From 871480933a1c28f8a9fed4c4d34d06c439a7a422 Mon Sep 17 00:00:00 2001 From: Srikant Patnaik Date: Sun, 11 Jan 2015 12:28:04 +0530 Subject: Moved, renamed, and deleted files The original directory structure was scattered and unorganized. Changes are basically to make it look like kernel structure. --- fs/ntfs/layout.h | 2435 ++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 2435 insertions(+) create mode 100644 fs/ntfs/layout.h (limited to 'fs/ntfs/layout.h') diff --git a/fs/ntfs/layout.h b/fs/ntfs/layout.h new file mode 100644 index 00000000..809c0e6d --- /dev/null +++ b/fs/ntfs/layout.h @@ -0,0 +1,2435 @@ +/* + * layout.h - All NTFS associated on-disk structures. Part of the Linux-NTFS + * project. + * + * Copyright (c) 2001-2005 Anton Altaparmakov + * Copyright (c) 2002 Richard Russon + * + * This program/include file is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License as published + * by the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program/include file is distributed in the hope that it will be + * useful, but WITHOUT ANY WARRANTY; without even the implied warranty + * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program (in the main directory of the Linux-NTFS + * distribution in the file COPYING); if not, write to the Free Software + * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA + */ + +#ifndef _LINUX_NTFS_LAYOUT_H +#define _LINUX_NTFS_LAYOUT_H + +#include +#include +#include +#include + +#include "types.h" + +/* The NTFS oem_id "NTFS " */ +#define magicNTFS cpu_to_le64(0x202020205346544eULL) + +/* + * Location of bootsector on partition: + * The standard NTFS_BOOT_SECTOR is on sector 0 of the partition. + * On NT4 and above there is one backup copy of the boot sector to + * be found on the last sector of the partition (not normally accessible + * from within Windows as the bootsector contained number of sectors + * value is one less than the actual value!). + * On versions of NT 3.51 and earlier, the backup copy was located at + * number of sectors/2 (integer divide), i.e. in the middle of the volume. + */ + +/* + * BIOS parameter block (bpb) structure. + */ +typedef struct { + le16 bytes_per_sector; /* Size of a sector in bytes. */ + u8 sectors_per_cluster; /* Size of a cluster in sectors. */ + le16 reserved_sectors; /* zero */ + u8 fats; /* zero */ + le16 root_entries; /* zero */ + le16 sectors; /* zero */ + u8 media_type; /* 0xf8 = hard disk */ + le16 sectors_per_fat; /* zero */ + le16 sectors_per_track; /* irrelevant */ + le16 heads; /* irrelevant */ + le32 hidden_sectors; /* zero */ + le32 large_sectors; /* zero */ +} __attribute__ ((__packed__)) BIOS_PARAMETER_BLOCK; + +/* + * NTFS boot sector structure. + */ +typedef struct { + u8 jump[3]; /* Irrelevant (jump to boot up code).*/ + le64 oem_id; /* Magic "NTFS ". */ + BIOS_PARAMETER_BLOCK bpb; /* See BIOS_PARAMETER_BLOCK. */ + u8 unused[4]; /* zero, NTFS diskedit.exe states that + this is actually: + __u8 physical_drive; // 0x80 + __u8 current_head; // zero + __u8 extended_boot_signature; + // 0x80 + __u8 unused; // zero + */ +/*0x28*/sle64 number_of_sectors; /* Number of sectors in volume. Gives + maximum volume size of 2^63 sectors. + Assuming standard sector size of 512 + bytes, the maximum byte size is + approx. 4.7x10^21 bytes. (-; */ + sle64 mft_lcn; /* Cluster location of mft data. */ + sle64 mftmirr_lcn; /* Cluster location of copy of mft. */ + s8 clusters_per_mft_record; /* Mft record size in clusters. */ + u8 reserved0[3]; /* zero */ + s8 clusters_per_index_record; /* Index block size in clusters. */ + u8 reserved1[3]; /* zero */ + le64 volume_serial_number; /* Irrelevant (serial number). */ + le32 checksum; /* Boot sector checksum. */ +/*0x54*/u8 bootstrap[426]; /* Irrelevant (boot up code). */ + le16 end_of_sector_marker; /* End of bootsector magic. Always is + 0xaa55 in little endian. */ +/* sizeof() = 512 (0x200) bytes */ +} __attribute__ ((__packed__)) NTFS_BOOT_SECTOR; + +/* + * Magic identifiers present at the beginning of all ntfs record containing + * records (like mft records for example). + */ +enum { + /* Found in $MFT/$DATA. */ + magic_FILE = cpu_to_le32(0x454c4946), /* Mft entry. */ + magic_INDX = cpu_to_le32(0x58444e49), /* Index buffer. */ + magic_HOLE = cpu_to_le32(0x454c4f48), /* ? (NTFS 3.0+?) */ + + /* Found in $LogFile/$DATA. */ + magic_RSTR = cpu_to_le32(0x52545352), /* Restart page. */ + magic_RCRD = cpu_to_le32(0x44524352), /* Log record page. */ + + /* Found in $LogFile/$DATA. (May be found in $MFT/$DATA, also?) */ + magic_CHKD = cpu_to_le32(0x444b4843), /* Modified by chkdsk. */ + + /* Found in all ntfs record containing records. */ + magic_BAAD = cpu_to_le32(0x44414142), /* Failed multi sector + transfer was detected. */ + /* + * Found in $LogFile/$DATA when a page is full of 0xff bytes and is + * thus not initialized. Page must be initialized before using it. + */ + magic_empty = cpu_to_le32(0xffffffff) /* Record is empty. */ +}; + +typedef le32 NTFS_RECORD_TYPE; + +/* + * Generic magic comparison macros. Finally found a use for the ## preprocessor + * operator! (-8 + */ + +static inline bool __ntfs_is_magic(le32 x, NTFS_RECORD_TYPE r) +{ + return (x == r); +} +#define ntfs_is_magic(x, m) __ntfs_is_magic(x, magic_##m) + +static inline bool __ntfs_is_magicp(le32 *p, NTFS_RECORD_TYPE r) +{ + return (*p == r); +} +#define ntfs_is_magicp(p, m) __ntfs_is_magicp(p, magic_##m) + +/* + * Specialised magic comparison macros for the NTFS_RECORD_TYPEs defined above. + */ +#define ntfs_is_file_record(x) ( ntfs_is_magic (x, FILE) ) +#define ntfs_is_file_recordp(p) ( ntfs_is_magicp(p, FILE) ) +#define ntfs_is_mft_record(x) ( ntfs_is_file_record (x) ) +#define ntfs_is_mft_recordp(p) ( ntfs_is_file_recordp(p) ) +#define ntfs_is_indx_record(x) ( ntfs_is_magic (x, INDX) ) +#define ntfs_is_indx_recordp(p) ( ntfs_is_magicp(p, INDX) ) +#define ntfs_is_hole_record(x) ( ntfs_is_magic (x, HOLE) ) +#define ntfs_is_hole_recordp(p) ( ntfs_is_magicp(p, HOLE) ) + +#define ntfs_is_rstr_record(x) ( ntfs_is_magic (x, RSTR) ) +#define ntfs_is_rstr_recordp(p) ( ntfs_is_magicp(p, RSTR) ) +#define ntfs_is_rcrd_record(x) ( ntfs_is_magic (x, RCRD) ) +#define ntfs_is_rcrd_recordp(p) ( ntfs_is_magicp(p, RCRD) ) + +#define ntfs_is_chkd_record(x) ( ntfs_is_magic (x, CHKD) ) +#define ntfs_is_chkd_recordp(p) ( ntfs_is_magicp(p, CHKD) ) + +#define ntfs_is_baad_record(x) ( ntfs_is_magic (x, BAAD) ) +#define ntfs_is_baad_recordp(p) ( ntfs_is_magicp(p, BAAD) ) + +#define ntfs_is_empty_record(x) ( ntfs_is_magic (x, empty) ) +#define ntfs_is_empty_recordp(p) ( ntfs_is_magicp(p, empty) ) + +/* + * The Update Sequence Array (usa) is an array of the le16 values which belong + * to the end of each sector protected by the update sequence record in which + * this array is contained. Note that the first entry is the Update Sequence + * Number (usn), a cyclic counter of how many times the protected record has + * been written to disk. The values 0 and -1 (ie. 0xffff) are not used. All + * last le16's of each sector have to be equal to the usn (during reading) or + * are set to it (during writing). If they are not, an incomplete multi sector + * transfer has occurred when the data was written. + * The maximum size for the update sequence array is fixed to: + * maximum size = usa_ofs + (usa_count * 2) = 510 bytes + * The 510 bytes comes from the fact that the last le16 in the array has to + * (obviously) finish before the last le16 of the first 512-byte sector. + * This formula can be used as a consistency check in that usa_ofs + + * (usa_count * 2) has to be less than or equal to 510. + */ +typedef struct { + NTFS_RECORD_TYPE magic; /* A four-byte magic identifying the record + type and/or status. */ + le16 usa_ofs; /* Offset to the Update Sequence Array (usa) + from the start of the ntfs record. */ + le16 usa_count; /* Number of le16 sized entries in the usa + including the Update Sequence Number (usn), + thus the number of fixups is the usa_count + minus 1. */ +} __attribute__ ((__packed__)) NTFS_RECORD; + +/* + * System files mft record numbers. All these files are always marked as used + * in the bitmap attribute of the mft; presumably in order to avoid accidental + * allocation for random other mft records. Also, the sequence number for each + * of the system files is always equal to their mft record number and it is + * never modified. + */ +typedef enum { + FILE_MFT = 0, /* Master file table (mft). Data attribute + contains the entries and bitmap attribute + records which ones are in use (bit==1). */ + FILE_MFTMirr = 1, /* Mft mirror: copy of first four mft records + in data attribute. If cluster size > 4kiB, + copy of first N mft records, with + N = cluster_size / mft_record_size. */ + FILE_LogFile = 2, /* Journalling log in data attribute. */ + FILE_Volume = 3, /* Volume name attribute and volume information + attribute (flags and ntfs version). Windows + refers to this file as volume DASD (Direct + Access Storage Device). */ + FILE_AttrDef = 4, /* Array of attribute definitions in data + attribute. */ + FILE_root = 5, /* Root directory. */ + FILE_Bitmap = 6, /* Allocation bitmap of all clusters (lcns) in + data attribute. */ + FILE_Boot = 7, /* Boot sector (always at cluster 0) in data + attribute. */ + FILE_BadClus = 8, /* Contains all bad clusters in the non-resident + data attribute. */ + FILE_Secure = 9, /* Shared security descriptors in data attribute + and two indexes into the descriptors. + Appeared in Windows 2000. Before that, this + file was named $Quota but was unused. */ + FILE_UpCase = 10, /* Uppercase equivalents of all 65536 Unicode + characters in data attribute. */ + FILE_Extend = 11, /* Directory containing other system files (eg. + $ObjId, $Quota, $Reparse and $UsnJrnl). This + is new to NTFS3.0. */ + FILE_reserved12 = 12, /* Reserved for future use (records 12-15). */ + FILE_reserved13 = 13, + FILE_reserved14 = 14, + FILE_reserved15 = 15, + FILE_first_user = 16, /* First user file, used as test limit for + whether to allow opening a file or not. */ +} NTFS_SYSTEM_FILES; + +/* + * These are the so far known MFT_RECORD_* flags (16-bit) which contain + * information about the mft record in which they are present. + */ +enum { + MFT_RECORD_IN_USE = cpu_to_le16(0x0001), + MFT_RECORD_IS_DIRECTORY = cpu_to_le16(0x0002), +} __attribute__ ((__packed__)); + +typedef le16 MFT_RECORD_FLAGS; + +/* + * mft references (aka file references or file record segment references) are + * used whenever a structure needs to refer to a record in the mft. + * + * A reference consists of a 48-bit index into the mft and a 16-bit sequence + * number used to detect stale references. + * + * For error reporting purposes we treat the 48-bit index as a signed quantity. + * + * The sequence number is a circular counter (skipping 0) describing how many + * times the referenced mft record has been (re)used. This has to match the + * sequence number of the mft record being referenced, otherwise the reference + * is considered stale and removed (FIXME: only ntfsck or the driver itself?). + * + * If the sequence number is zero it is assumed that no sequence number + * consistency checking should be performed. + * + * FIXME: Since inodes are 32-bit as of now, the driver needs to always check + * for high_part being 0 and if not either BUG(), cause a panic() or handle + * the situation in some other way. This shouldn't be a problem as a volume has + * to become HUGE in order to need more than 32-bits worth of mft records. + * Assuming the standard mft record size of 1kb only the records (never mind + * the non-resident attributes, etc.) would require 4Tb of space on their own + * for the first 32 bits worth of records. This is only if some strange person + * doesn't decide to foul play and make the mft sparse which would be a really + * horrible thing to do as it would trash our current driver implementation. )-: + * Do I hear screams "we want 64-bit inodes!" ?!? (-; + * + * FIXME: The mft zone is defined as the first 12% of the volume. This space is + * reserved so that the mft can grow contiguously and hence doesn't become + * fragmented. Volume free space includes the empty part of the mft zone and + * when the volume's free 88% are used up, the mft zone is shrunk by a factor + * of 2, thus making more space available for more files/data. This process is + * repeated every time there is no more free space except for the mft zone until + * there really is no more free space. + */ + +/* + * Typedef the MFT_REF as a 64-bit value for easier handling. + * Also define two unpacking macros to get to the reference (MREF) and + * sequence number (MSEQNO) respectively. + * The _LE versions are to be applied on little endian MFT_REFs. + * Note: The _LE versions will return a CPU endian formatted value! + */ +#define MFT_REF_MASK_CPU 0x0000ffffffffffffULL +#define MFT_REF_MASK_LE cpu_to_le64(MFT_REF_MASK_CPU) + +typedef u64 MFT_REF; +typedef le64 leMFT_REF; + +#define MK_MREF(m, s) ((MFT_REF)(((MFT_REF)(s) << 48) | \ + ((MFT_REF)(m) & MFT_REF_MASK_CPU))) +#define MK_LE_MREF(m, s) cpu_to_le64(MK_MREF(m, s)) + +#define MREF(x) ((unsigned long)((x) & MFT_REF_MASK_CPU)) +#define MSEQNO(x) ((u16)(((x) >> 48) & 0xffff)) +#define MREF_LE(x) ((unsigned long)(le64_to_cpu(x) & MFT_REF_MASK_CPU)) +#define MSEQNO_LE(x) ((u16)((le64_to_cpu(x) >> 48) & 0xffff)) + +#define IS_ERR_MREF(x) (((x) & 0x0000800000000000ULL) ? true : false) +#define ERR_MREF(x) ((u64)((s64)(x))) +#define MREF_ERR(x) ((int)((s64)(x))) + +/* + * The mft record header present at the beginning of every record in the mft. + * This is followed by a sequence of variable length attribute records which + * is terminated by an attribute of type AT_END which is a truncated attribute + * in that it only consists of the attribute type code AT_END and none of the + * other members of the attribute structure are present. + */ +typedef struct { +/*Ofs*/ +/* 0 NTFS_RECORD; -- Unfolded here as gcc doesn't like unnamed structs. */ + NTFS_RECORD_TYPE magic; /* Usually the magic is "FILE". */ + le16 usa_ofs; /* See NTFS_RECORD definition above. */ + le16 usa_count; /* See NTFS_RECORD definition above. */ + +/* 8*/ le64 lsn; /* $LogFile sequence number for this record. + Changed every time the record is modified. */ +/* 16*/ le16 sequence_number; /* Number of times this mft record has been + reused. (See description for MFT_REF + above.) NOTE: The increment (skipping zero) + is done when the file is deleted. NOTE: If + this is zero it is left zero. */ +/* 18*/ le16 link_count; /* Number of hard links, i.e. the number of + directory entries referencing this record. + NOTE: Only used in mft base records. + NOTE: When deleting a directory entry we + check the link_count and if it is 1 we + delete the file. Otherwise we delete the + FILE_NAME_ATTR being referenced by the + directory entry from the mft record and + decrement the link_count. + FIXME: Careful with Win32 + DOS names! */ +/* 20*/ le16 attrs_offset; /* Byte offset to the first attribute in this + mft record from the start of the mft record. + NOTE: Must be aligned to 8-byte boundary. */ +/* 22*/ MFT_RECORD_FLAGS flags; /* Bit array of MFT_RECORD_FLAGS. When a file + is deleted, the MFT_RECORD_IN_USE flag is + set to zero. */ +/* 24*/ le32 bytes_in_use; /* Number of bytes used in this mft record. + NOTE: Must be aligned to 8-byte boundary. */ +/* 28*/ le32 bytes_allocated; /* Number of bytes allocated for this mft + record. This should be equal to the mft + record size. */ +/* 32*/ leMFT_REF base_mft_record;/* This is zero for base mft records. + When it is not zero it is a mft reference + pointing to the base mft record to which + this record belongs (this is then used to + locate the attribute list attribute present + in the base record which describes this + extension record and hence might need + modification when the extension record + itself is modified, also locating the + attribute list also means finding the other + potential extents, belonging to the non-base + mft record). */ +/* 40*/ le16 next_attr_instance;/* The instance number that will be assigned to + the next attribute added to this mft record. + NOTE: Incremented each time after it is used. + NOTE: Every time the mft record is reused + this number is set to zero. NOTE: The first + instance number is always 0. */ +/* The below fields are specific to NTFS 3.1+ (Windows XP and above): */ +/* 42*/ le16 reserved; /* Reserved/alignment. */ +/* 44*/ le32 mft_record_number; /* Number of this mft record. */ +/* sizeof() = 48 bytes */ +/* + * When (re)using the mft record, we place the update sequence array at this + * offset, i.e. before we start with the attributes. This also makes sense, + * otherwise we could run into problems with the update sequence array + * containing in itself the last two bytes of a sector which would mean that + * multi sector transfer protection wouldn't work. As you can't protect data + * by overwriting it since you then can't get it back... + * When reading we obviously use the data from the ntfs record header. + */ +} __attribute__ ((__packed__)) MFT_RECORD; + +/* This is the version without the NTFS 3.1+ specific fields. */ +typedef struct { +/*Ofs*/ +/* 0 NTFS_RECORD; -- Unfolded here as gcc doesn't like unnamed structs. */ + NTFS_RECORD_TYPE magic; /* Usually the magic is "FILE". */ + le16 usa_ofs; /* See NTFS_RECORD definition above. */ + le16 usa_count; /* See NTFS_RECORD definition above. */ + +/* 8*/ le64 lsn; /* $LogFile sequence number for this record. + Changed every time the record is modified. */ +/* 16*/ le16 sequence_number; /* Number of times this mft record has been + reused. (See description for MFT_REF + above.) NOTE: The increment (skipping zero) + is done when the file is deleted. NOTE: If + this is zero it is left zero. */ +/* 18*/ le16 link_count; /* Number of hard links, i.e. the number of + directory entries referencing this record. + NOTE: Only used in mft base records. + NOTE: When deleting a directory entry we + check the link_count and if it is 1 we + delete the file. Otherwise we delete the + FILE_NAME_ATTR being referenced by the + directory entry from the mft record and + decrement the link_count. + FIXME: Careful with Win32 + DOS names! */ +/* 20*/ le16 attrs_offset; /* Byte offset to the first attribute in this + mft record from the start of the mft record. + NOTE: Must be aligned to 8-byte boundary. */ +/* 22*/ MFT_RECORD_FLAGS flags; /* Bit array of MFT_RECORD_FLAGS. When a file + is deleted, the MFT_RECORD_IN_USE flag is + set to zero. */ +/* 24*/ le32 bytes_in_use; /* Number of bytes used in this mft record. + NOTE: Must be aligned to 8-byte boundary. */ +/* 28*/ le32 bytes_allocated; /* Number of bytes allocated for this mft + record. This should be equal to the mft + record size. */ +/* 32*/ leMFT_REF base_mft_record;/* This is zero for base mft records. + When it is not zero it is a mft reference + pointing to the base mft record to which + this record belongs (this is then used to + locate the attribute list attribute present + in the base record which describes this + extension record and hence might need + modification when the extension record + itself is modified, also locating the + attribute list also means finding the other + potential extents, belonging to the non-base + mft record). */ +/* 40*/ le16 next_attr_instance;/* The instance number that will be assigned to + the next attribute added to this mft record. + NOTE: Incremented each time after it is used. + NOTE: Every time the mft record is reused + this number is set to zero. NOTE: The first + instance number is always 0. */ +/* sizeof() = 42 bytes */ +/* + * When (re)using the mft record, we place the update sequence array at this + * offset, i.e. before we start with the attributes. This also makes sense, + * otherwise we could run into problems with the update sequence array + * containing in itself the last two bytes of a sector which would mean that + * multi sector transfer protection wouldn't work. As you can't protect data + * by overwriting it since you then can't get it back... + * When reading we obviously use the data from the ntfs record header. + */ +} __attribute__ ((__packed__)) MFT_RECORD_OLD; + +/* + * System defined attributes (32-bit). Each attribute type has a corresponding + * attribute name (Unicode string of maximum 64 character length) as described + * by the attribute definitions present in the data attribute of the $AttrDef + * system file. On NTFS 3.0 volumes the names are just as the types are named + * in the below defines exchanging AT_ for the dollar sign ($). If that is not + * a revealing choice of symbol I do not know what is... (-; + */ +enum { + AT_UNUSED = cpu_to_le32( 0), + AT_STANDARD_INFORMATION = cpu_to_le32( 0x10), + AT_ATTRIBUTE_LIST = cpu_to_le32( 0x20), + AT_FILE_NAME = cpu_to_le32( 0x30), + AT_OBJECT_ID = cpu_to_le32( 0x40), + AT_SECURITY_DESCRIPTOR = cpu_to_le32( 0x50), + AT_VOLUME_NAME = cpu_to_le32( 0x60), + AT_VOLUME_INFORMATION = cpu_to_le32( 0x70), + AT_DATA = cpu_to_le32( 0x80), + AT_INDEX_ROOT = cpu_to_le32( 0x90), + AT_INDEX_ALLOCATION = cpu_to_le32( 0xa0), + AT_BITMAP = cpu_to_le32( 0xb0), + AT_REPARSE_POINT = cpu_to_le32( 0xc0), + AT_EA_INFORMATION = cpu_to_le32( 0xd0), + AT_EA = cpu_to_le32( 0xe0), + AT_PROPERTY_SET = cpu_to_le32( 0xf0), + AT_LOGGED_UTILITY_STREAM = cpu_to_le32( 0x100), + AT_FIRST_USER_DEFINED_ATTRIBUTE = cpu_to_le32( 0x1000), + AT_END = cpu_to_le32(0xffffffff) +}; + +typedef le32 ATTR_TYPE; + +/* + * The collation rules for sorting views/indexes/etc (32-bit). + * + * COLLATION_BINARY - Collate by binary compare where the first byte is most + * significant. + * COLLATION_UNICODE_STRING - Collate Unicode strings by comparing their binary + * Unicode values, except that when a character can be uppercased, the + * upper case value collates before the lower case one. + * COLLATION_FILE_NAME - Collate file names as Unicode strings. The collation + * is done very much like COLLATION_UNICODE_STRING. In fact I have no idea + * what the difference is. Perhaps the difference is that file names + * would treat some special characters in an odd way (see + * unistr.c::ntfs_collate_names() and unistr.c::legal_ansi_char_array[] + * for what I mean but COLLATION_UNICODE_STRING would not give any special + * treatment to any characters at all, but this is speculation. + * COLLATION_NTOFS_ULONG - Sorting is done according to ascending le32 key + * values. E.g. used for $SII index in FILE_Secure, which sorts by + * security_id (le32). + * COLLATION_NTOFS_SID - Sorting is done according to ascending SID values. + * E.g. used for $O index in FILE_Extend/$Quota. + * COLLATION_NTOFS_SECURITY_HASH - Sorting is done first by ascending hash + * values and second by ascending security_id values. E.g. used for $SDH + * index in FILE_Secure. + * COLLATION_NTOFS_ULONGS - Sorting is done according to a sequence of ascending + * le32 key values. E.g. used for $O index in FILE_Extend/$ObjId, which + * sorts by object_id (16-byte), by splitting up the object_id in four + * le32 values and using them as individual keys. E.g. take the following + * two security_ids, stored as follows on disk: + * 1st: a1 61 65 b7 65 7b d4 11 9e 3d 00 e0 81 10 42 59 + * 2nd: 38 14 37 d2 d2 f3 d4 11 a5 21 c8 6b 79 b1 97 45 + * To compare them, they are split into four le32 values each, like so: + * 1st: 0xb76561a1 0x11d47b65 0xe0003d9e 0x59421081 + * 2nd: 0xd2371438 0x11d4f3d2 0x6bc821a5 0x4597b179 + * Now, it is apparent why the 2nd object_id collates after the 1st: the + * first le32 value of the 1st object_id is less than the first le32 of + * the 2nd object_id. If the first le32 values of both object_ids were + * equal then the second le32 values would be compared, etc. + */ +enum { + COLLATION_BINARY = cpu_to_le32(0x00), + COLLATION_FILE_NAME = cpu_to_le32(0x01), + COLLATION_UNICODE_STRING = cpu_to_le32(0x02), + COLLATION_NTOFS_ULONG = cpu_to_le32(0x10), + COLLATION_NTOFS_SID = cpu_to_le32(0x11), + COLLATION_NTOFS_SECURITY_HASH = cpu_to_le32(0x12), + COLLATION_NTOFS_ULONGS = cpu_to_le32(0x13), +}; + +typedef le32 COLLATION_RULE; + +/* + * The flags (32-bit) describing attribute properties in the attribute + * definition structure. FIXME: This information is based on Regis's + * information and, according to him, it is not certain and probably + * incomplete. The INDEXABLE flag is fairly certainly correct as only the file + * name attribute has this flag set and this is the only attribute indexed in + * NT4. + */ +enum { + ATTR_DEF_INDEXABLE = cpu_to_le32(0x02), /* Attribute can be + indexed. */ + ATTR_DEF_MULTIPLE = cpu_to_le32(0x04), /* Attribute type + can be present multiple times in the + mft records of an inode. */ + ATTR_DEF_NOT_ZERO = cpu_to_le32(0x08), /* Attribute value + must contain at least one non-zero + byte. */ + ATTR_DEF_INDEXED_UNIQUE = cpu_to_le32(0x10), /* Attribute must be + indexed and the attribute value must be + unique for the attribute type in all of + the mft records of an inode. */ + ATTR_DEF_NAMED_UNIQUE = cpu_to_le32(0x20), /* Attribute must be + named and the name must be unique for + the attribute type in all of the mft + records of an inode. */ + ATTR_DEF_RESIDENT = cpu_to_le32(0x40), /* Attribute must be + resident. */ + ATTR_DEF_ALWAYS_LOG = cpu_to_le32(0x80), /* Always log + modifications to this attribute, + regardless of whether it is resident or + non-resident. Without this, only log + modifications if the attribute is + resident. */ +}; + +typedef le32 ATTR_DEF_FLAGS; + +/* + * The data attribute of FILE_AttrDef contains a sequence of attribute + * definitions for the NTFS volume. With this, it is supposed to be safe for an + * older NTFS driver to mount a volume containing a newer NTFS version without + * damaging it (that's the theory. In practice it's: not damaging it too much). + * Entries are sorted by attribute type. The flags describe whether the + * attribute can be resident/non-resident and possibly other things, but the + * actual bits are unknown. + */ +typedef struct { +/*hex ofs*/ +/* 0*/ ntfschar name[0x40]; /* Unicode name of the attribute. Zero + terminated. */ +/* 80*/ ATTR_TYPE type; /* Type of the attribute. */ +/* 84*/ le32 display_rule; /* Default display rule. + FIXME: What does it mean? (AIA) */ +/* 88*/ COLLATION_RULE collation_rule; /* Default collation rule. */ +/* 8c*/ ATTR_DEF_FLAGS flags; /* Flags describing the attribute. */ +/* 90*/ sle64 min_size; /* Optional minimum attribute size. */ +/* 98*/ sle64 max_size; /* Maximum size of attribute. */ +/* sizeof() = 0xa0 or 160 bytes */ +} __attribute__ ((__packed__)) ATTR_DEF; + +/* + * Attribute flags (16-bit). + */ +enum { + ATTR_IS_COMPRESSED = cpu_to_le16(0x0001), + ATTR_COMPRESSION_MASK = cpu_to_le16(0x00ff), /* Compression method + mask. Also, first + illegal value. */ + ATTR_IS_ENCRYPTED = cpu_to_le16(0x4000), + ATTR_IS_SPARSE = cpu_to_le16(0x8000), +} __attribute__ ((__packed__)); + +typedef le16 ATTR_FLAGS; + +/* + * Attribute compression. + * + * Only the data attribute is ever compressed in the current ntfs driver in + * Windows. Further, compression is only applied when the data attribute is + * non-resident. Finally, to use compression, the maximum allowed cluster size + * on a volume is 4kib. + * + * The compression method is based on independently compressing blocks of X + * clusters, where X is determined from the compression_unit value found in the + * non-resident attribute record header (more precisely: X = 2^compression_unit + * clusters). On Windows NT/2k, X always is 16 clusters (compression_unit = 4). + * + * There are three different cases of how a compression block of X clusters + * can be stored: + * + * 1) The data in the block is all zero (a sparse block): + * This is stored as a sparse block in the runlist, i.e. the runlist + * entry has length = X and lcn = -1. The mapping pairs array actually + * uses a delta_lcn value length of 0, i.e. delta_lcn is not present at + * all, which is then interpreted by the driver as lcn = -1. + * NOTE: Even uncompressed files can be sparse on NTFS 3.0 volumes, then + * the same principles apply as above, except that the length is not + * restricted to being any particular value. + * + * 2) The data in the block is not compressed: + * This happens when compression doesn't reduce the size of the block + * in clusters. I.e. if compression has a small effect so that the + * compressed data still occupies X clusters, then the uncompressed data + * is stored in the block. + * This case is recognised by the fact that the runlist entry has + * length = X and lcn >= 0. The mapping pairs array stores this as + * normal with a run length of X and some specific delta_lcn, i.e. + * delta_lcn has to be present. + * + * 3) The data in the block is compressed: + * The common case. This case is recognised by the fact that the run + * list entry has length L < X and lcn >= 0. The mapping pairs array + * stores this as normal with a run length of X and some specific + * delta_lcn, i.e. delta_lcn has to be present. This runlist entry is + * immediately followed by a sparse entry with length = X - L and + * lcn = -1. The latter entry is to make up the vcn counting to the + * full compression block size X. + * + * In fact, life is more complicated because adjacent entries of the same type + * can be coalesced. This means that one has to keep track of the number of + * clusters handled and work on a basis of X clusters at a time being one + * block. An example: if length L > X this means that this particular runlist + * entry contains a block of length X and part of one or more blocks of length + * L - X. Another example: if length L < X, this does not necessarily mean that + * the block is compressed as it might be that the lcn changes inside the block + * and hence the following runlist entry describes the continuation of the + * potentially compressed block. The block would be compressed if the + * following runlist entry describes at least X - L sparse clusters, thus + * making up the compression block length as described in point 3 above. (Of + * course, there can be several runlist entries with small lengths so that the + * sparse entry does not follow the first data containing entry with + * length < X.) + * + * NOTE: At the end of the compressed attribute value, there most likely is not + * just the right amount of data to make up a compression block, thus this data + * is not even attempted to be compressed. It is just stored as is, unless + * the number of clusters it occupies is reduced when compressed in which case + * it is stored as a compressed compression block, complete with sparse + * clusters at the end. + */ + +/* + * Flags of resident attributes (8-bit). + */ +enum { + RESIDENT_ATTR_IS_INDEXED = 0x01, /* Attribute is referenced in an index + (has implications for deleting and + modifying the attribute). */ +} __attribute__ ((__packed__)); + +typedef u8 RESIDENT_ATTR_FLAGS; + +/* + * Attribute record header. Always aligned to 8-byte boundary. + */ +typedef struct { +/*Ofs*/ +/* 0*/ ATTR_TYPE type; /* The (32-bit) type of the attribute. */ +/* 4*/ le32 length; /* Byte size of the resident part of the + attribute (aligned to 8-byte boundary). + Used to get to the next attribute. */ +/* 8*/ u8 non_resident; /* If 0, attribute is resident. + If 1, attribute is non-resident. */ +/* 9*/ u8 name_length; /* Unicode character size of name of attribute. + 0 if unnamed. */ +/* 10*/ le16 name_offset; /* If name_length != 0, the byte offset to the + beginning of the name from the attribute + record. Note that the name is stored as a + Unicode string. When creating, place offset + just at the end of the record header. Then, + follow with attribute value or mapping pairs + array, resident and non-resident attributes + respectively, aligning to an 8-byte + boundary. */ +/* 12*/ ATTR_FLAGS flags; /* Flags describing the attribute. */ +/* 14*/ le16 instance; /* The instance of this attribute record. This + number is unique within this mft record (see + MFT_RECORD/next_attribute_instance notes in + in mft.h for more details). */ +/* 16*/ union { + /* Resident attributes. */ + struct { +/* 16 */ le32 value_length;/* Byte size of attribute value. */ +/* 20 */ le16 value_offset;/* Byte offset of the attribute + value from the start of the + attribute record. When creating, + align to 8-byte boundary if we + have a name present as this might + not have a length of a multiple + of 8-bytes. */ +/* 22 */ RESIDENT_ATTR_FLAGS flags; /* See above. */ +/* 23 */ s8 reserved; /* Reserved/alignment to 8-byte + boundary. */ + } __attribute__ ((__packed__)) resident; + /* Non-resident attributes. */ + struct { +/* 16*/ leVCN lowest_vcn;/* Lowest valid virtual cluster number + for this portion of the attribute value or + 0 if this is the only extent (usually the + case). - Only when an attribute list is used + does lowest_vcn != 0 ever occur. */ +/* 24*/ leVCN highest_vcn;/* Highest valid vcn of this extent of + the attribute value. - Usually there is only one + portion, so this usually equals the attribute + value size in clusters minus 1. Can be -1 for + zero length files. Can be 0 for "single extent" + attributes. */ +/* 32*/ le16 mapping_pairs_offset; /* Byte offset from the + beginning of the structure to the mapping pairs + array which contains the mappings between the + vcns and the logical cluster numbers (lcns). + When creating, place this at the end of this + record header aligned to 8-byte boundary. */ +/* 34*/ u8 compression_unit; /* The compression unit expressed + as the log to the base 2 of the number of + clusters in a compression unit. 0 means not + compressed. (This effectively limits the + compression unit size to be a power of two + clusters.) WinNT4 only uses a value of 4. + Sparse files have this set to 0 on XPSP2. */ +/* 35*/ u8 reserved[5]; /* Align to 8-byte boundary. */ +/* The sizes below are only used when lowest_vcn is zero, as otherwise it would + be difficult to keep them up-to-date.*/ +/* 40*/ sle64 allocated_size; /* Byte size of disk space + allocated to hold the attribute value. Always + is a multiple of the cluster size. When a file + is compressed, this field is a multiple of the + compression block size (2^compression_unit) and + it represents the logically allocated space + rather than the actual on disk usage. For this + use the compressed_size (see below). */ +/* 48*/ sle64 data_size; /* Byte size of the attribute + value. Can be larger than allocated_size if + attribute value is compressed or sparse. */ +/* 56*/ sle64 initialized_size; /* Byte size of initialized + portion of the attribute value. Usually equals + data_size. */ +/* sizeof(uncompressed attr) = 64*/ +/* 64*/ sle64 compressed_size; /* Byte size of the attribute + value after compression. Only present when + compressed or sparse. Always is a multiple of + the cluster size. Represents the actual amount + of disk space being used on the disk. */ +/* sizeof(compressed attr) = 72*/ + } __attribute__ ((__packed__)) non_resident; + } __attribute__ ((__packed__)) data; +} __attribute__ ((__packed__)) ATTR_RECORD; + +typedef ATTR_RECORD ATTR_REC; + +/* + * File attribute flags (32-bit) appearing in the file_attributes fields of the + * STANDARD_INFORMATION attribute of MFT_RECORDs and the FILENAME_ATTR + * attributes of MFT_RECORDs and directory index entries. + * + * All of the below flags appear in the directory index entries but only some + * appear in the STANDARD_INFORMATION attribute whilst only some others appear + * in the FILENAME_ATTR attribute of MFT_RECORDs. Unless otherwise stated the + * flags appear in all of the above. + */ +enum { + FILE_ATTR_READONLY = cpu_to_le32(0x00000001), + FILE_ATTR_HIDDEN = cpu_to_le32(0x00000002), + FILE_ATTR_SYSTEM = cpu_to_le32(0x00000004), + /* Old DOS volid. Unused in NT. = cpu_to_le32(0x00000008), */ + + FILE_ATTR_DIRECTORY = cpu_to_le32(0x00000010), + /* Note, FILE_ATTR_DIRECTORY is not considered valid in NT. It is + reserved for the DOS SUBDIRECTORY flag. */ + FILE_ATTR_ARCHIVE = cpu_to_le32(0x00000020), + FILE_ATTR_DEVICE = cpu_to_le32(0x00000040), + FILE_ATTR_NORMAL = cpu_to_le32(0x00000080), + + FILE_ATTR_TEMPORARY = cpu_to_le32(0x00000100), + FILE_ATTR_SPARSE_FILE = cpu_to_le32(0x00000200), + FILE_ATTR_REPARSE_POINT = cpu_to_le32(0x00000400), + FILE_ATTR_COMPRESSED = cpu_to_le32(0x00000800), + + FILE_ATTR_OFFLINE = cpu_to_le32(0x00001000), + FILE_ATTR_NOT_CONTENT_INDEXED = cpu_to_le32(0x00002000), + FILE_ATTR_ENCRYPTED = cpu_to_le32(0x00004000), + + FILE_ATTR_VALID_FLAGS = cpu_to_le32(0x00007fb7), + /* Note, FILE_ATTR_VALID_FLAGS masks out the old DOS VolId and the + FILE_ATTR_DEVICE and preserves everything else. This mask is used + to obtain all flags that are valid for reading. */ + FILE_ATTR_VALID_SET_FLAGS = cpu_to_le32(0x000031a7), + /* Note, FILE_ATTR_VALID_SET_FLAGS masks out the old DOS VolId, the + F_A_DEVICE, F_A_DIRECTORY, F_A_SPARSE_FILE, F_A_REPARSE_POINT, + F_A_COMPRESSED, and F_A_ENCRYPTED and preserves the rest. This mask + is used to obtain all flags that are valid for setting. */ + /* + * The flag FILE_ATTR_DUP_FILENAME_INDEX_PRESENT is present in all + * FILENAME_ATTR attributes but not in the STANDARD_INFORMATION + * attribute of an mft record. + */ + FILE_ATTR_DUP_FILE_NAME_INDEX_PRESENT = cpu_to_le32(0x10000000), + /* Note, this is a copy of the corresponding bit from the mft record, + telling us whether this is a directory or not, i.e. whether it has + an index root attribute or not. */ + FILE_ATTR_DUP_VIEW_INDEX_PRESENT = cpu_to_le32(0x20000000), + /* Note, this is a copy of the corresponding bit from the mft record, + telling us whether this file has a view index present (eg. object id + index, quota index, one of the security indexes or the encrypting + filesystem related indexes). */ +}; + +typedef le32 FILE_ATTR_FLAGS; + +/* + * NOTE on times in NTFS: All times are in MS standard time format, i.e. they + * are the number of 100-nanosecond intervals since 1st January 1601, 00:00:00 + * universal coordinated time (UTC). (In Linux time starts 1st January 1970, + * 00:00:00 UTC and is stored as the number of 1-second intervals since then.) + */ + +/* + * Attribute: Standard information (0x10). + * + * NOTE: Always resident. + * NOTE: Present in all base file records on a volume. + * NOTE: There is conflicting information about the meaning of each of the time + * fields but the meaning as defined below has been verified to be + * correct by practical experimentation on Windows NT4 SP6a and is hence + * assumed to be the one and only correct interpretation. + */ +typedef struct { +/*Ofs*/ +/* 0*/ sle64 creation_time; /* Time file was created. Updated when + a filename is changed(?). */ +/* 8*/ sle64 last_data_change_time; /* Time the data attribute was last + modified. */ +/* 16*/ sle64 last_mft_change_time; /* Time this mft record was last + modified. */ +/* 24*/ sle64 last_access_time; /* Approximate time when the file was + last accessed (obviously this is not + updated on read-only volumes). In + Windows this is only updated when + accessed if some time delta has + passed since the last update. Also, + last access time updates can be + disabled altogether for speed. */ +/* 32*/ FILE_ATTR_FLAGS file_attributes; /* Flags describing the file. */ +/* 36*/ union { + /* NTFS 1.2 */ + struct { + /* 36*/ u8 reserved12[12]; /* Reserved/alignment to 8-byte + boundary. */ + } __attribute__ ((__packed__)) v1; + /* sizeof() = 48 bytes */ + /* NTFS 3.x */ + struct { +/* + * If a volume has been upgraded from a previous NTFS version, then these + * fields are present only if the file has been accessed since the upgrade. + * Recognize the difference by comparing the length of the resident attribute + * value. If it is 48, then the following fields are missing. If it is 72 then + * the fields are present. Maybe just check like this: + * if (resident.ValueLength < sizeof(STANDARD_INFORMATION)) { + * Assume NTFS 1.2- format. + * If (volume version is 3.x) + * Upgrade attribute to NTFS 3.x format. + * else + * Use NTFS 1.2- format for access. + * } else + * Use NTFS 3.x format for access. + * Only problem is that it might be legal to set the length of the value to + * arbitrarily large values thus spoiling this check. - But chkdsk probably + * views that as a corruption, assuming that it behaves like this for all + * attributes. + */ + /* 36*/ le32 maximum_versions; /* Maximum allowed versions for + file. Zero if version numbering is disabled. */ + /* 40*/ le32 version_number; /* This file's version (if any). + Set to zero if maximum_versions is zero. */ + /* 44*/ le32 class_id; /* Class id from bidirectional + class id index (?). */ + /* 48*/ le32 owner_id; /* Owner_id of the user owning + the file. Translate via $Q index in FILE_Extend + /$Quota to the quota control entry for the user + owning the file. Zero if quotas are disabled. */ + /* 52*/ le32 security_id; /* Security_id for the file. + Translate via $SII index and $SDS data stream + in FILE_Secure to the security descriptor. */ + /* 56*/ le64 quota_charged; /* Byte size of the charge to + the quota for all streams of the file. Note: Is + zero if quotas are disabled. */ + /* 64*/ leUSN usn; /* Last update sequence number + of the file. This is a direct index into the + transaction log file ($UsnJrnl). It is zero if + the usn journal is disabled or this file has + not been subject to logging yet. See usnjrnl.h + for details. */ + } __attribute__ ((__packed__)) v3; + /* sizeof() = 72 bytes (NTFS 3.x) */ + } __attribute__ ((__packed__)) ver; +} __attribute__ ((__packed__)) STANDARD_INFORMATION; + +/* + * Attribute: Attribute list (0x20). + * + * - Can be either resident or non-resident. + * - Value consists of a sequence of variable length, 8-byte aligned, + * ATTR_LIST_ENTRY records. + * - The list is not terminated by anything at all! The only way to know when + * the end is reached is to keep track of the current offset and compare it to + * the attribute value size. + * - The attribute list attribute contains one entry for each attribute of + * the file in which the list is located, except for the list attribute + * itself. The list is sorted: first by attribute type, second by attribute + * name (if present), third by instance number. The extents of one + * non-resident attribute (if present) immediately follow after the initial + * extent. They are ordered by lowest_vcn and have their instace set to zero. + * It is not allowed to have two attributes with all sorting keys equal. + * - Further restrictions: + * - If not resident, the vcn to lcn mapping array has to fit inside the + * base mft record. + * - The attribute list attribute value has a maximum size of 256kb. This + * is imposed by the Windows cache manager. + * - Attribute lists are only used when the attributes of mft record do not + * fit inside the mft record despite all attributes (that can be made + * non-resident) having been made non-resident. This can happen e.g. when: + * - File has a large number of hard links (lots of file name + * attributes present). + * - The mapping pairs array of some non-resident attribute becomes so + * large due to fragmentation that it overflows the mft record. + * - The security descriptor is very complex (not applicable to + * NTFS 3.0 volumes). + * - There are many named streams. + */ +typedef struct { +/*Ofs*/ +/* 0*/ ATTR_TYPE type; /* Type of referenced attribute. */ +/* 4*/ le16 length; /* Byte size of this entry (8-byte aligned). */ +/* 6*/ u8 name_length; /* Size in Unicode chars of the name of the + attribute or 0 if unnamed. */ +/* 7*/ u8 name_offset; /* Byte offset to beginning of attribute name + (always set this to where the name would + start even if unnamed). */ +/* 8*/ leVCN lowest_vcn; /* Lowest virtual cluster number of this portion + of the attribute value. This is usually 0. It + is non-zero for the case where one attribute + does not fit into one mft record and thus + several mft records are allocated to hold + this attribute. In the latter case, each mft + record holds one extent of the attribute and + there is one attribute list entry for each + extent. NOTE: This is DEFINITELY a signed + value! The windows driver uses cmp, followed + by jg when comparing this, thus it treats it + as signed. */ +/* 16*/ leMFT_REF mft_reference;/* The reference of the mft record holding + the ATTR_RECORD for this portion of the + attribute value. */ +/* 24*/ le16 instance; /* If lowest_vcn = 0, the instance of the + attribute being referenced; otherwise 0. */ +/* 26*/ ntfschar name[0]; /* Use when creating only. When reading use + name_offset to determine the location of the + name. */ +/* sizeof() = 26 + (attribute_name_length * 2) bytes */ +} __attribute__ ((__packed__)) ATTR_LIST_ENTRY; + +/* + * The maximum allowed length for a file name. + */ +#define MAXIMUM_FILE_NAME_LENGTH 255 + +/* + * Possible namespaces for filenames in ntfs (8-bit). + */ +enum { + FILE_NAME_POSIX = 0x00, + /* This is the largest namespace. It is case sensitive and allows all + Unicode characters except for: '\0' and '/'. Beware that in + WinNT/2k/2003 by default files which eg have the same name except + for their case will not be distinguished by the standard utilities + and thus a "del filename" will delete both "filename" and "fileName" + without warning. However if for example Services For Unix (SFU) are + installed and the case sensitive option was enabled at installation + time, then you can create/access/delete such files. + Note that even SFU places restrictions on the filenames beyond the + '\0' and '/' and in particular the following set of characters is + not allowed: '"', '/', '<', '>', '\'. All other characters, + including the ones no allowed in WIN32 namespace are allowed. + Tested with SFU 3.5 (this is now free) running on Windows XP. */ + FILE_NAME_WIN32 = 0x01, + /* The standard WinNT/2k NTFS long filenames. Case insensitive. All + Unicode chars except: '\0', '"', '*', '/', ':', '<', '>', '?', '\', + and '|'. Further, names cannot end with a '.' or a space. */ + FILE_NAME_DOS = 0x02, + /* The standard DOS filenames (8.3 format). Uppercase only. All 8-bit + characters greater space, except: '"', '*', '+', ',', '/', ':', ';', + '<', '=', '>', '?', and '\'. */ + FILE_NAME_WIN32_AND_DOS = 0x03, + /* 3 means that both the Win32 and the DOS filenames are identical and + hence have been saved in this single filename record. */ +} __attribute__ ((__packed__)); + +typedef u8 FILE_NAME_TYPE_FLAGS; + +/* + * Attribute: Filename (0x30). + * + * NOTE: Always resident. + * NOTE: All fields, except the parent_directory, are only updated when the + * filename is changed. Until then, they just become out of sync with + * reality and the more up to date values are present in the standard + * information attribute. + * NOTE: There is conflicting information about the meaning of each of the time + * fields but the meaning as defined below has been verified to be + * correct by practical experimentation on Windows NT4 SP6a and is hence + * assumed to be the one and only correct interpretation. + */ +typedef struct { +/*hex ofs*/ +/* 0*/ leMFT_REF parent_directory; /* Directory this filename is + referenced from. */ +/* 8*/ sle64 creation_time; /* Time file was created. */ +/* 10*/ sle64 last_data_change_time; /* Time the data attribute was last + modified. */ +/* 18*/ sle64 last_mft_change_time; /* Time this mft record was last + modified. */ +/* 20*/ sle64 last_access_time; /* Time this mft record was last + accessed. */ +/* 28*/ sle64 allocated_size; /* Byte size of on-disk allocated space + for the unnamed data attribute. So + for normal $DATA, this is the + allocated_size from the unnamed + $DATA attribute and for compressed + and/or sparse $DATA, this is the + compressed_size from the unnamed + $DATA attribute. For a directory or + other inode without an unnamed $DATA + attribute, this is always 0. NOTE: + This is a multiple of the cluster + size. */ +/* 30*/ sle64 data_size; /* Byte size of actual data in unnamed + data attribute. For a directory or + other inode without an unnamed $DATA + attribute, this is always 0. */ +/* 38*/ FILE_ATTR_FLAGS file_attributes; /* Flags describing the file. */ +/* 3c*/ union { + /* 3c*/ struct { + /* 3c*/ le16 packed_ea_size; /* Size of the buffer needed to + pack the extended attributes + (EAs), if such are present.*/ + /* 3e*/ le16 reserved; /* Reserved for alignment. */ + } __attribute__ ((__packed__)) ea; + /* 3c*/ struct { + /* 3c*/ le32 reparse_point_tag; /* Type of reparse point, + present only in reparse + points and only if there are + no EAs. */ + } __attribute__ ((__packed__)) rp; + } __attribute__ ((__packed__)) type; +/* 40*/ u8 file_name_length; /* Length of file name in + (Unicode) characters. */ +/* 41*/ FILE_NAME_TYPE_FLAGS file_name_type; /* Namespace of the file name.*/ +/* 42*/ ntfschar file_name[0]; /* File name in Unicode. */ +} __attribute__ ((__packed__)) FILE_NAME_ATTR; + +/* + * GUID structures store globally unique identifiers (GUID). A GUID is a + * 128-bit value consisting of one group of eight hexadecimal digits, followed + * by three groups of four hexadecimal digits each, followed by one group of + * twelve hexadecimal digits. GUIDs are Microsoft's implementation of the + * distributed computing environment (DCE) universally unique identifier (UUID). + * Example of a GUID: + * 1F010768-5A73-BC91-0010A52216A7 + */ +typedef struct { + le32 data1; /* The first eight hexadecimal digits of the GUID. */ + le16 data2; /* The first group of four hexadecimal digits. */ + le16 data3; /* The second group of four hexadecimal digits. */ + u8 data4[8]; /* The first two bytes are the third group of four + hexadecimal digits. The remaining six bytes are the + final 12 hexadecimal digits. */ +} __attribute__ ((__packed__)) GUID; + +/* + * FILE_Extend/$ObjId contains an index named $O. This index contains all + * object_ids present on the volume as the index keys and the corresponding + * mft_record numbers as the index entry data parts. The data part (defined + * below) also contains three other object_ids: + * birth_volume_id - object_id of FILE_Volume on which the file was first + * created. Optional (i.e. can be zero). + * birth_object_id - object_id of file when it was first created. Usually + * equals the object_id. Optional (i.e. can be zero). + * domain_id - Reserved (always zero). + */ +typedef struct { + leMFT_REF mft_reference;/* Mft record containing the object_id in + the index entry key. */ + union { + struct { + GUID birth_volume_id; + GUID birth_object_id; + GUID domain_id; + } __attribute__ ((__packed__)) origin; + u8 extended_info[48]; + } __attribute__ ((__packed__)) opt; +} __attribute__ ((__packed__)) OBJ_ID_INDEX_DATA; + +/* + * Attribute: Object id (NTFS 3.0+) (0x40). + * + * NOTE: Always resident. + */ +typedef struct { + GUID object_id; /* Unique id assigned to the + file.*/ + /* The following fields are optional. The attribute value size is 16 + bytes, i.e. sizeof(GUID), if these are not present at all. Note, + the entries can be present but one or more (or all) can be zero + meaning that that particular value(s) is(are) not defined. */ + union { + struct { + GUID birth_volume_id; /* Unique id of volume on which + the file was first created.*/ + GUID birth_object_id; /* Unique id of file when it was + first created. */ + GUID domain_id; /* Reserved, zero. */ + } __attribute__ ((__packed__)) origin; + u8 extended_info[48]; + } __attribute__ ((__packed__)) opt; +} __attribute__ ((__packed__)) OBJECT_ID_ATTR; + +/* + * The pre-defined IDENTIFIER_AUTHORITIES used as SID_IDENTIFIER_AUTHORITY in + * the SID structure (see below). + */ +//typedef enum { /* SID string prefix. */ +// SECURITY_NULL_SID_AUTHORITY = {0, 0, 0, 0, 0, 0}, /* S-1-0 */ +// SECURITY_WORLD_SID_AUTHORITY = {0, 0, 0, 0, 0, 1}, /* S-1-1 */ +// SECURITY_LOCAL_SID_AUTHORITY = {0, 0, 0, 0, 0, 2}, /* S-1-2 */ +// SECURITY_CREATOR_SID_AUTHORITY = {0, 0, 0, 0, 0, 3}, /* S-1-3 */ +// SECURITY_NON_UNIQUE_AUTHORITY = {0, 0, 0, 0, 0, 4}, /* S-1-4 */ +// SECURITY_NT_SID_AUTHORITY = {0, 0, 0, 0, 0, 5}, /* S-1-5 */ +//} IDENTIFIER_AUTHORITIES; + +/* + * These relative identifiers (RIDs) are used with the above identifier + * authorities to make up universal well-known SIDs. + * + * Note: The relative identifier (RID) refers to the portion of a SID, which + * identifies a user or group in relation to the authority that issued the SID. + * For example, the universal well-known SID Creator Owner ID (S-1-3-0) is + * made up of the identifier authority SECURITY_CREATOR_SID_AUTHORITY (3) and + * the relative identifier SECURITY_CREATOR_OWNER_RID (0). + */ +typedef enum { /* Identifier authority. */ + SECURITY_NULL_RID = 0, /* S-1-0 */ + SECURITY_WORLD_RID = 0, /* S-1-1 */ + SECURITY_LOCAL_RID = 0, /* S-1-2 */ + + SECURITY_CREATOR_OWNER_RID = 0, /* S-1-3 */ + SECURITY_CREATOR_GROUP_RID = 1, /* S-1-3 */ + + SECURITY_CREATOR_OWNER_SERVER_RID = 2, /* S-1-3 */ + SECURITY_CREATOR_GROUP_SERVER_RID = 3, /* S-1-3 */ + + SECURITY_DIALUP_RID = 1, + SECURITY_NETWORK_RID = 2, + SECURITY_BATCH_RID = 3, + SECURITY_INTERACTIVE_RID = 4, + SECURITY_SERVICE_RID = 6, + SECURITY_ANONYMOUS_LOGON_RID = 7, + SECURITY_PROXY_RID = 8, + SECURITY_ENTERPRISE_CONTROLLERS_RID=9, + SECURITY_SERVER_LOGON_RID = 9, + SECURITY_PRINCIPAL_SELF_RID = 0xa, + SECURITY_AUTHENTICATED_USER_RID = 0xb, + SECURITY_RESTRICTED_CODE_RID = 0xc, + SECURITY_TERMINAL_SERVER_RID = 0xd, + + SECURITY_LOGON_IDS_RID = 5, + SECURITY_LOGON_IDS_RID_COUNT = 3, + + SECURITY_LOCAL_SYSTEM_RID = 0x12, + + SECURITY_NT_NON_UNIQUE = 0x15, + + SECURITY_BUILTIN_DOMAIN_RID = 0x20, + + /* + * Well-known domain relative sub-authority values (RIDs). + */ + + /* Users. */ + DOMAIN_USER_RID_ADMIN = 0x1f4, + DOMAIN_USER_RID_GUEST = 0x1f5, + DOMAIN_USER_RID_KRBTGT = 0x1f6, + + /* Groups. */ + DOMAIN_GROUP_RID_ADMINS = 0x200, + DOMAIN_GROUP_RID_USERS = 0x201, + DOMAIN_GROUP_RID_GUESTS = 0x202, + DOMAIN_GROUP_RID_COMPUTERS = 0x203, + DOMAIN_GROUP_RID_CONTROLLERS = 0x204, + DOMAIN_GROUP_RID_CERT_ADMINS = 0x205, + DOMAIN_GROUP_RID_SCHEMA_ADMINS = 0x206, + DOMAIN_GROUP_RID_ENTERPRISE_ADMINS= 0x207, + DOMAIN_GROUP_RID_POLICY_ADMINS = 0x208, + + /* Aliases. */ + DOMAIN_ALIAS_RID_ADMINS = 0x220, + DOMAIN_ALIAS_RID_USERS = 0x221, + DOMAIN_ALIAS_RID_GUESTS = 0x222, + DOMAIN_ALIAS_RID_POWER_USERS = 0x223, + + DOMAIN_ALIAS_RID_ACCOUNT_OPS = 0x224, + DOMAIN_ALIAS_RID_SYSTEM_OPS = 0x225, + DOMAIN_ALIAS_RID_PRINT_OPS = 0x226, + DOMAIN_ALIAS_RID_BACKUP_OPS = 0x227, + + DOMAIN_ALIAS_RID_REPLICATOR = 0x228, + DOMAIN_ALIAS_RID_RAS_SERVERS = 0x229, + DOMAIN_ALIAS_RID_PREW2KCOMPACCESS = 0x22a, +} RELATIVE_IDENTIFIERS; + +/* + * The universal well-known SIDs: + * + * NULL_SID S-1-0-0 + * WORLD_SID S-1-1-0 + * LOCAL_SID S-1-2-0 + * CREATOR_OWNER_SID S-1-3-0 + * CREATOR_GROUP_SID S-1-3-1 + * CREATOR_OWNER_SERVER_SID S-1-3-2 + * CREATOR_GROUP_SERVER_SID S-1-3-3 + * + * (Non-unique IDs) S-1-4 + * + * NT well-known SIDs: + * + * NT_AUTHORITY_SID S-1-5 + * DIALUP_SID S-1-5-1 + * + * NETWORD_SID S-1-5-2 + * BATCH_SID S-1-5-3 + * INTERACTIVE_SID S-1-5-4 + * SERVICE_SID S-1-5-6 + * ANONYMOUS_LOGON_SID S-1-5-7 (aka null logon session) + * PROXY_SID S-1-5-8 + * SERVER_LOGON_SID S-1-5-9 (aka domain controller account) + * SELF_SID S-1-5-10 (self RID) + * AUTHENTICATED_USER_SID S-1-5-11 + * RESTRICTED_CODE_SID S-1-5-12 (running restricted code) + * TERMINAL_SERVER_SID S-1-5-13 (running on terminal server) + * + * (Logon IDs) S-1-5-5-X-Y + * + * (NT non-unique IDs) S-1-5-0x15-... + * + * (Built-in domain) S-1-5-0x20 + */ + +/* + * The SID_IDENTIFIER_AUTHORITY is a 48-bit value used in the SID structure. + * + * NOTE: This is stored as a big endian number, hence the high_part comes + * before the low_part. + */ +typedef union { + struct { + u16 high_part; /* High 16-bits. */ + u32 low_part; /* Low 32-bits. */ + } __attribute__ ((__packed__)) parts; + u8 value[6]; /* Value as individual bytes. */ +} __attribute__ ((__packed__)) SID_IDENTIFIER_AUTHORITY; + +/* + * The SID structure is a variable-length structure used to uniquely identify + * users or groups. SID stands for security identifier. + * + * The standard textual representation of the SID is of the form: + * S-R-I-S-S... + * Where: + * - The first "S" is the literal character 'S' identifying the following + * digits as a SID. + * - R is the revision level of the SID expressed as a sequence of digits + * either in decimal or hexadecimal (if the later, prefixed by "0x"). + * - I is the 48-bit identifier_authority, expressed as digits as R above. + * - S... is one or more sub_authority values, expressed as digits as above. + * + * Example SID; the domain-relative SID of the local Administrators group on + * Windows NT/2k: + * S-1-5-32-544 + * This translates to a SID with: + * revision = 1, + * sub_authority_count = 2, + * identifier_authority = {0,0,0,0,0,5}, // SECURITY_NT_AUTHORITY + * sub_authority[0] = 32, // SECURITY_BUILTIN_DOMAIN_RID + * sub_authority[1] = 544 // DOMAIN_ALIAS_RID_ADMINS + */ +typedef struct { + u8 revision; + u8 sub_authority_count; + SID_IDENTIFIER_AUTHORITY identifier_authority; + le32 sub_authority[1]; /* At least one sub_authority. */ +} __attribute__ ((__packed__)) SID; + +/* + * Current constants for SIDs. + */ +typedef enum { + SID_REVISION = 1, /* Current revision level. */ + SID_MAX_SUB_AUTHORITIES = 15, /* Maximum number of those. */ + SID_RECOMMENDED_SUB_AUTHORITIES = 1, /* Will change to around 6 in + a future revision. */ +} SID_CONSTANTS; + +/* + * The predefined ACE types (8-bit, see below). + */ +enum { + ACCESS_MIN_MS_ACE_TYPE = 0, + ACCESS_ALLOWED_ACE_TYPE = 0, + ACCESS_DENIED_ACE_TYPE = 1, + SYSTEM_AUDIT_ACE_TYPE = 2, + SYSTEM_ALARM_ACE_TYPE = 3, /* Not implemented as of Win2k. */ + ACCESS_MAX_MS_V2_ACE_TYPE = 3, + + ACCESS_ALLOWED_COMPOUND_ACE_TYPE= 4, + ACCESS_MAX_MS_V3_ACE_TYPE = 4, + + /* The following are Win2k only. */ + ACCESS_MIN_MS_OBJECT_ACE_TYPE = 5, + ACCESS_ALLOWED_OBJECT_ACE_TYPE = 5, + ACCESS_DENIED_OBJECT_ACE_TYPE = 6, + SYSTEM_AUDIT_OBJECT_ACE_TYPE = 7, + SYSTEM_ALARM_OBJECT_ACE_TYPE = 8, + ACCESS_MAX_MS_OBJECT_ACE_TYPE = 8, + + ACCESS_MAX_MS_V4_ACE_TYPE = 8, + + /* This one is for WinNT/2k. */ + ACCESS_MAX_MS_ACE_TYPE = 8, +} __attribute__ ((__packed__)); + +typedef u8 ACE_TYPES; + +/* + * The ACE flags (8-bit) for audit and inheritance (see below). + * + * SUCCESSFUL_ACCESS_ACE_FLAG is only used with system audit and alarm ACE + * types to indicate that a message is generated (in Windows!) for successful + * accesses. + * + * FAILED_ACCESS_ACE_FLAG is only used with system audit and alarm ACE types + * to indicate that a message is generated (in Windows!) for failed accesses. + */ +enum { + /* The inheritance flags. */ + OBJECT_INHERIT_ACE = 0x01, + CONTAINER_INHERIT_ACE = 0x02, + NO_PROPAGATE_INHERIT_ACE = 0x04, + INHERIT_ONLY_ACE = 0x08, + INHERITED_ACE = 0x10, /* Win2k only. */ + VALID_INHERIT_FLAGS = 0x1f, + + /* The audit flags. */ + SUCCESSFUL_ACCESS_ACE_FLAG = 0x40, + FAILED_ACCESS_ACE_FLAG = 0x80, +} __attribute__ ((__packed__)); + +typedef u8 ACE_FLAGS; + +/* + * An ACE is an access-control entry in an access-control list (ACL). + * An ACE defines access to an object for a specific user or group or defines + * the types of access that generate system-administration messages or alarms + * for a specific user or group. The user or group is identified by a security + * identifier (SID). + * + * Each ACE starts with an ACE_HEADER structure (aligned on 4-byte boundary), + * which specifies the type and size of the ACE. The format of the subsequent + * data depends on the ACE type. + */ +typedef struct { +/*Ofs*/ +/* 0*/ ACE_TYPES type; /* Type of the ACE. */ +/* 1*/ ACE_FLAGS flags; /* Flags describing the ACE. */ +/* 2*/ le16 size; /* Size in bytes of the ACE. */ +} __attribute__ ((__packed__)) ACE_HEADER; + +/* + * The access mask (32-bit). Defines the access rights. + * + * The specific rights (bits 0 to 15). These depend on the type of the object + * being secured by the ACE. + */ +enum { + /* Specific rights for files and directories are as follows: */ + + /* Right to read data from the file. (FILE) */ + FILE_READ_DATA = cpu_to_le32(0x00000001), + /* Right to list contents of a directory. (DIRECTORY) */ + FILE_LIST_DIRECTORY = cpu_to_le32(0x00000001), + + /* Right to write data to the file. (FILE) */ + FILE_WRITE_DATA = cpu_to_le32(0x00000002), + /* Right to create a file in the directory. (DIRECTORY) */ + FILE_ADD_FILE = cpu_to_le32(0x00000002), + + /* Right to append data to the file. (FILE) */ + FILE_APPEND_DATA = cpu_to_le32(0x00000004), + /* Right to create a subdirectory. (DIRECTORY) */ + FILE_ADD_SUBDIRECTORY = cpu_to_le32(0x00000004), + + /* Right to read extended attributes. (FILE/DIRECTORY) */ + FILE_READ_EA = cpu_to_le32(0x00000008), + + /* Right to write extended attributes. (FILE/DIRECTORY) */ + FILE_WRITE_EA = cpu_to_le32(0x00000010), + + /* Right to execute a file. (FILE) */ + FILE_EXECUTE = cpu_to_le32(0x00000020), + /* Right to traverse the directory. (DIRECTORY) */ + FILE_TRAVERSE = cpu_to_le32(0x00000020), + + /* + * Right to delete a directory and all the files it contains (its + * children), even if the files are read-only. (DIRECTORY) + */ + FILE_DELETE_CHILD = cpu_to_le32(0x00000040), + + /* Right to read file attributes. (FILE/DIRECTORY) */ + FILE_READ_ATTRIBUTES = cpu_to_le32(0x00000080), + + /* Right to change file attributes. (FILE/DIRECTORY) */ + FILE_WRITE_ATTRIBUTES = cpu_to_le32(0x00000100), + + /* + * The standard rights (bits 16 to 23). These are independent of the + * type of object being secured. + */ + + /* Right to delete the object. */ + DELETE = cpu_to_le32(0x00010000), + + /* + * Right to read the information in the object's security descriptor, + * not including the information in the SACL, i.e. right to read the + * security descriptor and owner. + */ + READ_CONTROL = cpu_to_le32(0x00020000), + + /* Right to modify the DACL in the object's security descriptor. */ + WRITE_DAC = cpu_to_le32(0x00040000), + + /* Right to change the owner in the object's security descriptor. */ + WRITE_OWNER = cpu_to_le32(0x00080000), + + /* + * Right to use the object for synchronization. Enables a process to + * wait until the object is in the signalled state. Some object types + * do not support this access right. + */ + SYNCHRONIZE = cpu_to_le32(0x00100000), + + /* + * The following STANDARD_RIGHTS_* are combinations of the above for + * convenience and are defined by the Win32 API. + */ + + /* These are currently defined to READ_CONTROL. */ + STANDARD_RIGHTS_READ = cpu_to_le32(0x00020000), + STANDARD_RIGHTS_WRITE = cpu_to_le32(0x00020000), + STANDARD_RIGHTS_EXECUTE = cpu_to_le32(0x00020000), + + /* Combines DELETE, READ_CONTROL, WRITE_DAC, and WRITE_OWNER access. */ + STANDARD_RIGHTS_REQUIRED = cpu_to_le32(0x000f0000), + + /* + * Combines DELETE, READ_CONTROL, WRITE_DAC, WRITE_OWNER, and + * SYNCHRONIZE access. + */ + STANDARD_RIGHTS_ALL = cpu_to_le32(0x001f0000), + + /* + * The access system ACL and maximum allowed access types (bits 24 to + * 25, bits 26 to 27 are reserved). + */ + ACCESS_SYSTEM_SECURITY = cpu_to_le32(0x01000000), + MAXIMUM_ALLOWED = cpu_to_le32(0x02000000), + + /* + * The generic rights (bits 28 to 31). These map onto the standard and + * specific rights. + */ + + /* Read, write, and execute access. */ + GENERIC_ALL = cpu_to_le32(0x10000000), + + /* Execute access. */ + GENERIC_EXECUTE = cpu_to_le32(0x20000000), + + /* + * Write access. For files, this maps onto: + * FILE_APPEND_DATA | FILE_WRITE_ATTRIBUTES | FILE_WRITE_DATA | + * FILE_WRITE_EA | STANDARD_RIGHTS_WRITE | SYNCHRONIZE + * For directories, the mapping has the same numerical value. See + * above for the descriptions of the rights granted. + */ + GENERIC_WRITE = cpu_to_le32(0x40000000), + + /* + * Read access. For files, this maps onto: + * FILE_READ_ATTRIBUTES | FILE_READ_DATA | FILE_READ_EA | + * STANDARD_RIGHTS_READ | SYNCHRONIZE + * For directories, the mapping has the same numberical value. See + * above for the descriptions of the rights granted. + */ + GENERIC_READ = cpu_to_le32(0x80000000), +}; + +typedef le32 ACCESS_MASK; + +/* + * The generic mapping array. Used to denote the mapping of each generic + * access right to a specific access mask. + * + * FIXME: What exactly is this and what is it for? (AIA) + */ +typedef struct { + ACCESS_MASK generic_read; + ACCESS_MASK generic_write; + ACCESS_MASK generic_execute; + ACCESS_MASK generic_all; +} __attribute__ ((__packed__)) GENERIC_MAPPING; + +/* + * The predefined ACE type structures are as defined below. + */ + +/* + * ACCESS_ALLOWED_ACE, ACCESS_DENIED_ACE, SYSTEM_AUDIT_ACE, SYSTEM_ALARM_ACE + */ +typedef struct { +/* 0 ACE_HEADER; -- Unfolded here as gcc doesn't like unnamed structs. */ + ACE_TYPES type; /* Type of the ACE. */ + ACE_FLAGS flags; /* Flags describing the ACE. */ + le16 size; /* Size in bytes of the ACE. */ +/* 4*/ ACCESS_MASK mask; /* Access mask associated with the ACE. */ + +/* 8*/ SID sid; /* The SID associated with the ACE. */ +} __attribute__ ((__packed__)) ACCESS_ALLOWED_ACE, ACCESS_DENIED_ACE, + SYSTEM_AUDIT_ACE, SYSTEM_ALARM_ACE; + +/* + * The object ACE flags (32-bit). + */ +enum { + ACE_OBJECT_TYPE_PRESENT = cpu_to_le32(1), + ACE_INHERITED_OBJECT_TYPE_PRESENT = cpu_to_le32(2), +}; + +typedef le32 OBJECT_ACE_FLAGS; + +typedef struct { +/* 0 ACE_HEADER; -- Unfolded here as gcc doesn't like unnamed structs. */ + ACE_TYPES type; /* Type of the ACE. */ + ACE_FLAGS flags; /* Flags describing the ACE. */ + le16 size; /* Size in bytes of the ACE. */ +/* 4*/ ACCESS_MASK mask; /* Access mask associated with the ACE. */ + +/* 8*/ OBJECT_ACE_FLAGS object_flags; /* Flags describing the object ACE. */ +/* 12*/ GUID object_type; +/* 28*/ GUID inherited_object_type; + +/* 44*/ SID sid; /* The SID associated with the ACE. */ +} __attribute__ ((__packed__)) ACCESS_ALLOWED_OBJECT_ACE, + ACCESS_DENIED_OBJECT_ACE, + SYSTEM_AUDIT_OBJECT_ACE, + SYSTEM_ALARM_OBJECT_ACE; + +/* + * An ACL is an access-control list (ACL). + * An ACL starts with an ACL header structure, which specifies the size of + * the ACL and the number of ACEs it contains. The ACL header is followed by + * zero or more access control entries (ACEs). The ACL as well as each ACE + * are aligned on 4-byte boundaries. + */ +typedef struct { + u8 revision; /* Revision of this ACL. */ + u8 alignment1; + le16 size; /* Allocated space in bytes for ACL. Includes this + header, the ACEs and the remaining free space. */ + le16 ace_count; /* Number of ACEs in the ACL. */ + le16 alignment2; +/* sizeof() = 8 bytes */ +} __attribute__ ((__packed__)) ACL; + +/* + * Current constants for ACLs. + */ +typedef enum { + /* Current revision. */ + ACL_REVISION = 2, + ACL_REVISION_DS = 4, + + /* History of revisions. */ + ACL_REVISION1 = 1, + MIN_ACL_REVISION = 2, + ACL_REVISION2 = 2, + ACL_REVISION3 = 3, + ACL_REVISION4 = 4, + MAX_ACL_REVISION = 4, +} ACL_CONSTANTS; + +/* + * The security descriptor control flags (16-bit). + * + * SE_OWNER_DEFAULTED - This boolean flag, when set, indicates that the SID + * pointed to by the Owner field was provided by a defaulting mechanism + * rather than explicitly provided by the original provider of the + * security descriptor. This may affect the treatment of the SID with + * respect to inheritance of an owner. + * + * SE_GROUP_DEFAULTED - This boolean flag, when set, indicates that the SID in + * the Group field was provided by a defaulting mechanism rather than + * explicitly provided by the original provider of the security + * descriptor. This may affect the treatment of the SID with respect to + * inheritance of a primary group. + * + * SE_DACL_PRESENT - This boolean flag, when set, indicates that the security + * descriptor contains a discretionary ACL. If this flag is set and the + * Dacl field of the SECURITY_DESCRIPTOR is null, then a null ACL is + * explicitly being specified. + * + * SE_DACL_DEFAULTED - This boolean flag, when set, indicates that the ACL + * pointed to by the Dacl field was provided by a defaulting mechanism + * rather than explicitly provided by the original provider of the + * security descriptor. This may affect the treatment of the ACL with + * respect to inheritance of an ACL. This flag is ignored if the + * DaclPresent flag is not set. + * + * SE_SACL_PRESENT - This boolean flag, when set, indicates that the security + * descriptor contains a system ACL pointed to by the Sacl field. If this + * flag is set and the Sacl field of the SECURITY_DESCRIPTOR is null, then + * an empty (but present) ACL is being specified. + * + * SE_SACL_DEFAULTED - This boolean flag, when set, indicates that the ACL + * pointed to by the Sacl field was provided by a defaulting mechanism + * rather than explicitly provided by the original provider of the + * security descriptor. This may affect the treatment of the ACL with + * respect to inheritance of an ACL. This flag is ignored if the + * SaclPresent flag is not set. + * + * SE_SELF_RELATIVE - This boolean flag, when set, indicates that the security + * descriptor is in self-relative form. In this form, all fields of the + * security descriptor are contiguous in memory and all pointer fields are + * expressed as offsets from the beginning of the security descriptor. + */ +enum { + SE_OWNER_DEFAULTED = cpu_to_le16(0x0001), + SE_GROUP_DEFAULTED = cpu_to_le16(0x0002), + SE_DACL_PRESENT = cpu_to_le16(0x0004), + SE_DACL_DEFAULTED = cpu_to_le16(0x0008), + + SE_SACL_PRESENT = cpu_to_le16(0x0010), + SE_SACL_DEFAULTED = cpu_to_le16(0x0020), + + SE_DACL_AUTO_INHERIT_REQ = cpu_to_le16(0x0100), + SE_SACL_AUTO_INHERIT_REQ = cpu_to_le16(0x0200), + SE_DACL_AUTO_INHERITED = cpu_to_le16(0x0400), + SE_SACL_AUTO_INHERITED = cpu_to_le16(0x0800), + + SE_DACL_PROTECTED = cpu_to_le16(0x1000), + SE_SACL_PROTECTED = cpu_to_le16(0x2000), + SE_RM_CONTROL_VALID = cpu_to_le16(0x4000), + SE_SELF_RELATIVE = cpu_to_le16(0x8000) +} __attribute__ ((__packed__)); + +typedef le16 SECURITY_DESCRIPTOR_CONTROL; + +/* + * Self-relative security descriptor. Contains the owner and group SIDs as well + * as the sacl and dacl ACLs inside the security descriptor itself. + */ +typedef struct { + u8 revision; /* Revision level of the security descriptor. */ + u8 alignment; + SECURITY_DESCRIPTOR_CONTROL control; /* Flags qualifying the type of + the descriptor as well as the following fields. */ + le32 owner; /* Byte offset to a SID representing an object's + owner. If this is NULL, no owner SID is present in + the descriptor. */ + le32 group; /* Byte offset to a SID representing an object's + primary group. If this is NULL, no primary group + SID is present in the descriptor. */ + le32 sacl; /* Byte offset to a system ACL. Only valid, if + SE_SACL_PRESENT is set in the control field. If + SE_SACL_PRESENT is set but sacl is NULL, a NULL ACL + is specified. */ + le32 dacl; /* Byte offset to a discretionary ACL. Only valid, if + SE_DACL_PRESENT is set in the control field. If + SE_DACL_PRESENT is set but dacl is NULL, a NULL ACL + (unconditionally granting access) is specified. */ +/* sizeof() = 0x14 bytes */ +} __attribute__ ((__packed__)) SECURITY_DESCRIPTOR_RELATIVE; + +/* + * Absolute security descriptor. Does not contain the owner and group SIDs, nor + * the sacl and dacl ACLs inside the security descriptor. Instead, it contains + * pointers to these structures in memory. Obviously, absolute security + * descriptors are only useful for in memory representations of security + * descriptors. On disk, a self-relative security descriptor is used. + */ +typedef struct { + u8 revision; /* Revision level of the security descriptor. */ + u8 alignment; + SECURITY_DESCRIPTOR_CONTROL control; /* Flags qualifying the type of + the descriptor as well as the following fields. */ + SID *owner; /* Points to a SID representing an object's owner. If + this is NULL, no owner SID is present in the + descriptor. */ + SID *group; /* Points to a SID representing an object's primary + group. If this is NULL, no primary group SID is + present in the descriptor. */ + ACL *sacl; /* Points to a system ACL. Only valid, if + SE_SACL_PRESENT is set in the control field. If + SE_SACL_PRESENT is set but sacl is NULL, a NULL ACL + is specified. */ + ACL *dacl; /* Points to a discretionary ACL. Only valid, if + SE_DACL_PRESENT is set in the control field. If + SE_DACL_PRESENT is set but dacl is NULL, a NULL ACL + (unconditionally granting access) is specified. */ +} __attribute__ ((__packed__)) SECURITY_DESCRIPTOR; + +/* + * Current constants for security descriptors. + */ +typedef enum { + /* Current revision. */ + SECURITY_DESCRIPTOR_REVISION = 1, + SECURITY_DESCRIPTOR_REVISION1 = 1, + + /* The sizes of both the absolute and relative security descriptors is + the same as pointers, at least on ia32 architecture are 32-bit. */ + SECURITY_DESCRIPTOR_MIN_LENGTH = sizeof(SECURITY_DESCRIPTOR), +} SECURITY_DESCRIPTOR_CONSTANTS; + +/* + * Attribute: Security descriptor (0x50). A standard self-relative security + * descriptor. + * + * NOTE: Can be resident or non-resident. + * NOTE: Not used in NTFS 3.0+, as security descriptors are stored centrally + * in FILE_Secure and the correct descriptor is found using the security_id + * from the standard information attribute. + */ +typedef SECURITY_DESCRIPTOR_RELATIVE SECURITY_DESCRIPTOR_ATTR; + +/* + * On NTFS 3.0+, all security descriptors are stored in FILE_Secure. Only one + * referenced instance of each unique security descriptor is stored. + * + * FILE_Secure contains no unnamed data attribute, i.e. it has zero length. It + * does, however, contain two indexes ($SDH and $SII) as well as a named data + * stream ($SDS). + * + * Every unique security descriptor is assigned a unique security identifier + * (security_id, not to be confused with a SID). The security_id is unique for + * the NTFS volume and is used as an index into the $SII index, which maps + * security_ids to the security descriptor's storage location within the $SDS + * data attribute. The $SII index is sorted by ascending security_id. + * + * A simple hash is computed from each security descriptor. This hash is used + * as an index into the $SDH index, which maps security descriptor hashes to + * the security descriptor's storage location within the $SDS data attribute. + * The $SDH index is sorted by security descriptor hash and is stored in a B+ + * tree. When searching $SDH (with the intent of determining whether or not a + * new security descriptor is already present in the $SDS data stream), if a + * matching hash is found, but the security descriptors do not match, the + * search in the $SDH index is continued, searching for a next matching hash. + * + * When a precise match is found, the security_id coresponding to the security + * descriptor in the $SDS attribute is read from the found $SDH index entry and + * is stored in the $STANDARD_INFORMATION attribute of the file/directory to + * which the security descriptor is being applied. The $STANDARD_INFORMATION + * attribute is present in all base mft records (i.e. in all files and + * directories). + * + * If a match is not found, the security descriptor is assigned a new unique + * security_id and is added to the $SDS data attribute. Then, entries + * referencing the this security descriptor in the $SDS data attribute are + * added to the $SDH and $SII indexes. + * + * Note: Entries are never deleted from FILE_Secure, even if nothing + * references an entry any more. + */ + +/* + * This header precedes each security descriptor in the $SDS data stream. + * This is also the index entry data part of both the $SII and $SDH indexes. + */ +typedef struct { + le32 hash; /* Hash of the security descriptor. */ + le32 security_id; /* The security_id assigned to the descriptor. */ + le64 offset; /* Byte offset of this entry in the $SDS stream. */ + le32 length; /* Size in bytes of this entry in $SDS stream. */ +} __attribute__ ((__packed__)) SECURITY_DESCRIPTOR_HEADER; + +/* + * The $SDS data stream contains the security descriptors, aligned on 16-byte + * boundaries, sorted by security_id in a B+ tree. Security descriptors cannot + * cross 256kib boundaries (this restriction is imposed by the Windows cache + * manager). Each security descriptor is contained in a SDS_ENTRY structure. + * Also, each security descriptor is stored twice in the $SDS stream with a + * fixed offset of 0x40000 bytes (256kib, the Windows cache manager's max size) + * between them; i.e. if a SDS_ENTRY specifies an offset of 0x51d0, then the + * the first copy of the security descriptor will be at offset 0x51d0 in the + * $SDS data stream and the second copy will be at offset 0x451d0. + */ +typedef struct { +/*Ofs*/ +/* 0 SECURITY_DESCRIPTOR_HEADER; -- Unfolded here as gcc doesn't like + unnamed structs. */ + le32 hash; /* Hash of the security descriptor. */ + le32 security_id; /* The security_id assigned to the descriptor. */ + le64 offset; /* Byte offset of this entry in the $SDS stream. */ + le32 length; /* Size in bytes of this entry in $SDS stream. */ +/* 20*/ SECURITY_DESCRIPTOR_RELATIVE sid; /* The self-relative security + descriptor. */ +} __attribute__ ((__packed__)) SDS_ENTRY; + +/* + * The index entry key used in the $SII index. The collation type is + * COLLATION_NTOFS_ULONG. + */ +typedef struct { + le32 security_id; /* The security_id assigned to the descriptor. */ +} __attribute__ ((__packed__)) SII_INDEX_KEY; + +/* + * The index entry key used in the $SDH index. The keys are sorted first by + * hash and then by security_id. The collation rule is + * COLLATION_NTOFS_SECURITY_HASH. + */ +typedef struct { + le32 hash; /* Hash of the security descriptor. */ + le32 security_id; /* The security_id assigned to the descriptor. */ +} __attribute__ ((__packed__)) SDH_INDEX_KEY; + +/* + * Attribute: Volume name (0x60). + * + * NOTE: Always resident. + * NOTE: Present only in FILE_Volume. + */ +typedef struct { + ntfschar name[0]; /* The name of the volume in Unicode. */ +} __attribute__ ((__packed__)) VOLUME_NAME; + +/* + * Possible flags for the volume (16-bit). + */ +enum { + VOLUME_IS_DIRTY = cpu_to_le16(0x0001), + VOLUME_RESIZE_LOG_FILE = cpu_to_le16(0x0002), + VOLUME_UPGRADE_ON_MOUNT = cpu_to_le16(0x0004), + VOLUME_MOUNTED_ON_NT4 = cpu_to_le16(0x0008), + + VOLUME_DELETE_USN_UNDERWAY = cpu_to_le16(0x0010), + VOLUME_REPAIR_OBJECT_ID = cpu_to_le16(0x0020), + + VOLUME_CHKDSK_UNDERWAY = cpu_to_le16(0x4000), + VOLUME_MODIFIED_BY_CHKDSK = cpu_to_le16(0x8000), + + VOLUME_FLAGS_MASK = cpu_to_le16(0xc03f), + + /* To make our life easier when checking if we must mount read-only. */ + VOLUME_MUST_MOUNT_RO_MASK = cpu_to_le16(0xc027), +} __attribute__ ((__packed__)); + +typedef le16 VOLUME_FLAGS; + +/* + * Attribute: Volume information (0x70). + * + * NOTE: Always resident. + * NOTE: Present only in FILE_Volume. + * NOTE: Windows 2000 uses NTFS 3.0 while Windows NT4 service pack 6a uses + * NTFS 1.2. I haven't personally seen other values yet. + */ +typedef struct { + le64 reserved; /* Not used (yet?). */ + u8 major_ver; /* Major version of the ntfs format. */ + u8 minor_ver; /* Minor version of the ntfs format. */ + VOLUME_FLAGS flags; /* Bit array of VOLUME_* flags. */ +} __attribute__ ((__packed__)) VOLUME_INFORMATION; + +/* + * Attribute: Data attribute (0x80). + * + * NOTE: Can be resident or non-resident. + * + * Data contents of a file (i.e. the unnamed stream) or of a named stream. + */ +typedef struct { + u8 data[0]; /* The file's data contents. */ +} __attribute__ ((__packed__)) DATA_ATTR; + +/* + * Index header flags (8-bit). + */ +enum { + /* + * When index header is in an index root attribute: + */ + SMALL_INDEX = 0, /* The index is small enough to fit inside the index + root attribute and there is no index allocation + attribute present. */ + LARGE_INDEX = 1, /* The index is too large to fit in the index root + attribute and/or an index allocation attribute is + present. */ + /* + * When index header is in an index block, i.e. is part of index + * allocation attribute: + */ + LEAF_NODE = 0, /* This is a leaf node, i.e. there are no more nodes + branching off it. */ + INDEX_NODE = 1, /* This node indexes other nodes, i.e. it is not a leaf + node. */ + NODE_MASK = 1, /* Mask for accessing the *_NODE bits. */ +} __attribute__ ((__packed__)); + +typedef u8 INDEX_HEADER_FLAGS; + +/* + * This is the header for indexes, describing the INDEX_ENTRY records, which + * follow the INDEX_HEADER. Together the index header and the index entries + * make up a complete index. + * + * IMPORTANT NOTE: The offset, length and size structure members are counted + * relative to the start of the index header structure and not relative to the + * start of the index root or index allocation structures themselves. + */ +typedef struct { + le32 entries_offset; /* Byte offset to first INDEX_ENTRY + aligned to 8-byte boundary. */ + le32 index_length; /* Data size of the index in bytes, + i.e. bytes used from allocated + size, aligned to 8-byte boundary. */ + le32 allocated_size; /* Byte size of this index (block), + multiple of 8 bytes. */ + /* NOTE: For the index root attribute, the above two numbers are always + equal, as the attribute is resident and it is resized as needed. In + the case of the index allocation attribute the attribute is not + resident and hence the allocated_size is a fixed value and must + equal the index_block_size specified by the INDEX_ROOT attribute + corresponding to the INDEX_ALLOCATION attribute this INDEX_BLOCK + belongs to. */ + INDEX_HEADER_FLAGS flags; /* Bit field of INDEX_HEADER_FLAGS. */ + u8 reserved[3]; /* Reserved/align to 8-byte boundary. */ +} __attribute__ ((__packed__)) INDEX_HEADER; + +/* + * Attribute: Index root (0x90). + * + * NOTE: Always resident. + * + * This is followed by a sequence of index entries (INDEX_ENTRY structures) + * as described by the index header. + * + * When a directory is small enough to fit inside the index root then this + * is the only attribute describing the directory. When the directory is too + * large to fit in the index root, on the other hand, two additional attributes + * are present: an index allocation attribute, containing sub-nodes of the B+ + * directory tree (see below), and a bitmap attribute, describing which virtual + * cluster numbers (vcns) in the index allocation attribute are in use by an + * index block. + * + * NOTE: The root directory (FILE_root) contains an entry for itself. Other + * directories do not contain entries for themselves, though. + */ +typedef struct { + ATTR_TYPE type; /* Type of the indexed attribute. Is + $FILE_NAME for directories, zero + for view indexes. No other values + allowed. */ + COLLATION_RULE collation_rule; /* Collation rule used to sort the + index entries. If type is $FILE_NAME, + this must be COLLATION_FILE_NAME. */ + le32 index_block_size; /* Size of each index block in bytes (in + the index allocation attribute). */ + u8 clusters_per_index_block; /* Cluster size of each index block (in + the index allocation attribute), when + an index block is >= than a cluster, + otherwise this will be the log of + the size (like how the encoding of + the mft record size and the index + record size found in the boot sector + work). Has to be a power of 2. */ + u8 reserved[3]; /* Reserved/align to 8-byte boundary. */ + INDEX_HEADER index; /* Index header describing the + following index entries. */ +} __attribute__ ((__packed__)) INDEX_ROOT; + +/* + * Attribute: Index allocation (0xa0). + * + * NOTE: Always non-resident (doesn't make sense to be resident anyway!). + * + * This is an array of index blocks. Each index block starts with an + * INDEX_BLOCK structure containing an index header, followed by a sequence of + * index entries (INDEX_ENTRY structures), as described by the INDEX_HEADER. + */ +typedef struct { +/* 0 NTFS_RECORD; -- Unfolded here as gcc doesn't like unnamed structs. */ + NTFS_RECORD_TYPE magic; /* Magic is "INDX". */ + le16 usa_ofs; /* See NTFS_RECORD definition. */ + le16 usa_count; /* See NTFS_RECORD definition. */ + +/* 8*/ sle64 lsn; /* $LogFile sequence number of the last + modification of this index block. */ +/* 16*/ leVCN index_block_vcn; /* Virtual cluster number of the index block. + If the cluster_size on the volume is <= the + index_block_size of the directory, + index_block_vcn counts in units of clusters, + and in units of sectors otherwise. */ +/* 24*/ INDEX_HEADER index; /* Describes the following index entries. */ +/* sizeof()= 40 (0x28) bytes */ +/* + * When creating the index block, we place the update sequence array at this + * offset, i.e. before we start with the index entries. This also makes sense, + * otherwise we could run into problems with the update sequence array + * containing in itself the last two bytes of a sector which would mean that + * multi sector transfer protection wouldn't work. As you can't protect data + * by overwriting it since you then can't get it back... + * When reading use the data from the ntfs record header. + */ +} __attribute__ ((__packed__)) INDEX_BLOCK; + +typedef INDEX_BLOCK INDEX_ALLOCATION; + +/* + * The system file FILE_Extend/$Reparse contains an index named $R listing + * all reparse points on the volume. The index entry keys are as defined + * below. Note, that there is no index data associated with the index entries. + * + * The index entries are sorted by the index key file_id. The collation rule is + * COLLATION_NTOFS_ULONGS. FIXME: Verify whether the reparse_tag is not the + * primary key / is not a key at all. (AIA) + */ +typedef struct { + le32 reparse_tag; /* Reparse point type (inc. flags). */ + leMFT_REF file_id; /* Mft record of the file containing the + reparse point attribute. */ +} __attribute__ ((__packed__)) REPARSE_INDEX_KEY; + +/* + * Quota flags (32-bit). + * + * The user quota flags. Names explain meaning. + */ +enum { + QUOTA_FLAG_DEFAULT_LIMITS = cpu_to_le32(0x00000001), + QUOTA_FLAG_LIMIT_REACHED = cpu_to_le32(0x00000002), + QUOTA_FLAG_ID_DELETED = cpu_to_le32(0x00000004), + + QUOTA_FLAG_USER_MASK = cpu_to_le32(0x00000007), + /* This is a bit mask for the user quota flags. */ + + /* + * These flags are only present in the quota defaults index entry, i.e. + * in the entry where owner_id = QUOTA_DEFAULTS_ID. + */ + QUOTA_FLAG_TRACKING_ENABLED = cpu_to_le32(0x00000010), + QUOTA_FLAG_ENFORCEMENT_ENABLED = cpu_to_le32(0x00000020), + QUOTA_FLAG_TRACKING_REQUESTED = cpu_to_le32(0x00000040), + QUOTA_FLAG_LOG_THRESHOLD = cpu_to_le32(0x00000080), + + QUOTA_FLAG_LOG_LIMIT = cpu_to_le32(0x00000100), + QUOTA_FLAG_OUT_OF_DATE = cpu_to_le32(0x00000200), + QUOTA_FLAG_CORRUPT = cpu_to_le32(0x00000400), + QUOTA_FLAG_PENDING_DELETES = cpu_to_le32(0x00000800), +}; + +typedef le32 QUOTA_FLAGS; + +/* + * The system file FILE_Extend/$Quota contains two indexes $O and $Q. Quotas + * are on a per volume and per user basis. + * + * The $Q index contains one entry for each existing user_id on the volume. The + * index key is the user_id of the user/group owning this quota control entry, + * i.e. the key is the owner_id. The user_id of the owner of a file, i.e. the + * owner_id, is found in the standard information attribute. The collation rule + * for $Q is COLLATION_NTOFS_ULONG. + * + * The $O index contains one entry for each user/group who has been assigned + * a quota on that volume. The index key holds the SID of the user_id the + * entry belongs to, i.e. the owner_id. The collation rule for $O is + * COLLATION_NTOFS_SID. + * + * The $O index entry data is the user_id of the user corresponding to the SID. + * This user_id is used as an index into $Q to find the quota control entry + * associated with the SID. + * + * The $Q index entry data is the quota control entry and is defined below. + */ +typedef struct { + le32 version; /* Currently equals 2. */ + QUOTA_FLAGS flags; /* Flags describing this quota entry. */ + le64 bytes_used; /* How many bytes of the quota are in use. */ + sle64 change_time; /* Last time this quota entry was changed. */ + sle64 threshold; /* Soft quota (-1 if not limited). */ + sle64 limit; /* Hard quota (-1 if not limited). */ + sle64 exceeded_time; /* How long the soft quota has been exceeded. */ + SID sid; /* The SID of the user/object associated with + this quota entry. Equals zero for the quota + defaults entry (and in fact on a WinXP + volume, it is not present at all). */ +} __attribute__ ((__packed__)) QUOTA_CONTROL_ENTRY; + +/* + * Predefined owner_id values (32-bit). + */ +enum { + QUOTA_INVALID_ID = cpu_to_le32(0x00000000), + QUOTA_DEFAULTS_ID = cpu_to_le32(0x00000001), + QUOTA_FIRST_USER_ID = cpu_to_le32(0x00000100), +}; + +/* + * Current constants for quota control entries. + */ +typedef enum { + /* Current version. */ + QUOTA_VERSION = 2, +} QUOTA_CONTROL_ENTRY_CONSTANTS; + +/* + * Index entry flags (16-bit). + */ +enum { + INDEX_ENTRY_NODE = cpu_to_le16(1), /* This entry contains a + sub-node, i.e. a reference to an index block in form of + a virtual cluster number (see below). */ + INDEX_ENTRY_END = cpu_to_le16(2), /* This signifies the last + entry in an index block. The index entry does not + represent a file but it can point to a sub-node. */ + + INDEX_ENTRY_SPACE_FILLER = cpu_to_le16(0xffff), /* gcc: Force + enum bit width to 16-bit. */ +} __attribute__ ((__packed__)); + +typedef le16 INDEX_ENTRY_FLAGS; + +/* + * This the index entry header (see below). + */ +typedef struct { +/* 0*/ union { + struct { /* Only valid when INDEX_ENTRY_END is not set. */ + leMFT_REF indexed_file; /* The mft reference of the file + described by this index + entry. Used for directory + indexes. */ + } __attribute__ ((__packed__)) dir; + struct { /* Used for views/indexes to find the entry's data. */ + le16 data_offset; /* Data byte offset from this + INDEX_ENTRY. Follows the + index key. */ + le16 data_length; /* Data length in bytes. */ + le32 reservedV; /* Reserved (zero). */ + } __attribute__ ((__packed__)) vi; + } __attribute__ ((__packed__)) data; +/* 8*/ le16 length; /* Byte size of this index entry, multiple of + 8-bytes. */ +/* 10*/ le16 key_length; /* Byte size of the key value, which is in the + index entry. It follows field reserved. Not + multiple of 8-bytes. */ +/* 12*/ INDEX_ENTRY_FLAGS flags; /* Bit field of INDEX_ENTRY_* flags. */ +/* 14*/ le16 reserved; /* Reserved/align to 8-byte boundary. */ +/* sizeof() = 16 bytes */ +} __attribute__ ((__packed__)) INDEX_ENTRY_HEADER; + +/* + * This is an index entry. A sequence of such entries follows each INDEX_HEADER + * structure. Together they make up a complete index. The index follows either + * an index root attribute or an index allocation attribute. + * + * NOTE: Before NTFS 3.0 only filename attributes were indexed. + */ +typedef struct { +/*Ofs*/ +/* 0 INDEX_ENTRY_HEADER; -- Unfolded here as gcc dislikes unnamed structs. */ + union { + struct { /* Only valid when INDEX_ENTRY_END is not set. */ + leMFT_REF indexed_file; /* The mft reference of the file + described by this index + entry. Used for directory + indexes. */ + } __attribute__ ((__packed__)) dir; + struct { /* Used for views/indexes to find the entry's data. */ + le16 data_offset; /* Data byte offset from this + INDEX_ENTRY. Follows the + index key. */ + le16 data_length; /* Data length in bytes. */ + le32 reservedV; /* Reserved (zero). */ + } __attribute__ ((__packed__)) vi; + } __attribute__ ((__packed__)) data; + le16 length; /* Byte size of this index entry, multiple of + 8-bytes. */ + le16 key_length; /* Byte size of the key value, which is in the + index entry. It follows field reserved. Not + multiple of 8-bytes. */ + INDEX_ENTRY_FLAGS flags; /* Bit field of INDEX_ENTRY_* flags. */ + le16 reserved; /* Reserved/align to 8-byte boundary. */ + +/* 16*/ union { /* The key of the indexed attribute. NOTE: Only present + if INDEX_ENTRY_END bit in flags is not set. NOTE: On + NTFS versions before 3.0 the only valid key is the + FILE_NAME_ATTR. On NTFS 3.0+ the following + additional index keys are defined: */ + FILE_NAME_ATTR file_name;/* $I30 index in directories. */ + SII_INDEX_KEY sii; /* $SII index in $Secure. */ + SDH_INDEX_KEY sdh; /* $SDH index in $Secure. */ + GUID object_id; /* $O index in FILE_Extend/$ObjId: The + object_id of the mft record found in + the data part of the index. */ + REPARSE_INDEX_KEY reparse; /* $R index in + FILE_Extend/$Reparse. */ + SID sid; /* $O index in FILE_Extend/$Quota: + SID of the owner of the user_id. */ + le32 owner_id; /* $Q index in FILE_Extend/$Quota: + user_id of the owner of the quota + control entry in the data part of + the index. */ + } __attribute__ ((__packed__)) key; + /* The (optional) index data is inserted here when creating. */ + // leVCN vcn; /* If INDEX_ENTRY_NODE bit in flags is set, the last + // eight bytes of this index entry contain the virtual + // cluster number of the index block that holds the + // entries immediately preceding the current entry (the + // vcn references the corresponding cluster in the data + // of the non-resident index allocation attribute). If + // the key_length is zero, then the vcn immediately + // follows the INDEX_ENTRY_HEADER. Regardless of + // key_length, the address of the 8-byte boundary + // aligned vcn of INDEX_ENTRY{_HEADER} *ie is given by + // (char*)ie + le16_to_cpu(ie*)->length) - sizeof(VCN), + // where sizeof(VCN) can be hardcoded as 8 if wanted. */ +} __attribute__ ((__packed__)) INDEX_ENTRY; + +/* + * Attribute: Bitmap (0xb0). + * + * Contains an array of bits (aka a bitfield). + * + * When used in conjunction with the index allocation attribute, each bit + * corresponds to one index block within the index allocation attribute. Thus + * the number of bits in the bitmap * index block size / cluster size is the + * number of clusters in the index allocation attribute. + */ +typedef struct { + u8 bitmap[0]; /* Array of bits. */ +} __attribute__ ((__packed__)) BITMAP_ATTR; + +/* + * The reparse point tag defines the type of the reparse point. It also + * includes several flags, which further describe the reparse point. + * + * The reparse point tag is an unsigned 32-bit value divided in three parts: + * + * 1. The least significant 16 bits (i.e. bits 0 to 15) specifiy the type of + * the reparse point. + * 2. The 13 bits after this (i.e. bits 16 to 28) are reserved for future use. + * 3. The most significant three bits are flags describing the reparse point. + * They are defined as follows: + * bit 29: Name surrogate bit. If set, the filename is an alias for + * another object in the system. + * bit 30: High-latency bit. If set, accessing the first byte of data will + * be slow. (E.g. the data is stored on a tape drive.) + * bit 31: Microsoft bit. If set, the tag is owned by Microsoft. User + * defined tags have to use zero here. + * + * These are the predefined reparse point tags: + */ +enum { + IO_REPARSE_TAG_IS_ALIAS = cpu_to_le32(0x20000000), + IO_REPARSE_TAG_IS_HIGH_LATENCY = cpu_to_le32(0x40000000), + IO_REPARSE_TAG_IS_MICROSOFT = cpu_to_le32(0x80000000), + + IO_REPARSE_TAG_RESERVED_ZERO = cpu_to_le32(0x00000000), + IO_REPARSE_TAG_RESERVED_ONE = cpu_to_le32(0x00000001), + IO_REPARSE_TAG_RESERVED_RANGE = cpu_to_le32(0x00000001), + + IO_REPARSE_TAG_NSS = cpu_to_le32(0x68000005), + IO_REPARSE_TAG_NSS_RECOVER = cpu_to_le32(0x68000006), + IO_REPARSE_TAG_SIS = cpu_to_le32(0x68000007), + IO_REPARSE_TAG_DFS = cpu_to_le32(0x68000008), + + IO_REPARSE_TAG_MOUNT_POINT = cpu_to_le32(0x88000003), + + IO_REPARSE_TAG_HSM = cpu_to_le32(0xa8000004), + + IO_REPARSE_TAG_SYMBOLIC_LINK = cpu_to_le32(0xe8000000), + + IO_REPARSE_TAG_VALID_VALUES = cpu_to_le32(0xe000ffff), +}; + +/* + * Attribute: Reparse point (0xc0). + * + * NOTE: Can be resident or non-resident. + */ +typedef struct { + le32 reparse_tag; /* Reparse point type (inc. flags). */ + le16 reparse_data_length; /* Byte size of reparse data. */ + le16 reserved; /* Align to 8-byte boundary. */ + u8 reparse_data[0]; /* Meaning depends on reparse_tag. */ +} __attribute__ ((__packed__)) REPARSE_POINT; + +/* + * Attribute: Extended attribute (EA) information (0xd0). + * + * NOTE: Always resident. (Is this true???) + */ +typedef struct { + le16 ea_length; /* Byte size of the packed extended + attributes. */ + le16 need_ea_count; /* The number of extended attributes which have + the NEED_EA bit set. */ + le32 ea_query_length; /* Byte size of the buffer required to query + the extended attributes when calling + ZwQueryEaFile() in Windows NT/2k. I.e. the + byte size of the unpacked extended + attributes. */ +} __attribute__ ((__packed__)) EA_INFORMATION; + +/* + * Extended attribute flags (8-bit). + */ +enum { + NEED_EA = 0x80 /* If set the file to which the EA belongs + cannot be interpreted without understanding + the associates extended attributes. */ +} __attribute__ ((__packed__)); + +typedef u8 EA_FLAGS; + +/* + * Attribute: Extended attribute (EA) (0xe0). + * + * NOTE: Can be resident or non-resident. + * + * Like the attribute list and the index buffer list, the EA attribute value is + * a sequence of EA_ATTR variable length records. + */ +typedef struct { + le32 next_entry_offset; /* Offset to the next EA_ATTR. */ + EA_FLAGS flags; /* Flags describing the EA. */ + u8 ea_name_length; /* Length of the name of the EA in bytes + excluding the '\0' byte terminator. */ + le16 ea_value_length; /* Byte size of the EA's value. */ + u8 ea_name[0]; /* Name of the EA. Note this is ASCII, not + Unicode and it is zero terminated. */ + u8 ea_value[0]; /* The value of the EA. Immediately follows + the name. */ +} __attribute__ ((__packed__)) EA_ATTR; + +/* + * Attribute: Property set (0xf0). + * + * Intended to support Native Structure Storage (NSS) - a feature removed from + * NTFS 3.0 during beta testing. + */ +typedef struct { + /* Irrelevant as feature unused. */ +} __attribute__ ((__packed__)) PROPERTY_SET; + +/* + * Attribute: Logged utility stream (0x100). + * + * NOTE: Can be resident or non-resident. + * + * Operations on this attribute are logged to the journal ($LogFile) like + * normal metadata changes. + * + * Used by the Encrypting File System (EFS). All encrypted files have this + * attribute with the name $EFS. + */ +typedef struct { + /* Can be anything the creator chooses. */ + /* EFS uses it as follows: */ + // FIXME: Type this info, verifying it along the way. (AIA) +} __attribute__ ((__packed__)) LOGGED_UTILITY_STREAM, EFS_ATTR; + +#endif /* _LINUX_NTFS_LAYOUT_H */ -- cgit