summaryrefslogtreecommitdiff
path: root/sound/pci/sis7019.c
diff options
context:
space:
mode:
Diffstat (limited to 'sound/pci/sis7019.c')
-rw-r--r--sound/pci/sis7019.c1502
1 files changed, 1502 insertions, 0 deletions
diff --git a/sound/pci/sis7019.c b/sound/pci/sis7019.c
new file mode 100644
index 00000000..ff500a87
--- /dev/null
+++ b/sound/pci/sis7019.c
@@ -0,0 +1,1502 @@
+/*
+ * Driver for SiS7019 Audio Accelerator
+ *
+ * Copyright (C) 2004-2007, David Dillow
+ * Written by David Dillow <dave@thedillows.org>
+ * Inspired by the Trident 4D-WaveDX/NX driver.
+ *
+ * All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, version 2.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ */
+
+#include <linux/init.h>
+#include <linux/pci.h>
+#include <linux/time.h>
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/interrupt.h>
+#include <linux/delay.h>
+#include <sound/core.h>
+#include <sound/ac97_codec.h>
+#include <sound/initval.h>
+#include "sis7019.h"
+
+MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
+MODULE_DESCRIPTION("SiS7019");
+MODULE_LICENSE("GPL");
+MODULE_SUPPORTED_DEVICE("{{SiS,SiS7019 Audio Accelerator}}");
+
+static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */
+static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */
+static bool enable = 1;
+static int codecs = 1;
+
+module_param(index, int, 0444);
+MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
+module_param(id, charp, 0444);
+MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
+module_param(enable, bool, 0444);
+MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
+module_param(codecs, int, 0444);
+MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)");
+
+static DEFINE_PCI_DEVICE_TABLE(snd_sis7019_ids) = {
+ { PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
+ { 0, }
+};
+
+MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
+
+/* There are three timing modes for the voices.
+ *
+ * For both playback and capture, when the buffer is one or two periods long,
+ * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
+ * to let us know when the periods have ended.
+ *
+ * When performing playback with more than two periods per buffer, we set
+ * the "Stop Sample Offset" and tell the hardware to interrupt us when we
+ * reach it. We then update the offset and continue on until we are
+ * interrupted for the next period.
+ *
+ * Capture channels do not have a SSO, so we allocate a playback channel to
+ * use as a timer for the capture periods. We use the SSO on the playback
+ * channel to clock out virtual periods, and adjust the virtual period length
+ * to maintain synchronization. This algorithm came from the Trident driver.
+ *
+ * FIXME: It'd be nice to make use of some of the synth features in the
+ * hardware, but a woeful lack of documentation is a significant roadblock.
+ */
+struct voice {
+ u16 flags;
+#define VOICE_IN_USE 1
+#define VOICE_CAPTURE 2
+#define VOICE_SSO_TIMING 4
+#define VOICE_SYNC_TIMING 8
+ u16 sync_cso;
+ u16 period_size;
+ u16 buffer_size;
+ u16 sync_period_size;
+ u16 sync_buffer_size;
+ u32 sso;
+ u32 vperiod;
+ struct snd_pcm_substream *substream;
+ struct voice *timing;
+ void __iomem *ctrl_base;
+ void __iomem *wave_base;
+ void __iomem *sync_base;
+ int num;
+};
+
+/* We need four pages to store our wave parameters during a suspend. If
+ * we're not doing power management, we still need to allocate a page
+ * for the silence buffer.
+ */
+#ifdef CONFIG_PM
+#define SIS_SUSPEND_PAGES 4
+#else
+#define SIS_SUSPEND_PAGES 1
+#endif
+
+struct sis7019 {
+ unsigned long ioport;
+ void __iomem *ioaddr;
+ int irq;
+ int codecs_present;
+
+ struct pci_dev *pci;
+ struct snd_pcm *pcm;
+ struct snd_card *card;
+ struct snd_ac97 *ac97[3];
+
+ /* Protect against more than one thread hitting the AC97
+ * registers (in a more polite manner than pounding the hardware
+ * semaphore)
+ */
+ struct mutex ac97_mutex;
+
+ /* voice_lock protects allocation/freeing of the voice descriptions
+ */
+ spinlock_t voice_lock;
+
+ struct voice voices[64];
+ struct voice capture_voice;
+
+ /* Allocate pages to store the internal wave state during
+ * suspends. When we're operating, this can be used as a silence
+ * buffer for a timing channel.
+ */
+ void *suspend_state[SIS_SUSPEND_PAGES];
+
+ int silence_users;
+ dma_addr_t silence_dma_addr;
+};
+
+/* These values are also used by the module param 'codecs' to indicate
+ * which codecs should be present.
+ */
+#define SIS_PRIMARY_CODEC_PRESENT 0x0001
+#define SIS_SECONDARY_CODEC_PRESENT 0x0002
+#define SIS_TERTIARY_CODEC_PRESENT 0x0004
+
+/* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
+ * documented range of 8-0xfff8 samples. Given that they are 0-based,
+ * that places our period/buffer range at 9-0xfff9 samples. That makes the
+ * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
+ * max samples / min samples gives us the max periods in a buffer.
+ *
+ * We'll add a constraint upon open that limits the period and buffer sample
+ * size to values that are legal for the hardware.
+ */
+static struct snd_pcm_hardware sis_playback_hw_info = {
+ .info = (SNDRV_PCM_INFO_MMAP |
+ SNDRV_PCM_INFO_MMAP_VALID |
+ SNDRV_PCM_INFO_INTERLEAVED |
+ SNDRV_PCM_INFO_BLOCK_TRANSFER |
+ SNDRV_PCM_INFO_SYNC_START |
+ SNDRV_PCM_INFO_RESUME),
+ .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
+ SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
+ .rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
+ .rate_min = 4000,
+ .rate_max = 48000,
+ .channels_min = 1,
+ .channels_max = 2,
+ .buffer_bytes_max = (0xfff9 * 4),
+ .period_bytes_min = 9,
+ .period_bytes_max = (0xfff9 * 4),
+ .periods_min = 1,
+ .periods_max = (0xfff9 / 9),
+};
+
+static struct snd_pcm_hardware sis_capture_hw_info = {
+ .info = (SNDRV_PCM_INFO_MMAP |
+ SNDRV_PCM_INFO_MMAP_VALID |
+ SNDRV_PCM_INFO_INTERLEAVED |
+ SNDRV_PCM_INFO_BLOCK_TRANSFER |
+ SNDRV_PCM_INFO_SYNC_START |
+ SNDRV_PCM_INFO_RESUME),
+ .formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
+ SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
+ .rates = SNDRV_PCM_RATE_48000,
+ .rate_min = 4000,
+ .rate_max = 48000,
+ .channels_min = 1,
+ .channels_max = 2,
+ .buffer_bytes_max = (0xfff9 * 4),
+ .period_bytes_min = 9,
+ .period_bytes_max = (0xfff9 * 4),
+ .periods_min = 1,
+ .periods_max = (0xfff9 / 9),
+};
+
+static void sis_update_sso(struct voice *voice, u16 period)
+{
+ void __iomem *base = voice->ctrl_base;
+
+ voice->sso += period;
+ if (voice->sso >= voice->buffer_size)
+ voice->sso -= voice->buffer_size;
+
+ /* Enforce the documented hardware minimum offset */
+ if (voice->sso < 8)
+ voice->sso = 8;
+
+ /* The SSO is in the upper 16 bits of the register. */
+ writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
+}
+
+static void sis_update_voice(struct voice *voice)
+{
+ if (voice->flags & VOICE_SSO_TIMING) {
+ sis_update_sso(voice, voice->period_size);
+ } else if (voice->flags & VOICE_SYNC_TIMING) {
+ int sync;
+
+ /* If we've not hit the end of the virtual period, update
+ * our records and keep going.
+ */
+ if (voice->vperiod > voice->period_size) {
+ voice->vperiod -= voice->period_size;
+ if (voice->vperiod < voice->period_size)
+ sis_update_sso(voice, voice->vperiod);
+ else
+ sis_update_sso(voice, voice->period_size);
+ return;
+ }
+
+ /* Calculate our relative offset between the target and
+ * the actual CSO value. Since we're operating in a loop,
+ * if the value is more than half way around, we can
+ * consider ourselves wrapped.
+ */
+ sync = voice->sync_cso;
+ sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
+ if (sync > (voice->sync_buffer_size / 2))
+ sync -= voice->sync_buffer_size;
+
+ /* If sync is positive, then we interrupted too early, and
+ * we'll need to come back in a few samples and try again.
+ * There's a minimum wait, as it takes some time for the DMA
+ * engine to startup, etc...
+ */
+ if (sync > 0) {
+ if (sync < 16)
+ sync = 16;
+ sis_update_sso(voice, sync);
+ return;
+ }
+
+ /* Ok, we interrupted right on time, or (hopefully) just
+ * a bit late. We'll adjst our next waiting period based
+ * on how close we got.
+ *
+ * We need to stay just behind the actual channel to ensure
+ * it really is past a period when we get our interrupt --
+ * otherwise we'll fall into the early code above and have
+ * a minimum wait time, which makes us quite late here,
+ * eating into the user's time to refresh the buffer, esp.
+ * if using small periods.
+ *
+ * If we're less than 9 samples behind, we're on target.
+ * Otherwise, shorten the next vperiod by the amount we've
+ * been delayed.
+ */
+ if (sync > -9)
+ voice->vperiod = voice->sync_period_size + 1;
+ else
+ voice->vperiod = voice->sync_period_size + sync + 10;
+
+ if (voice->vperiod < voice->buffer_size) {
+ sis_update_sso(voice, voice->vperiod);
+ voice->vperiod = 0;
+ } else
+ sis_update_sso(voice, voice->period_size);
+
+ sync = voice->sync_cso + voice->sync_period_size;
+ if (sync >= voice->sync_buffer_size)
+ sync -= voice->sync_buffer_size;
+ voice->sync_cso = sync;
+ }
+
+ snd_pcm_period_elapsed(voice->substream);
+}
+
+static void sis_voice_irq(u32 status, struct voice *voice)
+{
+ int bit;
+
+ while (status) {
+ bit = __ffs(status);
+ status >>= bit + 1;
+ voice += bit;
+ sis_update_voice(voice);
+ voice++;
+ }
+}
+
+static irqreturn_t sis_interrupt(int irq, void *dev)
+{
+ struct sis7019 *sis = dev;
+ unsigned long io = sis->ioport;
+ struct voice *voice;
+ u32 intr, status;
+
+ /* We only use the DMA interrupts, and we don't enable any other
+ * source of interrupts. But, it is possible to see an interrupt
+ * status that didn't actually interrupt us, so eliminate anything
+ * we're not expecting to avoid falsely claiming an IRQ, and an
+ * ensuing endless loop.
+ */
+ intr = inl(io + SIS_GISR);
+ intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
+ SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
+ if (!intr)
+ return IRQ_NONE;
+
+ do {
+ status = inl(io + SIS_PISR_A);
+ if (status) {
+ sis_voice_irq(status, sis->voices);
+ outl(status, io + SIS_PISR_A);
+ }
+
+ status = inl(io + SIS_PISR_B);
+ if (status) {
+ sis_voice_irq(status, &sis->voices[32]);
+ outl(status, io + SIS_PISR_B);
+ }
+
+ status = inl(io + SIS_RISR);
+ if (status) {
+ voice = &sis->capture_voice;
+ if (!voice->timing)
+ snd_pcm_period_elapsed(voice->substream);
+
+ outl(status, io + SIS_RISR);
+ }
+
+ outl(intr, io + SIS_GISR);
+ intr = inl(io + SIS_GISR);
+ intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
+ SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
+ } while (intr);
+
+ return IRQ_HANDLED;
+}
+
+static u32 sis_rate_to_delta(unsigned int rate)
+{
+ u32 delta;
+
+ /* This was copied from the trident driver, but it seems its gotten
+ * around a bit... nevertheless, it works well.
+ *
+ * We special case 44100 and 8000 since rounding with the equation
+ * does not give us an accurate enough value. For 11025 and 22050
+ * the equation gives us the best answer. All other frequencies will
+ * also use the equation. JDW
+ */
+ if (rate == 44100)
+ delta = 0xeb3;
+ else if (rate == 8000)
+ delta = 0x2ab;
+ else if (rate == 48000)
+ delta = 0x1000;
+ else
+ delta = (((rate << 12) + 24000) / 48000) & 0x0000ffff;
+ return delta;
+}
+
+static void __sis_map_silence(struct sis7019 *sis)
+{
+ /* Helper function: must hold sis->voice_lock on entry */
+ if (!sis->silence_users)
+ sis->silence_dma_addr = pci_map_single(sis->pci,
+ sis->suspend_state[0],
+ 4096, PCI_DMA_TODEVICE);
+ sis->silence_users++;
+}
+
+static void __sis_unmap_silence(struct sis7019 *sis)
+{
+ /* Helper function: must hold sis->voice_lock on entry */
+ sis->silence_users--;
+ if (!sis->silence_users)
+ pci_unmap_single(sis->pci, sis->silence_dma_addr, 4096,
+ PCI_DMA_TODEVICE);
+}
+
+static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&sis->voice_lock, flags);
+ if (voice->timing) {
+ __sis_unmap_silence(sis);
+ voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
+ VOICE_SYNC_TIMING);
+ voice->timing = NULL;
+ }
+ voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
+ spin_unlock_irqrestore(&sis->voice_lock, flags);
+}
+
+static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
+{
+ /* Must hold the voice_lock on entry */
+ struct voice *voice;
+ int i;
+
+ for (i = 0; i < 64; i++) {
+ voice = &sis->voices[i];
+ if (voice->flags & VOICE_IN_USE)
+ continue;
+ voice->flags |= VOICE_IN_USE;
+ goto found_one;
+ }
+ voice = NULL;
+
+found_one:
+ return voice;
+}
+
+static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
+{
+ struct voice *voice;
+ unsigned long flags;
+
+ spin_lock_irqsave(&sis->voice_lock, flags);
+ voice = __sis_alloc_playback_voice(sis);
+ spin_unlock_irqrestore(&sis->voice_lock, flags);
+
+ return voice;
+}
+
+static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
+ struct snd_pcm_hw_params *hw_params)
+{
+ struct sis7019 *sis = snd_pcm_substream_chip(substream);
+ struct snd_pcm_runtime *runtime = substream->runtime;
+ struct voice *voice = runtime->private_data;
+ unsigned int period_size, buffer_size;
+ unsigned long flags;
+ int needed;
+
+ /* If there are one or two periods per buffer, we don't need a
+ * timing voice, as we can use the capture channel's interrupts
+ * to clock out the periods.
+ */
+ period_size = params_period_size(hw_params);
+ buffer_size = params_buffer_size(hw_params);
+ needed = (period_size != buffer_size &&
+ period_size != (buffer_size / 2));
+
+ if (needed && !voice->timing) {
+ spin_lock_irqsave(&sis->voice_lock, flags);
+ voice->timing = __sis_alloc_playback_voice(sis);
+ if (voice->timing)
+ __sis_map_silence(sis);
+ spin_unlock_irqrestore(&sis->voice_lock, flags);
+ if (!voice->timing)
+ return -ENOMEM;
+ voice->timing->substream = substream;
+ } else if (!needed && voice->timing) {
+ sis_free_voice(sis, voice);
+ voice->timing = NULL;
+ }
+
+ return 0;
+}
+
+static int sis_playback_open(struct snd_pcm_substream *substream)
+{
+ struct sis7019 *sis = snd_pcm_substream_chip(substream);
+ struct snd_pcm_runtime *runtime = substream->runtime;
+ struct voice *voice;
+
+ voice = sis_alloc_playback_voice(sis);
+ if (!voice)
+ return -EAGAIN;
+
+ voice->substream = substream;
+ runtime->private_data = voice;
+ runtime->hw = sis_playback_hw_info;
+ snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
+ 9, 0xfff9);
+ snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
+ 9, 0xfff9);
+ snd_pcm_set_sync(substream);
+ return 0;
+}
+
+static int sis_substream_close(struct snd_pcm_substream *substream)
+{
+ struct sis7019 *sis = snd_pcm_substream_chip(substream);
+ struct snd_pcm_runtime *runtime = substream->runtime;
+ struct voice *voice = runtime->private_data;
+
+ sis_free_voice(sis, voice);
+ return 0;
+}
+
+static int sis_playback_hw_params(struct snd_pcm_substream *substream,
+ struct snd_pcm_hw_params *hw_params)
+{
+ return snd_pcm_lib_malloc_pages(substream,
+ params_buffer_bytes(hw_params));
+}
+
+static int sis_hw_free(struct snd_pcm_substream *substream)
+{
+ return snd_pcm_lib_free_pages(substream);
+}
+
+static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
+{
+ struct snd_pcm_runtime *runtime = substream->runtime;
+ struct voice *voice = runtime->private_data;
+ void __iomem *ctrl_base = voice->ctrl_base;
+ void __iomem *wave_base = voice->wave_base;
+ u32 format, dma_addr, control, sso_eso, delta, reg;
+ u16 leo;
+
+ /* We rely on the PCM core to ensure that the parameters for this
+ * substream do not change on us while we're programming the HW.
+ */
+ format = 0;
+ if (snd_pcm_format_width(runtime->format) == 8)
+ format |= SIS_PLAY_DMA_FORMAT_8BIT;
+ if (!snd_pcm_format_signed(runtime->format))
+ format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
+ if (runtime->channels == 1)
+ format |= SIS_PLAY_DMA_FORMAT_MONO;
+
+ /* The baseline setup is for a single period per buffer, and
+ * we add bells and whistles as needed from there.
+ */
+ dma_addr = runtime->dma_addr;
+ leo = runtime->buffer_size - 1;
+ control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
+ sso_eso = leo;
+
+ if (runtime->period_size == (runtime->buffer_size / 2)) {
+ control |= SIS_PLAY_DMA_INTR_AT_MLP;
+ } else if (runtime->period_size != runtime->buffer_size) {
+ voice->flags |= VOICE_SSO_TIMING;
+ voice->sso = runtime->period_size - 1;
+ voice->period_size = runtime->period_size;
+ voice->buffer_size = runtime->buffer_size;
+
+ control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
+ control |= SIS_PLAY_DMA_INTR_AT_SSO;
+ sso_eso |= (runtime->period_size - 1) << 16;
+ }
+
+ delta = sis_rate_to_delta(runtime->rate);
+
+ /* Ok, we're ready to go, set up the channel.
+ */
+ writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
+ writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
+ writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
+ writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
+
+ for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
+ writel(0, wave_base + reg);
+
+ writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
+ writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
+ writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
+ SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
+ SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
+ wave_base + SIS_WAVE_CHANNEL_CONTROL);
+
+ /* Force PCI writes to post. */
+ readl(ctrl_base);
+
+ return 0;
+}
+
+static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
+{
+ struct sis7019 *sis = snd_pcm_substream_chip(substream);
+ unsigned long io = sis->ioport;
+ struct snd_pcm_substream *s;
+ struct voice *voice;
+ void *chip;
+ int starting;
+ u32 record = 0;
+ u32 play[2] = { 0, 0 };
+
+ /* No locks needed, as the PCM core will hold the locks on the
+ * substreams, and the HW will only start/stop the indicated voices
+ * without changing the state of the others.
+ */
+ switch (cmd) {
+ case SNDRV_PCM_TRIGGER_START:
+ case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
+ case SNDRV_PCM_TRIGGER_RESUME:
+ starting = 1;
+ break;
+ case SNDRV_PCM_TRIGGER_STOP:
+ case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
+ case SNDRV_PCM_TRIGGER_SUSPEND:
+ starting = 0;
+ break;
+ default:
+ return -EINVAL;
+ }
+
+ snd_pcm_group_for_each_entry(s, substream) {
+ /* Make sure it is for us... */
+ chip = snd_pcm_substream_chip(s);
+ if (chip != sis)
+ continue;
+
+ voice = s->runtime->private_data;
+ if (voice->flags & VOICE_CAPTURE) {
+ record |= 1 << voice->num;
+ voice = voice->timing;
+ }
+
+ /* voice could be NULL if this a recording stream, and it
+ * doesn't have an external timing channel.
+ */
+ if (voice)
+ play[voice->num / 32] |= 1 << (voice->num & 0x1f);
+
+ snd_pcm_trigger_done(s, substream);
+ }
+
+ if (starting) {
+ if (record)
+ outl(record, io + SIS_RECORD_START_REG);
+ if (play[0])
+ outl(play[0], io + SIS_PLAY_START_A_REG);
+ if (play[1])
+ outl(play[1], io + SIS_PLAY_START_B_REG);
+ } else {
+ if (record)
+ outl(record, io + SIS_RECORD_STOP_REG);
+ if (play[0])
+ outl(play[0], io + SIS_PLAY_STOP_A_REG);
+ if (play[1])
+ outl(play[1], io + SIS_PLAY_STOP_B_REG);
+ }
+ return 0;
+}
+
+static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
+{
+ struct snd_pcm_runtime *runtime = substream->runtime;
+ struct voice *voice = runtime->private_data;
+ u32 cso;
+
+ cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
+ cso &= 0xffff;
+ return cso;
+}
+
+static int sis_capture_open(struct snd_pcm_substream *substream)
+{
+ struct sis7019 *sis = snd_pcm_substream_chip(substream);
+ struct snd_pcm_runtime *runtime = substream->runtime;
+ struct voice *voice = &sis->capture_voice;
+ unsigned long flags;
+
+ /* FIXME: The driver only supports recording from one channel
+ * at the moment, but it could support more.
+ */
+ spin_lock_irqsave(&sis->voice_lock, flags);
+ if (voice->flags & VOICE_IN_USE)
+ voice = NULL;
+ else
+ voice->flags |= VOICE_IN_USE;
+ spin_unlock_irqrestore(&sis->voice_lock, flags);
+
+ if (!voice)
+ return -EAGAIN;
+
+ voice->substream = substream;
+ runtime->private_data = voice;
+ runtime->hw = sis_capture_hw_info;
+ runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
+ snd_pcm_limit_hw_rates(runtime);
+ snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
+ 9, 0xfff9);
+ snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
+ 9, 0xfff9);
+ snd_pcm_set_sync(substream);
+ return 0;
+}
+
+static int sis_capture_hw_params(struct snd_pcm_substream *substream,
+ struct snd_pcm_hw_params *hw_params)
+{
+ struct sis7019 *sis = snd_pcm_substream_chip(substream);
+ int rc;
+
+ rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
+ params_rate(hw_params));
+ if (rc)
+ goto out;
+
+ rc = snd_pcm_lib_malloc_pages(substream,
+ params_buffer_bytes(hw_params));
+ if (rc < 0)
+ goto out;
+
+ rc = sis_alloc_timing_voice(substream, hw_params);
+
+out:
+ return rc;
+}
+
+static void sis_prepare_timing_voice(struct voice *voice,
+ struct snd_pcm_substream *substream)
+{
+ struct sis7019 *sis = snd_pcm_substream_chip(substream);
+ struct snd_pcm_runtime *runtime = substream->runtime;
+ struct voice *timing = voice->timing;
+ void __iomem *play_base = timing->ctrl_base;
+ void __iomem *wave_base = timing->wave_base;
+ u16 buffer_size, period_size;
+ u32 format, control, sso_eso, delta;
+ u32 vperiod, sso, reg;
+
+ /* Set our initial buffer and period as large as we can given a
+ * single page of silence.
+ */
+ buffer_size = 4096 / runtime->channels;
+ buffer_size /= snd_pcm_format_size(runtime->format, 1);
+ period_size = buffer_size;
+
+ /* Initially, we want to interrupt just a bit behind the end of
+ * the period we're clocking out. 12 samples seems to give a good
+ * delay.
+ *
+ * We want to spread our interrupts throughout the virtual period,
+ * so that we don't end up with two interrupts back to back at the
+ * end -- this helps minimize the effects of any jitter. Adjust our
+ * clocking period size so that the last period is at least a fourth
+ * of a full period.
+ *
+ * This is all moot if we don't need to use virtual periods.
+ */
+ vperiod = runtime->period_size + 12;
+ if (vperiod > period_size) {
+ u16 tail = vperiod % period_size;
+ u16 quarter_period = period_size / 4;
+
+ if (tail && tail < quarter_period) {
+ u16 loops = vperiod / period_size;
+
+ tail = quarter_period - tail;
+ tail += loops - 1;
+ tail /= loops;
+ period_size -= tail;
+ }
+
+ sso = period_size - 1;
+ } else {
+ /* The initial period will fit inside the buffer, so we
+ * don't need to use virtual periods -- disable them.
+ */
+ period_size = runtime->period_size;
+ sso = vperiod - 1;
+ vperiod = 0;
+ }
+
+ /* The interrupt handler implements the timing synchronization, so
+ * setup its state.
+ */
+ timing->flags |= VOICE_SYNC_TIMING;
+ timing->sync_base = voice->ctrl_base;
+ timing->sync_cso = runtime->period_size;
+ timing->sync_period_size = runtime->period_size;
+ timing->sync_buffer_size = runtime->buffer_size;
+ timing->period_size = period_size;
+ timing->buffer_size = buffer_size;
+ timing->sso = sso;
+ timing->vperiod = vperiod;
+
+ /* Using unsigned samples with the all-zero silence buffer
+ * forces the output to the lower rail, killing playback.
+ * So ignore unsigned vs signed -- it doesn't change the timing.
+ */
+ format = 0;
+ if (snd_pcm_format_width(runtime->format) == 8)
+ format = SIS_CAPTURE_DMA_FORMAT_8BIT;
+ if (runtime->channels == 1)
+ format |= SIS_CAPTURE_DMA_FORMAT_MONO;
+
+ control = timing->buffer_size - 1;
+ control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
+ sso_eso = timing->buffer_size - 1;
+ sso_eso |= timing->sso << 16;
+
+ delta = sis_rate_to_delta(runtime->rate);
+
+ /* We've done the math, now configure the channel.
+ */
+ writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
+ writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
+ writel(control, play_base + SIS_PLAY_DMA_CONTROL);
+ writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
+
+ for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
+ writel(0, wave_base + reg);
+
+ writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
+ writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
+ writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
+ SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
+ SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
+ wave_base + SIS_WAVE_CHANNEL_CONTROL);
+}
+
+static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
+{
+ struct snd_pcm_runtime *runtime = substream->runtime;
+ struct voice *voice = runtime->private_data;
+ void __iomem *rec_base = voice->ctrl_base;
+ u32 format, dma_addr, control;
+ u16 leo;
+
+ /* We rely on the PCM core to ensure that the parameters for this
+ * substream do not change on us while we're programming the HW.
+ */
+ format = 0;
+ if (snd_pcm_format_width(runtime->format) == 8)
+ format = SIS_CAPTURE_DMA_FORMAT_8BIT;
+ if (!snd_pcm_format_signed(runtime->format))
+ format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
+ if (runtime->channels == 1)
+ format |= SIS_CAPTURE_DMA_FORMAT_MONO;
+
+ dma_addr = runtime->dma_addr;
+ leo = runtime->buffer_size - 1;
+ control = leo | SIS_CAPTURE_DMA_LOOP;
+
+ /* If we've got more than two periods per buffer, then we have
+ * use a timing voice to clock out the periods. Otherwise, we can
+ * use the capture channel's interrupts.
+ */
+ if (voice->timing) {
+ sis_prepare_timing_voice(voice, substream);
+ } else {
+ control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
+ if (runtime->period_size != runtime->buffer_size)
+ control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
+ }
+
+ writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
+ writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
+ writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
+
+ /* Force the writes to post. */
+ readl(rec_base);
+
+ return 0;
+}
+
+static struct snd_pcm_ops sis_playback_ops = {
+ .open = sis_playback_open,
+ .close = sis_substream_close,
+ .ioctl = snd_pcm_lib_ioctl,
+ .hw_params = sis_playback_hw_params,
+ .hw_free = sis_hw_free,
+ .prepare = sis_pcm_playback_prepare,
+ .trigger = sis_pcm_trigger,
+ .pointer = sis_pcm_pointer,
+};
+
+static struct snd_pcm_ops sis_capture_ops = {
+ .open = sis_capture_open,
+ .close = sis_substream_close,
+ .ioctl = snd_pcm_lib_ioctl,
+ .hw_params = sis_capture_hw_params,
+ .hw_free = sis_hw_free,
+ .prepare = sis_pcm_capture_prepare,
+ .trigger = sis_pcm_trigger,
+ .pointer = sis_pcm_pointer,
+};
+
+static int __devinit sis_pcm_create(struct sis7019 *sis)
+{
+ struct snd_pcm *pcm;
+ int rc;
+
+ /* We have 64 voices, and the driver currently records from
+ * only one channel, though that could change in the future.
+ */
+ rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
+ if (rc)
+ return rc;
+
+ pcm->private_data = sis;
+ strcpy(pcm->name, "SiS7019");
+ sis->pcm = pcm;
+
+ snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
+ snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
+
+ /* Try to preallocate some memory, but it's not the end of the
+ * world if this fails.
+ */
+ snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
+ snd_dma_pci_data(sis->pci), 64*1024, 128*1024);
+
+ return 0;
+}
+
+static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
+{
+ unsigned long io = sis->ioport;
+ unsigned short val = 0xffff;
+ u16 status;
+ u16 rdy;
+ int count;
+ static const u16 codec_ready[3] = {
+ SIS_AC97_STATUS_CODEC_READY,
+ SIS_AC97_STATUS_CODEC2_READY,
+ SIS_AC97_STATUS_CODEC3_READY,
+ };
+
+ rdy = codec_ready[codec];
+
+
+ /* Get the AC97 semaphore -- software first, so we don't spin
+ * pounding out IO reads on the hardware semaphore...
+ */
+ mutex_lock(&sis->ac97_mutex);
+
+ count = 0xffff;
+ while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
+ udelay(1);
+
+ if (!count)
+ goto timeout;
+
+ /* ... and wait for any outstanding commands to complete ...
+ */
+ count = 0xffff;
+ do {
+ status = inw(io + SIS_AC97_STATUS);
+ if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
+ break;
+
+ udelay(1);
+ } while (--count);
+
+ if (!count)
+ goto timeout_sema;
+
+ /* ... before sending our command and waiting for it to finish ...
+ */
+ outl(cmd, io + SIS_AC97_CMD);
+ udelay(10);
+
+ count = 0xffff;
+ while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
+ udelay(1);
+
+ /* ... and reading the results (if any).
+ */
+ val = inl(io + SIS_AC97_CMD) >> 16;
+
+timeout_sema:
+ outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
+timeout:
+ mutex_unlock(&sis->ac97_mutex);
+
+ if (!count) {
+ dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n",
+ codec, cmd);
+ }
+
+ return val;
+}
+
+static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
+ unsigned short val)
+{
+ static const u32 cmd[3] = {
+ SIS_AC97_CMD_CODEC_WRITE,
+ SIS_AC97_CMD_CODEC2_WRITE,
+ SIS_AC97_CMD_CODEC3_WRITE,
+ };
+ sis_ac97_rw(ac97->private_data, ac97->num,
+ (val << 16) | (reg << 8) | cmd[ac97->num]);
+}
+
+static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
+{
+ static const u32 cmd[3] = {
+ SIS_AC97_CMD_CODEC_READ,
+ SIS_AC97_CMD_CODEC2_READ,
+ SIS_AC97_CMD_CODEC3_READ,
+ };
+ return sis_ac97_rw(ac97->private_data, ac97->num,
+ (reg << 8) | cmd[ac97->num]);
+}
+
+static int __devinit sis_mixer_create(struct sis7019 *sis)
+{
+ struct snd_ac97_bus *bus;
+ struct snd_ac97_template ac97;
+ static struct snd_ac97_bus_ops ops = {
+ .write = sis_ac97_write,
+ .read = sis_ac97_read,
+ };
+ int rc;
+
+ memset(&ac97, 0, sizeof(ac97));
+ ac97.private_data = sis;
+
+ rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
+ if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
+ rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
+ ac97.num = 1;
+ if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
+ rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
+ ac97.num = 2;
+ if (!rc && (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT))
+ rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[2]);
+
+ /* If we return an error here, then snd_card_free() should
+ * free up any ac97 codecs that got created, as well as the bus.
+ */
+ return rc;
+}
+
+static void sis_free_suspend(struct sis7019 *sis)
+{
+ int i;
+
+ for (i = 0; i < SIS_SUSPEND_PAGES; i++)
+ kfree(sis->suspend_state[i]);
+}
+
+static int sis_chip_free(struct sis7019 *sis)
+{
+ /* Reset the chip, and disable all interrputs.
+ */
+ outl(SIS_GCR_SOFTWARE_RESET, sis->ioport + SIS_GCR);
+ udelay(25);
+ outl(0, sis->ioport + SIS_GCR);
+ outl(0, sis->ioport + SIS_GIER);
+
+ /* Now, free everything we allocated.
+ */
+ if (sis->irq >= 0)
+ free_irq(sis->irq, sis);
+
+ if (sis->ioaddr)
+ iounmap(sis->ioaddr);
+
+ pci_release_regions(sis->pci);
+ pci_disable_device(sis->pci);
+
+ sis_free_suspend(sis);
+ return 0;
+}
+
+static int sis_dev_free(struct snd_device *dev)
+{
+ struct sis7019 *sis = dev->device_data;
+ return sis_chip_free(sis);
+}
+
+static int sis_chip_init(struct sis7019 *sis)
+{
+ unsigned long io = sis->ioport;
+ void __iomem *ioaddr = sis->ioaddr;
+ unsigned long timeout;
+ u16 status;
+ int count;
+ int i;
+
+ /* Reset the audio controller
+ */
+ outl(SIS_GCR_SOFTWARE_RESET, io + SIS_GCR);
+ udelay(25);
+ outl(0, io + SIS_GCR);
+
+ /* Get the AC-link semaphore, and reset the codecs
+ */
+ count = 0xffff;
+ while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
+ udelay(1);
+
+ if (!count)
+ return -EIO;
+
+ outl(SIS_AC97_CMD_CODEC_COLD_RESET, io + SIS_AC97_CMD);
+ udelay(250);
+
+ count = 0xffff;
+ while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
+ udelay(1);
+
+ /* Command complete, we can let go of the semaphore now.
+ */
+ outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
+ if (!count)
+ return -EIO;
+
+ /* Now that we've finished the reset, find out what's attached.
+ * There are some codec/board combinations that take an extremely
+ * long time to come up. 350+ ms has been observed in the field,
+ * so we'll give them up to 500ms.
+ */
+ sis->codecs_present = 0;
+ timeout = msecs_to_jiffies(500) + jiffies;
+ while (time_before_eq(jiffies, timeout)) {
+ status = inl(io + SIS_AC97_STATUS);
+ if (status & SIS_AC97_STATUS_CODEC_READY)
+ sis->codecs_present |= SIS_PRIMARY_CODEC_PRESENT;
+ if (status & SIS_AC97_STATUS_CODEC2_READY)
+ sis->codecs_present |= SIS_SECONDARY_CODEC_PRESENT;
+ if (status & SIS_AC97_STATUS_CODEC3_READY)
+ sis->codecs_present |= SIS_TERTIARY_CODEC_PRESENT;
+
+ if (sis->codecs_present == codecs)
+ break;
+
+ msleep(1);
+ }
+
+ /* All done, check for errors.
+ */
+ if (!sis->codecs_present) {
+ dev_err(&sis->pci->dev, "could not find any codecs\n");
+ return -EIO;
+ }
+
+ if (sis->codecs_present != codecs) {
+ dev_warn(&sis->pci->dev, "missing codecs, found %0x, expected %0x\n",
+ sis->codecs_present, codecs);
+ }
+
+ /* Let the hardware know that the audio driver is alive,
+ * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
+ * record channels. We're going to want to use Variable Rate Audio
+ * for recording, to avoid needlessly resampling from 48kHZ.
+ */
+ outl(SIS_AC97_CONF_AUDIO_ALIVE, io + SIS_AC97_CONF);
+ outl(SIS_AC97_CONF_AUDIO_ALIVE | SIS_AC97_CONF_PCM_LR_ENABLE |
+ SIS_AC97_CONF_PCM_CAP_MIC_ENABLE |
+ SIS_AC97_CONF_PCM_CAP_LR_ENABLE |
+ SIS_AC97_CONF_CODEC_VRA_ENABLE, io + SIS_AC97_CONF);
+
+ /* All AC97 PCM slots should be sourced from sub-mixer 0.
+ */
+ outl(0, io + SIS_AC97_PSR);
+
+ /* There is only one valid DMA setup for a PCI environment.
+ */
+ outl(SIS_DMA_CSR_PCI_SETTINGS, io + SIS_DMA_CSR);
+
+ /* Reset the synchronization groups for all of the channels
+ * to be asyncronous. If we start doing SPDIF or 5.1 sound, etc.
+ * we'll need to change how we handle these. Until then, we just
+ * assign sub-mixer 0 to all playback channels, and avoid any
+ * attenuation on the audio.
+ */
+ outl(0, io + SIS_PLAY_SYNC_GROUP_A);
+ outl(0, io + SIS_PLAY_SYNC_GROUP_B);
+ outl(0, io + SIS_PLAY_SYNC_GROUP_C);
+ outl(0, io + SIS_PLAY_SYNC_GROUP_D);
+ outl(0, io + SIS_MIXER_SYNC_GROUP);
+
+ for (i = 0; i < 64; i++) {
+ writel(i, SIS_MIXER_START_ADDR(ioaddr, i));
+ writel(SIS_MIXER_RIGHT_NO_ATTEN | SIS_MIXER_LEFT_NO_ATTEN |
+ SIS_MIXER_DEST_0, SIS_MIXER_ADDR(ioaddr, i));
+ }
+
+ /* Don't attenuate any audio set for the wave amplifier.
+ *
+ * FIXME: Maximum attenuation is set for the music amp, which will
+ * need to change if we start using the synth engine.
+ */
+ outl(0xffff0000, io + SIS_WEVCR);
+
+ /* Ensure that the wave engine is in normal operating mode.
+ */
+ outl(0, io + SIS_WECCR);
+
+ /* Go ahead and enable the DMA interrupts. They won't go live
+ * until we start a channel.
+ */
+ outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE |
+ SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE, io + SIS_GIER);
+
+ return 0;
+}
+
+#ifdef CONFIG_PM
+static int sis_suspend(struct pci_dev *pci, pm_message_t state)
+{
+ struct snd_card *card = pci_get_drvdata(pci);
+ struct sis7019 *sis = card->private_data;
+ void __iomem *ioaddr = sis->ioaddr;
+ int i;
+
+ snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
+ snd_pcm_suspend_all(sis->pcm);
+ if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
+ snd_ac97_suspend(sis->ac97[0]);
+ if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
+ snd_ac97_suspend(sis->ac97[1]);
+ if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
+ snd_ac97_suspend(sis->ac97[2]);
+
+ /* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
+ */
+ if (sis->irq >= 0) {
+ free_irq(sis->irq, sis);
+ sis->irq = -1;
+ }
+
+ /* Save the internal state away
+ */
+ for (i = 0; i < 4; i++) {
+ memcpy_fromio(sis->suspend_state[i], ioaddr, 4096);
+ ioaddr += 4096;
+ }
+
+ pci_disable_device(pci);
+ pci_save_state(pci);
+ pci_set_power_state(pci, pci_choose_state(pci, state));
+ return 0;
+}
+
+static int sis_resume(struct pci_dev *pci)
+{
+ struct snd_card *card = pci_get_drvdata(pci);
+ struct sis7019 *sis = card->private_data;
+ void __iomem *ioaddr = sis->ioaddr;
+ int i;
+
+ pci_set_power_state(pci, PCI_D0);
+ pci_restore_state(pci);
+
+ if (pci_enable_device(pci) < 0) {
+ dev_err(&pci->dev, "unable to re-enable device\n");
+ goto error;
+ }
+
+ if (sis_chip_init(sis)) {
+ dev_err(&pci->dev, "unable to re-init controller\n");
+ goto error;
+ }
+
+ if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED,
+ KBUILD_MODNAME, sis)) {
+ dev_err(&pci->dev, "unable to regain IRQ %d\n", pci->irq);
+ goto error;
+ }
+
+ /* Restore saved state, then clear out the page we use for the
+ * silence buffer.
+ */
+ for (i = 0; i < 4; i++) {
+ memcpy_toio(ioaddr, sis->suspend_state[i], 4096);
+ ioaddr += 4096;
+ }
+
+ memset(sis->suspend_state[0], 0, 4096);
+
+ sis->irq = pci->irq;
+ pci_set_master(pci);
+
+ if (sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
+ snd_ac97_resume(sis->ac97[0]);
+ if (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT)
+ snd_ac97_resume(sis->ac97[1]);
+ if (sis->codecs_present & SIS_TERTIARY_CODEC_PRESENT)
+ snd_ac97_resume(sis->ac97[2]);
+
+ snd_power_change_state(card, SNDRV_CTL_POWER_D0);
+ return 0;
+
+error:
+ snd_card_disconnect(card);
+ return -EIO;
+}
+#endif /* CONFIG_PM */
+
+static int sis_alloc_suspend(struct sis7019 *sis)
+{
+ int i;
+
+ /* We need 16K to store the internal wave engine state during a
+ * suspend, but we don't need it to be contiguous, so play nice
+ * with the memory system. We'll also use this area for a silence
+ * buffer.
+ */
+ for (i = 0; i < SIS_SUSPEND_PAGES; i++) {
+ sis->suspend_state[i] = kmalloc(4096, GFP_KERNEL);
+ if (!sis->suspend_state[i])
+ return -ENOMEM;
+ }
+ memset(sis->suspend_state[0], 0, 4096);
+
+ return 0;
+}
+
+static int __devinit sis_chip_create(struct snd_card *card,
+ struct pci_dev *pci)
+{
+ struct sis7019 *sis = card->private_data;
+ struct voice *voice;
+ static struct snd_device_ops ops = {
+ .dev_free = sis_dev_free,
+ };
+ int rc;
+ int i;
+
+ rc = pci_enable_device(pci);
+ if (rc)
+ goto error_out;
+
+ if (pci_set_dma_mask(pci, DMA_BIT_MASK(30)) < 0) {
+ dev_err(&pci->dev, "architecture does not support 30-bit PCI busmaster DMA");
+ goto error_out_enabled;
+ }
+
+ memset(sis, 0, sizeof(*sis));
+ mutex_init(&sis->ac97_mutex);
+ spin_lock_init(&sis->voice_lock);
+ sis->card = card;
+ sis->pci = pci;
+ sis->irq = -1;
+ sis->ioport = pci_resource_start(pci, 0);
+
+ rc = pci_request_regions(pci, "SiS7019");
+ if (rc) {
+ dev_err(&pci->dev, "unable request regions\n");
+ goto error_out_enabled;
+ }
+
+ rc = -EIO;
+ sis->ioaddr = ioremap_nocache(pci_resource_start(pci, 1), 0x4000);
+ if (!sis->ioaddr) {
+ dev_err(&pci->dev, "unable to remap MMIO, aborting\n");
+ goto error_out_cleanup;
+ }
+
+ rc = sis_alloc_suspend(sis);
+ if (rc < 0) {
+ dev_err(&pci->dev, "unable to allocate state storage\n");
+ goto error_out_cleanup;
+ }
+
+ rc = sis_chip_init(sis);
+ if (rc)
+ goto error_out_cleanup;
+
+ if (request_irq(pci->irq, sis_interrupt, IRQF_SHARED, KBUILD_MODNAME,
+ sis)) {
+ dev_err(&pci->dev, "unable to allocate irq %d\n", sis->irq);
+ goto error_out_cleanup;
+ }
+
+ sis->irq = pci->irq;
+ pci_set_master(pci);
+
+ for (i = 0; i < 64; i++) {
+ voice = &sis->voices[i];
+ voice->num = i;
+ voice->ctrl_base = SIS_PLAY_DMA_ADDR(sis->ioaddr, i);
+ voice->wave_base = SIS_WAVE_ADDR(sis->ioaddr, i);
+ }
+
+ voice = &sis->capture_voice;
+ voice->flags = VOICE_CAPTURE;
+ voice->num = SIS_CAPTURE_CHAN_AC97_PCM_IN;
+ voice->ctrl_base = SIS_CAPTURE_DMA_ADDR(sis->ioaddr, voice->num);
+
+ rc = snd_device_new(card, SNDRV_DEV_LOWLEVEL, sis, &ops);
+ if (rc)
+ goto error_out_cleanup;
+
+ snd_card_set_dev(card, &pci->dev);
+
+ return 0;
+
+error_out_cleanup:
+ sis_chip_free(sis);
+
+error_out_enabled:
+ pci_disable_device(pci);
+
+error_out:
+ return rc;
+}
+
+static int __devinit snd_sis7019_probe(struct pci_dev *pci,
+ const struct pci_device_id *pci_id)
+{
+ struct snd_card *card;
+ struct sis7019 *sis;
+ int rc;
+
+ rc = -ENOENT;
+ if (!enable)
+ goto error_out;
+
+ /* The user can specify which codecs should be present so that we
+ * can wait for them to show up if they are slow to recover from
+ * the AC97 cold reset. We default to a single codec, the primary.
+ *
+ * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
+ */
+ codecs &= SIS_PRIMARY_CODEC_PRESENT | SIS_SECONDARY_CODEC_PRESENT |
+ SIS_TERTIARY_CODEC_PRESENT;
+ if (!codecs)
+ codecs = SIS_PRIMARY_CODEC_PRESENT;
+
+ rc = snd_card_create(index, id, THIS_MODULE, sizeof(*sis), &card);
+ if (rc < 0)
+ goto error_out;
+
+ strcpy(card->driver, "SiS7019");
+ strcpy(card->shortname, "SiS7019");
+ rc = sis_chip_create(card, pci);
+ if (rc)
+ goto card_error_out;
+
+ sis = card->private_data;
+
+ rc = sis_mixer_create(sis);
+ if (rc)
+ goto card_error_out;
+
+ rc = sis_pcm_create(sis);
+ if (rc)
+ goto card_error_out;
+
+ snprintf(card->longname, sizeof(card->longname),
+ "%s Audio Accelerator with %s at 0x%lx, irq %d",
+ card->shortname, snd_ac97_get_short_name(sis->ac97[0]),
+ sis->ioport, sis->irq);
+
+ rc = snd_card_register(card);
+ if (rc)
+ goto card_error_out;
+
+ pci_set_drvdata(pci, card);
+ return 0;
+
+card_error_out:
+ snd_card_free(card);
+
+error_out:
+ return rc;
+}
+
+static void __devexit snd_sis7019_remove(struct pci_dev *pci)
+{
+ snd_card_free(pci_get_drvdata(pci));
+ pci_set_drvdata(pci, NULL);
+}
+
+static struct pci_driver sis7019_driver = {
+ .name = KBUILD_MODNAME,
+ .id_table = snd_sis7019_ids,
+ .probe = snd_sis7019_probe,
+ .remove = __devexit_p(snd_sis7019_remove),
+
+#ifdef CONFIG_PM
+ .suspend = sis_suspend,
+ .resume = sis_resume,
+#endif
+};
+
+static int __init sis7019_init(void)
+{
+ return pci_register_driver(&sis7019_driver);
+}
+
+static void __exit sis7019_exit(void)
+{
+ pci_unregister_driver(&sis7019_driver);
+}
+
+module_init(sis7019_init);
+module_exit(sis7019_exit);