From 871480933a1c28f8a9fed4c4d34d06c439a7a422 Mon Sep 17 00:00:00 2001 From: Srikant Patnaik Date: Sun, 11 Jan 2015 12:28:04 +0530 Subject: Moved, renamed, and deleted files The original directory structure was scattered and unorganized. Changes are basically to make it look like kernel structure. --- arch/tile/include/asm/pgtable.h | 465 ++++++++++++++++++++++++++++++++++++++++ 1 file changed, 465 insertions(+) create mode 100644 arch/tile/include/asm/pgtable.h (limited to 'arch/tile/include/asm/pgtable.h') diff --git a/arch/tile/include/asm/pgtable.h b/arch/tile/include/asm/pgtable.h new file mode 100644 index 00000000..67490910 --- /dev/null +++ b/arch/tile/include/asm/pgtable.h @@ -0,0 +1,465 @@ +/* + * Copyright 2010 Tilera Corporation. All Rights Reserved. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * as published by the Free Software Foundation, version 2. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or + * NON INFRINGEMENT. See the GNU General Public License for + * more details. + * + * This file contains the functions and defines necessary to modify and use + * the TILE page table tree. + */ + +#ifndef _ASM_TILE_PGTABLE_H +#define _ASM_TILE_PGTABLE_H + +#include + +#ifndef __ASSEMBLY__ + +#include +#include +#include +#include +#include +#include +#include + +struct mm_struct; +struct vm_area_struct; + +/* + * ZERO_PAGE is a global shared page that is always zero: used + * for zero-mapped memory areas etc.. + */ +extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)]; +#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) + +extern pgd_t swapper_pg_dir[]; +extern pgprot_t swapper_pgprot; +extern struct kmem_cache *pgd_cache; +extern spinlock_t pgd_lock; +extern struct list_head pgd_list; + +/* + * The very last slots in the pgd_t are for addresses unusable by Linux + * (pgd_addr_invalid() returns true). So we use them for the list structure. + * The x86 code we are modelled on uses the page->private/index fields + * (older 2.6 kernels) or the lru list (newer 2.6 kernels), but since + * our pgds are so much smaller than a page, it seems a waste to + * spend a whole page on each pgd. + */ +#define PGD_LIST_OFFSET \ + ((PTRS_PER_PGD * sizeof(pgd_t)) - sizeof(struct list_head)) +#define pgd_to_list(pgd) \ + ((struct list_head *)((char *)(pgd) + PGD_LIST_OFFSET)) +#define list_to_pgd(list) \ + ((pgd_t *)((char *)(list) - PGD_LIST_OFFSET)) + +extern void pgtable_cache_init(void); +extern void paging_init(void); +extern void set_page_homes(void); + +#define FIRST_USER_ADDRESS 0 + +#define _PAGE_PRESENT HV_PTE_PRESENT +#define _PAGE_HUGE_PAGE HV_PTE_PAGE +#define _PAGE_READABLE HV_PTE_READABLE +#define _PAGE_WRITABLE HV_PTE_WRITABLE +#define _PAGE_EXECUTABLE HV_PTE_EXECUTABLE +#define _PAGE_ACCESSED HV_PTE_ACCESSED +#define _PAGE_DIRTY HV_PTE_DIRTY +#define _PAGE_GLOBAL HV_PTE_GLOBAL +#define _PAGE_USER HV_PTE_USER + +/* + * All the "standard" bits. Cache-control bits are managed elsewhere. + * This is used to test for valid level-2 page table pointers by checking + * all the bits, and to mask away the cache control bits for mprotect. + */ +#define _PAGE_ALL (\ + _PAGE_PRESENT | \ + _PAGE_HUGE_PAGE | \ + _PAGE_READABLE | \ + _PAGE_WRITABLE | \ + _PAGE_EXECUTABLE | \ + _PAGE_ACCESSED | \ + _PAGE_DIRTY | \ + _PAGE_GLOBAL | \ + _PAGE_USER \ +) + +#define PAGE_NONE \ + __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED) +#define PAGE_SHARED \ + __pgprot(_PAGE_PRESENT | _PAGE_READABLE | _PAGE_WRITABLE | \ + _PAGE_USER | _PAGE_ACCESSED) + +#define PAGE_SHARED_EXEC \ + __pgprot(_PAGE_PRESENT | _PAGE_READABLE | _PAGE_WRITABLE | \ + _PAGE_EXECUTABLE | _PAGE_USER | _PAGE_ACCESSED) +#define PAGE_COPY_NOEXEC \ + __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_READABLE) +#define PAGE_COPY_EXEC \ + __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | \ + _PAGE_READABLE | _PAGE_EXECUTABLE) +#define PAGE_COPY \ + PAGE_COPY_NOEXEC +#define PAGE_READONLY \ + __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_READABLE) +#define PAGE_READONLY_EXEC \ + __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | \ + _PAGE_READABLE | _PAGE_EXECUTABLE) + +#define _PAGE_KERNEL_RO \ + (_PAGE_PRESENT | _PAGE_GLOBAL | _PAGE_READABLE | _PAGE_ACCESSED) +#define _PAGE_KERNEL \ + (_PAGE_KERNEL_RO | _PAGE_WRITABLE | _PAGE_DIRTY) +#define _PAGE_KERNEL_EXEC (_PAGE_KERNEL_RO | _PAGE_EXECUTABLE) + +#define PAGE_KERNEL __pgprot(_PAGE_KERNEL) +#define PAGE_KERNEL_RO __pgprot(_PAGE_KERNEL_RO) +#define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL_EXEC) + +#define page_to_kpgprot(p) PAGE_KERNEL + +/* + * We could tighten these up, but for now writable or executable + * implies readable. + */ +#define __P000 PAGE_NONE +#define __P001 PAGE_READONLY +#define __P010 PAGE_COPY /* this is write-only, which we won't support */ +#define __P011 PAGE_COPY +#define __P100 PAGE_READONLY_EXEC +#define __P101 PAGE_READONLY_EXEC +#define __P110 PAGE_COPY_EXEC +#define __P111 PAGE_COPY_EXEC + +#define __S000 PAGE_NONE +#define __S001 PAGE_READONLY +#define __S010 PAGE_SHARED +#define __S011 PAGE_SHARED +#define __S100 PAGE_READONLY_EXEC +#define __S101 PAGE_READONLY_EXEC +#define __S110 PAGE_SHARED_EXEC +#define __S111 PAGE_SHARED_EXEC + +/* + * All the normal _PAGE_ALL bits are ignored for PMDs, except PAGE_PRESENT + * and PAGE_HUGE_PAGE, which must be one and zero, respectively. + * We set the ignored bits to zero. + */ +#define _PAGE_TABLE _PAGE_PRESENT + +/* Inherit the caching flags from the old protection bits. */ +#define pgprot_modify(oldprot, newprot) \ + (pgprot_t) { ((oldprot).val & ~_PAGE_ALL) | (newprot).val } + +/* Just setting the PFN to zero suffices. */ +#define pte_pgprot(x) hv_pte_set_pfn((x), 0) + +/* + * For PTEs and PDEs, we must clear the Present bit first when + * clearing a page table entry, so clear the bottom half first and + * enforce ordering with a barrier. + */ +static inline void __pte_clear(pte_t *ptep) +{ +#ifdef __tilegx__ + ptep->val = 0; +#else + u32 *tmp = (u32 *)ptep; + tmp[0] = 0; + barrier(); + tmp[1] = 0; +#endif +} +#define pte_clear(mm, addr, ptep) __pte_clear(ptep) + +/* + * The following only work if pte_present() is true. + * Undefined behaviour if not.. + */ +#define pte_present hv_pte_get_present +#define pte_user hv_pte_get_user +#define pte_read hv_pte_get_readable +#define pte_dirty hv_pte_get_dirty +#define pte_young hv_pte_get_accessed +#define pte_write hv_pte_get_writable +#define pte_exec hv_pte_get_executable +#define pte_huge hv_pte_get_page +#define pte_rdprotect hv_pte_clear_readable +#define pte_exprotect hv_pte_clear_executable +#define pte_mkclean hv_pte_clear_dirty +#define pte_mkold hv_pte_clear_accessed +#define pte_wrprotect hv_pte_clear_writable +#define pte_mksmall hv_pte_clear_page +#define pte_mkread hv_pte_set_readable +#define pte_mkexec hv_pte_set_executable +#define pte_mkdirty hv_pte_set_dirty +#define pte_mkyoung hv_pte_set_accessed +#define pte_mkwrite hv_pte_set_writable +#define pte_mkhuge hv_pte_set_page + +#define pte_special(pte) 0 +#define pte_mkspecial(pte) (pte) + +/* + * Use some spare bits in the PTE for user-caching tags. + */ +#define pte_set_forcecache hv_pte_set_client0 +#define pte_get_forcecache hv_pte_get_client0 +#define pte_clear_forcecache hv_pte_clear_client0 +#define pte_set_anyhome hv_pte_set_client1 +#define pte_get_anyhome hv_pte_get_client1 +#define pte_clear_anyhome hv_pte_clear_client1 + +/* + * A migrating PTE has PAGE_PRESENT clear but all the other bits preserved. + */ +#define pte_migrating hv_pte_get_migrating +#define pte_mkmigrate(x) hv_pte_set_migrating(hv_pte_clear_present(x)) +#define pte_donemigrate(x) hv_pte_set_present(hv_pte_clear_migrating(x)) + +#define pte_ERROR(e) \ + pr_err("%s:%d: bad pte 0x%016llx.\n", __FILE__, __LINE__, pte_val(e)) +#define pgd_ERROR(e) \ + pr_err("%s:%d: bad pgd 0x%016llx.\n", __FILE__, __LINE__, pgd_val(e)) + +/* Return PA and protection info for a given kernel VA. */ +int va_to_cpa_and_pte(void *va, phys_addr_t *cpa, pte_t *pte); + +/* + * __set_pte() ensures we write the 64-bit PTE with 32-bit words in + * the right order on 32-bit platforms and also allows us to write + * hooks to check valid PTEs, etc., if we want. + */ +void __set_pte(pte_t *ptep, pte_t pte); + +/* + * set_pte() sets the given PTE and also sanity-checks the + * requested PTE against the page homecaching. Unspecified parts + * of the PTE are filled in when it is written to memory, i.e. all + * caching attributes if "!forcecache", or the home cpu if "anyhome". + */ +extern void set_pte(pte_t *ptep, pte_t pte); +#define set_pte_at(mm, addr, ptep, pteval) set_pte(ptep, pteval) +#define set_pte_atomic(pteptr, pteval) set_pte(pteptr, pteval) + +#define pte_page(x) pfn_to_page(pte_pfn(x)) + +static inline int pte_none(pte_t pte) +{ + return !pte.val; +} + +static inline unsigned long pte_pfn(pte_t pte) +{ + return hv_pte_get_pfn(pte); +} + +/* Set or get the remote cache cpu in a pgprot with remote caching. */ +extern pgprot_t set_remote_cache_cpu(pgprot_t prot, int cpu); +extern int get_remote_cache_cpu(pgprot_t prot); + +static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot) +{ + return hv_pte_set_pfn(prot, pfn); +} + +/* Support for priority mappings. */ +extern void start_mm_caching(struct mm_struct *mm); +extern void check_mm_caching(struct mm_struct *prev, struct mm_struct *next); + +/* + * Support non-linear file mappings (see sys_remap_file_pages). + * This is defined by CLIENT1 set but CLIENT0 and _PAGE_PRESENT clear, and the + * file offset in the 32 high bits. + */ +#define _PAGE_FILE HV_PTE_CLIENT1 +#define PTE_FILE_MAX_BITS 32 +#define pte_file(pte) (hv_pte_get_client1(pte) && !hv_pte_get_client0(pte)) +#define pte_to_pgoff(pte) ((pte).val >> 32) +#define pgoff_to_pte(off) ((pte_t) { (((long long)(off)) << 32) | _PAGE_FILE }) + +/* + * Encode and de-code a swap entry (see ). + * We put the swap file type+offset in the 32 high bits; + * I believe we can just leave the low bits clear. + */ +#define __swp_type(swp) ((swp).val & 0x1f) +#define __swp_offset(swp) ((swp).val >> 5) +#define __swp_entry(type, off) ((swp_entry_t) { (type) | ((off) << 5) }) +#define __pte_to_swp_entry(pte) ((swp_entry_t) { (pte).val >> 32 }) +#define __swp_entry_to_pte(swp) ((pte_t) { (((long long) ((swp).val)) << 32) }) + +/* + * Conversion functions: convert a page and protection to a page entry, + * and a page entry and page directory to the page they refer to. + */ + +#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) + +/* + * If we are doing an mprotect(), just accept the new vma->vm_page_prot + * value and combine it with the PFN from the old PTE to get a new PTE. + */ +static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) +{ + return pfn_pte(hv_pte_get_pfn(pte), newprot); +} + +/* + * The pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD] + * + * This macro returns the index of the entry in the pgd page which would + * control the given virtual address. + */ +#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)) + +/* + * pgd_offset() returns a (pgd_t *) + * pgd_index() is used get the offset into the pgd page's array of pgd_t's. + */ +#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) + +/* + * A shortcut which implies the use of the kernel's pgd, instead + * of a process's. + */ +#define pgd_offset_k(address) pgd_offset(&init_mm, address) + +#if defined(CONFIG_HIGHPTE) +extern pte_t *pte_offset_map(pmd_t *, unsigned long address); +#define pte_unmap(pte) kunmap_atomic(pte) +#else +#define pte_offset_map(dir, address) pte_offset_kernel(dir, address) +#define pte_unmap(pte) do { } while (0) +#endif + +/* Clear a non-executable kernel PTE and flush it from the TLB. */ +#define kpte_clear_flush(ptep, vaddr) \ +do { \ + pte_clear(&init_mm, (vaddr), (ptep)); \ + local_flush_tlb_page(FLUSH_NONEXEC, (vaddr), PAGE_SIZE); \ +} while (0) + +/* + * The kernel page tables contain what we need, and we flush when we + * change specific page table entries. + */ +#define update_mmu_cache(vma, address, pte) do { } while (0) + +#ifdef CONFIG_FLATMEM +#define kern_addr_valid(addr) (1) +#endif /* CONFIG_FLATMEM */ + +#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ + remap_pfn_range(vma, vaddr, pfn, size, prot) + +extern void vmalloc_sync_all(void); + +#endif /* !__ASSEMBLY__ */ + +#ifdef __tilegx__ +#include +#else +#include +#endif + +#ifndef __ASSEMBLY__ + +static inline int pmd_none(pmd_t pmd) +{ + /* + * Only check low word on 32-bit platforms, since it might be + * out of sync with upper half. + */ + return (unsigned long)pmd_val(pmd) == 0; +} + +static inline int pmd_present(pmd_t pmd) +{ + return pmd_val(pmd) & _PAGE_PRESENT; +} + +static inline int pmd_bad(pmd_t pmd) +{ + return ((pmd_val(pmd) & _PAGE_ALL) != _PAGE_TABLE); +} + +static inline unsigned long pages_to_mb(unsigned long npg) +{ + return npg >> (20 - PAGE_SHIFT); +} + +/* + * The pmd can be thought of an array like this: pmd_t[PTRS_PER_PMD] + * + * This function returns the index of the entry in the pmd which would + * control the given virtual address. + */ +static inline unsigned long pmd_index(unsigned long address) +{ + return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); +} + +/* + * A given kernel pmd_t maps to a specific virtual address (either a + * kernel huge page or a kernel pte_t table). Since kernel pte_t + * tables can be aligned at sub-page granularity, this function can + * return non-page-aligned pointers, despite its name. + */ +static inline unsigned long pmd_page_vaddr(pmd_t pmd) +{ + phys_addr_t pa = + (phys_addr_t)pmd_ptfn(pmd) << HV_LOG2_PAGE_TABLE_ALIGN; + return (unsigned long)__va(pa); +} + +/* + * A pmd_t points to the base of a huge page or to a pte_t array. + * If a pte_t array, since we can have multiple per page, we don't + * have a one-to-one mapping of pmd_t's to pages. However, this is + * OK for pte_lockptr(), since we just end up with potentially one + * lock being used for several pte_t arrays. + */ +#define pmd_page(pmd) pfn_to_page(HV_PTFN_TO_PFN(pmd_ptfn(pmd))) + +/* + * The pte page can be thought of an array like this: pte_t[PTRS_PER_PTE] + * + * This macro returns the index of the entry in the pte page which would + * control the given virtual address. + */ +static inline unsigned long pte_index(unsigned long address) +{ + return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); +} + +static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address) +{ + return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address); +} + +static inline int pmd_huge_page(pmd_t pmd) +{ + return pmd_val(pmd) & _PAGE_HUGE_PAGE; +} + +#include + +/* Support /proc/NN/pgtable API. */ +struct seq_file; +int arch_proc_pgtable_show(struct seq_file *m, struct mm_struct *mm, + unsigned long vaddr, pte_t *ptep, void **datap); + +#endif /* !__ASSEMBLY__ */ + +#endif /* _ASM_TILE_PGTABLE_H */ -- cgit