/* * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Portions Copyright (C) Cisco Systems, Inc. */ #ifndef __ASM_MACH_POWERTV_IOREMAP_H #define __ASM_MACH_POWERTV_IOREMAP_H #include <linux/types.h> #include <linux/log2.h> #include <linux/compiler.h> #include <asm/pgtable-bits.h> #include <asm/addrspace.h> /* We're going to mess with bits, so get sizes */ #define IOR_BPC 8 /* Bits per char */ #define IOR_PHYS_BITS (IOR_BPC * sizeof(phys_addr_t)) #define IOR_DMA_BITS (IOR_BPC * sizeof(dma_addr_t)) /* * Define the granularity of physical/DMA mapping in terms of the number * of bits that defines the offset within a grain. These will be the * least significant bits of the address. The rest of a physical or DMA * address will be used to index into an appropriate table to find the * offset to add to the address to yield the corresponding DMA or physical * address, respectively. */ #define IOR_LSBITS 22 /* Bits in a grain */ /* * Compute the number of most significant address bits after removing those * used for the offset within a grain and then compute the number of table * entries for the conversion. */ #define IOR_PHYS_MSBITS (IOR_PHYS_BITS - IOR_LSBITS) #define IOR_NUM_PHYS_TO_DMA ((phys_addr_t) 1 << IOR_PHYS_MSBITS) #define IOR_DMA_MSBITS (IOR_DMA_BITS - IOR_LSBITS) #define IOR_NUM_DMA_TO_PHYS ((dma_addr_t) 1 << IOR_DMA_MSBITS) /* * Define data structures used as elements in the arrays for the conversion * between physical and DMA addresses. We do some slightly fancy math to * compute the width of the offset element of the conversion tables so * that we can have the smallest conversion tables. Next, round up the * sizes to the next higher power of two, i.e. the offset element will have * 8, 16, 32, 64, etc. bits. This eliminates the need to mask off any * bits. Finally, we compute a shift value that puts the most significant * bits of the offset into the most significant bits of the offset element. * This makes it more efficient on processors without barrel shifters and * easier to see the values if the conversion table is dumped in binary. */ #define _IOR_OFFSET_WIDTH(n) (1 << order_base_2(n)) #define IOR_OFFSET_WIDTH(n) \ (_IOR_OFFSET_WIDTH(n) < 8 ? 8 : _IOR_OFFSET_WIDTH(n)) #define IOR_PHYS_OFFSET_BITS IOR_OFFSET_WIDTH(IOR_PHYS_MSBITS) #define IOR_PHYS_SHIFT (IOR_PHYS_BITS - IOR_PHYS_OFFSET_BITS) #define IOR_DMA_OFFSET_BITS IOR_OFFSET_WIDTH(IOR_DMA_MSBITS) #define IOR_DMA_SHIFT (IOR_DMA_BITS - IOR_DMA_OFFSET_BITS) struct ior_phys_to_dma { dma_addr_t offset:IOR_DMA_OFFSET_BITS __packed __aligned((IOR_DMA_OFFSET_BITS / IOR_BPC)); }; struct ior_dma_to_phys { dma_addr_t offset:IOR_PHYS_OFFSET_BITS __packed __aligned((IOR_PHYS_OFFSET_BITS / IOR_BPC)); }; extern struct ior_phys_to_dma _ior_phys_to_dma[IOR_NUM_PHYS_TO_DMA]; extern struct ior_dma_to_phys _ior_dma_to_phys[IOR_NUM_DMA_TO_PHYS]; static inline dma_addr_t _phys_to_dma_offset_raw(phys_addr_t phys) { return (dma_addr_t)_ior_phys_to_dma[phys >> IOR_LSBITS].offset; } static inline dma_addr_t _dma_to_phys_offset_raw(dma_addr_t dma) { return (dma_addr_t)_ior_dma_to_phys[dma >> IOR_LSBITS].offset; } /* These are not portable and should not be used in drivers. Drivers should * be using ioremap() and friends to map physical addresses to virtual * addresses and dma_map*() and friends to map virtual addresses into DMA * addresses and back. */ static inline dma_addr_t phys_to_dma(phys_addr_t phys) { return phys + (_phys_to_dma_offset_raw(phys) << IOR_PHYS_SHIFT); } static inline phys_addr_t dma_to_phys(dma_addr_t dma) { return dma + (_dma_to_phys_offset_raw(dma) << IOR_DMA_SHIFT); } extern void ioremap_add_map(dma_addr_t phys, phys_addr_t alias, dma_addr_t size); /* * Allow physical addresses to be fixed up to help peripherals located * outside the low 32-bit range -- generic pass-through version. */ static inline phys_t fixup_bigphys_addr(phys_t phys_addr, phys_t size) { return phys_addr; } /* * Handle the special case of addresses the area aliased into the first * 512 MiB of the processor's physical address space. These turn into either * kseg0 or kseg1 addresses, depending on flags. */ static inline void __iomem *plat_ioremap(phys_t start, unsigned long size, unsigned long flags) { phys_addr_t start_offset; void __iomem *result = NULL; /* Start by checking to see whether this is an aliased address */ start_offset = _dma_to_phys_offset_raw(start); /* * If: * o the memory is aliased into the first 512 MiB, and * o the start and end are in the same RAM bank, and * o we don't have a zero size or wrap around, and * o we are supposed to create an uncached mapping, * handle this is a kseg0 or kseg1 address */ if (start_offset != 0) { phys_addr_t last; dma_addr_t dma_to_phys_offset; last = start + size - 1; dma_to_phys_offset = _dma_to_phys_offset_raw(last) << IOR_DMA_SHIFT; if (dma_to_phys_offset == start_offset && size != 0 && start <= last) { phys_t adjusted_start; adjusted_start = start + start_offset; if (flags == _CACHE_UNCACHED) result = (void __iomem *) (unsigned long) CKSEG1ADDR(adjusted_start); else result = (void __iomem *) (unsigned long) CKSEG0ADDR(adjusted_start); } } return result; } static inline int plat_iounmap(const volatile void __iomem *addr) { return 0; } #endif /* __ASM_MACH_POWERTV_IOREMAP_H */