. * Note that this function is reentrant: * many threads may try to swap out at any given time. */ static void ttm_shrink(struct ttm_mem_global *glob, bool from_wq, uint64_t extra) { int ret; struct ttm_mem_shrink *shrink; spin_lock(&glob->lock); if (glob->shrink == NULL) goto out; while (ttm_zones_above_swap_target(glob, from_wq, extra)) { shrink = glob->shrink; spin_unlock(&glob->lock); ret = shrink->do_shrink(shrink); spin_lock(&glob->lock); if (unlikely(ret != 0)) goto out; } out: spin_unlock(&glob->lock); } static void ttm_shrink_work(struct work_struct *work) { struct ttm_mem_global *glob = container_of(work, struct ttm_mem_global, work); ttm_shrink(glob, true, 0ULL); } static int ttm_mem_init_kernel_zone(struct ttm_mem_global *glob, const struct sysinfo *si) { struct ttm_mem_zone *zone = kzalloc(sizeof(*zone), GFP_KERNEL); uint64_t mem; int ret; if (unlikely(!zone)) return -ENOMEM; mem = si->totalram - si->totalhigh; mem *= si->mem_unit; zone->name = "kernel"; zone->zone_mem = mem; zone->max_mem = mem >> 1; zone->emer_mem = (mem >> 1) + (mem >> 2); zone->swap_limit = zone->max_mem - (mem >> 3); zone->used_mem = 0; zone->glob = glob; glob->zone_kernel = zone; ret = kobject_init_and_add( &zone->kobj, &ttm_mem_zone_kobj_type, &glob->kobj, zone->name); if (unlikely(ret != 0)) { kobject_put(&zone->kobj); return ret; } glob->zones[glob->num_zones++] = zone; return 0; } #ifdef CONFIG_HIGHMEM static int ttm_mem_init_highmem_zone(struct ttm_mem_global *glob, const struct sysinfo *si) { struct ttm_mem_zone *zone; uint64_t mem; int ret; if (si->totalhigh == 0) return 0; zone = kzalloc(sizeof(*zone), GFP_KERNEL); if (unlikely(!zone)) return -ENOMEM; mem = si->totalram; mem *= si->mem_unit; zone->name = "highmem"; zone->zone_mem = mem; zone->max_mem = mem >> 1; zone->emer_mem = (mem >> 1) + (mem >> 2); zone->swap_limit = zone->max_mem - (mem >> 3); zone->used_mem = 0; zone->glob = glob; glob->zone_highmem = zone; ret = kobject_init_and_add( &zone->kobj, &ttm_mem_zone_kobj_type, &glob->kobj, zone->name); if (unlikely(ret != 0)) { kobject_put(&zone->kobj); return ret; } glob->zones[glob->num_zones++] = zone; return 0; } #else static int ttm_mem_init_dma32_zone(struct ttm_mem_global *glob, const struct sysinfo *si) { struct ttm_mem_zone *zone = kzalloc(sizeof(*zone), GFP_KERNEL); uint64_t mem; int ret; if (unlikely(!zone)) return -ENOMEM; mem = si->totalram; mem *= si->mem_unit; /** * No special dma32 zone needed. */ if (mem <= ((uint64_t) 1ULL << 32)) { kfree(zone); return 0; } /* * Limit max dma32 memory to 4GB for now * until we can figure out how big this * zone really is. */ mem = ((uint64_t) 1ULL << 32); zone->name = "dma32"; zone->zone_mem = mem; zone->max_mem = mem >> 1; zone->emer_mem = (mem >> 1) + (mem >> 2); zone->swap_limit = zone->max_mem - (mem >> 3); zone->used_mem = 0; zone->glob = glob; glob->zone_dma32 = zone; ret = kobject_init_and_add( &zone->kobj, &ttm_mem_zone_kobj_type, &glob->kobj, zone->name); if (unlikely(ret != 0)) { kobject_put(&zone->kobj); return ret; } glob->zones[glob->num_zones++] = zone; return 0; } #endif int ttm_mem_global_init(struct ttm_mem_global *glob) { struct sysinfo si; int ret; int i; struct ttm_mem_zone *zone; spin_lock_init(&glob->lock); glob->swap_queue = create_singlethread_workqueue("ttm_swap"); INIT_WORK(&glob->work, ttm_shrink_work); init_waitqueue_head(&glob->queue); ret = kobject_init_and_add( &glob->kobj, &ttm_mem_glob_kobj_type, ttm_get_kobj(), "memory_accounting"); if (unlikely(ret != 0)) { kobject_put(&glob->kobj); return ret; } si_meminfo(&si); ret = ttm_mem_init_kernel_zone(glob, &si); if (unlikely(ret != 0)) goto out_no_zone; #ifdef CONFIG_HIGHMEM ret = ttm_mem_init_highmem_zone(glob, &si); if (unlikely(ret != 0)) goto out_no_zone; #else ret = ttm_mem_init_dma32_zone(glob, &si); if (unlikely(ret != 0)) goto out_no_zone; #endif for (i = 0; i < glob->num_zones; ++i) { zone = glob->zones[i]; pr_info("Zone %7s: Available graphics memory: %llu kiB\n", zone->name, (unsigned long long)zone->max_mem >> 10); } ttm_page_alloc_init(glob, glob->zone_kernel->max_mem/(2*PAGE_SIZE)); ttm_dma_page_alloc_init(glob, glob->zone_kernel->max_mem/(2*PAGE_SIZE)); return 0; out_no_zone: ttm_mem_global_release(glob); return ret; } EXPORT_SYMBOL(ttm_mem_global_init); void ttm_mem_global_release(struct ttm_mem_global *glob) { unsigned int i; struct ttm_mem_zone *zone; /* let the page allocator first stop the shrink work. */ ttm_page_alloc_fini(); ttm_dma_page_alloc_fini(); flush_workqueue(glob->swap_queue); destroy_workqueue(glob->swap_queue); glob->swap_queue = NULL; for (i = 0; i < glob->num_zones; ++i) { zone = glob->zones[i]; kobject_del(&zone->kobj); kobject_put(&zone->kobj); } kobject_del(&glob->kobj); kobject_put(&glob->kobj); } EXPORT_SYMBOL(ttm_mem_global_release); static void ttm_check_swapping(struct ttm_mem_global *glob) { bool needs_swapping = false; unsigned int i; struct ttm_mem_zone *zone; spin_lock(&glob->lock); for (i = 0; i < glob->num_zones; ++i) { zone = glob->zones[i]; if (zone->used_mem > zone->swap_limit) { needs_swapping = true; break; } } spin_unlock(&glob->lock); if (unlikely(needs_swapping)) (void)queue_work(glob->swap_queue, &glob->work); } static void ttm_mem_global_free_zone(struct ttm_mem_global *glob, struct ttm_mem_zone *single_zone, uint64_t amount) { unsigned int i; struct ttm_mem_zone *zone; spin_lock(&glob->lock); for (i = 0; i < glob->num_zones; ++i) { zone = glob->zones[i]; if (single_zone && zone != single_zone) continue; zone->used_mem -= amount; } spin_unlock(&glob->lock); } void ttm_mem_global_free(struct ttm_mem_global *glob, uint64_t amount) { return ttm_mem_global_free_zone(glob, NULL, amount); } EXPORT_SYMBOL(ttm_mem_global_free); static int ttm_mem_global_reserve(struct ttm_mem_global *glob, struct ttm_mem_zone *single_zone, uint64_t amount, bool reserve) { uint64_t limit; int ret = -ENOMEM; unsigned int i; struct ttm_mem_zone *zone; spin_lock(&glob->lock); for (i = 0; i < glob->num_zones; ++i) { zone = glob->zones[i]; if (single_zone && zone != single_zone) continue; limit = (capable(CAP_SYS_ADMIN)) ? zone->emer_mem : zone->max_mem; if (zone->used_mem > limit) goto out_unlock; } if (reserve) { for (i = 0; i < glob->num_zones; ++i) { zone = glob->zones[i]; if (single_zone && zone != single_zone) continue; zone->used_mem += amount; } } ret = 0; out_unlock: spin_unlock(&glob->lock); ttm_check_swapping(glob); return ret; } static int ttm_mem_global_alloc_zone(struct ttm_mem_global *glob, struct ttm_mem_zone *single_zone, uint64_t memory, bool no_wait, bool interruptible) { int count = TTM_MEMORY_ALLOC_RETRIES; while (unlikely(ttm_mem_global_reserve(glob, single_zone, memory, true) != 0)) { if (no_wait) return -ENOMEM; if (unlikely(count-- == 0)) return -ENOMEM; ttm_shrink(glob, false, memory + (memory >> 2) + 16); } return 0; } int ttm_mem_global_alloc(struct ttm_mem_global *glob, uint64_t memory, bool no_wait, bool interruptible) { /** * Normal allocations of kernel memory are registered in * all zones. */ return ttm_mem_global_alloc_zone(glob, NULL, memory, no_wait, interruptible); } EXPORT_SYMBOL(ttm_mem_global_alloc); int ttm_mem_global_alloc_page(struct ttm_mem_global *glob, struct page *page, bool no_wait, bool interruptible) { struct ttm_mem_zone *zone = NULL; /** * Page allocations may be registed in a single zone * only if highmem or !dma32. */ #ifdef CONFIG_HIGHMEM if (PageHighMem(page) && glob->zone_highmem != NULL) zone = glob->zone_highmem; #else if (glob->zone_dma32 && page_to_pfn(page) > 0x00100000UL) zone = glob->zone_kernel; #endif return ttm_mem_global_alloc_zone(glob, zone, PAGE_SIZE, no_wait, interruptible); } void ttm_mem_global_free_page(struct ttm_mem_global *glob, struct page *page) { struct ttm_mem_zone *zone = NULL; #ifdef CONFIG_HIGHMEM if (PageHighMem(page) && glob->zone_highmem != NULL) zone = glob->zone_highmem; #else if (glob->zone_dma32 && page_to_pfn(page) > 0x00100000UL) zone = glob->zone_kernel; #endif ttm_mem_global_free_zone(glob, zone, PAGE_SIZE); } size_t ttm_round_pot(size_t size) { if ((size & (size - 1)) == 0) return size; else if (size > PAGE_SIZE) return PAGE_ALIGN(size); else { size_t tmp_size = 4; while (tmp_size < size) tmp_size <<= 1; return tmp_size; } return 0; } EXPORT_SYMBOL(ttm_round_pot);